Mathematical Tripos: IA /IB Computational Projects

Contents

0 Introduction

0.1
0.2

0.3

Overviewo
Aims oL
0.2.1 Understanding algorithms
0.2.2 Being able to programme
0.2.3 Writing up your results
Why use computers in mathematics?

1 Algorithms

1.1

1.2

Matrix Multiplication
1.1.1 Complexity (or the number of operations) . . .
1.1.2 MATLAB implementation
1.1.3 Are there better algorithms?
1.1.4 Triangular Matrices
Matrix Multiplication in MATLAB (unlectured)
1.2.1 My first MATLAB
1.2.2 A function to multiply two matrices

2 Numbers and Errors

2.0
2.1
2.2
2.3

Introduction oo
Big Numbers, Small Numbers and Precision
Types of ‘Rounding Error’

Truncation Error

3 Solution of Transcendental Equations

3.0
3.1
3.2
3.3

3.4
3.5

Introduction Lo
The Basicso
Termination Criteria
Bisection, Interval Halving or Binary Search
3.3.1 Recursion L.
Order of Convergence

Other Methods

Mathematical Tripos: IA/IB Computational Projects 0-a

=W N N

c o N N o O

........................ 10
........................ 10
........................ 13

15

........................ 15
........................ 15
........................ 19
........................ 22

23

........................ 23
........................ 23
........................ 23
........................ 23
........................ 26
........................ 27
........................ 28

© S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

4 Solution of Ordinary Differential Equations 29
4.0 Introduction 29
4.1 The Euler Method e 29

4.1.1 Example MATLAB code o e e 30
4.2 Accuracyo e e 32
4.2.1 Local truncation error of the Euler method 32
4.2.2 Global truncation error of the Euler method (Unlectured) 32
4.2.3 Testing accuracy without the exact solution, and a free lunch! 33
4.2.4 Numerical confirmation of accuracy 0oL 34
4.3 Stability of the Euler Method 36

5 Gaussian Elimination 39
5.0 Introduction L 39
5.1 LU factorization e e 39

5.1.1 Definition 39
5.1.2 Application: solution of linear systems 39
5.2 The calculation of an LU factorization L oL 40
5.21 MATLAB code o o i e e e e e 41
5.2.2 Check thecode e 43
5.3 LU factorization with column pivoting L Lo 44
5.3.1 More MATLAB e 46
5.4 Solution of linear equations Lo e 47

6 The Nitty Gritty 51
6.1 The Nature of CATAM Projects et et e e 51
6.2 Examination Credit 51
6.3 Timetable L 52

6.3.1 Planning your work oL 52
6.4 Programming language[s| L 53
6.4.1 Your copy of MATLAB oo v ittt e e e 53
6.4.2 Programming manualls] Lo Lo 53
6.4.3 To MATLAB, or not to MATLAB o i 54

7 Project Reports 55
7.1 Project write-ups: examination credit oL Lo Lo 55
7.2 Project write-ups: advice e 55

7.2.1 Project write-ups: adviceon lengtho oL 57

7.3 Project write-ups: technicalities oL 57

8 Information Sources 58
Mathematical Tripos: IA/IB Computational Projects 0-b © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

9 Unfair Means, Plagiarism and Guidelines for Collaboration 60

9.1 Oral examinations L e e e e 62

10 Submission and Assessment 63
10.1 Submission form L. 63
10.2 Submission of written work 63
10.3 Electronic submission Lo L 63
10.4 (Non)-return of written work Lo 64

Mathematical Tripos: IA/IB Computational Projects

0-c

© S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

0

0.1

Introduction

Overview

CATAM stands for Computer-Aided Teaching of All Mathematics.® The course is different to anything
else in the Tripos. In outline:

it is examined in both Part IB and Part II (but the introductory lectures are given in the Easter
Term of the Part IA year);

there is no end-of-year examination;

instead, in Part IB and Part II there are a number of projects that you do throughout the year,
with the course being examined entirely through the submission of project write-ups, i.e. this is
the part of the Tripos with an element of continuous assessment;

in Part IB, there are two compulsory/core project write-ups that should be submitted (together
with associated computer programs) early in the Lent Term of 2015, and two further additional
projects that should be submitted early in the Easter Term of 2015;

in Part IB the maximum credit obtainable is 160 marks and there are no « or 8 quality marks;

credit obtained is added directly to the credit gained in the written examination, and hence the
maximum contribution to the final merit mark is 160 (which is roughly the same, averaging over
the o weightings, as for a 16-lecture course);

in past years the CATAM credit has often contributed 10%-15% of a person’s final mark in the
Part IB examination (i.e. more than a a typical 16-lecture course);

Remarks.

(i)

(iii)

0.2

Note the throughout the year. For some reason too many students leave matters too late, e.g.
the vacation immediately before submission, and then it so happens that they are ill and/or suffer
some other personal misfortune?, and then If you are concerned about examination marks then
you have been warned.

Of course you may have a higher calling: to quote a student email to the helpline:

Perhaps I should think of the projects as an opportunity to do some interesting maths,
rather than as a means of picking up marks.

In the eighth and final lecture on 20th May I will go into more detail about the nuts-and-bolts of
the course, including warnings about plagiarism, etc. Please attend that lecture. Before that some
of you may think that Part TA revision is more important; my experience is that if you are thinking
that then you may well be the type of student who needs to attend the lectures, e.g. because you
are type of student who hardly ever gets caught up, or needs an incentive to get up in the morning,
or will need the CATAM marks, or

Aims

The blurb on the CATAM website (http://www.maths.cam.ac.uk/undergrad/catam/) states that

the Computational Projects course provides an education in solving mathematical problems
using a computing environment. The emphasis is on developing mathematical skills rather
than programming abilities. The aim is for students to learn to use basic computational
techniques and software packages to solve interesting problems, many of which are analytically
intractable (or at least algebraically messy).

1 Forty or so years ago it stood for Computer-Aided Teaching of Applied Mathematics, but since then pure mathemati-
cians have discovered that computers are useful for them as well.
2 E.g. their laptop is stolen, or there is a volcanic eruption.

Mathematical Tripos: IA/IB Computational Projects 0-1 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.maths.cam.ac.uk/undergrad/catam/

The most important part of the course is therefore the mathematics. However, in order to do the math-
ematics, and get your marks, there are three other skills, all of which are important ‘transferable’ skills,
that you need to employ (if not necessarily master):

(i) firstly, you need to be able to ‘convert’ a piece of mathematics that you want to do into one or
more algorithms, i.e. a set of rules, that you programme on your computer;

(ii) secondly you need to be able to programme your computer using a suitable programming language;

(iii) thirdly, you need to be able to write-up your methods, calculations, results and conclusions in a
way that is understandable to someone else (in your case, the Assessor). My second warning: it is
the write-up, not the programming, that takes the time; leave enough time (see the first warning
above).

As such CATAM projects are intended to be exercises in independent investigation somewhat like those
a mathematician might be asked to undertake in the ‘real world’. The questions posed in the projects are
more open-ended than standard Tripos questions: there is frequently not a single ‘correct’ response, nor
often is the method of investigation fully specified. This is deliberate, and is intended to allow you both to
demonstrate your ability to use your own judgement in such matters, and also to produce mathematically
intelligent, relevant responses to imprecise questions.

0.2.1 Understanding algorithms

The lectures will mainly be about how to go about finding, and then codifying, algorithms. This will be
achieved by using as examples either mathematics that you already understand, or mathematics which
you need a quick introduction to (e.g. in order to do one of the Core Projects). Part of the course may
feel like an extension to Vectors € Matrices (and as such may help your revision).

0.2.2 Being able to programme

Once you understand how to construct an algorithm, then the next thing you need to know is how to
convert the algorithm into a language that the computer will understand.

We all have our own preferred language in which to communicate, the choice often being an accident of
birth. Some of us understand many languages, and there is almost always no ‘right’ language (although
it helps if, say, aircraft controllers use the same language).

Computers understand many languages, and there is often no ‘right’ language. However, users may have
their own preferred language in which to communicate with the computer, the choice often being an
accident of birth.

This year, as for the last few years, the programming language the Faculty is ‘supporting’ is MATLAB
(standing for MATrix LABoratory). MATLAB is designed to work with matrices (which has certain
advantages, and certain disadvantages). One of it’s advantages over languages such as C (the previously
‘supported’ language) is that it’s easier to learn and it has a built-in user friendly interface; a disadvantage
is that it’s not as flexible. The feedback we have had is that, on the whole, students have found it easier
to programme in MATLAB than C.

Your copy of MATLAB. All undergraduate students at the University are entitled to download
and install MATLAB on their own computer, running Windows, Linux, or MacOS, for non-commercial
University use. Installation instructions and the files for download are available at

http://www.maths.cam.ac.uk/undergrad/catam/software/matlabinstall/matlab-personal.htm

You will see that several versions of MATLAB are available; if you are downloading MATLAB for the first
time it is recommended that you choose the latest version, currently R2013b (version R2014a should be
available soon?®).

3 See also http://www.maths.cam.ac.uk/computing/software/matlab/install_matlab.html.

Mathematical Tripos: IA/IB Computational Projects 0-2 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.maths.cam.ac.uk/undergrad/catam/software/matlabinstall/matlab-personal.htm
http://www.maths.cam.ac.uk/computing/software/matlab/install_matlab.html

MATLAB is also available on the University Managed Cluster Service (MCS); in particular it is available

e on the Mathematics/CATAM MCS in room GL.04 of the CMS,
e on the Computing Service public MCS computers, and

e on the MCS computers at a number of Colleges.

Learning MATLAB. To some extent the Faculty works on the same principle as that by which you
learnt your very first language; we let you pick it up as you go along by exposure (e.g. through these
lectures).* To a greater or lesser extent, this works. However, some other help is at hand.

e You should have already worked through the Faculty’s introductory programming manual that
provides a step-by-step introduction to MATLAB suitable for beginners. This is available on-line at

http://www.maths.cam.ac.uk/undergrad/catam/MATLAB/manual/booklet.pdf.

A number of sessions were arranged so that you could work through this introductory programming
manual in the Mathematics/CATAM MCS room (i.e. room GL.04 in the CMS) with a adviser
present who could help you with any difficulties. If you have not taken advantage of these sessions
and subsequently need help, do not worry too much (see later).

e There are also a number of excellent books, and Google returns about 24,300,000 hits for the search
‘MATLAB introduction’ (up from 13,400,000 hits last year), and about 3,210,000 hits for the search
‘MATLAB introduction tutorial’ (slightly down from 3,340,000 hits).

To MATLAB, or not to MATLAB. While the use of MATLAB is recommended, especially if you
have not programmed before, its use is not compulsory, and you are free to write your programs in any
computing language whatsoever. Python, C, C++, C#, Java, Visual Basic, Mathematica, Maple, php,
Haskell (if you must), etc. have been used by several students in the past, and Excel has often been used
for plotting graphs of computed results. The choice is your own.?

However, you should be aware that

e we do not promise to help you with programming problems if you use a language other than
MATLAB;

e not all languages have the breadth of mathematical routines that come with the MATLAB package,
and hence a language that is ideal for writing apps may not be ideal for doing maths;

e if the language you are using does not have the needed routines then it will be up to you to either
write your own routines (i.e. re-invent the wheel) or find reliable replacements.%

0.2.3 Writing up your results

Almost all future employment will require you to be able to write-up your work in a coherent fashion.
This is the part of the Mathematical Tripos where you can hone this skill. Further, there is an incentive
in that, while 40% of marks are awarded for computing, 50% of marks are awarded for the mathematics
in your write-ups, and 10% of marks are awarded for the ‘quality’ of your write-ups. Hence, if a write-up
is incoherent you stand to lose over half your marks.

4 One of the issues is that you already have enough lectures, etc., so there is a reluctance to give you even more.

5 However, if you choose a high-level package that can perform some advanced mathematical operations automatically
(for instance, complete prime factorisation of an integer with a single command), then you should check whether use of
such commands are permitted in a particular project.

6 The converse of this is that there are so many official and unofficial MATLAB routines that there is almost certainly a
routine to do whatever you want ...but beware of breaking the plagiarism rules. Also, a further word of warning, if you
find a routine that does nearly what you want, and start editing it, you may find that the routine uses more sophisticated
MATLAB than you understand or need, and this can turn into a sink of time (as some students have found in the past).

Mathematical Tripos: IA/IB Computational Projects 0-3 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.maths.cam.ac.uk/undergrad/catam/MATLAB/manual/booklet.pdf

As part of your training in this aspect, over the summer you will have the opportunity to do an Introduc-
tory Project.” The Introductory Project carries no marks, and a model answer will be made available at
the start of the Michaelmas Term.® Your College is at liberty to arrange a supervision on the Introduc-
tory Project. As an innovation this year, we hope to run an Example Class on the Introductory Project
towards the start of the Michaelmas Term.

0.3 Why use computers in mathematics?

Forty or so years ago some might have argued (well did argue) that computers had little role in math-
ematics (or more accurately pure mathematics). However, we have come a long way from just using
computers to work out the correct trajectory of a space rocket that reaches the moon - and comes back
(well we have come some way). Computers are now used in all branches of mathematics.

Pure

Possibly the most famous example in Pure Mathematics was the proof of the 4-colour theorem in 1976;
the problem was first reduced by analysis to 1936 special cases, and then a computer was programmed
to colour each case. In the last couple of years Harald Helfgott has claimed a computer-aided proof of
the weak Goldbach conjecture.

Nowadays computers are not primarily used for simply enumerating cases; often the idea is to use
computers to investigate different examples of some construct or entity (e.g. groups, graphs, number
systems) and for the mathematician to observe and thence to spot patterns or connections: a proof can
then be attempted in the usual way.

A computer is a tool that can be used to obtain insight.

Pure mathematical concepts can also lead to practical applications, e.g. large primes and modular arith-
metic (computer security), or graph colouring (mobile phone networks).

Specialist pure mathematics software has also been developed, e.g. MAGMA (for algebra, number theory,
geometry and combinatorics).

Applicable

From the outset, computers have been used to carry out statistical analyses of large amounts of data.

However, computers can also be used, say, to carry out simulations of random processes to see if there
are global features of interest which can then be modelled. For instance, microscopic Brownian motion,
a random process, can be simulated and the macroscopic qualities assessed (but in this simple case you
can also do much analytically).

Similarly, the measurements of stocks, shares, derivatives and options (which on short time scales might
be random|ish]) can be modelled and large scale movements investigated.

Applied

Use here varies from simple integration of ODEs and modelling dynamical systems (e.g. to calculate
required trajectories), to simulations of weather, climate change, volcanic eruptions (and where the ash
goes), semi-conductors and other materials, flow around aircraft, cars and underwater moving objects,
and the start and evolution of the Universe.

7 This year’s project is not yet available formally available, but is highly likely to be remarkably similar to last year’s
project which is on-line at

http://www.maths.cam.ac.uk/undergrad/catam/IB/Optl.pdf

8 It’s relatively simple to find the answer before that, but it’s educationally better to do the project blind.

Mathematical Tripos: IA/IB Computational Projects 0-4 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.maths.cam.ac.uk/undergrad/catam/IB/0pt1.pdf

Some of these real-life situations can be modelled extremely well (e.g. much aircraft design is done
computationally), and sometimes not (e.g. dispersion of ash, but that has improved over the last couple
of years). The applied mathematician is on the lookout for common features and interesting behaviour
(which might then be examined on paper), or improving the computational methods so that bigger and
better simulations are possible.

Previous Questionnaire Responses

Comment. 1 get the impression that most mathmos have already done some coding, and would benefit
more from MATLAB specific guidance than from a general introduction to coding.

Reply. Last year 60% had no experience, or little previous experience, of coding.

Comment. The lectures ought to have covered less technical things and done actually mildly interesting
topics, asked interesting questions so that students would actually have a reason to learn/practice
coding.

Reply. The course is about about how to start coding something you understand (and about some of
the pitfalls), not about teaching new material. Familiarity might breed contempt, but it may also
help see the wood for the trees. This is especially so in the case of the Introductory Project where
the aim is to learn how to write-up your work (rather then concentrate on new mathematics).

Mathematical Tripos: IA/IB Computational Projects 0-5 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

1 Algorithms

Definition. An algorithm is a process or set of rules used in calculations or other problem solving
operations.

You have already encountered them.

1.1 Matrix Multiplication

Let A= {A;;} and B = {B,;} be n x n matrices. Suppose that C = AB. Then from Vectors & Matrices

n
Cij:ZAikBkj (i:l,...,n,j:l,...,n).
k=1

r=(ta) e=(00)

AB — < ap+br aq+ bs)

For instance, if

o

then
cp+dr cqg+ds

How do we express this as an algorithm? Well both indices ¢ and j need to run through 1 to n; we can
express this in MATLAB using two for loops. We write C(i,j) for C;;, and we need to remember to set
C(i,j) to zero before starting the sum, which we express using another for loop. Combining the above
we obtain

>> for i = 1:

for k = 1:n
C(i,j) = C(i,j) + A(i,k)*B(k,j);
end
end
end

Remarks. Recall from the MATLAB booklet /sessions that

(i) i=1:n means run i from 1 to n in steps of 1;

a semi-colon at the end of a statement means do not print out the results of any assignment;

)
(ii) end indicates the end of a for loop;
(i)

)

(iv) despite what a mathematician might think, the line

C(1,3) = C(H,j) + AG,K)*B(k,])

does not imply that A(i,k)*B(k,j) is equal to zero. It means set C(i, j) equal to its old value plus
A(i,k)*B(k,j). The line is better read as ‘assign C(i,j) to be equal to C(i,j)+A(i,k)*B(k,j)’,
rather than ‘C(i,j) equals C(i,j)+A(i,k)*B(k,j)’. To avoid confusion some computer languages
(e.g. Ada®) use := for the assignment operator and use = for the boolean operator to test equality

of values, others (e.g. MATLAB, C) use = for the assignment operator and use == for the boolean
operator to test equality of values, and others (e.g. BASIC) use = for both (so as to maximise
confusion).

Suppose instead that A = {A4;;} was a m x n matrix and B = {B;;} was a n x ¢ matrix. Then C = AB
would be the m X ¢ matrix given by

Cij:ZAikBk’j (izl,...,m,jzl,...,q).
k=1

9 Named after Ada Lovelace.

Mathematical Tripos: IA/IB Computational Projects 1-6 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://en.wikipedia.org/wiki/Ada_Lovelace

The MATLAB to evaluate the matrix C would be

>> for i = 1:m
= 1:

for j q
C(i,j) = 0;
for k = 1:n
C(i,j) = C(i,j) + A(i,k)*B(k,j);
end
end
end

1.1.1 Complexity (or the number of operations)

In the case when m = n = ¢, we have three for loops running through n variables. Hence in calculating
the matrix C = AB the computer performs

n? assignments of C(i,j) to zero;

(a
(b
(c
(d

n3 multiplications;

n3 additions;

)
)
)
) n3 further assignments.

This is a total of 3n3+n? operations, including n® multiplications and n? additions. Matrix multiplication
by this method is said to be an O(n?) operation.

1.1.2 MATLAB implementation

The unlectured section §1.2 below contains an explanation of how to write MATLAB code to multiply
two matrices together. The result is a MATLAB function matmult with two input arguments, namely the
matrices A and B, and one output argument, namely the matrix C.

function C=matmult(A,B)
% MATLAB code illustrating matrix multiply.

% This code is inefficient so should NOT be used in anger.
[m,n] = size(A);
[p,q] = size(B);
h
ifn "=p
error (’Columns of the left matrix do not match rows of the right matrix.’)
else
for I = 1:m
for J = 1:q
C(1,3) = 0;
for K = 1:n
C(I,J) = C(I,1) + A(I,K)*B(K,J);
end
end
end
end

Remark. MATLAB distinguishes between upper and lower case. Compared with the earlier code i, j and
k have been replaced by I, J and K respectively. This is because it is best to avoid the use of i and
j in MATLAB, since they are both the built-in root of -1.10

10 If you have set i to something other than the square root of -1, and you need the square root of -1, then you can use
j, or failing that use clear i and/or clear j.

Mathematical Tripos: IA/IB Computational Projects 1-7 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

01/14

We can test how quickly this MATLAB code runs with the built-in timing commands tic and toc. We
also need an easy way to generate a matrix; this can be done with the built-in function rand(n), which
generates a n X n matrix containing pseudo-random values drawn from the standard uniform distribution
on the open interval(0,1). It is then possible to compare the times of multiplying 500 x 500 and 1000 x 1000
matrices using matmult as follows, where we also compare with the time taken using the MATLAB built-in
function *.

>> n= 500; A=rand(n); tic; matmult(A,A); toc
>> n=1000; A=rand(n); tic; matmult(A,A); toc
>> tic; A*A ; toc

Remark. The function matmult has been introduced for educational reasons. The MATLAB built-in func-
tion * is far preferable.

1.1.3 Are there better algorithms?

A natural question to ask is whether we could do better than O(n?) operations. To have an inkling why
the answer is yes consider the multiplication of two 2 x 2 matrices. Let

M, = (A1 + A2)(Bi1 + Baa),
M; = (A1 + A22) By,
M3z = Ay1(B12 — Baa),
My = Az (Bo1 — Biy),
Ms = (A1 + Ai12)Baa,
Mg = (A21 — A11)(B11 + Bai),
M7 = (A12 — Azz)(Ba1 + Bao).

Then C = AB can be calculated as follows:

Ci = My + My — M5 + Mz,
Ci2 = M3 + M,
Co1 = M3 + My,
Coo = My — My + M3 + M.
This is Strassen’s algorithm. It requires 7 multiplications and 18 additions, compared with 8 multiplica-

tions and 8 additions by our previous method. This does not look like an improvement until one realises
that multiplications tend to be more expensive for computers than additions.

If this idea is now applied recursively we find that for an n x n matrix the multiplication cost is
O(n'°827) =~ O(n*%7) operations. Hence for n > 1 Strassen’s algorithm is much cheaper than the algo-
rithm we first thought of (and is used in ‘black box’ multiplication routines when n is large enough).

There are other algorithms. For instance, the Coppersmith-Winograd algorithm requires O(xn2379)
multiplications, where k is a constant pre-multiplier. Unfortunately x is so large in this case that the
method is not useful for practical values of n.

Remark. There have been recent improvements to the bound by Andrew Stothers (2010) to O(n*373),
Virginia Williams (2011) to O(n?3728642) " and Frangois Le Gall (2014) to O(n?3728639) Tt is an
open question as to whether an O(n?) or O(n?(logn)™) algorithm is possible.

1.1.4 Triangular Matrices
If

[a b (P q
a=(5a) == 1),

Mathematical Tripos: IA/IB Computational Projects 1-8 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

01/10
01/11
01/12
01/13

then

[ap ag+bs
AB(O M)

If we used our original algorithm then we would perform 8 multiplications, but 4 of them would be
multiplications by zero. It is computationally cheaper if we do not multiply by zero!

Suppose that both A and B are upper triangular. Then A;;, = 0if ¢ > k and By; =0if £ > j, and

J
Cij:ZAikBkj (i:l,...,n,j:l,...,n).
k=i
where if j < i it is assumed that there is no sum. In terms of MATLAB we can write this as

>> for I = 1:n

for J = 1:1I-1
C(1,J) = 0;

end

for J =I:n
Cc(1,J) = 0;
for K = 1:J

C(I,J) = C(I,J) + A(J,K)*B(K,J);

end

end

end

Remark. Note that for I=1 it is assumed that the computer is smart enough not to execute the
for J = 1:I-1 loop.!!

Complexity. If we stop multiplying by zero then

ﬁiu—i+1)

7

number of multiplications =

M=

Il
_
3 o
Il

|
T
t

where / =j —i+1

I

-
I
—
~
[
—

m—i+1)(n—i+2)

Il
(SR

N
Il
-

s
Il

Q

DN | =

(n i)

where k =n —1

Q
DO |
[

o

X
ES
Il

D= N =
w
w‘:wH
l’
NIES
Jr
[IS]
SN—

[=p}

Q

3

For n > 1 we can save % of the operations by not multiplying by zero.

11 Sometimes the computer is smart enough, sometimes it executes the loop once just for the hell of it (which would not
be a problem with the current ordering of the for J = ... loops, but would be if the order of the for J = ... loops was
reversed), and sometimes it executes the loop forever (if you are very unlucky).

Mathematical Tripos: IA/IB Computational Projects 1-9 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

1.2 Matrix Multiplication in MATLAB (unlectured)

Throughout these lectures it will be assumed that you have worked through the MATLAB introductory
programming manual available on-line at

http://www.maths.cam.ac.uk/undergrad/catam/MATLAB/manual/booklet.pdf

If you have not, you need to do it now. The following sub-section covers a few of the very basics.

1.2.1 My first MATLAB

In MATLAB if we enter
>> I=1

then MATLAB assigns the value 1 to the variable I and outputs the result. We can check the value of T
by

>> 1
If we put a semi-colon at the end of the line, then the assignment is done quietly, but it is still done:

>> I=2;
>> 1

If we want to save screen real-estate then the command format compact helps:

>> format compact;
>> I=-1;
>> I

There is a good reason why we have used I rather than i
>> i
We can increase the value of I by one with the MATLAB command

>> I=I+1

Vectors and matrices. In MATLAB it is straightforward to create row vectors and column vectors,
to check their sizes, and to print out the values of individual elements, e.g.

>> A=[1,2]
>> B=[-3,-4]’
>> size(A)
>> size(B)
>> A(1,1)
>> B(2,1)

It is also straightforward to create larger matrices (and find an alternative use for I):

>> I=[1,0;0,1]

>> F=[0,1;1,0]

>> G=[1,2,3;4,5,6]
>> size(I)

>> size(F)

>> size(G)

Mathematical Tripos: IA/IB Computational Projects 1-10 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.maths.cam.ac.uk/undergrad/catam/MATLAB/manual/booklet.pdf

It is possible to store the size of matrices, e.g.

>> [m,n]=size(A);
>> [p,ql=size(B);
>>m, n, p, q

Since m=q using the code on page 6 in §1.1 we can calculate C=AB

for J :q
C(I,J) = 0;
for K = 1:n

C(I,J) = C(I,J) + A(I,K)*B(K,J);

end

end

end
>> C

Further, since n=p, we can also the above code to calculate D=BA

>> for I = 1:p
for J = 1:n
D(I,J) = 0;
for K = 1:m
D(I,J) = D(I,J) + B(I,K)*A(K,J);
end
end
end
>> D

Typing less. If you are doing similar tasks more than once, you do not want to type the same thing
in a number of times. What you would like to do is save your program somewhere so that you can run
it after minor changes.

The precise commands now depend on what version of MATLAB you are using. Here we assume you
are running version R2012b or later (enter the MATLAB command version to see what version you are
running).

Left-click on New towards the top left of the MATLAB window, followed by Script.'? A new ‘Editor’
window should open containing a cursor on line 1. Type in the following code:

A=[1,2];
B=[-3;-4];
[m,n]=size(A);
[p,ql=size(B);
for I = 1:m
for J = 1:q
Cc(1,J) = 0;
for K = 1:n
C(I,J) = C(I,J) + A(I,K)*B(K,J);
end
end
end
C

To save the code in a file left-click on the arrow beneath Save towards the top left of the ‘Editor’ window,
followed by Save As....'3 A new window should appear with a default File Name of something like

12 Or, depending on the version of MATLAB you are running, left-click on File on the top line of the MaTLAB window,
followed by New and Script (or M-File or Blank M-File).

13 Or, depending on the version of MATLAB, left-click on File on the top line of the ‘Editor’ window, followed by
Save As....

Mathematical Tripos: IA/IB Computational Projects 1-11 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

untitledn.m. To change the file name left-click in the box next to File Name and change the entry to,
say, testmult. Then left-click Save to accept this name. If you look in the ‘Current Folder’ pane a file
testmult should now have appeared. Having saved your code, return to the ‘Command Window’ and
enter

>> testmult

The result C=-11 should be output.

If you have made a mistake you will need to return to the ‘Editor’ window and modify your code. Once
you have made your corrections save the code by left-clicking on Save towards the top left of the ‘Editor’

window. 14

Suppose now we wish to multiply two difference matrices. Rather than typing in the commands again
we can edit testmult.m to read, say:

A=[0,1;1,0];
B=[1,2,3;4,5,6];
[m,n]=size(A);
[p,ql=size(B);
for I = 1:m
for J = 1:q
Cc(I,J) = 0;
for K = 1:n
C(I,J) = C(I,D) + A(I,K)*B(K,J);
end
end
end
C

Save your changes, then type testmult in ‘Command Window’ to confirm that
4 5 6
€= (1 2 3) '

Sanity checks. Note that we are assuming that we are smart enough to type in matrices that can be
multiplied together, i.e. we are assuming that if the sizes of A and B are m x n and p X g respectively,
then n = p. It is best to check for this (otherwise it’s rubbish in and rubbish out) by building in sanity
checks into your code. We can do this using an if statement and the error function by modifying the
code to obtain

A=[1,2,3;4,5,6];
B=[0,1;1,0];
[m,n]=size(A);
[p,ql=size(B);
ifn "=p
error (’Columns of the left matrix do not match rows of the right matrix.’)
else
for I = 1:m
for J = 1:q
Cc(1,J) = 0;
for K = 1:n
C(I,J) = C(I,J) + A(I,K)*B(K,J);
end
end
end
end
C

14 Or, depending on the version of MATLAB, left-click on File on the top line of the ‘Editor’ window, followed by Save.

Mathematical Tripos: IA/IB Computational Projects 1-12 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

Here the expression ~= means not equal, and the error function terminates the code while outputting
the character string between quotes. Typing testmult in the ‘Command Window’ now produces an
error (with a somewhat helpful message).

1.2.2 A function to multiply two matrices

A better way to implement the above code for multiplying two matrices together, is as a MATLAB
function, say called matmult (see the first line below). To this end save the following code in a file called
matmult[.m].

function C=matmult(A,B)
% MATLAB code illustrating matrix multiply.

% This code is inefficient so should NOT be used in anger.
[m,n] = size(A);
[p,q] = size(B);
)
ifn "=p
error (’Columns of the left matrix do not match rows of the right matrix.’)
else
for T = 1:m
for J = 1:q
C(I,3) = 0;
for K = 1:n
C(I,J) = C(I,)) + A(I,K)*B(K,J);
end
end
end
end

Remarks.

(i) The function matmult has two input arguments, namely the matrices A and B, and one output
argument, namely the matrix C (see the first line).

(ii) Lines beginning with % are comment lines that are added for explanation. The first few lines are
built-in help. If you have saved the above code in a file matmult [.m], then in a ‘Command Window’
try

>> help matmult

We might test the function matmult by entering into the ‘Command Window’

>> F=[0,1;1,0];

>> G=[1,2,3;4,5,6];
>> H=matmult (F,G) ;
>> H

>> H=matmult (G,F);

Remark. Note the use of F, G and H rather than A, B and C. The variables A, B and C within the function
matmult are, so-called, dummy variables. The function matmult manipulates F and G as if they
were A and B respectively, and outputs the answer to H as if it were C.

Alternatively there is an easier way of multiplying two matrices together in MATLAB (note that MATLAB
has its own built-in sanity checks):

>> F*G
>> G*F

Mathematical Tripos: IA/IB Computational Projects 1-13 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

As noted earlier, the easier way is far preferable:

>> n=500; A=rand(n); tic; matmult(A,A); toc

>> tic; Ax*A

B

; toc

Ezxercises. MATLAB has multiple multiplications. As an exercise try the following:

>> A=[1,2]
>> B=[-3,-4]"
>> E=[5,-6];
>> AxB

>> BxA

>> A.*B

>> B.*A

>> AxE

>> ExA

>> A*E

>> E.*A

>> sum(E.*A)

If MATLAB generates an error, make sure you understand why.

Mathematical Tripos: IA/IB Computational Projects

1-14

© S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

02/11

2 Numbers and Errors

2.0 Introduction

Understanding the accuracy of a solution is a key skill.

e The first part of this section (on how numbers are stored in computers) is for your general education:
it is something that you ought to see at some point in your university career. It is also something
that you may end up using, but at a time that is at present unknown.

e The second part of the section on rounding and truncation errors will be directly useful for at least
one of the projects next year.

2.1 Big Numbers, Small Numbers and Precision

(i) Computers store everything in bits (or binary digits). Bits have only two possible values, which are

usually denoted by 0 and 1. Depending on the context, the two values can be interpreted as logical
values (true/false, yes/no), algebraic signs (+/-), activation states (on/off), or any other two-valued
attribute.!®

(ii) Computers store numbers in binary as a sequence of bits, and can represent integers exactly, as long

as there are enough bits. For instance, with 32 bits per integer it is possible to represent positive
integers from 0 to 232 — 1, or signed integers from —23! to 23! — 1.

(iii) However not all numbers are integers, and it is important to realise that computers cannot store

most numbers accurately. The problem is not just with irrational numbers such as v/2, 7, and
e, which would apparently need an infinite machine!®, but also with very large (in magnitude)
numbers, very small (in magnitude) numbers, and numbers with large numbers of significant digits.

(iv) Computers represent floating-point real numbers, 7, as

r=(=1)°fb°, (2.1)

where s, f, b and e are integers; s determines the sign, f is the significand (or ’coefficient’), b is
the base (usually 2), and e is the exponent. The possible finite values that can be represented in
a given format are determined by the number of digits in the significand f (the precision, p), the
base b, and the number of digits in the exponent e.

So that results produced on one computer can be [exactly| reproduced on another, there are stan-
dards for precisely how the numbers are represented. According to the IEEE 754 standard, the
exponent e is stored in biased format where a constant called the bias, say €42, is added to e so
that the lowest representable exponent is stored as 1. If n is the number of bits in the exponent
field, according to the IEEE 754 standard, epq, = 2" — 1.

(v) There are a number of basic formats according to IEEE 754; we consider the two binary floating-

point basic formats encoded using 32 and 64 bits (each has one sign bit, and 23 or 52 significand
bits, and 8 or 11 exponent bits, respectively).

Bits Common Name b p Cmin emaz Decimal Digits Decimal €4z
32 Single precision 2 23+1 —274+2 271 7.22 38.23
64 Double precision 2 52+1 —21942 2101 15.95 307.95

15 A qubit has some similarities to a classical bit. Like a bit, a qubit can have two possible values, say a 0 or a 1. The
difference is that whereas a bit must be either 0 or 1, a qubit can be 0, 1, or a superposition of both.
16 Although algebraic manipulators [sometimes| have a way round this.

Mathematical Tripos: IA/IB Computational Projects 2-15 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

sign exponent8-hit) fraction (23-bit)
I |

Il
‘0‘0‘l‘l‘l‘l‘1‘0‘0‘0‘l.|0|0|0|0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘ =0.15625

o o [}
31 23 0

Figure 1: A 32-bit IEEE 754 (a.k.a. single-precision) floating-point number has 1 sign bit,
8 exponent bits, and 23 fraction (or significand) bits. Here s = 0, e = (1111100); = 124,
f = (1.01) = 1.25, and so the number is (—1)" x 21247127 » 1.25 = 0.15625.

exponent fraction
sign (11 bit) (52 bit)
|
nmnnnmmmm
o o [5}
63 52 0

Figure 2: A 64-bit IEEE 754 (a.k.a. double-precision) floating-point number has 1 sign bit, 11
exponent bits, and 52 fraction (or significand) bits.

Remarks

(a) The precision of the binary formats is one greater than the width of its significand; this is
because there is an implied (hidden) 1 bit at the start, so that

p—1
r=(-1)° (1 + Zfﬂ’) 9¢~€mas
i=1

where f; is the i*" bit of f.

(b) One of the two missing values in the exponent is used to represent zero (and subnormal
numbers),!” while the other value is used to represent infinity and undefined numbers.'® For
instance try the following in MATLAB

>> 1/0, -1/0, 0/0
ans = Inf, ans = -Inf, ans = NaN

—
<
.

N

Floating-point numbers lie at discrete points on the real number line. At higher values the absolute
spacing between numbers increases, although the fractional change between adjacent numbers does
not.

If a number cannot be represented exactly (e.g. 0.15625 can be represented exactly, but 0.001
cannot), the nearest floating-point number is used to represent it. The difference between the true
value and this value is the round-off error (which is one type of rounding error).

When numbers get too small or large, underflow and overflow can occur. The IEEE 754 standard
defines —o0, oo and NaN, and decrees what should happen when things go wrong, e.g. 1/0 and 0/0.

17 More precisely, for one of these two values, if the significand is zero then the binary represents zero, while if the
significand is non-zero, then the binary represents some very small numbers with less than p digits of precision (so called
subnormal, or denormal, numbers).

18 More precisely, for the other reserved value of the exponent, if the significand is zero the binary represents infinity,
while if the significand is non-zero the binary represents Not a Number, i.e. NaN.

Mathematical Tripos: IA/IB Computational Projects 2-16 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

r denol'mal—l

under- under-

flow flow
overflow usable range usable range overflow
e -

- = .

_10+308 ~10-308 0 10-308 X, 10+308

—realmax —realmin realmin \'\\ . realmax
2 ‘\
_// \
cf Y
)

\ /
‘Q)om—m view /

Figure 3: The floating-point number line

(vii) Floating-point numbers do not necessarily obey the usual rules of arithmetic such as associativity,
e.g. it may be true that

(atb)+c # a+(+o),
(ab)e # a(be).

However, normally a +b = b+ a and ab = ba.

(viii) We will refer to the smallest number, ¢, that when added to 1 (viewed as a real) that produces a
real number different from 1, as the machine accuracy or machine epsilon. So

l+e#1, (2.2a)
1+3ie=1. (2.2b)

¢ is emphatically not the smallest number that can be represented (see point (ix) below). It is an
indication of the number of significant figures.

With this definition ¢ is the spacing of floating-point numbers with zero exponent, i.e. € = b~ ®~1.
In MATLAB it can be found as follows:

>> format long g; eps, 2~(-52)
ans = 2.22044604925031e-16
ans = 2.22044604925031e-16

eps with no arguments, or equivalently eps(’double’), returns the result for double-precision
numbers. By default MATLAB uses ‘double-precision’ numbers, giving about 16 significant figures.
Also available are ‘single-precision’ numbers giving about 7 significant figures; eps(’single’)
returns the machine accuracy for single precision numbers:

>> eps(’single’), single(2)~(-23)
ans = 1.192093e-07
ans = 1.192093e-07

Roll it yourself. You can find an approximation to e for double and single-precision numbers with
the following MATLAB code:

>> a=1; while 1+a "= 1, a=a/2; end; 2*a
a = 2.22044604925031e-16
>> a=single(1); while 1+a "= 1, a=a/2; end; 2*a

a = 1.192093e-07

Mathematical Tripos: IA/IB Computational Projects 2-17 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

05/10

(x)

Note that

(a) a mathematical expression involving both single and double-precision numbers returns a
single-precision number;

(b) in versions of MATLAB prior to R2012b, it was necessary execute the undocumented
‘feature accel off’ before the single-precision statement because of an ‘accelerator

9

bug’.

Remark. The IEEE standard does not define the term machine epsilon. Above we use the MATLAB
definition. Another [more| widely used definition, which we refer to as unit round-off, is the
maximum relative error of the rounding procedure. Since machine epsilon is a bound for
relative error, it suffices to consider numbers with exponent e = 0. It also suffices to consider
positive numbers. For the usual round-to-nearest kind of rounding, the absolute rounding error
is at most half the spacing, i.e. with this definition the unit round-off is b’(”’l)/Q, i.e. half
MATLAB’s definition.

As noted above, precision is different from size. To find the largest double-precision floating-point
number representable with MATLAB try

>> realmax
ans = 1.79769313486232e+308

Anything larger overflows:

>> (1l+eps)*realmax
ans = Inf

In single precision the largest floating-point number is smaller:

>> realmax(’single’)
ans = 3.402823e+38

Similarly you can find the smallest positive normalized floating-point number (note that this is
different from ¢):

>> realmin
ans = 2.2250738585072e-308

Remark. The normalised in the preceding sentence is important. You can get numbers smaller, but
they have less precision (see also footnote 17). As an example suppose that we are working
in decimal rather than binary, and we have five digits of mantissa and two of exponent. It is
then possible to represent numbers like 1.2345 x 1072, The minimum positive value, with full
precision achievable, with this format would be 1.0000 x 10~%?. However, you could represent
smaller numbers with less precision, i.e. numbers as small as 0.0001 x 107%?. Anything smaller
would underflow and/or be set to zero. To see this in MATLAB try

>> realmin*eps/2, realmin*eps/(2-eps)

Finally, having noted that [most| numbers cannot be stored accurately, let us return to integers
(which can be stored exactly if they are small enough). To find the maximum and minimum integers
that MATLAB can store exactly type

>> intmax

ans = 2147483647
>> intmin

ans =-2147483648

Now check:

>> 2731-1, -2731
ans = 2147483647
ans =-2147483648

Mathematical Tripos: IA/IB Computational Projects 2-18 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

Please do not distribute to students.

This is a supervisor’s copy of the notes.

Remarks.

(a) First note that 1, 2, ... are treated as reals, unless declared as integers. Try

>> m=10; n=int32(10); whos m n
Name Size Bytes Class Attributes
m 1x1 8 double
n 1x1 4 int32

Remark. A byte [most commonly] consists of eight bits.

(b) Second, note that in MATLAB you need to be careful when manipulating integers near the
maximum value. Inter alia this is because if the maximum integer intmax is exceed in a calcu-
lation it is replaced by intmax (i.e. int32 integers saturate on overflow). Further, an expression
containing both integers and reals (single or double), is converted to an integer at the end of
the calculation. To see the consequences of these rules you might like to try:

>> 10*intmax-intmax
and compare with

>> 10*double (intmax)-double (intmax)

>> 10*double (intmax)-intmax

>> int32(10) *double (intmax)-double (intmax)
>> int16(10)*double (intmax)-double (intmax)
>> int8(10)*double (intmax)-double (intmax)
>> ...

For more explanation enter ‘help int32’ within MATLAB, or search for ‘Numeric Classes’
from within MATLAB help.
(c) There is also a int64 class (but not all arithmetic operations are defined, see ‘help int64?).
However, often it is sufficient to represent integers using double-precision floating-point num-
bers, which are exact between —252 and 2°2. Try
>> f=0(n,m) (int64(2) n+m)-double(int64(2) "n+m)
>> n=52, f(n,-1), £f(,0), f(n,1), £n,2), £(x,3)
02/12 52, o, o, -1, 0o, -1

2.2 Types of ‘Rounding Error’

Absolute and relative errors. If x is the actual number we are interested in, and . is the number actually
stored in the computer, then

T — T is the absolute error of x., (2.3a)
T L is the relative error of z.. (2.3b)
x
Rounding error.
(a) % might be stored in a computer as 0.333333.

(b) Precision can also be lost in calculation, e.g.
0.1234 x 1.001 = 0.1235234 (2.4a)

might be rounded to
0.1234 x 1.001 = 0.123523 (2.4b)

Cancellation error. Suppose that we know a number z = 1.234567 correct to 1 x 1076. Then in the
following calculation an initial relative error of O(107%) ends up as a relative error of O(1071):

02/13 (1.234567 +107%) — 1.23456 = 0.000007 4+ 107°.
02/14
Notation. All the above types of error are sometimes referred to as rounding error as a ‘catch-all’.

Mathematical Tripos: IA/IB Computational Projects 2-19 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

Example: solution of a quadratic equation. We know that the exact solution to

ar? +bx +c=0
is
2ax = —b+ v/b?2 — 4ac.

However, even with an exact formula, large rounding errors can creep in, e.g. if b¥> > 4ac. For
instance the computational solution to

22 4+20002+1=0

is, with e representing machine precision,

z=1000(—1% /1 - 1076 +¢)
~1000(—1 £ (1 — 21075 + %¢))
. J—2000(1 + 107 — j¢)
—500(107¢ —¢)

The second solution has a much larger relative error as a result of cancellation.

Ezample: Patriots and scuds. A [crude| guided missile system might need to calculate the velocity of the
target from knowing the positions of the target, say x1 and xo, at times ¢; and to:

dr 19— 21
= — —--:_
dt to — 11

There is the potential for an error here if, say, t; and t, are large, but the difference is small. On
the [old] patriot missiles time was calculated in tenths of a second, with a maximum precision of
24 bits, i.e. with a relative error of

2724 2~ (0.6)107 7.

Hence after 100 hours, or (3.6)10° tenths of a second, the error was about 0.6(3.6)105~7 = 0.2
seconds!®. Since a scud travels about % km in this time, the patriots were not very accurate after
100 hours of up-time. The solution was to ‘reboot’ the patriots every 3 hours or so.

Ezample: Ariane. The maiden flight of the Ariane 5 launcher ended in a failure because of a software
exception caused during a data conversion from 64-bit floating point to 16-bit signed integer. In
particular the floating-point number had a value greater than that which could be represented by
a 16-bit signed integer: e.g. see http://www.di.unito.it/ damiani/arianebrep.html.

Example: solution of a difference relation. Rounding errors can arise in other, possibly surprising, ways.
Consider the difference equation
Ont1 = Ap—1 — G - (2.5a)

The exact general solution to (2.5a) is

(5] () .

where o and 3 are constants. Suppose that

ap=1 and a;=3(V5-1). (2.5¢)

19" A slightly more refined argument shows that the error was 0.34 seconds: e.g. see

http://www.ima.umn.edu/~arnold/disasters/patriot.html.

Mathematical Tripos: IA/IB Computational Projects 2-20 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.di.unito.it/~damiani/ariane5rep.html
http://www.ima.umn.edu/~arnold/disasters/patriot.html

then the exact solution has « = 1 and 8 = 0, with the result that

-1 "
an:<\/52) <1.

Suppose we calculate the solution to (2.5a) with initial condition (2.5¢). To this end try the following
MATLAB code, where we have replaced a,, by a(n+1) (because we cannot use a zero index in
MATLAB); the solution calculated recursively using (2.5a) is stored in a(n+1), and that calculated
directly from (2.5b) is stored in b(n+1).

>> clear a, b;

>> a(l)=1;

>> a(2)=(sqrt(5)-1)/2;

>> b(1:2)=a(1:2);

>> for n=2:80
a(n+l)=a(n-1)-a(n);
b(n+1)=b(n)*(sqrt(5)-1)/2;

end;
>> a(l:n+1)-b(1:n+1)

If there was no rounding error, each element of a(1:n+1)-b(1:n+1) would be zero. However,
because of rounding error, 5 in (2.5b) is not exactly zero, with the result that the second term of
(2.5b) eventually magnifies sufficiently to dominate the solution.

Exercise: In the above code replace ‘a(1)=1’ with ‘a(1)=single(1)’.

Example: numerical instability. Suppose we wish to compute the definite integral

1
’Yn+1:/ e L, (2.6a)
0

say for n = 15. Using integration by parts, we find that

’-YTL-‘:-l:l*n'ynv TLZI,..., (26b)
()l
— . —_\"n!
Yot1 = Z:(:) TR AT (2.6¢)
1 =1-e1=0632121.... (2.6d)

Next, suppose we use the recursion relation (2.6b) to calculate 716 starting with v; = 0.632121 (i.e.
with 7 truncated to six decimal places). We find that 14 = -576909, which is a significant error
given that 0 < v,41 < 1 for n > 0, and that the correct value is y16 = 0.0590175 ... (which it is
straightforward to compute with, say, the trapezoidal rule or Simpson’s rule).

The problem here is that the algorithm (2.6b), or equivalently (2.6¢), is unstable. If we think of
(2.6c) as an operator taking the data +; to the solution 7,41, then it is an unstable scheme: a
perturbation ¢ in the data leads to an error of O(nle) in the solution. So for our specific example
a perturbation of the data of less than 107° leads to a change in the solution of nearly 6 x 10°.

Remarks

(a) The rounding error destroys the calculation, but the underlying problem is not the round-
ing error, but the unstable algorithm. In a numerical calculation making the right choice of
algorithm can be key.

Mathematical Tripos: IA/IB Computational Projects 2-21 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

(b) The above difficulties can be illustrated with the following MATLAB code, where integral is
a MATLAB function to evaluate integrals using adaptive quadrature (see Part IB Numerical
Analysis and/or help integral); e.g. try diffquad(15,6).

function [] = diffquad(n,p)
%diffquad(n,p)
)
% Round initial condition to p decimal places
)
format compact; format long g
A
gamma (1) =round ((1-exp(-1))*10"p) /10" p;
for m=1:n
gamma (m+1)=1-m*gamma (m) ;
end
A
fquad = @(x,n) x."n.*exp(x-1);
tol=10%*eps;
recur=gamma (n+1)
integ=integral (@(x)fquad(x,n),0,1,’AbsTol’,tol, ’RelTol’,tol)
error=gamma(n+1) -integ
return

2.3 Truncation Error

Truncation error occurs when an infinite process is truncated. For example:

e truncation of the series for the exponential to 5 terms,

2 .133 .134

T
exp(z)~1+x+—+§+

or more generally to N terms

7

N—
exp(z) ~ Z

e a finite difference approximation of an infinitesimal

af L flath) - f)
) .

in (z) =

Mathematical Tripos: IA/IB Computational Projects 2-22 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

03/11

3 Solution of Transcendental Equations

3.0 Introduction

Many of you will have already seen the underlying mathematics herein. The aim of this section is to
review the mathematics, emphasise accuracy and convergence, and indicate how to formulate appropriate
MATLAB code for use in the Introductory Project. Then the aim of the Introductory Project is to hone
your programing and writing up skills (not to teach you new mathematics).

3.1 The Basics

Given a continuous function f(z), suppose that we wish to solve the equation

f(z)=0. (3.1)
Particularly where f and x are multi-dimensional, this is a common requirement (although we will work
in R). A typical approach is iterative. For instance, given g use a rule

Tnt1 = Gn(Zo, Z1,. .., Tn) (3.2a)

such that as n — oo
xn — " where f(z*)=0. (3.2b)

It is often preferable that only a small number of previous estimates are used, e.g.
Tnt+1 = gn(xnfla mn) . (3.20)

For such a method to work we need a rule and a termination criterion.

3.2 Termination Criteria

We want to stop iterating when the error in our estimate of the root is small enough, i.e. when
|z, —x*| < n, for some small 1. The problem is that we do not know z* (since it is what we are trying
to find), so we cannot use this criterion.

We need to find a good termination criterion since, at best, a badly posed condition can require needless
iterations but, at worst, it may lose the root. Possible termination criterion include,

|zy, — zp_1] <6 (3.3a)
and

[Flan) <. (3.3b)

for some small §. While neither of these termination criterion require knowledge of the answer z*, neither
of these termination criterion imply that |z,, — z*| < 4.

3.3 Bisection, Interval Halving or Binary Search

While z is allowed to be a vector in (3.1), for simplicity we will assume that z is a scalar, i.e. we will
restrict to one dimension.

Suppose that we wish to solve equation (3.1). Sup-
pose also that we know points ag and bg such that
f(ap) and f(by) have opposite signs, i.e. suppose that

f(ao) f(bo) <O.

This then implies that f(x) has at least one root
in the interval [ag, by] (where we assume wlog that
ap < bo)

To use the method of bisection to find a root, let
CcC = %((ZQ —+ bo) .

Mathematical Tripos: IA/IB Computational Projects 3-23 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

If f(c) has the same sign as f(bg), then we know that there is a root in [ag, ¢|; otherwise there is a root
in [e, bp]. We have therefore halved the size of the interval containing the root. The rule we adopt is thus
(initially with n = 0)

if f(bn)f(c) >0 thenlet apy1 =apn, b1 =c,
else if f(bn)f(c) <0 thenlet apy1=c¢, bpy1=Dby.

We now repeat this process to deduce that

and that

‘b07a0|

by, — an| = on

Suppose that we wish to find the root x* with a maximum error of > 0. The root is no more than
1|b,, — ay| from the mid-point of the interval [a,, b,]. Hence we can guarantee that

|%(an +bn) —2*| <n, (3.4a)
if
[bo — ao
%|bn—an|:W <n, (3.4b)
ie. if
In(|bg —
n> In(|bo — aol/n) 1. (3.4¢)

In2
Convergence is guaranteed because we always bracket the root.

Remarks.
(i) For an error of 7 > 0 the complexity is proportional to In(1/7), i.e. the complexity is logarithmic.

(ii) The truncation error is the size of the interval when we stop the iteration. Note that if we keep
iterating, eventually
|bn, — an| = € = machine precision ,

at which point there can be no further improvement. In many cases a reasonable choice of 7 is thus

1 = emax(|an|, |bnl, 1) .

(iii) Note that the termination criterion (3.4b) does not guarantee that

|f(%(an +bn))| <n.

Although we have found the root to within a specified accuracy, we cannot be sure that the value
of f at the estimated root is equally small. In fact

and hence

S nlf' (@)

It follows that f at the computed ‘root’ might be appreciable if |f/(z*)| is large.

Mathematical Tripos: IA/IB Computational Projects 3-24 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

Please do not distribute to students.

This is a supervisor’s copy of the notes.

Initial guesses. We can often get a good first guess by plotting the function, which is relatively easy in
MATLAB. For instance suppose that we are interested in the function

flz)=a%—22° —x+2,
then f(z) can be plotted with either of the following MATLAB commands:

>> fplot (’x~3-2*%x~2-x+27,[-2,3])
or
>> x=-1.5:.01:2.5; y=x."3-2%x."2-x+2; plot(x,y)

However, there are many other ways of plotting the same thing (or nearly the same thing):

>> fplot(@(x) x~3-2%x"2-x+2, [-2,3])

>> fplot(@(y) [y~3-2xy~2-y+2,0], [-2,3])

>> x=-2:.01:3; y=x."3-2%x.72-x+2; z=zeros(size(x));

plot(x,y,’r’,x,z,’g’)

>> x=-2:.1:3; y=x."3-2%x.72-x+2; plot(x,y,’r--’,x,0,’b:?)

>> f=inline(’x~3-2%x"2-x+2’); fplot(f, [-2,3]); hold;
06/10 fplot(’0’, [-2,3])

03/14 Flowchart. In order to program an algorithm it sometimes helps to construct a flowchart.

Input ag, b

n =

fa = f(an)

c= %(an +by)
fc = f(C)

fo=fe fa=fc

Yes

n=n+1
Is %|an — byl >n?

Mathematical Tripos: IA/IB Computational Projects 3-25 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

03/12
03/13

Program. We can implement the bisection method on the basis of the flowchart, e.g. the following MAT-
LAB code should find the root of 23 — 222 — 2 +2 = 0:

>> f=inline(’x~3-2*x"2-x+2?) ;

>> a=0; fa=f(a);

>> b=1.5; fb=f(b);

>> while abs(a - b)/2 > eps*max([abs(a) abs(b) 1])
c=(a+b)/2; fc=£f(c);
if (fb > 0) == (fc > 0)

b=c; fb=fc;
else

a=c; fa=fc;
end

end
>> root=(a+b)/2

Remark. There is one function evaluation each iteration.

Check. MATLAB has a built-in function to find zeros (the code for which can be listed with ‘type
fzero’). Try

>> f=inline(’x~3-2*x~2-x+2?); fzero(f,0)
or

>> fzero(f,1/3,optimset (°TolX’,1e-3))

>> fzero(@(x) x~3-2*x~2-x+2,[0,1.5])

>> fzero(’x~3-2*x~2-x+2’,[1.5 2.5])

Ezercise. Bisection is not perfect: try

>> fzero(’x~27,0.001)

3.3.1 Recursion

Recursion is a method where the solution to a problem depends on solutions to smaller instances of
the same problem. This approach can be applied to many types of problems, and is a central idea of
computer science.

Functions can be defined recursively. For instance for n € Ny we might define 2" as follows

L1 ifn=0
2" = .
2x2m 1 ifn>1

Similarly a MATLAB function can be defined recursively. For instance the following MATLAB function
calculates 2" for n € Npy:

function [y] =twoexp(n)
% y=twoexp(n). This is a recursive program for computing y=2"n.

% First, some sanity checks.

if n <O
error(’n should be positive.’)
elseif n "= round(n)
error(’n should be a positive integer.’)
end
A
if n==0
y=1;
else
y=2*twoexp(n-1);
end

Mathematical Tripos: IA/IB Computational Projects 3-26 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

A binary search is a recursive operation. The following MATLAB code uses the bisection method to find
a zero of a function fun to an accuracy tol; the root is to be in an interval [xlow, xhigh].

function [xroot] = binarysearch(fun, xlow, xhigh, tol)
% fun is a function
% The root lies between xlow and xhigh
% Iterate until have calculated the root to a tolerance tol
xmid = (xhigh + xlow)/2;
if (xhigh-xlow < 2*tol)
xroot=xmid;
return
elseif (feval(fun,xmid)*feval(fun,xhigh) > 0)
xroot=binarysearch(fun, xlow, xmid, tol);
else
xroot=binarysearch(fun, xmid, xhigh, tol);
end

To pass a function (as opposed to a variable) to a function we need (as before) a function handle:
f=0(x) x~3-2*x"2-x+2

or
f=inline(’x~3-2*%x"2-x+27)

We can now find a root to f(z) = ® — 222 — x + 2 by, say,

binarysearch(f, 0, 1.5, eps)
binarysearch(f,-3, 0 , 107-3)

Remark. The recursive code is in some respects more elegant than the code on page 26; however the
recursive code is twice as expensive since it requires two function evaluations per iteration.

3.4 Order of Convergence

We may well be interested in how fast we can obtain an answer; the order of convergence is a measure
of this. Let

Op =Ty — 2 (3.5a)
then it is ‘often’ possible to show, for sufficiently small J,,, that
[0n+1] < ¢|on)?, (3.5b)

for some positive constants ¢ and p. The smaller ¢ and, more importantly, the larger p, the faster the
convergence.

Notation.
The order of the method is said to be p.

The asymptotic error constant is said to be c.

Speed of convergence. It follows that

™o if p=1 (require ¢ < 1 for convergence),
|67l‘ < 1-p" mn . (363)
ctr |G ifp>1.
Hence, in order to achieve an accuracy |d,,| < & < 1, the number of iterations scales as
tog(e/1%0]) ifp=1,0<c<1,
nz (3.6b)

1 log e :
ey log | —5—— | ifp>1, L.
logp 8 (log (cﬁ \50|)) np ">

Mathematical Tripos: IA/IB Computational Projects 3-27 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

04/11

Bisection method. For the bisection method
0n 1] < 510nl,

and hence p =1 and ¢ = % Since p = 1, the bisection method is said to be a first-order method,
and the method has linear convergence. The maximum number of iterations required to improve

the accuracy of the root by O(1077) is
In10
=0|—— :
" (1112 q)

3.5 Other Methods

There are many other methods of finding roots, including

(a) fixed-point (or Picard) iteration in which the equation f(x) = 0 is ‘re-written’ in one of the non-
unique forms, x = g(x), followed by the iteration scheme

Tn+1 = g (xn) 5 (3-73)

(b) Newton-Raphson iteration (which is a special case of fixed-point iteration), which uses the scheme

Tpt1 = Tp — JJ:’((J;Z)) : (3.7b)

(c¢) the secant method, which uses the scheme

Ty — Tp—1

Tt = (f (@n) — f (21

)) Flwn)s (3.70)

For (3.7a) and (3.7b) a suitable initial guess x¢ is required; for (3.7c) two suitable initial values zo and
1 are required.
Order of Convergence. It can be shown that, when convergent,

(a) fixed-point iteration is in general first-order convergent for a simple root, i.e. when f’(z.) # 0;

(b) Newton-Raphson iteration is second-order convergent for a simple root, but only first-order
convergent for a multiple root;

(c) the secant method in general has an rate of convergence given by p = % (1 + \/5), but that if
f/(z4) = 0 then the rate of convergence degrades to linear.

Remarks.

(i) The theoretical background to these methods is covered in most textbooks on Numerical Analysis.

(ii) The Introductory Project is on Root Finding in One Dimension, and explores [some of] the above
methods in more detail.

Exercise. In the bisection method, instead of using
c= 3(an+by) (3.8a)

as the point of bisection, assume that the function is approximately a straight line over the interval
[an, by]. If the assumption is correct, the root is likely to be near (cf. (3.7¢))

by, — an,
= b (f (o)~ f <an>) f). (3.8)

Verify that ¢ € [an, by]. Investigate whether this results in a reduced number of iterations if this value of
c is used.

Mathematical Tripos: IA/IB Computational Projects 3-28 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

4 Solution of Ordinary Differential Equations

4.0 Introduction

Differential equations can be used to model many phenomena ranging from climate change (and other
physical processes), through epidemiology (and other biological processes) to derivatives (and other
financial products). As elsewhere in these notes we shall start by ‘toddling’, and leave walking and
running to other courses. What follows, and in particular the error analysis, is directly relevant to the
first Part IB Computational Project.

We will consider the simplest method for the numerical solution of an ordinary differential equation
(ODE). In particular, for some known function f and initial conditions y(a), we aim to solve the first-
order ODE

y=2 =iy, (1)

for the value of y(b), where b > a wlog.

4.1 The Euler Method
The interval [a, b] contains an uncountable number of points, hence we first divide it into N sub-intervals

To=a,T1,...,EN_1,TN = b, (4.2a)
where h,, = x, — &,_1 is the n'" step size. The sub-intervals need not be equi-spaced, but initially we
will assume that each is of width

b—a
N

Let Y;, be an approximation to the exact solution y, = y(z,), so that

h= whence =z, =a+nh, n=0,1,...,N. (4.2b)

Position Exact Solution Approximate Solution
o =a Yo = y(a) Yo = wo
r1=a+h (7 Y1
T, =a+nh Un, Y,
ey =a+Nh=5> YN Yn

To solve the equation (4.1) using the Euler method
we assume that % is constant over each step, in

particular we assume that in [z, z71) that

~ f(z0,%0) -

&&

Thence, from geometry, we let

Y1 = Yo+ hf(zo, Yo) = yo + hf(zo,y0) -
Next we assume that in [z7,z2) that

dy
— & Y]
dr f(Il, 1),

and thence, from geometry, we let

Yo=Y+ hf(x1,Y1).

Mathematical Tripos: IA/IB Computational Projects 4-29 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

Finally we recurse:

Y1 =Y, +hf(zn, Ya). (4.3)
Remarks.

(i) We approximate % by f(zn,Y,) rather than f(z,,y,), because we do not know y,,.
(ii) y could be a [column] vector.

(iii) The step size h need not be constant.

4.1.1 Example MATLAB code

Suppose as a test we consider
fla,y) =ay®. (4.4a)

The exact solution to (4.1) is then
2

— 4.4b
—. (44b)

y =
where ¢ is a constant. Note that y(0) = 2/¢, and that the solution has singularities at z = £+/c.

The following MATLAB code implements n steps of the core of the above algorithm. It integrates from
z =0 to x = 1 with a constant step size h = 0.05 (so 20 steps are required), for an initial condition
y(0) =1 (in which case the exact solution has ¢ = 2).

>> x
>> y=
>> h=0.05;
>> n=round(1/h);
>> for i=1:n
y=y+th*x*y~2;
x=x+h;
end
>> x, y
x=1.0000, y=1.8342

Remarks.

(i) Note that in the for loop it is important to update y before updating x.

(ii) The exact solution at =1 is y(1) = 2; hence the error is —0.1658.

A natural question to ask is how the error depends on the step size h. To investigate this we bundle the
above code into a function, eulergraph, that takes the initial conditions, range and step size as input,
and outputs the solution at the calculated grid points in arrays x and y:

function [x, y] = eulergraph(xstart,ystart,xend,h)
% [x, y]l = eulergraph(xstart,ystart,xend,h)
%
x(1)=xstart;
y(1)=ystart;
n=round ((xend-xstart+eps)/h);
for i=1:n
y(i+1)=y (i) +h*x (i) *y (i) ~2;
x(i+1)=x(i)+h;
end
return

Mathematical Tripos: IA/IB Computational Projects 4-30 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

Please do not distribute to students.

This is a supervisor’s copy of the notes.

We can then run this function for successively halved step sizes and plot the results.

% Set initial conditions and range
)
xstart=0; ystart=1; if
YA
% Initialise parameters and plot
b
jmax=5; clf; hold on;
for j=1:jmax
%
% Choose step size, call eulergraph, plot solution & inverse
A
h=0.2/2~(j-1);
[x,y]l=eulergraph(xstart,ystart,xend,h) ;z=1./y;
k=(j-1)/jmax; plot(x,y,x,z,’Color’, [k/2 1-k k],’LineWidth’,2);
end
A
% Plot asymptote, tidy up axes and print graph
)
xasymp=sqrt (2/ystart); ylower=ystart; yupper=(2xystart)/abs(2-ystart*xend~2);
if xasymp <= xend
ylower=0; plot([xasymp xasymp], [ylower yupper]);
end
axis([xstart xend ylower yupper]); xlabel(’x’); ylabel(’y’);
hold off; print -depsc eulergraph

exist(’xend’,’var’) xend=1.0; end

191
1.8
171

161

14r

12F

11r

1 0 | | | | | |]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure 4: Solutions to (4.1) and (4.4a) using Euler’s method, with g = 0, yo = 1 and
h=0.2,0.1, 0.05, 0.025 and 0.0125.

Remarks

(i) As might be expected, decreasing the step size h increases the accuracy. However, ideally this
improvement should be quantified.?°

(ii) By setting xend=1.5 we see that it is possible to integrate [inadvertently] through a singularity;
however refinement of the step size suggests that the solution near x = 1.5 is problematic. Matters
can be made clearer by plotting 1/y (which is bounded) rather than y.

20 As will be required in the Computational Projects.

Mathematical Tripos: IA/IB Computational Projects 4-31 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

04/12

04/13

4.2 Accuracy

It would be good to have a more formal measure of the errors associated with the Euler method and
other methods.
Global error. Define the global error after n steps to be

Epn =Yy —Yn. (4.5a)

where we recall that ¥, is the exact solution starting
from x = z¢ and y = yo.

Local error. First define z, = z(z,) to be the ezact solu-
tion to (4.1) at x = x,, starting from z = z,_; and
y =Y, _1.In general z,, #Y,, and z, # y,. Define the
local error after step n to be

en =Y, — z, . (4.5b)

Local truncation error. In the case of infinite precision
arithmetic, so that the local error is solely due to trun-
cation error, then a numerical method is said to be of
order p,ifas h — 0

en ~ chPTh, (4.5¢)

Arm waving. If we take n steps, then from (4.5¢) the cumulative local error is [likely to be] O(nhP*+1).
So after we have taken N = (b — a)/h steps, say, in order to calculate an approximation to y(b),
we might hope that, on the assumption of no rounding errors,

global truncation error at b = Exy = O(NhP) = O(h?). (4.6)
This is an arm-waving estimate of the global truncation error. However, the argument can [some-
times| be tightened up with suitable assumptions: see (4.9) below.

Remark. Since we want the error to be small as h — 0, a numerical method is as useful as a
chocolate teapot unless p > 0.

4.2.1 Local truncation error of the Euler method

From Taylor’s theorem
2(25) = 2(Tn_1) + he' (Tp_1) + $h22" (En1) (4.7a)
for some &,_1 € [Tn—1,%,]. From our definitions of the Euler method (4.3) and the definition of local
error (4.5b), then on the assumption of no rounding errors,
€n = Yn — Zn

= I'n—1 + hf('rn—la Yn—l) - (Z(l'n—l) + hzl(mn—l) + %hZZ’/(gn—l))

= I'n-1 + hf(-rnfly Ynfl) - Ynfl - hf(.Tn,l, Ynfl) - %hZZ,/(£n71>

= —1n2"(&1)). (4.7b)

-2

Hence from (4.5¢) the Euler method has a local truncation error of order one.
4.2.2 Global truncation error of the Euler method (Unlectured)

Executive summary. Given suitable restrictions/conditions, the Euler method has a global truncation
error of order one.

Mathematical Tripos: IA/IB Computational Projects 4-32 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

05/11

In order to calculate the global truncation error we need to know something about the function f. We
suppose that f is bounded and continuous (as already implicitly assumed) and that it satisfies a Lipschitz
condition:

[f(@,y) = flz,2)] < Lly — 2], (4.8)

for all x, y and z and for some positive constant L.
Then from (4.5a) and (4.3)
E,=Y,—yn
=Yoo1 + hf(2n_1,Yao1) — ((@n—1) + hy/ (@n—1) + 30°Y" (€n1))
=Yno1 = Yn1 +h(f(@n-1,Yn 1) = f(@n-1,9n-1)) — 5h*Y" (€n1)
= En 1+ h(f(@n-1,Yn 1) = f(@n-1,9n-1)) — 3h%y" (£n1).
Further, from the Lipschitz condition (4.8)
|f(@n-1,Yn-1) = f(@n-1,Yn—1)| < L|Yn-1— yn-1].
We will assume that the second derivative is bounded, i.e. for some positive constant ¢ and for all x
y" (@) <o
Then it follows from the triangle inequality, and summing a geometric progression, that
|En| < |Ep—1] + hL|Y—1 — yn_1| + 1h%c
< (1+hL)|En_1| + 3h%0

< (4 hL)™ M Ey 1y + 5820 > (14 hL)

j=0
n—1

< (14 hL)"|Eo| + $h*c Y (1 + hL)’
j=0

hU
< _ n o __ .
S 3 ((1+hL) 1)

For h > 0 it is true that 0 < 1+ hL < e, and hence that (1 + hL)" < e™E; further nh = (2, — o).
Hence

|En‘ < ;L% (enhL o 1)
< Z—Z (elenme0® 1)) . (4.9)

We conclude that the Euler method has a global truncation error of order one.
4.2.3 Testing accuracy without the exact solution, and a free lunch!

For our example equation (4.4a) we know the exact solution (4.4b); it is then straightforward to test
the accuracy of the solution. However, suppose that we do not know the exact solution, but wish to test
accuracy; what do we do then?

One way forward is to postulate that the global truncation error is O(h?), cf. (4.6), or more specifically
that
yn = y* + AP + O(hPH) (4.10)

where y;, is the numerical solution obtained with a step size of h, y* is the exact solution, and A is a
constant. Then,

yn = Yin = (1= 35) AP + O(hP*1), (4.11a)
and
10g|yh—y%h|zlog(l—zip))\—i—plog h+.... (4.11b)

This suggests that the slope of a plot of log |y, — y%h| against log h should yield the order p.

Mathematical Tripos: IA/IB Computational Projects 4-33 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

07/10

Remark. If writing a numerical ODE solver or, probably more pertinently, a numerical PDE solver, it
is best to theoretically calculate the order of the method, and then to confirm that the code is
consistent with the theoretical order (e.g. by means of the aforementioned plot, or similar).

Further, if we know the order p then there is a free lunch! First, we note from that (4.11a)

AP = (yh - y%h) + O). (4.12a)
Hence from (4.10) we conclude that
y* =yr+ O(R"tY), (4.12b)
where
1
- 2p__]7(2py%h4*yh) : (4.12c)

is a better O(hP*!) approximation to the solution. For the Euler method, p = 1 from (4.9), hence a
better O(h?) approximation to the solution should be

YR =2Y1p — Yn- (4.12d)

Remark. Even higher order solutions can be obtained by similar extrapolation if three or more solutions
with different step sizes are known, e.g. yp, Yin and Yip-

4.2.4 Numerical confirmation of accuracy

In order to examine the error of our model problem more systematically, we modify the eulergraph
function to output only the solution at the end of the range:

function [x, y] = eulerverify(xstart,ystart,xend,h)
% [x, y] = eulerverify(xstart,ystart,xend,h)
%
% Integrate y’=x*y~2 with step h from xstart to xend with y(xstart)=ystart
x=xstart; y=ystart; n=round((xend-xstart+eps)/h);
for i=1:n
y=y+th*x*y~2;
x=xX+h;
end
return

The code in the Annex on page 38 runs the function eulerverify for a range of successively halved step
sizes, where the step sizes and values of z and y output by eulerverify are stored in arrays h, x and y
respectively. The error at the end of the integration range, as calculated using the exact solution, is then
plotted on a loglog plot.

Mathematical Tripos: IA/IB Computational Projects 4-34 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

error
I
o,
T

-10

1072 L
10

10

Figure 5: Error in y at the end of range plotted against step size. Upper ‘— -’ line: h = 27™/10;
upper ‘— —’ line: h = 27™. Dotted line is estimate of the error. Lower lines are the extrapo-
lated second-order solutions using (4.12d). Solid lines are lines of slope 1 and 2.

Verifying the order. For Euler’s method En o h? with p =1 (see (4.9)), and hence we expect
log |E| o log|hl.
The reference line of slope one in the loglog plot is consistent with p = 1.

Estimating the order. Earlier we noted that it should be possible to use the slope of a plot of log |y, —y 1 al
against log h to estimate the order p without knowing the exact solution. The dotted line in figure 5
is a plot of log |y — y%h| and is consistent with p = 1.

Rounding error. Note that if h is too small rounding error can be expected to become important. Suppose
that our method has an O(hP) truncation error, and suppose that in the worst case the systematic
rounding error accumulated over 1/h steps is O(eps/h). Then

total error = O(h?) + O(eps/h) .
This is minimised for

1

h = 0O((eps)™7),
so yielding
minimum total error = O((eps) ™7). (4.13a)

Remarks.

(a) If p = 1, as for the Euler method, the total error is minimised for h = O((eps)?), in which
case

minimum total error = O((eps)%) . (4.13b)

This is consistent with figure 5.

(b) The minimum total error decreases with increasing p. This makes higher-order methods, i.e.
methods with larger p, more attractive than the Euler method. For instance, if p = 4 then

minimum total error = O((eps)%) . (4.13¢)

Mathematical Tripos: IA/IB Computational Projects 4-35 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

(¢) The systematic rounding error accumulated over 1/h steps may not be as bad as the worst case
estimate of O(eps/h). One might hope that the rounding error accumulated over a number
of steps cancels to some extent because of randomness, so that the accumulated error is
O(eps/h?) (cf. diffusion), which would result in

minimum total error = O((eps)%) . (4.13d)

Figure 6 illustrates an Euler solution for an integration where the step size h is adjusted at
each step by 7 h/10 where r is a pseudo-random number in (0, 1). The step size at which the
truncation error balances the rounding error is reduced, although the minimum total error is
slightly larger than (4.13d) with p = 1. A similar reduction in the rounding error can also
be achieved by choosing a step-size, 27, that can be represented exactly in binary (see also
figure 6).

Richardson extrapolation. That it is possible to extrapolate to a second-order solution using (4.12d) is
illustrated both in figure 5 and in figure 6, where log |yr — y*| is plotted against log h for a number
of different step sizes.

Remark. Note that with p = 2 in (4.13a), the minimum total error is O(eps)3, which is slightly
smaller than the minimum of the extrapolation in figure 5. Similarly with p = 2 in (4.13d),
the minimum total error is O(eps)%7 which again is slightly smaller than the minimum of the
extrapolation in figure 6

Warning. Do not use Euler’s method if highly accurate results are needed; there are far better methods.

10

l/\
/\/ /‘
-
107 b = 2 i
- /,
o /l
>
10 L ,\/’/ //,/ i
»
- » ;
6 . - ,/ I'
0° .. o '/ 7
5 N ~ 4
£ ~ -~ 7
© A4 K
10° S / i
o “ “\ /
. Ko) AN '/
10" ™) . ‘)}: |
Q'(
., m;?’
10—127 . ’/’\’\\‘"\ |
10714 -12 ‘710 ‘75 ‘76 ‘,4 ‘72 0
10 10 10 10 10 10 10
h
Figure 6: Error in y at the end of range plotted against step size. Upper ‘— —’ line:
h =27"/10; upper ‘— -’ line: h = 27™(1 — r/10)/10; upper dotted line: h = 2. Lower
lines are the extrapolated second-order solutions using (4.12d). Solid lines are lines of slope

1 and 2.

4.3 Stability of the Euler Method

In computation the stability of a method refers to the sensitivity of the solution of a given problem
to small changes in the data or the given parameters of the problem. Stability can be characterised
a number of ways. One of the Part IB projects will investigate the stability of various methods for
numerically integrating ODEs. Here we will examine the linear stability [domain| of the [forward] Euler
method.

Specifically, suppose that we let f(z,y) = —Ay for some real constant X\. The exact solution is
y = yoexp(—A(z — zg)),

Mathematical Tripos: IA/IB Computational Projects 4-36 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

which decays as z increases if A > 0; it is desirable that a numerical solution should similarly decay. So
let us apply Euler’s method to

Yy =-\y. (4.14a)
Then from the definition of Euler’s method, i.e. (4.3),
Vi1 = Y + h(=AY,) = Yo (1 — AR). (4.14b)

By induction it follows that
Y, =Yo(1 - A0)", (4.14c)

and hence the numerical solution only decays if
[1—XMh| <1. (4.144)

If instead |1 — Ah| > 1, ie. if b > 2/A, then the numerical solution increases with increasing n, i.e.
increasing x. This is a simple example of linear instability. If (4.14d) is satisfied, i.e. if h is small enough,
we say that the Euler method is stable.

Remarks.

(i) We note that as N — oo

Alb—a)

N
I) — yoexp(—A(b—a)).

Yy = Yo(1 = A)N =y (1 -

Hence as the step size tends to zero, the discrete solution at x = b tends to the exact solution.

(ii) Different methods have different stability properties. A higher-order method that might look at-
tractive from an accuracy viewpoint, would not be of practical use if it was unstable for all h.

Ezercise. Examine the stability of the numerical solution to (4.14a) using the backward Euler method

Yn+1 =Y, + hf(wn—l-la Yn+1) . (415)

Annex

Gift-wrap ‘housekeeping’ code around the function eulerverifyrun used to produce figure 5.

Mathematical Tripos: IA/IB Computational Projects 4-37 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

05/14

This is a supervisor’s copy of the notes. Please do not distribute to students.

% Choose output format and clear variables
)
format compact; format long g; clear h Hy Y x X; clf;
)
% Check loop limit m <= 28 so "for" loop limit not exceeded in eulerverify
YA
if ~ exist(’m’,’var’), m=28; end
if m > 28, error(’Reduce the size of m to less than or equal to 28’), end
)
for i=1:m
h(i)=0.1/2~(i-1);
[x(1), y(i)]=eulerverify(0,1,1,h(i));
end
fprintf (°h=Y%3g, xend-1=Y%3g, yend-2=%3g\n’,h(m),x(m)-1,y(m)-2)
loglog(h, abs(y-2), ’r-.’,’LineWidth’,2);
xlabel(’h’); ylabel(’error’); axis([10~(-10) 1 10~(-12) 11);
hold on; CurrentFig=gcf; WinOnTop(CurrentFig);
A
input (’\nHit return to plot a reference line of slope 1°);
)
loglog(h, h, ’b-’,’LineWidth’,2);
YA
input (’\nHit return to use a step size of h=1/2"m’);
A
% Use step sizes that can he stored exactly
YA
for i=1:m
H(i)=1/2"(i+2);
[X(1), Y(i)]=eulerverify(0,1,1,H(i));
end
fprintf (°h=%3g, xend-1=3g, yend-2=Y3g\n’,H(m),X(m)-1,Y(m)-2)
loglog(H, abs(Y-2), ’k--’,’LineWidth’,2);
A
input (’\nHit return to obtain an estimate of the error’);
A
loglog(h(1l:m-1),abs(y(2:m)-y(1:m-1)),’m:’,’LineWidth’,3);
YA
input (’\nHit return to obtain extrapolated solutions’);
A
top=round (3*m/4) ;
loglog(h(1l:top-1),abs(2*y(2:top)-y(1:top-1)-2),’r-.’, ’LineWidth’,2);
loglog(h(1l:top-1),abs(2%Y(2:top)-Y(1:top-1)-2),°k--’,’LineWidth’,2);
YA
input (’\nHit return to plot a reference line of slope 2’);
h
loglog(h(1:m-1), 3%h(1:m-1).72, ’b-’,’LineWidth’,2);
hold off; print -depsc eulerverify

Mathematical Tripos: IA/IB Computational Projects 4-38 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

05/12
05/13

5 Gaussian Elimination

5.0 Introduction

One of the aims of this section is to write a slightly longer piece of MATLAB code, showing how it can
be constructed piece by piece. It is generally easier to write a basic code, and then refine it to make it
more sophisticated.

Remark. This section also illustrates how to write a standard method, in this case [a very close relative
of] Gaussian elimination, in a neater algorithmic form using matrices. Needless to say, matrices are
important; as the abstract of a research seminar given this time last year put it:

‘Functions of matrices are widely used in science, engineering and the social sciences, due
to the succinct and insightful way they allow problems to be formulated and solutions
to be expressed. New applications involving matrix functions are regularly being found,
ranging from small but difficult problems in medicine to huge, sparse systems arising in
the solution of partial differential equations. ...’

5.1 LU factorization
5.1.1 Definition

Let A be a real n x n matrix. We say that the n x n matrices L and U are an LU factorization of A if

(i) L is lower-triangular, i.e. L;; = 0 for i < j,
(i) U is upper-triangular, i.e. U;; = 0 for i > j, and

(iii) A =LU.

Therefore the factorization takes the form

_ ﬂ

5.1.2 Application: solution of linear systems

Let A = LU and suppose we wish to solve Ax = b. This is the same as L(Ux) = b, which we decompose
into
Ly =b, Ux=y.

Both latter systems are triangular and can be solved using forward /backward substitution. Specifically,
first we solve for y; thus

Liiy1 = by gives yi1, next

La1y1 + Laoys = by yields ¥ etc.
Then we solve for x by reversing the order; thus

UnnTn = Yn gives x,,, next

Un—1n-1Tn—1 + Un—1n%n = Yn—1 yields z,,_1, and so on.

Remark. This requires O(n?) computational operations.?!

21 Where, as usual, we only bother to count multiplications/divisions.

Mathematical Tripos: IA/IB Computational Projects 5-39 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

5.2 The calculation of an LU factorization

We present a method of the LU factorization that is based on a direct approach. So we assume that the
factorization exists.

We denote the columns of L by 13,15, ...,1, and the rows of U by ul,ul,... ul. Then
T
uy
A=LU=[1 1 --- 1,]) (5.1a)
| u,
* x * x| uf
* o+ x| us n
= x| x| X :Zlkug. (5.1b)
* ’T ’T ul k=1
L 1o 1,

Since the first (k — 1) components of 1, and uy, are all zero for k > 2, each rank-one matrix 1,u; has
zeros in its first (k — 1) rows and columns. Therefore

* ok ox %
* ok ox % * ok
A= |* x * x|y * ok k| 4 O S . (5.1¢)
* ok x % * k% * ok *
T T T T
11111 12112 13“3 lnun

We begin our calculation by extracting 1; and uf from A, and then proceed similarly to extract I, and

ul, etc. First we note from (5.1c) the first row of the matrix ljuf is L;jul = uf, since the diagonal

elements of L equal one. Hence ui coincides with the first row of A, while the first column of 1;ul, which

is Uy1ly = Aq11y, coincides with the first column of A. Hence, with A0) — A,
u] = [the first row of A(©)], 1; = [the first column of A(©]/A(%).

Next, having found 1; and u;, we form the matrix

AW = AD — Ll = "y (5.2)
k=2

By construction, the first row and column of A®) are zero. It follows that u] is the second row of AD),
while 15 is its second column, scaled so that Los = 1; hence we obtain

u, = [the second row of A(M], 1, = [the second column of A(l)]/Aélz).

Continuing this way we can formulate an algorithm.

The LU algorithm. Set A(® = A. For all k =1,2,...,n set u;f to be the k™ row of A®—1 and 1, to the
k™ column of A(k_l), scaled so that L, = 1. Next calculate

AR = A=) (5.3)
and then increment k.
Hence we perform the calculations by the formulae for £k =1,2,...,n:
k—1 .
Ukj:Al(cj), j=k,...,n, (5.4a)
A1)
MkZ‘%Tv i=k,...,n, (5.4b)
Ak=1)
kk
k k— .
AL = A" LU, i,j >k (5.4c)

Mathematical Tripos: IA/IB Computational Projects 5-40 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

Remarks.

(i) This construction shows that the condition
AR 20, k=1,...,n—1, (5.5)

is a sufficient condition for an LU factorization to exist and be unique. Agol) is just A;1, but
the other values are only derived during construction.

(ii) We note that lyu} stays the same if we replace
I, —aly, u, — o tu,, where a#0.

It is for this reason, subject to (5.5), that we may assume w.l.o.g. that all diagonal elements
of L equal one.

Complezity. In calculating complexity, or cost, we assume that it is only multiplications and divisions
that matter. By the k-th step of the LU algorithm we see from (5.4b) and (5.4c) that we perform
(n — k) divisions to determine the components of 1, and (n — k)? multiplications in finding 1,u} .

Hence
n—1

Nep =Y [(n—=k)?+ (n—k)] = 3n* + O(n?). (5.6a)
k=1

Solving Ly = b by forward substitution we use k& multiplications/divisions to determine gy, and
similarly for back substitution, thus

Np=Np=>» k~in’ (5.6b)

Relation to Gaussian elimination. The calculation of A®) from A*~1) is analogous to the row operations
in Gaussian elimination. However, a difference between LU algorithm and Gaussian elimination is
that in LU we do not consider the right hand side b until the factorization is complete.

5.2.1 MATLAB code

In the following code A®) overwrites A*~1) and only the non-zero elements of L = L and U = U are
calculated.

[m n]=size(A);
if m "= n, error(’Input must be a square matrix.’), end
L=zeros(n); U=zeros(n);

h

for k = 1:n
for j = k:n
U(k,j) = Ak, j);
end

for i = k:n
L(i,k) = A(i,k)/A(k,k);
end
for i = k:n
for j = k:n
A(i,j) = A(i,j) - L@,k)*UCk,j);
end

% Choice of i or j as the outer loop

end
end

Mathematical Tripos: IA/IB Computational Projects 5-41 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

Remarks
(i) The function zeros (m,n) constructs a mxn matrix of zeros; zeros (n) is shorthand for zeros(n,n).

(ii) There is a free choice of outer loop between i and j; however, the choice of i results in more elegant
code in the sequel.

At the end of the calculation A is the zero matrix, while L = L and U = U are each half full. This suggests
that with some thought it should be possible to store L and U in the elements of A that are being set to
zero. We start by storing U in the upper triangular part of A:

[m n]l=size(A);
if m "= n, error(’Input must be a square matrix.’), end
L=zeros(n);
%
for k = 1:n-1 % Loop to n-1
for i = k:n % U(k,j) = Ak,j), so do nothing
L(i,k) = A(i,k)/A(k,k);
end
for i = k+1:n % Do not overwrite U in kth row of A
for j = k:n
A(i,j) = A(i,j) - L(E,k)*Ak,j);
end
end
end
L(n,n)=1;
%
U=triu(A, 0);

Remark. The function triu(A,k) extracts the elements on and above the kth diagonal of the matrix A,
where k=0 is the main diagonal, k>0 is above the main diagonal and k<0 is below the main diagonal.

By careful examination of where we are overwriting A, we can store L in the lower triangular part of A.
It is also possible to combine two for loops. Finally we convert the code into a function.

function [L, U] = LUfactor(A)
%LUfactor: calculate the LU factorisation of A
yA

[m n]l=size(A);

ifm "=n
error (’Input must be a square matrix.’)
else
for k = 1:n-1
for i = k+1:n % Calculate only non-unit elements of L
A(i,k) = A(i,k)/A(k,k); h L(i,k) = A(i,k)/A(k,k)
for j = k+l:n % Do not overwrite L in kth column of A
A(1,3) = ACL,]) - AGL,K)*A(k,J); % AL, J) = A(L,j) - L@, k)*U(k,])
end
end
end

%
L=tril(A,-1)+eye(n);
U=triu(A,0);

end

Remarks

(i) The function eye(n): constructs a n x n identity matrix.

(ii) The function tril(A,k) extracts the elements on and below the xth diagonal of the matrix A, where
k=0 is the main diagonal, k>0 is above the main diagonal and k<0 is below the main diagonal.

Mathematical Tripos: IA/IB Computational Projects 5-42 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

5.2.2 Check the code

In order to test our MATLAB code we need one or more suitable matrices A. MATLAB has a number of

built-in matrices (some of which we have already encountered), e.g.

zeros (m,n): constructs a m X n matrix of zeros;
ones (m,n): constructs a m X n matrix on ones;
eye(n): constructs a n X n identity matrix;

magic(n): constructs a n X n matrix from the integers 1 through n? with equal row, column, and
diagonal sums (valid for all n > 0 except n = 2);

hilb(n): constructs a n x n Hilbert matrix with (i,j)th element 1/(i +j — 1);

rand(m,n): constructs a m X n matrix containing pseudo-random values drawn from the standard
uniform distribution on the open interval (0,1).

As a test of the function LUfactor try

>> format compact
>> A=magic(5)
>> [L,U]=LUfactor(A)

But how do we know if the answer is correct? Well if L and U are such that A — LU = 0, then check:

>> A-L*U

If n was much greater than 5 the output would not be very user friendly. Alternatively we can sum the
elements of the array:

by using sum(A-L*U), which is a row vector consisting of the sum over the elements of each column;
or by using sum(sum(A-L*U)), which is better because it is the sum of all elements of A-LxU;
or by using sum(sum(abs (A-L*U))), which is even better because it is a sum of all the absolute

values of the elements of A-L*U (and so avoids cancellations).

>> sum(A-LxU)
>> sum(sum(A-LxU))
>> sum(sum(abs (A-L*U)))

We can try different different matrices:

>> A=rand(5), [L,U]=LUfactor(A); sum(sum(abs(A-Lx*U)))

>> A=hilb(5), [L,U]=LUfactor(A); sum(sum(abs(A-Lx*U)))

>> n=11; A=rand(n) ; [L,U]=LUfactor(A); sum(sum(abs(A-Lx*U)))
>> n=11; A=hilb(n) ; [L,U]=LUfactor(A); sum(sum(abs(A-Lx*U)))
>> n= 7; A=magic(n); [L,U]=LUfactor(A); sum(sum(abs(A-L*U)))
>> n= 9; A=magic(n); [L,U]=LUfactor(A); sum(sum(abs(A-L*U)))
>> n=11; A=magic(n); [L,U]=LUfactor(A); sum(sum(abs(A-L*U)))

magic is clearly not so magic! To obtain an inkling as to what is going wrong try

>> for n=3:2:11, det(magic(n)), end

Mathematical Tripos: IA/IB Computational Projects 5-43 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

FExercise: evaluate the determinants when n is even.

As an even simpler example of the problem try
>> A=[0 1; 1 0]; [L,U]l=LUfactor(A)

We will return to this issue in the next section, but first we note that MATLAB has its own LU factorisation
function (which seems to have some advantages):

>> n=11; A=magic(11); [1,u]l=1u(A); sum(sum(abs(A-1*u)))
>> A=[0 1; 1 0]; [1,ul=1u(d), sum(sum(abs(A-1*u)))

Note that the MATLAB function lu returns a matrix 1 and an upper triangular matrix u such that
1*u=A. However, the matrix 1 returned is not necessarily lower triangular; although it might be viewed
as ‘psychologically lower triangular matrix’, in that it is a product of a lower triangular matrix and a
permutation matrix.

A modified call to the function lu can ensure that a lower triangular matrix is returned, (but at some
cost to what L*U evaluates to):

>> [L,U,P]=1u(A)

>> sum(sum(abs (L*¥U-A)))

>> sum(sum(abs (L*¥U-P*A)))

>> sum(sum(abs (P’*P-eye(2))))

>> [1, ul=1lu(d); sum(sum(abs(P’*L-1)))

Here P is a permutation matrix, and is the modification needed to fix the ‘divide-by-zero’ problem.

5.3 LU factorization with column pivoting
Column pivoting: description. Naive LU factorization fails when, for example, A](ckkfl) = 0. A remedy is to
exchange rows of A by picking a suitable pivotal equation. This technique is called column pivoting
(or partial pivoting), and is equivalent to picking a suitable equation for eliminating the unknown
in Gaussian elimination. Specifically, column pivoting means that, having obtained A*—1 we
exchange two rows of A(*~1) so that the element of largest magnitude in the k™ column is in the
‘pivotal position’ (k, k). In other words,
‘A(kfl)

ke | = max
i=k...n

k—1
AV

The exchange of rows, say k and p, can be regarded as the pre-multiplication of the relevant matrix
A1) by a permutation matrix Py,

1 0

0 1 «— row k

1 0 {— TOW D

Mathematical Tripos: IA/IB Computational Projects 5-44 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

Remarks

(ii) PxPx =1, hence P;l =P, = PE.

(iii) det Py = —1.
)

06/13 (iv) Pg is a reflection matrix.
26/1: Algorithm Suppose A,(Ckkfl) = §, where |§| < 1, i.e.
(o]0}
0 0 0 .. 0
AF=D = [- 5 Algkk_q-ll) Agfn_l) . (5.80)
k-1 k—1 k—1
0 Al(€+1k) AEC+1I€)+1 T AE@+173,
0 0 AR ANy Al

First identify p such that

AU = max |4l (5.8b)

and then swap rows p and k of A(*~1) using P;, as defined in (5.7). Next construct 1 and uy from
PrA(* =1 using the same algorithm as before, and then form

AR — p A=Y _ul (5.9a)
By recursion
AR =P (P A%=2 1 ul) — Lu?

= PpPr_1A®2 _ Pili_juf | — Luf

Hence, on defining for convenience P,, = | and P = P,,P,,_1 ... P, we find on undoing the recursion
that .
PA=P,P,_ 1...P1A= Z Po...Prilyul + Loul = LU, (5.9b)
k=1
where
uy
T
u;
L=[Pp...P2ly ... Pp.oiPryaly ... 1,], and U= . . (5.9¢)
u,
Remarks

(i) At each stage the permutation of rows is applied to the portion of L that has been formed
already (i.e. the first £ — 1 columns of L), and then only to the bottom n — k + 1 components
of these vectors.

(ii) We need to record the permutation of rows to solve for the right hand side and/or to compute
the determinant.

(iii) Note that PTP =1, i.e. P is orthogonal.

The zero-column case. Column pivoting copes with zeros at the pivot position, except when the whole
k™ column of A®—1 is zero. This can only happen if A is singular, and in that case we let 1, be
the k' unit vector, while taking ug as the k-th row of A*=1) as before. This choice preserves the
condition that the matrix lku;f has the same k-th row and column as A(*~1 Thus

AR = A=D1, uf

still has zeros in its k-th row and column as required.

Mathematical Tripos: IA/IB Computational Projects 5-45 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

Round-off error. An important advantage of column pivoting is that every element of L has magnitude
at most one, i.e. |L; ;| < 1forall4,j=1,...,n. This avoids not just division by zero but also tends
to reduce the chance of very large numbers occurring during the factorization, a phenomenon that
might lead to accumulation of round-off error and to ill conditioning.

Complezity. For a given A, the factorisation matrices L, U and P can again be calculated in O(n?) oper-
ations. Further, Ax = b, or equivalently LUx = PAx = Pb, can again be solved post-factorisation
in O(n?) operations; thus

Ly =Pb andthen Ux=y. (5.10)

5.3.1 More MATLAB

Based on (5.9b), (5.9¢) and the LUfactor code, a function to perform LU factorisation with partial
pivoting is:

function [L, U, Q] = LUppivot(A)
#LUppivot: calculate the LU factorisation of A with pivoting
)

[m n]=size(A);

ifm "=n
error (’Input must be a square matrix.’)
else

for k = 1:n-1
% Find row r+k-1 in column k with absolute largest element
[~,r]=max(abs(A(k:end,k)));
Qk,:)=[k,r+k-1];
% Swop rows k and r+k-1 in A
A([k,r+k-1], :)=A([r+k-1,k],:);
%
for i = k+1:n
A(i,k) = A(i,k)/A(k,k);
A(i,k+1:n) = A(i,k+1:n) - A(i,k)*A(k,k+1:n);
end
end
%
L=tril(A,-1)+eye(n); U=triu(A,0);
end

Remarks.

(i) The function max returns the maximum element of a vector and the index of that element. Note
also the use of ~ to indicate that a function argument should be ignored.

(ii) The permutation information is stored in Q as transpositions (although, as we shall see, this choice
is not the slickest alternative).

(iii) The command A([k,pl,:)=A([p,k],:) swaps rows k and p of A.
(iv) By storing L in the lower triangular part of A there is no need to permute L explicitly.

(v) Note the use of implicit for loops (e.g. ‘:’), including loops that do not start from 1 and which end
with end.

In addition to LUfactor we need a function to calculate PA from using the permutations stored in Q:

06/12

We can test LUppivot as follows:

Mathematical Tripos: IA/IB Computational Projects 5-46 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

>> n=11; A=magic(n); [L,U,Ql=LUppivot(A);
>> B=permat(Q,A);
>> ssa=0(A) sum(sum(abs(A))); ssa(B-LxU)

However, a far slicker method of tracking the permutations is to track the permutations by swapping
elements of a vector P=1:n; thus

function [L, U, P] = LUpivot(A)
#LUpivot: calculate the LU factorisation of A with pivoting
A
[m n]l=size(A);
ifm "=n
error (’Input must be a square matrix.’)
else
P=1:n;
for k = 1:n-1
% Find row r+k-1 in column k with absolute largest element
[, r]=max(abs(A(k:end,k)));
% Swop rows k and r+k-1 in both A and P
A([k,r+k-1],:) = A([r+k-1,k]1,:);
P([k,r+k-1]) = P([r+k-1,k]);
A
for i = k+1:n
A(i,k) = A(i,k)/A(k,k);
A(i,k+1:n) = A(i,k+1:n) - A(i,k)*A(k,k+1:n);
end
end
h
L=tril(A,-1)+eye(n); U=triu(A,0);
end

There is then no need for permat since L¥U=A(P, :):

>> n=11; A=magic(n); [L,U,P]=LUpivot(A);
>> B(:,:)=A(P,:); ssa(B-LxU)

With partial pivoting it is possible to factorise matrices that defeated LUfactor (even when the deter-
minant is very large):

>> n=101; A=magic(n); [L,U,P]=LUpivot(A);
>> clear B; B(:,:)=A(P,:); ssa(B-LxU), det(A)

We can now factorise large[ish] matrices, as long as we are willing to wait:
>> n=501; A=rand(n); tic; [L,U,P]=LUpivot(A); toc
>> tic; [1 u pl=1lu(A); toc

>> n=1001; A=rand(n); tic; [L,U,P]=LUpivot(A); toc
>> tic; [1 u pl=lu(A); toc

5.4 Solution of linear equations

From §5.1.2, given a LU decomposition of A, the solution to Ax = b can be obtained by first solving
for y from

1 0 0 Y1 b1
. Ly 1 e 0] v ba

Ly =b, ie. .) =1 .1, (5.11a)
Lnl o Lnn—l 1 Yn bn

Mathematical Tripos: IA/IB Computational Projects 5-47 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

07/11

and then solving for x from

Ui Ui o Uln T n
. 0 Uz -+ Uz T2 Y2
Ux=y, ie. .)) . =1 .1, (5.11b)
Equations (5.11a) and (5.11b) can be expressed in terms of suffices as
Liyi =b;— Liwyr — ... — Lis—1yi—1, 1=1,2,...,n—1,n, (5.12a)
U”xi:yifU”_i_le_lf...fUinxn, i:n,nfl,...,Q,l. (512b)

A MATLAB function to implement this algorithm is

function [x] = LUsolve(L, U, b)
%LUsolve: solve LUx=b

%

[n m]=size(b);

[s(1:2)]=size(L);

[s(3:4)]=size(U);

if s "= n*ones(1,4), error(’Matrices are not a consistent size.’), end

%

y=b;

for i = 1:n
y(i,:) = y(i,:) - L{i,1:i-D*y(1:i-1,:);
y(i,:) = y(i,:)/L(i,1);

end

X=y;

for i = n:-1:1
x(i,:) = x(i,:) - U(i,i+1:n)*x(i+1:n,:);
x(i,:) = x(i,:)/U(,1);

end

Comments on code. Here n:-1:1 means loop from n to 1 in steps of -1, and it is assumed that for loops
such as for j=1:0 and for j=n+1:n are not executed.

Check on complexity. If we count multiplications we see that in this part of the code
number of multiplications = O(n?). (5.13)
It follows that for n > 1, the rate-limiting part of the code is the LU factorisation.
As a test of the code try
>> format compact
>> A=magic(5); b=rand(5,1);
>> [L,U]=LUfactor(A); X=LUsolve(L,U,b)
To check that the answer is correct, given that X is meant to be the solution of Ax — b = 0 try
>> AxX-b, sum(abs(A*X-Db))
We can try different matrices
>> sa=@(b) sum(abs(b));
>> n= 5; A=hilb(n) ; b=rand(n,1); [L,U]l=LUfactor(A); X=LUsolve(L,U,b); sa(A*X-b)
>> n=11; A=hilb(n) ; b=rand(n,1); [L,U]=LUfactor(A); X=LUsolve(L,U,b); sa(A*X-b)
>> n= 9; A=magic(n); b=rand(n,1); [L,U]l=LUfactor(A); X=LUsolve(L,U,b); sa(A*X-b)

>> n=11; A=magic(n); b=rand(n,1); [L,U]l=LUfactor(A); X=LUsolve(L,U,b); sa(A*X-b)
>> n= 8; A=magic(n); b=rand(n,1); [L,U]=LUfactor(A); X=LUsolve(L,U,b); sa(A*X-b)

Mathematical Tripos: IA/IB Computational Projects 5-48 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

Please do not distribute to students.

This is a supervisor’s copy of the notes.

In the last two cases pivoting might help. Recall that Ax = b, and hence that LUx = PAx = Pb; so try

>> n=11; A=magic(n); b=rand(n,1); [1,u,p]l=LUpivot(A); x=LUsolve(l,u,b(p))
>> sa(A*x-b)

>> n= 8; A=magic(n); b=rand(n,1); [1,u,p]=LUpivot(A); x=LUsolve(l,u,b(p))
>> sa(A*x-b), det(A)

Remark: pivoting does not help solve singular equations!

We can now solve systems with large determinants:

>> n=101; A=magic(n); b=rand(n,1); [1,u,p]l=LUpivot(A); x=LUsolve(l,u,b(p));
>> sa(A*x-b), det(A)

and systems of large[ish| matrices, as long as we are willing to wait:

>> n= 501; A=rand(n); b=rand(n,1);

>> tic; [1,u,pl=LUpivot(A); x=LUsolve(l,u,b(p)); toc, sa(A*x-Db)
>> tic; X=A\b; toc, sa(A*X-b)

>> n=1001; A=rand(n); b=rand(n,1);

>> tic; [1,u,p]l=LUpivot(A); x=LUsolve(l,u,b(p)); toc, sa(A*x-Db)
>> tic; X=A\b; toc, sa(A*xX-b)

>> tic; X=inv(A)*b; toc, sa(A*X-Db)

However, there are systems of equations that LUpivot and LUsolve cannot solve (although the failure
is not always immediately clear):

if exist(’XX’,’var’) clear XX, end
if exist(’F’ ,’var’) clear F , end
if exist(’G’ ,’var’) clear G , end
sa=@(b) sum(abs(b)); format compact
%
for n=3:2:11
A=hilb(n); b=rand(n,1); [1,u,p]=LUpivot(A); x=LUsolve(l,u,b(p)); X=A\b;
fprintf ([’n=Y%2d, |A*x-b|=V8.2e, |A*X-b|=Y8.2e,\n’...
’ |x-X|=%8.2e, det=%8.2e\n\n’], ...
n, sa(A*x-b), sa(A*X-b), sa(x-X), det(A))

end
n=21; A=hilb(n); b=rand(n,1); [1,u,p]=LUpivot(A); x=LUsolve(l,u,b(p));
fprintf (°n=Y2d, |A*x-b|=/8.2e\n’, n, sa(A*x-b)), X=A\b;
%
for m=1:17

n=m+1; XX(m)=n; A=hilb(n);

E=eig(A); S=svd(A);

F(m)=min(abs(E))/max(abs(E)) ;

G(m)=min(abs(S))/max(abs(S));
end
semilogy (XX,F, ’b’> ,’LineWidth’,2); hold on;
xlabel (’Size of matrix’);
ylabel(’Ratio of min(abs)/max(abs) eigenvalues/singular values’);
semilogy(XX,G, ’r-.’,’LineWidth’,2);
%
clear XX F G;
for m=1:8

n=2*m+1; XX(m)=n; A=magic(n);

Mathematical Tripos: IA/IB Computational Projects 5-49 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

Please do not distribute to students.

This is a supervisor’s copy of the notes.

E=eig(A); S=svd(A);
F(m)=min(abs(E))/max(abs(E)) ;
G(m)=min(abs(S))/max(abs(8));
end
semilogy (XX,F, ’g’ ,’LineWidth’,2);
semilogy (XX,G, ’k-.’,’LineWidth’,2);
legend(’Hilbert: eigenvalues’,’Hilbert: singular values’,...
’Magic (odd): eigenvalues’,’Magic (odd): singular values’,...
’Location’, ’SouthWest’); hold off;
CurrentFig=gcf; figure(CurrentFig);

The underlying problem (highlighted by the condition-number warning) is the limited precision of about
07/12 16 significant digits.
07/13

Mathematical Tripos: IA/IB Computational Projects 5-50 © S.J.Cowley@maths.cam.ac.uk, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

6 The Nitty Gritty

The following is an outline. Details will be available in the Part IB Computational Projects Man-
ual, which should be available online from sometime in July 2014 (or early August 2014). If any
information differs between these notes and the Manual, it is the Manual that is definitive.

6.1 The Nature of CATAM Projects

The Part IB Computational Projects course is an elementary introduction to the techniques of
solving problems in mathematics using computational methods. It is important to realise that the
Computational Projects are about far more than making your code work.

e The projects are intended to be exercises in independent investigation somewhat like those a
mathematician might be asked to undertake in the ‘real world’.

e You need to understand why the underlying method works, and you often need to understand
why and/or when the method does not work.

e In doing each project it is crucial that you think around the problem, and in your write-up
make intelligent comments as a result of thinking around the problem.

e Indeed, the questions posed in the projects are more open-ended than standard Tripos ques-
tions: there is frequently not a single ‘correct’ response, nor often is the method of investi-
gation fully specified. This is deliberate, and is intended to allow you both to demonstrate
your ability to use your own judgement in such matters, and also to produce mathematically
intelligent, relevant responses to imprecise questions.

e Many graduands say, with hindsight, that one of the most useful parts of the Tripos was
CATAM. Please note the ‘with hindsight’, since many of you will initially find CATAM
outside your comfort zone.

6.2 Examination Credit
After the lectures and practical sessions in the Part A year, you work at your own speed.

e The credit earning part of the course is completed in the second year of the Mathematical
Tripos.

e The course is examined entirely through the submission of project write-ups, i.e. coursework;
there are no questions on the course in the written examination papers.

e The maximum credit obtainable is 160 marks and there are no alpha or beta quality marks.

e The credit obtained in the Computational Projects course is added directly to the credit
gained in the written examination, and hence the maximum contribution to the final merit
mark is 160 (which is roughly the same, averaging over the alpha weightings, as for a 16-lecture
course).

e However, the total number of marks awarded for the Computational Projects course are often
more than for a typical 16-lecture course. For instance, 15.9% of all ‘raw’ marks awarded to
all students in Part IB in 2012 were CATAM marks. This percentage marginally increased to
16.1% if only the students who submitted CATAM projects were included.??

22 For comparison, 10.7% of all ‘raw’ marks awarded to all students in Part II in 2012 were CATAM marks,
with this percentage increasing to 12.5% if only the students who submitted CATAM projects were included. Note
that since this is the first year in which there are no alpha or beta quality marks, as yet it is not possible to give
meaningful percentages for the merit mark.

Mathematical Tripos: IA/IB Computational Projects 6-51 © Faculty of Mathematics, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.maths.cam.ac.uk/undergrad/catam/IB/
http://www.maths.cam.ac.uk/undergrad/catam/IB/
http://www.maths.cam.ac.uk/undergrad/catam/IB/
http://www.maths.cam.ac.uk/undergrad/catam/IB/

e Because there are significant marks available for CATAM, the Faculty of Mathematics takes
any resort to Unfair Means or Plagiarism, or any breach of the Guidelines for Collaboration
very seriously (see §9).

6.3 Timetable

The timetable below is given as a guide to the expected workload.

Part IA: end of Lent Term and beginning of Faster Term. Attend the introductory lectures and
practical sessions. If you have no previous computing experience then you may need to spend
extra time learning the basics; the summer vacation is a good opportunity to do this.

Summer between Part IA and Part IB. Do the Introductory Project®3; let me repeat, do the
Introductory Project. While the Introductory Project carries no marks, doing it is the
equivalent of doing practice Tripos questions before going in to the examinations. Make your
mistakes on the Introductory Project, and learn from them before tackling the credit-earning
projects. You might like to ask yourself whether you take examinations without doing [blind]
practice questions. A model answer will be made available at the start of the Michaelmas
Term.?* Your College is at liberty to, indeed is encouraged to, arrange a supervision on
the model project. As an innovation this year, there may be an Fzamples Class on the
Introductory Project early in the Michaelmas Term.

Michaelmas Term and Christmas Vacation, Part IB. Carry out the two core projects and write
them up. You are advised to finish the computing and the write-up of at least one of projects
before you leave Cambridge at the end of the Michaelmas term.

Lent Term and Easter Vacation, Part IB. You have one week at the start of Lent Term to make
last-minute changes to the core projects, which should then be submitted. Then do two
additional projects (out of a choice of four) and write them up.

Easter Term, Part IB. You have one week to make last-minute changes to the additional projects.
Then submit your work.

After the exams. You must be available in the last week of Easter term in case you are called

e cither for a routine Viva Voce Examination,

e or for an Examination Interview or an Investigative Meeting if unfair means is suspected.

6.3.1 Planning your work

e You are strongly advised to complete all your computing work by the end of the Christmas
and Easter vacations if at all possible, since the submission deadlines are early in Lent and
Easter Terms.

e Do not leave writing up your projects until the last minute. When you are writing
up it is highly likely that you will either discover mistakes in your programming and/or want
to refine your code. This will take time. If you wish to maximise your marks, the process
of programming and writing-up is likely to be iterative, ideally with at least a week or so
between iterations.

23 This will be made available later in the summer. It is likely to be identical to last year’s Introductory Project,
which is currently available online at

http://www.maths.cam.ac.uk/undergrad/catam/IB/Opt1.pdf

24 Tt’s relatively simple to find the answer before that, but it’s educationally better to do the project blind.

Mathematical Tripos: IA/IB Computational Projects 6-52 (© Faculty of Mathematics, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.maths.cam.ac.uk/undergrad/catam/IB/0pt1.pdf

e [t is a good idea to write up each project as you go along, rather than to write all the programs
first and only then to write up the reports; each year several students make this mistake and
lose credit in consequence (in particular note that a program listing without a write-up, or
vice versa, gains no credit). You can, indeed should, review your write-ups in the final week
before the relevant submission date.

6.4 Programming language]s]

This year the Faculty is supporting MATLAB as the programming language. During your time
in Cambridge the University will provide you with a free copy of MATLAB for your computer.
Alternatively you can use the version of MATLAB that is available on the University and College
Managed Cluster Service (MCS).

6.4.1 Your copy of MATLAB

All undergraduate students at the University are entitled to download and install MATLAB on
their own computer that is running Windows, MacOS or Linux; your copy should be used for non-
commercial University use only. The files for download, and installation instructions, are available
at

http://wuw.maths.cam.ac.uk/undergrad/catam/software/matlabinstall/matlab-personal.htm.

This link is Raven protected. Several versions of MATLAB may be available; if you are downloading
MATLAB for the first time it is recommended that you choose the latest version.

6.4.2 Programming manual[s]

The Faculty of Mathematics has produced a booklet Learning to use MATLAB for CATAM project
work, that provides a step-by-step introduction to MATLAB suitable for beginners. This is available
on-line at

http://www.maths.cam.ac.uk/undergrad/catam/MATLAB/manual/booklet .pdf

However, this short guide can only cover a small subset of the MATLAB language. There are many
other guides available on the net and in book form that cover MATLAB in far more depth. Further:

e MATLAB has its own built-in help and documentation.

e The suppliers of MATLAB, The MathWorks, provide the introductory guide Getting Started
with MATLAB. You can access this by ‘left-clicking’ on the Getting Started link at the top
of a MATLAB ‘Command Window’. Alternatively there is an on-line version available at?®

http://www.mathworks.co.uk/help/matlab/getting-started-with-matlab.html
A printable version is available from

http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/getstart.pdf

o The MathWorks provide links to a whole a raft of other tutorials; see

http://www.mathworks.co.uk/academia/student_center/tutorials/launchpad.html

In addition their MATLAB documentation page gives more details on maths, graphics, object-
oriented programming etc.; see

25 These links work at the time of writing. Unfortunately The MathWorks have an annoying habit of breaking
their links.

Mathematical Tripos: IA/IB Computational Projects 6-53 © Faculty of Mathematics, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.ucs.cam.ac.uk/desktop-services/mcs
http://www.maths.cam.ac.uk/undergrad/catam/software/matlabinstall/matlab-personal.htm
https://raven.cam.ac.uk/
http://www.maths.cam.ac.uk/undergrad/catam/MATLAB/manual/booklet.pdf
http://www.mathworks.co.uk/help/matlab/getting-started-with-matlab.html
http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/getstart.pdf
http://www.mathworks.co.uk/academia/student_center/tutorials/launchpad.html

http://www.mathworks.co.uk/help/matlab/index.html

e There is a plethora of books on MATLAB. For instance:

(a) Numerical Computing with MATLAB by Cleve Moler?® (SIAM, Second Edition, 2008,
ISBN 978-0-898716-60-3). This book can be downloaded for free from

http://wuw.mathworks.co.uk/moler/chapters.html

(b) MATLAB Guide by D.J. Higham & N.J. Higham (SIAM, Second Edition, 2005, ISBN
0-89871-578-4).

Further, Google returns about 24,300,000 hits for the search ‘MATLAB introduction’ (up from
13,400,000 hits last year), and about 3,210,000 hits for the search ‘MATLAB introduction
tutorial’ (slightly down from 3,340,000 hits).

e The Engineering Department has a webpage that lists a number of helpful articles; see

http://www.eng.cam.ac.uk/help/tpl/programs/matlab.html

6.4.3 To MATLAB, or not to MATLAB

Use of MATLAB is recommended, especially if you have not programmed before, but you are free
to write your programs in any computing language whatsoever. Python, C, C+-+, C#, Java, Visual
Basic, Mathematica and Maple have been used by several students in the past, and Excel has often
been used for plotting graphs of computed results. The choice is your own, provided your system
can produce results and program listings on paper.27

However, you should bear in mind the following points.

e The Faculty does not promise to help you with programming problems if you use a language
other than MATLAB.

e Not all languages have the breadth of mathematical routines that come with the MATLAB
package. You may discover either that you have to find reliable replacements, or that you have
to write your own versions of mathematical library routines that are pre-supplied in MATLAB
(this can involve a fair amount of effort). To this end you may find reference books, such as
Numerical Recipes by W. H. Press et al. (CUP), useful. You may use equivalent routines to
those in MATLAB from such works so long as you acknowledge them, and reference them, in
your write-ups.

e If you choose a high-level programming language that can perform advanced mathematical
operations automatically, then you should check whether use of such commands is permitted
in a particular project. As a rule of thumb, do not use a built-in function if there is no equiv-
alent MATLAB routine that has been approved for use, or if use of the built-in function would
make the programming considerably easier than intended. For example, use of a command
to test whether an integer is prime would not be allowed in a project which required you
to write a program to find prime numbers. The CATAM Helpline (see §8 below) can give
clarification in specific cases.

e Subject to the aforementioned limited exceptions, you must write your own computer pro-
grams. Downloading computer code, e.g. from the internet, that you are asked to write yourself
counts as plagiarism (see §9).

26 Cleve Moler is chief mathematician, chairman, and co-founder of MathWorks.
27 There is no need to consult the CATAM Helpline as to your choice of language.

Mathematical Tripos: IA/IB Computational Projects 7-54 © Faculty of Mathematics, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.mathworks.co.uk/help/matlab/index.html
http://www.mathworks.co.uk/moler/chapters.html
http://www.eng.cam.ac.uk/help/tpl/programs/matlab.html
mailto:catam@maths.cam.ac.uk
mailto:catam@maths.cam.ac.uk

7 Project Reports

7.1 Project write-ups: examination credit

Each individual project carries the same credit. For each project, 40% of the marks available are
awarded for writing programs that work and for producing correct graphs, tables of results and so
on. A further 50% of the marks are awarded for answering mathematical questions in the project
and for making appropriate mathematical observations about your results.

The final 10% of marks are awarded for the overall ‘excellence’ of the write-up. Half of these
‘excellence’ marks may be awarded for presentation, that is for producing good clear output (graphs,
tables, etc.) which is easy to understand and interpret, and for the mathematical clarity of your
report.

The assessors may penalise a write-up that contains an excessive quantity of irrelevant material
(see below). In such cases, the ‘excellence’ mark may be reduced and could even become negative,
as low as -10%.

Unless the project specifies a way in which an algorithm should be implemented, marks are, in
general, not awarded for programming style, good or bad. Conversely, if your output is poorly
presented — for example, if your graphs are too small to be readable or are not annotated — then
you may lose marks.

No marks are given for the submission of program code without a report, or vice versa.

The marks for each project are scaled so that a possible maximum of 160 marks are available
for the Computational Projects course. No quality marks (i.e. as or fs) are awarded. The maxi-
mum contribution to the final merit mark is thus 160 and roughly the same (averaging over the
a weightings) as for a 16-lecture course.

7.2 Project write-ups: advice

Your record of the work done on each project should contain all the results asked for and your
comments on these results, together with any graphs or tables asked for, clearly labelled and
referred to in the report. However, it is important to remember that the project is set as a piece of
mathematics, rather than an exercise in computer programming; thus the most important aspect
of the write-up is the mathematical content. For instance:

e Your comments on the results of the programs should go beyond a rehearsal of the program
output and show an understanding of the mathematical and, if relevant, physical points
involved. The write-up should demonstrate that you have noticed the most important features
of your results, and understood the relevant mathematical background.

e When discussing the computational method you have used, you should distinguish between
points of interest in the algorithm itself, and details of your own particular implementation.
Discussion of the latter is usually unnecessary, but if there is some reason for including it,
please set it aside in your report under a special heading: it is rare for the assessors to be
interested in the details of how your programs work.

e Your comments should be pertinent and concise. Brief notes are perfectly satisfactory —
provided that you cover the salient points, and make your meaning precise and unambiguous
— indeed, students who keep their comments concise can get better marks. An over-long
report may well lead an assessor to the conclusion that the candidate is unsure of the essentials
of a project and is using quantity in an attempt to hide the lack of quality. Do not copy out
chunks of the text of the projects themselves: you may assume that the assessor is familiar
with the background to each project and all the relevant equations.

Mathematical Tripos: IA/IB Computational Projects 7-55 © Faculty of Mathematics, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

e Similarly you should not reproduce large chunks of your lecture notes; you will not gain credit
for doing so (and indeed may lose credit as detailed in §7.1). However, you will be expected to
reference results from theory, and show that you understand how they relate to your results.
If you quote a theoretical result from a textbook, or from your notes, or from the WWW, you
should give both a brief justification of the result and a full reference.?® If you are actually
asked to prove a result, you should do so briefly.

e Graphs will sometimes be required, for instance to reveal some qualitative features of your
results. Such graphs, including labels, annotations, etc., need to be computer-generated (see
also §7.3). Further, while it may be easier to print only one graph a page, it is often desirable
(e.g. to aid comparison) to include two or more graphs on a page. Also, do not forget to
clearly label the axes of graphs or other plots, and provide any other annotation necessary to
interpret what is displayed. Similarly, the rows and columns of any tables produced should
be clearly labelled.

e You should take care to ensure that the assessor sees evidence that your programs do
indeed perform the tasks you claim they do. In most cases, this can be achieved by
including a sample output from the program. If a question asks you to write a program
to perform a task but doesn’t specify explicitly that you should use it on any particular
data, you should provide some ‘test’ data to run it on and include sample output in your
write-up. Similarly, if a project asks you to ‘print’ or ‘display’ a numerical result, you should
demonstrate that your program does indeed do this by including the output.

e Above all, make sure you comment where the manual specifically asks you to.
It also helps the assessors if you answer the questions in the order that they appear in the
manual and, if applicable, number your answers using the same numbering scheme as
that used by the project. Make clear which outputs, tables and graphs correspond to which
questions and programs.

The following are indicative of some points that might be addressed in the report; they are not
exhaustive and, of course not all will be appropriate for every project. In particular, some are more
relevant to pure mathematical projects, and others to applied ones.

e Does the algorithm or method always work? Have you tested it?

e What is the theoretical running time, or complexity, of the algorithm? Note that this should
be measured by the number of simple operations required, expressed in the usual O(f (n))
or Q(f(n)) notation®®, where n is some reasonable measure of the size of the input (say the
number of vertices of a graph) and f is a reasonably simple function. Examples of simple
operations are the addition or multiplication of two numbers, or the checking of the (p,q)
entry of a matrix to see if it is non-zero; with this definition finding the scalar product of
two vectors of length n takes order n operations. Note that this measure of complexity can
differ from the number of MATLAB commands/‘operations’, e.g. there is a single MATLAB
command to find a scalar product of two vectors of length n.

e What is the accuracy of the numerical method? Is it particularly appropriate for the problem
in question and, if so, why? How did you choose the step-size (if relevant), and how did you
confirm that your numerical results are reliably accurate (cf. §4.2)7

e How do the numerical answers you obtain relate to the mathematical or physical system being
modelled? What conjectures or conclusions, if any, can you make from your results about the
physical system or abstract mathematical object under consideration?

In summary, it is the candidate’s responsibility to determine which points require discussion in the
report, to address these points fully but concisely, and to structure the whole so as to present a

28 See also the paragraph on Citations in §9
29 For instance see http://en.wikipedia.org/wiki/Big_O_notation.

Mathematical Tripos: IA/IB Computational Projects 7-56 © Faculty of Mathematics, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://en.wikipedia.org/wiki/Big_O_notation

clear and complete response to the project. It should be possible to read your write-up without
reference to the listing of your programs.

As an aid, for the two core projects, some brief additional comments are provided giving further
guidance as to the form and approximate length of answer expected for each question. These also
contain a mark-scheme, on which your marks for each question will be written and returned to you
during the Lent Term. For the additional projects you are expected to use your judgement on the
marks allocation.

7.2.1 Project write-ups: advice on length

The word brief peppers the last few paragraphs. However, each year some students just do not get
it. To emphasise this point, in general six sides of A4 of text, excluding in-line graphs, tables,
etc., should be plenty for a clear concise report. Indeed, the best reports are sometimes shorter
than this.

To this total you will of course need to add tables, graphs, printouts etc. However, do not include
every single piece of output you generate: include a selection of the output that is a representative
sample of graphs and tables. It is up to you to choose a selection which demonstrates all the
important features but is reasonably concise. Remember that you are writing a report to be read
by a human being, who will not want to wade through pages and pages of irrelevant or unimportant
data. Twenty sides of graphs would be excessive for most projects, even if the graphs were printed
one to a page.’’ Remember that the assessors will be allowed to deduct up to 10% of marks for
any project containing an excessive quantity of irrelevant material. Typically, such a project might
be long-winded, be very poorly structured, or contain long sections of prose that are not pertinent.
Moreover, if your answer to the question posed is buried within a lot of irrelevant material then it
may not receive credit, even if it is correct.

7.3 Project write-ups: technicalities

As emphasised above, elaborate write-ups are not required. However, in a change from previous
years, you are required to submit your project reports both as hard-copy and electronically (both
submissions must be identical). In particular, you will be asked to submit your write-ups electron-
ically in Portable Document Format (PDF) form. Note that many word processors (e.g. ITEX,
Microsoft Word, LibreOffice) will generate output in PDF form. In addition, there are utility pro-
grams to convert output from one form to another, in particular to PDF form (e.g. there are
programs that will convert plain text to PDF). Before you make your choice of word processor,
you should confirm that you will be able to generate submittable output in PDF form. Please note
that a PDF file generated by scanning a document is mot acceptable; in particular, and for the
sake of clarity, a PDF file generated by scanning a hand-written report is not acceptable.

In a very few projects, where a sketch (or similar) is asked for, a scanned hand-drawing is acceptable.
Such exceptions will be noted explicitly in the project description.

If it will prove difficult for you to produce electronic write-ups, e.g. because of a disability, then
please contact the CATAM Helpline as early as possible in the academic year, so that reasonable
adjustments can be made for you.

Choice of Word Processor. As to the choice of word processor, there is no definitive answer. Many
mathematicians use WTEX (or, if they are of an older generation, TEX), e.g. this document is
written in ITEX. However, please note that although IXTEX is well suited for mathematical
typesetting, it is absolutely acceptable to write reports using other word-processing software,
e.g. Microsoft Word and LibreOffice. The former is commercial, while the latter can be
installed for free for, inter alia, the Windows, MacOS and Linux operating systems from

http://www.libreoffice.org/download/libreoffice-fresh/ and
http://www.libreoffice.org/download/libreoffice-stable/.

30 Recall that graphs should not as a rule be printed one to a page.

Mathematical Tripos: IA/IB Computational Projects 7-57 © Faculty of Mathematics, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

mailto:catam@maths.cam.ac.uk
http://www.libreoffice.org/download/libreoffice-fresh/
http://www.libreoffice.org/download/libreoffice-stable/

Both Microsoft Word and LibreOffice are available on the MCS.

BTgX. If you decide to use a I¥TEX, or you wish to try it out, W TEX is available on the MCS. If

you are going to use it extensively, then you will probably want to install “TEX on your own
personal computer. This can be done for free. For recommendations of TEX distributions and
associated packages see

® http://www.tug.org/begin.html#install and

® http://www.tug.org/interest.html#free.

Front end. In addition to a TEX distribution you will also need a front-end (i.e. a ‘clever
editor’). A comparison of TEX editors is available on WIKIPEDIA; below we list a few of
the more popular TEX editors.

TrXstudio. For Windows, Mac and Linux users, there is TEXstudio. The proTEXt dis-
tribution, based on MiKTEX, includes the TEXstudio front end.

TpXworks. Again for Windows, Mac and Linux users, there is TgXworks. The MiKTgX
distribution includes TEXworks.

TEXShop. Many Mac aficionados use TEXShop. To obtain TEXShop and the TEXLive
distribution see http://pages.uoregon.edu/koch/texshop/obtaining.html.

TrpXnicCenter. TpXnicCenter is another potential front end for Windows users (see also
http://www.maths.cam.ac.uk/computing/win7/home_texniccenter.html).

LyX. LyX is not strictly a front end, but has been recommended by some previous
students. LyX is available from

http://www.lyx.org/.

However, note that LyX uses its own internal file format, which it converts to BTEX
as necessary.

Learning BTEX. A Brief BTEX Guide for CATAM is available for download from

http://www.maths.cam.ac.uk/undergrad/catam/LaTeX/Brief-Guide.pdf .

e The ITEX source file (which may be helpful as a template), and supporting files,
are available for download as a zip file from

http://wuw.maths.cam.ac.uk/undergrad/catam/LaTeX/Guide.zip .

Mac and Unix users should already have an unzip utility, while Windows users can
download 7-Zip if they have not.

e Please note that this introduction is still under development; you will be notified of
updates via CATAM News.

Other sources of help. A welter of useful links have been collated by the Engineering Depart-
ment on their Text Processing using EXTEX page; see

http://wuw-h.eng.cam.ac.uk/help/tpl/textprocessing/LaTeX_intro.html.

Program listings. At the end of each report you should include complete printed listings of every

8

major program used to generate your results. You do not need to include a listing of a program
which is essentially a minor revision of another which you have already included. Make sure
that your program listings are the very last thing in your reports. Please do not mix program
output and program listings together; if you do, the program output may not be marked as
part of the report.

Information Sources

There are many ways of getting help on matters relating to CATAM.

The CATAM Web Page. The CATAM web page,

Mathematical Tripos: IA/IB Computational Projects 8-58 © Faculty of Mathematics, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.tug.org/begin.html#install
http://www.tug.org/interest.html#free
http://en.wikipedia.org/wiki/Comparison_of_TeX_editors
http://texstudio.sourceforge.net/
http://www.tug.org/protext/
http://miktex.org/
http://texstudio.sourceforge.net/
http://www.tug.org/texworks/
http://miktex.org/
http://www.tug.org/texworks/
http://pages.uoregon.edu/koch/texshop/
http://pages.uoregon.edu/koch/texshop/obtaining.html
http://www.texniccenter.org/
http://www.maths.cam.ac.uk/computing/win7/home_texniccenter.html
http://www.lyx.org/
http://www.maths.cam.ac.uk/undergrad/catam/LaTeX/Brief-Guide.pdf
http://www.maths.cam.ac.uk/undergrad/catam/LaTeX/Brief-Guide.pdf
http://www.maths.cam.ac.uk/undergrad/catam/LaTeX/Brief-Guide.tex
http://www.maths.cam.ac.uk/undergrad/catam/LaTeX/Guide.zip
http://www.7-zip.org/
http://www.maths.cam.ac.uk/undergrad/catam/news/
http://www-h.eng.cam.ac.uk/help/tpl/textprocessing/LaTeX_intro.html
http://www-h.eng.cam.ac.uk/help/tpl/textprocessing/LaTeX_intro.html

http://wuw.maths.cam.ac.uk/undergrad/catam/

contains much useful information relating to CATAM. There are on-line, and up-to-date,
copies of the projects, and any data files required by the projects can be downloaded. There
is also the booklet Learning to use MATLAB for CATAM project work.

CATAM News and Email. Any important information about CATAM (e.g. corrections to projects
or to other information in the Handbook, availability of advisers, temporary closures of the
CATAM room) is publicised via CATAM News, which can be reached from the CATAM
web page. You must read CATAM News from time to time to check for these and other
important announcements, such as submission dates and procedures.

As well as adding announcements to CATAM News, occasionally we will email students using
the year lists maintained by the Faculty of Mathematics. You have a responsibility to read
email from the Faculty, and if we send an email to one of those lists we will assume that you
have read it.

After 1 October 2014 you can check that you are on the appropriate Faculty year list by
referring to the https://lists.cam.ac.uk/mailman/raven webpage (to view this page you will
need to authenticate using Raven if you have not already done so). You should check that
the Maths-IB mailing list is one of your current lists.

If you are not subscribed to the correct mailing list, then this can be corrected by contacting
the Faculty Undergraduate Office (email: undergrad-office@maths.cam.ac.uk) with a request
to be subscribed to the correct list (and, if necessary, unsubscribed from the wrong list).

The CATAM Helpline. If you need help (e.g. if you need clarification about the wording of a
project, or if you have queries about programming and/or MATLAB, or if you need an ad-
viser to help you debug your programs), you can email a query to the CATAM Helpline:
catam@maths.cam.ac.uk. Almost all queries may be sent to the Helpline, and it is particularly
useful to report potential errors in projects. However the Helpline cannot answer detailed
mathematical questions about particular projects. Indeed if your query directly addresses a
question in a project you may receive a standard reply indicating that the Helpline cannot
add anything more.

In order to help us manage the emails that we receive,

o please use an email address ending in cam.ac.uk (rather than a Gmail, etc. address) both
so that we may identify you and also so that your email is not identified as spam,;

e please specify, in the subject line of your email, ‘Part IB’ as well as the project number
and title or other topic, such as ‘MATLAB query’, to which your email relates;

e please also restrict each email to one question or comment (use multiple emails
if you have more than one question or comment).

The Helpline is available during Full Term and one week either side. Queries sent outside
these dates will be answered subject to personnel availability. We will endeavour (but do not
guarantee) to provide a response from the Helpline within three working days. However, if
the query has to be referred to an assessor, then it may take longer to receive a reply. Please
do not send emails to any other address.?!

In addition to the Helpline, at certain times of the year, e.g. in the period immediately before
submission, advisers may be available in the CATAM room. As well as answering queries
about general course administration, programming and/or MATLAB, you are allowed to ask
advisers to help you debug your programs. The times when they will be available will be
advertised in CATAM News.

The CATAM FAQ Web Pages. Before asking the Helpline about a particular project, please check
the CATAM FAQ web pages (accessible from the main CATAM web page). These list ques-
tions which students regularly ask, and you may find that your query has already been
addressed.

31 For example emails sent directly to the CATAM Course Director may be subject to a far longer delay in
answering (and could end up either being missed altogether or consigned to /dev/null).

Mathematical Tripos: IA/IB Computational Projects 8-59 © Faculty of Mathematics, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.maths.cam.ac.uk/undergrad/catam/
http://www.maths.cam.ac.uk/undergrad/catam/MATLAB/manual/booklet.pdf
http://www.maths.cam.ac.uk/undergrad/catam/news/
http://www.maths.cam.ac.uk/undergrad/catam/
http://www.maths.cam.ac.uk/undergrad/catam/
http://www.maths.cam.ac.uk/undergrad/catam/news/
http://www.maths.cam.ac.uk/undergrad/catam/news/
https://lists.cam.ac.uk/mailman/raven
mailto:undergrad-office@maths.cam.ac.uk
mailto:catam@maths.cam.ac.uk
http://www.maths.cam.ac.uk/undergrad/catam/news/
http://www.maths.cam.ac.uk/undergrad/catam/FAQ/

Advice from Supervisors and Directors of Studies. The general rule is that advice must be gen-
eral in nature. You should not have supervisions on any work that is yet to be submitted
for examination; however, you may have a supervision on the Introductory Project, and/or
another non-examinable project, and/or any work set by your Director of Studies. A super-
visor can also provide feedback on the Core Projects after they have been submitted (e.g.
after your marks have been returned).

9 Unfair Means, Plagiarism and Guidelines for Collaboration

You must work independently on the projects, both on the programming and on the write-ups,
i.e. you must write and test all programs yourself, and all reports must be written independently.
However, it is recognised that some candidates may occasionally wish to discuss their work with
others doing similar projects. This can be educationally beneficial and is accepted provided that it
remains within reasonable bounds.

Acceptable collaboration. Acceptable collaboration may include an occasional general discussion of
the approach to a project and of the numerical algorithms needed to solve it. Small hints on
debugging code (note the small), as might be provided by an adviser, are also acceptable.

Unacceptable collaboration. If a general discussion either is happening regularly or gets to the point
where physical or virtual notes are being exchanged (even on the back of an envelope, napkin
or stamp), then it has reached the stage of unacceptable collaboration. Indeed, assuming that
you are interpreting the phrase occasional general discussion in the spirit that it is written,
then if you have got to the stage of wondering whether a discussion has reached the limit of
acceptable collaboration, or you have started a legalistic deconstruction of the term acceptable
collaboration, you are almost certainly at, or past, the limit.

Unacceptable collaboration also includes

e copying any other person’s program, either automatically or by typing it in from a
listing;

e using someone else’s program or any part of it as a model, or working from a jointly
produced detailed program outline;

e copying or paraphrasing of someone else’s report in whole or in part.

These comments apply equally to copying from the work of previous Part IB students, or
another third party (including any code, etc. you find on the internet), as they do to copying
from the work of students in your own year. Asking anyone for help, and this includes post-
ing questions on the internet (e.g. StackExchange), that goes past the limits of acceptable
collaboration as outlined above, constitutes unfair means.

Further, you should not allow any present or future Part IB student access to the work
you have undertaken for your own CATAM projects, even after you have submitted your
write-ups. If you knowingly give another student access to your CATAM work, whatever the
circumstances, you may be penalised yourself.

Clitations. It is, of course, perfectly permissible to use reference books, journals, reference articles
on the WWW or other similar material: indeed, you are encouraged to do this. You may
quote directly from reference works so long as you acknowledge the source (WWW pages
should be acknowledged by a full URL). There is no need to quote lengthy proofs in full,
but you should at least include your own brief summary of the material, together with a full
reference (including, if appropriate, the page number) of the proof.

Programs. You must write your own computer programs. Downloading computer code, e.g. from
the internet, that you are asked to write yourself counts as plagiarism even if cited.

University-wide Statement on Plagiarism. You should familiarise yourself with the University’s
Statement on Plagiarism. There is a link to this statement from the University’s Good
academic practice and plagiarism website

Mathematical Tripos: IA/IB Computational Projects 9-60 (© Faculty of Mathematics, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.maths.cam.ac.uk/undergrad/catam/IB/0pt1.pdf
http://www.admin.cam.ac.uk/univ/plagiarism/students/statement.html

http://www.admin.cam.ac.uk/univ/plagiarism/,
which also features links to other useful resources, information and guidance.

Faculty Guidelines on Plagiarism. You should also be familiar with the Faculty of Mathematics
Guidelines on Plagiarism. These guidelines, which include advice on quoting, paraphrasing,
referencing, general indebtedness, and the use of web sources, are posted on the Faculty’s
website at

http://www.maths.cam.ac.uk/facultyboard/plagiarism/.

Declarations. To certify that you have read and understood these guidelines, you will be asked to
sign an electronic declaration at the start of the Michaelmas Term. You will receive an email
with instructions as to how to do this at the start of the Michaelmas Term.

In order to certify that you have observed these guidelines, you will be required to sign a
submission form when you submit your write-ups, and you are advised to read it carefully.
You must list on the form anybody (students, supervisors and Directors of Studies alike) with
whom you have exchanged information (e.g. by talking to them, or by electronic means) about
the projects at any more than a trivial level: any discussions that affected your approach to
the projects to any extent must be listed. Failure to include on your submission form any
discussion you may have had is a breach of these guidelines.

However, declared exchanges are perfectly allowable so long as they fall within the limits of
‘acceptable collaboration’ as defined above, and you should feel no qualms about listing them.
For instance, as long as you have refrained from discussing in any detail your programs or
write-ups with others after starting work on them, then the limits have probably not been
breached.

The assessors will not have any knowledge of your declaration until after all your projects
have been marked. However, your declaration may affect your CATAM marks if the assessors
believe that discussions have gone beyond the limits of what is acceptable. If so, or if there
is a suspicion that your have breached any of the other guidelines, you will be summoned
either to an Ezamination Interview in relatively minor cases, or to an Investigative Meeting
in more serious cases.?? Either case may lead to a change in the marks you receive for the
Computational Projects.

Plagiarism detection. The programs and reports submitted will be checked carefully both
to ensure that they are your own work, and to ensure the results that you hand
in have been produced by your own programs.

Checks on submitted program code. The Faculty of Mathematics uses (and has used for many
years) specialised software, including that of external service providers, which auto-
matically checks whether your programs either have been copied or have unacceptable
overlaps (e.g. the software can spot changes of notation). All programs submitted are
screened.

The code that you submit, and the code that your predecessors submitted, is kept in
anonymised form to check against code submitted in subsequent years.

Checks on electronically submitted reports. In addition, and as encouraged by the University,
for the 2014-15 academic year the Faculty of Mathematics is planning to screen your
electronically submitted reports using the Turnitin UK text-matching software. Further
information will be sent to you at the beginning on the Michaelmas term. The electronic
declaration which you will be asked to complete at the start of the Michaelmas term
will, inter alia, cover the use of Turnitin UK.

Your electronically submitted write-ups will be kept in anonymised form to check against
write-ups submitted in subsequent years.

32 For example see

http://www.admin.cam.ac.uk/univ/plagiarism/examiners/nonresearchprocedure.pdf
and http://www.admin.cam.ac.uk/univ/plagiarism/examiners/investigative.pdf.

Mathematical Tripos: IA/IB Computational Projects 9-61 (© Faculty of Mathematics, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.admin.cam.ac.uk/univ/plagiarism/
http://www.maths.cam.ac.uk/facultyboard/plagiarism/
http://www.maths.cam.ac.uk/facultyboard/plagiarism/
http://www.admin.cam.ac.uk/univ/plagiarism/examiners/detection.html
http://www.admin.cam.ac.uk/univ/plagiarism/examiners/nonresearchprocedure.pdf
http://www.admin.cam.ac.uk/univ/plagiarism/examiners/investigative.pdf

Ezxample. As an instance to clarify the limits of ‘acceptable collaboration’, if an assessor reading

two anonymous write-ups (without knowledge of the declared lists of discussions) were to
see significant similarities in results, answers, mathematical approach or programming which
would clearly not be expected from students working independently, then there would appear
to be a case that the students have breached the limits. An Ezxamination Interview or an
Investigative Meeting would then be arranged.

Sanctions. The Computational Projects are considered to be a single piece of work within the

9.1

Viva

Mathematical Tripos: therefore, if it is concluded that you have used unfair means for one or
more individual write-ups, you may stand to lose your marks for the entire Computational
Projects course. Unfortunately, there have been cases in recent years where some individuals
have been penalised by the loss of significant numbers of marks, which has lead to the drop
of a class.

The Faculty of Mathematics wishes to make it clear that any breach of these
guidelines will be treated very seriously.

However, it is emphasised that the great majority of candidates have had no difficulty in
keeping to these guidelines in the past; if you find them unclear in any way you should seek
advice from the CATAM Helpline.

Oral examinations

Voce Examinations. A number of candidates may be selected, either randomly or formu-
laically, for a Viva Voce Examination after submission of either the core or the additional
projects. This is a matter of routine, and therefore a summons to a Viva Voce Examina-
tion should not be taken to indicate that there is anything amiss. You will be asked some
straightforward questions on your project work, and may be asked to elaborate on the extent
of discussions you may have had with other students. So long as you can demonstrate that
your write-ups are indeed your own, your answers will not alter your project marks.

Ezxamination Interviews. For relatively minor cases of suspected plagiarism, collusion or other un-

fair means the Chair of Examiners may summon a particular candidate or particular can-
didates for interview on any aspect of the written work of the candidate or candidates not
produced in an examination room which in the opinion of the Examiners requires elucida-
tion.?3 One purpose of an Ezamination Interview might be to confirm that you have fully
declared all collaboration.

Investigative Meetings. For more serious cases of suspected plagiarism, collusion or other unfair

means, the Chair of Examiners may summon a candidate to an Investigative Meeting. If this
happens, you have the right to be accompanied by your Tutor (or another representative at
your request). The reasons for the meeting, together with copies of supporting evidence and
other relevant documentation, will be given to your Tutor (or other representative).*

Timing. Viva Voce Examinations, Examination Interviews and Investigative Meetings are a formal

part of the Tripos examination, and if you are summoned then you must attend. In the case
of the core projects these will usually take place during Lent Full Term (although they may
take place exceptionally during Easter Full Term), and in the case of the additional projects
these will usually take place during the last week of Easter Full Term. Easter Term Viva Voce
FEzxzaminations are likely to take place on the Monday of the last week, while Fxamination
Interviews and Investigative Meetings may take place any time that week. If you need to
attend during the last week of Easter Full Term you will be informed in writing just after the

33 See http://www.admin.cam.ac.uk/univ/plagiarism/examiners/nonresearchprocedure.pdf.
34 For more information see

http://www.admin.cam.ac.uk/univ/plagiarism/examiners/index.html and
http://www.admin.cam.ac.uk/univ/plagiarism/examiners/investigative.pdf.

Mathematical Tripos: IA/IB Computational Projects 9-62 © Faculty of Mathematics, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.admin.cam.ac.uk/univ/plagiarism/examiners/nonresearchprocedure.pdf
http://www.admin.cam.ac.uk/univ/plagiarism/examiners/index.html
http://www.admin.cam.ac.uk/univ/plagiarism/examiners/investigative.pdf

end of the written examinations. You must be available in the last week of Easter Term
in case you are summoned.

10 Submission and Assessment

In order to gain examination credit for the work that you do on this course, you must write reports
on each of the projects that you have done. As emphasised earlier it is the quality (not quantity)
of your written report which is the most important factor in determining the marks that you will
be awarded.

10.1 Submission form

When you submit a hard-copy of your project reports you will be required to sign a submission form
detailing which projects you have attempted and listing all discussions you have had concerning
CATAM (see §9, Unfair Means, Plagiarism and Guidelines for Collaboration). Further details, in-
cluding the definitive submission form, will be made available when the arrangements for electronic
submission of reports and programs (see below) are announced.

10.2 Submission of written work
In order to gain examination credit, you must:

e submit electronic copies of your reports and programs (see §10.3);
e complete and sign your submission form;

e submit, with your submission form, your written reports and program printouts for every
project for which you wish to gain credit;

e sign a submission list.

Please note as part of the submission process your work will be placed into plastic wallets, with the
individual wallets being sent to different examiners; hence each project should have its own wallet.
You can provide your own wallets (which will speed up submission) or use the wallets provided on
the day. If a project will not fit into a single wallet, then re-read section §7.2.1 on Project write-ups:
advice on length.

The location for handing in your work will be announced via CATAM News and email closer to
the time.

10.3 Electronic submission

You are also required to submit electronically copies of both your reports and your program source
files. The electronic submission must be identical to the hard-copy submission. Electronic submis-
sion enables the Faculty to run automatic checks on the independence of your work, and also allows
your programs to be inspected in depth (and if necessary run) by the assessors.

As regards your programs, electronic submission applies whether you have done your work on your
own computer, on the MCS, or elsewhere, and is regardless of which programming language you
have chosen.

Full details of the procedure will be announced about one week before the submission deadlines
via CATAM News and email, so please do not make enquiries about it until then.

Mathematical Tripos: IA/IB Computational Projects 10-63 (© Faculty of Mathematics, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.maths.cam.ac.uk/undergrad/catam/news/
http://www.maths.cam.ac.uk/undergrad/catam/news/

However please note that you will need to know your UIS password in
order to submit copies of your report and program source files.

If you cannot remember your UIS password you will need to ask the Computing Service to reset
it.3% This may take some time, so check that you know your UIS password well before submission
day.

Naming convention. To make submission and marking easier, please put all your source files related
to different projects in separate directories/folders. Further, please name each directory /folder
using a convention whereby the first few characters of the directory/folder name give the
project number, with the dot replaced by either a minus sign or underscore (_). For example,
all the programs written for project 2.3 should be placed in a directory/folder with a name
beginning with 2-3 or 2_3.

10.4 (Non)-return of written work

We regret that students’ submitted work cannot be returned to them after the examination; it must
be retained in case of a query or an appeal at a later stage. You are recommended to keep at least
an electronic version of your work (or even make a photocopy before submitting the hard-copy).

Since the manuals will be taken off-line after the close of submission, you might also like to make
a hard copy of the projects you have attempted.

Please note that all material that you submit electronically is kept in anonymised form to check
against write-ups and program code submitted in subsequent years.

35 B.g. see http://www.ucs.cam.ac.uk/docs/faq/accounts/n3.

Mathematical Tripos: IA/IB Computational Projects 10-64 © Faculty of Mathematics, Easter 2014

This is a supervisor’s copy of the notes. Please do not distribute to students.

http://www.ucs.cam.ac.uk/docs/faq/accounts/n3

	Introduction
	Overview
	Aims
	Understanding algorithms
	Being able to programme
	Writing up your results

	Why use computers in mathematics?

	Algorithms
	Matrix Multiplication
	Complexity (or the number of operations)
	Matlab implementation
	Are there better algorithms?
	Triangular Matrices

	Matrix Multiplication in Matlab (unlectured)
	My first Matlab
	A function to multiply two matrices

	Numbers and Errors
	Introduction
	Big Numbers, Small Numbers and Precision
	Types of `Rounding Error'
	Truncation Error

	Solution of Transcendental Equations
	Introduction
	The Basics
	Termination Criteria
	Bisection, Interval Halving or Binary Search
	Recursion

	Order of Convergence
	Other Methods

	Solution of Ordinary Differential Equations
	Introduction
	The Euler Method
	Example Matlab code

	Accuracy
	Local truncation error of the Euler method
	Global truncation error of the Euler method (Unlectured)
	Testing accuracy without the exact solution, and a free lunch!
	Numerical confirmation of accuracy

	Stability of the Euler Method

	Gaussian Elimination
	Introduction
	LU factorization
	Definition
	Application: solution of linear systems

	The calculation of an LU factorization
	Matlab code
	Check the code

	LU factorization with column pivoting
	More Matlab

	Solution of linear equations

	The Nitty Gritty
	The Nature of CATAM Projects
	Examination Credit
	Timetable
	Planning your work

	Programming language[s]
	Your copy of Matlab
	Programming manual[s]
	To Matlab, or not to Matlab

	Project Reports
	Project write-ups: examination credit
	Project write-ups: advice
	Project write-ups: advice on length

	Project write-ups: technicalities

	Information Sources
	Unfair Means, Plagiarism and Guidelines for Collaboration
	Oral examinations

	Submission and Assessment
	Submission form
	Submission of written work
	Electronic submission
	(Non)-return of written work

