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0 Perturbation Methods (16 Lectures)

0.1 Introduction

• 24 lectures prised into 16.

• Any corrections and suggestions should be emailed to me at S.J.Cowley@maths.cam.ac.uk.

• Closed book examination. Likely rubric:

Attempt no more than TWO questions.
There are THREE questions in total.
The questions carry equal weight.

• Books

– Hinch, Perturbation methods.

– Van Dyke, Perturbation methods in fluid mechanics.

– Kevorkian & Cole, Perturbation methods in applied mathematics.

– Bender & Orszag, Advanced mathematical methods for scientists and engineers.

• Philosophy

– Many physical processes are described by equations that cannot be solved analytically.

– One approach is to solve the equations numerically; however, often there exists a ‘small’ pa-
rameter, ε, e.g.

∗ in low Mach number flows ε = M = u
c , where u is the fluid velocity and c is the speed of

sound;

∗ in fast flows ε = 1
Re , where Re is the Reynolds number.

– We can use the smallness of ε to simplify the equations, and then find analytic (or simpler
numerical) solutions.

• Primarily interested in differential equations, but a number of the ideas can be illustrated for
algebraic equations and/or integrals. We will use algebraic equations to motivate some of the ideas.

• The only pre-requisites are (a) a course in ‘Sums’ (i.e. a competency to perform moderately messy
calculations), and (b) an ability to solve simple differential equations and evaluate simple integrals
(e.g. using integration by parts).
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Include Olver’s paradox as an example?
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1 Algebraic Equations

1.1 Regular Expansions and Iteration

Consider
x2 + εx− 1 = 0 . (1.1)

Exact solution:

x = −1

2
ε±

(
1 +

1

4
ε2

) 1
2

.

If |ε| < 2, then can expand in a convergent series:

x =


1− 1

2
ε+

1

8
ε2 − 1

128
ε4 + · · ·

−1− 1

2
ε− 1

8
ε2 +

1

128
ε4 + · · ·

Since the series is convergent for |ε| < 2, for small ε we can increase the accuracy by taking more terms.
We have

solved the equation and then approximated the solution

However, we cannot always solve the equation exactly, so can we

approximate and then solve the equation?

1.1.1 Iterative method (liked by Pure Mathematicians)

Based on
xn+1 = g(xn) .

Suppose xn = x∗ + δn where x∗ = g(x∗). Then by Taylor Series

δn+1 = g′(x∗) δn +O
(
δ2
n

)
.

If we have a good guess, so that |δn| is small, this is convergent if

|g′(x∗)| < 1 .

Rearrange (1.1):
x2 = 1− εx .

For the root near x = 1 try

xn+1 = (1− εxn)
1
2

x0 = 1

x1 = (1− ε)
1
2 = 1− 1

2
ε− 1

8
ε2 + · · ·

x2 =
(

1− ε (1− ε)
1
2

) 1
2

= 1− 1

2
ε+

1

8
ε2 +

1

8
ε3 + · · ·

x3 =

(
1− ε

(
1− ε (1− ε)

1
2

) 1
2

) 1
2

= 1− 1

2
ε+

1

8
ε2 + 0 +O

(
ε4
)

+ · · ·

Hard work for the higher terms — also, how many terms are correct?
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1.1.2 Expansion method

For ε = 0, the roots are x = ±1. For the root near x = 1 try

x(ε) = 1 + εx1 + ε2x2 + ε3x3 + · · ·

Substitute into equation (1.1):

1 + 2εx1 + 2ε2x2 + ε2x2
1 + 2ε3x3 + 2ε3x1x2 + · · ·

+ ε + ε2x1 + ε3x2 + · · ·
−1 = 0

Equate powers of ε:

ε0 : 1− 1 = 0

ε1 : 2x1 + 1 = 0 , x1 = − 1
2

ε2 : 2x2 + x2
1 + x1 = 0 , x2 = 1

8

ε3 : 2x3 + 2x1x2 + x2 = 0 , x3 = 0

Easier than the iterative method for higher terms, but you need to guess the expansion correctly.

1.2 Singular Perturbations and Rescaling

Consider
εx2 + x− 1 = 0 . (1.2)

ε = 0 : one solution
ε 6= 0 : two solutions

The limit process ε→ 0 is said to be singular .

Exact solution:
−1± (1 + 4ε)

1
2

2ε
.

Expansion for |ε| < 1
4 :

x =

{
1− ε+ 2ε2 − 5ε3 + · · ·
− 1
ε − 1 + ε− 2ε2 + · · · (1.3)

The singular (i.e. extra) root → ∓∞ as ε→ 0±.

1.2.1 Iterative method

(a) For the non-singular root try
xn+1 = 1− εx2

n .

(b) For the singular root, we need to keep the ‘εx2’ term as a major player. The leading order approxi-
mation is

εx2 + x ≈ 0 ;

so try rearranging (1.2) to

xn+1 = −1

ε
+

1

εxn
.

Exercise. Confirm (1.3) by iteration.

Note that in (b)

xn+1 = g(xn) , where g(x) = −1

ε
+

1

εx
.

Hence

g′(x) = − 1

εx2
,

∣∣∣∣g′(−1

ε

)∣∣∣∣ = ε < 1 if 0 < ε < 1 .
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1.2.2 Expansion method

For one root try
x = x0 + εx1 + ε2x2 + · · · , (1.4a)

and for the other try

x =
x−1

ε
+ x0 + εx1 + · · · . (1.4b)

Substitute (1.4b) into (1.2):

x2
−1
ε + 2x−1x0 + ε

(
x2

0 + 2x−1x1

)
+ · · ·

+
x−1
ε + x0 + εx1 + · · ·
− 1 = 0

Equate powers

ε−1 : x2
−1 + x−1 = 0 ; x−1 = 0 , −1

ε0 : (2x−1 + 1)x0 − 1 = 0 ; x0 = 1 , −1

ε : x2
0 + 2x−1x1 + x1 = 0 ; x1 = −1 , 1

↑ ↑
(1.3a) (1.3b)

1.2.3 Rescaling before expansion

How do you decide on the expansion if you do not know the solution?

Seek rescaling[s] to convert the singular equation into a regular equation. Try

x = δ(ε)X

need to choose suitable δ ↗ ↖ strictly order ‘unity’; say X = ord(1).

(1.2) becomes
εδ2X2 + δX − 1 = 0 .

Consider the possibilities for different choices of δ (|ε| � 1):

δ � 1: small + small − 1 = 0 >

δ = 1: small + X − 1 = 0 regular root

1� δ � 1
ε : LHS

δ = small + X + small = 0 >

(since X = ord(1))

δ = 1
ε : LHS

δ = X2 + X + small = 0 singular root

δ � 1
ε : LHS

εδ2 = X2 + small + small = 0 >

The distinguished choices are therefore:

δ = 1 : εX2 +X − 1 = 0 ; X = 1 + εX1 + ε2X2 + . . .
δ = 1

ε : X2 +X − ε = 0 ; X = −1 + εX1 + ε2X2 + . . .

01/01
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1.3 Non Integral Powers

Inter alia, double roots can cause problems. Consider, with ε > 0,

(1− ε)x2 − 2x+ 1 = 0 . (1.5)

When ε = 0, there is a double root at x = 1. Try an expansion:

x = 1 + εx1 + ε2x2 + . . .

then
1 + 2εx1 + ε2

(
2x2 + x2

1

)
+ · · ·

− ε − ε2 (2x1)

− 2 − 2εx1 − 2ε2x2 + · · ·
+ 1 = 0

and equating powers of ε:
ε0 : 1− 2 + 1 = 0
ε1 : 2x1 − 1− 2x1 = 0 >

We need ‘εx1’ to be larger.

From the exact solution:

x =
1± ε 1

2

1− ε
,

we see that we should have expanded in powers of ε
1
2 :

x = 1 + ε
1
2x 1

2
+ εx1 + ε

3
2x 3

2
+ · · ·

1 + 2ε
1
2x 1

2
+ 2εx1 + εx2

1
2

− ε

− 2 − 2ε
1
2x 1

2
− 2εx1

+ 1 = 0

This time on equating powers of ε we see that

ε0 : 1− 2 + 1 = 0

ε
1
2 : 2x 1

2
− 2x 1

2
= 0 no information

ε1 : 2x1 + x2
1
2

− 1− 2x1 = 0 x 1
2

= ±1

We must work to O(ε) to obtain the solution to O(ε
1
2 ).

From the original equation
(x− 1)2 = εx2 ,

we see that, since the roots are near x = 1 when ε � 1, a change in the ordinate by ord(ε) changes the

position of the root by ord(ε
1
2 ).
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In general we must derive (guess) the expansion required, e.g. try

x(ε) = 1 + δ1(ε)x1 + δ2(ε)x2 + · · ·
1� δ1 � δ2 � · · ·
xj = ord(1).

Substitute into (1.5):

1 + 2δ1x1 + 2δ2x2 + · · · + δ2
1x

2
1 + · · · + 2δ1δ2x1x2 + · · ·

− ε − 2εδ1x1 + · · ·
− 2 − 2δ1x1 − 2δ2x2 + · · ·
+ 1 = 0

The leading order terms are
Hence take

δ2
1x

2
1 and −ε.

δ1 = ε
1
2 �

allow x1 to absorb any multiple roots.

Exercise. Show that the choices δ2
1 � ε, or δ2

1 � ε, lead to a >.

Cancelling off these two terms, the leading-order terms become

2δ1δ2x1x2 and − 2εδ1x1 .

Repeating the argument ⇒ δ2 = ε (and x2 = 1).

1.4 Logarithms

Solve
xe−x = ε . (1.6)

One root is close to x = ε, the other root is between

x = ln
1

ε
(xe−x = ε ln 1

ε > ε)

and

x = 2 ln
1

ε
(xe−x = 2ε2 ln 1

ε < ε, for ε small).

Note: doubling x reduces the e−x factor by an order of magnitude.

The expansion method is unclear, so try the iteration scheme. Consider a rearrangement that emphasises
the e−x factor:

ex =
x

ε
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so try

xn+1 = log
1

ε
+ log xn .

Then

x0 = log
1

ε

x1 = log
1

ε︸ ︷︷ ︸
L1

+ log log
1

ε︸ ︷︷ ︸
L2

x2 = L1 + log (L1 + L2)

= L1 + L2 +
L2

L1
− L2

2

2L2
1

+
L3

2

3L3
1

+ · · ·

x3 = L1 + log

(
L1 + L2 +

L2

L1
− L2

2

2L2
1

+
L3

2

3L3
1

+ · · ·
)

= L1 + L2 +
L2

L1
+
− 1

2L
2
2 + L2

L2
1

+
1
3L

3
2 − 3

2L
2
2

L3
1

+ · · ·

The iterative method can give more than one term per iteration.

Numerical disaster. Percentage errors for the truncated series:

ε L1 L2 L2/L1 −L2
2/2L

2
1 L2/L

2
1

10−1 36% 12% 2% 4% 0.03%
10−3 24% 3% 0.02% 0.04% 0.04%
10−5 19% 1% 0.04% 0.1% 0.001%︸ ︷︷ ︸

Do not separate terms
like −L2

2/2L
2
1 & L2/L

2
1.

A very small ε is needed before this is tolerably accurate.

Check convergence.

xn+1 = g(xn)

g(x) = log
1

ε
+ log x

g′(x) =
1

x

g′(x∗) ≈ 1

log 1
ε

↑need ε very small for |g′| � 1.

01/19
01/20
(long)
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2 Asymptotic Approximations

2.1 Convergence and Asymptoticness

An expansion
∑∞
n=0 fn(z) converges for a fixed z if, given ε > 0, ∃ N(z, ε) s.t.∣∣∣∣∣

m∑
`

fn(z)

∣∣∣∣∣ < ε ∀ `,m > N .

Convergent series can be useful analytically, but hopeless in practice. For instance, consider

erf(z) =
2√
π

∫ z

0

e−t
2

dt .

We know that

e−t
2

=

∞∑
0

(
−t2

)n
n!

is analytic in the entire complex plane. Hence we have uniform convergence on any bounded part of the
plane ⇒ we can integrate term by term:

erf(z) = 2√
π

∑∞
0

(−)nz2n+1

(2n+1)n! .

↓ also has ∞ radius of convergence

To obtain an accuracy of 10−5 we need

8 terms up to z =1
16 terms up to z =2
31 terms up to z =3
75 terms up to z =5

However, intermediate terms can be large ⇒ problems due to round-off error on computers.

An alternative for large z is to proceed as follows. First rewrite the integral:

erf(z) = 1− 2√
π

∫ ∞
z

e−t
2

dt .

Then repeatedly integrate by parts:∫ ∞
z

e−t
2

dt =

∫ ∞
z

(
− 1

2t

)
d
(
e−t

2
)

=
e−z

2

2z
−
∫ ∞
z

1

2t2
e−t

2

dt

.

.

.

.

.

=

(
1− 1

2z2
+

1.3

(2z2)
2 −

1.3.5

(2z2)
3

)
e−z

2

2z
+R5

where

R5 =

∫ ∞
z

105

16

e−t
2

t8
dt =

∫ ∞
z

105

32 t9
d
(
−e−t

2
)

6
105

32z9

∫ ∞
z

d
(
−e−t

2
)

=
105

32

e−z
2

z9
.
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The series in z−1 is divergent (due to the odd factorial in the numerator), but the truncated series is
useful, e.g. 10−5 accuracy with 3 terms for z = 2.5

2 terms for z = 3.

“First term is essentially the answer, while subsequent terms are minor corrections.”

Problem: What if the leading term is not sufficiently accurate (e.g. in reality ε is not sufficiently small)?
Adding a few extra terms may help, but there is a limit to the number of useful extra terms if the series
diverges as N → ∞ at fixed ε. It is not sensible to include extra terms once they stop decreasing in
magnitude. By suitable truncation, one can obtain exponential accuracy (see §3.1 and the first example
sheet).01/04

2.2 Definitions

The expansion
∑N

0 fn(ε) is an asymptotic approximation of f(ε) as ε→ 0, if ∀ m 6 N ,∑m
0 fn(ε)− f(ε)

fm(ε)
→ 0 as ε→ 0

i.e. the remainder is less than the last included term.

If we can let N →∞ (in principle) then we have an asymptotic expansion.

If fn = anε
n, then we have an asymptotic power series; however we frequently need more general expan-

sions involving terms like εα,
(
ln 1

ε

)−1
, etc. We write these as

N∑
n=0

anδn(ε) (2.1)

where the δn form an asymptotic sequence:

δn+1

δn
→ 0 as ε→ 0 .

Note that sometimes we need to restrict to one sector of the complex ε plane to keep the δn single valued.

Often ε is real and positive. A useful set of asymptotic functions are then Hardy’s logarithm–exponential
functions obtained by a finite number of +,−, ∗, /, exp & log operations, with all intermediate quantities
real.

This class has the property that it can be ordered, i.e. either f(ε) = o (g(ε)), or g(ε) = o (f(ε)) or
f(ε) = ord (g(ε)).02/01

2.3 Uniqueness and Manipulation

If f can be expanded asymptotically for a given asymptotic sequence, then the expansion is unique. For
if the expansion exists it has the form

f(ε) ∼
∑
n

anδn(ε) ,

then by construction

a0 = lim
ε→0

f(ε)

δ0(ε)

an = lim
ε→0

{
f(ε)−

∑n−1
0 amδm
δn

}
.
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However , a single function can have different asymptotic expansions for different sequences:

tan(ε) ∼ ε+
1

3
ε3 +

2

15
ε5 + · · ·

∼ sin ε+
1

2
(sin ε)

3
+

3

8
(sin ε)

5
+ · · ·

∼ ε cosh

√
2

3
ε+

31

270

(
ε cosh

√
2

3
ε

)5

+ · · · .

Part of the ‘art’ of obtaining an effective asymptotic solution is choosing the most appropriate asymptotic
sequence.

Worse: two functions can have the same asymptotic expansion:

exp ε ∼
∞∑
0

εn

n!
as ε→ 0

exp ε+ exp

(
−1

ε

)
∼

∞∑
0

εn

n!
as ε↘ 0 .

Exercise. Does f = x2 + e−x
2(1−sin x) have an asymptotic expansion as x→∞?

• Asymptotic expansions can be added, multiplied and divided to produce asymptotic expansions for
the sum, product and quotient (if necessary one may need to enlarge the asymptotic sequence).

• If appropriate, one can try to substitute an asymptotic expansion into another – but care is needed,
e.g. if

f(z) = ez
2

, z(ε) =
1

ε
+ ε

then

f(z(ε)) = exp

[
1

ε2
+ 2 + ε2

]
∼ e1/ε2e2

{
1 + ε2 +

ε4

2
+ · · ·

}
,

but if we just work to leading order

z ∼ 1

ε

f(z) 6∼ e1/ε2

↑missing e2

The leading-order approximation in z is inadequate for the leading-order approximation in f(z).

• Integration w.r.t. ε of asymptotic expansions is allowed term-by-term producing the correct result.

• Differentiation is not allowed in principle because O and o estimates do not survive differentiation.
For instance:

(a)

f = eix
2

= O(1) as x→∞
df

dx
= 2ixeix

2

= O(x) as x→∞

(b)

f = 1 + e−1/x2

sin
(
e1/x2

)
∼ 1 + · · · as x→ 0

df

dx
= − 2

x3
cos
(
e1/x2

)
︸ ︷︷ ︸

No asymptotic expansion as x→ 0.

+
2

x3
e−1/x2

sin
(
e1/x2

)
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(c)
f = t2 + t sin t ∼ t2 , f ′ = (2 + cos t)t+ sin t 6∼ 2t as t→∞.

01/03

However:

(i) If f ′(x) exists and is integrable, and f(x) ∼
∑N
n=0 anx

n as x→ 0, then

f ′ ∼
∞∑
n=1

nanx
n−1 as x→ 0.

(ii) If f(z) is analytic in θ1 6 arg z 6 θ2, 0 < |z| < R and

f ∼
∞∑
n=0

anz
n as z → 0 (θ1 6 arg z 6 θ2)

then

f ′ ∼
∞∑
n=1

nanz
n−1 as z → 0 (θ1 6 arg z 6 θ2).

(iii) There are lots more special cases. For instance, consider asymptotic expansions of solutions to
differential equations.

Suppose that y is the solution to
y′′ + qy = 0 (2.2)

where q has an asymptotic expansion as x→ 0.

Assume y has an asymptotic expansion as x→ 0;

then from (2.2) y′′ has an asymptotic expansion (multiplication OK)
thus y′ has an asymptotic expansion (integration OK)
thus y has an asymptotic expansion (integration OK) .

Hence if y has an asymptotic expansion, the equation ensures that its differentials have asymp-
totic expansions (the proof that y has an asymptotic expansion in the first place is often tricky).

2.4 Parametric Expansions

For functions of two (or more) variables, e.g. f(x, ε) (as might arise in solutions to pdes, etc.), we make
the obvious generalisation of (2.1) to allow the an to be functions of x:

f(x, ε) ∼
N∑
n=0

an(x)δn(ε) as ε→ 0. (2.3)

If the approximation is asymptotic as ε→ 0 for each x, then it is called a Poincaré, or classical, asymptotic
approximation.

The above pointwise asymptoticness may not be uniform in x, e.g. it may require ε < x (restrictive as
x→ 0). Such problems sometimes need a further extension:

f(x, ε) ∼
∑
n an(x, ε)δn(ε) (2.4)

e.g. an(x, ε) = bn
(
x
ε

)
.

Uniqueness extends to (2.3), but not to (2.4), etc.
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3 Integral Methods

3.1 Elementary Examples

Example 1. Rewrite an integral so that we can use a Taylor series. For instance:

I =

∫ ∞
x

e−t
4

dt as x→ 0 .

Then

I =

∫ ∞
0

e−t
4

dt−
∫ x

0

e−t
4

dt

= Γ (5/4)−
∫ x

0

∞∑
n=0

(−t4)n

n!
dt

= Γ (5/4)−
∞∑
n=0

(−)nx4n+1

(4n+ 1)n!
.

Example 2. Use a Taylor series even when we cannot! For instance:

I =

∫ ∞
0

e−t

x+ t
dt as x→∞ .

Then

I =
1

x

∫ ∞
0

e−t
(

1 +
t

x

)−1

dt

=
1

x

∫ ∞
0

e−t
(

1− t

x
+
t2

x2
− t3

x3
+ . . .

↑dubious, since invalid for t > x.

)
dt

=
1

x

(
1− 1!

x
+

2!

x2

↑Divergent

− 3!

x3
+ . . .

)
.

Estimate the remainder using

1− t

x
+
t2

x2
+ . . .+

(
− t
x

)m−1

=
1−

(
− t
x

)m
1 + t

x

.

Then

I =
1

x

m−1∑
n=0

∫ ∞
0

(
− t
x

)n
e−t dt+Rm(x) ,

where

Rm(x) =
1

xm+1

∫ ∞
0

(−t)me−t(
1 + t

x

) dt ,

and

|Rm(x)| 6 1

|xm+1|

∫ ∞
0

tme−t dt =
m!

xm+1
.

Hence

I =
1

x

(
1− 1

x
+

2!

x2
+ . . .+

m!

(−x)m
+O

(
(m+ 1)!

xm+1

))
02/22

Truncate the series when the remainder has the smallest bound, i.e. stop one before smallest term when
x ∼ m. The error when we truncate is then (after using Stirling’s formula)

|Rm| ∼
x!

xx+1
∼ (2π)1/2e−x

x1/2
,

i.e. the error is exponentially small for large x (so the ‘dubious’ step wasn’t too bad).

03/01
02/04
02/19
02/20
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3.2 Integration by Parts

Integrals of the form
∫
f(t)g(t) dt can be integrated by parts and may so yield asymptotic expansions;

one automatically obtains the remainder.

Example 1. See §2.1 for erf(z).

Example 2. Consider the exponential integral

E1(x) ≡
∫ ∞
x

e−t

t
dt = e−x

∫ ∞
0

e−t dt

x+ t
.

Then integrating by parts

E1(x) =

[
−e
−t

t

]∞
x

−
∫ ∞
x

e−t

t2
dt

=
e−x

x

(
1− 1

x
+

2!

x2
+ . . .+

m!

(−x)m

)
+Rm(x) ,

where

Rm(x) = (−)m+1(m+ 1)!

∫ ∞
x

e−t

tm+2
dt .

Hence

|Rm(x)| 6 (m+ 1)!e−x

xm+2
,

and as in §3.1, the remainder is asymptotically smaller than the retained terms on truncation with m ∼ x.

Example 3. The sine and cosine integrals.

−Ci(x)− i si(x) = −Ci(x) + i
(π

2
− Si(x)

)
≡
∫ ∞
x

eit dt

t

= −e
ix

ix

(
1 +

1

ix
+

2!

(ix)2
+ . . .+

m!

(ix)m

)
+Rm(x) ,

where

Rm(x) = i(m+ 1)!

∫ ∞
x

eit dt

(it)m+2
.

If we proceed to estimate the remainder as before

|Rm| 6 (m+ 1)!

∫ ∞
x

dt

tm+2
=

m!

xm+1
= O(last term) ,

so this does not demonstrate asymptoticness. We seek an improved error estimate by integrating by parts:

Rm =

[
(m+ 1)! eit

(it)m+2

]∞
x

+ i(m+ 2)!

∫ ∞
x

eit dt

(it)m+3
,

and then we can demonstrate that the remainder is asymptotically smaller than the retained terms:

|Rm| 6
(m+ 1)!

xm+2
+

(m+ 1)!

xm+2
= O

(
1

xm+2

)
.

3.3 Integrals with Algebraic Parameter Dependence

Example 1. Consider the integral

I(ε) =

∫ 1

0

1

(x+ ε)
1
2

dx = 2
(√

1 + ε−
√
ε
)
.
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The leading-order (ε→ 0) estimate is just

I(0) =

∫ 1

0

1

x
1
2

dx︸ ︷︷ ︸
global contribution from
all of integration range

= 2 .

In order to obtain an improved estimate one cannot expand (1 + ε/x)
−1/2

throughout the range as

(1 + ε/x)
−1/2

= 1− ε/2x+ . . . ,

since for 0 6 x � ε the expansion is not convergent.1 Further, we note that when x = ord(ε), the
integrand is ord

(
ε−1/2

)
⇒ contribution to the integral for this range of x will be ord

(
ε−1/2 · ε

)
, i.e.

ord
(
ε1/2

)
.

To account for this correction, one could subtract the leading-order estimate exactly; then

I = 2 +

∫ 1

0

[
1

(x+ ε)
1
2

− 1

x
1
2

]
dx︸ ︷︷ ︸

x = ord(ε), integrand = ord
(
ε−1/2

)
, contribution to

∫
= ord

(
ε1/2

)
x = ord(1), integrand = ord (ε) , contribution to

∫
= ord (ε)

The major contribution is from near x = 0 so, as in §0, try the scaling x = εξ (ξ = ord(1)); then

I = 2 + ε
1
2

∫ 1
ε≈∞

0

[
1

(1 + ξ)
1
2

− 1

ξ
1
2

]
dξ

≈ 2− 2ε
1
2

Further corrections can be obtained by now subtracting out this contribution, but this method is tedious
and difficult! There must be a better way.02/03

Alternative 1: Solve a differential equation. Let

J(x) =

∫ x

0

1

(q + ε)
1
2

dq .

Then we need to find J(1). This can be done by solving the differential equation

dJ

dx
=

1

(x+ ε)
1
2

subject to the initial condition J(0) = 0. We will discover how to do this in §5.

Alternative 2: Divide & Conquer. In this method we split the range of integration. Split [ 0, 1 ] at
x = δ where ε� δ � 1, and then use Taylor series when we can use Taylor series:

I =

∫ δ

0

dx

(x+ ε)
1
2

+

∫ 1

δ

dx

(x+ ε)
1
2

= ε
1
2

∫ δ/ε

0

dξ

(1 + ξ)
1
2

+

∫ 1

δ

1

x
1
2

(
1− ε

2x
+

3ε2

8x2
+ . . .

)
dx

= 2ε
1
2

((
δ

ε
+ 1

) 1
2

− 1

)
+
(

2− 2δ
1
2

)
+

(
ε− ε

δ
1
2

)
+O

(
ε2

δ
3
2

, ε2

)
= 2δ

1
2 +

ε

δ
1
2

− 2ε
1
2 + 2− 2δ

1
2 + ε− ε

δ
1
2

+O
(
ε2

δ
3
2

, ε2

)
= 2− 2ε

1
2 + ε+O

(
ε2

δ
3
2

, ε2

)
.

1 And in this case there is no exponentially small multiplier.
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Remarks.

• Since δ is arbitrary, all terms containing a δ must cancel.

• The error term is definitely small if ε
2
3 � δ � 1.

• To organise the algebra it is sometimes helpful to tie δ to ε, e.g.

δ = Kε
3
4 ,

and then the answer must be independent of K.

Example 2. Suppose that we wish to estimate the integral

I(m, ε) =

∫ π
2

0

sin2 θ

(1−m2 cos2 θ)
2

sin2 θ + ε2
dθ 0 < m <∞ ,

for 0 < ε� 1. It turns out that there are three cases to consider: 0 < m < 1; |m− 1| � 1; m > 1.

(a) 0 < m < 1

θ integrand contribution to
∫

ord(1) ord(1) ord(1)
ord(ε) ord(1) ord(ε)

↑ (
1−m2 cos2 θ

)2
sin2 θ ∼ ε2

We will find the solution correct to O
(
ε2
)
; to this end let 0 < ε� δ � 1. Then

I = ε

∫ δ
ε

0

sin2(εu)

(1−m2 cos2(εu))
2

sin2(εu) + ε2
du+

∫ π
2

δ

sin2 θ

(1−m2 cos2 θ)
2

sin2 θ + ε2
dθ

= ε

∫ δ
ε

0

u2 du

(1−m2)
2
u2 + 1

+

∫ π
2

δ

1

(1−m2 cos2 θ)
2 dθ +O

(
ε2
)

= ε

[
(1−m2)u− tan−1

(
(1−m2)u

)
(1−m2)3

] δ
ε

0

+
(2−m2)π

4(1−m2)
3
2

−
∫ δ

0

dθ

(1−m2 cos2 θ)
2 +O

(
ε2
)

via a tan θ = t = (1−m2)
1
2 tanψ substitution

=
δ

(1−m2)2
− επ

2(1−m2)3
+

(2−m2)π

4(1−m2)
3
2

− δ

(1−m2)2
+O

(
ε2, δ2,

ε2

δ

)
since arctan

(
1
∆

)
∼ π

2 −∆

I =
(2−m2)π

4(1−m2)
3
2︸ ︷︷ ︸

global

− επ

2(1−m2)3︸ ︷︷ ︸
local

+ . . . (3.1)

Note that this is a non-uniform
approximation as m → 1. There
is a loss of ordering of the series
solution when

1

(1−m2)
3
2

∼ ε

(1−m2)3

i.e. when

(1−m2) ∼ ε 2
3 and I ∼ 1

ε
.

04/01
03/22
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(b) This suggests that when |m− 1| � 1, we should introduce a scaled parameter: viz.

m = 1− ε 2
3λ . (3.2a)

First let us examine the local contribution from near θ = 0 (since on the basis of the estimates above it
will be leading order). Put θ = εβu, then(

1−m2 cos2 θ
)2

sin2 θ + ε2 =
(
ε2βu2 + 2ε

2
3λ
)2

ε2βu2 + ε2 + . . .

All leading order terms balance if β = 1
3 , i.e.

θ = ε
1
3u . (3.2b)

This is referred to as a distinguished scaling.

As a first guess, let us assume that this is the scaling in θ to consider. Then

θ = ord(ε
1
3 ); integrand = ord

(
ε

2
3 /ε2

)
; contribution to

∫
= ord (1/ε)

θ = ord(1) ; integrand = ord (1) ; contribution to
∫

= ord (1)

The ‘local’ contribution dominates. Hence introduce ε
1
3 � δ � 1, and split the integral:

I =

∫ δ

0

. . . dθ +

∫ π
2

δ

. . . dθ

∼ 1

ε

∫ δε−
1
3

0

u2 du

(u2 + 2λ)
2
u2 + 1

∼ 1

ε
f(λ)

where

f(λ) =

∫ ∞
0

u2 du

(u2 + 2λ)
2
u2 + 1

.

03/19

Hence for a given λ (or equivalently m), we have a leading order asymptotic estimate. However, we should
check that as λ→∞, we obtain the same estimate as in (a). In particular, when λ� 1

u = ord(1) , integrand = ord
(
1/λ2

)
, contribution to

∫
= ord

(
1/λ2

)
u = ord(λ

1
2 ), integrand = ord

(
1/λ2

)
, contribution to

∫
= ord

(
1/λ

3
2

)
This suggests that the largest contribution will come from where v = λ−

1
2u = ord(1). Hence estimate f

in this range:

f(λ) ∼ 1

λ
3
2

∫ ∞
0

dv

(2 + v2)
2 =

π

4 (2λ)
3
2

,

and
I ∼ π

4ε (2λ)
3
2

∼ π

4 (1−m2)
3
2

(3.3)

↓agrees with (3.1) for m ≈ 1
03/20

We might also be interested in the other limit, i.e. λ → −∞. This estimate is a little more tricky, since(
u2 + 2λ

)
can now have a zero (when |λ| � 1, this term normally dominates the denominator). First we

test for a significant contribution from near this zero by introducing a scaled coordinate, say w:

u = (−2λ)
1
2 + (−λ)γw .

Then

1 + u2
(
u2 + 2λ

)2 ∼ 1 + (−2λ)
(

2 (−2λ)
1
2 (−λ)γw + . . .

)2

∼ 1 + 16λ2(−λ)2γw2 + . . . .
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There is a distinguished scaling (that ensures the scaled integral is convergent) for the choice γ = −1; in
that case the contribution to the integral from near the zero can be estimated as follows:

u = (−2λ)
1
2 + ord (1/ |λ|) ; integrand = ord (|λ| /1) ; contribution to

∫
= ord(1) .

This is a much larger contribution than we found in (3.3) for λ� 1.

In order to estimate the contribution set

u = (−2λ)
1
2 +

w

(−λ)
(3.4)

then

f(λ) =

∫ ∞
−21/2(−λ)3/2≈−∞

(−2λ+ . . . ) dw

(−λ) [1 + 16w2 . . . ]
∼ π

2
.

Hence as λ→ −∞, the value of the integral tends to a large constant, viz.

I ∼ π

2ε
. (3.5)

(c) Finally consider the case when m > 1.

The limit λ → −∞ (i.e. 0 < (m − 1) � 1) suggests that the main contribution will be local, and will
come from the region close to the point where

m2 cos2 θ = 1 .

Define

θm = cos−1

(
1

m

) (
0 < θm <

π

2

)
.

In order to deduce the coordinate scaling that is appropriate close to θm, we note from (3.2a) and (3.4)
that the ‘inner’ scaling for 0 < m− 1� 1 can be written in the form

θ = ε
1
3u = ε

1
3

(
(−2λ)

1
2 +

w

(−λ)

)
= (2(m− 1))

1
2 +

εw

(m− 1)
∼ θm +

2εw

θ2
m

.

This suggests that for (m− 1) = O(1) we might guess the scaling

θ = θm + εt ,

in which case(
1−m2 cos2 θ

)2
sin2 θ + ε2 ∼ 4ε2m2 sin4 θmt

2 + . . .+ ε2

and

I ∼
∫ 1

ε (
π
2−θm)≈+∞

− 1
ε θm≈−∞

ε sin2 (θm + εt) dt

ε2
(
4m2t2 sin4 θm + 1

)
+ . . .

∼ 1

ε
· π

2m
(3.6)

We note that (3.6) agrees with (3.5) in the limit m→ 1.05/01
03/04

3.4 Logarithms

As an illustrative example, consider integrals of the form

∫ a

0

f(x, ε) dx with f(x, ε) =


ord (ε−α) x = ord(ε)

x−α ε� x� 1

ord(1) x = ord(1).

e.g.

f =
1

(x+ ε)α
1

1 + x
.

There are three possibilities for the leading-order contribution depending on the value of α:
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(i) α < 1. Dominant contribution from x = ord(1), e.g. with α = 1
2 :∫ ∞

0

dx

(x+ ε)
1
2 (1 + x)

∼
∫ ∞

0

dx

x
1
2 (1 + x)

.

(ii) α > 1. Dominant contribution from x = ord(ε), e.g. with α = 3
2 :∫ ∞

0

dx

(x+ ε)
3
2 (1 + x)

∼
∫ ∞

0

dξ

ε
1
2 (1 + ξ)

3
2

(x = εξ) .

(iii) α = 1. Dominant contribution not from x = ord(ε) or x = ord(1) but from the interme-
diate region between. Easiest to see by using divide and conquer, and splitting
the integration region, e.g. with ε� δ � 1:∫ ∞

0

dx

(x+ ε)(1 + x)
=

∫ δ
ε

0

dξ

(1 + ξ)(1 + εξ)
+

∫ ∞
δ

dx

(x+ ε)(1 + x)

=
[
log(1 + ξ)− ε [ξ − log(1 + ξ)] + . . .

] δ
ε

0

+

[
log

(
x

x+ 1

)
+
ε

x
− ε log

(
x+ 1

x

)
+ . . .

]∞
δ

∼ (1 + ε) (log δ − log ε) +
ε

δ
+ . . .

− log δ − ε

δ
− ε log δ + . . .

∼ (1 + ε) log

(
1

ε

)
+ . . . .
↑
‘fortunate’ ord(1) cancellation

03/16

3.5 Integrals with Exponential Power Dependence

General case: limit as λ→∞ of integrals of type

I(λ) =

∫ b

a
paths in C

eλφ(z;λ)f(z;λ) dz
↑

‘weak’ algebraic
dependence on λ

.

Initially assume a, b, λ, φ, f , and the path of the integral are real. Then we estimate the integral by
assuming that the major contribution comes from close to the point where φ is largest (and the integrand
is exponentially largest).

There are different cases to consider depending on whether the maximum of φ is at an end point (Watson’s
Lemma), or in the interior of the integration range (Laplace’s Method).

3.5.1 Watson’s Lemma

In this section we assume the maximum is at an end point, say wlog z = a. We also assume that φ is
monotonic decreasing function of z (so φ′ < 0). Write

x = φ(a;λ)− φ(z;λ) , F (x;λ) = − f(z;λ)

φ′(z;λ)
eλφ(a;λ) , c = φ(a;λ)− φ(b;λ) > 0 ,

then

I(λ) =

∫ c

0

e−λxF (x;λ) dx .

Assume that F is analytic in some sector S of the complex plane, and that as x→ 0,

F (x;λ) ∼
N∑
k=0

akx
αk − 1 < α0 < α1 < . . . . (3.7a)
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Also assume that c is in S, that F is bounded in S, and that, for simplicity, F (x;λ) ≡ F (x); the changes
when this is not the case are straightforward, but somewhat messy, since the ak are now functions of λ
and themselves need to be expanded in λ when λ� 1. Then∫ c

0

e−λxF (x) dx ∼
N∑
k=0

ak
Γ(αk + 1)

λαk+1
. (3.7b)

Unlectured Proof. For a given ε > 0, ∃ δ(ε) s.t.∣∣∣∣∣F (x)−
N∑
k=0

akx
αk

∣∣∣∣∣ < ε |xαN | ∀ x in S with |x| < δ. (3.8)

Split the range of the integral at λ−1 � δ(ε)� 1; then

I =

∫ δ

0

e−λxF (x) dx+

∫ c

δ

e−λxF (x) dx = I1 + I2 .

First note that I2 is exponentially small as λ→∞:

I2 =

∫ c

δ

e−λxF (x) dx < Fmax
e−λδ

λ
, where Fmax = max

x∈S
|F (x)| .

Further, consider the difference between I1 and the asymptotic series (3.7b), then from (3.8)∣∣∣∣∣I1 −
N∑
k=0

akλ
−αk−1Γ(αk + 1)

∣∣∣∣∣ =

∣∣∣∣∣
∫ δ

0

e−λxF (x) dx−
N∑
k=0

ak

(∫ δ

0

dx+

∫ ∞
δ

dx

)
xαke−λx

∣∣∣∣∣
6

∣∣∣∣∣ε
∫ δ

0

e−λx |x|αN dx

∣∣∣∣∣+

∣∣∣∣∣
N∑
k=0

ak

∫ ∞
δ

xαke−λx dx

∣∣∣∣∣
6 ε

∣∣∣∣Γ(αN + 1)

λαN+1

∣∣∣∣+
∣∣∣e−(λ−1)δ

∣∣∣ ∫ ∞
δ

N∑
k=0

|akxαk |
∣∣e−x∣∣ dx .

Hence as λ→∞,

error = O
(

ε

|λαN+1|
, exp

)
.

This proves the result since ε can be arbitrarily small (and λ arbitrarily large).

This proof can be extended to the cases when

• |F (x)| < Kemx for K,m > 0;

• λ is complex (by deforming the integration contour so that xλ is real).
03/03
04/19
04/22

How to obtain a practical answer

The introduction of the coordinate x is not always simple. If all that is required is a few leading-order
terms, then it is possible to proceed as follows (for φ′(a) < 0). Assume, for simplicity, f(z;λ) ≡ f(z) and
φ(z;λ) ≡ φ(z), where the more general case generally leads to more Taylor expansions. Then, for λ� 1,
expand close to z = a:

I =

∫ b

a

eλφ(z)f(z) dz

=

∫ λβ(b−a)

0

f

(
a+

t

λβ

)
exp

(
λφ

(
a+

t

λβ

))
dt

λβ
, where z = a+

t

λβ
for some β > 0

=

∫ λβ(b−a)

0

[
f(a) +

t

λβ
f ′(a) + . . .

]
exp

(
λφ(a) +

t

λβ−1
φ′(a) +

t2

2λ2β−1
φ′′(a) + . . .

)
dt

λβ

=

∫ λ(b−a)≈∞

0

[
f(a) +

t

λ
f ′(a) + . . .

]
eλφ(a)etφ

′(a)

[
1 +

t2

2λ
φ′′(a) + . . .

]
dt

λ
, choosing β = 1

≈ eλφ(a)

λ

[
− f(a)

φ′(a)
+

1

λ

(
f ′(a)

[φ′(a)]2
− φ′′(a)f(a)

[φ′(a)]3

)
+O

(
1

λ2

)]
+ exp .
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Summary. This approach works since the major asymptotic contribution comes from near the maximum
of φ, courtesy of the strong exponential decay of the integrand; the choice of β is made to pick out this
contribution.04/20

3.5.2 Intermediate maximum (Laplace’s method)

Again consider

I =

∫ b

a

eλφ(x)f(x) dx ,

where the generalisation to φ ≡ φ(x;λ) and
f ≡ f(x;λ), for algebraic λ dependence, is
more messy than conceptual. Suppose that
(a) max

x∈[ a,b ]
φ = φ(c);

(b) a < c < b, φ′(c) = 0, φ′′(c) < 0;

Similar to above, assume that the major con-
tribution to the integral comes from when the
integrand is close to maximal, and introduce a
scaled co-ordinate of the form

x = c+
t

λβ
.

Then expanding λφ close to the maximum at x = c we obtain

λφ(x) ∼ λφ(c) + (x− c)λφ′(c) + 1
2 (x− c)2λφ′′(c) + 1

6 (x− c)3λφ′′′(c) + . . .

∼ λφ(c) + 1
2 t

2λ1−2βφ′′(c) + 1
6 t

3λ1−3βφ′′′(c) + . . .

The choice β = 1
2 ensures that the decay of the exponential occurs over an ord(1) scaled distance t.

It follows that

I =
1

λ
1
2

∫ (b−c)λ
1
2

(a−c)λ
1
2

f

(
c+

t

λ
1
2

)
exp

(
λφ

(
c+

t

λ
1
2

))
dt

=
1

λ
1
2

∫ λ
1
2 (b−c)

λ
1
2 (a−c)

(
f(c) +

t

λ
1
2

f ′(c) + . . .

)
exp

(
λφ(c) +

t2

2
φ′′(c) +

t3

6λ
1
2

φ′′′(c) + . . .

)
dt

≈ 1

λ
1
2

∫ ∞
−∞

f(c)eλφ(c)e
1
2 t

2φ′′(c)
(

1 +O
(
λ−

1
2

))
dt+ exp

≈
(

2π

−λφ′′(c)

) 1
2

f(c)eλφ(c) + . . . .

06/01

Example: Stirling’s Formula. Consider

Γ(λ) =

∫ ∞
0

e−xxλ−1 dx =

∫ ∞
0

e−x

x
eλ log x dx as λ→∞

Then f(x) =
e−x

x
, φ(x) = log x

maxφ(x) =∞ for 0 < x <∞.

The method seems invalid! Instead, use the ‘generalisation’

Γ(λ) =

∫ ∞
0

1

x
exp
(
−x+ λ log x︸ ︷︷ ︸) dx

φ(x) = log x− x/λ
φ′(x) = 1/x− 1/λ , φ′ = 0 at x = λ .
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Let x = λs.

Γ(λ) =

∫ ∞
0

ds

s
exp
(
−λs+ λ log λ+ λ log s

)
= λλ

∫ ∞
0

ds

s
exp
(
−λ (s− log s)

)
f(s) = 1

s , φ(s) = log s− s
φ′ = 1

s − 1 , c = 1
φ′′ = − 1

s2 , φ′′(c) = −1

Γ(λ) ∼
(

2π

λ

) 1
2

λλe−λ + . . . .04/16

3.5.3 Stationary phase

Let φ(x) = iψ(x), with ψ(x) real. Consider

I(x) =

∫ b

a

f(x)eiλψ(x) dx
Generalised Fourier Integral

Riemann-Lebesgue Lemma. If
∫ b
a
|f(x)| dx exists, then∫ b

a

f(x)eiλx dx→ 0 as λ→∞ .

Generalised Riemann-Lebesgue Lemma. If

(a) |f(x)| is integrable;
(b) ψ(x) is continuously differentiable (ψ′(x) = 0 is OK at isolated points);
(c) ψ(x) is not constant on any sub-interval,

then
I(x)→ 0 as λ→∞ .

ψ′ 6= 0 on [ a, b ]. In this case integrate by parts (note problems if ψ′ = 0):

I(x) =

[
f

iλψ′
eiλψ

]b
a

−
∫ b

a

(
f

iλψ′

)′
eiλψ dx

=
i

λ

[
f(a)

ψ′(a)
eiλψ(a) − f(b)

ψ′(b)
eiλψ(b)

]
+
i

λ

∫ b

a

(
f

ψ′

)′
eiλψ dx︸ ︷︷ ︸

J

.

J satisfies the conditions for the generalised Riemann-Lebesgue Lemma if f(x)/ψ′(x) is smooth;
hence to leading order

I(x) ∼ i

λ

[
f(a)

ψ′(a)
eiλψ(a) − f(b)

ψ′(b)
eiλψ(b)

]
.

Remark. If we can continue to integrate by parts, we can obtain higher-order terms.04/04

ψ′ = 0 on [ a, b ]. Assume a unique zero at x = c:

ψ′(c) = 0, ψ′′(c) 6= 0 .

Since cancellation is much reduced near
x = c, try a local scaling

x = c+
y

λβ
.
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I(x) =

∫ (b−c)λβ

(a−c)λβ
f
(
c+

y

λβ

)
exp

(
iλψ

(
c+

y

λβ

)) dy

λβ

=

∫ (b−c)λβ≈∞

(a−c)λβ≈−∞

[
f(c) +

y

λβ
f ′(c) + . . .

]
e

[
iλψ(c)+

i
2ψ
′′(c)y2λ1−2β + i

6ψ
′′′(c)y3λ1−3β + . . .

]
dy

λβ

again choose β = 1
2 for the distinguished limit

=
f(c)

λ
1
2

eiλψ(c)

∫ ∞
−∞

exp

(
iψ′′(c)y2

2

)
dy
(

1 +O
(
λ−

1
2

))
substitute y =

(
2

|ψ′′(c)|

) 1
2

t , s = sgn [ψ′′(c)]

∼
(

2

λ |ψ′′(c)|

) 1
2

f(c)eiλψ(c)

∫ ∞
−∞

eist
2

dt︸ ︷︷ ︸
π

1
2 eisπ/4 by contour deformation

∼
(

2π

λ |ψ′′(c)|

) 1
2

f(c) exp
(
iλψ(c) + i sgn [ψ′′(c)]

π

4

)
.

↑ leading order; next order approximation can come from end points, etc.

One can tighten up the ‘proof’ by changing variables at the start:

ψ(x) = ψ(c) + 1
2ψ
′′(c)Y 2 .

05/19

3.5.4 Steepest descents

This is a method for estimating integrals (for large |λ|) of the form

I =

∫
C

f(z)eλφ(z) dz ,

where C is an integration path in the complex z-plane, f and φ are analytic functions of z. In principle
λ may be complex, but wlog φ can then be redefined so that we can take λ to be real. There is a
straightforward extension to f(z) ≡ f(z;λ) and φ(z) ≡ φ(z;λ).

(a) The idea is to deform the contour and then use Watson’s Lemma or Laplace’s Method.

First some notation. Let φ = u+ iv.

Then (i) ux = vy, uy = −vx Cauchy Riemann
(ii) ∇2u = 0 = ∇2v.

05/22
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Figure 3.1: Plot of the tomography of the surface u = Reφ(z;λ) near the saddle point z0 for a typical
function φ(z;λ). The heavy solid curves follow the centres of the ridges and valleys from the saddle point (i.e.
lines of constant v), and the dashed curves follow level contours, u = u(x0, y0) = constant. The curve AA′

is the path of steepest descent. Source: Mathematical Methods of Physics, by Jon Mathews and Robert L.
Walker.

(b) From stationary phase we have seen that rapid oscillations can cause cancellation. This makes esti-
mation of the integral difficult and in particular means that the dominant contribution to I may
not come from the part of C where Re (λφ(z;λ)) = λu is largest. We eliminate such oscillations by
choosing an integration path with

Im (φ) = v = constant .

The Cauchy-Riemann equations imply that

∇u ·∇v = 0 . (3.9)

Thus the v = constant contours are ‖ to ∇u. It follows that the v = constant contours are paths of
steepest ascent/descent of u. [Note that we need the steepest descent path to obtain ‘all’ terms of
the series.]04/03

05/20
(c) The major contribution to the integral I then comes from close to the ‘highest’ point (w.r.t. u) on the

integration path.2 If the ‘highest’ point is at the end of the integration path, then Watson’s Lemma
is most likely to be appropriate (but see below for a case when Laplace’s method is needed), while
if the ‘highest’ point is in the middle of the integration path then Laplace’s Method is likely to be
needed.

(d) A constraint on interior maxima. For the case of an interior ‘highest’ point on the integration path,
i.e. a maximum, we will have at the maximum

ŝ.∇u = 0 ,

where ŝ is a unit vector in the direction of the integration path. Further, since the integration path
is a line of constant v, it is perpendicular to ∇v, i.e.

ŝ.∇v = 0 .

It follows from (3.9), and the fact the integration path is two-dimensional, that at a turning point

|∇u| = 0 .

2 Those of you who already know about the method of steepest descents need to remember this — do not just go for the
turning points!
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Hence we conclude from the Cauchy-Riemann equations, that a maximum on an integration path
that is a steepest descent contour can only occur at points where

φ′(z) = 0 .

Further, since ∇2u = 0, from the maximum modulus principle, these points can only be saddles in
the surface u(x, y), i.e.

∆ ≡ uxxuyy − (uxy)2 = −(uxx)2 − (uxy)2 6 0 .
07/01
05/16 Example. Find an asymptotic expansion for

I =

∫ 1

0

eiλz
2

dz as λ→∞ .

The leading-order approximation can be obtained by a stationary phase calculation near z = 0. To obtain
a full expansion try to use steepest descent contours. From above

φ = iz2 = i(x2 − y2)− 2xy ,

u = −2xy, v = x2 − y2 .

Hence
steepest contours through z = 0: v = 0, x = ±y, u = ∓2y2

S.D. contour through z = 0: x = +y, u = −2y2

z = (1 + i)y, iz2 = −2y2

steepest contours through z = 1: v = 1, x = ±
√

1 + y2, u = ∓2y
√

1 + y2

S.D. contour through z = 1: x =
√

1 + y2, u = −2y
√

1 + y2

z =
√

1 + y2 + iy, iz2 = i− 2y
√

1 + y2

The contribution from C2 vanishes as ymax →∞; thus

I =

∫
C1

eiλz
2

dz +

∫
C3

eiλz
2

dz

= (1 + i)

∫ ∞
0

e−2λy2 dy − i

2

∫ ∞
0

eiλe−λs ds

(1 + is)
1
2

substitute iz2 = i− s

=
( π

4λ

) 1
2

e
iπ
4 − ieiλ

2

∫ ∞
0

ds e−λs
∞∑
n=0

(−is)nΓ
(
n+ 1

2

)
n! Γ

(
1
2

)
∼

( π
4λ

) 1
2

e
iπ
4 +

eiλ

2

∞∑
n=0

(
−i
λ

)n+1 Γ
(
n+ 1

2

)
Γ
(

1
2

) .
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Changing Steepest Descent Contours

It is often necessary to change from one
steepest descent contour comprising part
of the integration path to another steep-
est descent contour. As the above example
illustrates, two such steepest descent con-
tours should be joined in regions of the
complex plane where the real part of the
exponent, i.e. u, is asymptotically smaller
than its maximum value.

The Local Contribution from a Saddle

We have adopted the approach that you choose steepest descent contours, and then look for maxima of u.
If there are maxima in the interior of the path, then we have seen that they occur at a saddle points of
u(x, y).

An alternative view is that you deform the integration path so that u is as small as possible. If there is
an interior maximum of u on the path, then it will occur at a saddle.

Either way we need to evaluate the contribution to the path in the neighbourhood of a saddle, which
wlog we take to be at z = zs. Close to this point

λφ(z) ∼ λφ(zs) + λ(z − zs)φ′(zs) + 1
2λ(z − zs)2φ′′(zs) + 1

6λ(z − zs)3φ′′′(zs) + . . . .

As in Laplace’s method introduce a rescaling such that λ(z − zs)2 = ord(1):

z = zs +
w

λ
1
2

,

where we have assumed λ > 0. Then

λφ(z) ∼ λφ(zs) + 1
2φ
′′(zs)w

2 +O
(
λ−

1
2

)
∫
C

f(z)eλφ(z) dz =

∫
C

f(zs)e
λφ(zs)+

1
2φ
′′(zs)w

2
(

1 +O
(
λ−

1
2

)) dw

λ
1
2

∼ f(zs)e
λφ(zs)

(
−2π

λφ′′(zs)

) 1
2

+ . . . by using η =
(
− 1

2φ
′′(zs)

) 1
2 w,

where we have evaluated the integral using Laplace’s method on the steepest descent path (by a suitable
rotation of the contour C), and the choice of sign of the square root depends both on the rotation and
the direction of traversed along the contour. That there is a dominant local contribution from close to
the saddle is ‘confirmed’ by the fact that the integral is convergent as |w| → ∞.

Note also that while it is not strictly necessary to choose the steepest descent path at the final stage (we
just need a path that goes downhill), the steepest descent path is necessary to obtain ‘all’ terms of the
series.06/17

3.5.5 The Airy function and Stokes phenomenon

The Airy function is defined as

Ai(λ) =
1

2πi

∫
C

eλz−
1
3 z

3

dz , (3.10)

where C starts from ∞ with arg(z) = −2π/3 and ends at ∞ with arg(z) = +2π/3. Define, consistent
with our earlier notation,

λφ = Φ = λz − 1
3z

3 .
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Thus there are saddles at

zs = ±λ 1
2 , and eΦ(zs) = e±

2
3λ

3
2
.

First consider λ → +∞. Then we see from the contours of Re(λz − 1
3z

3) for arg λ = 0 in figures 3.2
and 3.3, that it is only necessary to pass over the [lower] left-hand saddle in order to traverse the ridge
separating the end points of integration.
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2

Figure 3.2: Contours of Re(3λz − z3) (solid and dotted, where solid/dotted is higher/lower than the oper-
ational saddle), and Im(3λz − z3) (dashed).

Seek a local contribution from near the saddle. Write:

z = −λ 1
2 + iλβw

λz − 1
3z

3 = − 2
3λ

3
2 − λ

1
2 +2βw2 + i 1

3λ
3βw3 .

To apply Laplace’s method choose β = − 1
4 , then

Ai(λ) =
1

2πλ
1
4

∫
C

e−
2
3λ

3
2 e−w

2

(
1 +

iw3

λ
3
4

− w6

18λ
3
2

+ . . .

)
dw

∼ e−
2
3λ

3
2

2π
1
2λ

1
4

(
1− 5

48λ
3
2

+ . . .

)
. (3.11a)
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𝑣 = Im Φ 𝑧 =  𝑐𝑠𝑡. 

steepest descent path 

𝑣 = Im(Φ 𝑧± ) 

others 

Φ 𝑧 = 𝜆𝑧 −
𝑧3

3
 𝜆 = 𝜆 𝑒𝑖𝜃  

Saddle points: 𝑧− = −𝜆1/2 

𝑧+ = +𝜆1/2 

𝜃 = 0 

𝜃 = 2𝜋/3 

𝑢 = Re Φ 𝑧  

Contours: 

𝜃 = 0.625 𝜋 𝜃 = 0.708 𝜋 

𝜃 = 𝜋 

𝜃 = 4𝜋/3 𝜃 = 1.292 𝜋 𝜃 = 1.375 𝜋 

𝜃 = 0.042 A B 

C D E 

F 

G H I 

Figure 3.3: Contours of Re(3λz − z3) in colour

By brute force higher order terms can be obtained:

Ai(λ) ∼ e−
2
3λ

3
2

2π
1
2λ

1
4

∞∑
r=0

Yr , where Yr =
Γ(r + 1

6 )Γ(r + 5
6 )

2πξrΓ(r + 1)
and ξ = − 4

3λ
3
2 . (3.11b)05/04

06/19
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Consider next complex values of λ, and in particular for what values of arg(λ) result (3.11a) remains valid.
From above we have that the positions of the saddles, zs, rotate anti-clockwise. Further, the saddles swap
dominance at

arg(λ) =
π

3
+

2

3
nπ .

However, to go from the valley at ∞ e−2πi/3 to the valley at ∞ e2πi/3 it is only necessary to go over the
left-hand saddle up to arg λ = π. Hence we deduce that (3.11a) remains valid for arg λ < π.

For arg λ = π we need to go over both saddles. Hence

Ai ∼ e−
2
3λ

3
2

2π
1
2λ

1
4

+ c.c.

∼ 1

(−λ)
1
4 π

1
2

sin

(
2

3
(−λ)

3
2 +

π

4

)
, (3.11c)

where c.c. stands for complex conjugate. For π < arg λ < 5π/3 we need to go through the other saddle,
but (3.11c) is still an asymptotic approximation; in fact (3.11c) is correct for | arg λ− π| < 2π/3.

This is an example of Stokes phenomenon, since (3.11a) and (3.11c) are distinct expressions (note that
(3.11c) certainly is not valid for arg λ = 0).06/16

06/18
06/20

3.6 Stokes Phenomena in the Complex Plane

Suppose that f(z) is analytic, with say an isolated singularity at z = z0, where, say, z0 = 0. If zaf(z) is
regular for some a, then zaf(z) has a power series that converges. This suggests that if an asymptotic
power series is divergent, then the divergence must be associated with, say, an essential singularity, in
which case the asymptotic series could only be valid in a sector of angle < 2π. This suggests that a single
function may possess several asymptotic expansions, each restricted to a different sector; this is referred
to as the Stokes phenomenon, as illustrated by the Airy function.

As a further example consider

erf z =
2√
π

∫ z

0

e−t
2

dt = 1− 2√
π

∫ ∞
z

e−t
2

dt

∼ 1− e−z
2

√
πz

as z →∞, z real .

One can extend this approximation into the complex plane as long as the contour for

2√
π

∫ ∞
z

e−t
2

dt

is kept in the sector where e−z
2 → 0 as z →∞. Hence

erf z ∼ 1− e−z
2

√
πz

as z →∞, |arg z| < π/4. (3.12a)

But erf is an odd function, so

erf z ∼ −1− e−z
2

√
πz

as z →∞, 3π/4 < |arg z| < 5π/4. (3.12b)

For π/4 < arg z < 3π/4 we can integrate the defintion of the error function, i.e. erf z = 2√
π

∫ z
0
e−t

2

dt, by

parts to show that

erf z ∼ −e
−z2

√
πz

as z →∞, π/4 < |arg z| < 3π/4. (3.12c)

We now have three different asymptotic expansions for erf z. This is because, while erf is analytic every-
where in the finite complex plane, there is a non-analytic essential singularity at ∞.
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3.6.1 Terminology

• The line where a term that is sub-dominant (i.e. much smaller) in one sector becomes comparable
with a term that is dominant in that sector, is called an anti-Stokes line by some (e.g. Stokes,
physicists and some mathematicians), and a Stokes lines by others (e.g. Bender & Orszag). For the
error function the anti-Stokes lines are at

arg z = (2n+ 1)π/4 .

• The lines where the leading behaviours of the two terms are most unequal are called Stokes lines
by some (e.g. Stokes, physicists and some mathematicians), and a anti-Stokes lines by others (e.g.
Bender & Orszag). In the case above the Stokes lines are at

arg z = nπ/2 .

Stokes lines are important since the coefficient of the sub-dominant term can jump at them.
06/15

3.7 What Happens At Stokes Lines?

If we concentrate on the steepest descent paths, then in the case of the Airy function there is a change in
topology of the integration path when arg λ = 2π/3. The aim of this section is both to demonstrate that
the sub-dominant exponentially small term is ‘turned on’ here, and to understand the ‘turn on’ process.07/17

3.7.1 The Airy function

Lemma. We first need a lemma. Consider the integral I(σ, n) defined for real integer n and Re(σ) > 0 by

I(σ, n) =

∫ ∞
0

tn−1 exp(σ(1− t))
1− t

dt , (3.13)

where the contour of integration is chosen, based on the hindsight that we are doing a ‘turn-on’
problem, to pass just above the pole at t = 1.

First we note that, by expanding (1 − t)−1 as a binomial, (3.13) can be formally expressed as a
[divergent] series (see (4.4) below for ‘justification’ of this):

I =

∫ ∞
0

dt tn−1 exp(σ(1− t))
∞∑
p=0

tp

= eσ
∞∑
p=0

σ−n−p
∫ ∞

0

dssn+p−1e−s

= eσ
∞∑
r=n

Γ(r)

σr
. (3.14)

Next, we seek an asymptotic expansion of I in the limit as n→∞, for the [inspired] choice

σ ∼ n+ iµn
1
2 + ν + . . . , (3.15)

where µ = O(1) and ν = O(1).

One way possible way forward is to note that the exponent in (3.13), φ = σ(1− t) + (n− 1) log t,
is stationary at

t =
n− 1

σ
∼ n− 1

n+ iµn
1
2 + ν

∼ 1− iµ

n
1
2

+ . . . , (3.16)
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and then to proceed using steepest descents. Alternatively, we note that

∂I

∂σ
=

∫ ∞
0

tn−1 exp(σ(1− t)) dt

=
eσ

σn

∫ ∞
0

un−1e−udu

=
eσ

σn
Γ(n) .

Hence from using Stirling’s formula

∂I

∂µ
∼ in

1
2

eneiµn
1
2 eν

(n+ iµn
1
2 + ν)n

(2π)
1
2nne−n

n
1
2

∼ i(2π)
1
2 exp

(
− 1

2µ
2
)
.

We now wish to integrate this expression; for this we need
a boundary condition. As noted in (3.16), the exponent in
(3.13) has a stationary point at,

t ∼ 1− iµ

n
1
2

+ . . . .

Hence as µ → −∞ the stationary point moves further and
further above the pole at t = 1, whereas as µ passes through 0
a contribution will be picked up from the pole. We can
show, say using a steepest descents estimate, that I → 0
as µ→ −∞ (exercise: do this); it follows that

I(σ, n) ∼ i(2π)
1
2

∫ µ

−∞
exp

(
− 1

2 t
2
)

dt

∼ iπ
(

1 + erf(µ/
√

2)
)
. (3.17)

With this lemma in our armoury, consider the full asymptotic series for the Airy function (see (3.10)),

Ai(λ) =
1

2πi

∫
C

eλz−
1
3 z

3

dz,

when |λ| � 1 and | arg(λ)| < π. Recall from (3.11b) that this is given by

Ai(λ) ∼ 1

2λ
1
4π

1
2

exp
(

1
2ξ
) ∞∑
r=0

Yr ,

where

Yr =
Γ(r + 1

6 )Γ(r + 5
6 )

2πξrΓ(r + 1)
and ξ = − 4

3λ
3
2 .

We aim to estimate this when the asymptotic expansion is optimal. We note that Yr is a minimum when

(r + 1) ξ ∼
(
r + 1

6

) (
r + 5

6

)
i.e. when r ∼ ξ .

Let
n = int(|ξ|) + 1 , (3.18)

and write

Ai(λ) =
1

2λ
1
4π

1
2

exp
(

1
2ξ
) n−1∑
r=1

Yr +Rn ,
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where

Rn =
1

2λ
1
4π

1
2

exp
(

1
2ξ
) ∞∑
r=n

Yr .

Next we need an estimate for Rn. Using Stirling’s formula we can show that

Yr →
Γ(r)

2πξr
as r →∞ .

Hence from the lemma, in particular (3.14), we deduce that

Rn ∼
1

4λ
1
4π

3
2

e−
1
2 ξI(ξ, n) . (3.19)

Finally, we consider values of ξ which have small argument. Specifically, write

arg(ξ) =
µ

|ξ 1
2 |
,

so that

ξ = |ξ| exp

(
iµ

|ξ 1
2 |

)
∼ |ξ|+ iµ|ξ| 12 +O(1) . (3.20)

Thence from (3.15), (3.17), (3.18) and (3.19) it follows
thata

Rn ∼
i exp(− 1

2ξ)

4λ
1
4π

1
2

(
1 + erf(µ/

√
2)
)
. (3.21)

Since ξ = − 4
3λ

3
2 , we can interpret this result as saying

that within an O(|ξ|− 1
2 ) angle, i.e. an O(|λ|− 3

4 ) angle, of
arg λ = ± 2π

3 , the sub-dominant exponentially small term
is ‘turned on’ by an error function. This is why Stokes
lines are more important than anti -Stokes lines. We note
that as µ → ∞ then (3.21) is the contribution from the
sub-dominant saddle point in figures 3.2 and 3.3.

Asymptotics beyond all orders. In order to see the sub-
dominant exponentially small term ‘turn on’, it was
not sufficient to consider just the algebraic asymp-
totic expansion. We needed a clever trick to look
beyond the infinite number of algebraic terms; this
is an example of asymptotics beyond all orders. We
will return to this topic later.

a The choice of the contour going above the pole at t = 1 means
that the remainder, Rn, ‘turns on’ as µ increases; if the contour had
been chosen beneath the pole then the remainder would have ‘turned
off’ as µ increased.

07/16
07/18
07/19
07/20
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4 Summation Of Series By ‘Magic’

How do we sum series? E.g. how do we find the value of

Sn =

n∑
r=0

ar as n→∞ .

For instance what are the sums of

(a) 1− 1
2 + 1

3 −
1
4 + . . . ,

(b) 1− 1 + 1− 1 + . . . ,

(c) 1 + 2 + 4 + 8 + . . . .

For starters note that in the case of example (b)

lim
n→∞

Sn ≡ S = 1− 1 + 1− 1 + . . .

= 1− (1− 1 + 1− . . . )
= 1− S ;

hence we might guess that

S = 1
2 .

More generally, we might expect that the value of the sum depends on the definition of the sum. We will
consider a number of different ‘magical methods’ (most of which are based on analytical continuation),
most of which, reassuringly, come up with the same answer.

4.1 Cesàro Sums

S = lim
n→∞

S0 + S1 + · · ·+ Sn
n+ 1

.

For example (b):

Sn = 1
2 (1 + (−)n) ,

S = lim
n→∞

1 + 0 + 1 + 0 + . . .

n+ 1
= 1

2 .

4.2 Euler Sums

Define

f(x) =

∞∑
r=0

arx
r .

Suppose that this series is convergent for |x| < 1; then, based on the idea analytic continuation, define
the Euler sum to be

S = lim
x→1−

f(x) .
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For instance:

(a) ar =(−)r ,

f(x) =

∞∑
r=0

(−)rxr =
1

1 + x
,

and so 1− 1 + 1− 1 + . . . = f(1) = 1
2 (again).

(b) ar =2r ,

f(x) =

∞∑
r=0

(2x)r =
1

1− 2x
,

and so 1 + 2 + 4 + 8 + · · · = f(1) = −1 .

(c) ar =r ,

f(x) =

∞∑
r=0

rxr =
x

(1− x)2
,

and so the Euler sum of 1 + 2 + 3 + 4 + . . . is not defined.16/13

4.3 Borel Sums

If the coefficients an grow too fast, then Euler summation is not applicable. However, the power series
may still have meaning as an asymptotic series. Define

φ(x) =

∞∑
r=0

arx
r

r!
,

and let

B(x) =

∫ ∞
0

e−tφ(xt)dt

=

∞∑
r=0

ar
r!

∫ ∞
0

(xt)re−tdt

=

∞∑
r=0

arx
r ,

by Watson’s lemma (or by playing fast-and-loose with the interchange of the summation and integration).
We define the Borel sum to be:

S =

∞∑
r=0

ar = lim
x→1−

B(x) .

4.3.1 An example: the Stieltjes series

The [divergent] Stieltjes series is given by

f(x) =

∞∑
r=0

(−)rr!xr , ar = (−)rr! ,

with x = 1. Adopting the above method we write

φ(x) =

∞∑
r=0

(−)rxr =
1

1 + x
,

and

B(x) =

∫ ∞
0

e−t

1 + xt
dt .
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Hence

0!− 1! + 2!− 3! + . . . =

∫ ∞
0

e−t

1 + t
dt.

4.3.2 Summation in the Borel plane

There is another way of looking at Borel sums. Suppose instead that we have a series

ψ(x) =

∞∑
r=1

ar
xr
, (4.1)

with ar ∝ r! as x → ∞. Let L be the Laplace operator, with inverse L−1. We adopt a normalisation so
that

L{tr−1} =

∫ ∞
0

e−xttr−1 dt =
(r − 1)!

xr
. (4.2)

Then, analytically continuing in the Borel “t” plane,

ψ(x) = LL−1
∞∑
r=1

ar
xr

= L

{ ∞∑
r=1

art
r−1

(r − 1)!

}

=

∫ ∞
0

e−xt
∞∑
r=1

art
r−1

(r − 1)!
dt

=

∫ ∞
0

e−xtϕ(t) dt , (4.3a)

where ϕ(t) is given by the series (which is convergent for small t)

ϕ(t) =

∞∑
r=1

art
r−1

(r − 1)!
. (4.3b)

4.3.3 An example

Suppose that ar = 0 for r = 1, . . . , n− 1, and that

ar = (r − 1)! for r = n, n+ 1, . . .

Then, using analytical continuation for |t| > 1,

ϕ(t) =

∞∑
r=n

tr−1 =
tn−1

1− t
,

and hence

ψ(x) =

∞∑
r=n

(r − 1)!

xr
=

∫ ∞
0

e−xt
tn−1

1− t
dt , (4.4)

where the integration contour is assumed to pass just above the pole at t = 1. The sum I(σ, n) = eσψ(σ)
in equation (3.14), in § 3.7.1 on Stokes lines of the Airy function, is thus a Borel sum (and relies on ideas
of analytical continuation in the Laplace transform plane).16/07

16/08
07/15
08/17
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4.4 Padé Approximants

Suppose we only know partial sums. Let

N+M∑
r=0

arx
r =

∑N
n=0Anx

n∑M
m=0Bmx

m
= PNM (x) .

Often if

f(x) =

∞∑
r=0

arx
r ,

then
PNM (x)→ f(x) as N,M →∞ ,

even if
∑∞
r=0 arx

r is divergent.

1. If ar = 1, then

PNN (x) =
1

1− x
exact !

2. Stieltjes series, ar = (−)rr!

P 5
5 (1) = 0.59738 . . . 11 terms

P 10
10 (1) = 0.59638 . . . 21 terms

B(1) = 0.59635 . . . .

Padé Approximants work because they put

• poles near poles,

• a cluster of poles at essential singularities,

• sequences of poles and zeros along branch cuts.

4.5 Continued Fractions

A variation of the Padé method of summing power series. Define

FN (x) =
c0

1 + c1x
1+c2x

. . .

cN−1x

1 + cNx

There are fast numerical methods for the evaluation of continued fractions.

4.6 Shanks’ Transformation

Suppose

Sn =

n∑
r=0

ar = A+BCn ,

then from eliminating A, B and C,

S(Sn) = Sn −
(Sn+1 − Sn)(Sn − Sn−1)

(Sn+1 − Sn)− (Sn − Sn−1)
.
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This can be applied repeatedly, e.g. S(S(Sn)), to remove higher transients. For instance, consider

ln 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
+ · · · = 0.693147 . . .

Partial Sums 1-Shanks 2-Shanks 3-Shanks
1
0.5
0.833 0.7000
0.583 0.6905
0.783 0.6944 0.693277
0.617 0.6924 0.693106
0.760 0.6936 0.693163 0.693149

4.7 Richardson Extrapolation

Suppose instead

Sn ∼ Q0 +
Q1

n
+
Q2

n2
+
Q3

n3
+ . . . as n→∞ .

Calculate the N + 1 partial sums Sn, Sn+1, . . . , Sn+N . Then it is possible to show that

Q0 =

N∑
k=0

Sn+k(n+ k)N (−)k+N

k!(N − k)!
.

4.8 Other Methods

• Neville tables;

• Domb-Sykes plots (to find the nearest singularity);

• Euler transformations;

• etc.
Unlectured

08/17
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5 Matched Asymptotic Expansions (MAEs)

Matched asymptotic expansions are mainly used for solving singular perturbation problems that arise when
finding solutions to differential equations. MAEs are often needed when the highest-order derivative is
multiplied by a small parameter, say ε, where 0 < ε � 1 henceforth. We will apply them primarily to
ODEs, but they are equally applicable to PDEs.

5.1 Regular Perturbation Problems: An Example

y′′ + 2εy′ + (1 + ε2)y = 1 , y(0) = 0, y
(π

2

)
= 0 where, as noted above, 0 < ε� 1 .

5.1.1 Exact solution

y =
1

1 + ε2

[
1− e−ε(x−π/2) sinx− e−εx cosx

]
= (1− sinx− cosx) + ε

[(
x− π

2

)
sinx+ x cosx

]
−ε2

[
1− cosx− sinx+ 1

2

(
x− π

2

)2

sinx+ 1
2x

2 cosx

]
+ . . . .

5.1.2 Perturbation solution

Try

y = y0 + εy1 + ε2y2 + . . . .

Then

ε0 : y′′0 + y0 = 1 , y0(0) = 0, y0

(π
2

)
= 0 ,

ε1 : y′′1 + y1 = −2y′0 , y1(0) = 0, y1

(π
2

)
= 0 ,

ε2 : y′′2 + y2 = −2y′1 − y0 , y2(0) = 0, y2

(π
2

)
= 0 .

Hence

y0 = 1− sinx− cosx ,

y1 =
(
x− π

2

)
sinx+ x cosx ,

y2 = −1 + cosx+ sinx− 1
2

(
x− π

2

)2

sinx− 1
2x

2 cosx .08/01
05/03

5.2 Singular Perturbation: Example

εy′′ + y′ = −e−x , y(0) = 0, y → 0 as x→∞.

5.2.1 Exact solution

y =
e−x − e−x/ε

1− ε
.

Limit ε→ 0, x fixed:
y ∼ e−x

(
1 + ε+ ε2 + . . .

)
. (5.1)

This expansion satisfies the boundary condition as x→∞, but does not satisfy the boundary condition
y(0) = 0.
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The limit ε→ 0, with x fixed, is a non-uniform limit since

e−x/ε � εm only if |x| � mε log
1

ε
;

hence we cannot put x = 0 in (5.1).

For x small we obtain an asymptotic expansion by first setting x = εξ, and then expanding:

y ∼
(
1− e−ξ

)
+ ε

(
1− e−ξ − ξ

)
+ ε2

(
1− e−ξ − ξ + 1

2ξ
2
)

+ . . . . (5.2)

Now

y(0) = 0 + ε0 + ε20 + . . . ,

while

y → 1 + ε(1− ξ) + ε2
(
1− ξ + 1

2ξ
2
)

+ . . . as ξ →∞.

‘Outer’ (ε→ 0, x fixed) expansion satisfies the x→∞ boundary condition,
‘Inner’ (ε→ 0, ξ fixed) expansion satisfies the ξ = 0 boundary condition.

Exercise. Put x = ε
1
2 η in (5.1) and expand to O(ε);

ξ = ε−1x = ε−
1
2 η in (5.2) and expand to O(ε).

Compare the results.

08/16
08/18
08/19
08/20

5.2.2 Expansion solution

Outer Approximation. Pose a Poincaré expansion for x fixed ( 6= 0) and ε→ 0:

y =

∞∑
n=0

εnyn(x) = y0(x) + εy1(x) + ε2y2(x) . . . .

Then, from substituting into the governing equation and equating terms with the same power of ε,

O(ε0) :
O(ε1) :
O(εn) :

y′0 = −e−x ,
y′′0 + y′1 = 0 ,

y′′n−1 + y′n = 0 ,

y0 = A0 + e−x ,
y1 = A1 + e−x ,
yn = An + e−x .

We wish to apply two boundary conditions at each order, but have only one unknown constant. From
comparison with the exact solution we choose not to satisfy the boundary condition at x = 0. From
applying the boundary condition as x→∞, it follows that An = 0, and

y = e−x
(
1 + ε+ ε2 + . . .

)
. (5.3)

This is in agreement with (5.1).

Inner Approximation. Since we wish to apply two boundary conditions, we need the εy′′ term to be
important somewhere at leading order. Note that in a somewhat rough and ready sense

εy′′ ∼ εy

(x− x0)2

y′ ∼ y

(x− x0)

 this suggests rescaling for (x− x0) ∼ ε.

Hence try

x = x0 + εξ , y(x) = Y (ξ) =

∞∑
n=0

εnYn(ξ) ,

where Y (ξ) satisfies
1

ε

d2Y

dξ2
+

1

ε

dY

dξ
= −e−εξ .
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From substituting into the governing equation it follows that

O(ε−1) : Y ′′0 + Y ′0 = 0 , Y0 = B0 + C0e
−ξ ,

O(ε0) : Y ′′1 + Y ′1 = −e−x0 , Y1 = B1 + C1e
−ξ − ξe−x0 .

Since we need to satisfy the boundary condition at x = 0, take x0 = 0. Then

Y0 = B0

(
1− e−ξ

)
,

Y1 = B1

(
1− e−ξ

)
− ξ ,

Y2 = B2

(
1− e−ξ

)
− ξ + 1

2ξ
2 ,

. . . .


(5.4)

Match. We have two asymptotic expansions valid in x fixed, i.e. (5.3), and ξ fixed, i.e. (5.4). They must
represent the same function in the intermediate region

ε� x� 1 , i.e. 1� ξ � ε−1 .

08/15

Forcing the two expansions to be identical determines the Bj . To this end introduce an ‘intermediate
variable’, η, where

η =
x

εα
=
εξ

εα
(
0 < α < 1, e.g. α = 1

2

)
,

so that

x = εαη , ξ = εα−1η .

When η = ord(1), then as required ε � x � 1. Expand both outer and inner asymptotic expansions in
powers of η:

Outer: y ∼ 1 −εαη + 1
2ε

2αη2 + 1
6ε

3αη3 + . . .

1 2 3

+ε −ε1+αη +ε1+2α 1
2η

2 + . . .

4 5

+ε2 −ε2+αη + . . .

6

+ . . . ,

Inner: y ∼ B0 + exp

1

+εB1 −εαη + exp

4 2

+ε2B2 −εα+1η + 1
2ε

2αη2 + exp

6 5 3

+ . . . .
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After reordering the expansions should be the same; hence

B0 = 1 , B1 = 1 , B2 = 1 .07/04

Terms jump order when matching. This indicates that there are terms in the governing equation that,
although small in one region, are to be treated as dominant in the next region.

x = O(1) ξ = O(1)

−ε d
2y
dx2︸ ︷︷ ︸

small

= e−x + dy
dx

dy
dξ︸ ︷︷ ︸

common term

+d2y
dξ2 = −εe−εξ︸ ︷︷ ︸

small

Note that if the smallest retained terms, i.e. the O
(
ε2
)

terms in both expansions, are to be bigger than

the largest [small] ignored terms, i.e. the O
(
ε3α
)

terms in both expansions, then we require

ε2 � ε3α, i.e. 2
3 < α < 1 .

If matching to higher order by, say, retaining the terms up-to O
(
εQ
)
, then for the O

(
ε(Q+1)α

)
ignored

terms to be formally smaller, we would require that

εQ � ε(Q+1)α, i.e.
Q

Q+ 1
< α < 1 .

13/06
12/13
12/14
09/17 5.3 Van Dyke’s Matching Rule

This can be simpler than using an intermediate variable, but sometimes fails (beware of logs).

Notation

Eny = Outer limit (x fixed, ε ↓ 0) of y retaining n terms =

n−1∑
r=0

εryr(x)

Hmy = Inner limit (ξ fixed, ε ↓ 0) of y retaining m terms =

m−1∑
r=0

εrYr(ξ)

Van Dyke’s rule is

EnHmy = HmEny .

↑ Take m terms of the inner expansion, re-express ξ in

terms of x, and then take n terms of the resulting

expansion.

Forcing equality determines the unknown constants. We illustrate this using our model problem:

E2H2y = E2

(
B0

(
1− e−ξ

)
+ εB1

(
1− e−ξ

)
− εξ

)
= E2

(
B0

(
1− e−x/ε

)
+ εB1

(
1− e−x/ε

)
− x
)

= B0 − x+ εB1 ,

H2E2y = H2

(
e−x + εe−x

)
= H2

(
e−εξ + εe−εξ

)
= 1− εξ + ε .

Hence require

B0 − x+ εB1 = 1− εξ︸︷︷︸
x

+ε ,

and

B0 = 1 = B1 .
09/01
06/03
13/08

Exercise. Do for general m and n.
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5.4 The Choice of Scaling

There is no magic law that enables one to make the correct choice of scaling. However, there are tips.3

(a) First find ‘the’ regular solution:

y = y0 + εy1 + ε2y2 + . . . .

If for some x it happens that, εy1 ∼ y0 or ε2y2 ∼ εy1 or . . ., then the solution is no longer asymptotic.
This often suggests a rescaling for x. For instance suppose that the regular-perturbation solution
yields

y = 1 +
2ε

(x− x0)2
+

7ε2

(x− x0)4
+ . . . .

This breaks down when (x − x0) ∼ ε
1
2 , which suggests that an appropriate rescaling would be

x = x0 + ε
1
2 ξ.

(b) Look at the equation and see if one can predict the scaling from there, i.e. seek distinguished limits.
For instance consider the problem

(x+ εy)
dy

dx
+ y = 1 , y(1) = 2 .

This has the leading-order (i.e. ε = 0) solution

x
dy0

dx
+ y0 = 1 , y0 = 1 +

1

x
. (5.5)

Now, using(5.5), compare the size of the terms in the equation:

x
(y
x

)
;

εy2

x︸ ︷︷ ︸
comparable when y ∼ x

ε
.

; y ; 1

Hence the neglected term is comparable with the largest retained term when 1
x ∼

x
ε , i.e. when

x ∼ ε 1
2 .13/07

5.5 Where is the ‘Inner Layer’?

The ‘inner layer’ could be anywhere! One way to try and track it down is to look at regular solution and
see where it breaks down. However, this method does not always work, as illustrated by the following
examples.

Example 1. Consider the problem
εy′′ − y = 0 , y(0) = y(1) = 1 .

For ε > 0 this has solution

y =

(
1− e−1/ε

1
2

1− e−2/ε
1
2

)[
e−x/ε

1
2 + e(x−1)/ε

1
2

]
.

3 In a forest, a fox bumps into a little rabbit, and inquires, ‘Hi, what are you up to?’. ‘I’m writing a dissertation on how
rabbits eat foxes’, says the rabbit. ‘Come now rabbit, you know that’s impossible’, replies the fox. ‘Well, follow me and I’ll
show you’, says the rabbit. They both go into the rabbit’s dwelling and after a while the rabbit emerges with a satisfied
expression on his face.

Along comes a wolf who asks, ‘Hello, what are you doing these days?’. ‘I’m writing the second chapter of my thesis, on
how rabbits devour wolves’, says the rabbit. ‘Are you crazy! Where is your academic honesty?’ explodes the wolf. ‘Come
with me and I’ll show you’, says the rabbit. As before the rabbit comes out of his dwelling with a satisfied expression on
his face, and with a diploma in his paw.

Switch to the rabbit’s dwelling to find a huge lion sitting next to some bloody and furry remnants of the fox and the wolf.
The moral: it’s your supervisor that really counts.
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The asymptotic solution is
y = 0 + ε 0 + ε2 0 + . . . .

There are inner layers at both x = 0 and x = 1.

Now consider the case ε < 0. This has solution

y =
sin
(
x/ |ε|

1
2

)
− sin

(
(x− 1)/ |ε|

1
2

)
sin
(

1/ |ε|
1
2

) .

In this case there are ‘inner layers’ everywhere.

What happens if sin
(

1/ |ε|
1
2

)
= 0?

Example 2.

1
2ε

2f ′′ − f(f2 − 1) = 0 , with f(∞) = 1 , f(−∞) = −1 .

ε = 0 : f(f2 − 1) = 0 , hence f = −1 or 0 or + 1 .

ε 6= 0 : an exact solution is f = tanh
(x
ε

)
. (5.6)

There is a inner layer in the interior of width O(ε). Within the ‘inner layer’

ε2f ′′ ∼ f(f2 − 1) ,

i.e. the inner layer is confined to a region where (x− x0) ∼ ε.
Exercise: Is (5.6) unique?

09/16
09/18
09/19
09/20
09/22
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5.6 Composite Expansions

The outer solution in (5.3) fails as x→ 0 due to the missing e−x/ε term.

The inner solution in (5.4) fails as ξ →∞ due to the missing εnξn

n! terms.

By correcting either one we can obtain a uniformly valid asymptotic expansion called a composite expan-
sion — this is useful for real answers/comparison with experiment.

It takes little effort to obtain the composite when using Van Dyke’s matching rule — just use the composite
operator:

Cnmy = Eny +Hmy − EnHmy .

Note:

EnCnmy = Eny ,

HmCnmy = Hmy .

For the example we have been considering

C22y =
(
e−x + εe−x

)
+
((

1− e−x/ε
)

+ ε
(

1− e−x/ε
)
− x
)
− 1 + x− ε

=(1 + ε)
(
e−x − e−x/ε

)
.

(i) This is correct to O(ε). Such expansions tend to be accurate to O
(
εmin(m,n)

)
.

(ii) The expansion is not of Poincaré form — so it is not unique.

The above additive composition is not always [most] effective, e.g. if there are exponents or singularities
in the expansions. However, other rules exist, for instance the multiplicative composition:

Cnmy =
EnyHmy

EnHmy
.

Alternatively, suppose that F is a sufficiently smooth functional with an inverse, then a composite ex-
pansion can be defined by

Cnmy = F−1
{
F (Eny) + F (Hmy)− F (EnHmy)

}
.

Hence, additive composition corresponds to F (x) = x, while multiplicative composition corresponds to
F (x) = log(x).09/15
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5.7 Matching Involving Logarithms

5.7.1 A model equation

We consider a model equation which can be thought of representing heat conduction outside a spherical
cavity with a weak nonlinear heat source. The equation can be written in two forms. In the first form the
small parameter ε occurs in the equation

frr +

(
n− 1

r

)
fr + εffr = 0 , f(1) = 0, f → 1 as r →∞ , (5.7)

while in the second form, with ρ = εr, ε occurs in one of the boundary conditions

fρρ +

(
n− 1

ρ

)
fρ + ffρ = 0 ; f(ε) = 0, f → 1 as ρ→∞ . (5.8)

14/06
13/13

5.7.2 The case n = 3

First seek a regular expression (r fixed, ε ↓ 0):

f(r, ε) ∼ f0(r) + εf2(r) + . . . .

Then from substituting into (5.7) we find that

ε0 : f ′′0 +
2

r
f ′0 = 0 , f0(1) = 0, f0 → 1 as r →∞;

with solution f0 = 1− 1

r
,

ε1 :
1

r2

(
r2f ′2

)′
= −f0f

′
0 , f2(1) = 0, f2 → 0 as r →∞.

On integrating and applying f2(1) = 0, we obtain

f2 = A2

(
1− 1

r

)
− ln r

(
1 +

1

r

)
. (5.9)

The boundary condition at ∞, i.e. f2 → 0 as r →∞, cannot be satisfied for any choice of A2. As a result
the expansion cannot be uniformly asymptotic at large r. In fact for r � 1

f ′′0 ∼ −
2

r3
, εf0f

′
0 ∼

ε

r2
,

and hence the O(ε) term is no longer a small correction to the equation when

r = O
(

1

ε

)
.

Remark. Unfortunately, trying to derive the scaling from balancing the first two term of the series, i.e.
ε ln r ∼ 1, does not work. Scalings are a black art.

13/14
10/17 Since εf2 ∼ ε ln(1/ε) when r = O

(
ε−1
)
, we try the asymptotic sequence

1, ε ln(1/ε), ε, . . . .

Note that we can view the ln(1/ε) term as coming from the particular integral:

f2 = −
∫ r

0

ds

s2

∫ s

0

t2f0(t)f ′0(t) dt︸ ︷︷ ︸
∼ s as s→∞.

10/01
07/03
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Asymptotic expansion for r fixed and ε ↓ 0. Try the Poincaré expansion:

f ∼ f0 + ε ln(1/ε) f1 + εf2 + . . . , fj(1) = 0 . (5.10)

Substitute into (5.7) and solve.

O(ε0). At leading order, as before

f0 =

(
1− 1

r

)
.

O(ε ln(1/ε)). At this order the same linear equation is obtained as for f0, hence

f1 = A1

(
1− 1

r

)
.

O(ε). This order is the same as (5.9), viz.

f2 = A2

(
1− 1

r

)
− ln r

(
1 +

1

r

)
.

The constants A1 & A2 are to be determined by matching.

Asymptotic expansion for ρ fixed, and ε ↓ 0. Try the Poincaré expansion:

f ∼ g0 + ε ln(1/ε) g1(ρ) + ε g2(ρ) + . . . , (5.11a)

where from the outer boundary consition

g0(∞) = 1 , g1(∞) = g2(∞) = 0 . (5.11b)

g0 satisfies the nonlinear equation (5.8), which we note is satisfied if g0 is a constant. Since f0 → 1
as r →∞ and g0(∞) = 1 we guess that g0 = 1. Then on substitution of (5.11a) into (5.8) we obtain
the same equation for both g1 and g2:

g′′j +
2

ρ
g′j + g′j = 0 , i.e.

(
ρ2eρg′j

)′
= 0 ,

with solution

gj = Bj

∫ ∞
ρ

e−τ

τ2
dτ , gj(∞) = 0 .

14/08

Match by intermediate variable to fix A1, A2, B1 & B2. First observe that (e.g. by integrating by parts)∫ ∞
ρ

e−τ

τ2
dτ ∼ 1

ρ
+ (ln ρ+ γ − 1)− 1

2ρ+ o(ρ) as ρ→ 0 ,

where γ = −
∫∞

0
e−τ log τdτ is the Euler[-–Mascheroni] constant. Introduce η = εαr = εα−1ρ, with

0 < α < 1. Take the limit of η fixed, ε ↓ 0:

(5.10): f ∼ 1 −ε
α

η
+ . . . +ε ln(1/ε)A1 −

ε1+α

η
ln(1/ε)A1 + . . .

1 3 5

+εA2 −
ε1+α

η
A2 −αε ln(1/ε) −ε ln η −αε

1+α

η
ln(1/ε) −ε

1+α

η
ln η + . . .

6 5 6

(5.11a): f ∼ 1 +
εα

η
ln(1/ε)B1 +ε(ln(1/ε))2B1(α− 1) +ε ln(1/ε)B1(ln η + (γ − 1)) + . . .

1 2 4

+
εα

η
B2 +ε ln(1/ε)B2(α− 1) +εB2(ln η + (γ − 1)) + . . .

3 5 6
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Make the expansions agree:

ε0 : 1 = 1 ;

εα ln(1/ε) : 0 = B1 , B1 = 0 ;

εα : −1 = B2 , B2 = −1 ;

ε(ln(1/ε))2 : 0 = B1 , consistent ;

ε ln(1/ε) : A1 − α = (α− 1)B2 , A1 = 1 ;

ε : A2 − ln η = B2 ln η + (γ − 1)B2 , A2 = 1− γ .

Hence

r fixed: f ∼
(

1− 1

r

)
+ ε ln(1/ε)

(
1− 1

r

)
+ ε

(
(1− γ)

(
1− 1

r

)
− ln r

(
1 +

1

r

))
+ . . . ,

ρ fixed: f ∼ 1− ε
∫ ∞
ρ

e−τ

τ2
dτ + . . . .14/07

10/16

Match using Van Dyke’s rule. Identify E and H with the coordinates r and ρ respectively. Then

H2E2f = H2

[(
1− 1

r

)
+ ε ln(1/ε)A1

(
1− 1

r

)]
= 1 + ε ln(1/ε)A1 ,

E2H2f = E2

[
1 + ε ln(1/ε)B1

∫ ∞
ρ

e−τ
dτ

τ2

]
= 1 +

B1

r
ln(1/ε)− ε ln2(1/ε)B1 +B1ε ln(1/ε) (ln r + γ − 1) .

If these two expansions are to agree then B1 = 0 and A1 = 0, which is incorrect. The trouble is a ln ρ
in the O(ε) term when ρ = O(1) — this changes to a ε ln(1/ε) term in the intermediate scaling.

In general, terms like (ln r)p lead to failures near to the diagonal where |n−m| < p. However, in general
there is success sufficiently far from the diagonal, e.g.

H3E2f = 1 + ε ln(1/ε)A1 −
ε

ρ
,

E2H3f = E2

[
1 + (ε ln(1/ε)B1 + εB2)

∫ ∞
ρ

e−τ

τ2
dτ

]
= 1 +

1

r
(B1 ln(1/ε) +B2)− ε ln(1/ε)

(
ln(1/ε)B1 +B2

)
+ ε ln(1/ε)B1 (ln r + γ − 1) ;

so B1 = 0, B2 = −1, and A1 = 1 as before.

It is best to apply Van Dyke’s rule (and composite expansions) only at changes in the power of ε:

1 ε ln(1/ε) ε ε2 ln2(1/ε) ε2 ln(1/ε) ε2 . . . .

↑ ↑ ↑

Because of the way that logarithmic terms jump order, apply Van Dyke’s rule only at the arrowed orders:
do not split logs! The mindless application of rules can be dangerous.

10/15
10/18
10/19
10/20
10/22

5.7.3 The case n = 2

In this case the governing equation is

frr +
1

r
fr + εffr = 0 , f(1) = 0 , f → 1 as r →∞.
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Try a regular expansion, f ∼ f0 + εf1 + . . .; then

ε0 : f ′′0 +
1

r
f ′0 = 0 , f0 = A0 ln r + C0 .

No choice of A0 or C0 will satisfy the boundary conditions both at r = 1 and as r →∞. Choose to satisfy
the boundary condition at r = 1, i.e. set C0 = 0. At next order

ε1 : f ′′1 +
1

r
f ′1 = −f0f

′
0 , f1 = A1 ln r + C1 −A2

0 (r ln r − 2r + 2) .

Again satisfy the boundary condition at r = 1 (i.e. f1(1) = 0) – this time by setting C1 = 0. Note that if
A0 6= 0, then f1 has even worse behaviour as r → ∞ than f0. By comparing where the expansion for f
becomes non-asymptotic, it follows that we should introduce ρ = εr as the stretched variable.14/13

Note that when r = O
(

1
ε

)
,

f0 ∼ A0 ln(1/ε) .

Since f0 ∼ 1 as ρ→∞, this suggests trying A0 = 1
ln(1/ε) , and the asymptotic sequence

1 ,
1

ln(1/ε)
,

1(
ln(1/ε)

)2 , . . . .

Remark. This asymptotic sequence is likely to have non-wonderful convergence properties.
15/06

Asymptotic expansion for r fixed and ε ↓ 0. We propose the asymptotic expansion

f(r, ε) ∼ 0 +
f1(r)

ln(1/ε)
+

f2(
ln(1/ε)

)2 + . . . . (5.12)

Then

f ′′n +
1

r
f ′n = 0 , and fn = An ln r .

Note that the εff ′ term never enters into the expansion for r = O(1).

Asymptotic expansion for ρ fixed and ε ↓ 0. In this case we propose

f ∼ 1 +
g1(ρ)

ln(1/ε)
+

g2(ρ)

(ln(1/ε))
2 + . . . . (5.13)

Then

g′′1 +

(
1

ρ
+ 1

)
g′1 = 0 ,

g1 = B1

∫ ∞
ρ

e−τ

τ
dτ = B1E1(ρ) ;

g′′2 +

(
1

ρ
+ 1

)
g′2 = −g1g

′
1 ,

g2 = B2E1(ρ)−B2
1

(
e−ρE1(ρ)− 2E1(2ρ)

)
.

Match using the intermediate variable

η = εαr = εα−1ρ (0 < α < 1)

and the asymptotic expansion

E1(ρ)→ − ln ρ− γ + ρ+O
(
ρ2
)

as ρ→ 0 .
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Then

(5.12) f ∼ 1

ln(1/ε)
A1 (α ln(1/ε) + ln η) +

1(
ln(1/ε)

)2A2 (α ln(1/ε) + ln η) + . . . (5.14)

(5.13) f ∼1 +
B1

ln(1/ε)

(
−(α− 1) ln(1/ε)− ln η − γ + ε1−αη + . . .

)
+

1(
ln(1/ε)

)2(B2 [−(α− 1) ln(1/ε)− ln η − γ + . . . ]

+B2
1 [−(α− 1) ln(1/ε)− γ − ln η − ln 4 + . . . ]

)
. (5.15)

On equating equal orders of ε we find that (again noting that terms jump order)

ln0(1/ε) : αA1 =1− (α− 1)B1 ,

— if this is true ∀α then B1 = −1, A1 = 1;

ln−1(1/ε) : A1 ln η + αA2 =−B1 (ln η + γ)−B2 (α− 1)−B2
1 (α− 1) ,

— if this is true ∀α, η then B2 = −(1 + γ), A2 = γ.
11/17

Match by Van Dyke’s Rule (if you must). Put α = 1 and η = ρ in (5.14), and α = 0 and η = r in (5.15).
Then Van Dyke’s rule gives

E1H1 = 1 , H1E1 = 0 , Contradictory ;

E2H1 = 1 , H1E2 = A1 , A1 = 1 ;

E1H2 = 1 +B1 , H2E1 = 0 , B1 = −1 .

Similarly

E2H2 = 1 +B1 −
B1

ln(1/ε)
(ln r + γ)

H2E2 = A1

(
1 +

ln ρ

ln(1/ε)

)
=
A1 ln r

ln(1/ε)

Contradictory .

However

E3H2 = 1 +B1 −
B1

ln(1/ε)
(ln r + γ)

H2E3 = A1 +
1

ln(1/ε)
(A1 ln ρ+A2) =

A1 ln r

ln(1/ε)
+

A2

ln(1/ε)
,

and hence
A1 = 1 , B1 = −1 , A2 = γ .

As before, Van Dyke’s rule works if n 6= m.11/01
08/03
09/04
15/08
14/14

5.7.4 A ‘terrible’ problem

Consider the equation with n = 2 plus a new term:

frr +
1

r
fr + f2

r + εffr = 0 , f(1) = 0, f → 1 as r →∞ .

First compare the size of terms using the solution calculated in §5.7.3:

r = ord(1), f ∼ 1

ln(1/ε)
, f2

r ∼
(

1

ln(1/ε)

)2

, frr ∼
1

ln(1/ε)
,

ρ = ord(1), f ∼ 1 , fρ ∼
1

ln(1/ε)
, f2

ρ ∼
(

1

ln(1/ε)

)2

, fρρ ∼
1

ln(1/ε)
.

From this comparison of terms we might expect a small perturbation to the previous answer.
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Asymptotic expansion for r fixed. As in §5.7.3 propose the asymptotic expansion

f ∼ 1

ln(1/ε)
f1 +

1(
ln(1/ε)

)2 f2 +
1(

ln(1/ε)
)3 f3 + . . . . (5.16)

Then from substituting into the equation we find:

ln−1(1/ε): f ′′1 +
1

r
f ′1 = 0 , f1 = A1 ln r ,

ln−2(1/ε): f ′′2 +
1

r
f ′2 = −f ′1

2
, f2 = A2 ln r − 1

2A
2
1 ln2 r ,

ln−3(1/ε): f ′′3 +
1

r
f ′3 = −2f ′1f

′
2 , f3 = A3 ln r + 1

3A
3
1 ln3 r −A1A2 ln2 r .

By induction, one can show that as r →∞,

fn ∼ (−)n
(
− 1

n
An1 lnn r +An−2

1 A2 lnn−1 r

)
,

and hence by summation that

f ∼ ln

[
1 +

(
A1

ln(1/ε)
+

A2(
ln(1/ε)

)2 + . . .

)
ln r

]
as r →∞ .

15/07
11/16

Lemma (for future reference). Instead of adopting the above approach, ignore §5.7.3 and assume

f = f0 + . . . .

Then

f ′′0 +
1

r
f ′0 + f ′0

2
= 0 ⇒ f0 = ln (1 +A ln r) if f0(1) = 0 .

If A = O
(
ln−1(1/ε)

)
, this suggests that the natural variable is, say,

t =
ln r

ln(1/ε)
. (5.17)

Asymptotic expansion for ρ fixed. In this variable ε does not appear in the equation:

fρρ + 1
ρfρ + f2

ρ + ffρ = 0 .

We pose the Poincaré expansion:

f ∼ 1 +
g1

ln(1/ε)
+

g2(
ln(1/ε)

)2 + . . . . (5.18)

Substitute, equate, etc:

ln−1(1/ε) : g′′1 +
1

ρ
g′1 + g′1 =

e−ρ

ρ
(ρeρg′1)′ = 0 ,

g1 = B1

∫ ∞
ρ

e−τ

τ
dτ = B1E1(ρ) , setting g1(∞) = 0 .

ln−2(1/ε) :
e−ρ

ρ
(ρeρg′2)′ = −g′21 − g1g

′
1 ,

g2 = B2E1(ρ) +B2
1

(
2E1(2ρ)− 1

2E
2
1(ρ)− e−ρE1(ρ)

)
.

As ρ→ 0 we have

g1 ∼ B1 (− ln ρ− γ) ,

g2 ∼ B2 (− ln ρ− γ) +B2
1

(
− 1

2 ln2 ρ− (γ + 1) ln ρ− 1
2γ

2 − γ − ln 4
)
.
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15/13

The leading-order behaviour as ρ→ 0, g2 ∼ − 1
2B

2
1 ln2 ρ, comes from the balance

1

ρ
(ρg′2)′ ∼ −g′1

2 ∼ B2
1

ρ2
.

Similarly we can show that for small ρ

g′′3 +
1

ρ
g′3 ∼ −2g′1g

′
2 ∼ −2B3

1

ln ρ

ρ2
−
(
2B3

1(γ + 1) + 2B1B2

) 1

ρ2
,

g3 ∼ − 1
3B

3
1 ln3 ρ−

(
B3

1(γ + 1) +B1B2

)
ln2 ρ .

By induction it is possible to conclude that as ρ→ 0

gn ∼ − 1

n
Bn1 lnn ρ−

(
Bn1 (γ + 1) +Bn−2

1 B2

)
lnn−1 ρ .

11/15

Match using the intermediate variable
η = εαr = ρεα−1 .

Then

(5.16) : f ∼ 1

ln(1/ε)
A1 (α ln(1/ε) + ln η)

+
1

ln2(1/ε)

[
− 1

2A
2
1 (α ln(1/ε) + ln η)

2
+ . . .

]
+ . . .

+
1

lnn(1/ε)

[
(−)

n

n+1

An1 (α ln(1/ε) + ln η)
n

+ . . .

]
+ . . . ;

(5.18) : f ∼ 1 +
B1

ln(1/ε)
[−(α− 1) ln(1/ε)− ln η − γ + . . . ]

+
1

ln2(1/ε)

[
−B

2
1

2

(
((α− 1) ln(1/ε) + ln η)

2
+ . . .

)
+ . . .

]
+ . . .

+
1

lnn(1/ε)

[
−B

n
1

n
((α− 1) ln(1/ε) + ln η)

n
+ . . .

]
+ . . . .

Equate these two expansions. At leading order

ln0(1/ε) : αA1 − 1
2α

2A2
1 + 1

3α
3A3

1 + . . . = 1−B1(α− 1)− 1
2B

2
1 (α− 1)2 + . . . .

or from summing the series
ln (1 + αA1) = 1 + ln [1− (α− 1)B1] .

This must be true ∀α, hence

e(1 +B1)− 1 = 0 , A1 + eB1 = 0 ,

i.e.

B1 = −
(
e− 1

e

)
, A1 = (e− 1) .

Note that:

• in matching, an infinite number of terms jumped order — hence the need for general expressions
for fn & gn;

• hence there is no hope for Van Dyke’s rule. §

11/18
11/19
11/20
11/22
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Is there an easier way? Recall from earlier that a natural variable is

t =
ln r

ln
(
1/ε
) . (5.19)

Note that
{r = 1} ≡ {t = 0} ,

and that

ρ = ord(1) when r =
k

ε
for k = ord(1) ,

i.e. when

t = 1

↑
finite value

+
ln k

ln
(
1/ε
) for k = ord(1).

Let τ = 1− t, so that ρ = ord(1) when τ = ord(ln−1(1/ε)). Next substitute into the equation to obtain

fττ + f2
τ = − ln(1/ε) e−τ ln(1/ε) ffτ .

Seek a Poincaré expansion for τ > 0 (so that the r.h.s. is ‘exponentially’ small):

f = f0 +
1

ln(1/ε)
f1 + . . . , (5.20)

then
f0ττ + f2

0τ = 0 .

If we require f0(1) = 0, then
f0 = log (1 + α0 (1− τ)) . (5.21a)

We need to match with the outer solution that is valid for ρ = ord(1), i.e. we need to match with the
solution that is valid in the region where τ = ord(ln−1(1/ε)). Since

τ = 1 +
ln 1/r

ln(1/ε)
=

ln 1/ρ

ln(1/ε)
,

introduce
s = ln ρ = −(ln(1/ε))τ

and seek an expansion

f = 1 +
G1(s)

ln(1/ε)
+

G2(s)(
ln(1/ε)

)2 + . . . . (5.21b)

As before

G1 = B1

∫ ∞
es

e−u

u
du ,

G1 → B1 (−s− γ + . . . ) as s→ −∞.

Now try matching by Van Dyke’s rule using s = −(ln(1/ε))τ :

H2E1f = H2

[
log

(
1 + α0 +

α0s

ln(1/ε)

)]
= ln(1 + α0) +

α0s

(1 + α0) ln(1/ε)
,

E1H2f = E1

[
1 +

B1

ln(1/ε)

(
(ln(1/ε))τ − γ + . . .

)]
= 1 +B1τ = 1− B1s

ln(1/ε)
.

Hence, as before,

α0 = e− 1 , B1 =
1− e
e

.
16/06
15/14
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5.8 Strained Coordinates

The method of strained co-ordinates is a better, but less general way, of solving certain singular pertur-
bation problems. However, usually such problems can also be solved either by using MAEs, or by means
of the method of Multiple Scales.
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6 A Little More on Asymptotics Beyond All Orders

As we have seen in the case of Stokes lines, sometimes it is not sufficient to consider just the algebraic
asymptotic expansion of a solution. This section is concerned with looking at further examples where
exponentially small terms can play a key role. For a more general overview I recommend The Devil’s
invention: asymptotic, super-asymptotic and hyper-asymptotic series by John P. Boyd (Acta Applicandae,
56, 1-98, 1999) which is available at

http://www-personal.engin.umich.edu/~jpboyd/boydactaapplicreview.pdf

6.1 More on What Happens at Stokes Lines

In §3.7 we looked at what happens near the Stokes line of the Airy function when arg λ = 2π/3. In this
section we return to the ‘turn-on’ of the sub-dominant exponentially small term at a Stokes line, but this
time for the complementary error function.

6.1.1 The complementary error function

There are a number of ways of getting a handle on what happens at Stokes lines. In §3.7 we used Borel
summation and and an integral estimate obtained using steepest descents in the complex plane. Here we
will use a differential equations approach for model problem of the complementary error function:

erfc(z) =
2√
π

∫ ∞
z

e−t
2

dt . (6.1)

From the first part of the course (see also (3.12a), (3.12b) and (3.12c))

erfc(z) ∼ e−z
2

z
√
π

∞∑
s=0

(−)s(2s)!

s!(4z2)s
for |arg(z)| < 3

4π , (6.2a)

erfc(z) ∼ 2 +
e−z

2

z
√
π

∞∑
s=0

(−)s(2s)!

s!(4z2)s
for |arg(−z)| < 3

4π . (6.2b)

We note that erfc and ‘2’ are solutions to the differ-
ential equation

w′′ + 2zw′ = 0 . (6.3)

Moreover, if we let

erfc(z) =
e−z

2

z
√
π

N−1∑
s=0

(−)s(2s)!

s!(4z2)s
+RN , (6.4a)

then

R′′N + 2zR′N = −e
−z2

z
√
π

(−)N (2N)!

(N − 1)! 4N−1z2N
. (6.4b)

Write z = reiθ and consider the case of fixed r, so that

d

dz
=
−ie−iθ

r

d

dθ
. (6.5)

12/17

Then (6.4b) becomes

− e−2iθ

r2
(RN )θθ + i

(
e−2iθ

r2
− 2

)
(RN )θ = −

exp
(
−r2e2iθ + iπN − (2N + 1)iθ

)
(2N)!

√
π(N − 1)!4N−1r2N+1

. (6.6)
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Now assume that |z| = r � 1, then it is possible to show using Stirling’s formula (see § 3.5.2) that the
right-hand-side forcing is smallest when N ∼ r2. Guessing that the remainder, RN , will be smallest then,
we let

N = int(r2) , r2 = N + α , (6.7a)

then

RHS ∼ − 8r√
2π

exp (−iα(2θ − π)− iθ) exp
(
−r2

(
e2iθ + 1 + i(2θ − π)

))
. (6.7b)

This has a local maximum when cos(2θ) = −1, i.e. when θ = ±π/2. Moreover we note that when
θ = ±π/2, then at leading order the RHS both stops oscillating and is independent of α.06/04

12/16
On the basis of this try an asymptotic rescaling of the form

r =
ρ

ε
, θ =

π

2
+ δφ , (6.8)

where ε � 1 and δ � 1 (and for simplicity we have focused close to θ = +π
2 ). Then, from (6.7a),

N = O(ε−2), and

ε2

δ2

e−2iδφ

ρ2

d2

dφ2
RN − i

δ

(
ε2 e−2iδφ

ρ2
+ 2

)
d

dφ
RN

∼ − 8ρi

ε
√

2π
e(−2iδφα−iδφ) exp

(
ρ2

ε2

(
e2iδφ − 1− 2iδφ

))
∼ − 8ρi

ε
√

2π
exp

(
−2ρ2φ2 δ

2

ε2

)
. (6.9)

There is a distinguished scaling when δ = O(ε); for simplicity take δ = ε. Then

d

dφ
RN ∼

4ρ√
2π

exp
(
−2ρ2φ2

)
, (6.10)

and thus
RN ∼ A+ erf

(√
2ρφ

)
, (6.11)

where A is a constant. We recall that

z =
ρ

ε
exp

(
i
(π

2
+ εφ

))
,

and hence for ‘matching’ with (6.2a) we deduce that that we require that RN → 0 as φ → −∞, i.e. we
require A = 1. Thus

RN ∼ 1 + erf
(√

2ρφ
)
. (6.12)

12/15

We can interpret this result as saying that within an angle of O(|z|−1) of arg z = ±π2 , the sub-dominant
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term is ‘turned on’ by an error function (as was the case for the Airy function). In fact the turn on by
an error function is generic.12/18

This agrees with question 1 on Example Sheet 2. There you will find that

erfc(z) =
e−z

2

z
√
π

N−1∑
s=0

(−)s(2s)!

s!(4z2)s
+RN , (6.13)

where

RN =
2√
π

(−)N (2N)!

22NN !

∫ ∞
z

e−t
2

t2N
dt . (6.14)

On the basis of the above scaling (i.e. ε = δ = O(N−
1
2 )), take

z = N
1
2 exp

(
iπ

2
+

iψ

N
1
2

)
. (6.15)

For large N try applying the method of steepest descents to (6.14). The stationary point is found to occur

at t = iN
1
2 . Let t = iN

1
2 eiv/N

1
2 , then

−t2 − 2N log t = Ne2iv/N
1
2 − 2N log(iN

1
2 )− 2N

1
2 iv

∼ N(1− logN − iπ)− 2v2 + . . . . (6.16)

Hence ∫ ∞
z

e−t
2

t2N
dt ∼ −

∫ −∞
ψ

(−)NeN

NN
e−2v2dv

∼ (−)NeN√
2NN

∫ √2ψ

−∞
e−w

2

dw

∼ (−)NeN

2NN

(π
2

) 1
2
(

1 + erf
(√

2ψ
))

, (6.17)

and thus, as before,

RN ∼
(

1 + erf
(√

2ψ
))

, (6.18)

since ρφ ∼ ψ.

18/07
18/08
12/19
12/20
12/22

6.2 A Model Equation (With Wider Implications)

Consider the asymptotic solution to

fyy + λ3(1 + iy)f = −λ2, f → 0 as |y| → ∞ , (6.19)

for large |λ|, and real y. Try

λf = f0 +
f1

λ3
+
f2

λ6
+ · · · =

∞∑
n=0

fn
λ3n

. (6.20)

Then

f0 = − 1

1 + iy
, and for n = 0, 1, 2, . . . fn+1 = − f ′′n

(1 + iy)
.

Hence

f1 = − 2

(1 + iy)4
, etc. .

Thus an asymptotic expansion can be found to all orders, irrespective of the sign of λ. Further, the
expansion satisfies the boundary conditions as |y| → ∞. However the expansion (6.20) is only valid ∀y if
λ→ −∞.16/14

Mathematical Tripos: Part III PM 54 © S.J.Cowley@maths.cam.ac.uk, Michaelmas 2022



2
2

3

3

5

5

8

8

12

12

arg( µ )=0

−2 0 2

−2

0

2

arg( µ )= π /24

−2 0 2

−2

0

2

arg( µ )= π /6

−2 0 2

−2

0

2

arg( µ )= π /3

−2 0 2

−2

0

2

arg( µ )= π /2

−2 0 2

−2

0

2

arg( µ )=2 π /3

−2 0 2

−2

0

2

arg( µ )=5 π /6

−2 0 2

−2

0

2

arg( µ )= π

−2 0 2

−2

0

2

Figure 6.4: Contours of Re(3µz − z3) (blue: high; red: low), and Im(3µz − z3) (black).
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To see this we start from the fact that the exact solution is

f(y, λ) =

∫
C

exp
(
λ(1 + iy)z − 1

3z
3
)
dz , (6.21)

where C starts from z = 0 and extends to z = ∞ in the sector | arg(z)| < π/6. For large |λ|, we can
estimate the integral using steepest descents. In the figure 6.4 we plot contours of Re(3µz − z3) and
Im(3µz − z3), where µ = λ(1 + iy). There are two cases to consider.

λ→ −∞. If λ → −∞, then |π − argµ| < π/2, in which case we deduce from figure 6.4 that (6.20) is
recovered by Watson’s Lemma.

λ→ +∞. However, if λ → +∞, then the asymptotic behaviour depends crucially on whether the Wat-
son’s lemma contribution from the end point at z = 0 is larger or smaller than the Laplace’s
method contribution from the saddle point. As indicated in figure 6.4, if π/3 < | argµ| < π/2, i.e. if
|y| >

√
3, then the Watson’s lemma contribution dominates, and (6.20) is again recovered. However,

if | argµ| < π/3, i.e. if |y| <
√

3, then the Laplace’s method contribution dominates and

f ∼ π
1
2

λ
1
4 (1 + iy)

1
4

exp
(

2
3λ

3
2 (1 + iy)

3
2

)
; (6.22)

this is exponentially large.

To understand this result, note that equation (6.19) has a turning point at

1 + iy = 0 .

Set

y = i+

(
i

λ3

) 1
3

s ,

then

fss − sf = −i 23 .

The complementary function solutions to this equation are Ai(s) and Bi(s), which have anti -Stokes lines
in the complex s-plane at

arg s = −π
3
,
π

3
, π .

We plot these anti -Stokes lines in the complex y-plane:

λ > 0 λ < 0
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λ > 0

Hence when λ > 0, we see that since two anti -
Stokes lines cross the real y axis, the solution
that decays as |y| → ∞ can be exponentially
small as λ → ∞ for |y| >

√
3, but exponen-

tially large for |y| <
√

3. This is not possible
when λ < 0, since only one anti -Stokes line
crosses the real y-axis. Note that in the case
when λ > 0, it is possible to get from y = −∞
to y = ∞ without seeing the exponentially
large solution, by deforming into the complex
y-plane.

The idea of deforming into the complex plane to sidestep regions where the solution is exponentially large
has wider applications (e.g. eigenvalue problems in stability, nonlinear models of crystal growth).10/04

17/13
13/16
13/17 6.3 A Model of Crystal Growth (Unlectured)

A simple geometric model of crystal growth is:

ε2θ′′′ + θ′ = cos θ −∞ < s <∞ ; (6.23)

ε represents surface tension;

s ′′ arclength along the solid-liquid interface;

θ(s, ε) ′′ the angle between the local normal and the direc-
tion of propagation of the crystal.

A ‘needle crystal’ is a monotonic solution satisfying

θ(s, ε)→ ±π
2

as s→ ±∞ . (6.24)

6.3.1 Regular perturbation

Try
θ = θ0 + ε2θ1 + ε4θ2 + . . . . (6.25)
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We fix the apex at s = 0 by requiring that θj(0) = 0.

ε0 : θ′0 − cos θ0 = 0 ,

θ0 = −π
2

+ 2 tan−1(es) ,

θ0 → ±
π

2
as s→ ±∞ ,

θ0 increases monotonically.

ε2 : θ′1 + sin θ0 θ1 = −θ′′′0 ,

θ1 = (2 tanh s− s) sech s ,

θ1 → 0 as s→ ±∞ .

ε4 : θ2 =
(
− 1

2s
2 tanh s+ 5s− 4s sech2 s− 32

3 tanh s+ 50
3 tanh s sech2 s

)
sech s ,

θ2 → 0 as s→ ±∞ .

It is possible to prove that: (a) θj(−s) = −θj(s)⇒ θ′′j (0) = 0,

(b)
∑N

0 ε2nθj(s)∓ π/2→ 0 as s→ ±∞,

(c) the solution is monotonic for small ε.

Hence we appear to have a solution correct to all orders!18/14

6.3.2 Too many boundary conditions

How many boundary conditions are implied by (6.24)? Suppose we linearise about s = −∞ by setting

θ = −π
2

+ αems .

We find that

ε2m3 +m =1

m =

1− ε2 + . . . decays as s→ −∞

± i
ε
− 1

2 + . . . grow as s→ −∞.

Hence we have effectively imposed 2 boundary conditions as s → −∞. Similarly, we have imposed 2
boundary conditions as s→ +∞.

Thus we have imposed 4 boundary conditions on a 3rd order ODE!

6.3.3 A well posed problem

Suppose that we just impose

θ +
π

2
→ 0 as s→ −∞ . (6.26)

Then a one-parameter family of solutions will exist. We fix the solution by requiring that

θ(0; ε) = 0 . (6.27)

The question is: ‘Does this solution satisfy (θ − π
2 )→ 0 as s→ +∞?’

Suppose that it does, then a second solution is

Θ(s; ε) = −θ(−s; ε) .

Θ and θ differ by at most a translation, hence θ is antisymmetric about some point. However, θ is
monotonic, analytic and vanishes at s = 0, thus

θ(s; ε) is antisymmetric about s = 0 .

We conclude that a needle crystal satisfies

θ′′(0; ε) = 0 . (6.28)
18/06
19/13
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6.3.4 Analytical continuation into the complex plane

We analytically continue solution into the complex s-plane; the continued solution still satisfies

ε2θ′′′ + θ′ = cos θ .

For future reference we note that if θ(s; ε) is antisymmetric, then

θ(s; ε) =

∞∑
0

ans
2n+1 ,

and hence Re (θ) = 0 if s is pure imaginary.

Next we analytically extend the asymptotic expansion (6.25) into the complex s-plane. We note that this
asymptotic expansion breaks down near

s = ±(2n+ 1)
iπ

2
n = 0, 1, 2, . . . ,

because sech s =∞ near such points. We seek an asymptotic expansion near to one of the points closest
to the real axis, i.e. s = iπ

2 . In particular, if we let

s =
iπ

2
+ σ ,

then

θ0 = −π
2

+ 2i tanh−1(eσ) ,

and

θ0 ∼ i ln

(
− 2

σ

)
− π

2
+ . . . as σ → 0.

Further, from HOT (i.e. higher order terms),

θ ∼ −π
2

+ i

[
ln
(
− 2

σ

)
− 2

( ε
σ

)2

+
50

3

( ε
σ

)4

+ . . .

]
as σ → 0 .

This expansion becomes disordered for σ = O(ε). Hence when σ is this small we rescale:

s =
iπ

2
+ εz ,

θ = i ln

(
2

ε

)
− π

2
+ iϕ(z, ε) .

Then

ϕ′′′ + ϕ′ = eϕ −
(ε

2

)2

e−ϕ , (6.29)

and from matching we require that

ϕ→ − ln(−z)− 2

z2
+ . . . as Re (z)→ −∞.
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We seek an asymptotic solution to (6.29):

ϕ = ϕ0 + ε2ϕ1 + . . . ,

then

ϕ′′′0 + ϕ′0 = eϕ0 , (6.30)

and

ϕ0 → − ln(−z)− 2

z2
as Re (z)→ −∞. (6.31)

It is possible to prove that ∃ a unique solution for ϕ0 in Re (z) 6 0. The strategy is therefore to:

(a) integrate (6.30) from Re (z) = −∞ to Re (z) = 0 along a line on which Im (z) = constant < 0;

(b) continue this solution down Re (z) = 0 to s = 0 and compute θ′′(0, ε).

Write

ϕ0 = − ln(−z)− 2

z2
+ . . .+ ϕ̃ , (6.32)

and linearise (6.30) for large |z|. We find that

ϕ̃ = αϕ̃1 + βϕ̃2 + γϕ̃3 ,

where

ϕ̃1 ∼ −
1

z
+

4

z3
+ . . . ,

ϕ̃2 ∼ z
1
2 eiz

(
1 +

3

8

i

z
+ . . .

)
,

ϕ̃3 ∼ z
1
2 e−iz

(
1− 3

8

i

z
+ . . .

)
.
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The matching condition (6.31) implies that if we let Re (z) → −∞ along Im (z) = constant, then we
deduce that in this ‘direction’

α = β = γ = 0 .

This does not mean that α = β = γ = 0 in the direction specified by Im (z) → −∞ with Re (z) = 0
because ϕ3(z) is exponentially small in that direction. Hence, while we might expect that

α = β = 0 for Im (z)→ −∞, Re (z) = 0 ,

it is possible that γ 6= 0 in that direction.

In order to get a handle on these terms, we note that when Re (z) = 0, the algebraic terms in (6.32) are
real valued, hence as Im (z)→ −∞ with Re (z) = 0

Im (ϕ(z)) ∼ −π
2

+ Γ|z|
1
2 e−|z|

(
1 +O

(
|z|−1

))
,

where Γ = Im
(
γe−iπ/4

)
. Moreover, numerical solutions to (6.30) subject to (6.31) show that

Γ ≈ 2.11 ;

a result that can also be obtained analytically using Borel summation. Hence

Re (θ(s, ε)) ∼ −Γ |z|
1
2 e−|z|

(
1 +O

(
|z|−1

))
as Im (z) → −∞ with Re (z) = 0 = Re (s). With a little more effort one can conclude, by integrating
along Re (s) = 0 back to s = 0, that

θ′′(0, ε) ∼ 2Γε−
5
2 exp(−π/2ε) ,

which is exponentially small. This term is non-zero because of a Stokes-line effect.

Often exponentially small terms do not matter, but they do here. We conclude that θ(s, ε) is not antisym-
metric, and hence the well-posed problem does not represent a needle crystal. Indeed, no needle crystal
solutions exist for small ε.

11/04
19/07
19/08
19/14
13/18
13/19
13/20
13/22
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7 Method of Multiple Scales
11/95

Multiple scales is a useful technique for a number of problems. For instance, it underlies much of the
theory of ‘ray-tracing’.

One of the simpler, if important, uses of multiple scales is to describe the evolution of linear waves through
slowly varying media (e.g. sound waves through the atmosphere). For such examples, the different scales
are often immediately apparent (e.g. the wavelength of sound, and the depth of the troposphere).

We will concentrate on nonlinear problems where the need for two (or more) scales is necessary, but may
not be immediately apparent.

MAE: Two or more processes with different scales; processes act separately in different regions.
MS: Two or more processes each with own scale; processes act simultaneously.13/15

7.1 Van der Pol oscillator

The Van der Pol oscillator is described by the equation

ẍ+ εẋ(x2 − 1)︸ ︷︷ ︸
nonlinear friction
−ve : |x| < 1
+ve : |x| > 1

+x = 0 , t > 0 , (7.1)

where 0 < ε � 1. Typical initial conditions might be x = 1, ẋ = 0 at t = 0 (although the precise initial
conditions are not crucial for what follows).

Solutions are found to tend to a finite amplitude oscillation, during which energy losses when |x| > 1 are
balanced by energy gains when |x| < 1.

7.1.1 Regular perturbation

Try

x = x0 + εx1 + . . . . (7.2)

Then at leading order

ẍ0 + x0 = 0 ⇒ x0 = cos t . (7.3)

At the next order

ẍ1 + x1 = ẋ0(1− x2
0) = − sin3 t

= − 3
4 sin t+ 1

4 sin 3t , (7.4a)

and

x1 = 3
8 (t cos t− sin t)− 1

32 (sin 3t− 3 sin t) . (7.4b)

Note that the expansion loses its asymptoticness when

εx1 = ord(x0) i.e. when t = ord
(

1
ε

)
. (7.5)

The ‘problem’ is that the ε-damping term slowly changes the oscillation amplitude on a time scale of
ord(ε−1) by the slow accumulation of small effects.
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7.1.2 Multiple scales expansion

The oscillator has two processes:

Harmonic oscillation on time scale of ord(1). Slow drift in amplitude (and possible phase)
on time scale of ord(ε−1).

τ = t T = εt
The ‘fast’ time scale. The ‘slow’ time scale.

We treat τ and T as independent variables:

• the rapidly changing features are modelled by τ ,

• the slowly changing features are modelled by T .

Hence we seek a solution with the form

x(t; ε) = x(τ, T ; ε) , (7.6a)

where the two variables are introduced as an artifice in order to remove secular effects. We use the chain
rule to compute derivatives:

d

dt
x(t; ε) =

∂x

∂τ
(τ, T ; ε) + ε

∂x

∂T
(τ, T ; ε) , (7.6b)

ẍ = xττ + 2εxτT + ε2xTT . (7.6c)

We now seek an asymptotic expansion of the form

x = x0(τ, T ) + εx1(τ, T ) + . . . , (7.7)

and require the expansion to be valid for T = ord(1), i.e. t = ord(ε−1). Then at leading order

ε0 : x0ττ + x0 = 0 , t > 0 , (7.8a)

x0 = 1 , x0τ = 0 , at t = 0 . (7.8b)

This has solution in terms of trigonometric functions (we could alternatively use complex notation, as we
shall see below),

x0 = R0(T ) cos (τ + θ0(T )) , (7.8c)

where, in order to satisfy the initial conditions,

R0(0) = 1 , θ0(0) = 0 . (7.8d)

The functions R0 and θ0 are not fixed at this stage — we need equations for them. At next order we have
that

ε1 : x1ττ + x1 = −x0τ

(
x2

0 − 1
)
− 2x0τT

= 2R0θ0T cos (τ + θ0) +
(
2R0T + 1

4R
3
0 −R0

)
sin(τ + θ0) + 1

4R
3
0 sin 3(τ + θ0) , (7.9a)

together with the initial conditions

x1 = 0 , x1τ = −x0T = −R0T at t = 0 . (7.9b)

The solution is

x1 = R0θ0T τ sin(τ + θ0(T ))− 1
2

(
2R0T + 1

4R
3
0 −R0

)
τ cos(τ + θ0(T ))

− 1
32R

3
0 sin 3(τ + θ0(T )) +R1 sin (τ + θ1(T )) . (7.9c)

However, the asymptotic expansion will not be valid for τ = ord(ε−1) unless

R0θ0T = 0 , 2R0T + 1
4R

3
0 −R0 = 0 . (7.10a)
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This is the ‘secularity’ or ‘integrability’ condition of Poincaré. Using the initial conditions we deduce that

θ0 = 0 , R0 =
2

(1 + 3e−T )
1
2

. (7.10b)

In particular note that R0 → 2 as T →∞. It follows that the solution for x1 becomes

x1 = R1 sin (τ + θ1(T ))− 1
32R

3
0 sin 3(τ + θ0(T )) , (7.11a)

while the initial conditions for R1 and θ1 become

R1(0) sin θ1(0) = 0 ,

R1(0) cos θ1(0)− 3
32R

3
0(0) cos 3θ0(0) = −R0T (0) ,

i.e.
θ1(0) = 0 , R1(0) = − 9

32 . (7.11b)

The equations governing R1 and θ1 are determined by the secularity condition for the x2 problem.
However, we then find that there is insufficient freedom in R1 and θ1 to avoid breaking the asymptoticness
when T = ord(1). This problem can be avoided by introducing a super slow time scale, T2 = ε2t.

Alternative approach to deriving (7.10a). Instead of solving explicitly for x1, we could use a condition
based on requiring x1 to be periodic over the time scale τ . For instance, we could require that (cf.
inner products and Sturm-Liouville operators and integrating by parts twice)∫ 2π

0

(x1ττ + x1) sin
cos (τ + θ0) dτ = 0 , (7.12a)

i.e. ∫ 2π

0

(
x0τ

(
x2

0 − 1
)

+ 2x0τT

)
sin
cos (τ + θ0) dτ = 0 . (7.12b)

On performing the integrals, (7.10a) is again recovered. This is known as the Fredholm alternative.

7.1.3 A simple example of super slow time scale

Consider the exact solution to the equation

ẍ+ 2εẋ+ x = 0 ,

i.e.

x = e−εt cos
(
(1− ε2

) 1
2 t
)
.

This has:

(a) an oscillation on the time scale t = ord(1),

(b) an amplitude drift on the time scale t = ord(ε−1), and

(c) a phase drift on the time scale t = ord(ε−2).

In general, when working to ord
(
εk
)

on a time scale ord
(
εk−n

)
, one must expect to have a hierarchy of

n slow time scales.

Mathematical Tripos: Part III PM 64 © S.J.Cowley@maths.cam.ac.uk, Michaelmas 2022



7.2 Mathieu Equation

As a further example of multiple-scales consider solutions to the Mathieu equation:

ÿ +
(
ω2 + ε cos t

)
y = 0 . (7.13)

The coefficients are 2π-periodic. This equation describes the small amplitude oscillations of a pendulum
whose length changes slightly in time. If the natural oscillation frequency is near a multiple of half
the forcing frequency, then the amplitude of the pendulum will increase in time. This is an example of
parametric excitation.12/95

7.2.1 Floquet Theory (for second order ODEs)

First note that, since the coefficients of the Mathieu equation are 2π periodic, if y(t) is a solution, then
y(t+ 2π) is also a solution. Further since the equation is second order, we can write the general solution
as

y(t) = Ay1(t) +By2(t) . (7.14)

Combining these results we see that we can write

yj(t+ 2π) = αjy1(t) + βjy2(t) , (7.15a)

and hence

y(t+ 2π) = Ay1(t+ 2π) +By2(t+ 2π) (7.15b)

=
(
Aα1 +Bα2

)
y1(t) +

(
Aβ1 +Bβ2

)
y2(t)

= A′y1(t) +B′y2(t) , (7.15c)

where, in matrix notation, (
A′

B′

)
=

(
α1 α2

β1 β2

)
︸ ︷︷ ︸

P

(
A
B

)
. (7.15d)

Suppose (A,B) is an eigenvector of P with eigenvalue λ; then

A′ = λA , B′ = λB , (7.16a)

and

y(t+ 2π) = λy(t) for all t . (7.16b)

Let µ = lnλ/2π and define
ϕ(t) = e−µty(t) . (7.17a)

Then from (7.16b)

ϕ(t+ 2π) = e−µ(t+2π)y(t+ 2π) = e−µty(t) = ϕ(t) for all t , (7.17b)

and hence
y(t) = eµtϕ(t) , (7.17c)

where ϕ(t) is a 2π-periodic function.14/17

Since the Mathieu equation is second order, there will be two eigenvalues λ, or equivalently two con-
stants µ, and two eigenvectors (we sidestep the degenerate case of one eigenvector). Then the system is
said to be

unstable if, for either eigenvalue, Re (µ) > 0 ,

stable if, for both eigenvalues, Re (µ) 6 0 .

In the case of the Mathieu equation, if y(t) is a solution, so is y(−t). Thus for stability we must have
Re(µ) = 0 for both eigenvalues.

It is possible to show that there are regions of the (ω2, ε) plane where solutions are stable, and other
regions where solutions are unstable. We will attempt to find the ‘stability boundaries’ when |ε| � 1 by
seeking small amplitude periodic solutions, and identifying regions of parameter space where they do not
exist.

14/15
14/18
14/19
14/22
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7.2.2 ω 6= ±n/2

Try the Poincaré expansion

y = y0(t) + εy1(t) + ε2y2(t) + . . . . (7.18)

From substitution into the Mathieu equation we obtain:

O(ε0) : ÿ0 + ω2y0 = 0 , (7.19a)

O(ε1) : ÿ1 + ω2y1 = −y0 cos t . (7.19b)

If we seek a real solution, then

y0 = A0 exp
(
ıωt
)

+A∗0 exp
(
−ıωt

)
, (7.20a)

= A0 exp
(
ıωt
)

+ c.c. , (7.20b)

and

ÿ1 + ω2y1 = − 1
2A0 exp

(
ı(ω + 1)t

)
− 1

2A0 exp
(
ı(ω − 1)t

)
+ c.c . (7.20c)

It follows that there are ‘secular’ terms if ω± 1 = −ω, i.e. if ω = ∓ 1
2 . Further, it is possible to show that

higher-order terms are secular only if ω = ±n/2. Thus if ω 6= ±n/2, we can solve at all orders to show
that

y(t) = exp
(
ıωt
)
ϕ(t) + c.c. ,

where ϕ is 2π-periodic. We conclude that for ε� 1 and ω 6= ±n/2, the solution is stable.14/20

7.2.3
∣∣ω2 − 1

4

∣∣� 1

See Example Sheet 3.

7.2.4
∣∣ω2 − 1

∣∣� 1

Suppose that |ω2 − 1| � 1, and seek a solution of the form

ω2 = 1 + εa1 + ε2a2 + . . .

From §7.2.2 we anticipate that resonance will only occur at second order. Hence if a1 6= 0, we expect
there to be no instability; thus we set a1 = 0.

ε0 : 1st harmonic
ε1 : 0th & 2nd harmonics
ε2 : 1

↑can force resonance

st & 3rd harmonics

This suggests that we should consider an ord(ε−2) slow time scale. Try

τ = t , T = ε2t , (7.21a)

y = y0(τ, T ) + εy1(τ, T ) + ε2y2(τ, T ) + . . . . (7.21b)

At leading order the governing equations is

ε0 : y0ττ + y0 = 0 , (7.22a)

with solution

y0 = A0(T )eıτ + c.c. . (7.22b)

At next order
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ε1 : y1ττ + y1 = −y0 cos τ

= − 1
2A0(e2ıτ + 1) + c.c. , (7.22c)

with solution

y1 = − 1
2 (A0 +A∗0) + 1

6

(
A0e

2ıτ +A∗0e
−2ıτ

)
, (7.22d)

where any homogeneous component can [usually] be absorbed by a suitable redefinition of A0. At next
order

ε2 : y2ττ + y2 = −2y0τT − a2y0 − 1
2y1

(
eıτ + e−ıτ

)
=
(
−2ıA0T + ( 1

6 − a2)A0 + 1
4A
∗
0

)
eıτ − 1

12A0e
3ıτ + c.c. , (7.23a)

where ∗ denotes a complex conjugate. For asymptoticness not to be lost when T = ord(1), it follows from
the secularity condition that

2βT +
(

5
12 − a2

)
α = 0 , 2αT +

(
1
12 + a2

)
β = 0 , (7.23b)

where A0 = α+ ıβ. Hence the oscillation is unstable on the slow time scale T if(
5
12 − a2

) (
1
12 + a2

)
> 0 , (7.23c)

i.e. if
− 1

12 < a2 <
5
12 . (7.23d)

Figure 7.5: Plot of the stability boundaries of solutions to the Mathieu equation. In the white regions of
the (ω2, ε) plane, all solutions of the Mathieu equation are stable, while in the cross-hatched regions there
is an unstable solution. When ε = 0, the cross-hatched regions meet the ω2 axis at ω = n/2, n = 0, 1, 2 . . ..
Source: Advanced Mathematical Methods for Scientists and Engineers, by C.M. Bender and S.A. Orszag.
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7.3 WKBJLG Theory

Terminology: omit the J if not in Cambridge, and omit the LG if a physicist.

This theory is concerned with asymptotic solutions to equations with slowly varying coefficients, e.g.

ẍ+ f(εt)x = 0 . (7.24)

It has both linear and nonlinear variants. A generalisation to two or more independent variables is called
ray theory.

7.3.1 Leading-order solution

Initially assume that f = ω2 > 0, and seek a multiple scales solution with

τ = t , T = εt , (7.25a)

x ≡ x(τ, T ) = x0(τ, T ) + εx1(τ, T ) + . . . . (7.25b)

Then at leading order
x0ττ + ω2(T )x0 = 0 , (7.26a)

with solution
x0 = R0(T ) cos (ω(T ) τ + θ0(T )) . (7.26b)

At next order

x1ττ + ω2x1 = −2x0τT

= 2(ωR0)T sin(ωτ + θ0) + 2ωR0 (ωT τ + θ0T ) cos(ωτ + θ0) . (7.27a)

The secularity condition implies that
θT (T ) = −τωT (T ) , (7.27b)

but this is ‘impossible’, because the fast variable appears in the ‘drift’ equation for the slow dependence.
In some sense we want ‘θ to be larger’. Instead replace the solutions for x0 with

x0(τ, T ) = R0(T ) cos(θ(T )) , (7.28a)

where
θ = 1

εΘ0(T ) + Θ1(T ) + . . . , (7.28b)

so that small variations in Θ0 on the T timescale produce O(1) changes in θ.

Since
θt = Θ0T + εΘ1T + . . . , (7.29a)

it follows that

ẋ0 = −R0θ0T sin θ + ε
(
R0T cos θ −R0Θ1T sin θ

)
+ . . . ,

ẍ0 = −R0θ
2
0T cos θ − ε

(
(2R0TΘ0T +R0Θ0TT ) sin θ + 2R0Θ1TΘ0T cos θ

)
+ . . . .

On substituting these expansions into (7.24) we find that at leading order

θ2
0T = ω2 , i.e. θ0T = ω , (7.29b)

where ω > 0 wlog. On applying the secularity condition to the equation for x1 we obtain

2R0Θ1TΘ0T = 0
2R0TΘ0T +R0Θ0TT = 0

}
Θ1 = const.
R2

0ω = const.
(7.29c)

Remark. While the local ‘energy’ E = 1
2R

2
0ω

2 is not conserved, the ‘action’ E/ω is conserved (recall that
for a standard harmonic oscillator E = 1

2 (ẋ2 + ω2x2))
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Hence the multiple scales solution has the form

x ∼ 1
[f(εt)]1/4

(a cos θ + b sin θ) , (7.30a)

where a and b are constants, and

θ =

∫ t

0

[
f(εq)

] 1
2 dq . (7.30b)

A similar analysis is possible if f < 0, except that exponentially growing/decaying solutions are found
rather than harmonically oscillating ones. In particular

x ∼ 1
[−f(εt)]1/4

(
Ae−ϕ +Beϕ

)
, (7.30c)

where and A and B are constants, and

ϕ =

∫ t

0

[
−f(εq)

] 1
2 dq . (7.30d)

Remark. In order to obtain higher order approximations, at first sight it might appear that super slow
time scales, Tn = εnt, are needed. However, with care, this is not necessary (see the last example
sheet).13/95

15/17

7.3.2 Turning points

What if f = 0 at some point? The solutions (7.30a) and (7.30c) are then singular. In order to investigate
this case, we assume without loss of generality that f(0) = 0 and f ′(0) < 0.

We recall that when εt = ord(1), we have (7.30a) as solution for t < 0 (since f > 0),
(7.30c) as solution for t > 0 (since f < 0).

In order to have a complete solution we need the relationship between (a, b) and (A,B). To this end we
observe that when |εt| � 1,

ẍ+ εtf ′(0)x ≈ 0 . (7.31a)

Therefore, all times are of a comparable scale when

x

t2
∼ εf ′(0) tx ⇒ t ∼

∣∣εf ′(0)
∣∣− 1

3 . (7.31b)

Thus we introduce ‘medium time’, s, defined by

s = t
(
−εf ′(0)

) 1
3 . (7.31c)

Based on the magnitudes of (7.30a) and (7.30c) when t = ord(ε−
1
3 ), i.e. s = ord(1), we scale x by

x =
1

ε
1
6

X0 + . . . . (7.31d)
15/15

The leading-order governing equation is then Airy’s equation,

X0ss − sX0 = 0 , (7.32a)

with solution

X0 = αAi(s) + β Bi(s) , (7.32b)

where α and β are constants.15/18

This solution must match with those valid when εt = ord(1). First we match (7.32b) as s→∞ to (7.30c)
as εt→ 0+. From the asymptotic expansions for the Airy function, etc.

(7.32b) : X0 ∼
1

s1/4
√
π

(
1
2α exp

(
− 2

3s
3
2

)
+ β exp

(
2
3s

3
2

))
, (7.33a)

(7.30c) : x0 ∼
1[

−εtf ′(0)
] 1

4

(A exp(−ϕ) +B exp(ϕ)) , (7.33b)
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where
ϕ ∼ 2

3

[
−εf ′(0)

] 1
2 t

3
2 = 2

3s
3
2 . (7.33c)

Hence from matching
α

2
√
π

=
A[

−f ′(0)
]1/6 , β√

π
=

B[
−f ′(0)

]1/6 . (7.33d)

Note that the determination of A this way is ‘dangerous’ since that part of the solution is exponentially
small in (7.30c).

We can similarly match (7.32b) as s→ −∞ to (7.30a) as εt→ 0−. From above

(7.32b) : X0 ∼
1√

π(−s)1/4
(α sin Θ + β cos Θ) , Θ = 2

3 (−s) 3
2 + 1

4π , (7.34a)

(7.30a) : x0 ∼
1[

εtf ′(0)
]1/4 (a cos θ + b sin θ) , θ ∼ − 2

3

[
−εf ′(0)

] 1
2 (−t) 3

2 = − 2
3 (−s) 3

2 . (7.34b)

These two expansions match if:

a[
−f ′(0)

]1/6 =
β + α

(2π)1/2
,

b[
−f ′(0)

]1/6 =
β − α

(2π)1/2
. (7.34c)

We therefore have the connection formulae

A =
a− b
2
√

2
, B =

a+ b√
2

. (7.35)15/19
15/20
15/22
(long)

7.4 Ray Theory

Consider waves propagating through a slowly varying medium. Assume that they are governed by

L(∂t, ∂x; εx, εt)ϕ = εN (∂t, ∂x, ϕ; εx, εt, ε) , (7.36a)

where L is a linear operator,
N is a nonlinear operator,

and X = εx and T = εt represent the slowly varying nature of the medium. For instance

Lϕ ≡
(
∂2

∂t2
− ∂

∂x

(
c2(X,T )

∂

∂x

))
ϕ = 0 . (7.36b)

Seek a solution of the form

ϕ = [A0(X,T ) + εA1(X,T ) + . . . ] exp
( ı
ε
θ(X,T )

)
+ c.c. . (7.37a)

Then
ϕt = iθT [A0 + εA1 + . . . ]eiθ/ε + ε[A0T + εA1T + . . . ]eiθ/ε + c.c. , (7.37b)

and the leading order approximation to (7.36a) becomes

L(iθT , iθX ;X,T ) = 0 , (7.38a)

i.e. the dispersion relation
L(−iω, ik;X,T ) = 0 , (7.38b)

where ω = −θT is defined to be the [real] frequency, and k = θX is defined to be the [real] wave number.
(7.38b) is often rewritten in the form

ω = Ω(k;X,T ) . (7.38c)
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Consider small variations about the values X0 and T0 by writing X = X0 + εδx and T = T0 + εδt where
|εδx|, |εδt| � 1. Then

exp

(
i

ε
θ(X0 + δX, T0 + δT )

)
≈ exp

(
iθ(X0, T0)

ε

)
exp

(
iθX
ε

εδx+ . . .+
iθT
ε
εδt

)
≈ exp

(
iθ(X0, T0)

ε

)
exp (ikδx− iωδt+ . . . ) .

Hence the definitions of ω and k are consistent with convention. Further, because

θXT − θTX = 0 , (7.39a)

it follows that
kT + ωX = 0 , (7.39b)

and hence from (7.38c) that

kT + cgkX = − ∂Ω

∂X
, (7.39c)

where cg = ∂Ω
∂k is the group velocity. In characteristic form

dk

dT
= − ∂Ω

∂X
on

dX

dT
= cg . (7.40a)

A ray is a path along the characteristic traversed with speed cg. In general rays are curved.

Exercise. Show that
dω

dT
=
∂Ω

∂T
on

dX

dT
= cg . (7.40b)

Hamilton’s Equations. Consider the transformations:

X → q
k(X,T ) → p

Ω(k;X,T ) → H(q, p, T ) ,
(7.41a)

then (7.40a) becomes
dp

dT
= −∂H

∂q
,

dq

dT
=
∂H

∂p
. (7.41b)

These are just Hamilton’s equations; hence waves move like particles with speed cg. Further, from
(7.38c)

∂θ

∂T
+H

(
q,
∂θ

∂q
, T

)
= 0 . (7.41c)

This is the Hamilton-Jacobi equation with the phase, θ(q, T ), as the action.

7.4.1 Model example

Consider the equation (
∂2

∂t2
− ∂

∂x

(
c2(X,T )

∂

∂x

))
ϕ = 0 . (7.42)

Substitute

ϕ = (A0(X,T ) + εA1(X,T ) + . . . ) exp

(
iθ(X,T

ε

)
+ c.c. , (7.43a)

then

ε0 : −ω2A0 + c2k2A0 = 0 , (7.43b)

ε1 : −ω2A1 + c2k2A1 = i(ωTA0 + 2ωA0T ) + 2ccX ikA0 + ic2(kXA0 + 2kA0X) . (7.43c)
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Hence at leading order we deduce the dispersion relation

ω = ±ck , (7.44a)

and at first order it follows that

(ωA2
0)T + 2ccXkA

2
0 + c2(kA2

0)X = 0 , (7.44b)

or equivalently
(ωA2

0)T + (cgωA
2
0)X = 0 , (7.44c)

where cg = ±c = ω
k . In this case no further information comes from the complex conjugate equation.

Write
A0 = r0e

iψ0 , (7.45a)

then, on taking real and imaginary parts,

ψ0T + cgψ0X = 0 , (7.45b)

and
(ωr2

0)T + (cgωr
2
0)X = 0 . (7.45c)

Wave action. The local time and spatial averaged energy density of a wave satisfying (7.42) is given by

E =
ωk

4π2

∫ 2π/ω

0

∫ 2π/k

0

1
2

(
ϕ2
t + c2ϕ2

x

)
dx dt

= 1
2ω

2r2
0 +O(ε) . (7.46)

Hence (7.45c) represents conservation of wave action E/ω.14/95

7.4.2 Conservation of wave action for sound waves (only outlined in lectures)

For 1D sound waves the governing equations are

ρ(ut + uuz) =− pz ,
ρt + (ρu)z =0 ,

St + uSz =0 ,

p ≡p(ρ, S) .

Consider small perturbation from a basic, slowly varying, state of the form

ρ = ρ0(Z) + ρ̃ ,

p = p0(ρ0, S0) + p̃ ,

S = S0(Z) + S̃ ,

where

z = εZ .

Assume that the basic state is at constant pressure so that

∂p

∂ρ

∣∣∣∣
S

ρ0Z +
∂p

∂S

∣∣∣∣
ρ

S0Z = 0 ,

or equivalently

c20(Z)ρ0Z + p0S(Z)S0Z = 0 .
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Linearised perturbations satisfy the equations

ρ0ut = −p̃z ,
ρ̃t + (ρ0u)z = 0 ,

S̃t + εuS0Z = 0 ,

p̃ = c20(z)ρ̃+ p0SS̃ .

Hence

p̃t = c20ρ̃t + p0SS̃t

= −c20(ρ0u)z − εp0S uS0Z

= −c20(ρ0u)z + εc20ρ0Zu ,

and

p̃tt = −c20ρ0uzt

= c20ρ0

(
p̃

ρ0

)
z

.

The governing wave equation for pressure perturbations is thus (cf. (7.42))

p̃tt − c20(Z)ρ0(Z)

(
p̃z

ρ0(Z)

)
z

= 0 . (7.47)

Multiple-scales analysis. On the basis of earlier, seek a solution of the form

p̃ =[a0(Z, T ) + εa1(Z, T ) + . . . ] exp

(
iθ(Z, T )

ε

)
+ c.c. ,

p̃z =ika0e
i θε + ε(ika1 + a0Z)ei

θ
ε + c.c. ,

p̃zz =− k2a0e
i θε + ε(−k2a1 + ikZa0 + 2ika0Z)ei

θ
ε + c.c. ,

p̃t =− iωa0e
i θε + ε(−iωa1 + a0T )ei

θ
ε + c.c. ,

p̃tt =− ω2a0e
i θε + ε(−ω2a1 − iωTa0 − 2iωa0T )ei

θ
ε + c.c. .

Substitute into the governing equation

p̃tt − c20p̃zz +
εc20ρ0Z

ρ0
p̃z = 0 ,

then on collecting terms of the same power of ε one obtains

ε0 : −ω2a0 + c20k
2a0 = 0 ,

ε1 : −ω2a1 − iωTa0 − 2iωa0T + k2c20a1 − ikZc20a0 − 2ikc20a0Z +
c20ρ0Z

ρ0
ika0 = 0 .

These yield the dispersion relation

ω2 = k2c20 ,
and the amplitude equation

(ωa2
0)T + c20(ka2

0)Z −
ρ0Z

ρ0
c20ka

2
0 = 0 .

From the governing equations

u =
ka0

ωρ0
ei
θ
ε + . . .+ c.c. ,

S̃ =− ε ika0

ω2ρ0
S0Ze

i θε + . . .+ c.c. ,

ρ̃ =
a0

c20
ei
θ
ε + . . .+ c.c. .
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The mean local energy density is given by

E = 〈 12ρ0u
2〉+ 〈 12c

2
0ρ̃

2/ρ0〉

=
|a0|2

2ρ0c20
,

and hence
E

ω
=
|a0|2

2ρ0c20ω
,

where ω = ±kc0 is the dispersion relation, and the [local] group velocity is given by cg = ±c0. Thus

cgE

ω
=
k|a0|2

2ρ0ω2
.

Henceforth assume a0 is real for simplicity. Then(
E

ω

)
T

+

(
cgE

ω

)
Z

=
a0a0T

ρ0c20ω
− ωTa

2
0

2ρ0c20ω
2

+
ka0a0Z

ρ0ω2
− ρ0Zka

2
0

2ρ2
0ω

2
− ka2

0ωZ
ρ0ω3

+
kZa

2
0

2ρ0ω2

=
a0

2ρ0c20ω
2

[
2ωa0T − ωTa0 + 2kc20a0Z + kZc

2
0a0 −

ρ0Zkc
2
0a0

ρ0
− 2ka0c

2
0ωZ

ω

]
,

= − a2
0

ρ0c20ω
2

[
ωT +

kc20ωZ
ω

]
,

from making use of the amplitude equation. Further, because the dispersion relation is independent
of time, from (7.40b)

ωT + cgωZ = 0 ,

i.e.

ωT +
kc20
ω
ωZ = 0 .

Hence wave action is conserved: (
E

ω

)
T

+

(
cgE

ω

)
Z

= 0 . (7.48)
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