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0 Numerical Analysis: Introduction

0.1 The course

The Structure. The lectures will be mainly pedagogical, covering the theory, with relatively few con-
crete examples. The nuts and bolts of the implementation of the methods are mainly covered in
unlectured examples and in the Examples Sheets.

The Notes. These notes are heavily based on those of Arieh Iserles and Alexei Shadrin; however,
the lecturer takes responsibility for errors! Any corrections and suggestions should be emailed to
S.J.Cowley@damtp.cam.ac.uk. If you want to read ahead:

• Arieh Iserles’ handouts (an excellent summary in 32 pages instead of 84) are available at

http://www.damtp.cam.ac.uk/user/na/PartIB/

• Alexei Shadrin’s notes (which are for the old 12-lecture schedule, and cover 2
3 of the course)

are available at

http://www.damtp.cam.ac.uk/user/na/PartIB_03/na03.html

The Book. There is also a book which covers most of the course:

Arieh Iserles, A First Course in the Numerical Analysis of Differential Equations, CUP
2008 (ISBN-10: 0521734908; ISBN-13: 978-0521734905)

Demonstrations. There are a number of MATLAB demonstrations illustrating the course. These are
available at

http://www.maths.cam.ac.uk/undergrad/course/na/.

You are encouraged to download them and try them out.

Questionnaire Returns. Questionnaire results from previous years are available at

• http://tinyurl.com/NA-IB-2011-Results,

• http://tinyurl.com/NA-IB-2012-Results,

• http://tinyurl.com/NA-IB-2013-Results.

0.2 What is Numerical Analysis?

Numerical Analysis is the study of algorithms that use numerical approximation (as opposed to symbolic
manipulation) to solve problems of mathematical analysis (as distinguished from discrete mathematics).1

The subject predates computers and is application driven, e.g. the Babylonians had calculated
√

2 to
about six decimal places sometime between 1800BC and 1600BC.

Numerical Analysis is often about obtaining approximate answers. Concern with error is therefore a re-
curring theme. Rounding errors arise because ‘computers’ (human as well as machine) use finite-precision
arithmetic (even if 16-digit), but there are other errors as well that are associated with approximations
in the solution, e.g. discretization errors, truncation errors. Other recurring themes include

• stability, a concept referring to the sensitivity of the solution of a given problem to small changes
in the data or the given parameters of the problem, and

• efficiency, or more generally computational complexity.

You will have already touched on the latter point in Vectors & Matrices where you saw that solving a n×n
linear system in general requires O((n+ 1)!) operations by Cramer’s rule, but only O(n3) operations by
Gaussian elimination. However, efficiency is not necessarily a straightforward concept in that its measure
can depend on the type of computer in use (e.g. the structure of computer memory, and/or whether the
computer has a parallel architecture capable of multiple calculations simultaneously).

1 See Wikipedia. Those of who are interested in algorithms for discrete mathematics might like to consult the 2010
on-line Algorithms course (see http://algorithms.soc.srcf.net/), and/or the follow-up 2011 on-line Data Structures and
Computational Complexity course (see http://algorithmstwo.soc.srcf.net/).
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1 Polynomial Interpolation

We start with interpolation. Suppose that we have a number of values at data points. Curve fitting is
when we try to construct a function which closely fits those values. Interpolation is a specific case of curve
fitting, in which the function must go exactly through the values at the data points.2

1.1 The interpolation problem

Let [a, b] denote some real interval. Suppose that we are given n + 1 distinct points, x0, x1, . . . , xn, in
[a, b], together with real numbers f0, f1, . . . , fn. We seek a function p : R→ R such that

p(xi) = fi, i = 0, 1, . . . , n.

Such a function is called an interpolant.

We denote by Pn[x] the linear space of all real polynomials of degree at most n, and we observe that
each polynomial in Pn[x] is uniquely defined by its n+ 1 coefficients. Hence, such polynomials have n+ 1
degrees of freedom, while interpolation at x0, x1, . . . , xn constitutes n + 1 conditions. This, intuitively,
justifies seeking an interpolant p ∈ Pn[x].

Remark. It is not uncommon for the f0, f1, . . . , fn to be the values at x0, x1, . . . , xn of a real valued
continuous function f : [a, b]→ R defined on [a, b].

1.2 The Lagrange formula

Although, in principle, we may solve a linear problem with n + 1 unknowns to determine a polynomial
interpolant in O(n3) operations, this can be calculated in only O(n2) operations by using the explicit
Lagrange formula:

p(x) =

n∑
k=0

fk

n∏
i=0
i 6=k

x− xi
xk − xi

, x ∈ R. (1.1a)

Theorem 1.1 (Existence and uniqueness). Given n + 1 distinct points (xi)
n
i=0 ∈ [a, b], and n + 1 real

numbers (fi)
n
i=0, there is exactly one polynomial p ∈ Pn, namely that given by (1.1a), such that p(xi) = fi

for all i.

Proof. First, define the Lagrange cardinal polynomials for the points x0, x1, . . . , xn:

`k(x) =

n∏
i=0
i 6=k

x− xi
xk − xi

, k = 0, 1, . . . , n. (1.1b)

Each `k is the product of n linear factors, hence `k ∈ Pn[x] and, from (1.1a), p ∈ Pn[x]. Further, it is
straightforward to verify that `k(xk) = 1 and `k(xj) = 0 for j 6= k, i.e. `k(xj) = δkj . Hence

p(xj) =

n∑
k=0

fk`k(xj) = fj , j = 0, 1, . . . , n, (1.1c)

and thus p is an interpolant.

In order to prove uniqueness, suppose that both p ∈ Pn[x] and q ∈ Pn[x] interpolate the same n + 1
data. Then the polynomial r = p − q is of degree n and vanishes at n + 1 distinct points. But the only
nth-degree polynomial with > n+1 zeros is the zero polynomial. Therefore p−q ≡ 0 and the interpolating
polynomial is unique.

2 A different problem, which is closely related to interpolation, is the approximation of a complicated function by a
simple function, e.g. see Chebfun at http://www.maths.ox.ac.uk/chebfun/.
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Remarks.

(i) Let us introduce the so-called nodal polynomial

ω(x) =
n∏
i=0

(x− xi). (1.2a)

Then, in the expression (1.1b) for `k, the numerator is simply ω(x)/(x−xk) while the denominator
is equal to ω′(xk). With that we arrive at a compact Lagrange form

p(x) =

n∑
k=0

fk `k(x) =

n∑
k=0

fk
ω′(xk)

ω(x)

x− xk
. (1.2b)

(ii) The Lagrange forms (1.1a) and (1.2b) for the interpolating polynomials are often the appropriate
forms to use when we wish to manipulate the interpolation polynomial as part of a larger mathe-
matical expression. We will see an example in section §3.2.1 when we discuss Gaussian quadrature.

However, they are not ideal for numerical evaluation, both because of speed of calculation (i.e.
complexity) and because of the accumulation of rounding error, e.g. see the Newton vs Lagrange
demonstration at

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

An alternative is the Newton form which has an adaptive, or recurrent, nature, i.e. if an extra data
point is added, then the new interpolant, say pn+1, can be constructed from the existing interpolant,
pn (rather than starting again from scratch).

1.3 The Newton interpolation formula

Our aim is to find an alternative representation of the interpolating polynomial. We again suppose that
the fi, i = 0, 1, . . . , n, are given, and seek p ∈ Pn[x] such that p(xi) = fi, i = 0, . . . , n. For k = 0, 1, ..., n,
let pk ∈ Pk be the polynomial interpolant to f on x0, ..., xk, then Newton’s formula is analogous to the
identity

pn(x) = p0(x) + {p1(x)−p0(x)}+ {p2(x)−p1(x)}+ · · ·+ {pn(x)−pn−1(x)} . (1.3)

In order to construct the formula we note that pk−1 and pk interpolate the same values fi for i 6 k − 1,
and hence their difference is a polynomial of degree k that vanishes at the k points x0, ..., xk−1. Thus

pk(x)− pk−1(x) = Ak

k−1∏
i=0

(x− xi), (1.4)

for some constant Ak, where we note that Ak is equal to the leading coefficient of pk. It follows that
p = pn can be built step by step as one constructs the sequence (p0, p1, ...), with pk obtained from pk−1

by the addition of the term on the right-hand side of (1.4), so that finally

p(x) = pn(x) = p0(x) +

n∑
k=1

{pk(x)− pk−1(x)} = A0 +

n∑
k=1

Ak

k−1∏
i=0

(x− xi), (1.5)

What remains to be identified is an effective means to calculate the Ak.

1.3.1 Divided differences: a definition

Definition 1.2 (Cs[a, b]). Let [a, b] be a closed interval of R. We denote by C[a, b] the space of all
continuous functions from [a, b] to R and let Cs[a, b], where s is a positive integer, stand for the linear
space of all functions in C[a, b] that possess s continuous derivatives.

Definition 1.3 (Divided difference). Given f ∈ C[a, b] and k + 1 distinct points (xi)
k
i=0 ∈ [a, b], the

divided difference f [x0, ..., xk] is the leading coefficient of the polynomial pk ∈ Pk which interpolates f at
these points. We say that this divided difference is of degree, or order, k.
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Remarks.

(i) By definition
Ak ≡ f [x0, ..., xk]. (1.6)

(ii) A divided difference f [x0, . . . , xk] of order k is a real number that is derived from (k+1) values of
a function f : R→ R.

(iii) A divided difference f [x0, . . . , xk] is a symmetric function of the variables [x0, ..., xk].

(iv) f [x0] is the coefficient of x0 in the polynomial of degree 0 (i.e. a constant) that interpolates f(x0),
hence

f [x0] = f(x0). (1.7a)

More generally
f [£] = f(£) , f [U] = f(U) and f [xi] = f(xi) . (1.7b)

(v) If f(x) = xm and k > m, then
f [x0, ..., xk] = δkm. (1.8)

1.3.2 The Newton formula for the interpolating polynomial

The following theorem is a consequence of the definition of a divided difference, i.e. (1.5) and (1.6).

Theorem 1.4 (Newton formula). Given n+ 1 distinct points (xi)
n
i=0, let pn∈Pn be the polynomial that

interpolates f at these points. Then it may be written in the Newton form

pn(x) = f [x0] + f [x0, x1] (x− x0) + · · ·+ f [x0, x1, . . . , xn] (x− x0)(x− x1) · · · (x− xn−1) , (1.9a)

or, more compactly (with a slight abuse of notation when k = 0)

pn(x) =

n∑
k=0

f [x0, ..., xk]

k−1∏
i=0

(x− xi). (1.9b)

Remark. For this formula to be of any use, we need an expression for f [x0, ..., xk]. One such can be derived
from the Lagrange formula (1.1a), or equivalently (1.2b), by identifying the leading coefficient of p.
We conclude

f [x0, ..., xn] =

n∑
j=0

f(xj)

n∏
i=0
i 6=j

1

xj − xi
=

n∑
j=0

f(xj)

ω′(xj)
, where ω(x) =

n∏
i=0

(x− xi). (1.10)

However, like the Lagrange form itself, this expression takes O(n2) operations to evaluate. A better
way to calculate divided differences is to again use an adaptive (or recurrent) approach.

1.3.3 Recurrence relations for divided differences

Theorem 1.5 (Recurrence relation). Suppose that x0, x1, . . . , xk are distinct, where k > 1, then

f [x0, ..., xk] =
f [x1, ..., xk]− f [x0, ..., xk−1]

xk − x0
(1.11)

Proof. Let q0, q1 ∈ Pk−1 be the polynomials such that q0 interpolates f on (x0, x1, . . . , xk−1)
q1 interpolates f on (x1, . . . , xk−1, xk)

and consider the polynomial

p(x) =
x− x0

xk − x0
q1(x) +

xk − x
xk − x0

q0(x) , p ∈ Pk . (1.12)
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We note that

p(x0) = f(x0) , p(xk) = f(xk) , and p(xi) = f(xi) for i = 1, . . . , k − 1.

Hence p is the k-degree interpolating polynomial of {f(xi) : i= 0, 1, . . . , k}. Moreover, from (1.12), the
leading coefficient of p, i.e. f [x0, ..., xk], is equal to the difference of those of q1 and q0, i.e. f [x1, ..., xk]
and f [x0, ..., xk−1] respectively, divided by xk − x0; this is as required to prove (1.11).

Method 1.6. Recalling from (1.7b) that f [xi] = f(xi), the recursive formula (1.11) allows for rapid
evaluation of the divided difference table, in the following manner:

xi f [∗] = f(∗) f [∗, ∗] f [∗, ∗, ∗] . . . f [∗, ∗, . . . , ∗]

x0 → f [x0] ↘
f [x0, x1] ↘

x1 → f [x1]
↗
↘ f [x0, x1, x2] . . .

f [x1, x2]
↗
↘

x2 → f [x2]
↗
↘ f [x1, x2, x3] . .

.
. . .

f [x2, x3] ↗
. . .

x3 → f [x3] ↗. . .
...

. . .

. .
. f [x0, x1, . . . , xn]

xn−1 → f [xn−1] .
. .

↘

. . . f [xn−2, xn−1, xn] . .
.

f [xn−1, xn] ↗

xn → f [xn] ↗

Table 1: The divided difference table

Remarks

(i) The table can be evaluated in O(n2) operations and the outcome is the numbers {f [x0, . . . , xk]}nk=0

at the head of the columns which can be used in the Newton form (1.9b).

(ii) While it is usual for the points {xi : i=0, 1, . . . , n} to be in ascending order, there is no need for this
condition to be imposed. It also turns out that the cancellation that occurs when divided differences
are formed does not lose ‘information’, although it does reduce the number of leading digits that
are reliable in successive columns of the divided difference table (see question 5 on Example Sheet 1).

(iii) Suppose an extra interpolation point, say xn+1, is added. Then in order to determine f [x0, . . . , xn+1]
only an extra diagonal of the divided difference table need be calculated in O(n) operations.1/12

1/13
1/14

1.3.4 Horner’s scheme

We note that the Newton interpolation formula (1.9b) requires only the top row of the divided differ-
ences in Table 1. Once these differences have been calculated, and stored together with the interpolation
points xi, the Newton formula has a potential speed advantage over the Lagrange formula if its evaluation
at a given point x is calculated using Horner’s scheme. Based on the observation that

c2x
2 + c1x+ c0 = (c2x+ c1)x+ c0 ,

write

pn(x) =
{
. . .
{
{f [x0, . . . , xn](x− xn−1) + f [x0, . . . , xn−1]}(x− xn−2)

+ f [x0, . . . , xn−2]
}

(x− xn−3) + · · ·
}

(x− x0) + f [x0].

The calculation is arranged as follows. Let σ be f [x0, x1, . . . , xn] initially. Then for k=n−1, n−2, . . . , 0,
overwrite σ by the quantity

σ ← σ (x−xk) + f [x0, x1, . . . , xk] . (1.13)

pn(x) is the final value of σ, and it is computed in only O(n) operations.
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Remarks

(i) Horner’s scheme can be used similarly to evaluate efficiently any polynomial p(x) =
∑n
k=0 ckx

k,
x∈R.

(ii) An advantage of Newton’s formula over Lagrange’s formula is now evident. Suppose an extra
interpolation point, say xn+1, is added in order to improve accuracy. Then in order to calculate
the extra coefficient in (1.9b), only an extra diagonal of the divided difference table need be
calculated in O(n) operations, while to evaluate Newton’s formula at a point x takes only O(n)
operations. This is to be compared with O(n2) operations to obtain the equivalent result using
Lagrange’s formula.

(iii) The effect of rounding error on the evaluation of the Newton form compared with the La-
grange form of the interpolating polynomial may be investigated using the Newton vs Lagrange
demonstration at

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

1.4 Examples (Unlectured)

Given the data

xi 0 1 2 3

f(xi) −3 −3 −1 9
,

find the interpolating polynomial p ∈ P3 in both Lagrange and Newton forms.

Fundamental Lagrange polynomials:

`0(x) = (x−1)(x−2)(x−3)
−6 = − 1

6 (x3 − 6x2 + 11x− 6),

`1(x) = x(x−2)(x−3)
2 = 1

2 (x3 − 5x2 + 6x),

`2(x) = x(x−1)(x−3)
−2 = − 1

2 (x3 − 4x2 + 3x),

`3(x) = x(x−1)(x−2)
6 = 1

6 (x3 − 3x2 + 2x).

Lagrange form:

p(x) = (−3) · `0(x) + (−3) · `1(x) + (−1) · `2(x) + 9 · `3(x)

=
(

1
2 −

3
2 + 1

2 + 3
2

)
x3 +

(
−3 + 15

2 − 2− 9
2

)
x2 +

(
11
2 − 9 + 3

2 + 3
)
x− 3

= x3 − 2x2 + x− 3 .

Divided differences:
0 −3 ↘

(−3)−(−3)
1−0 = 0 ↘

1 −3
↗
↘

2−0
2−0 = 1 ↘

(−1)−(−3)
2−1 = 2

↗
↘

4−1
3−0 = 1

2 −1
↗
↘

10−2
3−1 = 4 ↗

9−(−1)
3−2 = 10 ↗

3 9 ↗

Newton form:

p(x) = −3 + 0 · (x− 0) + 1 · (x− 0)(x− 1) + 1 · (x− 0)(x− 1)(x− 2) .

Horner scheme:
p(x) =

{[
1 · (x− 2) + 1

]
· (x− 1) + 0

}
· (x− 0)−3 .

Exercise: Add a 5th point, x4 = 4, f(x4) = 0, and compare the effort to calculate the new interpolating
polynomial by the Lagrange and Newton formulae.
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1.5 A property of divided differences

The following theorem shows that a divided difference can be regarded as a constant multiple of a
derivative of degree n. However, first we need a lemma.

Lemma 1.7. If g ∈ Cn[a, b] is zero at n+ ` distinct points, then g(n) has at least ` distinct zeros in [a, b].

Proof. Rolle’s theorem states that if a function φ ∈ C1[a, b] vanishes at two distinct points in [a, b] then
its derivative φ′ is zero at an intermediate point. So, we deduce that g′ vanishes at least at (n−1)+`
distinct points. Next, applying Rolle to g′, we conclude that g′′ vanishes at (n−2)+` points, and so on.

Theorem 1.8. Let [ā, b̄] be the shortest interval that contains x0, x1, . . . , xn and let f ∈ Cn[ā, b̄]. Then
there exists ξ ∈ [ā, b̄] such that

f [x0, x1, . . . , xn] = 1
n!f

(n)(ξ). (1.14a)

Proof. Let p ∈ Pn[x] be the interpolating polynomial of {f(xi) : i=0, 1, . . . , n}. Then the error function
(f − p) has at least (n+1) zeros in [ā, b̄]. It follows from applying Lemma 1.7, that the n-th derivative
(f (n)−p(n)), must vanish at some ξ ∈ [ā, b̄], i.e.,

f (n)(ξ) = p(n)(ξ)

Moreover, since p ∈ Pn, it follows that p(x) = Anx
n + (lower order terms) for some constant An, and

hence (for any ξ)
p(n)(ξ) = n!An = n! f [x0, ..., xn] .

The result (1.14a) follows.

Application. A method of estimating a derivative, say f (n)(ξ) where ξ is now given, is to let the points
{xi : i=0, 1, . . . , n} be suitably close to ξ, and to make the approximation

f (n)(ξ) ≈ n! f [x0, x1, . . . , xn] . (1.14b)

However, a drawback is that if one achieves good accuracy in theory by picking closely spaced
interpolation points, then if f is smooth and if the precision of the arithmetic is finite, significant
loss of accuracy may occur due to cancellation of the leading digits of the function values.1/05

1.6 Error bounds for polynomial interpolation

As noted earlier, it is important to understand the error of our approximations. Here we study the
interpolation error

en(x) = f(x)− pn(x), pn ∈ Pn, (1.15)

restricted to the class of differentiable functions f ∈ Ck[a, b] that possess, say, k continuous derivatives
on the interval [a, b].

The following theorem shows the error in an interpolant to be ‘like the next term’ in the Newton form.

Theorem 1.9. Let pn∈Pn interpolate f ∈C[a, b] at n+1 distinct points x0, ..., xn. Then for any x 6∈(xi)
n
i=0

f(x)− pn(x) = f [x0, ..., xn, x]ω(x) (1.16)

Proof. Given x0, .., xn, let x̄ = xn+1 be any other point. Then, from the recurrence relation (1.4) and the
definition (1.6), the corresponding polynomials pn and pn+1 are related by

pn+1(x) = pn(x) + f [x0, ..., xn, x̄]ω(x), ω(x) =
n∏
i=0

(x− xi) .

In particular, putting x = x̄, and noticing that pn+1(x̄) = f(x̄), we obtain, as in (1.16),

f(x̄) = pn(x̄) + f [x0, ..., xn, x̄]ω(x̄) .

Mathematical Tripos: IB Numerical Analysis 6 © S.J.Cowley@damtp.cam.ac.uk, Lent 2014
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Remark. We cannot evaluate the right-hand side of (1.16) without knowing the number f(x); however,
as we now show, we can relate it to the (n+ 1)st derivative of f .

Theorem 1.10. Given f ∈ Cn+1[a, b], let p ∈ Pn[x] interpolate the values f(xi), i = 0, 1, . . . , n, where
x0, . . . , xn ∈ [a, b] are distinct. Then for every x ∈ [a, b] there exists ξ ∈ [a, b] such that

f(x)− p(x) =
1

(n+ 1)!
f (n+1)(ξ)

n∏
i=0

(x− xi). (1.17)

Proof. From Theorem 1.9 and (1.16), and Theorem 1.8 and (1.14a),

f(x)− p(x) = f [x0, ..., xn, x]

n∏
i=0

(x− xi)

=
1

(n+ 1)!
f (n+1)(ξ)

n∏
i=0

(x− xi)

where ξ ∈ [a, b] since x0, . . . , xn, x ∈ [a, b].

Alternative Proof. (Unlectured, but useful for the Examples Sheet.) The formula (1.17) is true when
x = xj for j ∈ {0, 1, . . . , n}, since both sides of the equation vanish. Let x ∈ [a, b] be any other
point and define

φ(t) = [f(t)− p(t)]
n∏
i=0

(x− xi)− [f(x)− p(x)]

n∏
i=0

(t− xi), t ∈ [a, b].

We emphasise that the variable in φ is t, whereas x is a fixed parameter. Next, note that φ(xj) = 0,
j = 0, 1, . . . , n, and φ(x) = 0. Hence, φ has at least n + 2 distinct zeros in [a, b]. Moreover,
φ ∈ Cn+1[a, b].

We now apply Lemma 1.7. We deduce that φ′ has at least n + 1 distinct zeros in [a, b], that φ′′

vanishes at n points in [a, b], etc. We conclude that φ(s) vanishes at n+ 2− s distinct points of [a, b]
for s = 0, 1, . . . , n+ 1. Letting s = n+ 1, we have φ(n+1)(ξ) = 0 for some ξ ∈ [a, b]. Hence

0 = φ(n+1)(ξ) = [f (n+1)(ξ)− p(n+1)(ξ)]

n∏
i=0

(x− xi)− [f(x)− p(x)]
dn+1

dtn+1

n∏
i=0

(ξ − xi).

Since

p(n+1) ≡ 0 and
dn+1

dtn+1

n∏
i=0

(t− xi) ≡ (n+ 1)! ,

we obtain (1.17). 2

Remark. The equality (1.17) with the value f (n+1)(ξ) for some ξ is of hardly any use. However, often one
has a bound for f (n+1) in terms of some norm, e.g., the L∞-norm (the max-norm)

‖g‖∞ ≡ ‖g‖L∞[a,b] = max
t∈[a,b]

|g(t)| .

In such a case, it follows from (1.17), and the definition of the nodal polynomial (1.2a), that

|f(x)− p(x)| 6 1

(n+ 1)!
|ω(x)| ‖f (n+1)‖∞ . (1.18a)

If we want to find the maximal error over the interval, then maximizing over x ∈ [a, b] we get yet
one more error bound for polynomial interpolation

‖f − p∆‖∞ 6
1

(n+ 1)!
‖ω∆‖∞ ‖f (n+1)‖∞ (1.18b)

Here we put the lower index in ω∆ in order to emphasize dependence of ω(x) =
∏n
i=0(x − xi) on

the sequence of interpolating points ∆ = (xi)
n
i=0. The choice of ∆ can make a big difference!
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Runge’s Example. We interpolate

f(x) =
1

1 + x2
, x ∈ [−5, 5], (1.19)

first at the equally-spaced knots xj = −5 + 10j/n, j = 0, 1, . . . , n, and then at the Chebyshev knots
xj = −5 cos 2j+1

2(n+1)π, j = 0, 1, . . . , n.

0

0.5

1

1.5

2

y

–4 –2 2 4
x

0

0.5

1

1.5

2

y

–4 –2 2 4
x

Interpolation at uniform knots {−5 + j}10j=0. Interpolation at Chebyshev knots {−5 cos 2j+1
22

π}10j=0.

In the case of equi-spaced points, note the growth in the error which occurs towards the end of
the range. As illustrated in the rightmost column of the table below, this arises from the nodal
polynomial term in (1.17). Moreover, adding more interpolation points makes the largest error

‖f−p‖∞ = max{|f(x)− p(x)| : −56x65} ,

even worse, as may be investigated using the Lagrange Interpolation demonstration at

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

Errors in interpolating (1.19) at uniform knots: n = 15.

x f(x)− p(x)
∏n
i=0(x− xi)

0.75 3.2× 10−3 −2.5× 106

1.75 7.7× 10−3 −6.6× 106

2.75 3.6× 10−2 −4.1× 107

3.75 5.1× 10−1 −7.6× 108

4.75 4.0× 10+2 −7.3× 1010

Errors in interpolating (1.19) at uniform knots: n = 20.

A remedy to this state of affairs is to cluster points towards the end of the range. As illustrated in the

second figure above, a considerably smaller error is attained for xj = 5 cos (n−j)π
n , j = 0, 1, . . . , n, the

so-called Chebyshev points. It is possible to prove that this choice of points minimizes the magnitude
of maxx∈[−5,5] |

∏n
i=0(x− xi)|.

Definition 1.11. The Chebyshev3 polynomial of degree n on [−1, 1] is defined by

Tn(x) = cosnθ, x = cos θ, θ ∈ [0, π]. (1.20)

Properties of Tn(x) on [−1, 1].

(i) Tn takes its maximal absolute value 1 with alternating signs n+ 1 times:

‖Tn‖∞ = 1, Tn(Xk) = (−1)k, Xk = cos πkn , k = 0, 1, . . . , n; (1.21a)

(ii) Tn has n distinct zeros:

Tn(xk) = 0, xk = cos 2k−1
2n π, k = 1, 2, . . . , n. (1.21b)

3 Alternative transliterations of Chebyshev include Chebyshov, Tchebycheff and Tschebyscheff: hence Tn

Mathematical Tripos: IB Numerical Analysis 8 © S.J.Cowley@damtp.cam.ac.uk, Lent 2014
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Lemma 1.12. The Chebyshev polynomials Tn satisfy the recurrence relation

T0(x) ≡ 1, T1(x) = x, (1.22a)

Tn+1(x) = 2xTn(x)− Tn−1(x), n > 1. (1.22b)

Proof. Expressions (1.22a) are straightforward, while the recurrence follows from the equality

cos(n+ 1)θ + cos(n− 1)θ = 2 cos θ cosnθ

via the substitution x = cos θ.

Remark. It follows from (1.22a) and (1.22b) that Tn is an algebraic polynomial of degree n, with the
leading coefficient 2n−1 (for n > 1).

Theorem 1.13. On the interval [−1, 1], among all polynomials of degree n with leading coefficient equal
to one, the Chebyshev polynomial γTn deviates least from zero, i.e.,

inf(ai)

∥∥xn + an−1x
n−1 + · · ·+ a0

∥∥
∞ = γ ‖Tn‖∞, γ = 1

2n−1 . (1.23)

Proof. Suppose there is a polynomial qn(x) = xn + · · ·+ a0 such that ‖q‖∞ < γ, and set

r = γ Tn − qn.

The leading coefficient of both qn and γTn is one, thus r is of degree at most n− 1.

On the other hand, at the points Xk = cos πkn , the Chebyshev polynomial γTn takes the values ±γ
alternatively, while by assumption |qn(Xk)| < γ. Hence r alternates in sign at these points, and therefore
it has a zero in each of n intervals (Xk, Xk+1), i.e. at least n zeros in the interval [−1, 1], a contradiction
to r ∈ Pn−1.

Corollary 1.14. For ∆ = (xk)nk=0 ⊂ [−1, 1], let ω∆(x) =
∏n
k=0(x − xk) ∈ Pn+1. Then, for all n, we

have

inf
∆
‖ω∆‖∞ = ‖ω∆∗‖∞ =

1

2n
, (1.24a)

where

∆∗=(x∗k)nk=0 =

(
cos

2k + 1

2n+ 2
π

)n
k=0

. (1.24b)

Theorem 1.15. For f ∈Cn+1[−1, 1], the best choice of interpolating points is ∆∗ as defined in (1.24b);
hence from (1.18b)

‖f − p∆∗‖∞ 6
1

2n
1

(n+ 1)!
‖f (n+1)‖∞ . (1.25)

Example. For f(x) = ex, and x ∈ [−1, 1], the error of approximation provided by interpolating polynomial
of degree 9 with 10 Chebyshev knots is bounded by

|ex − p9(x)| 6 1
29

1
10! e 6 1.5 · 10−9

2/10
2/11
2/12
2/13
2/14
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2 Orthogonal Polynomials

2.1 Scalar products

Recall (e.g. from Vectors & Matrices) that the scalar product between two vectors, x,y ∈ Rn, is given
by

〈x,y〉 =

n∑
i=1

xiyi . (2.1a)

Given arbitrary positive weights w1, w2, . . . , wn > 0, we may generalise this definition to

〈x,y〉 =

n∑
i=1

wixiyi . (2.1b)

In general, a scalar (or inner) product is any function V× V→ R, where V is a linear vector space over
the reals, subject to the following axioms:

symmetry: 〈x,y〉 = 〈y,x〉 ∀ x,y ∈ V ,
linearity: 〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉 ∀ x,y, z ∈ V & α, β ∈ R ,
non-negativity: 〈x,x〉 > 0 ∀ x ∈ V ,
non-degeneracy: 〈x,x〉 = 0 iff x = 0 .

 (2.2)

We will consider linear vector spaces V = Cs[a, b] (s > 0), i.e. linear vector spaces of all functions in
C[a, b] that possess s continuous derivatives (see Definition 1.2).

We wish to introduce scalar products for V. In particular, suppose w ∈ C[a, b] is a fixed positive weight
function, then for all f, g ∈ V define

〈f, g〉 =

∫ b

a

w(x)f(x)g(x) dx . (2.3)

It is relatively straightforward to verify the axioms (2.2) for the scalar product, where, in order to prove
the ‘only if’ part of the non-degeneracy condition 〈f, f〉 = 0 iff f = 0, it is helpful to recall that w and f
are continuous.

Definition 2.1. Having chosen a space V of functions and a scalar product for the space, we say that
f, g ∈ V are orthogonal if and only if 〈f, g〉 = 0.

2.1.1 Degenerate inner products

If we consider degenerate inner products by dropping the non-degeneracy condition, a possible choice of
a scalar product for f, g ∈ V is

〈f, g〉 =

m∑
j=1

wjf(ξj) g(ξj) , (2.4)

where each wj is a positive constant and each ξj is a fixed point of [a, b]. An important difference between
(2.3) and (2.4) is that in the former case 〈f, f〉= 0 implies f ≡ 0, while in the latter case 〈f, f〉= 0 only
implies f(ξj)=0, j=1, 2, . . . ,m.

2.2 Orthogonal polynomials – definition, existence, uniqueness

Let V be a space of functions from [a, b] to R that includes all polynomials. Given a scalar product, say
(2.3), we say that pn ∈ Pn[x] is the nth orthogonal polynomial if

〈pn, p〉 = 0 for all p ∈ Pn−1[x] . (2.5)

This definition implies that 〈pm, pn〉= 0 if m 6=n, i.e. polynomials of different degrees are orthogonal to
each other.
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Remark. Different inner products lead to different orthogonal polynomials.

Definition 2.2. A polynomial in Pn[x] is said to be monic if the coefficient of xn therein is one.

Remark. We will normalise our orthogonal polynomials to be monic. However, with their usual definitions,
some standard polynomials (e.g. the Chebyshev polynomials) are not necessarily scaled so as to be
monic.

Theorem 2.3. For a given scalar product, and for every n ∈ Z+, there exists a unique monic orthogonal
polynomial of degree n. Moreover, any p ∈ Pn[x] can be expanded as a linear combination of p0, p1, . . . , pn,
i.e. the p0, p1, . . . , pn are a basis of Pn[x].

Proof. First, we note that the unique monic polynomial of degree 0 is p0(x)≡1, and that every polynomial
of degree 0 can be expressed as a linear multiple of p0. We now proceed by induction on n.

Suppose that p0, p1, . . . , pn have been already derived consistently with both assertions of the theorem.
Let qn+1(x)∈Pn+1[x] be a monic polynomial with degree of exactly (n+1), e.g. qn+1(x)=xn+1. Guided
by the Gram–Schmidt algorithm, we construct pn+1 by

pn+1(x) = qn+1(x)−
n∑
k=0

〈qn+1, pk〉
〈pk, pk〉

pk(x), x ∈ R . (2.6)

Then pn+1 ∈ Pn+1[x], and moreover pn+1 is monic (since all the terms in the sum are of degree 6 n).

To prove orthogonality, let m ∈ {0, 1, . . . , n}; it follows from (2.6) and the induction hypothesis that

〈pn+1, pm〉 = 〈qn+1, pm〉 −
n∑
k=0

〈qn+1, pk〉
〈pk, pk〉

〈pk, pm〉 = 〈qn+1, pm〉 −
〈qn+1, pm〉
〈pm, pm〉

〈pm, pm〉 = 0 .

Hence, pn+1 is orthogonal to p0, . . . , pn. Consequently, according to the second inductive assertion, it is
orthogonal to all p ∈ Pn[x].

To prove uniqueness, we suppose the existence of two monic orthogonal polynomials pn+1, p̃n+1 ∈ Pn+1[x].
Let r = pn+1−p̃n+1. Since pn+1 and p̃n+1 are both monic, r ∈ Pn[x], and hence 〈pn+1, r〉 = 〈p̃n+1, r〉 = 0.
This implies

0 = 〈pn+1, r〉 − 〈p̃n+1, r〉 = 〈pn+1 − p̃n+1, r〉 = 〈r, r〉 ,
from which we deduce that r ≡ 0.

Finally, in order to prove that each p ∈ Pn+1[x] is a linear combination of p0, . . . , pn+1, we note that we
can always write it in the form p = cpn+1 + q, where c is the coefficient of xn+1 in p and where q ∈ Pn[x].
According to the induction hypothesis, q can be expanded as a linear combination of p0, p1, . . . , pn, hence
our assertion is true.

2.3 The [quasi-linear] three-term recurrence relation

How to construct orthogonal polynomials? It turns out that the Gram–Schmidt algorithm (2.6) is not of
much help, for it usually suffers from the same problem as the Gram–Schmidt algorithm in Euclidean
spaces: loss of accuracy due to imprecisions in the calculation of scalar products. A smart choice of qn
can alleviate this problem. To this end we note that the only feature of the qn+1 that is necessary in the
proof of the previous theorem is that the degree of the polynomial qn+1 is exactly (n+1). Therefore the
proof would remain valid if in (2.6) we make the choice

q0(x) = 1 and qn+1(x) = x pn(x) n > 0 , x∈R. (2.7)

Note that the orthogonal polynomial pn∈Pn is available before qn+1 is required.

The following theorem demonstrates that the functions (2.7) allow formula (2.6) to be simplified, provided
that the scalar product has another property that is true in the case (2.3) (and also the case (2.4));
specifically, we require

〈xf, g〉 = 〈f, xg〉 for x∈R . (2.8)
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Theorem 2.4. Monic orthogonal polynomials are given by the formula

p0(x) ≡ 1 , p1(x) = (x− α0)p0(x) , (2.9a)

pn+1(x) = (x− αn)pn(x)− βnpn−1(x) , n = 1, 2, . . . , (2.9b)

where

αn =
〈pn, xpn〉
〈pn, pn〉

, βn =
〈pn, pn〉

〈pn−1, pn−1〉
> 0. (2.9c)

Proof. As before the unique monic polynomial of degree 0 is p0(x)≡1. Further, from (2.9a) and (2.9c)

p1(x) =

(
x− 〈p0, xp0〉

〈p0, p0〉

)
p0(x) ,

which of degree one and monic; moreover from (2.8)

〈p1, p0〉 = 〈xp0, p0〉 −
〈p0, xp0〉
〈p0, p0〉

〈p0, p0〉 = 0 ,

and so p1 is orthogonal to p0.

Method 1. As suggested above, we define qn+1 by (2.7) and substitute into (2.6) to obtain for n > 1

pn+1 = x pn −
n∑
k=0

〈x pn, pk〉
〈pk, pk〉

pk

= (x− αn) pn −
〈pn, x pn−1〉
〈pn−1, pn−1〉

pn−1 −
n−2∑
k=0

〈pn, x pk〉
〈pk, pk〉

pk .

Because of monicity, x pn−1 = pn+r where r ∈ Pn−1[x], and hence from the orthogonality property

〈pn, x pn−1〉 = 〈pn, pn〉 .

Similarly, 〈pn, x pk〉 = 0 for k = 0, 1, . . . , n− 2. The result (2.9b) follows. 2

Method 2. Alternatively we need not use (2.6). We proceed by induction and assume that monic orthog-
onal polynomials p0, p1, . . . , pn have been derived.

First note that pn+1 as defined by (2.9b) will be a monic polynomial of degree n+ 1. Further from
the orthogonality of p0, p1, . . . , pn,

〈pn+1, p`〉 = 〈pn, (x− αn)p`〉 − βn〈pn−1, p`〉 = 0, ` = 0, 1, . . . , n− 2.

As in Method 1 we note that xpn−1 = pn + r, where r ∈ Pn−1[x]. Thus, from the definitions of αn
and βn,

〈pn+1, pn−1〉 = 〈pn, (x− αn)pn−1〉 − βn〈pn−1, pn−1〉 = 〈pn, pn〉 − βn〈pn−1, pn−1〉 = 0,

〈pn+1, pn〉 = 〈pn, (x− αn)pn〉 − βn〈pn−1, pn〉 = 〈pn, xpn〉 − αn〈pn, pn〉 = 0.

Since any p ∈ Pn[x] can be expanded as a linear combination of p0, p1, . . . , pn, we conclude that
pn+1 as defined by (2.9b) is orthogonal.

2.4 Examples

As illustrated in Table 2, a number of standard orthogonal (non-monic) polynomials can be recovered
by the appropriate choices of interval [a, b] ⊂ R, and weight function w, in the scalar product (2.3). For
plots of these polynomials, see the Orthogonal Polynomials demonstration at

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php
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Name Notation Interval Weight Recurrence

Legendre Pn [−1, 1] w(x) ≡ 1 (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

Chebyshev Tn [−1, 1] w(x) = 1√
1−x2

Tn+1(x) = 2xTn(x)− Tn−1(x)

Laguerre Ln [0,∞) w(x) = e−x (n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x)

Hermite Hn (−∞,∞) w(x) = e−x
2

Hn+1(x) = 2xHn(x)− 2nHn−1(x)

Table 2: Some standard orthogonal polynomials

2.4.1 Chebyshev polynomials

We have already defined the Chebyshev polynomial of degree n on [−1, 1] by (see (1.20))

Tn(x) = cosnθ, x = cos θ, θ ∈ [0, π], (2.10a)

where T0(x) ≡ 1, T1(x) = x, T2(x) = 2x2−1, etc. We have also derived the recurrence relation (1.22b)
for Chebyshev polynomials

Tn+1(x) = 2xTn(x)− Tn−1(x) , n > 1, (2.10b)

from the identity
cos(n+ 1)θ + cos(n− 1)θ = 2 cos θ cosnθ . (2.10c)

We now show that this definition is consistent with the choice of scalar product, for f, g ∈ C[−1, 1],

〈f, g〉 =

∫ 1

−1

f(x)g(x)
dx√

1− x2
, w(x) =

1√
1− x2

. (2.11)

In particular, by the change of variable x = cos θ, we verify the orthogonality condition (2.5) for n 6= m

〈Tn, Tm〉 =

∫ 1

−1

Tn(x)Tm(x)
dx√

1− x2
=

∫ π

0

cosnθ cosmθ dθ

= 1
2

∫ π

0

{cos(n+m)θ + cos(n−m)θ} dθ = 0 .

Remark. Recall that the Chebyshev polynomials are not monic, hence the inconsistency between (2.9b)
and (2.10b). To obtain monic polynomials take

p0 = 1 , pn = 1
2n−1Tn(x) for n > 1.3/10

3/11
3/12
3/13
3/14

2.5 Least-squares polynomial fitting

Let us return to our original problem of curve fitting. Suppose that we wish to fit a polynomial, p ∈ Pn[x],
to a function f(x), a6 x6 b, or to function/data values f(ξj), j = 1, 2, . . . ,m > n + 1. Then it is often
suitable to minimize the least-squares expression∫ b

a

w(x)[f(x)− p(x)]2 dx, or

m∑
j=1

wj [f(ξj)− p(ξj)]2, (2.12)

respectively, where w(x) > 0 for x ∈ (a, b) and w1, w2, . . . , wn > 0. Intuitively speaking, the polynomial p
approximates f , and is an alternative to an interpolating polynomial; it is called a (weighted) least-squares
approximant. The generality of the scalar product and the associated orthogonal polynomials are now
highly useful, for in both the continuous and discrete cases we pick the scalar product (or degenerate
scalar product) so that we require the least value of the distance ‖f − p‖ = 〈f − p, f − p〉1/2.
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Figure 2.1: Least squares fit of a polynomial to discrete data.

Theorem 2.5. Let (pk)nk=0 be polynomials orthogonal with respect to a given inner product, where
pk ∈ Pk[x]. Then the least squares approximant to any f ∈ C[a, b] from Pn is given by the formula

p ≡ p(f) =

n∑
k=0

ckpk, ck =
〈f, pk〉
‖pk‖2

, (2.13a)

and the value of the least-squares approximation is

‖f − p‖2 = ‖f‖2 −
n∑
k=0

〈f, pk〉2

‖pk‖2
. (2.13b)

Proof. The orthogonal polynomials form a basis of Pn[x]. Therefore for every p ∈ Pn,

p =

n∑
k=0

ckpk for some c0, c1, . . . , cn ∈ R

Hence, from the properties of scalar products and the orthogonality conditions, 〈pj , pk〉=0 for j 6=k,

〈f − p, f − p〉 = 〈f, f〉 − 2〈f, p〉+ 〈p, p〉

= 〈f, f〉 − 2

〈
f,

n∑
k=0

ckpk

〉
+

〈
n∑
j=0

cjpj ,

n∑
k=0

ckpk

〉

= 〈f, f〉 − 2

n∑
k=0

ck〈f, pk〉+

n∑
j=0

n∑
k=0

cjck〈pj , pk〉

= ‖f‖2 − 2

n∑
k=0

ck〈f, pk〉+

n∑
k=0

c2k‖pk‖2 . (2.14)

The key point is that the orthogonality conditions remove the cross-terms from the right-hand side.

To derive optimal c0, c1, . . . , cn we seek to minimize the last expression, which we note is a quadratic
function in each ck. Since

∂

∂cj
〈f − p, f − p〉 = −2〈pj , f〉+ 2cj〈pj , pj〉, j = 0, 1, . . . , n,

setting the gradient to zero yields

ck =
〈f, pk〉
〈pk, pk〉

, and hence p(x) =

n∑
k=0

〈f, pk〉
〈pk, pk〉

pk(x). (2.15)

Substituting the optimal ck into (2.14) we obtain (2.13b).
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Remarks.

(i) We note that the ck are the components of [sufficiently nice functions] f with respect to the [infinite]
basis consisting of the pn, n = 0, 1, . . ..

(ii) We observe, using the expressions for p and ck from (2.13a), that

‖p‖2 ≡ 〈p, p〉 =

〈
n∑
j=0

cjpj ,

n∑
k=0

ckpk

〉
=

n∑
j=0

n∑
k=0

cjck 〈pj , pk〉

=

n∑
k=0

c2k 〈pk, pk〉 =

n∑
k=0

〈f, pk〉2

‖pk‖2
. (2.16a)

Thence from (2.13b) we obtain
‖f − p‖2 + ‖p‖2 = ‖f‖2 . (2.16b)

This can be viewed as an analogy of the theorem of Pythagoras. Indeed, p and f−p are orthogonal,4

since it follows using the expressions for p and ck from (2.13a) and the orthogonality of the pk, that

〈p, f−p〉 =

〈
n∑
k=0

ckpk, f −
n∑
j=0

cjpj

〉
=

n∑
k=0

ck (〈pk, f〉 − ck〈pk, pk〉) = 0 . (2.16c)

2.5.1 Accuracy: how to choose n?

Suppose that we wish to choose n so that the ‘error’ 〈f−p, f−p〉 is less than a prescribed tolerance ε > 0,
i.e. so that

0 6 〈f − p, f − p〉 = 〈f, f〉 − 〈p, p〉 = 〈f, f〉 −
n∑
k=0

〈f, pk〉2

‖pk‖2
< ε . (2.17a)

We first note that the construction and evaluation of both pk and ck = 〈pk, f〉/〈pk, pk〉 depends only on
orthogonal polynomials of degree k or less. It follows that it is not necessary to know the final value of
n ≡ n(ε) when one begins to form the sums in either (2.15) or (2.17a). In particular all that is necessary
to achieve the desired tolerance is to continue to add terms until (2.17a) is satisfied, i.e. until

σn ≡
n∑
k=0

〈f, pk〉2

〈pk, pk〉
> 〈f, f〉 − ε n = 0, 1, . . . . (2.17b)

We note that this condition can always be satisfied for the degenerate scalar product (2.4) if the
data points {ξj : j=1, 2, . . . ,m} are distinct, because 〈f − p, f − p〉 is made zero by interpolation to
{f(ξj) : j=1, 2, . . . ,m} if n=m−1. For the scalar product (2.3) when [a, b] is a bounded interval and f
is continuous, the following theorem ensures that n exists.

Theorem 2.6 (The Parseval identity). Let [a, b] be finite. Then

∞∑
k=0

〈f, pk〉2

〈pk, pk〉
= 〈f, f〉. (2.18)

Incomplete proof. From (2.17a) and (2.17b)

〈f − p, f − p〉 = 〈f, f〉 − σn > 0 .

The sequence {σn}∞n=0 increases monotonically and σn 6 〈f, f〉 implies that limn→∞ σn exists. According
to the Weierstrass theorem (no proof), any function in C[a, b] can be approximated arbitrarily close by
a polynomial, hence limn→∞〈f − p, f − p〉 = 0. We deduce that σn → 〈f, f〉 as n → ∞, and that (2.18)
is true. 2

4 Which in turn allows an alternative derivation of (2.16b) by use of

〈f−p, f−p〉 = 〈f, f−p〉 − 〈p, f−p〉 = 〈f, f〉 − 〈f, p〉 = 〈f, f〉 − 〈p, p〉 .
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2.6 Least-squares fitting to discrete function values

Let fT =(f(x1), f(x2), . . . , f(xm)) be m function values. Suppose that the points xj are distinct, and that
we seek a polynomial p ∈ Pn[x] with n6 (m−1) that minimizes 〈f−p, f−p〉 for the scalar product (2.4)
with wj = 1 (j = 1, . . . ,m), i.e. we seek a polynomial that minimizes

〈f − p, f − p〉 =

m∑
j=1

(f(xj)− p(xj))2 = ‖f − p‖2 , (2.19)

where pT =(p(x1), p(x2), . . . , p(xm)).

(a) One possibility is to write p =
∑n
k=0 θkx

k. Then for j = 1, . . . ,m,

p(xj) =

n∑
k=0

θkx
k
j =

n∑
k=0

Ajkθk , where Ajk = xkj , i.e. p = Aθ

As we shall see later, the problem of minimising (2.19) is then equivalent to finding a least-squares
solution for θ to the linear system

n∑
k=0

xkj θk = f(xj) for j = 1, . . . ,m , i.e. Aθ = f . (2.20)

Remark: complexity. Using numerical linear algebra (in particular QR factorisation, as will be con-
sidered in the sequel), this requires O(mn2) operations.

(b) An alternative is to construct orthogonal polynomials p0, p1, . . . , pn w.r.t. the scalar product (2.4)
with wj = 1 (j = 1, . . . ,m). For sufficiently small n it is possible to employ the three-term recurrence
relations (2.9a)-(2.9c) to calculate p0, p1, . . . , pn. However, inter alia, the uniqueness part of the proof
of Theorem (2.3), and the finiteness of the coefficients in the recurrence relations, depend on the scalar
product being non-degenerate; unfortunately, as already noted, the scalar product (2.4) is degenerate
(since 〈f, f〉 = 0 if f(ξj) = 0 for j = 1, . . . ,m).

We make two observations.

(i) First that if q is a non-zero polynomial of degree n 6 m − 1, then q has less than m zeros,
and so 〈q, q〉 > 0, i.e. if we restrict to q(x) ∈ Pn[x] with n 6 m − 1 then the scalar product is
non-degenerate.

(ii) Second, that this is not so if n > m, since if

q(x) =

m∏
k=1

(x− ξk) ∈ Pm[x] . (2.21)

then 〈q, q〉 = 0.

The consequence is that only orthogonal polynomials p0, p1, . . . , pm−1 can be found for this scalar
product. However, this is adequate for our purposes since we have assumed that n 6 m − 1. The
least-squares polynomial fit is then given by (cf. (2.13a))

p(x) =

n∑
k=0

〈pk, f〉
〈pk, pk〉

pk(x) . (2.22)

Remark: complexity. Since it requires O(m) operations to calculate each scalar product, it requires
O(m) operations to calculate pk+1(xj) from pk(xj) and pk−1(xj) for j = 1, . . . ,m. Hence the
cost to find the n coefficients in (2.15) is O(mn) operations.
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3 Approximation of Linear Functionals

3.1 Linear functionals

Definition 3.1. A linear functional is a linear mapping, L : V→ R, from a linear space of functions V
to R.

For example, if the space is C[a, b], then

L(f) =

∫ b

a

f(x)w(x) dx (3.1)

is a linear functional, because L(f)∈R for every f in C[a, b] and because

L(αf + β g) = αL(f) + β L(g), f, g∈C[a, b], α, β ∈ R . (3.2)

Other examples include

(i) L(f) = f(ξ), where f ∈C[a, b], and ξ is any fixed point of [a, b];

(ii) L(f) = f ′(ξ), where f ∈C1[a, b], and ξ is any fixed point of [a, b];

(iii) for f ∈C1[a, b], x ∈ [a, b], (x+ h) ∈ [a, b], and with a slight change in notation,

eL(f) = f(x+ h)− f(x)− 1
2h [f ′(x) + f ′(x+ h)] . (3.3a)

We will treat the space V = Cn+1[a, b], and our goal is to find approximations of the form

L(f) ≈
N∑
i=0

aif(xi), f ∈ Cn+1[a, b] . (3.3b)

Remark. For the functionals (3.1) this is called numerical integration, and for

L(f) = f (k)(ξ) , ξ ∈ [a, b], 0 6 k 6 n+ 1 , (3.4)

this is called numerical differentiation.

Method 3.2. Interpolating formulae. A suggestive approximation method is to interpolate f by p ∈ Pn,
and then take L(f) ≈ L(p). This is an interpolating formula (of degree n), and in this case N = n.

We have already seen an interpolating formula, namely (1.1c), i.e. that of Lagrange for the functional
L(f) = f(ξ):

f(ξ) ≈ p(ξ) =

n∑
i=0

`i(ξ)f(xi) , (3.5a)

where, as before, we denote the Lagrange cardinal polynomials for the points x0, x1, . . . , xn by `i(ξ).
Because every p ∈ Pn[x] is its own interpolating polynomial, i.e. because p(ξ) =

∑n
i=0 `i(ξ)p(xi), we can

use this result and the linearity of L, to deduce that an interpolating formula has the form

L(f) ≈ L(p) =

n∑
i=0

L(`i)p(xi) =

n∑
i=0

L(`i)f(xi). (3.5b)

Method 3.3. ‘Exact’ formulae. An alternative approximation method is to require the formula (3.3b)
to be exact on Pn, i.e. to require for any p ∈ Pn that

L(p) =

N∑
i=0

aip(xi) . (3.6)

In this case the number N of terms need not be as restricted:

• if N > n, then it is not a polynomial of degree n that substitutes the function;

• if N < n, then the formula is said to be of high accuracy;

• if N = n, then Method 3.2 and Method 3.3 are the same (see the following lemma).
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Lemma 3.4. The formula L(f) ≈
∑n
i=0 aif(xi) is interpolating ⇔ it is exact for f ∈ Pn.

Proof. The interpolating formula (3.5b) is exact on Pn by definition. Conversely, if the formula in the
lemma is exact on Pn, take f(x) = `j(x) ∈ Pn to obtain

L(`j) =

n∑
i=0

ai`j(xi) = aj , (3.7)

i.e. (3.5b).

3.2 Gaussian quadrature

The term quadrature is used when an integral is approximated by a finite linear combination of function
values. For instance, for f ∈ C[a, b] a typical approximation, or quadrature formula., is

I(f) =

∫ b

a

w(x)f(x) dx ≈
ν∑
k=1

bkf(ck) , (3.8)

where w is a fixed positive weight function, ν = N + 1 is given, and the real multipliers bk, k = 1, . . . , ν
(or interpolatory weights) and the points, ck ∈ [a, b], k = 1, . . . , ν (or nodes or knots) are independent of
the choice of f ∈C[a, b].4/12

4/13
4/14 In order to obtain an approximation of high accuracy we adopt Method 3.3; in particular, based on the

fact that Taylor series are polynomials, we seek an approximant that is exact for all f ∈ Pm[x], where m
is as large as possible. We will demonstrate that m = 2ν − 1 can be attained, and that that the required
nodes {ck : k=1, . . . , ν} are the zeros of pν , where pν is the orthogonal monic polynomial of degree ν for
the scalar product

〈f, g〉 =

∫ b

a

w(x)f(x)g(x) dx , f, g ∈ C[a, b] . (3.9)

Claim 3.5. Firstly, we claim that m = 2ν is impossible, i.e. that no quadrature formula with ν nodes is
exact for all q ∈ Pm if m > 2ν.

Proof. We prove by contradiction. Let c1, . . . , cν be arbitrary nodes, and note that

q(x) =

ν∏
k=1

(x− ck)2 ∈ P2ν [x] .

But
∫ b
a
w(x)q(x) dx > 0, while

∑ν
k=1 bkq(ck) = 0 for any choice of weights b1, . . . , bν . Hence the integral

and the quadrature do not match.

Next we obtain a result about the zeros of orthogonal monic polynomials p0, p1, p2, . . ..

Theorem 3.6. Given n > 1, all the zeros of pn are real, distinct and lie in the interval (a, b).

Proof. Recall that p0 ≡ 1. Thus, for n > 1 and by orthogonality,∫ b

a

w(x)pn(x) dx =

∫ b

a

w(x)p0(x)pn(x) dx = 〈p0, pn〉 = 0 .

We deduce that pn changes sign at least once in (a, b). Denote by m > 1 the number of the sign changes
of pn in (a, b), and suppose that the points where a sign change occurs are given by ξ1, ξ2, . . . , ξm. Let

q(x) =

m∏
j=1

(x− ξj) .

Next suppose that m 6 n − 1. Then, since q ∈ Pm[x], it follows that 〈q, pn〉 = 0. On the other hand,
it follows from our construction that q(x)pn(x) does not change sign throughout [a, b] and vanishes at a
finite number of points, hence

|〈q, pn〉| =

∣∣∣∣∣
∫ b

a

w(x)q(x)pn(x) dx

∣∣∣∣∣ =

∫ b

a

w(x)|q(x)pn(x)|dx > 0 .

This is a contradiction, so it follows that m > n; but a polynomial of degree n has at most n zeros, hence
m = n and the proof is complete.4/10

4/11
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3.2.1 Weights and knots

Theorem 3.7. For pairwise-distinct nodes c1, c2, . . . , cν ∈ [a, b], the quadrature formula (3.8) with the
interpolatory weights

bk =

∫ b

a

w(x)

ν∏
j=1
j 6=k

x− cj
ck − cj

dx, k = 1, 2, . . . , ν , (3.10)

is exact for all f ∈Pν−1[x].

Proof. From (1.1b) the Lagrange cardinal polynomials for the points c1, . . . , cν are defined by

`k(x) =

ν∏
j=1
j 6=k

x− cj
ck − cj

, k = 1, . . . , ν. (3.11)

Then, because the interpolating formula is exact on Pν−1 (see Lemma 3.4 and equation (3.5b)), the
quadrature is exact for all f ∈Pν−1[x] if, as required by (3.10).5

bk = I(`k) =

∫ b

a

w(x)

ν∏
j=1
j 6=k

x− cj
ck − cj

dx . (3.12)

Example: Trapedoidal Rule. w = 1, c1 = a, c2 = b, b1 =
∫ b
a
x−b
a−b dx = 1

2 (b− a) =
∫ b
a
x−a
b−a dx = b2.

Theorem 3.8. If the c1, c2, . . . , cν are the zeros of pν then (3.8) is exact for all f ∈P2ν−1[x]. Further,
bk > 0 for all k (i.e. all the weights are positive).

Proof. Suppose that the c1, . . . , cν are the zeros of pν . Given f ∈P2ν−1[x], we can represent it uniquely as

f(x) = q(x)pν(x) + r(x) ,

where q, r∈Pν−1[x]. Thus, by orthogonality,∫ b

a

w(x)f(x) dx =

∫ b

a

w(x)[q(x)pν(x) + r(x)] dx = 〈q, pν〉+

∫ b

a

w(x)r(x) dx

=

∫ b

a

w(x)r(x) dx.

On the other hand, the choice of quadrature knots gives

ν∑
k=1

bkf(ck) =

ν∑
k=1

bk[q(ck)pν(ck) + r(ck)] =

ν∑
k=1

bkr(ck) .

Since r ∈ Pν−1[x] and from Theorem 3.7 the quadrature is exact for all polynomials in Pν−1[x], it follows
that the integral and its approximation coincide.

Next, define the polynomials Li(x) ∈ P2ν−2[x] for i = 1, . . . , ν by

Li(x) =

ν∏
j=1
j 6=i

(x− cj)2

(ci − cj)2
, where we note that Li(ck) = δik . (3.13a)

5Alternatively, recall that every q ∈ Pν−1[x] is its own interpolating polynomial. Hence by Lagrange’s formula

q(x) =

ν∑
k=1

q(ck)

ν∏
j=1
j 6=k

x− cj
ck − cj

.

The quadrature is exact for all q∈Pν−1[x] if

ν∑
k=1

bkq(ck) =

∫ b

a
w(x)q(x) dx =

∫ b

a
w(x)

ν∑
k=1

q(ck)

ν∏
j=1
j 6=k

x− cj
ck − cj

dx =

ν∑
k=1

(∫ b

a
w(x)

ν∏
j=1
j 6=k

x− cj
ck − cj

dx

)
q(ck) ,

i.e. if the b1, b2, . . . , bν are given by (3.10).
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The Li(x) are non-zero, continuous and positive. Further, the quadrature formula (3.8) is exact for them.
Hence

0 <

∫ b

a

w(x)Li(x)dx =

ν∑
k=1

bkLi(ck) = bi. (3.13b)

It follows that all the weights are positive.

Definition 3.9. A quadrature with ν nodes that is exact on P2ν−1 is called Gaussian quadrature.

3.2.2 Examples

(i) Let [a, b] = [−1, 1], w(x) ≡ 1. Then the underlying orthogonal polynomials are the Legendre poly-
nomials. The first few polynomials are, with the customary non-monic normalization Pν(1) = 1,

P0(x) = 1 ,

P1(x) = x ,

P2(x) = 3
2x

2 − 1
2 ,

P3(x) = 5
2x

3 − 3
2x ,

P4(x) = 35
8 x

4 − 15
4 x

2 + 3
8 .

It follows that the Gaussian quadrature nodes for [a, b] = [−1, 1] and w(x) ≡ 1 are

ν bk ck ∈ [−1, 1] Exact For

1 b1 =2 c1 =0 P1

2 b1 =1, b2 =1 c1 =−
√

1
3 , c2 =

√
1
3 P3

3 b1 = 5
9 , b2 = 8

9 , b3 = 5
9 c1 =−

√
3
5 , c2 =0, c3 =

√
3
5 P5

4 b1 =b4 = 1
2 + 1

6

√
5
6 c1 = −c4, c4 =

(
3
7 + 2

7

√
6
5

) 1
2

P7

b2 =b3 = 1
2 −

1
6

√
5
6 c2 = −c3, c3 =

(
3
7 −

2
7

√
6
5

) 1
2

(ii) For [a, b] = [−1, 1] and w(x) = (1− x2)−1/2, the orthogonal polynomials are the Chebyshev polyno-
mials and the quadrature rule is

Tν(x) = cos(ν arccosx), bk =
π

ν
, ck = cos

2k − 1

2ν
π, k = 1, . . . , ν.

(iii) There are many other, not necessarily Gaussian, schemes; e.g. for w ≡ 1, the rectangle rule on [a, b],

I(f) ≈ (b− a)f(a),

and others:

Rule ν bk ck ∈ [a, b] Exact For Comment

Rectangle 1 b1 =(b− a) c1 =a or c1 =b P0 =Pν−1 1-point, non-Gaussian,

exact on constants.

Midpoint 1 b1 =(b− a) c1 = 1
2 (a+ b) P1 =P2ν−1 1-point, Gaussian,

exact on linear fns.

Trapezoid(al) 2 b1 =b2 = 1
2 (b− a) c1 =a, c2 =b P1 =Pν−1 2-point, non-Gaussian,

exact on linear fns.

Simpson’s 3 b1 =b3 = 1
6 (b− a) c1 =a, c3 =b P3 3-point, non-Gaussian,

b2 = 2
3 (b− a) c2 = 1

2 (a+ b) exact on cubics.
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Demonstration. For numerical examples, see the Gaussian Quadrature demonstration at

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

Practicalities. If an approximation is required to an integral over a ‘large’ interval [a, b], then often the
interval will be split into M sub-intervals, [xi−1, xi] for i = 1, . . . ,M , with x0 = a and xM = b.
Gaussian quadrature, or another approximation, is then used in each sub-interval.

3.3 Numerical differentiation

Consider the interpolating formulae (3.5b) for numerical differentiation

L(f) = f (k)(ξ) ≈
n∑
i=0

aif(xi), ai = L(`i) = `
(k)
i (ξ) . (3.14)

As previously noted, these are exact on the polynomials of degree n. The simplest formulae have n = k,
in which case

f (k)(ξ) ≈ p(k)(ξ) ,

where p is the interpolating polynomial of degree k. Since p(k)(ξ) is k! times the leading coefficient of p,
i.e., k!f [x0, . . . , xk], we obtain the formulae (cf. (1.14a))

f (k)(ξ) ≈ k!f [x0, . . . , xk] . (3.15)

3.3.1 Examples (Unlectured)

n = k

Forward difference,
2-point, exact on linear fns:

f ′(x) ≈ f [x, x+ h] =
f(x+ h)− f(x)

h
, (3.16a)

Central difference,
2-point, exact on quadratics:

f ′(x) ≈ f [x− h, x+ h] =
f(x+ h)− f(x− h)

2h
, (3.16b)

2nd-order central difference,
3-point, exact on cubics:

f ′′(x) ≈ 2f [x− h, x, x+ h] =
f(x+ h)− 2f(x) + f(x− h)

h2
. (3.16c)

2 = n > k = 1. Suppose [a, b] = [0, 2], although one can, of course, transform any formula to any interval.
We claim that

f ′(0) ≈ p′2(0) = − 3
2f(0) + 2f(1)− 1

2f(2) . (3.17)

Given the nodes (xi), in our case (0, 1, 2), we can find the corresponding coefficients (ai) in two
ways.

(i) First determine the fundamental Lagrange polynomials `i

`0(x) = 1
2 (x− 1)(x− 2), `1(x) = −x(x− 2), `2(x) = 1

2x(x− 1),

then, from (3.14), set ai = L(`i):

a0 = `′0(0) = − 3
2 , a1 = `′1(0) = 2, a2 = `′2(0) = − 1

2 .

(ii) However, sometimes it is easier to solve the system of linear equations which arises if we require
the formula to be exact on monomials xj , j = 0, . . . , n (or elements of any other basis for Pn),
i.e. if we require

f (k)(ξ) =

n∑
i=0

aif(xi) for f = xj , j = 0, . . . , n.

Hence for (3.17) and xi = 0, 1, 2 f(x) = 1 : 0 = a0 + a1 + a2

f(x) = x : 1 = a1 + 2a2

f(x) = x2: 0 = a1 + 4a2

⇒ a0 = − 3
2 , a1 = 2, a2 = − 1

2 .
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4 Expressing Errors in Terms of Derivatives

4.1 The error of an approximant

Given a linear functional L (e.g. a function, a derivative at a given point, an integral, etc.) and an approx-

imation scheme L(f) ≈
∑N
i=0 aif(xi), we are interested in the error (which is also a linear functional)

eL(f) = L(f)−
N∑
i=0

aif(xi) . (4.1a)

If L acts on f ∈ Ck+1[a, b], then we seek an estimate in terms of ‖f (k+1)‖∞, i.e.,

|eL(f)| 6 cL ‖f (k+1)‖∞, ∀f ∈ Ck+1[a, b] . (4.1b)

where cL ∈ R. Since we know that f (k+1) ≡ 0 for f ∈ Pk, an estimate of the form (4.1b) can only exist if

eL(f) = 0 ∀f ∈ Pk[x],

i.e., the approximation formula must be exact on Pk (e.g., it can be interpolating of degree k).

Example. Consider
L(f) = f(x+ h) ≈ f(x) + 1

2h [f ′(x+ h) + f ′(x)] . (4.2a)

This approximation is exact if f is any quadratic polynomial. The error of the approximant is given
by (cf. (3.3a))

eL(f) = f(x+ h)− f(x)− 1
2h [f ′(x) + f ′(x+ h)] , (4.2b)

where eL(p) = 0 for p∈P2.

Definition 4.1. If (4.1b) holds with some cL and moreover, for any ε > 0, there is an fε ∈ Ck+1[a, b]
such that

|eL(fε)| > (cL − ε) ‖f (k+1)
ε ‖∞ ,

then the constant cL is called least or sharp.

4.2 Preliminaries

Since our aim is to obtain an expression for the error that depends on f (k+1), recall the Taylor formula
in the form with an integral remainder term:

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) + · · ·+ (x− a)k

k!
f (k)(a) +

1

k!

∫ x

a

(x− θ)kf (k+1)(θ) dθ . (4.3a)

This formula can be established by integration by parts. The range of integration can be made independent
of x by introducing the notation for integer k > 0

(x− θ)k+ =

{
(x− θ)k x > θ
0 x < θ

. (4.3b)

Remark. If H is the Heaviside/step function, then (x− θ)0
+ = H(x− θ).

We then have

f(x) =

k∑
r=0

1

r!
(x− a)rf (r)(a) +

1

k!

∫ b

a

(x− θ)k+f (k+1)(θ) dθ . (4.3c)

Let λ be a linear functional on Cn+1, then

λ(f) =

k∑
r=0

f (r)(a)

r!
λ((x− a)r) + λ

(
1

k!

∫ b

a

(x− θ)k+f (k+1)(θ) dθ

)
. (4.4)
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Suppose now that λ is a linear functional such that λ(p) = 0 for p∈Pk. Then from (4.4) we have that for
f ∈Ck+1[a, b] and a6x6b

λ(f) = λ

(
1

k!

∫ b

a

(x− θ)k+f (k+1)(θ) dθ

)
. (4.5)

If we identify λ with eL then this is our hoped for expression for the error that depends on f (k+1).

Example. Since approximation (4.2a) is exact if f ∈ P2, we conclude for f ∈C3[a, b] and eL(f) as defined
by (4.2b), that

eL(f) = eL

(
1
2

∫ b

a

(x−θ)2
+f
′′′(θ) dθ

)
.

4.2.1 Exchange of the order of L and integration

In what follows we will assume that the order of action of
∫

and λ in (4.5) can be exchanged (see (4.8a)).
Since, typically, λ involves summation, integration and differentiation, this assumption is not unduly
restrictive. This is illustrated by the following examples, where we let

g(x) =

∫ b

a

(x−θ)k+ f (k+1)(θ) dθ , (4.6)

(i) First suppose for a function f(x), that λ(f) =
∑m
j=1 αjf(ξj), where αj , ξj ∈R. Then

λ(g) =

m∑
j=1

αj

(∫ b

a

(ξj − θ)k+f (k+1)(θ) dθ

)
=

∫ b

a

 m∑
j=1

αj(ξj − θ)k+f (k+1)(θ)

 dθ

=

∫ b

a

λ
(
(x− θ)k+

)
f (k+1)(θ) dθ .

(ii) Next suppose that λ(f) =
∫ b
a
β(x) f(x) dx, where β∈C[a, b]. Then for g ≡ g(x) given by (4.6)

λ(g) =

∫ b

a

β(x)

(∫ b

a

(x− θ)k+f (k+1)(θ) dθ

)
dx =

∫ b

a

(∫ b

a

β(x)(x− θ)k+f (k+1)(θ) dx

)
dθ

=

∫ b

a

λ
(
(x− θ)k+

)
f (k+1)(θ) dθ .

(iii) Finally suppose that λ(f) = d`f
dx` , where 16`6k−1. Then for g ≡ g(x) given by (4.6)

λ(g) =
d`

dx`

(∫ b

a

(x− θ)k+f (k+1)(θ) dθ

)
=

∫ b

a

d`

dx`

(
(x− θ)k+f (k+1)(θ)

)
dθ

=

∫ b

a

λ
(
(x− θ)k+

)
f (k+1)(θ) dθ .

4.3 The Peano kernel theorem

Theorem 4.2 (Peano kernel theorem). Let λ be a linear functional from Ck+1[a, b] to R such that

λ(f) = 0 for all f ∈ Pk[x]. Suppose also that λ applied to
∫ b
a

(x−θ)k+ f (k+1)(θ) dθ commutes with the

integration sign, then λ(f) is a linear functional of the derivative f (k+1)(θ), a6θ6b, of the form

λ(f) =
1

k!

∫ b

a

K(θ)f (k+1)(θ) dθ , (4.7a)

where for given x ∈ [a, b]
K(θ) = λ((x− θ)k+) for a 6 θ 6 b . (4.7b)

is the Peano kernel function.5/13
5/14

Remark. K(θ) is independent of f .
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Proof. Since it is assumed that

λ

(∫ b

a

(x−θ)k+ f (k+1)(θ) dθ

)
=

∫ b

a

λ
(

(x−θ)k+f (k+1)(θ)
)
dθ , (4.8a)

it follows from (4.5) and the linearity of λ that

λ(f) =
1

k!

∫ b

a

λ
(

(x− θ)k+f (k+1)(θ)
)

dθ =
1

k!

∫ b

a

λ
(
(x− θ)k+

)
f (k+1)(θ) dθ . (4.8b)

The formula (4.7a) follows from the definition of K(θ).5/12
(long)

4.3.1 Examples

(i) We have already seen that the functional (4.2b),

eL(f) = f(β)− f(α)− 1
2 (β − α) [f ′(α) + f ′(β)] , (4.9)

where α = x and β = x + h, is the error of the approximant (4.2a). Since eL(p) = 0 for p∈ P2, we
may set k=2 in (4.7a). To evaluate the Peano kernel function K, we fix θ and let g(x) = (x− θ)2

+.
It follows from the definition (4.3b) that

d

dx
(x− θ)k+ = k(x− θ)k−1

+ ,

and thus that g′(x) = 2(x− θ)+. Hence

K(θ) = eL
(
(x− θ)2

+

)
= eL (g) = g(β)− g(α)− 1

2 (β − α) (g′(β) + g′(α))

= (β−θ)2
+ − (α−θ)2

+ − 1
2 (β−α) (2 (β−θ)+ + 2 (α−θ)+)

=

{
0 a6θ6α and β6θ6b

(α−θ) (β−θ) α6θ6β
. (4.10)

We conclude that

eL(f) = 1
2

∫ β

α

(α−θ) (β−θ) f ′′′(θ) dθ . (4.11a)

Further, we note from integrating by parts that

eL(f) = 1
2

∫ β

α

(α+β−2 θ) f ′′(θ) dθ . (4.11b)

This result could alternatively have been derived by applying the Peano kernel theorem with k=1.

(ii) Unlectured. Consider the approximation (3.17)

f ′(0) ≈ − 3
2f(0) + 2f(1)− 1

2f(2) .

The error of this approximation is the linear functional

eL(f) = f ′(0) + 3
2f(0)− 2f(1) + 1

2f(2) .

As determined earlier (or as may be verified by trying f(x) = 1, x, x2 and then invoking linearity),
eL(f) = 0 for f ∈ P2[x]. Thus, for f ∈ C3[0, 2] we have

L(f) = 1
2

∫ 2

0

K(θ)f ′′′(θ) dθ.
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The Peano kernel function K is given by, again with g(x) = (x− θ)2
+,

K(θ) = eL((x− θ)2
+) = eL(g) = g′(0) + 3

2g(0)− 2g(1) + 1
2g(2) .

= 2(0− θ)+ + 3
2 (0− θ)2

+ − 2(1− θ)2
+ + 1

2 (2− θ)2
+

=


−2θ + 3

2θ
2 + (2θ − 3

2θ
2) ≡ 0 θ 6 0

−2(1− θ)2 + 1
2 (2− θ)2 = 2θ − 3

2θ
2 0 6 θ 6 1

1
2 (2− θ)2 1 6 θ 6 2

0 θ > 2

. (4.12)

Remark. K(θ) = 0 for θ 6∈ [0, 2], since then eL acts on a quadratic polynomial.5/10
5/11

4.3.2 Where does K(θ) vanish? (Unlectured)

We can extend the range of θ in the definition of K(θ) = λ((x − θ)k+) in (4.7b) from a6 θ6 b to θ∈R.
For instance, the example (4.10) retains the property that K(θ)=0 for θ6a and θ>b.

Indeed, suppose that the interval [α, β] is the shortest sub-interval of [a, b] such that λ(f) is independent
of {f(x) : a6x<α} and {f(x) : β < x 6 b}. Then we can replace the definition of the Peano kernel
function (4.7b) by the analogous formula

K(θ) = λ((x− θ)k+) , where θ ∈ R and x ∈ [α, β] . (4.13)

Hence, if θ>β, λ is applied to the zero function, which gives K(θ) = 0 due to the linearity of λ. On the
other hand if θ6α, then the ‘+’ subscript can be removed from expression (4.13), so that K(θ) is the
result of applying λ to the polynomial (x−θ)k, x∈R. However, the statement of Peano kernel theorem
includes the condition that λ(f) = 0, f ∈ Pk, so we conclude that K(θ) = 0 for θ 6 α. These remarks
establish much of the following lemma.

Lemma 4.3. Let the function K(θ) be defined by the linear functional λ through (4.13). Then K(θ) is
zero for θ>β. Further, K(θ) is zero for all θ6α if and only if λ has the property λ(f)=0 for f ∈Pk.

Proof. Because of previous remarks, we have only to prove that K(θ)=0 for θ6α, implies that λ(f)=0
for f ∈Pk. Now, due to the linearity of λ, we can write (4.13) when θ6α in the form

K(θ) = λ

 k∑
j=0

(
k

j

)
xj(−θ)k−j


=

k∑
j=0

(
k

j

)
(−θ)k−jλ

(
xj
)
. (4.14)

Thus since K(θ) for θ6α is a polynomial of degree at most k, if it vanishes identically, every coefficient
of a power of θ must be zero. We conclude from (4.14) that λ

(
xj
)

= 0 for α6x6β and j=0, 1, . . . , k.
Since these powers of x provide a basis of Pk, we have that λ(f)=0 for f ∈Pk.

Remark. This lemma is sometimes useful when one applies the Peano kernel theorem. Indeed, if the
function (4.13) fails to vanish for θ6α, then either the conditions of the theorem do not hold, or a
mistake has occurred in the calculation of the kernel function K!

4.4 Estimate of the error eL(f) when K(θ) does not change sign

Theorem 4.4. Suppose that K does not change sign in (a, b) and that f ∈ Ck+1[a, b], then

eL(f) =
1

k!

(∫ b

a

K(θ) dθ

)
f (k+1)(ξ) for some ξ ∈ (a, b) . (4.15)
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Proof. Suppose that K > 0. Then

eL(f) 6
1

k!

∫ b

a

K(θ) max
x∈[a,b]

f (k+1)(x) dθ =
1

k!

(∫ b

a

K(θ) dθ

)
max
x∈[a,b]

f (k+1)(x).

Likewise

eL(f) >
1

k!

(∫ b

a

K(θ) dθ

)
min
x∈[a,b]

f (k+1)(x) .

Consequently

min
x∈[a,b]

f (k+1)(x) 6
eL(f)

1
k!

∫ b
a
K(θ) dθ

6 max
x∈[a,b]

f (k+1)(x) .

The required result follows from the intermediate value theorem. Similar analysis pertains to the case
K 6 0.

Examples.

(i) In the case of (4.10), K 6 0, and
∫ β
α
K(θ) dθ =

∫ β
α

(α− θ)(β − θ) dθ = − 1
6 (β−α)3. Hence

eL(f) = − 1
12 (β−α)3f ′′′(ξ) for some ξ ∈ (α, β) . (4.16a)

(ii) Unlectured. In the case of (4.12), K>0 and∫ 2

0

K(θ) dθ =

∫ 1

0

(
2θ − 3

2θ
2
)

dθ +

∫ 2

1

1
2 (2− θ)2 dθ = 1

2 + 1
6 = 2

3 .

Consequently
eL(f) = 1

2! ×
2
3f
′′′(ξ) = 1

3f
′′′(ξ) for some ξ ∈ (0, 2) . (4.16b)

Comments.

(i) We note that 1
k!

∫ b
a
K(θ) dθ is independent of f .

(ii) As an alternative to determining
∫ b
a
K(θ) dθ analytically, we can take advantage of the remark

that, if equation (4.7a) is valid for all f ∈ Ck+1[a, b], then it holds in the particular case
f(x)=xk+1. Since f (k+1)(θ) = (k+1)!, we deduce from (4.7a) that∫ b

a

K(θ) dθ =
1

k+1
eL
(
xk+1

)
. (4.17)

Further, eL(p)=0, p∈Pk. This implies that (4.17) remains true if xk+1 is replaced by any monic
polynomial of degree k+1, say pk+1, for which the evaluation of eL (pk+1) is straightforward.

4.5 Bounds on the error |eL(f)|

We can measure the ‘size’ of a function g in various manners. Popular choices include

1-norm: ‖g‖1 =

∫ b

a

|g(x)|dx ; (4.18a)

2-norm: ‖g‖2 =

{∫ b

a

[g(x)]2 dx

}1/2

; (4.18b)

∞-norm: ‖g‖∞ = max
x∈[a,b]

|g(x)| . (4.18c)

Using these definitions we can bound the size of the error in our approximation procedures.
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(i) From (4.18a) and (4.18c) it follows that∣∣∣∣∣
∫ b

a

f(x)g(x) dx

∣∣∣∣∣ 6 ‖f‖∞
∫ b

a

|g(x)|dx 6 ‖f‖∞‖g‖1 .

Thence from (4.7a) we deduce that

|eL(f)| 6 1

k!
‖K‖∞

∫ b

a

|f (k+1)(θ)|dθ =
1

k!
‖K‖∞ ‖f (k+1)‖1 , (4.19a)

and similarly

|eL(f)| 6 1

k!

∫ b

a

|K(θ)|dθ ‖f (k+1)‖∞ =
1

k!
‖K‖1 ‖f (k+1)‖∞ . (4.19b)

(ii) The Cauchy–Schwarz inequality states∣∣∣∣∣
∫ b

a

f(x)g(x) dx

∣∣∣∣∣ 6 ‖f‖2‖g‖2 .
It follows from (4.7a) that

|eL(f)| 6 1

k!
‖K‖2‖f (k+1)‖2 . (4.20)

Remarks.

(i) The inequalities (4.19b), (4.19a) and (4.20) are valid whether or not K(θ) changes sign in a6θ6b
(cf. (4.15)).

(ii) For the specific choice f = xk+1, as above f (k+1) = (k + 1)! = ‖f (k+1)‖∞. Hence for this choice

eL(f) =
1

k!

∫ b

a

K(θ) dθ ‖f (k+1)‖∞ . (4.21)

It follows that if K does not change sign, (4.19b) is sharp.

4.5.1 Examples (Unlectured)

(i) For example (4.10), we have from using (4.16a) that (cf. (4.19b))

|eL(f)| 6 1
12 |β−α|

3‖f ′′′‖∞ . (4.22a)

(ii) For example (4.12), we have from using (4.16b) that (cf. (4.19b))

|eL(f)| 6 1
3‖f

′′′‖∞ . (4.22b)

(iii) For Simpson’s rule (see the table on page 20)

L(f) =

∫ 1

−1

f(t) dt ≈ 1
3f(−1) + 4

3f(0) + 1
3f(1) ,

it follows, given that Simpson’s rule is exact for quadratics (as well as cubics), that an expression
for the error is

eL(f) =

∫ 1

−1

f(θ) dt− 1
3f(−1)− 4

3f(0)− 1
3f(1) = 1

2!

∫ 1

−1

K(θ)f ′′′(θ) dθ ,

where, from (4.7b),

K(θ) = eL((x− θ)2
+) =

∫ 1

−1

(x− θ)2
+ dx− 1

3 (−1− θ)2
+ − 4

3 (0− θ)2
+ − 1

3 (1− θ)2
+

=

{
1
3 (1− θ)3 − 4

3θ
2− 1

3 (1− θ)2

1
3 (1− θ)3 − 1

3 (1− θ)2
=

{
− 1

3 θ (1 + θ)2, θ ∈ [−1, 0]

− 1
3 θ (1− θ)2, θ ∈ [0, 1]

.
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Now, K(θ) changes its sign at θ = 0, so its L1-norm has the value

‖K‖1 =

∫ 2

0

|K(θ)| dθ =

∫ 0

−1

| − 1
3 θ (1 + θ)2|dθ +

∫ 1

0

| − 1
3 θ (1− θ)2|dθ = 2 · 1

3

(
1
2 −

2
3 + 1

4

)
= 1

18 ,

so that from (4.19b)
|eL(f)| 6 1

2!
1
18 ‖f

′′′‖∞ = 1
36 ‖f

′′′‖∞ .
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5 Ordinary Differential Equations

5.1 Introduction

The aim of this section is to discuss some [elementary] methods that approximate the exact solution of
the ordinary differential equation (ODE)

y′ = f(t,y), 0 6 t 6 T, (5.1)

where y ∈ RN , T ∈ R and the function f : R×RN → RN is sufficiently ‘smooth’ or ‘nice’. In principle, it
is enough for f to be ‘Lipschitz’ (with respect to the second argument) to ensure that the solution exists
and is unique.

Definition 5.1. A function f(t,y) is said to satisfy a Lipschitz condition of order α at y = x if there
exists δ > 0 such that

‖f(t,y)− f(t,x)‖ 6 λ‖y − x‖α for the given x and for all ‖y − x‖ < δ, (5.2a)

where λ > 0 and α > 0 are independent of y.

We will assume, at the minimum, that there exists λ > 0 such that

‖f(t,y)− f(t,x)‖ 6 λ‖y − x‖ for t ∈ [0, T ], x,y ∈ RN . (5.2b)

However, for simplicity, we will often further assume that f is analytic so that we are always able to
expand locally into Taylor series.

In addition to equation (5.1) we also need an initial condition, and we shall assume that

y(0) = y0 . (5.3)

Hence, given we know y and its slope y′ at t = 0, can we obtain an approximation to y(h), say y(t1),
where the time step h > 0 is small? If so, can we subsequently obtain approximations yn ≈ y(tn),
n = 2, . . ., where tn = nh?

5.2 One-step methods

In principle yn+1 could depend on y0,y1, . . . ,yn, and we will consider some such schemes later. However
we start by studying one-step methods.

Definition 5.2 (A one-step method). This is a map

yn+1 = ϕh(tn,yn), (5.4)

i.e. an algorithm which allows yn+1 to depend only on tn, yn, h and f (through the ODE (5.1)).

5.2.1 The Euler method

Given that we know y and its slope y′ at t = 0 then, if we wish to approximate y at t = h > 0, the most
obvious approach is to truncate the Taylor series

y(h) = y(0) + hy′(0) + 1
2h

2y′′(0) + · · · (5.5a)

at the O
(
h2
)

term. We see from (5.1) that y′(0) = f(t0,y0), hence this procedure approximates y(h) by
y0 + hf(t0,y0), and we thus have the approximant

y1 = y0 + hf(t0,y0) . (5.5b)

By the same token, we may advance from h to 2h by we treating y1 as the initial condition, and letting
y2 = y1 + hf(t1,y1). In general, we obtain the Euler method

yn+1 = yn + hf(tn,yn), n = 0, 1, . . . , (5.6)

which on [tn, tn+1] approximates y(t) with a straight line with slope f(tn,yn).
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Question. How good is the Euler method? Inasmuch as its derivation is intuitive, we need to underpin it
with theory. An important question is:

Does the method (5.6) converge to the exact solution as h→ 0?

Definition 5.3 (Convergence). Let T > 0 be given, and suppose that, for every h > 0, a method produces
the solution sequence yn = yn(h), n = 0, 1, . . . , bT/hc. We say that the method converges if, as h → 0

and nk(h)h
k→∞−→ t,

ynk
→ y(t) uniformly for t ∈ [0, T ],

where y(t) is the exact solution of (5.1).

Theorem 5.4. Let f be a Lipschitz function of order one with the Lipschitz constant λ > 0 for t ∈ [0, T ],
i.e. suppose that f satisfies (5.2b), then the Euler method (5.6) converges, i.e. for every t ∈ [0, T ],

lim
h→0
nh→t

yn = y(t). (5.7a)

Further, let en = yn − y(tn) be the error at step n ∈ Z+, where 0 6 n 6 T/h; then for some positive
constant c ∈ R,

‖en‖ 6 ch
eλT − 1

λ
. (5.7b)

6/13
6/14

Proof. The Taylor series for the exact solution y gives, by using the identity (5.1), y′(t) = f(t,y(t)),

y(tn+1) = y(tn) + hy′(tn) +Rn = y(tn) + hf(tn,y(tn)) +Rn ,
where

Rn =

∫ tn+1

tn

(tn+1 − θ)y′′(θ) dθ .

By subtracting formula (5.6) from this equation, we find that the errors are related by the condition

en+1 = yn+1 − y(tn+1) = [yn + hf(tn,yn)]− [y(tn) + hf(tn,y(tn) +Rn] .

The remainder term, Rn, can be bounded uniformly (e.g., in the Euclidean norm or other underlying
norm ‖ · ‖) for all [0, T ] by ch2, for some positive constant c ∈ R. For instance,

‖Rn‖∞ 6
∫ tn+1

tn

(tn+1 − θ)‖y′′(θ)‖∞ dθ 6 1
2h

2‖y′′‖∞ ,

in which case c = 1
2‖y

′′‖∞. Thus, using the triangle inequality and the Lipschitz condition (5.2b)

‖en+1‖ 6 ‖yn − y(tn)‖+ h‖f(tn,yn)− f(tn,y(tn))‖+ ch2

6 ‖yn − y(tn)‖+ hλ‖yn − y(tn)‖+ ch2

6 (1 + hλ)‖en‖+ ch2.

Consequently, by induction,

‖en+1‖ 6 (1 + hλ)m‖en+1−m‖+ ch2
m−1∑
j=0

(1 + hλ)j , m = 0, 1, . . . , n+ 1.

In particular, letting m = n+ 1 and bearing in mind that e0 = 0, we have that

‖en+1‖ 6 ch2
n∑
j=0

(1 + hλ)j = ch2 (1 + hλ)n+1 − 1

(1 + hλ)− 1
6
ch

λ

(
(1 + hλ)n+1 − 1

)
,

or equivalently (by a re-labelling)

‖en‖ 6
ch

λ
((1 + hλ)n − 1) . (5.8)

Further, 0 < 1 + hλ 6 ehλ since h > 0, and nh 6 T , hence (1 + hλ)n 6 eλT . Thus

‖en‖ 6 ch
eλT − 1

λ

h→0−→ 0

uniformly for 0 6 nh 6 T , and the theorem is true.6/10
6/11
6/12
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Remark. We have left the error bound in a form including the ‘-1’ (although this is strictly unnecessary),
in order to make it clear that as λ→ 0, the bound tends to chT , as it should.

Local truncation error. The local truncation error of a general numerical method

yn+1 = ϕh(tn,y0,y1, . . . ,yn) (5.9a)

for the solution of (5.1) is the error of the method relative to the true solution, i.e. the value ηn+1

such that
ηn+1 = y(tn+1)−ϕh(tn,y(t0),y(t1), . . . ,y(tn)) . (5.9b)

Order. The order of the method is the largest integer p > 0 such that

ηn+1 = y(tn+1)−ϕh(tn,y(t0),y(t1), . . . ,y(tn)) = O(hp+1) (5.10)

for all h > 0, n > 0 and for all sufficiently smooth functions f in (5.1).

Remarks. The order is one less than the power of h in the O( · ) term, so as to account for the fact that
there are ∼ h−1 steps in [0, T ]. The order shows how good the method is locally. Later we shall
show that unless p > 1 the ‘method’ is an unsuitable approximation to (5.1): in particular, p > 1 is
necessary for convergence (see Theorem (5.9)).

The order of Euler’s method. For Euler’s method, (5.6),

ϕh(t,y) = y + hf(t,y).

Substituting the exact solution of (5.1), we obtain from the Taylor theorem

y(tn+1)− [y(tn) + hf(tn,y(tn))] = [y(tn) + hy′(tn) + 1
2h

2y′′(tn) + . . .]− [y(tn) + hy′(tn)]

= O
(
h2
)
. (5.11)

We deduce that Euler’s method is of order 1.

5.2.2 Theta methods

Definition 5.5 (Theta methods). One-step methods of the form

yn+1 = yn + h[θf(tn,yn) + (1− θ)f(tn+1,yn+1)], n = 0, 1, . . . , (5.12)

where θ ∈ [0, 1] is a parameter, are known as theta methods.

Remarks.

(i) If θ = 1, we recover Euler’s method.

(ii) The choices θ = 0 and θ = 1
2 are known respectively as

Backward Euler: yn+1 = yn + hf(tn+1,yn+1), (5.13a)

Trapezoidal rule: yn+1 = yn + 1
2h[f(tn,yn) + f(tn+1,yn+1)]. (5.13b)

(iii) If θ ∈ [0, 1) then the theta method (5.12) is said to be implicit, because in order to find the unknown
vector yn+1 we need to solve a [in general, nonlinear] algebraic system of N equations. The solution
of nonlinear algebraic equations can be done by iteration. For example, for backward Euler, and

letting y
[0]
n+1 = yn, we may use

Direct iteration y
[j+1]
n+1 = yn + hf(tn+1,y

[j]
n+1);

Newton–Raphson: y
[j+1]
n+1 = y

[j]
n+1 −

[
I − h

∂f(tn+1,y
[j]
n+1)

∂y

]−1

[y
[j]
n+1 − yn − hf(tn+1,y

[j]
n+1)];

Modified Newton–Raphson: y
[j+1]
n+1 = y

[j]
n+1 −

[
I − h∂f(tn,yn)

∂y

]−1

[y
[j]
n+1 − yn − hf(tn+1,y

[j]
n+1)].

We will return to this topic later.
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The order of the theta method. It follows from (5.10), (5.12) and Taylor’s theorem that

y(tn+1)− y(tn)−h[θy′(tn) + (1− θ)y′(tn+1)]

=[y(tn) + hy′(tn) + 1
2h

2y′′(tn) + 1
6h

3y′′′(tn)]− y(tn)− θhy′(tn)

− (1− θ)h[y′(tn) + hy′′(tn) + 1
2h

2y′′′(tn)] +O
(
h4
)

=(θ − 1
2 )h2y′′(tn) + ( 1

2θ −
1
3 )h3y′′′(tn) +O

(
h4
)
. (5.13c)

Therefore the theta method is in general of order 1, except that the trapezoidal rule is of order 2.
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Figure 5.2: Error between the numerical solution and the exact solution of the equation y′ = −y, y(0) = 1
for both Euler’s method (first order) and the trapezoidal method (second order).
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Figure 5.3: Error between the numerical solution and the exact solution of the equation y′ = −y+2e−t cos 2t,
y(0) = 0 for both Euler’s method (first order) and the trapezoidal method (second order).

5.3 Multistep methods

It is often useful to use past solution values to enhance the quality of approximation in the computation
of a new value, e.g. the 2-step Adams–Bashforth6 method

yn+2 = yn+1 + 1
2h(3f(tn+1,yn+1)− f(tn,yn)) . (5.14)

Definition 5.6 (Multistep methods). Assuming that yn,yn+1, . . . ,yn+s−1 are available, where s > 1, we
say that

s∑
`=0

ρ`yn+` = h

s∑
`=0

σ`f(tn+`,yn+`), n = 0, 1, . . . , (5.15)

where ρs = 1, is an s-step method. If σs = 0, the method is explicit, otherwise it is implicit.

6 Adams, as in Adams Road.
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Remark. If s > 2, we need to obtain extra starting values y1, . . . ,ys−1 by a different time-stepping
method.

5.3.1 The order of a multistep method

Theorem 5.7. The multistep method (5.15) is of order p > 1 if and only if 7

s∑
`=0

ρ` = 0 , and

s∑
`=0

ρ``
k = k

s∑
`=0

σ``
k−1 for k = 1, . . . , p. (5.16)

Proof. Substituting the exact solution and expanding in Taylor series about tn, we obtain

s∑
`=0

ρ`y(tn+`)− h
s∑
`=0

σ`y
′(tn+`) =

s∑
`=0

ρ`

∞∑
k=0

(`h)k

k!
y(k)(tn)− h

s∑
`=0

σ`

∞∑
k=1

(`h)k−1

(k − 1)!
y(k)(tn)

=

(
s∑
`=0

ρ`

)
y(tn) +

∞∑
k=1

hk

k!

(
s∑
`=0

ρ``
k − k

s∑
`=0

σ``
k−1

)
y(k)(tn) .

Thus, to obtain a local truncation error of order O
(
hp+1

)
regardless of the choice of y, it is necessary

and sufficient that the coefficients of hk vanish for k 6 p, i.e. that (5.16) is satisfied.

Remarks.

(i) Since the Taylor series expansion of polynomials of degree p contains only terms of O
(
hk
)

with
k 6 p, the multistep method (5.15) is of order p iff

s∑
`=0

ρ`Q(tn+`) = h

s∑
`=0

σ`Q
′(tn+`) , ∀ Q ∈ Pp . (5.17)

In particular taking Q(x) = xk for k = 0, . . . , p, tn+` = ` and h = 1, we obtain (5.16).

(ii) If the desire is to have a order p method, then (5.16) might be viewed as p + 1 equations for the
2s + 1 variables ρ` (` = 0, . . . , s − 1) and σ` (` = 0, . . . , s). A key question is how to choose the ρ`
and σ` (given that if 2s > p there is some wriggle room).

Example: the 2-step Adams–Bashforth method. The 2-step Adams–Bashforth method is (see (5.14))

yn+2 − yn+1 = h
(

3
2f(tn+1,yn+1)− 1

2f(tn,yn)
)
. (5.18)

Hence ρ0 = 0, ρ1 = −1, ρ2 = 1, σ0 = − 1
2 , σ1 = 3

2 , σ2 = 0, and

2∑
`=0

ρ` = 0− 1 + 1 = 0 ,

2∑
`=0

ρ``−
2∑
`=0

σ``
0 = (0− 1 + 2)−

(
− 1

2 + 3
2 + 0

)
= 0 ,

2∑
`=0

ρ``
2 − 2

2∑
`=0

σ`` =
(
0− 1 + 22

)
− 2

(
0 + 3

2 + 0
)

= 0 ,

2∑
`=0

ρ``
3 − 3

2∑
`=0

σ``
2 =

(
0− 1 + 23

)
− 3

(
0 + 3

2 + 0
)

= 5
2 6= 0 .

Hence the 2-step Adams–Bashforth method is of order 2.7/14

7 With the standard convention that 00 = 1.
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Question. Is there an easier way to check order?

Answer. Arguably. First we define two polynomials of degree s for a Given a multistep method (5.15):

ρ(w) =

s∑
`=0

ρ`w
` and σ(w) =

s∑
`=0

σ`w
` . (5.19)

Theorem 5.8. The multistep method (5.15) is of order p > 1 iff

ρ(ez)− zσ(ez) = O
(
zp+1

)
as z → 0. (5.20)

Proof. Expanding again in Taylor series,

ρ(ez)− zσ(ez) =

s∑
`=0

ρ`e
`z − z

s∑
`=0

σ`e
`z

=

s∑
`=0

ρ`

( ∞∑
k=0

1

k!
`kzk

)
− z

s∑
`=0

σ`

( ∞∑
k=0

1

k!
`kzk

)

=

∞∑
k=0

1

k!

(
s∑
`=0

`kρ`

)
zk −

∞∑
k=1

1

(k − 1)!

(
s∑
`=0

`k−1σ`

)
zk

=

(
s∑
`=0

ρ`

)
+

∞∑
k=1

1

k!

(
s∑
`=0

`kρ` − k
s∑
`=0

`k−1σ`

)
zk.

The theorem follows from (5.16).

Remarks

(i) The reason that (5.20) is equivalent to (5.16) (and their proofs are almost identical) is because of
the relation between Taylor series and the exponent ehD, where D is the differentiation operator.
Namely

f(x+ h) = (I + hD + 1
2h

2D2 + . . .)f(x) = ehDf(x) . (5.21)

(ii) An equivalent statement of the theorem is that the multistep method (5.15) is of order p > 1 iff

ρ(w)− (logw)σ(w) = O
(
|w − 1|p+1

)
, as w → 1. (5.22)

Example: the 2-step Adams–Bashforth method. For the 2-step Adams–Bashforth method (5.18),

ρ(w) = w2 − w , σ(w) = 3
2w −

1
2 , (5.23a)

and hence

ρ(ez)− zσ(ez) =
[
1 + 2z + 2z2 + 4

3z
3
]
−
[
1 + z + 1

2z
2 + 1

6z
3
]
− 3

2z
[
1 + z + 1

2z
2
]

+ 1
2z +O

(
z4
)

= 5
12z

3 +O
(
z4
)
. (5.23b)

As before, we conclude that the 2-step Adams–Bashforth method is of order 2.7/13

5.3.2 The convergence of multistep methods

Example: absence of convergence. Consider the 2-step method

yn+2 + 4yn+1 − 5yn = h(4fn+1 + 2fn) (5.24)

Now ρ(w) = w2 + 4w − 5, σ(w) = 4w + 2, and it can be verified that the method is of order 3.
Apply this method to the trivial ODE

y′ = 0 , y(0) = 1 . (5.25)
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Then a single step reads
yn+2 + 4yn+1 − 5yn = 0 .

The general solution of this recursion is

yn = c11n + c2(−5)n for n = 0, 1, . . . ,

where c1 and c2 are determined by y0 = c1 + c2 = 1 and the value of y1.

Remark. Although (5.25) is a first-order ODE, (5.24) is a 2-step method and so we need two pieces
of information to fix both c1 and c2, e.g. the value of y1 in addition to the value of y0.

If y1 6= 1, i.e. if there is a small error in the starting values, then c2 6= 0. This has an important
consequence, for suppose that h → 0 such that nh → t > 0. Then n → ∞, which implies that
|yn| → ∞ if c2 6= 0, and hence we cannot recover the exact solution y(t) ≡ 1.

Remark. This can remain true in a calculation on a computer, even if we force c2 = 0 by our choice
of y1, because of the presence of round-off errors.

We deduce that the method (5.24) does not converge! As a more general point, it is important to
realise that many ‘plausible’ multistep methods may not be convergent and we need a theoretical
tool to allow us to check for this feature.

Exercise (with a large amount of algebra). Consider the ODE y′ = −y, y(0) = 1, which has the
exact solution y(t) = e−t. Show that if y1 = e−h, the sequence (yn) grows like h4(−5)n.

7/10
7/11
7/12

Remark. Unless a method is convergent, do not use it.

Definition. We say that a polynomial, ρ(w), obeys the root condition if all its zeros reside in |w| 6 1 and
all zeros of unit modulus are simple.

Theorem 5.9 (The Dahlquist equivalence theorem). The multistep method (5.15) is convergent iff it is
of order p > 1 and the polynomial ρ obeys the root condition.

Proof. See Part III.

Definition. If ρ obeys the root condition, the multistep method (5.15) is sometimes said to be zero-stable:
we will not use this terminology.

Examples. For the Adams–Bashforth method (5.18) we have ρ(w) = (w − 1)w and the root condition is
obeyed. However, for (5.24) we obtain ρ(w) = (w− 1)(w+ 5), the root condition fails and it follows
that there is no convergence.

5.3.3 Maximising order

Subject to convergence, it is frequently a good idea to maximise order. A useful procedure to generate
multistep methods which are convergent and of high order is as follows.

First put z = 0 in (5.20), or w = 1 in (5.22), to deduce from (5.16) that order p > 1 implies that

ρ(1) = 0 . (5.26)

Next choose an arbitrary s-degree polynomial ρ that obeys the root condition and is such that ρ(1) = 0.
To maximize order, we let σ be the s-degree (alternatively, (s−1)-degree for explicit methods) polynomial
arising from the truncation of the Taylor expansion about the point w = 1 of

ρ(w)

logw
.

For example, suppose σ(w) is the s-degree polynomial for an implicit method, then

σ(w) =
ρ(w)

logw
+O

(
|w − 1|s+1

)
, which implies that ρ(ez)− zσ(ez) = O

(
zs+2

)
,

which then implies from (5.20) that the method has an order of at least s+ 1.
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5.3.4 Adams methods

The choice ρ(w) = ws−1(w − 1) corresponds to Adams methods.

Adams–Bashforth methods. If σs = 0, then the method is explicit and of order s (e.g. (5.14) for s = 2).

Adams–Moulton methods. If σs 6= 0, then the method is implicit and of order (s+1). For example, letting
s = 2 and ξ = w − 1, we obtain the 3rd-order Adams–Moulton method by expanding

w(w − 1)

logw
=

ξ + ξ2

log(1 + ξ)
=

ξ + ξ2

ξ − 1
2ξ

2 + 1
3ξ

3 − · · ·
=

1 + ξ

1− 1
2ξ + 1

3ξ
2 − · · ·

= (1 + ξ)[1 + ( 1
2ξ −

1
3ξ

2) + ( 1
2ξ −

1
3ξ

2)2 +O
(
ξ3
)
] = 1 + 3

2ξ + 5
12ξ

2 +O
(
ξ3
)

= 1 + 3
2 (w − 1) + 5

12 (w − 1)2 +O
(
|w − 1|3

)
= − 1

12 + 2
3w + 5

12w
2 +O

(
|w − 1|3

)
.

Therefore the 2-step, 3rd-order Adams–Moulton method is

yn+2 − yn+1 = h
[
− 1

12f(tn,yn) + 2
3f(tn+1,yn+1) + 5

12f(tn+2,yn+2)
]
.
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Figure 5.4: Error between the numerical solution and the exact solution of the equation y′ = −y, y(0) = 1
for both the 2-step Adams–Bashforth method (second order) and the 2-step Adams–Moulton method (third
order).

5.3.5 BDF methods

For reasons that will become clear later (see page 46), we wish to consider s-step, s-order methods such
that σ(w) = σsw

s for some σs ∈ R \ {0}. Hence, from (5.15),

s∑
`=0

ρ`yn+` = hσsf(tn+s,yn+s), n = 0, 1, . . . . (5.27)

Such methods are called backward differentiation formulae (BDF).

Lemma 5.10. The form of the s-step BDF method is

ρ(w) = σs

s∑
`=1

1

`
ws−`(w − 1)`, where σs =

(
s∑
`=1

1

`

)−1

. (5.28)

Proof. We need to solve for the ρ` in order to satisfy the s-order condition (5.22),

ρ(w) = σsw
s logw +O

(
|w − 1|s+1

)
.
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Figure 5.5: The numerical solution to the equation is y′ = −y, y(0) = 1 using the 2-step method with
ρ(w) = w2 − 2.01w + 1.01, σ(w) = 0.995w− 1.005. Thus, ρ has a zero at 1.01, the method is not convergent,
and the smaller h the worse the solution.
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Figure 5.6: Plot showing that accuracy may deteriorate near a singularity. Plotted is the error to the
solution of y′ = 2y/t+ (y/t)2, y(1) = 1/(c− 1) using the 2-step Adams–Bashforth method, for various values
of c. The exact solution is y(t) = t2/(c− t), with singularity at c. Accuracy worsens the nearer we are to the
singularity.
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To do this, rather than using Gaussian elimination or similar, we make the ‘dirty trick ’ observation that

logw = − log

(
1

w

)
= − log

(
1− w − 1

w

)
=

∞∑
`=1

1

`

(
w − 1

w

)`
.

Thence

ρ(w) = σsw
s
∞∑
`=1

1

`

(
w − 1

w

)`
+O

(
|w − 1|s+1

)
,

and so
s∑
`=0

ρ`w
` = σs

s∑
`=1

1

`
ws−` (w − 1)

`
.

The result follows from collecting powers of ws on the right, and then picking σs so that ρs = 1.

Examples

(i) Let s = 2. Then substitution in (5.28) yields σ2 = 2
3 , and some straightforward algebra results in

ρ(w) = w2 − 4
3w + 1

3 = (w − 1)(w − 1
3 ). Hence ρ satisfies the root condition, and the 2-step BDF is

yn+2 − 4
3yn+1 + 1

3yn = 2
3hf(tn+2,yn+2). (5.29a)

(ii) Similarly for s = 3 we find that ρ satisfies the root condition, and that the 3-step BDF is

yn+3 − 18
11yn+2 + 9

11yn+1 − 2
11yn = 6

11hf(tn+3,yn+3). (5.29b)

Convergence of BDF methods. We cannot take it for granted that BDF methods are convergent (i.e. that
ρ satisfies the root condition). It is possible to prove that they are convergent iff s 6 6. They must
not be used outside this range!

5.4 Runge–Kutta methods

5.4.1 Quadrature formulae

We recall the quadrature formula (3.8) (with weight function w ≡ 1 and extra factors of h)∫ h

0

f(t)dt ≈ h
ν∑
`=1

b`f(c`h) . (5.30a)

If the weights b` are chosen in accordance with (3.10), i.e. if

hb` =

∫ h

0

ν∏
j=1
j 6=`

t− hcj
hc` − hcj

dt, ` = 1, 2, . . . , ν , (5.30b)

this quadrature formula is exact for all polynomials of degree ν−1. Further, provided that
∏ν
k=1(t−hck)

is orthogonal w.r.t. the weight function w ≡ 1, 0 6 t 6 h, the formula is exact for all polynomials of
degree 2ν − 1.

Suppose that we wish to solve the ‘ODE’

y′ = f(t) , y(0) = y0 . (5.31a)

The exact solution is

y(tn+1) = y(tn) +

∫ tn+1

tn

f(t)dt , (5.31b)
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and we can approximate it by quadrature. In general, we obtain the time-stepping scheme

yn+1 = yn + h

ν∑
`=1

b`f(tn + c`h) n = 0, 1, . . . , (5.31c)

where h = tn+1 − tn (and the points tn need not be equi-spaced).8/10
8/11
8/14 Formula (5.31c) holds for the special case when f ≡ f(t). The natural question is whether we can

generalize this to genuine ODEs of the form (5.1), i.e. when f ≡ f(t,y). In this case we can formally
conclude that

y(tn+1) = y(tn) +

∫ tn+1

tn

f(t,y(t))dt , (5.32a)

and this can be ‘approximated’ by

yn+1 = yn + h

ν∑
`=1

b`f(tn + c`h,y(tn + c`h)). (5.32b)

except that, of course, the vectors y(tn + c`h) are unknown! Runge–Kutta methods are a means of im-
plementing (5.32b) by replacing unknown values of y by suitable linear combinations. Specifically, the
y(tn + c`h) can be approximated by another quadrature using approximate values of y(tn+cjh) obtained
earlier:

y(tn+c`h) = y(tn) +

∫ tn+c`h

tn

f(t,y(t)) dt ≈ y(tn) + h

`−1∑
j=1

a`,jf(tn+cjh,y(tn+cjh)) , (5.33a)

where, in order that the quadratures are exact on constants,

c` =

`−1∑
j=1

a`,j . (5.33b)

Applying f to both sides of this formula we obtain

f(tn+c`h,y(tn+c`h) ≈ f

tn+c`h,y(tn) + h

`−1∑
j=1

a`,jf(tn+cjh,y(tn+cjh))

 .

Finally, letting k` ≈ f(tn+c`h,y(tn+c`h)), we arrive at the general form of an ν-stage explicit Runge–Kutta
method (RK):

k` = f

tn + c`h,yn + h

`−1∑
j=1

a`,jkj

 , ` = 1 . . . ν, (5.34a)

yn+1 = yn + h

ν∑
`=1

b`k` ,

ν∑
`=1

b` = 1 , (5.34b)

where
∑ν
`=1 b` = 1 in order that the quadratures are exact on constants. Alternatively, written out with

more details:
k1 = f(tn,yn), c1 = 0,

k2 = f(tn + c2h,yn + ha2,1k1), c2 = a2,1,

k3 = f(tn + c3h,yn + h(a3,1k1 + a3,2k2)), c3 = a3,1 + a3,2,...
...

kν = f

tn + cνh,yn + h

ν−1∑
j=1

aν,jkj

 , cν =

ν−1∑
j=1

aν,j ,

yn+1 = yn + h

ν∑
`=1

b`k` ,

ν∑
`=1

b` = 1 .

8/12
8/13
Demos

The choice of the RK coefficients a`,j is motivated in the first instance by order considerations.
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Notation. In order to make our choice of RK coefficients we will need to use the Taylor expansion of a
vector function, so we need to be clear what we mean. We adopt the notation

(f(t+ h,y + d))` = f`(t+ h,y + d)

= f`(t,y) + h
∂f`
∂t

(t,y) + dj
∂f`
∂yj

(t,y) +O
(
h2, |d|2

)
=

(
f(t,y) + h

∂f

∂t
(t,y) + d

∂f

∂y
(t,y)

)
`

+O
(
h2, |d|2

)
=

(
f(t,y) + h

∂f

∂t
(t,y) + d ·∇f(t,y)

)
`

+O
(
h2, |d|2

)
.

5.4.2 2-stage explicit RK methods

Let us analyse the order of two-stage explicit methods where, with ν = 2 above,

k1 = f(tn,yn), (5.35a)

k2 = f(tn + c2h,yn + c2hk1), (5.35b)

yn+1 = yn + h (b1k1 + b2k2) . (5.35c)

Now Taylor-expand about (tn,yn) to obtain

k2 = f(tn + c2h,yn + c2hf(tn,yn))

= f(tn,yn) + c2h

(
∂f

∂t
(tn,yn) + f(tn,yn) ·∇f(tn,yn)

)
+O

(
h2
)
.

From (5.1) we have that y′ = f(t,y), hence

y′′ =
∂f

∂t
(t,y) + y′ ·∇f(t,y) =

∂f

∂t
(t,y) + f(t,y) ·∇f(t,y) .

Therefore, in terms of the exact solution yn = y(tn), we obtain

k1 = y′(tn) ,

k2 = y′(tn) + c2hy
′′(tn) +O

(
h2
)
.

Consequently, the local error is

y(tn+1)−ϕh(tn,y(tn)) =y(tn+1)− (y(tn) + h (b1k1 + b2k2))

=
(
y(tn) + hy′(tn) + 1

2h
2y′′(tn) +O

(
h3
))

−
(
y(tn) + (b1 + b2)hy′(tn) + b2c2h

2y′′(tn) +O
(
h3
))

=(1− b1 − b2)hy′(tn) +
(

1
2 − b2c2

)
h2y′′(tn) +O

(
h3
)
. (5.37)

We deduce that the explicit RK method is of order 2 if b1 + b2 = 1 and b2c2 = 1
2 . A popular choice is

b1 = 0, b2 = 1 and c2 = 1
2 (e.g. see Figure 5.7).

Remark. That no explicit 2-stage RK method can be of third order or greater can be demonstrated by
applying it to y′ = λy.

5.4.3 General RK methods

A general ν-stage Runge–Kutta method takes the form

k` = f

tn + c`h,yn + h

ν∑
j=1

a`,jkj

 where

ν∑
j=1

a`,j = c`, ` = 1, 2, . . . , ν, (5.38a)

yn+1 = yn + h

ν∑
`=1

b`k`. (5.38b)
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Figure 5.7: Solutions to the equation y′ = αy(1− y) using the 2nd order RK method

k1 = f(yn) , k2 = f
(
yn + 1

2
hk1
)
, yn+1 = yn + hk2 (i.e. b1 = 0, b2 = 1 and c2 = 1

2
).

For every α > 0 and every y0 > 0 it is straightforward to verify that limt→∞ y(t) = 1. However, an unwise
choice of h in the RK method can produce trajectories that tend to wrong limits. Here α = 10 and it can be
seen that quite small ‘excess’ in the value of h can be disastrous: h = 0.19 is good, whilst h = 0.25 is bad. An
important aspect of this example is that, although the second graph displays a wrong solution trajectory, it
looks ‘right’ – there are no apparent instabilities, no chaotic components, no oscillation on a grid scale, no
tell-tale signs that something has gone astray. Thus – and this is lost on many users of numerical methods –
it is not enough to use your eyes. Use your brain as well!

We denote it by the so-called Butcher’s table

c A

bT =

c1 a1,1 a1,2 · · · a1,ν

c2 a2,1 a2,2 · · · a2,ν

...
...

...
. . .

...
cν aν,1 aν,2 · · · aν,ν

b1 b2 · · · bν

(5.38c)

The explicit RK method corresponds to the case when a`,j = 0 for ` 6 j, i.e. when the matrix A is
strictly lower triangular. Otherwise, an RK method is implicit, in particular diagonal implicit if A is lower
triangular.

Definition. A method is said to be consistent if it has an order greater than 0.

Convergence. It can be shown that consistency is a necessary and sufficient condition for convergence of
Runge–Kutta methods.

Example: a 2-stage implicit method. Consider the 2-stage method

k1 = f
(
tn,yn + 1

4h(k1 − k2)
)
, (5.39a)

k2 = f
(
tn + 2

3h,yn + 1
12h(3k1 + 5k2)

)
, (5.39b)

yn+1 = yn + 1
4h(k1 + 3k2). (5.39c)

Mathematical Tripos: IB Numerical Analysis 41 © S.J.Cowley@damtp.cam.ac.uk, Lent 2014



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

In order to analyse the order of this method, we restrict our attention to scalar, autonomous equa-
tions of the form y′ = f(y) (although this procedure might lead to loss of generality for methods of
order greater than or equal to 5). For brevity, we use the convention that all functions are evaluated
at y = y(tn), e.g. fy = df

dy (y(tn)). Thus,

k1 = f + 1
4h(k1 − k2)fy + 1

32h
2(k1 − k2)2fyy +O

(
h3
)
,

k2 = f + 1
12h(3k1 + 5k2)fy + 1

288h
2(3k1 + 5k2)2fyy +O

(
h3
)
.

Hence k1, k2 = f +O(h), and so substitution in the above equations yields

k1 = f +O
(
h2
)

and k2 = f + 2
3hffy +O

(
h2
)
.

Substituting again, we obtain

k1 = f − 1
6h

2ff2
y +O

(
h3
)
,

k2 = f + 2
3hffy + h2

(
5
18ff

2
y + 2

9f
2fyy

)
+O

(
h3
)

and hence

yn+1 = y + hf + 1
2h

2ffy + 1
6h

3(ff2
y + f2fyy) +O

(
h4
)
.

But y′ = f , and hence
y′′ = ffy and y′′′ = ff2

y + f2fyy .

We deduce from Taylor’s theorem that the method is at least of order 3.

Remark. It is possible to verify that it is not of order 4, for example applying it to the equation
y′ = λy.

A better way. A better way of deriving the order of Runge-Kutta methods is based on graph-theoretic
approaches.

5.4.4 Collocation (Unlectured)

Method 5.11 (Collocation). Let p be a polynomial of degree s such that

p(tn) = yn, p′(tn + cih) = f(tn + cih, p(tn + cih)), i = 1, . . . , s. (5.40)

Then we let yn+1 = p(tn+1) be the approximation.

Lemma 5.12. Let `i be the fundamental Lagrange polynomials of degree s− 1 for the knots ci. Then the
collocation method is identical to the RK method with parameters

aij =

∫ ci

0

`j(t) dt, bi =

∫ 1

0

`j(t) dt . (5.41)

Proof. Let τi = tn+cih and let p satisfy (5.40). Then we have p′(t) =
∑s
j=1 p

′(τj)`j(
t−tn
h ) and integration

yields

p(t) = yn + h
∑

p′(τj)

∫ t−tn
h

0

`j(τ) dτ .

Set ki = p′(τi)
(5.40)

= f(τi, p(τi)). Then p(τi) = yn + h
∑s
j=1 aijkj , therefore

ki = f(τi, p(τi)) = f(tn + cih, yn + h

s∑
j=1

aijkj) (5.42a)

yn+1 = p(tn+1) = p(tn) + h
∑

bip
′(τi) = yn + h

∑
biki . (5.42b)

Theorem 5.13 (No proof). Let ω(t) =
∏s
i=1(t−ci) be orthogonal on the interval [0, 1] to all polynomials

of degree r − 1 6 s− 1. Then the (highly implicit) RK method with parameters (5.41) is of order s+ r.

The highest order of an s-stage implicit RK method is 2s, and corresponds to collocation at zeros of the
Legendre polynomial (Gauss-Legendre RK method). Construction of explicit methods with high order is
an art form.
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6 Stiff Equations

6.1 Stiffness: the problem

Consider the linear system

y′ = Ay with A =

(
−100 1

0 − 1
10

)
, (6.1)

where we note that A is diagonalisable. The exact solution is a linear combination of e−100t and e−t/10:
the first decays very rapidly to zero, whereas the second decays gently. Suppose that we solve the ODE
with the forward Euler method. As we shall see below the convergence requirement that limn→∞ yn = 0
(for fixed h > 0) then leads to a stringent restriction on the size of h.

With greater generality, consider the matrix differential equation

y′ = By , (6.2)

for a M ×M constant diagonalisable matrix B.

Exact solution. Define

etB =

∞∑
k=0

1

k!
tkBk . (6.3a)

Then
d

dt

(
etB
)

=

∞∑
k=1

1

(k − 1)!
tk−1Bk = BetB , (6.3b)

and hence the solution to (6.2) is
y = etBy0 . (6.3c)

Let the eigenvalues of B be λ1, . . . , λM , and denote the corresponding linearly-independent eigen-
vectors by v1,v2, . . . ,vM . Define D = diagλ and V = (v1 v2 . . . vM ). Then B = VDV−1 and

etB =

∞∑
k=0

1

k!
tk(VDV−1)k = V

( ∞∑
k=0

1

k!
tkDk

)
V−1 = VetDV−1 , (6.4a)

where

etD =


etλ1 0 . . . 0

0 etλ2
. . . 0

...
. . .

. . .
...

0 0 . . . etλM

 . (6.4b)

Further, if we assume that Reλ` < 0, ` = 1, . . . ,M , then we conclude that

lim
t→∞

y(t) = lim
t→∞

VetDV−1y0 = 0 . (6.5)

Numerical solution. Suppose that we use Euler’s method to solve this equation, then

yn+1 = (I + hB)yn . (6.6a)

Hence, by induction,

yn = (I + hB)ny0

=
(
VV−1 + hVDV−1

)n
y0

=
(
V(I + hD)V−1

)n
y0

= V(I + hD)nV−1y0 , (6.6b)

where (I+hD)n is a diagonal matrix with entries (1+hλ`)
n, ` = 1, . . . ,M . Therefore limn→∞ yn = 0

for all initial values y0 iff
|1 + hλ`| < 1 , ` = 1, . . . ,M. (6.7)
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For example (6.1) we thus require

|1− 1
10h| < 1 and |1− 100h| < 1, i.e. h < 1

50 .

This restriction, necessary to recover the correct asymptotic behaviour, is not do with local accuracy.
At large times, or equivalently for large n, the rapidly decaying e−100t component is exceedingly
small. The restriction is necessary to ensure that this component is modelled with sufficient accuracy
that it does not grow to infect the numerical solution.

9/10
9/11
9/14 6.2 Linear stability

Definition: stiffness. We say that the ODE y′ = f(t,y) is stiff if (for some methods) we need to depress
h to maintain stability well beyond requirements of accuracy. An important example of stiff systems
occurs for linear equations when Reλ` < 0, ` = 1, 2, . . . ,M , and the quotient max |λk|/min |λk| is
large: a ratio of 1020 is not unusual in real-life problems.

Remark. Stiff equations, mostly nonlinear, occur throughout applications, whenever we have two (or
more) different timescales in the ODE. A typical example is the equations of chemical kinetics,
where each timescale is determined by the speed of reaction between two compounds: such speeds
can differ by many orders of magnitude.

Definition: linear stability domain. Suppose that a numerical method, applied to y′ = λy, y(0) = 1, with
constant h, produces the solution sequence {yn}n∈Z+ . We call the set

D = {hλ ∈ C : lim
n→∞

yn = 0}

the linear stability domain of the method.9/12
9/13

Definition: A-stability. The set of λ ∈ C for which the exact solution to y′ = λy decays as t→∞ is the
left half-plane C− = {z ∈ C : Re z < 0}. A good criterion for a ‘stiff’ method is that it recovers the
correct asymptotics for all stable linear equations, i.e. that the numerical solution always decays to
zero when the exact solution does. Such a method, i.e. one such that C− ⊆ D, is said to be A-stable.

Example: Euler’s method. We have already deduced, see (6.7), that for Euler’s method yn → 0 iff
|1 + hλ| < 1. Hence, as illustrated in figure (6.8),

D = {z ∈ C : |1 + z| < 1}.

We conclude that Euler’s method is not A-stable.

-2 -1.5 -1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Forward Euler

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

Two-stage implicit RK

Figure 6.8: Linear stability domains: Euler’s method and a 2-stage implicit RK. See also the A-Stabilty
demonstration at http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php.

Example: Backward Euler method. Solving y′ = λy with the backward Euler method we obtain

yn+1 =
1

1− hλ
yn ,
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and thus, by induction,

yn =

(
1

1− hλ

)n
y0 .

Hence
D = {z ∈ C : |1− z| > 1} ,

i.e. the domain outside the unit circle centred on 1. We conclude that the backward Euler method
is A-stable.

Example: trapezoidal rule. Solving y′ = λy with the trapezoidal rule, we obtain

yn+1 =
1 + 1

2hλ

1− 1
2hλ

yn ,

and thus, by induction,

yn =

(
1 + 1

2hλ

1− 1
2hλ

)n
y0 .

Therefore

z ∈ D ⇔
∣∣∣∣1 + 1

2z

1− 1
2z

∣∣∣∣ < 1

⇔
(
1 + 1

2z
) (

1 + 1
2 z̄
)
<
(
1− 1

2z
) (

1− 1
2 z̄
)

⇔ z + z̄ < 0

⇔ Re z < 0

We deduce that D = C−. Hence, the trapezoidal rule is A-stable, and it is not necessary to reduce
the step-size prevent instabilities.

Remark. Note that A-stability does not mean that any step size will do! We need to choose h small
enough to ensure the right accuracy, but we do not want to have to depress it much further to
prevent instability.

Multistep methods. The determination of D for multistep methods is considerably more difficult. Further,
their A-stability is, more often than not, disappointing. This is because, according to the second
Dahlquist barrier, no multistep method of order p > 3 may be A-stable. Note that the p = 2 barrier
for A-stability is attained by the trapezoidal rule (which can be viewed as the 1-step Adams-Moulton
method).

-7 -6 -5 -4 -3 -2 -1 0 1
-3

-2

-1

0

1

2

3

2-step Adams-Moulton

-2 -1 0 1 2 3 4 5

-2

-1

0

1

2

2-step BDF

Figure 6.9: Linear stability domains: 2-step Adams-Moulton and 2-step BDF. See also the A-Stabilty
demonstration at http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php.
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6.3 Overcoming the Dahlquist barrier

The Dahlquist barrier implies that, in our quest for higher-order methods with good stability properties,
we need to pursue one of the following strategies:

• either relax the definition of A-stability,

• or consider other methods in place of multistep.

The two courses of action will be considered next.

Stiffness and BDF methods. Inasmuch as no multistep method of order p > 3 may be A-stable, the
stability properties of convergent BDF methods are satisfactory for many stiff equations (even
though only the 2-step BDF method is A-stable). This is because in many ‘real-life’ stiff linear8

systems, the eigenvalues are not just in C− but also well away from iR. Hence schemes that are
stable well away from iR can be competitive. This is the case for all BDF methods of order p 6 6
(i.e. all convergent BDF methods), since they share the feature that the linear stability domain D
includes a wedge about (−∞, 0): such methods are said to be A0-stable.

Stiffness and Runge–Kutta. Unlike multistep methods, implicit high-order RK may be A-stable. For ex-
ample, recall the 3rd-order method (5.39a)-(5.39c):

k1 = f
(
tn,yn + 1

4h(k1 − k2)
)
, (6.8a)

k2 = f
(
tn + 2

3h,yn + 1
12h(3k1 + 5k2)

)
, (6.8b)

yn+1 = yn + 1
4h(k1 + 3k2). (6.8c)

Applying this scheme to y′ = λy, we have that

hk1 = hλ
(
yn + 1

4hk1 − 1
4hk2

)
,

hk2 = hλ
(
yn + 1

4hk1 + 5
12hk2

)
.

This is a linear system for hk1 and hk2, whose solution is[
hk1

hk2

]
=

[
1− 1

4hλ
1
4hλ

− 1
4hλ 1− 5

12hλ

]−1 [
hλyn
hλyn

]
=

hλyn

1− 2
3hλ+ 1

6 (hλ)2

[
1− 2

3hλ
1

]
.

Therefore

yn+1 = yn + 1
4hk1 + 3

4hk2 =
1 + 1

3hλ

1− 2
3hλ+ 1

6h
2λ2

yn.

Let

r(z) =
1 + 1

3z

1− 2
3z + 1

6z
2
,

then yn+1 = r(hλ)yn, and hence, by induction,

yn = [r(hλ)]ny0 .

We deduce that
D = {z ∈ C : |r(z)| < 1} .

We wish to prove that |r(z)| < 1 for every z ∈ C−, since this is equivalent to A-stability. This can be
done by a technique that can be applied to other RK methods. According to the maximum modulus
principle from Complex Analysis9, if g is analytic in the closed complex domain V then |g| attains
its maximum on ∂V. We let g = r. This is a rational function, hence its only singularities are the

8 The analysis of nonlinear stiff equations is difficult and well outside the scope of this course.
9 If you are taking Complex Methods then this is your chance to learn the statement of the maximum modulus principle.
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poles 2 ± i
√

2, which we note lie in the right-half plane, i.e. outside of C−. Hence g is analytic in
V = clC− = {z ∈ C : Re z 6 0}. Therefore it attains its maximum in V on ∂V = iR and

A-stability ⇔ |r(z)| < 1, z ∈ C− ⇔ |r(it)| 6 1, t ∈ R.

In turn,
|r(it)|2 6 1 ⇔ |1− 2

3 it− 1
6 t

2|2 − |1 + 1
3 it|2 > 0.

But |1− 2
3 it− 1

6 t
2|2 − |1 + 1

3 it|2 = 1
36 t

4 > 0, and it follows that the method is A-stable.

Example: the 2-stage Gauss–Legendre method. It is possible to prove that the 2-stage Gauss–Legendre
method

k1 = f(tn + ( 1
2 −

√
3

6 )h,yn + 1
4hk1 + ( 1

4 −
√

3
6 )hk2), (6.9a)

k2 = f(tn + ( 1
2 +

√
3

6 )h,yn + ( 1
4 +

√
3

6 )hk1 + 1
4hk2), (6.9b)

yn+1 = yn + 1
2h(k1 + k2) , (6.9c)

is of order 4, e.g. by expansion for y′ = f(y) (note: expansions become messy for y′ = f(t,y)).
Applying it to y′ = λy we obtain, with z = hλ,

hk1 = z
(
yn + 1

4hk1 +
(

1
4 −

√
3

6

)
hk2

)
, (6.10a)

hk2 = z
(
yn +

(
1
4 +

√
3

6

)
hk1 + 1

4hk2

)
. (6.10b)

This is a linear system with unknowns hk1 and hk2 whose solution is

[
hk1

hk2

]
=

[
1− 1

4z −( 1
4 −

√
3

6 )z

−( 1
4 +

√
3

6 )z 1− 1
4z

]−1 [
zyn

zyn

]

=
1

det(A)

[
1− 1

4z ( 1
4 +

√
3

6 )z

( 1
4 −

√
3

6 )z 1− 1
4z

][
zyn

zyn

]
.

We need
hk1 + hk2 = 2z

det(A) yn = 2z
1− 1

2 z+
1
12 z

2 yn ,

Hence

yn+1 = yn + 1
2 (hk1 + hk2) =

1 + 1
2z + 1

12z
2

1− 1
2z + 1

12z
2
yn , (6.11a)

and so by induction

yn = [r(z)]ny0 , where r(z) =
1 + 1

2z + 1
12z

2

1− 1
2z + 1

12z
2
. (6.11b)

r(z) is a rational function, and its only singularities are the poles 3 ± i
√

3 which lie in the right
half-lane; hence r is analytic in V = clC− = {z ∈ C : Re z 6 0}. Therefore it attains its maximum
in V on ∂V = iR and

A-stability ⇔ |r(z)| < 1, z ∈ C− ⇔ |r(it)| 6 1, t ∈ R.

But |r(it)| = 1, and thus the Gauss–Legendre method is A-stable. Moreover, since r(z) = 1
r(−z) we

deduce that D = C−.

Theorem 6.1 (No proof). No explicit Runge-Kutta method may be A-stable (or even A0-stable).
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7 Implementation of ODE Methods

The step size h is not some preordained quantity: it is a parameter of the method (in reality, many
parameters, since we may vary it from step to step). However, the basic input of a well-written computer
package for ODEs is not the step size but the error tolerance: the level of precision, as required by the
user. The choice of h > 0 is an important tool at our disposal to keep a local estimate of the error beneath
the required tolerance in the solution interval. In other words, we need not only a time-stepping algorithm,
but also mechanisms for error control and rules for choosing the step size.10/10

7.1 Error constants

Suppose that we wish to monitor the error of the trapezoidal rule

yn+1 = yn + 1
2h[f(yn) + f(yn+1)] , (7.1a)

for which we already know that the order is 2. If we substitute the true solution, yn = y(tn) into (7.1a)
we deduce that (see also (5.13c) with θ = 1

2 )

y(tn+1)− {y(tn) + 1
2h[y′(tn) + y′(tn+1)]} = cTRh

3y′′′(tn) +O
(
h4
)
, (7.1b)

where

cTR = − 1
12 . (7.1c)

To estimate the error in a single step we assume that yn = y(tn) and use (7.1a) and (7.1b) to deduce
that

y(tn+1)− yTR
n+1 = cTRh

3y′′′(tn) +O
(
h4
)
. (7.1d)

Therefore, the error in each step is increased roughly by cTRh
3y′′′(tn) (although this error estimate does

not help much because the value y′′′(tn) is unknown).

Definition. The number cTR is called the error constant of the trapezoidal rule.

Each multistep method (but not RK!) has its own error constant. For example, the 2nd order 2-step
Adams–Bashforth method, (5.18),

yn+1 − yn = 1
2h
[
3f(tn,yn)− f(tn−1,yn−1)

]
, (7.2a)

has the error constant cAB = 5
12 (see (5.23b)), i.e.

y(tn+1)− yAB
n+1 = cABh

3y′′′(tn) +O(h4) . (7.2b)
10/11
10/12
10/13
10/14
Demos

7.2 The Milne device

The idea behind the Milne device is to use two multistep methods of the same order, one explicit and the
second implicit (e.g., (7.2a) and (7.1a), respectively), to estimate the local error of the implicit method.
For example, locally,

yAB
n+1 ≈ y(tn+1)− cABh

3y′′′(tn) = y(tn+1)− 5
12h

3y′′′(tn),

yTR
n+1 ≈ y(tn+1)− cTRh

3y′′′(tn) = y(tn+1) + 1
12h

3y′′′(tn).

Subtracting, we obtain the estimate

h3y′′′(tn) ≈ − 1

cAB − cTR

(
yAB
n+1 − yTR

n+1

)
= −2(yAB

n+1 − yTR
n+1), (7.3a)

therefore
y(tn+1)− yTR

n+1 ≈ −
cTR

cAB − cTR
(yAB
n+1 − yTR

n+1) = 1
6 (yAB

n+1 − yTR
n+1) . (7.3b)

We use the right hand side as an estimate of the local error.

Remark. TR is a far better method than AB: it is A-stable, hence its global behaviour is superior. We
employ AB solely to estimate the local error. This adds very little to the overall cost of TR, since
AB is an explicit method.
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7.3 Implementation of the Milne device (and Predictor-Corrector methods)

To implement the Milne device, we work with a pair of multistep methods of the same order, one explicit
(predictor) and the other implicit (corrector), e.g. the third-order Adams–Bashforth and Adams–Moulton
methods respectively:

Predictor : yP
n+2 = yn+1 + h[ 5

12f(tn−1,yn−1)− 4
3f(tn,yn) + 23

12f(tn+1,yn+1)], (7.4a)

Corrector : yC
n+2 = yn+1 + h[− 1

12f(tn,yn) + 2
3f(tn+1,yn+1) + 5

12f(tn+2,yn+2)] . (7.4b)

The predictor is employed not just to estimate the error of the corrector, but also to provide a good initial
guess in the solution of the implicit corrector equations. Typically, for nonstiff equations, we iterate
correction equations at most twice, while stiff equations require iteration to convergence, otherwise the
typically superior stability features of the corrector are lost.

Depending on whether an error tolerance has been achieved, we amend the step size h. To this end let
εTOL > 0 be a user-specified tolerance: the maximal error that we wish to allow in approximating the
ODE. Having completed a single step and estimated the error, there are three possibilities:

(a) α εTOL 6 ‖ error ‖ 6 εTOL, say with α = 1
10 : accept the step, continue to tn+2 with the same step

size;

(b) ‖ error ‖ < αεTOL: accept the step and increase the step length;

(c) ‖ error ‖ > εTOL: reject the step, recommence integration from tn with smaller h.

In the case of (b) and (c), amending step size can be done with polynomial interpolation, although this
means that we need to store past values in excess of what is necessary for simple implementation of both
multistep methods.

Error estimation per unit step. Let e be our estimate of local error. Then e/h is our estimate for the
global error in an interval of unit length. It is usual to require the latter quantity not to exceed
εTOL since good implementations of numerical ODEs should monitor the accumulation of global
error. This is called error estimation per unit step.

Demonstration. See also the Predictor-Corrector Methods demonstration at

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php.

7.4 Embedded Runge–Kutta methods

The situation is more complicated with RK, since no single error constant determines local growth of the
error. The approach of embedded RK requires, again, two (typically explicit) methods: an RK method of
ν stages and order p, say, and another method, of ν + ` stages, ` > 1, and order p+ 1, such that the first
ν stages of both methods are identical. The latter condition ensures that the cost of implementing the
higher-order method is marginal, once we have computed the lower-order approximation. For example,
consider (and verify)

k1 =f(tn,yn),

k2 =f
(
tn + 1

2h,yn + 1
2hk1

)
,

y
[1]
n+1 =yn + hk2;

 order 2, local error O
(
h3
)

k3 =f(tn + h,yn − hk1 + 2hk2),

y
[2]
n+1 =yn + 1

6h(k1 + 4k2 + k3) .


order 3, local error O

(
h4
)

We then estimate the error y
[1]
n+1 − y(tn+1) by

y
[1]
n+1 − y(tn+1) ≈ y[1]

n+1 − y
[2]
n+1 . (7.5)

Remark. While it might look paradoxical, at least at first glance, the only purpose of the higher-order
method is to provide error control for the lower-order one.
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Figure 7.10: Adjustments of the step size in the solution of the equation y′ = −y + 2e−t cos 2t, y(0) = 0.

7.5 The Zadunaisky device

Suppose that the ODE y′ = f(t,y), y(0) = y0, is solved by an arbitrary numerical method of order p and
that we have stored (not necessarily equidistant) past solution values yn,yn−1, . . . ,yn−p. We form an

interpolating pth degree polynomial (with vector coefficients) d such that d(tn−i) = yn−i, i = 0, 1, . . . , p,
and consider the differential equation

z′ = f(t, z) + d′(t)− f(t,d), z(tn) = yn. (7.6)

There are two important observations with regard to (7.6):

(i) Since d(t) − y(t) = O
(
hp+1

)
, and y′(t) ≡ f(t,y(t)), the term d′(t) − f(t,d) is usually small.

Therefore, (7.6) is a small perturbation of the original ODE.

(ii) The exact solution of (7.6) is z(t) = d(t).

So, having produced yn+1 with our numerical method, we proceed to evaluate zn+1 as well, using exactly
the same method and implementation details. We then evaluate the error in zn+1, namely zn+1−d(tn+1),
and use it as an estimate of the error in yn+1.

7.6 Not the last word

There is still very much more that we could say on the numerical solution of ODEs (let alone PDEs).
We have tended to concentrate on the accuracy of solutions and error control. However, many equations
have extra properties that we have not addressed, e.g. the solutions might be constrained to surfaces, or
in physics, the system might conserve energy (in which case it might be good if the numerical scheme
conserved ‘energy’). A preliminary discussion of one of these points is given on the Symplectic Integrators
page at

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php.

There it is shown that in certain circumstances a modified first-order Euler method can have advantages
over a higher-order adaptive RK method.

7.7 Solving nonlinear algebraic systems

We have already observed that the implementation of an implicit ODE method, whether multistep or
RK, requires the solution of (in general, nonlinear) algebraic equations in each step. For example, for an
s-step method, we need to solve in each step the algebraic system

yn+s = σshf(tn+s,yn+s) + v, (7.7)
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where the vector v can be formed from past (hence known) solution values and their derivatives. The
easiest approach is functional iteration

y
[j+1]
n+s = σshf(tn+s,y

[j]
n+s) + v, j = 0, 1, . . . , (7.8)

where y
[0]
n+s is typically provided by the predictor scheme, i.e. in the notation of (7.4a)

y
C [0]
n+s = yP

n+s.

This is effective for nonstiff equations but fails for stiff ODEs, since the convergence of this iterative
scheme requires a similar restriction on h as that we strive to avoid by choosing an implicit method in
the first place!11/10

If the ODE is stiff, we might prefer a Newton–Raphson method. Suppose that we wish to solve

y = g(y) . (7.9)

Let y[j] be the jth approximation to the solution. We linearise (7.9) locally about y = y[j] +d to obtain

y[j] + d = g(y[j] + d) ≈ g(y[j]) + d ·∇g(y[j]) , (7.10a)

or in suffix notation, after a little rearrangement,(
δik −

∂gi
∂yk

(y[j])

)
dk ≈ gi(y[j])− y[j]

i . (7.10b)

Define the Jacobian matrix to be

A
[j]
ik =

(
δik −

∂gi
∂yk

(y[j])

)
, (7.11a)

or in matrix notation

A[j] =

(
I− ∂g

∂y
(y[j])

)
. (7.11b)

Then from (7.10b)

d = (A[j])−1
(
g(y[j])− y[j]

)
. (7.11c)

We now choose the (j + 1)th approximation of the solution to be

y[j+1] = y[j] + d . (7.12a)

Applying the above method to (7.7) we obtain

y
[j+1]
n+s = y

[j]
n+s +

[
I− σsh

∂f(tn+s,y
[j]
n+s)

∂y

]−1

[σshf(tn+s,y
[j]
n+s) + v − y[j]

n+s]. (7.12b)

The snag with this approach is that repeatedly evaluating and inverting (e.g. by LU-factorization as in
§8.2) the Jacobian matrix in every iteration is very expensive. A remedy is to implement the modified
Newton–Raphson method and to use A[0], rather than A[j], for every iteration for a given step; (7.12b)
then becomes

y
[j+1]
n+s = y

[j]
n+s +

[
I− σsh

∂f(tn+s,y
[0]
n+s)

∂y

]−1

[σshf(tn+s,y
[j]
n+s) + v − y[j]

n+s]. (7.12c)

Thus, the Jacobian need be evaluated only once a step.11/11

Mathematical Tripos: IB Numerical Analysis 51 © S.J.Cowley@damtp.cam.ac.uk, Lent 2014



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

Remarks

(i) The only role the Jacobian matrix plays in (7.12c) is to ensure convergence: its precise value makes

no difference to the ultimate value of limj→∞ y
[j]
n+s. Therefore we might replace it with a finite-

difference approximation, and/or evaluate it once every several steps, and/or . . .

(ii) Implementation of (7.12c) requires repeated solution of linear algebraic systems with the same
matrix. In §8.2 we study LU factorization of matrices, and there we shall see that this remark can
lead to substantial savings.

(iii) For stiff equations it is much cheaper to solve nonlinear algebraic equations with (7.12c) than using
a minute step size with a ‘bad’ (e.g., explicit multistep or explicit RK) method.

7.8 *A distraction*

In Part IB we only discuss the numerical solution of ordinary differential equations, in Part II the numerical
solution of partial differential equations will be touched upon.

One of the most well-known nonlinear partial differential equations is the Navier-Stokes equation which
describes Newtonian viscous flow. There are very few analytical equations of this important equation,
with the result that numerical solutions play a crucial role in fields ranging from the motion of bacteria
and other living organisms, aerodynamics and climate change.

To see numerical solutions of the Navier-Stokes equation in real time you can download FI1.2.zip to a
Windows computer from

www.imperial.ac.uk/aeronautics/fluiddynamics/FI/InteractiveFlowIllustrator.htm

More information can be found at this URL, but one of the main goals of this Interactive Flow Illustrator
is easiness to use, so, rather than reading manuals etc. one should just download it, unzip it, click on
IFI.exe, and see if one can make sense of what one gets.

Some technical details. Flow Illustrator solves the Navier-Stokes equations on a uniform Cartesian grid,
with the grid step equal to one pixel of the input bitmap. Finite differences are used. The embedded
boundary method is used to represent the body shape. This means that the equations are solved
in a rectangular domain including the areas inside the body, and a body force is added inside the
body so as to make the velocity of the fluid equal to the velocity of the body. Both viscous and
inviscid terms are modelled implicitly, so that there are no stability constraints on the time step.
The pressure equation is solved (or, rather, a projection on a solenoidal subspace is done) using fast
Fourier transforms. Velocity is prescribed on the left boundary of the computational domain, and
soft boundary conditions are applied on other boundaries.11/12

11/13
11/14
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8 Numerical Linear Algebra

8.1 Introduction

Problem 8.1. For a real n×n matrix A, and vectors x and b, one of the most basic problems of numerical
analysis is: solve

Ax = b. (8.1)

Remark. This is the fourth time that the solution of linear equations has been addressed in the Tripos,
and it will not be the last. This level of attention gives an indication of the importance of the subject
(if not its excitement).

As discussed in Vectors & Matrices, the inverse of the square matrix A can be expressed as

(A−1)i,j =
1

det A
∆j,i , (8.2a)

where ∆i,j is the cofactor of the ijth element of the matrix A. The required determinants can be evaluated
by, say,

det A =
∑

i1i2...in

εi1i2...inAi1,1Ai2,2 . . . Ain,n , (8.2b)

or using the recursive definition of a determinant. Using these formulae (8.1) can be solved explicitly by
Cramer’s rule. Unfortunately, the number of operations increases like (n+ 1)!. Thus, on a 1010 flop/sec.
computer

n = 10 ⇒ 10−5 sec, n = 20 ⇒ 1 3
4 min, n = 30 ⇒ 4× 104 years.

Thus we have to look for more practical methods.

8.1.1 Triangular matrices

An upper triangular n× n square matrix U has Ui,j = 0 if i > j. Hence

det U =

n∏
i=1

Ui,i. (8.3a)

Also, we can solve Ux = y in O(n2) computational operations10 by so-called back substitution

xn =
yn
Un,n

, xi =
1

Ui,i

yi − n∑
j=i+1

Ui,jxj

 , i = n−1, . . . , 1. (8.3b)

For instance  −3 2 3
2 0

1

 x1

x2

x3

 =

 2
2
1

 ↑↑
↑
⇒ x =

 1
1
1

 .
Similarly, if L is a lower triangular n× n square matrix (such that Li,j = 0 if i < j) then

det L =

n∏
i=1

Li,i, (8.4a)

and Ly = b can be solved in O(n2) operations by forward substitution

y1 =
b1
L1,1

, yi =
1

Li,i

bi − i−1∑
j=1

Li,jyj

 , i = 2, . . . , n− 1. (8.4b)

10 Where, as usual, we only bother to count multiplications/divisions.
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For instance  1
−2 1

3 −1 1

 y1

y2

y3

 =

 2
−2

5

 ↓↓
↓
⇒ y =

 2
2
1

 .
Hence, if we could manage to factorize A as

A = LU,

where L and U are lower and upper triangular matrices respectively, then the solution of the system
Ax = LUx = L(Ux) = b could be split into the two cases

Ly = b, Ux = y. (8.5)

Both latter systems are triangular and can be solved in O(n2) operations using (8.4b) and (8.3b) respec-
tively (see also (8.12b)).

8.2 LU factorization and its generalizations

Definition 8.2. By the LU factorization of a n × n matrix A we understand a representation of A as a
product

A = LU,

where L is a unit lower triangular matrix (i.e. a [non-singular] lower triangular matrix with ones down
the diagonal) and U is an upper triangular matrix. Therefore the factorization takes the form  =


@

@
@

×
@

@
@

 .
Remarks

(a) The convention is that L is taken to be unit lower triangular; an equally possible convention is that
U is taken to be unit upper triangular.

(b) We allow for the possibility that A is singular in our definition. However, we will be mainly concerned
with the case when A is non-singular.

(c) A non-singular A may not have a LU factorization, while a singular A may have a LU factorization
(see Question 1 on Example Sheet 3 for an example). We will return to this point subsequently (e.g.
see Theorem 8.8 and the following examples).

8.2.1 The calculation of LU factorization

We present a method of the LU factorization that is based on a direct approach. So we assume that the
factorization exists.

We denote the columns of L by l1, l2, . . . , ln and the rows of U by uT
1 ,u

T
2 , . . . ,u

T
n . Then

A = LU = [ l1 l2 · · · ln ]


uT

1

uT
2
...
uT
n

 (8.6a)

=

∗
∗ ∗

∗ ∗
. . .

∗ ∗ ∗
l1 l2 ln

×

∗ ∗ ∗ ∗ uT
1

∗ ∗ ∗ uT
2

. . .

∗ uT
n

=

n∑
k=1

lku
T
k . (8.6b)
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Since the first (k − 1) components of lk and uk are all zero for k > 2, each rank-one matrix lku
T
k has

zeros in its first (k − 1) rows and columns. Therefore

A =

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

l1u
T
1

+

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
l2u

T
2

+ ∗ ∗
∗ ∗

l3u
T
3

+ · · · +
∗

lnu
T
n

. (8.6c)

We begin our calculation by extracting l1 and uT
1 from A, and then proceed similarly to extract l2 and uT

2 ,
etc. First we note from (8.6c) that the first row of the matrix l1u

T
1 is L1,1u

T
1 = uT

1 , since the diagonal
elements of L equal one.11 Hence uT

1 coincides with the first row of A, while the first column of l1u
T
1 ,

which is U1,1l1 = A1,1l1,12 coincides with the first column of A. Hence, with A(0) = A,

uT
1 = [the first row of A(0)], l1 = [the first column of A(0)]/A

(0)
1,1.

Next, having found l1 and u1, we form the matrix

A(1) = A(0) − l1uT
1 =

n∑
k=2

lku
T
k . (8.7)

By construction, the first row and column of A(1) are zero. It follows that uT
2 is the second row of A(1),

while l2 is its second column, scaled so that L2,2 = 1; hence we obtain

uT
2 = [the second row of A(1)], l2 = [the second column of A(1)]/A

(1)
2,2.

Continuing this way we can formulate an algorithm.

The LU algorithm. Set A(0) = A. For all k = 1, 2, . . . , n set uT
k to be the kth row of A(k−1) and lk to

the kth column of A(k−1), scaled so that Lk,k = 1. Further, calculate A(k) = A(k−1) − lkuT
k before

incrementing k.

Hence we perform the calculations by the formulae for k = 1, 2, . . . , n:

Uk,j = A
(k−1)
k,j , j = k, . . . , n, (8.8a)

Lk,k = 1 , Li,k =
A

(k−1)
i,k

A
(k−1)
k,k

, i = k + 1, . . . , n, (8.8b)

A
(k)
i,j = A

(k−1)
i,j − Li,kUk,j , i, j > k. (8.8c)

Remarks.

(i) This construction shows that the condition

A
(k−1)
k,k 6= 0 , k = 1, . . . , n− 1 , (8.9)

is a sufficient condition for an LU factorization to exist and be unique. A
(0)
1,1 is just A1,1, but

the other values are only derived during construction. We shall see in §8.2.7 how to obtain
equivalent conditions in terms of the original matrix A.

(ii) We note that lku
T
k stays the same if we replace

lk → αlk, uk → α−1uk, where α 6= 0 .

It is for this reason, subject to (8.9), that we may assume w.l.o.g. that all diagonal elements
of L equal one.

11 Similarly, it follows that the kth row of lku
T
k is Lk,ku

T
k = uT

k .
12 Similarly, the kth column of lku

T
k is Uk,klk.

Mathematical Tripos: IB Numerical Analysis 55 © S.J.Cowley@damtp.cam.ac.uk, Lent 2014



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

Example.

A =

 2 3 −5
4 8 −3
−6 1 4

 → l1=

 1
2
−3

 , uT
1 = [ 2 3 −5 ], l1u

T
1 =

 2 3 −5
4 6 −10
−6 −9 15

 ,
A(1) =

 2 7
10 −11

 → l2=

 0
1
5

 , uT
2 = [ 0 2 7 ], l2u

T
2 =

 2 7
10 35

 ,
A(2) =


−46

 → l3=

 0
0
1

 , uT
3 = [ 0 0 −46 ], l3u

T
3 = A(2),

so that

A =

 2 3 −5
4 8 −3
−6 1 4

 = LU, L =

 1
2 1
−3 5 1

 , U =

 2 3 −5
2 7
−46

 .
Remark. All elements in the first k rows and columns of A(k) are zero. Hence, we can use the storage of

the original A to accumulate L and U, and to store the elements of the matrices A(k). Hence for our
example:  2 3 −5

4 8 −3
−6 1 4

→
 2 3 −5

2 2 7
−3 10 −11

→
 2 3 −5

2 2 7
−3 5 −46

 .
Algorithm. From (8.8a), (8.8b) and (8.8c), the following pseudo-code computes the LU factorization by

overwriting A:

for k = 1:n-1

for i = k+1:n % Calculate only non-unit elements of L

A(i,k) = A(i,k)/A(k,k); % L(i,k) = A(i,k)/A(k,k)

for j = k+1:n % U(k,j) = A(k,j), so do nothing

A(i,j) = A(i,j) - A(i,k)*A(k,j); % A(i,j) = A(i,j) - L(i,k)*U(k,j)

end

end

end

8.2.2 Applications

The LU decomposition has many applications.

Testing non-singularity. A = LU is non-singular iff all the diagonal elements of U are nonzero.

Calculation of the determinant.

det A = det L det U =

(
n∏
k=1

Lk,k

)(
n∏
k=1

Uk,k

)
=

(
n∏
k=1

Uk,k

)
. (8.10)

Solution of linear systems. See (8.5), especially when there are multiple right hand sides.

Finding the inverse of A. The columns, say xj , of the inverse of A, are the solutions of

Axj = ej . (8.11a)

Similarly, the inverses of L and U can be obtained by solving Lyj = ej and Uzj = ej . This construc-
tion demonstrates that the inverse of a lower/upper triangular matrix is lower/upper triangular.
Thence, for a non-singular matrix,

A−1 = U−1L−1. (8.11b)
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8.2.3 Cost

In calculating cost it is only multiplications and divisions that matter. For the k-th step of the LU
algorithm we see from (8.8b) and (8.8c) that we perform (n− k) divisions to determine the components
of lk and (n− k)2 multiplications in finding lku

T
k . Hence

NLU =

n−1∑
k=1

[
(n− k)2 + (n− k)

]
= 1

3 n
3 +O(n2). (8.12a)

Solving Ly = b by forward substitution we use k multiplications/divisions to determine yk, and similarly
for back substitution, thus

NF = NB =

n∑
k=1

k ∼ 1
2 n

2. (8.12b)

8.2.4 Relation to Gaussian elimination

At the kth step of the LU-algorithm, the operation A(k) = A(k−1) − lkuT
k has the property that the ith

row of Ak is the ith row of A(k−1) minus Li,k times uT
k (the kth row of A(k−1)), i.e.

[the ith row of A(k)] = [the ith row of A(k−1)] − Li,k× [the kth row of A(k−1)],

where the multipliers Li,k = A
(k−1)
i,k /A

(k−1)
k,k are chosen so that, at the outcome, the kth column of A(k) is

zero. This construction is analogous to Gaussian elimination for solving Ax = b.

Example.  2 3 −5
4 8 −3
−6 1 4

 2nd−1st· 2

3rd−1st· (−3)
→

 2 3 −5
0 2 7
0 10 −11

 3rd−2nd· 5
→

 2 3 −5
0 2 7
0 0 −46

 .
If at each step we put the multipliers Li,k into the spare sub-diagonal part of A, then we obtain
exactly the same form of the LU factorization as above.

 2 3 −5
4 8 −3
−6 1 4

 2nd−1st· 2

3rd−1st· (−3)
→

 2 3 −5
2 2 7
−3 10 −11

 3rd−2nd· 5
→

 2 3 −5
2 2 7
−3 5 −46

 .
Remark. An important difference between LU algorithm and Gaussian elimination is that in LU we do

not consider the right hand side b until the factorization is complete. For instance, this is useful
when there are many right hand sides, in particular if not all the b’s are known at the outset
(e.g. as in multi-grid methods). In Gaussian elimination the solution for each new b would require
O(n3) computational operations, whereas with LU factorisation O(n3) operations are required for
the initial factorisation, but then the solution for each new b only requires O(n2) operations (for
the back- and forward substitutions).

12/10

8.2.5 Pivoting

Column pivoting: description. Naive LU factorization fails when, for example, A
(k−1)
k,k = 0. A remedy

is to exchange rows of A by picking a suitable pivotal equation. This technique is called column
pivoting (or partial pivoting), and is equivalent to picking a suitable equation for eliminating the
unknown in Gaussian elimination. Specifically, column pivoting means that, having obtained A(k−1),
we exchange two rows of A(k−1) so that the element of largest magnitude in the kth column is in
the ‘pivotal position’ (k, k). In other words,∣∣∣A(k−1)

k,k

∣∣∣ = max
i=k...n

∣∣∣A(k−1)
i,k

∣∣∣ .
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The exchange of rows, say k and p, can be regarded as the pre-multiplication of the relevant matrix
A(k−1) by a permutation matrix Pk,

Pk =



1 0
. . .

1
0 1

1
. . .

1
1 0

1
. . .

0 1



← row k

← row p

. (8.13)

Column pivoting: algorithm Suppose A
(k−1)
k,k = 0, or is close to zero, i.e.

A(k−1) =



0 · · · · · · · · · · · · · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . . 0 0 0 · · · 0

...
. . . 0 0 A

(k−1)
k,k+1 · · · A

(k−1)
k,n

...
. . . 0 A

(k−1)
k+1,k A

(k−1)
k+1,k+1 · · · A

(k−1)
k+1,n

...
. . .

...
...

...
. . .

...

0 · · · 0 A
(k−1)
n,k A

(k−1)
n,k+1 · · · A

(k−1)
n,n


. (8.14a)

First identify p such that ∣∣∣A(k−1)
p,k

∣∣∣ = max
i

∣∣∣A(k−1)
i,k

∣∣∣ , (8.14b)

then swap rows p and k of A(k−1) using Pk as defined in (8.13), then construct lk and uk from
PkA(k−1) using the same algorithm as before, and then form

A(k) = PkA(k−1) − lkuT
k . (8.15a)

By recursion

A(k) = Pk(Pk−1A(k−2) − lk−1u
T
k−1)− lkuT

k

= PkPk−1A(k−2) − Pklk−1u
T
k−1 − lkuT

k

= . . . .

Hence, on defining for convenience Pn = I and P = PnPn−1 . . .P1, we find that

PA ≡ PnPn−1 . . .P1A =

n−1∑
k=1

Pn . . .Pk+1lku
T
k + lnu

T
n = LU , (8.15b)

where

L = [ Pn . . .P2l1 . . . Pn . . .Pk+1lk . . . ln ] , and U =


uT

1

uT
2
...
uT
n

 . (8.15c)
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Remarks

(i) At each stage the permutation of rows is applied to the portion of L that has been formed
already (i.e. the first k − 1 columns of L), and then only to the bottom n− k + 1 components
of these vectors.

(ii) We need to record the permutation of rows to solve for the right hand side and/or to compute
the determinant.

Column pivoting: the zero-column case. Column pivoting copes with zeros at the pivot position, except
when the whole kth column of A(k−1) is zero. This can only happen if A is singular, and in that case
we let lk be the kth unit vector, while taking uT

k as the k-th row of A(k−1) as before. This choice
preserves the condition that the matrix lku

T
k has the same k-th row and column as A(k−1). Thus

A(k) = A(k−1) − lkuT
k

still has zeros in its k-th row and column as required.

Column pivoting: remark. An important advantage of column pivoting is that every element of L has
magnitude at most one, i.e. |Li,j | 6 1 for all i, j = 1, . . . , n. This avoids not just division by zero
but also tends to reduce the chance of very large numbers occurring during the factorization, a
phenomenon that might lead to accumulation of round-off error and to ill conditioning.12/11

Example. 2 1 1

4 1 0

−2 2 1


 2

1

3


→

 4 1 0

2 1 1

−2 2 1

→
 4 1 0

1
2

1
2 1

− 1
2

5
2 1


 2

3

1


→

 4 1 0

− 1
2

5
2 1

1
2

1
2 1

→
 4 1 0

− 1
2

5
2 1

1
2

1
5

4
5

 ,

PA = LU ⇒ A = PTLU, P =

 0 1 0

0 0 1

1 0 0

 , L =

 1

− 1
2 1
1
2

1
5 1

 , U =

 4 1 0
5
2 1

4
5

 ,
where P is the permutation matrix that sends row 2 to row 1, row 3 to row 2, and row 1 to
row 3.

Row pivoting. In row pivoting one exchanges columns of A(k−1), rather than rows (sic!), so that (A(k−1))k,k
becomes the element of largest modulus in the k-th row of A(k−1).

Total pivoting. Total pivoting corresponds to the exchange of both rows and columns, so that the modulus
of the pivotal element (A(k−1))k,k is maximized.12/12

12/13
12/14

8.2.6 Further examples (Unlectured)

LU factorization. 
−3 2 3 −1

6 −2 −6 0
−9 4 10 3
12 −4 −13 −5


2nd−1st· (−2)

3rd−1st· 3

4th−1st· (−4)
→


−3 2 3 −1
−2 2 0 −2

3 −2 1 6
−4 4 −1 −9


3rd−2nd· (−1)

4th−2nd· 2
→


−3 2 3 −1
−2 2 0 −2

3 −1 1 4
−4 2 −1 −5



4th−3rd· (−1)
→


−3 2 3 −1
−2 2 0 −2

3 −1 1 4
−4 2 −1 −1


Mathematical Tripos: IB Numerical Analysis 59 © S.J.Cowley@damtp.cam.ac.uk, Lent 2014



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

i.e.

A = LU, L =


1
−2 1

3 −1 1
−4 2 −1 1

 , U =


−3 2 3 −1

2 0 −2
1 4
−1


Forward and back substitution. The solution to the system

Ax = b, b = [3,−2, 2, 0]T

proceeds in two steps

Ax = L Ux︸︷︷︸
y

= b ⇒ 1) Ly = b, 2) Ux = y.

1) Forward substitution
1
−2 1

3 −1 1
−4 2 −1 1



y1

y2

y3

y4

 =


3
−2

2
0


↓
↓
↓
↓

⇒ y =


3
4
−3

1

 ,
2) Back substitution

−3 2 3 −1
2 0 −2

1 4
−1



x1

x2

x3

x4

 =


3
4
−3

1


↑
↑
↑
↑

⇒ x =


1
1
1
−1

 ,
LU factorization with pivoting.

−3 2 3 −1

6 −2 −6 0

−9 4 10 3

12 −4 −13 −5




4
2
3
1


→


12 −4 −13 −5

6 −2 −6 0

−9 4 10 3

−3 2 3 −1

→


12 −4 −13 −5
1
2 0 1

2
5
2

− 3
4 1 1

4 − 3
4

− 1
4 1 − 1

4 − 9
4




4
3
2
1


→


12 −4 −13 −5

− 3
4 1 1

4 − 3
4

1
2 0 1

2
5
2

− 1
4 1 − 1

4 − 9
4

→


12 −4 −13 −5

− 3
4 1 1

4 − 3
4

1
2 0 1

2
5
2

− 1
4 1 − 1

2 − 3
2

→


12 −4 −13 −5

− 3
4 1 1

4 − 3
4

1
2 0 1

2
5
2

− 1
4 1 −1 1


i.e.

A = PTLU, P =


1

1

1

1

 , L =


1

− 3
4 1
1
2 0 1

− 1
4 1 1 1

 , U =


12 −4 −13 −5

1 1
4 − 3

4

1
2

5
2

1



8.2.7 Existence and uniqueness of the LU factorization

For a n× n square matrix A, define its leading k × k submatrices Ak, for k = 1, . . . , n, by

(Ak)i,j = Ai,j , for i, j = 1, . . . , k. (8.16)

Theorem 8.3. A sufficient condition for a LU factorization of a matrix A to exist and be unique is that
the Ak, for k = 1, . . . , n− 1, are non-singular.
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Proof. (Unlectured.) We use induction. For n = 1 the result is clear.

Assume the result for (n− 1)× (n− 1) matrices. Partition the n× n matrix A as

A =

 An−1 b

cT An,n

 . (8.17a)

We require

A = LU with L =

 Ln−1 0

xT 1

 , U =

 Un−1 y

0T Un,n

 , (8.17b)

where Ln−1, Un−1, xT, y and Un,n are to be determined. Multiplying out these block matrices we see
that we want to have

A =

 An−1 b

cT An,n

 =

 Ln−1Un−1 Ln−1y

xTUn−1 xTy + Un,n

 . (8.17c)

By virtue of the induction assumption Ln−1 and Un−1 exist; further both are non-singular since it is
assumed that An−1 is non-singular. Hence Ln−1y = b and xTUn−1 = cT can be solved to obtain

y = L−1
n−1b, xT = cTU−1

n−1, Un,n = An,n − xTy. (8.17d)

So, by construction, there exists a unique factorization A = LU with Lii = 1.

Corollary 8.4.

A
(0)
1,1 = det (A1) , (8.18a)

A
(k−1)
k,k =

det (Ak)

det (Ak−1)
. (8.18b)

Proof. From (8.17b) and (8.17c)

det(An) = det(A) = det(L) det(U) = det(U) = Un,n det(Un−1) ,

det(An−1) = det(Ln−1) det(Un−1) = det(Un−1) .

So det(An) = Un,n det(An−1), and thence by induction

Uk,k =
det(Ak)

det(Ak−1)
. (8.19)

Further U1,1 = A1,1 = det(A1), and from (8.8a) with j = k, we have that Uk,k = A
(k−1)
k,k .

Theorem 8.5. If A is non-singular and an LU factorization of A exists, then Ak is non-singular for
k = 1, . . . , n− 1.

Proof. From (8.19), or otherwise,

det (A) =

n∏
i=1

Ui,i 6= 0 , and hence det (Ak) =

k∏
i=1

Ui,i 6= 0 .

Corollary 8.6. Combining Theorem 8.5 and Theorem 8.3 we see that if A is non-singular and an LU
factorization exists, then this LU factorization is unique.

It is also possible to prove uniqueness directly.

Theorem 8.7 (Uniqueness). If A is non-singular, it is impossible for more than one LU factorization to
exist, i.e.

A = L1U1 = L2U2 implies L1 = L2, U1 = U2.

Mathematical Tripos: IB Numerical Analysis 61 © S.J.Cowley@damtp.cam.ac.uk, Lent 2014



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

Proof. If A is non-singular, then both U1 and U2 are non-singular, and hence the equality L1U1 = L2U2

implies L−1
2 L1 = U2U−1

1 = V. The product of lower/upper triangular matrices is lower/upper triangular
and, as already noted, the inverse of a lower/upper triangular matrix is lower/upper triangular. Con-
sequently, V is simultaneously lower and upper triangular, hence it is diagonal. Since L−1

2 L1 has unit
diagonal, we obtain V = I.

Theorem 8.8 (Unproved). If it is not the case that the Ak, k = 1, . . . , n − 1 are all non-singular, then
either no LU factorization exists, or the LU factorization is not unique.

Examples.

(i) There is no LU factorization for [
0 1
1 0

]
,

or, indeed, for any non-singular n× n matrix A such that det (Ak) = 0 for some k = 1, . . . , n− 1.

(ii) Some singular matrices may be LU factorized in many ways, e.g.[
0 1
0 1

]
=

[
1 0
0 1

] [
0 1
0 1

]
=

[
1 0
1
2 1

] [
0 1
0 1

2

]
.

Remark. Every non-singular matrix A admits an LU factorization with pivoting, i.e. for every non-singular
matrix A there exists a permutation matrix P such that PA = LU.

Corollary 8.9. A [non-singular] n × n matrix A such that det (Ak) 6= 0 for k = 1, . . . , n has a unique
factorization

A = LDU′, (8.20)

where both L and U′ have unit diagonals, and D is a non-singular diagonal matrix, i.e. we can express A
as

A =
[
l1 l2 · · · ln

]

D1,1 0 · · · 0

0 D2,2
. . .

...
...

. . .
. . . 0

0 · · · 0 Dn,n



u′

T
1

u′
T
2
...

u′
T
n

 =

n∑
k=1

Dk,klku
′T
k (8.21)

where, as before, lk is the kth column of L and u′k is the kth row of U′.

Proof.

Di,i = Ui,i 6= 0 , U ′i,j = Ui,j/Ui,i .

8.3 Factorization of structured matrices

8.3.1 Symmetric matrices

Let A be a real n× n symmetric matrix (i.e., Ak,` = A`,k). If A has an LU factorization then we can take
advantage of symmetry to express A in the form of a product LDLT, where L is n×n unit lower triangular
and D is a diagonal matrix.

Corollary 8.10. Let A be a real n × n symmetric matrix . If Ak 6= 0 for k = 1, . . . , n then there is a
unique factorization

A = LDLT. (8.22)

Proof. A = LDU′ from (8.20), and by symmetry,

LDU′ = A = AT = U′TDLT.

Since the LDU′ factorization is unique, U′ = LT.
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Remark. Clearly U = DLT. However an advantage of this form is that it lends itself better to exploitation
of symmetry and requires roughly half the storage of conventional LU. Specifically, to compute this
factorization, we let A(0) = A and for k = 1, 2, . . . , n let lk be the multiple of the kth column of
A(k−1) such that Lk,k = 1. We then set

Dk,k = A
(k−1)
k,k and form A(k) = A(k−1) −Dk,klkl

T
k . (8.23)

Note, however, that pivoting can/will destroy the symmetry.

Example. Let A = A(0) =

[
2 4
4 11

]
. Hence l1 =

[
1
2

]
, D1,1 = 2 and

A(1) = A(0) −D1,1l1l
T
1 =

[
2 4
4 11

]
− 2

[
1 2
2 4

]
=

[
0 0
0 3

]
.

We deduce that l2 =

[
0
1

]
, D2,2 = 3 and

A =

[
1 0
2 1

] [
2 0
0 3

] [
1 2
0 1

]
.

8.3.2 Positive definite matrices

Definition. A matrix A is positive definite if xTAx > 0 for all x 6= 0.

Theorem 8.11. If A is a real n× n positive definite matrix, then it is non-singular.

Proof. We prove by contradiction. Assume that A is singular; then there exists z 6= 0 such that

Az = 0 .

Hence

zTAz = 0 ,

and so A cannot be positive definite.

Theorem 8.12. If A is positive definite matrix, then the Ak are non-singular for k = 1, . . . , n− 1.

Proof. Let y ∈ Rk \ {0}, k = 1, . . . , n− 1. Choose x ∈ Rn so that the first k components equal y and the
bottom n− k elements are all zero. Then

yTAky = xTAx > 0 .

Hence the Ak are all positive definite and so, from Theorem 8.11, non-singular.

Corollary 8.13. If A is a real n× n positive definite matrix then, from Theorem 8.3, a unique LU fac-
torization exists.

8.3.3 Symmetric positive definite matrices

Theorem 8.14. Let A be a real n × n symmetric matrix. It is positive definite if and only if it has an
LDLT factorization in which the diagonal elements of D are all positive.

Proof. Suppose that A = LDLT, with the diagonal elements of D all positive, and let x ∈ Rn \ {0}. Since
L is non-singular, y = LTx 6= 0. Then

xTAx = yTDy =

n∑
k=1

Dk,ky
2
k > 0,

hence A is positive definite.
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Conversely, suppose that A is positive definite. Then from Corollary 8.13 the Ak are non-singular and
a unique LU factorization exists. Next, from Corollary 8.10 the factorization can be written in the form
A = LDLT. Finally, let yk be defined such that

LTyk = ek , i.e. yk = (LT)−1ek 6= 0 ;

then

Dk,k = eT
k Dek = yT

k LDLTyk = yT
k Ayk > 0 .

Corollary 8.15. It is possible to check if a symmetric matrix is positive definite by trying to form its
LDLT factorization.

Example. The matrix below is positive definite. 2 6 −2
6 21 0
−2 0 16

→
 2 6 −2

3 3 6
−1 6 14

→
 2 6 −2

3 3 6
−1 2 2

 ⇒ L =

 1
3 1
−1 2 1

 , D =

 2
3

2

 .
Cholesky factorization. Define D1/2 as the diagonal matrix whose (k, k) element is D

1/2
k,k , hence

D1/2D1/2 = D.

Then, A being symmetric positive definite, we can write

A = (LD1/2)(D1/2LT) = (LD1/2)(LD1/2)T.

In other words, by defining the lower triangular matrix G by G = LD1/2, we obtain the Cholesky
factorization

A = GGT. (8.24)

8.3.4 Sparse matrices

Definition 8.16. A matrix A ∈ Rn×n is called a sparse matrix if nearly all elements of A are zero.
Examples are band matrices and block band matrices

Definition 8.17. A matrix A is called a band matrix if there exists an integer r < n− 1 such that

Ai,j = 0 for all |i− j| > r.

In other words, all nonzero elements of A reside in a band of width 2r + 1 along the main diagonal.

r = 1


∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

 , r = 2


∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

 , r = 3


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .

It is often required to solve very large systems Ax = b (n = 109 is a relatively modest example) where
A is sparse. The efficient solution of such systems should exploit the sparsity. In particular, we wish the
matrices L and U to inherit as much as possible of the sparsity of A (so that the cost of computing Ux,
say, is comparable with that of Ax); the cost of computation should be determined by the number of
nonzero entries, rather than by n. The only tool at our disposal at the moment is the freedom to exchange
rows and columns to minimise fill-in. To this end the following theorem is useful.

Theorem 8.18. Let A = LU be the LU factorization (without pivoting) of a sparse matrix. Then

(i) all leading zeros in the rows of A to the left of diagonal are inherited by L,

(ii) all leading zeros in the columns of A above the diagonal are inherited by U.

Mathematical Tripos: IB Numerical Analysis 64 © S.J.Cowley@damtp.cam.ac.uk, Lent 2014



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.


∗ • • • •
◦ ∗ • • •
◦ ◦ ∗ • • •
◦ ∗ • •

◦ ◦ ◦ ◦ ∗ • •
◦ ∗ •

◦ ◦ ◦ ◦ ◦ ◦ ∗

 =


∗
◦ ∗
◦ ◦ ∗
◦ ∗

◦ ◦ ◦ ◦ ∗
◦ ∗

◦ ◦ ◦ ◦ ◦ ◦ ∗

×

∗ • • • •
∗ • • •
∗ • • •
∗ • •
∗ • •
∗ •
∗


Proof. Let Ai,1 = Ai,2 = · · · = 0 be the leading zeros in the i-th row. Then, if Uk,k 6= 0, we obtain

0 = Ai,1 = Li,1U1,1 ⇒ Li,1 = 0,

0 = Ai,2 = Li,1U1,2 + Li,2U2,2 ⇒ Li,2 = 0,

0 = Ai,3 = Li,1U1,3 + Li,2U2,3 + Li,3U3,3 ⇒ Li,3 = 0, and so on.

If Uk,k = 0 for some k, we can choose Li,k = 0. Similarly for the leading zeros in the j-th column. Since
Lk,k = 1, it follows that

0 = A1,j = L1,1U1,j ⇒ U1,j = 0,

0 = A2,j = L2,1U1,j + L2,2U2,j ⇒ U2,j = 0,

0 = A3,j = L3,1U1,j + L3,2U2,j + L3,3U3,j ⇒ U3,j = 0, and so on.
13/13

Corollary 8.19. If A is a band matrix and A = LU, then Li,j = Ui,j = 0 for all |i − j| > r. Hence the
sparsity structure is inherited by the factorization and L and U are band matrices with the same band
width as A.

Cost. In general, the expense of calculating an LU factorization of an n × n dense matrix A is O
(
n3
)

operations and the expense of solving Ax = b, provided that the factorization is known, is O
(
n2
)
.

However, in the case of a banded A, we need just

(i) O
(
r2n
)

operations to factorize, and

(ii) O(rn) operations to solve a linear system (after factorization).

Method 8.20. Theorem 8.18 suggests that for a factorization of a sparse but not nicely structured
matrix A one might try to reorder its rows and columns by a preliminary calculation so that many of the
zero elements become leading zero elements in rows and columns. This will reduce the fill-in in L and U.

Example 1. The LU factorization of

A =


5 1 1 1 1

1 1

1 1

1 1

1 1

 =


1
1
5 1
1
5 − 1

4 1
1
5 − 1

4 − 1
3 1

1
5 − 1

4 − 1
3 − 1

2 1




5 1 1 1 1

4
5 − 1

5 − 1
5 − 1

5
3
4 − 1

4 − 1
4

2
3 − 1

3
1
2


has significant fill-in. However, exchanging the first and the last rows and columns yields

PAP =


1 1

1 1
1 1

1 1
1 1 1 1 5

 =


1

1
1

1
1 1 1 1 1




1 1
1 1

1 1
1 1

1

 .

Example 2. If the non-zeros of A occur only on the diagonal, in one row and in one column, then the full
row and column should be placed at the bottom and on the right of A, respectively.13/10
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Example 3. The LU factorisation of
−3 1 1 2 0

1 −3 0 0 1

1 0 2 0 0

2 0 0 3 0

0 1 0 0 3

 =


1 0 0 0 0

− 1
3 1 0 0 0

− 1
3 − 1

8 1 0 0

− 2
3 − 1

4
6
19 1 0

0 − 3
8

1
19

4
81 1




−3 1 1 2 0

0 − 8
3

1
3

2
3 1

0 0 19
8

3
4

1
8

0 0 0 81
19

4
19

0 0 0 0 272
81

 ,

has significant fill-in. However, reordering (symmetrically) rows and columns 1 ↔ 3, 2 ↔ 4 and
4↔ 5 yields

2 0 1 0 0

0 3 2 0 0

1 2 −3 0 1

0 0 0 3 1

0 0 1 1 −3

 =


1 0 0 0 0

0 1 0 0 0
1
2

2
3 1 0 0

0 0 0 1 0

0 0 − 6
29

1
3 1




2 0 1 0 0

0 3 2 0 0

0 0 − 29
6 0 1

0 0 0 3 1

0 0 0 0 − 272
87

 .
13/12
13/14 General sparse matrices. These feature in a wide range of applications, e.g. the solution of partial differ-

ential equations, and there exists a wealth of methods for their solution. One approach is efficient
factorization, that minimizes fill in. Yet another is to use iterative methods (see the Part II Numer-
ical Analysis course). There also exists a substantial body of other, highly effective methods, e.g.
Fast Fourier Transforms, preconditioned conjugate gradients and multi-grid techniques (again see
the Part II Numerical Analysis course), fast multi-pole techniques and much more.

Sparsity and graph theory. An exceedingly powerful (and beautiful) methodology of ordering pivots to
minimize fill-in of sparse matrices uses graph theory and, like many other cool applications of
mathematics in numerical analysis, is alas not in the schedules :-(

13/11

8.4 QR factorization of matrices

8.4.1 Inner product spaces

We first recall some facts about inner product spaces.

• The axioms of an inner product on a linear vector space over the reals, say V, were given in (2.2).

• A vector space with an inner product is called an inner product space.

• For u ∈ V, the function ‖u‖ = 〈u,u〉1/2 is the norm of u (induced by the given inner product),
and we have the Cauchy–Schwarz inequality

〈u,v〉 6 ‖u‖ ‖v‖ ∀ u,v ∈ V. (8.25a)

• The vectors u,v ∈ V are said to be orthogonal if 〈u,v〉 = 0.

• A set of vectors q1, q2, . . . , qm ∈ V is said to be orthonormal if

〈qi, qj〉 = δij =

{
1, i = j;
0, i 6= j .

(8.25b)

Example. For V = Rn, we define the so-called Euclidean inner product for all u,v ∈ Rn by

〈u,v〉 = 〈v,u〉 =

n∑
j=1

ujvj = uTv = vTu , (8.26a)

in which case the norm (a.k.a. the Euclidean length) of u ∈ Rn is

‖u‖ = 〈u,u〉1/2 =

 n∑
j=1

u2
j

1/2

> 0. (8.26b)
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8.4.2 Properties of orthogonal matrices

A n×n real matrix Q is orthogonal if all its columns are orthonormal. Since (QTQ)i,j = 〈qi, qj〉, it follows
that

QTQ = I (8.27a)

and hence

Q−1 = QT and QQT = QQ−1 = I. (8.27b)

It also follows that the rows of an orthogonal matrix are orthonormal, and that QT is an orthogonal
matrix. It further follows from

1 = det I = det(QQT) = det Q det QT = (det Q)2,

that det Q = ±1, and hence that an orthogonal matrix is non-singular.

Proposition 8.21. If P,Q are orthogonal then so is PQ.

Proof. Since PTP = QTQ = I, we have

(PQ)T(PQ) = (QTPT)(PQ) = QT(PTP)Q = QTQ = I.

Hence PQ is orthogonal.

Proposition 8.22. Let q1, q2, . . . , qm ∈ Rn be orthonormal. Then m 6 n.

Proof. We argue by contradiction. Suppose that m > (n+ 1), and let Q be the orthogonal matrix whose
columns are q1, q2, . . . , qn. Since Q is non-singular and qm 6= 0, there exists a nonzero solution, a 6= 0,
to the linear system

Qa = qm,

i.e. there exists a 6= 0 such that
n∑
j=1

ajqj = qm .

Hence

0 = 〈qi, qm〉 =

〈
qi,

n∑
j=1

ajqj

〉
=

n∑
j=1

aj〈qi, qj〉 = ai, i = 1, 2, . . . , n,

and we have the contradictory result that a = 0. We deduce that m 6 n.

Lemma 8.23. Let q1, q2, . . . , qm ∈ Rn be orthonormal and m 6 n − 1. Then there exists qm+1 ∈ Rn
such that q1, q2, . . . , qm+1 are orthonormal.

Proof. We construct qm+1. Let Q be the n×m matrix whose columns are q1, . . . , qm. Since

n∑
k=1

 m∑
j=1

Q2
k,j

 =

m∑
j=1

‖qj‖2 = m < n,

it follows that ∃ i ∈ {1, 2, . . . , n} such that
∑m
j=1 Q2

i,j < 1. We let

w = ei −
m∑
j=1

〈qj , ei〉qj ,

then for ` = 1, 2, . . . ,m

〈q`,w〉 = 〈q`, ei〉 −
m∑
j=1

〈qj , ei〉〈q`, qj〉 = 0.

Hence, by design, w is orthogonal to q1, . . . , qm. Further, since Qi,j = 〈qj , ei〉, we have

‖w‖2 = 〈w,w〉 = 〈ei, ei〉 − 2

m∑
j=1

〈qj , ei〉〈ei, qj〉+

m∑
j=1

〈qj , ei〉
m∑
k=1

〈qk, ei〉〈qj , qk〉 = 1−
m∑
j=1

Q2
i,j > 0.

Thus we define qm+1 = w/‖w‖.
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8.4.3 The QR factorization

Definition 8.24. The QR factorization of an m× n matrix A is the representation

A = QR, (8.28a)

i.e. 

A1,1 · · · A1,n
: :

: :
An,1 · · · An,n

: :
: :

Am,1 · · · Am,n


︸ ︷︷ ︸

n

=



Q1,1 · · · Q1,n · · · Q1,m
: : :

: : :
Qn,1 Qn,n Qn,m

: : :
: : :

Qm,1 · · · Qm,n · · · Qm,m


︸ ︷︷ ︸

m>n



R1,1R1,2 · · · R1,n
R2,2 :

. . . :
Rn,n

0 · · · · · · 0
: :
0 · · · · · · 0


︸ ︷︷ ︸

n


m>n , (8.28b)

where Q is an m × m orthogonal matrix and R is an m × n upper triangular matrix (i.e. Ri,j = 0 for
i > j).

Remarks.

(i) We shall see that every matrix has a (non-unique) QR factorization.

(ii) For clarity of presentation, and unless stated otherwise, we will assume that m > n.

Interpretation of the QR factorization. Let m > n and denote the columns of A and Q by a1,a2, . . . ,an
and q1, q2, . . . , qm respectively. Since

[ a1 a2 · · · an ] = [ q1 q2 · · · qm ]



R1,1 R1,2 · · · R1,n

0 R2,2

...
...

. . .
. . .

0 Rn,n
...

...
0 · · · · · · 0


,

where the bottom rows of zeros are absent if m = n, we have that

aj =
m∑
i=1

Ri,jqi =

j∑
i=1

Ri,jqi, j = 1, 2, . . . , n. (8.29)

In other words, Q has the property that the jth column of A can be expressed as a linear combination
of the first j columns of Q.

Definition 8.25. If m > n, then because of the bottom zero elements of R, the columns qn+1, ..., qm are
not essential for the representation, and hence we can write

m>n





A1,1 · · · A1,n
: :

: :
An,1 · · · An,n

: :
: :

Am,1 · · · Am,n


︸ ︷︷ ︸

n

=



Q1,1 · · · Q1,n
: :

: :
Qn,1 · · · Qn,n

: :
: :

Qm,1 · · · Qm,n


︸ ︷︷ ︸

n6m

R1,1R1,2 · · · R1,n
R2,2 :

. . . :
Rn,n


︸ ︷︷ ︸

n

 n . (8.30)

The latter formula is called the skinny QR factorization.

Definition 8.26. We say that a matrix, say R, is in a standard form if it has the property that the
number of leading zeros in each row increases strictly monotonically until all the rows of R are zero.
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Remarks

(i) A matrix in a standard form is allowed entire rows of zeros, but only at the bottom.

(ii) If Ri,ji is the first nonzero entry in the ith row, the jis form a strictly monotone sequence.

Theorem 8.27. Every matrix A has a QR factorization. If A is of full rank (i.e., Ax 6= 0 if x 6= 0), then
there exists a unique skinny factorization A = QR with R having a positive main diagonal.

Proof. Given a matrix A we shall see that there are three algorithms by which a QR factorization can be
constructed, namely:

(i) Gram–Schmidt orthogonalization (for the ’skinny’ version);

(ii) Givens rotations;

(iii) Householder reflections.

Let A be of full rank, then the n× n Gram matrix, ATA, is symmetric positive definite since

xTATAx = yTy > 0 for any x 6=0, since y = Ax 6= 0.

Hence, from Theorem 8.14 and (8.24), there is a unique Cholesky factorization ATA = GGT with G having
a positive main diagonal. On the other hand, if A = QR, then ATA = RTQTQR, so an upper triangular R
with Ri,i > 0 coincides with GT, and Q = AR−1.

8.4.4 Applications of QR factorization

Application: solution of linear systems when m=n. If A is square non-singular, we can solve Ax = b by
calculating the QR factorization of A and then proceeding in two steps

Ax = Q Rx︸︷︷︸
y

= b . (8.31)

Remembering Q−1 = QT, we first solve Qy = b in O(n2) operations to obtain y = QTb, and then
solve the triangular system Rx = y in O(n2) operations by back-substitution.

Remark. The work of calculating the QR factorization makes this method more expensive than the
LU procedure for solving Ax = b.

Application: least-squares solution of overdetermined equations. If A is m × n and m > n, then usually
there is no solution of

Ax = b.

In this case, one sometimes requires the vector x that minimizes the norm ‖Ax− b‖. In §9 we will
see that the QR factorization is suitable for determining this x.

Finding eigenvalues and eigenvectors. See next year.
14/10

8.4.5 The Gram–Schmidt process

First recall, from Vectors & Matrices, that given a finite, linearly independent set of vectors {w1, . . . ,wr}
the Gram–Schmidt process is a method of generating an orthogonal set {v1, . . . ,vr}. This is done, at
stage k, by projecting wk orthogonally onto the subspace generated by {v1, . . . ,vk−1}, and then the
vector vk is defined to be the difference between wk and this projection.

Given an m×n non-zero matrix A with the columns a1,a2, . . . ,an ∈ Rm, we want to use this process to
construct the columns of the orthogonal matrix Q and the upper triangular matrix R such that A = QR,
i.e. from (8.29) such that

j∑
i=1

Ri,jqi = aj , j = 1, 2, . . . , n, where A = [ a1 a2 · · · an ]. (8.32)
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In order to understand how the method works, let us start by supposing that a1 6= 0. Then we derive
q1 and R1,1 from the equation (8.32) with j = 1: R1,1q1 = a1. Since we require ‖q1‖ = 1, we let
q1 = a1/‖a1‖, R1,1 = ‖a1‖.

Next we form the vector b = a2 − 〈q1,a2〉q1. By construction b is orthogonal to q1 since

〈q1, b〉 = 〈q1,a2 − 〈q1,a2〉q1〉 = 〈q1,a2〉 − 〈q1,a2〉〈q1, q1〉 = 0.

If b 6= 0, we set q2 = b/‖b‖; q1 and q2 are then orthonormal. Moreover,

〈q1,a2〉q1 + ‖b‖q2 = 〈q1,a2〉q1 + b = a2,

hence, to obey (8.32) for j = 2, i.e. to obey R1,2q1 +R2,2q2 = a2, we let R1,2 = 〈q1,a2〉, R2,2 = ‖b‖.

If b = 0, then 〈q1,a2〉q1 = a2, and thus a2 is in the vector space spanned by q1. Hence there is no
need to add another column to Q in order to span the first 2 columns of A. From comparison with
(8.32), we therefore set R1,2 = 〈q1,a2〉 and R2,2 = ‖b‖ = 0.

The Gram–Schmidt algorithm. The above idea can be extended to all columns of A. The only slight
difficulty being keeping track of which columns Q have been formed.

Step 1. Set j = 0, k = 0 where we use j to keep track of the number of columns of A and R that have
been already considered, and k to keep track of the number of columns of Q that have been formed
(k 6 j).

Step 2. Increase j by 1.

• If k = 0 set b = aj .

• If k > 1 set b = aj −
∑k
i=1〈qi,aj〉qi and Ri,j = 〈qi,aj〉, i = 1, 2, . . . , k. Note that by

construction

b is orthogonal to q1, q2, . . . , qk , and

k∑
i=1

Ri,jqi + b = aj . (8.33a)

Step 3.

• If b 6= 0, set qk+1 = b/‖b‖, Rk+1,j = ‖b‖ and Ri,j = 0 for i > k + 2. With these definitions,
the first k + 1 columns of Q are orthonormal. Further, R is upper triangular since j > k + 1,
and from (8.33a)

j∑
i=1

Ri,jqi =

k+1∑
i=1

Ri,jqi =

k∑
i=1

Ri,jqi + ‖b‖ b
‖b‖

= aj . (8.33b)

Increase k by 1.

• If b = 0, then from (8.33a), aj is in the vector space spanned by qi, i = 1, . . . , k. Set Ri,j = 0
for i > k + 1. R is upper triangular since j > k + 1, and from (8.33a)

j∑
i=1

Ri,jqi =

k∑
i=1

Ri,jqi = aj . (8.33c)

Step 4. Terminate if j = n, otherwise go to Step 2 .
14/11

• From Proposition (8.22) we have that, since the columns of Q are orthonormal, there are at most
m of them, i.e. the final value of k cannot exceed m.

• If the final k is less then m, then Lemma (8.23) demonstrates that we can add columns so that Q
becomes m×m and orthogonal.

• Note also that if n > m, there must be stages in the algorithm when b = 0.
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Example. Let us find the QR factorization by Gram–Schmidt of

A =

[
2 4 5
1 −1 1
2 1 −1

]
.

From above

R1,1 = ‖a1‖ = 3, q1 = a1/R1,1 = 1
3

[
2
1
2

]
;

R1,2 = 〈q1,a2〉= 3, b2 = a2 −R1,2q1 =

[
4
−1

1

]
− 3 · 1

3

[
2
1
2

]
=

[
2
−2
−1

]
,

R2,2 = ‖b2‖ = 3, q2 = b2/R2,2 = 1
3

[
2
−2
−1

]
;

R1,3 = 〈q1,a3〉= 3, R2,3 = 〈q2,a3〉 = 3, b3 = a3 −R1,3q1 −R2,3q2

=

[
5
1
−1

]
− 3 · 1

3

[
2
1
2

]
− 3 · 1

3

[
2
−2
−1

]
=

[
1
2
−2

]
,

R3,3 = ‖b3‖ = 3, q3 = b3/R3,3 = 1
3

[
1
2
−2

]
.

So,

A =

[
2 4 5
1 −1 1
2 1 −1

]
=

1

3

[
2 2 1
1 −2 2
2 −1 −2

]
︸ ︷︷ ︸

Q

·

[
3 3 3

3 3
3

]
︸ ︷︷ ︸

R

Modified Gram–Schmidt. The disadvantage of the Gram–Schmidt algorithm is that its numerical accuracy
is poor if much cancellation occurs when the vector b is formed. This is likely when using finite
precision arithmetic to calculate the inner product. The result is that the new column of Q can be
a multiple of a vector that is composed mainly of rounding errors, causing the off-diagonal elements
of QTQ to be very different from zero. Indeed, errors can accumulate very fast with the result
that even for moderate values of m problems are likely. The Gram–Schmidt algorithm is said to be
sensitive.13 However, the Gram–Schmidt process can be stabilized by a small modification, and this
version is sometimes referred to as modified Gram–Schmidt or MGS.

If we assume throughout that b 6= 0, then the classic Gram–Schmidt (CGS) procedure as described

above can be written in MATLAB as (where we note that at the jth stage the jth columns of both
Q and R are determined):

r=zeros(n);

b=a(:,1);

r(1,1)=norm(b);

q(:,1)=b/norm(b);

for j = 2:n

b=a(:,j);

for i=1:j-1

r(i,j)=a(:,j)’*q(:,i);

b=b-r(i,j)*q(:,i);

end

r(j,j)=norm(b);

q(:,j)=b/norm(b);

end

13 Problems are said to be well-conditioned or ill-conditioned , while algorithms are said to be good/stable/insensitive or
bad/unstable/sensitive.
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The key point in order to stabilise the scheme is to ensure that the elements of R are constructed
from partially orthogonalised vectors, and not from the original columns of A. The constructed
vectors are then orthogonalized against any errors introduced in the computation so far. In MGS

this is done by, de facto, swapping the order of the for loops, so that at the ith stage the ith column

of Q and the ith row of R are determined.

q=a;

r=zeros(n);

for i=1:n-1

r(i,i)=norm(q(:,i));

q(:,i)=q(:,i)/norm(q(:,i));

for j=i+1:n

r(i,j)=q(:,j)’*q(:,i);

q(:,j)=q(:,j)-r(i,j)*q(:,i);

end

end

r(n,n)=norm(q(:,n));

q(:,n)=q(:,n)/norm(q(:,n));
14/13
14/14 Remark. There are alternatives to MGS, e.g. it is possible to show that orthogonality conditions are

preserved well when a new orthogonal matrix is generated by computing the product of two given
orthogonal matrices. Therefore algorithms that express Q as a product of simple orthogonal matrices
are highly useful.

14/12

8.4.6 Orthogonal transformations

Our aim is to express Q as a product of simple orthogonal matrices. To this end, given a real, m × n
matrix A, we consider A = QR in the form QTA = R. We then seek a sequence of simple m×m orthogonal
matrices Ω1,Ω2, . . . ,Ωk such that

Aj = ΩjAj−1 , j=1, 2, . . . , k (8.34a)

where A0 = A, Ak is upper triangular and the Ωj are chosen so that the matrix Aj has more zero elements
below the main diagonal than Aj−1 (this condition ensures that the value of k is finite). Then, as required,

R = Ak = Ωk · · ·Ω2Ω1A = QTA , (8.34b)

where
Q = (ΩkΩk−1 · · ·Ω1)−1 = ΩT

1 ΩT
2 · · ·ΩT

k , (8.34c)

is orthogonal since the product of orthogonal matrices is orthogonal, as is the transpose of an orthogonal
matrix.

We recall from Vectors & Matrices that in Euclidean space an orthogonal matrix Q represents a rotation
or a reflection according as det Q = 1 or det Q = −1. We will describe two ‘geometric’ methods, based on
a sequence of elementary rotations and reflections, that ensure that all zeros of Aj−1 that are in ‘suitable’
positions are inherited by Aj , where the meaning of ‘suitable’ will become clear. We begin with the ‘Givens
algorithm’.

8.4.7 Givens rotations

We say that an m ×m orthogonal matrix Ωj is a Givens rotation if it coincides with the unit matrix,
except for four elements, and det Ωj = 1. Specifically, we use the notation Ω[p,q], where 1 6 p < q 6 m
for a matrix such that

Ω[p,q]
p,p = Ω[p,q]

q,q = cos θ, Ω[p,q]
p,q = sin θ, Ω[p,q]

q,p = − sin θ

for some θ ∈ [−π, π]. The remaining elements of Ω[p,q] are those of a unit matrix. For example,

m = 4 =⇒ Ω[1,2] =


cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 , Ω[2,4] =


1 0 0 0
0 cos θ 0 sin θ
0 0 1 0
0 − sin θ 0 cos θ

 .
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Geometrically, the mapping Ω[p,q] rotates vectors in the two-dimensional plane spanned by ep and eq
(clockwise by the angle θ), hence it is orthogonal. In mechanics this is called an Euler rotation.

Remark. It is sometimes helpful to express the interesting part of Ω(p,q) in the form Ω
(p,q)
p,p Ω

(p,q)
p,q

Ω
(p,q)
q,p Ω

(p,q)
q,q

 =
1√

α2 + β2

(
α β

−β α

)
, (8.35)

where α and β are any real numbers that are not both zero.

Theorem 8.28. Let A be an m×n matrix. Then, for every 1 6 p < q 6 m, there exists θ ∈ [−π, π] such
that

(i) (Ω[p,q]A)i,j = 0, where i ∈ {p, q}, and 1 6 j 6 n;

(ii) all the rows of Ω[p,q]A, except for the pth and the qth, are the same as the corresponding rows of A;

(iii) the pth and the qth rows are linear combinations of the ‘old’ pth and qth rows.

Proof. First suppose that i = q, and recall that

(Ω[p,q]A)r,s =

m∑
t=1

Ω
[p,q]
r,t At,s for r = 1, . . . ,m and s = 1, . . . , n .

r 6= p, q. When r 6= p, q, then Ω
[p,q]
r,t = δrt, and hence (Ω[p,q]A)r,s = Ar,s as required.

r = p. The pth row is a linear combinations of the ‘old’ pth and qth rows since

(Ω[p,q]A)p,s = (cos θ)Ap,s + (sin θ)Aq,s, s = 1, 2, . . . , n.

r = q. Similarly, the qth row is a linear combinations of the ‘old’ pth and qth rows since

(Ω[p,q]A)q,s = −(sin θ)Ap,s + (cos θ)Aq,s, s = 1, 2, . . . , n.

Hence, if Ap,j = Aq,j = 0 then (Ω[p,q]A)q,j = 0 for any θ, otherwise let

cos θ = Ap,j/
√
A2
p,j +A2

q,j , sin θ = Aq,j/
√
A2
p,j +A2

q,j .

so that

(Ω[p,q]A)q,j = − Aq,j(
A2
p,j +A2

q,j

)1/2 Ap,j +
Ap,j(

A2
p,j +A2

q,j

)1/2 Aq,j = 0 .

If instead i = p, we let cos θ = Aq,j/
√
A2
p,j +A2

q,j and sin θ = −Ap,j/
√
A2
p,j +A2

q,j .

An example. Suppose that A is 3× 3. We can force zeros underneath the main diagonal as follows.

(i) First pick Ω[1,2] so that (Ω[1,2]A)2,1 = 0, i.e. so that

Ω[1,2]A =

 × × ×
0 × ×
× × ×

 .
(ii) Next pick Ω[1,3] so that (Ω[1,3]Ω[1,2]A)3,1 = 0. Multiplication by Ω[1,3] doesn’t alter the second

row, hence (Ω[1,3]Ω[1,2]A)2,1 remains zero, and hence

Ω[1,3]Ω[1,2]A =

 × × ×
0 × ×
0 × ×

 .
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(iii) Finally, pick Ω[2,3] so that (Ω[2,3]Ω[1,3]Ω[1,2]A)3,2 = 0. Since both second and third row of
Ω[1,3]Ω[1,2]A have a leading zero, their linear combination preserves these zeros, hence

(Ω[2,3]Ω[1,3]Ω[1,2]A)2,1 = (Ω[2,3]Ω[1,3]Ω[1,2]A)3,1 = 0.

It follows that Ω[2,3]Ω[1,3]Ω[1,2]A is upper triangular. Therefore

R = Ω[2,3]Ω[1,3]Ω[1,2]A =

 × × ×
0 × ×
0 0 ×

 , and Q = (Ω[2,3]Ω[1,3]Ω[1,2])T.

8.4.8 The Givens algorithm for calculating the QR factorisation of A

Theorem 8.29. For any matrix A, there exist Givens matrices Ω[p,q] such that

R =
(

Ω[m−1,m]
)
· · ·
(

Ω[2,m] · · ·Ω[2,3]
)(

Ω[1,m] · · ·Ω[1,3]Ω[1,2]
)

A

is an upper triangular matrix.

Proof. In pictures:
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 Ω[1,2]

→


• • •
0 • •
∗ ∗ ∗
∗ ∗ ∗

 Ω[1,3]

→


• • •
0 ∗ ∗
0 • •
∗ ∗ ∗

 Ω[1,4]

→


• • •
0 ∗ ∗
0 ∗ ∗
0 • •

 Ω[2,3]

→


∗ ∗ ∗
0 • •
0 0 •
0 ∗ ∗

 Ω[2,4]

→


∗ ∗ ∗
0 • •
0 0 ∗
0 0 •

 Ω[3,4]

→


∗ ∗ ∗
0 ∗ ∗
0 0 •
0 0 0

 ,
where the •-elements have changed through a single rotation while the ∗-elements have not.

Alternatively (in words, and introducing some flexibility in the choice of the Ω[p,q]), given an m×n matrix
A, let li be the number of leading zeros in the ith row of A, i = 1, 2, . . . ,m.

Step 1. Stop if the (integer) sequence {l1, l2, . . . , lm} increases monotonically, the increase being strictly
monotone for li 6 n.

Step 2. Pick any two integers 1 6 p < q 6 m such that either lp > lq or lp = lq < n; note that Aq,lq+1 6= 0
from the definition of lq.

Step 3. Replace A by Ω[p,q]A, using the Givens rotation that annihilates the (q, lq + 1) element. Update
the values of lp and lq and go to Step 1.

The final matrix A is upper triangular and also has the property that the number of leading zeros in each
row increases strictly monotonically until all the rows of A are zero. The matrix is thus in standard form,
and is the required matrix R.

The choice of p and q. It is convenient to make the Step 2 choices of p and q in the following way. Let
r−1 be the number of rows of R that are complete already, r being set to 1 initially. If r>2, then
the sequence {li : i=1, 2, . . . , r−1} increases strictly monotonically.

Let Lr = min{li : i= r, r+1, . . . ,m}. The Givens rotations that determine the r-th row of R have
p=r and q ∈ {i : li=Lr} in Steps 2 & 3, until Step 3 provides li>Lr for every i in [r+1,m]. Then
r is increased by one. This choice of p and q ensures that Lr > lr−1 while constructing the r-th row
of R.

Remark. This sequence of Givens rotations is not the only one that leads to a QR factorization, e.g.
a sequence consisting only of rotations Ω[q−1,q] will also do the job.

The cost.

(i) Since at least one more zero is introduced into the matrix with each Givens rotation, there
are less than mn rotations. Since each rotation replaces two rows (of length n) by their linear
combinations, the total cost of computing R is O

(
mn2

)
.
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(ii) If the matrix Q is required in an explicit form, say, for solving the system with many right-
hand sides, set Ω = I and, for each successive rotation, replace Ω by Ω[p,q]Ω. The final Ω is the
product of all the rotations, in correct order, and we let Q = ΩT. The extra cost is O(m2n).

(iii) If only one vector QTb is required (e.g. in the case of the solution of a single linear system),
we multiply the vector by successive rotations, the cost being O(mn).

(iv) For m = n, each rotation requires four times more multiplications as the corresponding Gaus-
sian elimination, hence the total cost is 4

3n
3 + O(n2), four times as expensive. However, the

QR factorization is generally more stable than the LU one.

Example. Find the QR factorization by Givens rotations of

A =

 2 4 5
1 −1 1
2 1 −1

 .
From Theorem 8.28 (with initially p = 1, q = 2, i = 2, j = 1, cos θ = 2√

5
and sin θ = 1√

5
),

Ω[1,2]A =

 2√
5

1√
5

0

− 1√
5

2√
5

0

0 0 1


︸ ︷︷ ︸

Ω[1,2]

 2 4 5
1 −1 1
2 1 −1

 =


√
5 7√

5
11√

5

0 − 6√
5
− 3√

5

2 1 −1

 ,

Ω[1,3](Ω[1,2]A) =


√

5
3 0 2

3
0 1 0

− 2
3 0

√
5

3


︸ ︷︷ ︸

Ω[1,3]


√

5 7√
5

11√
5

0 − 6√
5
− 3√

5

2 1 −1

 =

 3 3 3
0 − 6√

5
− 3√

5

0 − 3√
5
− 9√

5

 ,

Ω[2,3](Ω[1,3]Ω[1,2]A) =

 1 0 0
0 − 2√

5
− 1√

5

0 1√
5
− 2√

5


︸ ︷︷ ︸

Ω[2,3]

 3 3 3
0 − 6√

5
− 3√

5

0 − 3√
5
− 9√

5

 =

 3 3 3
0 3 3
0 0 3

 .

Finally,

QT = Ω[2,3]Ω[1,3]Ω[1,2] =
1

3

 2 1 2
2 −2 −1
1 2 −2

 ,
A =

 2 4 5
1 −1 1
2 1 −1

 =
1

3

 2 2 1
1 −2 2
2 −1 −2


︸ ︷︷ ︸

Q

·

 3 3 3
3 3

3


︸ ︷︷ ︸

R

.

15/10

8.4.9 Householder transformations

A Householder transformation is another simple orthogonal matrix. Householder transformations offer
an alternative to Given rotations in the calculation of a QR factorization.

Definition 8.30. If u ∈ Rm \ {0}, the m×m matrix

H = Hu = I− 2
uuT

‖u‖2
(8.36a)

is called a Householder transformation (or Householder matrix, or Householder reflection, or Householder
‘rotation’ ).

Remarks

(i) Each such matrix is symmetric and orthogonal, since(
I− 2

uuT

‖u‖2

)T(
I− 2

uuT

‖u‖2

)
=

(
I− 2

uuT

‖u‖2

)2

= I− 4
uuT

‖u‖2
+ 4

u(uTu)uT

‖u‖4
= I .
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(ii) Further, since
Hu = −u, and Hv = v if uTv = 0,

this transformation reflects any vector x ∈ Rm in the (m − 1)-dimensional hyperplane orthogonal
to u.

(iii) For λ ∈ R \ {0}
Hλu = Hu , (8.36b)

since a vector orthogonal to u is also orthogonal to λu.15/11

Lemma 8.31. For any two vectors a, b ∈ Rm of equal length, the Householder transformation Hu with
u = a− b reflects a onto b, i.e.

u = a− b, ‖a‖ = ‖b‖ ⇒ Hua = b. (8.37a)

In particular, for any a ∈ Rm, the choice b = γe1 implies

u = a− γe1, γ = ±‖a‖ ⇒ Hua = γe1. (8.37b)

Proof. Either draw a picture, or expand Hua
using the fact that

‖a− b‖2 = aTa− aTb− bTa+ bTb

= 2aT(a− b) .

15/12
15/14

Example. To reflect

a =

 a1

a2

a3

 Hu→

 γ
0
0

 = γe1

with some u and γ, we should set γ = ‖a‖ or γ = −‖a‖ to have equal lengths of vectors a and γe1,
and take

u =

 a1 − ‖a‖
a2

a3

 or u =

 a1 + ‖a‖
a2

a3

 ,
respectively. For example, we can reflect

a =

 2
1
2

→
 γ

0
0

 = γe1

either with

γ = 3 ⇒ u =

 −1
1
2

 ⇒ Hua =
1

3

 2 1 2
1 2 −2
2 −2 −1

 2
1
2

 =

 3
0
0

 ,
or with

γ = −3 ⇒ u =

 5
1
2

 ⇒ Hua =
1

15

 −10 −5 −10
−5 14 −2
−10 −2 11

 2
1
2

 =

 −3
0
0

 .
Choosing the sign of γ. For hand calculations it is generally best to choose sgn γ = sgn a1 as this choice

leads to smaller numbers. However for numerical calculations the opposite choice generally provides
better stability (since when ‖u‖ � 1 numerical difficulties can occur as a result of division by a
tiny number).15/13
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Example. To reflect

a =


a1

a2

a3

a4

 Hu→


a1

γ
0
0

 = b ,

we set γ = ±
√
a2

2 + a2
3 + a2

4 (to equalize the lengths), and take

u = a− b =


0

a2 − γ
a3

a4

 .
Theorem 8.32. For any matrix A ∈ Rm×n, there exist Householder matrices Hk such that

R = Hn−1 · · ·H2H1A

is an upper triangular matrix.

Proof. Our goal is to multiply the m×n matrix A by a sequence of Householder transformations so that
each product ‘peels off’ the requisite nonzero elements in a succession of whole columns. To start with,
we seek a transformation that transforms the first nonzero column of A to a multiple of e1.

(i) We take H1 = Hu1 with the vector u1 = a1 − γ1e1, where a1 is the first column of A. Then H1A
has γ1e1 as its first column. Explicitly,

a1 =


A1,1

A2,1

A3,1

A4,1

 , u1 =


A1,1 − γ1

A2,1

A3,1

A4,1

 , γ1 = ±‖a1‖ ⇒ A(1) = H1A =


γ1 A

(1)
1,2 ∗ ∗

0 A
(1)
2,2 ∗ ∗

0 A
(1)
3,2 ∗ ∗

0 A
(1)
4,2 ∗ ∗

 .
(ii) We take H2 = Hu2

with the vector u2 formed from the bottom three components of the second

column, a
(1)
2 , of A(1):

u2 =


0

A
(1)
2,2 − γ2

A
(1)
3,2

A
(1)
4,2

 , γ2 = ±

(
4∑
i=2

(
A

(1)
i,2

)2
) 1

2

⇒ A(2) = H2A(1) =


γ1 A

(1)
1,2 A

(1)
1,3 ∗

0 γ2 A
(2)
2,3 ∗

0 0 A
(2)
3,3 ∗

0 0 A
(2)
4,3 ∗

 .
(iii) We take H3 = Hu3

with the vector u3 formed from the bottom two components of the third

column, a
(2)
3 , of A(2):

u3 =


0
0

A
(2)
3,3 − γ3

A
(2)
4,3

 , γ3 = ±

(
4∑
i=3

(
A

(2)
i,3

)2
) 1

2

⇒ A(3) = H3A(2) =


γ1 A

(1)
1,2 A

(1)
1,3 A

(1)
1,4

0 γ2 A
(2)
2,3 A

(2)
2,4

0 0 γ3 A
(3)
3,4

0 0 0 A
(3)
4,4

 , etc.

At the k-th step

(a) by construction the bottom m−k components of the k-th column of A(k) = HkA(k−1) will vanish (by
Lemma 8.31);

(b) the first k − 1 columns of A(k−1) remain invariant under reflection Hk (because they are orthogonal
to uk), as well as the first k − 1 rows;

(c) therefore, the first k columns of A(k) have an upper triangular form.

The end result is an upper triangular matrix R in standard form.
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Remark. In pictures: 
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 H1→


• • •
0 • •
0 • •
0 • •

 H2→


∗ ∗ ∗
0 • •
0 0 •
0 0 •

 H3→


∗ ∗ ∗
0 ∗ ∗
0 0 •
0 0 0


The •-elements have changed through a single reflection while the ∗-elements have remained the

same.

Cost. Note that for large m we do not execute explicit matrix multiplication (an O(m2n) operation).
Instead, to calculate (

I− 2
uuT

‖u‖2

)
A = A− 2

u(uTA)

‖u‖2
,

first evaluate wT = uTA, and then form A− 2
‖u‖2uw

T (both O(mn) operations).

Calculation of Q. If the matrix Q is required in an explicit form, set Ω = I initially and, for each successive
transformation, replace Ω by (

I− 2
uuT

‖u‖2

)
Ω = Ω− 2

‖u‖2
u(uTΩ),

remembering not to perform explicit matrix multiplication. As in the case of Givens rotations, by
the end of the computation, Ω = QT. However, if we are, say, solving a linear system Ax = b and
require just the vector c = QTb rather than the matrix Q, then we set initially c = b and in each
stage replace c by (

I− 2
uuT

‖u‖2

)
c = c− 2

uTc

‖u‖2
u.

Example. Calculate the QR factorization by Householder reflections of

A =

[
2 4 5
1 −1 1
2 1 −1

]
.

First, we do this [the long way] by calculating the Hk:

A =

 2 4 5
1 −1 1
2 1 −1

 ,
u1 =

 −1
1
2

 , H1 = 1
3

 2 1 2
1 2 −2
2 −2 −1

 , A(1) = H1A =

 3 3 3
0 0 3
0 3 3

 ,
u2 =

 0
−3

3

 or

 0
−1

1

 , H2 =

 1 0 0
0 0 1
0 1 0

 , R = H2A(1) =

 3 3 3
0 3 3
0 0 3

 .
Finally,

Q = (H2H1)T =

 1 0 0
0 0 1
0 1 0

 1
3

 2 1 2
1 2 −2
2 −2 −1

T

= 1
3

 2 1 2
2 −2 −1
1 2 −2

T

= 1
3

 2 2 1
1 −2 2
2 −1 −2

 ,
so that

A =

[
2 4 5
1 −1 1
2 1 −1

]
= 1

3

[
2 2 1
1 −2 2
2 −1 −2

]
︸ ︷︷ ︸

Q

·

[
3 3 3

3 3
3

]
︸ ︷︷ ︸

R

.
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Second, we avoid the explicit calculation of the Hk:

u1 =

 −1
1
2

 , 2
uT

1 A
‖u1‖2 =

[
1 −1 −2

]
, A(1) = A− 2

u1(uT
1 A)

‖u1‖2 =

 3 3 3
0 3 3
0 3 3

 ,
u2 =

 0
−3

3

 , 2
uT

2 A(1)

‖u2‖2 =
[

0 1 0
]
, R = A(1) − 2

u2(uT
2 A(1))

‖u2‖2 =

 3 3 3
0 3 3
0 0 3

 .
If we require Q, start with Ω = I, then

u1 =

 −1
1
2

 , 2
uT

1 Ω
‖u1‖2 = 1

3

[
−1 1 2

]
, Ω(1) = Ω− 2

u1(uT
1 Ω)

‖u1‖2 = 1
3

 2 1 2
1 2 −2
2 −2 −1

 ,
u2 =

 0
−3

3

 , 2
uT

2 Ω(1)

‖u2‖2 = 1
9

[
1 −4 1

]
, QT = Ω(1) − 2

u2(uT
2 Ω(1))

‖u2‖2 = 1
3

 2 1 2
2 −2 −1
1 2 −2

 .
As before

A =

[
2 4 5
1 −1 1
2 1 −1

]
= 1

3

[
2 2 1
1 −2 2
2 −1 −2

]
︸ ︷︷ ︸

Q

·

[
3 3 3

3 3
3

]
︸ ︷︷ ︸

R

.

Givens or Householder? If A is dense, it is in general more convenient to use Householder transformations.
Givens rotations come into their own, however, when A has many leading zeros in its rows. In an
extreme case, if an n× n matrix A consists of zeros underneath the first sub-diagonal, they can be
‘rotated away’ in (n− 1) Givens rotations, at the cost of just O

(
n2
)

operations.
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9 Linear Least Squares

9.1 Statement of the problem

Suppose that an m × n matrix A and a vector b ∈ Rm are given. If m < n the equation Ax = b
usually has an infinity of solutions, while if m > n it in general has no solution. When there are more
equations than unknowns, the system Ax = b is called overdetermined. In general, an overdetermined
system has no solution, but we would like to have Ax and b close in a sense. Choosing the Euclidean
distance ‖z‖ = (

∑m
i=1 z

2
i )1/2 as a measure of closeness, we obtain the following problem.

Problem 9.1 (Least squares in Rm). Given A ∈ Rm×n and b ∈ Rm, find

x∗ = arg min
x∈Rn

‖Ax− b‖2 , (9.1)

i.e., find (the argument) x∗ ∈ Rn which minimizes (the functional) ‖Ax−b‖2 — the least-squares problem.

0

2

4

6

8

2 4 6 8 10 12
x

xi yi
1 0.00
2 0.60
3 1.77
4 1.92
5 3.31
6 3.52
7 4.59
8 5.31
9 5.79
10 7.06
11 7.17

Figure 9.11: Least squares straight line data fitting.

Remark. Problems of this form occur frequently when we collect m observations (xi, yi), which are typ-
ically prone to measurement error, and wish to exploit them to form an n-variable linear model,
typically with m� n. In statistics, this is called linear regression.

For instance, suppose that we have m measurements of F (x), and that we wish to model F with a
linear combination of n functions φj(x), i.e.

F (x) = c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) , and F (xi) ≈ yi, i = 1...m.

Such a problem might occur if we were trying to match some planet observations to an ellipse.
Hence we want to determine c such that the F (xi) ‘best’ fit the yi, i.e.

Ac =



φ1(x1) · · · φn(x1)
...

...
φ1(xn) · · · φn(xn)

...
...

φ1(xm) · · · φn(xm)


 c1

...
cn

 =



F (x1)
...

F (xn)
...

F (xm)

 ≈


y1

...
yn
...
ym

 = y.

There are many ways of doing this; we will determine the c that minimizes the sum of squares of
the deviation, i.e. we minimize

m∑
i=1

(F (xi)− yi)2
= ‖Ac− y‖2.

This leads to a linear system of equations for the determination of the unknown c.
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Theorem 9.2. x ∈ Rn is a solution of the least-squares problem (9.1) iff AT(Ax− b) = 0.

Proof. If x is a solution then it minimizes

f(x) = ‖Ax− b‖2 = 〈Ax− b,Ax− b〉 = xTATAx− 2xTATb+ bTb.

At a minimum the gradient ∇f =
[
∂f
∂x1

, · · · , ∂f∂xn

]T
vanishes, i.e. ∇f(x) = 0. But

∇f(x) = 2ATAx− 2ATb = 2AT(Ax− b), and hence AT(Ax− b) = 0.

Conversely, suppose that AT(Ax− b) = 0 and let u ∈ Rn. Hence, letting y = u− x,

‖Au− b‖2 = 〈Ay + (Ax− b),Ay + (Ax− b)〉
= 〈Ay,Ay〉+ 2yTAT(Ax− b) + 〈Ax− b,Ax− b〉
= ‖Ay‖2 + ‖Ax− b‖2+ > ‖Ax− b‖2 .

It follows that x is indeed optimal (i.e. a minimizer). Moreover, if A is of full rank and y = u − x 6≡ 0,
then the last inequality is strict, hence x is unique.

Corollary 9.3. The optimality of x ⇔ the vector Ax− b is orthogonal to all columns of A.

Remark. This corollary has a geometrical visualization. If we denote the columns of A as aj , j = 1, . . . , n,
then the least squares problem is the problem of finding the value

min
x

∥∥∥ n∑
j=1

xjaj − b
∥∥∥ ,

which is the minimum of the Euclidean distance between a given vector b and vectors in the plane
B = span (aj). Geometrically this minimum is attained when

n∑
j=1

xjaj = Ax

is the foot of the perpendicular from b onto the plane B, i.e. when b−
∑
xjaj = b−Ax is orthogonal

to all vectors aj (i.e. the columns of A).

9.2 Normal equations

One way of finding optimal x is by solving the n× n linear system

ATAx = ATb . (9.2)

This is the method of normal equations; ATA is the Gram matrix, while b is the normal solution.

Example. The least squares approximation, by a straight line, to the data plotted in Figure 9.11

F (x) = c1 + c2x (φ1(x) = 1, φ2(x) = x),

results in the following normal equations and solution:

A =
(
φj(xi)

)
=


1 1
1 2
1 3
: :
1 11

,
[

11 66
66 506

]
︸ ︷︷ ︸

ATA

[
c1
c2

]
=

[
41.04

328.05

]
︸ ︷︷ ︸

ATy

⇒
[
c1
c2

]
=

[
−0.7314

0.7437

]
.

Remark. A normal equation approach to the solution of the linear least squares problem is popular in
many applications; however, there are three disadvantages.
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(i) Firstly, ATA might be singular.

(ii) Secondly a sparse A might be replaced by a dense ATA.

(iii) Finally, forming ATA might lead to loss of accuracy. For instance, suppose that our computer
works to the IEEE arithmetic standard (≈ 15 significant digits) and let

A =

[
108 −108

1 1

]
=⇒ ATA =

[
1016 + 1 −1016 + 1
−1016 + 1 1016 + 1

]
≈ 1016

[
1 −1
−1 1

]
.

Suppose b = [0, 2]T, then the solution of Ax = b is [1, 1]T, as can be shown by Gaussian
elimination; however, our computer ‘believes’ that ATA is singular!

9.3 The solution of the least-squares problem using QR factorisation.

An alternative to solution by normal equations is provided by QR factorisation. First, some revision.

Lemma 9.4. Let v ∈ Rm, and let Ω be an m×m orthogonal matrix. Then ‖Ωv‖ = ‖v‖, i.e. the Euclidean
length of a vector is unchanged if the vector is pre-multiplied by any orthogonal matrix.

Proof.
‖Ωv‖2 = (Ωv)T(Ωv) = vTΩTΩv = vTv = ‖v‖2 .

Corollary 9.5. Let A be any m× n matrix and let b ∈ Rm. The vector x ∈ Rn minimises ‖Ax− b‖ iff
it minimises ‖ΩAx− Ωb‖ for an arbitrary m×m orthogonal matrix Ω.

Proof.
‖ΩAx− Ωb‖2 = ‖Ω(Ax− b)‖2 = ‖Ax− b‖2.

Suppose that A = QR is a QR factorization of A with R in a standard form. Because of the corollary, and
letting Ω = QT, minimizing ‖Ax− b‖ for x ∈ Rn, is equivalent to minimizing

‖QTAx− QTb‖ = ‖Rx− QTb‖. (9.3)

Next we note that because R is in standard form, its nonzero rows, {rT
i : i=1, 2, . . . , `} say, are linearly

independent. Therefore

(i) there exists x satisfying rT
i x = (QTb)i, i=1, 2, . . . , `,

(ii) x can be computed by back-substitution using the upper triangularity of R,

(iii) x is unique if and only if ` = n.

To demonstrate that such an x is a least-squares solution, we note that because the last (m−̀ ) components
of Rx are zero for every x ∈ Rn,

‖Rx− QTb‖2 =
∑̀
i=1

(Rx− QTb)2
i +

m∑
i=`+1

(QTb)2
i >

m∑
i=`+1

(QTb)2
i , (9.4)

with equality iff rT
i x = (QTb)i, i=1, 2, . . . , `. Hence the back-substitution provides an x that minimizes

‖Ax− b‖ as required.

Remarks

(a) Often m� n, in which case many rows of R consist of zeros.

(b) Note that we do not require Q explicitly, we need only to evaluate QTb.
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9.3.1 Examples

(i) Find x ∈ R3 that minimizes ‖Ax− b‖, where

A = 1
2


1 3 6
1 1 2
1 3 4
1 1 0

 , b =


1
1
1
0

 .
To this end we need to solve the system

AT(Ax− b) = 0 ,
or equivalently

RTQT(QRx− b) = RT(Rx− QTb) = 0 ,

which can be achieved by first solving

RTy = 0 , and then Rx = QTb+ y .

The QR-factorization of A is

A = 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


︸ ︷︷ ︸

Q

×


1 2 3
0 1 2
0 0 1
0 0 0


︸ ︷︷ ︸

R

.

Hence  1 0 0 0
2 1 0 0
3 2 1 0


︸ ︷︷ ︸

RT

×


y1

y2

y3

y4

 = 0 , with solution


y1

y2

y3

y4

 =


0
0
0
λ


where λ ∈ R. Next 

1 2 3
0 1 2
0 0 1
0 0 0


︸ ︷︷ ︸

R

 x1

x2

x3

 = 1
2


3
1
1
−1


︸ ︷︷ ︸

QTb

+


0
0
0
λ

 ,

which has solution

λ = 1
2 , x = 1

2

 2
−1

1

 .
The error is the norm of the vector formed by the bottom (m − n) components of the right-hand
side QTb:

‖Ax− b‖ = ‖Rx− QTb‖ = ‖y‖ = 1
2 .

(ii) Using the normal solution, find the least squares approximation to the data

xi yi
−1 2

0 1
1 0

by a function F = c1φ1 + c2φ2, where φ1(x) = x and φ2(x) = 1 + x− x2.

We solve the system of normal equations:

A =
(
φj(xi)

)
=

 −1 −1
0 1
1 1

 , [
2 2
2 3

]
︸ ︷︷ ︸

ATA

[
c1
c2

]
=

[
−2
−1

]
︸ ︷︷ ︸

ATy

⇒ c =

[
−2

1

]
.
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The error is

Ac− y =

 1
1
−1

−
 2

1
0

 =

 −1
0
−1

 ⇒ ‖Ac− y‖ =
√

2 .

16/10
16/11
16/12
16/13
16/14

10 Questionnaire Results

Questionnaire results are available at http://tinyurl.com/NA-IB-2014-Results.
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