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3P1c Quantum Field Theory: Example Sheet 3 Michaelmas 2019

Corrections and suggestions should be emailed to B.C.Allanach@damtp.cam.ac.uk. Starred ques-

tions may if you wish be handed in to your supervisor for feedback prior to the class.

1. The chiral representation of the Clifford algebra is

γ0 =

(

0 12
12 0

)

, γi =

(

0 σi

−σi 0

)

.

Show that these indeed satisfy {γµ, γν} = 2ηµν1. Find a unitary matrix U such that
(γ′)µ = UγµU †, where (γ′)µ form the Dirac representation of the Clifford algebra

(γ′)0 =

(

12 0
0 −12

)

, (γ′)i =

(

0 σi

−σi 0

)

.

2. Show that if {γµ, γν} = 2ηµν , then

[γµγν , γργσ] = 2ηνργµγσ − 2ηµργνγσ + 2ηνσγργµ − 2ηµσγργν .

Show further that Sµν ≡ 1
4
[γµ , γν ] = 1

2
(γµγν − ηµν). Use this to confirm that the

matrices Sµν form a representation of the Lie algebra of the Lorentz group.

3. Using just the algebra {γµ, γν} = 2ηµν (that is to say without resorting to any partic-
ular representation of the gamma matrices), and defining γ5 = iγ0γ1γ2γ3, /p = pµγ

µ

and Sµν ≡ 1
4
[γµ, γν ], prove the following results (these are useful when calculating

cross-sections or decay widths involving spinor fields):

(a) Trγµ = 0

(b) Tr(γµγν) = 4ηµν

(c) Tr(γµγνγρ) = 0

(d) (γ5)
2
= 1

(e) Trγ5 = 0

(f) /p �q = 2p · q − �q /p = p · q + 2Sµνpµqν

(g) Tr( /p�q) = 4p · q
(h) Tr( /p1 . . . /pn) = 0 if n is odd

(i) Tr( /p1 /p2 /p3 /p4) = 4 [(p1 · p2)(p3 · p4) + (p1 · p4)(p2 · p3)− (p1 · p3)(p2 · p4)]
(j) Tr(γ5 /p1 /p2) = 0

(k) γµ /p γµ = −2 /p

(l) γa /p1 /p2γ
a = 4p1 · p2

(m) γµ /p1 /p2 /p3γ
µ = −2 /p3 /p2 /p1

(n) Tr(γ5 /p1 /p2 /p3 /p4) = 4i ǫµνρσ p
µ
1 p

ν
2 p

ρ
3 p

σ
4
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4.∗ The plane-wave solutions to the Dirac equation are

us(~p) =

( √
p · σξs√
p · σ̄ξs

)

and vs(~p) =

( √
p · σξs

−√
p · σ̄ξs

)

,

where σµ = (1, ~σ) and σ̄µ = (1,−~σ) and ξs, with s ∈ {1, 2}, is a basis of orthonormal
two-component spinors, satisfying (ξr)† · ξs = δrs. Show that

ur(~p)† · us(~p) = 2p0δ
rs

ūr(~p) · us(~p) = 2mδrs (1)

and similarly,

vr(~p)† · vs(~p) = 2p0δ
rs

v̄r(~p) · vs(~p) = −2mδrs. (2)

Show also that the orthogonality condition between u and v is

ūs(~p) · vr(~p) = 0,

while taking the inner product using † requires an extra minus sign

us(~p)† · vr(−~p) = 0. (3)

5. Using the same notation as Question 4, show that

2
∑

s=1

us(~p)ūs(~p) = /p+m, (4)

2
∑

s=1

vs(~p)v̄s(~p) = /p−m, (5)

where, rather than being contracted, the two spinors on the left-hand side are placed
back to back to form a 4×4 matrix.

6. The Fourier decomposition of the Dirac field operator ψ(x) and the hermitian conju-
gate field ψ†(~x) is given by

ψ(~x) =

∫

d3p

(2π)3
1

√

2Ep

2
∑

s=1

[

bs~pu
s(~p)ei~p·~x + cs~p

†vs(~p)e−i~p·~x
]

,

ψ†(~x) =

∫

d3p

(2π)3
1

√

2Ep

2
∑

s=1

[

bs~p
†us(~p)†e−i~p·~x + cs~pv

s(~p)†ei~p·~x
]

. (6)

The creation and annihilation operators are taken to satisfy

{br~p, bs~q†} = (2π)3δrs δ(3)(~p− ~q),

{cr~p, cs~q†} = (2π)3δrs δ(3)(~p− ~q) ,

with all other anticommutators vanishing. Show that these imply that the field and
its conjugate field satisfy the anti-commutation relations

{ψα(~x), ψβ(~y)} = {ψ†
α(~x), ψ

†
β(~y)} = 0,

{ψα(~x), ψ
†
β(~y)} = δαβδ

(3)(~x− ~y).

Note: the calculation is very similar to that for the bosonic field, but at some point
you will need to make use of the identities Eqs. (4),(5).
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7.∗ Using the results of Question 6, show that the quantum Hamiltonian

H =

∫

d3x ψ̄(−iγi∂i +m)ψ

can be written, after normal ordering, as

H =

∫

d3p

(2π)3
E~p

2
∑

r=1

[

br~p
†br~p + cr~p

†cr~p
]

.

Note: the calculation is very similar to that of the bosonic field. This time you will
need to make use of the identities in Eqs. (1), (2) and (3).

8. A fermionic Yukawa theory has the Lagrangian density

L = ψ̄(i /∂ − µ)ψ +
1

2
∂µφ∂µφ− 1

2
m2φ2 − gψ̄ψφ.

Show that the differential cross-section in the centre of mass frame for nucleon-nucleon
scattering (ψψ → ψψ) including the masses m and µ is

dσ

dt
=

|g|4
16πs(s− 4µ2)

[

(u− 4µ2)2

(u−m2)2
+

(t− 4µ2)2

(t−m2)2
+

1

2

(s− 4µ2)2 − (u− 4µ2)2 − (t− 4µ2)2

(u−m2)(t−m2)

]

.

9. Consider the theory of a fermion ψ and a real scalar φ with Lagrangian density

L = ψ̄(i /∂ −m)ψ +
1

2
∂µφ∂µφ− 1

2
µ2φ2 − λψ̄γµψ∂µφ.

Draw and write momentum-space Feynman rules for the interactions of the theory.
What is the mass dimension of λ?

What is the spin averaged/summed cross-section for ψψ̄ → ψψ?

What is the tree-level width for the decay φ→ ψψ̄, assuming that µ > 2m?
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