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-1 Vectors & Matrices: Introduction

-0.7 Schedule

This is a copy from the booklet of schedules.1 Schedules are minimal for lecturing and maximal for
examining; that is to say, all the material in the schedules will be lectured and only material in the
schedules will be examined. The numbers in square brackets at the end of paragraphs of the schedules
indicate roughly the number of lectures that will be devoted to the material in the paragraph.

VECTORS AND MATRICES 24 lectures, Michaelmas term

Complex numbers
Review of complex numbers, including complex conjugate, inverse, modulus, argument and Argand
diagram. Informal treatment of complex logarithm, n-th roots and complex powers. de Moivre’s theorem.

[2]

Vectors
Review of elementary algebra of vectors in R3, including scalar product. Brief discussion of vectors in Rn
and Cn; scalar product and the Cauchy–Schwarz inequality. Concepts of linear span, linear independence,
subspaces, basis and dimension.

Suffix notation: including summation convention, δij and εijk. Vector product and triple product: def-
inition and geometrical interpretation. Solution of linear vector equations. Applications of vectors to
geometry, including equations of lines, planes and spheres. [5]

Matrices
Elementary algebra of 3 × 3 matrices, including determinants. Extension to n × n complex matrices.
Trace, determinant, non-singular matrices and inverses. Matrices as linear transformations; examples of
geometrical actions including rotations, reflections, dilations, shears; kernel and image. [4]

Simultaneous linear equations: matrix formulation; existence and uniqueness of solutions, geometric
interpretation; Gaussian elimination. [3]

Symmetric, anti-symmetric, orthogonal, hermitian and unitary matrices. Decomposition of a general
matrix into isotropic, symmetric trace-free and antisymmetric parts. [1]

Eigenvalues and Eigenvectors
Eigenvalues and eigenvectors; geometric significance. [2]

Proof that eigenvalues of hermitian matrix are real, and that distinct eigenvalues give an orthogonal
basis of eigenvectors. The effect of a general change of basis (similarity transformations). Diagonalization
of general matrices: sufficient conditions; examples of matrices that cannot be diagonalized. Canonical
forms for 2× 2 matrices. [5]

Discussion of quadratic forms, including change of basis. Classification of conics, cartesian and polar
forms. [1]

Rotation matrices and Lorentz transformations as transformation groups. [1]

Appropriate books

Alan F Beardon Algebra and Geometry. CUP 2005 (£21.99 paperback, £48.00 hardback).
D.E. Bourne and P.C. Kendall Vector Analysis and Cartesian Tensors. Nelson Thornes 1992 (£30.75

paperback).
James J. Callahan The Geometry of Spacetime: An Introduction to Special and General Relativity.

Springer 2000 (£51.00).

1 See the link from http://www.maths.cam.ac.uk/undergrad/course/.
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John W. Dettman Mathematical Methods in Physics and Engineering. Dover, 1988 (Not in schedules,
out of print).

Richard Kaye and Robert Wilson Linear Algebra. Oxford science publications, 1998 (£23.00).
E. Sernesi Linear Algebra: A Geometric Approach. CRC Press 1993 (£38.99 paperback).
Gilbert Strang Linear Algebra and Its Applications. Thomson Brooks/Cole, 2006 (£42.81 paperback).

-0.6 Lectures

• Lectures will start at 10:05 promptly with a summary of the last lecture. Please be on time since
it is distracting to have people walking in late.

• I will endeavour to have a 2 minute break in the middle of the lecture for a rest and/or jokes
and/or politics and/or paper aeroplanes2; students seem to find that the break makes it easier to
concentrate throughout the lecture.3

• I will aim to finish by 10:55, but am not going to stop dead in the middle of a long proof/explanation.

• I will stay around for a few minutes at the front after lectures in order to answer questions.

• By all means chat to each other quietly if I am unclear, but please do not discuss, say, last night’s
football results, or who did (or did not) get drunk and/or laid. Such chatting is a distraction, as
are mobile phones ringing in the middle of lectures: please turn your mobile phones off.

• I want you to learn. I will do my best to be clear but you must read through and understand your
notes before the next lecture . . . otherwise there is a high probability that you will get hopelessly
lost. An understanding of your notes will not diffuse into you just because you have carried your
notes around for a week . . . or put them under your pillow.

• I welcome constructive heckling. If I am inaudible, illegible, unclear or just plain wrong then please
shout out.

• I aim to avoid the words trivial, easy, obvious and yes4. Let me know if I fail. I will occasionally
use straightforward or similarly to last time; if it is not, email me (S.J.Cowley@damtp.cam.ac.uk)
or catch me at the end of the next lecture.

• Sometimes I may confuse both you and myself (I am not infallible), and may not be able to extract
myself in the middle of a lecture. Under such circumstances I will have to plough on as a result of
time constraints; however I will clear up any problems at the beginning of the next lecture.

• The course is on the pureish side of applied mathematics, but is applied mathematics. Hence do not
always expect pure mathematical levels of rigour; having said that all the outline/sketch ‘proofs’
could in principle be tightened up given sufficient time.

• If anyone is colour blind please come and tell me which colour pens you cannot read.

• Finally, I was in your position 36 years ago and nearly gave up the Tripos. If you feel that the
course is going over your head, or you are spending more than 10 or so hours (including lectures)
a week on it, come and chat.

-0.5 Printed Notes

• Printed notes will be handed out for the course . . . so that you can listen to me rather than having
to scribble things down. If it is not in the notes or on the example sheets it should not be in the
exam.

• Any notes will only be available in lectures and only once for each set of notes.

2 If you throw paper aeroplanes please pick them up. I will pick up the first one to stay in the air for 10 seconds.
3 Having said that, research suggests that within the first 20 minutes I will, at some point, have lost the attention of all

of you.
4 But I will fail miserably in the case of yes.
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• I do not keep back-copies (otherwise my office would be an even worse mess) . . . from which you
may conclude that I will not have copies of last time’s notes (so please do not ask).

• There will only be approximately as many copies of the notes as there were students at the lecture
on the previous Saturday.5 We are going to fell a forest as it is, and I have no desire to be even
more environmentally unsound.

• Please do not take copies for your absent friends unless they are ill, but if they are ill then please
take copies.6

• The notes are deliberately not available on the WWW; they are an adjunct to lectures and are not
meant to be used independently.

• If you do not want to attend lectures then there are a number of excellent textbooks that you can
use in place of my notes.

• With one or two exceptions, figures/diagrams are deliberately omitted from the notes. I was taught
to do this at my teaching course on How To Lecture . . . the aim being that it might help you to
stay awake if you have to write something down from time to time.

• There are a number of unlectured worked examples in the notes. In the past I have been tempted to
not include these because I was worried that students would be unhappy with material in the notes
that was not lectured. However, a vote in one of my previous lecture courses was overwhelming in
favour of including unlectured worked examples.

• Please email me corrections to the notes and example sheets (S.J.Cowley@damtp.cam.ac.uk).

-0.4 Example Sheets

• There will be four main example sheets. They will be available on the WWW at about the same
time as I hand them out (see http://damtp.cam.ac.uk/user/examples/). There will also be at
least one supplementary ‘study’ sheet and a preliminary sheet 0.

• You should be able to do example sheets 1/2/3/4 after lectures 6/12/18/24 respectively, or there-
abouts. Please bear this in mind when arranging supervisions. Personally I suggest that you do not
have your first supervision before the middle of week 3 of lectures.

• There is some repetition on the sheets by design; pianists do scales, athletes do press-ups, mathe-
maticians do algebra/manipulation.

• Your supervisors might like to know (a) that the example sheets will be heavily based on the sheets
from last year, and (b) that if they send a nice email to me they can get copies of my printed notes.

-0.3 Computer Software

Vectors & Matrices is a theoretical course. However, in the Easter term there will be lectures and
practicals on computing as a preparation for the Part IB Computational Projects course.7 In order to
complete the investigations that are part of the Computational Projects course you will need to use a
computer language. To this end, in the Easter term the Faculty will provide you with a free copy of
MATLAB (short for ‘MATrix LABoratory’) for your desktop or laptop.8 As a preliminary to the Easter

5 With the exception of the first two lectures for the pedants.
6 If you really have been ill and cannot find a copy of the notes, then come and see me, but bring your sick-note.
7 The Computational Projects course is an introduction to the techniques of solving problems in mathematics using

computational methods. The projects are intended to be exercises in independent investigation somewhat like those a
mathematician might be asked to undertake in the real world.

8 The Faculty recommends (especially if you have not programmed before), and supports, use of MATLAB for the
Computational Projects course. However, you are not required to use MATLAB, and are free to write your programs in any
computing language whatsoever, e.g. Mathematica, Maple, R, C, Python, Visual Basic (although, other than MATLAB,
these languages are not supported by the Faculty).
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term material, when we get to the ‘matrix’ part of this course I may use MATLAB to illustrate one or
more larger calculations that are impracticable by hand. At this stage, and if some of you are keen, I
may be able to provide a limited number of copies of MATLAB early.

Some of you may also have heard of the Mathematica software package. While we do not teach this
package to undergraduates, some of you might like to explore its capabilities and/or ‘play’ with it. Under
an agreement between the Faculty and the suppliers of Mathematica (Wolfram Research), mathematics
students can download versions of Mathematica for the Linux, MacOS and Windows operating systems
from

http://www.damtp.cam.ac.uk/computing/software/mathematica/

Please note that the agreement expires in June 2013, and there is no guarantee that the agreement will
be extended.

-0.2 Acknowledgements

The following notes were adapted (i.e. stolen) from those of Peter Haynes (my esteemed Head of Depart-
ment), Tom Körner (who writes excellent general interest mathematics books, and who has a web page
full of useful resources: see http://www.dpmms.cam.ac.uk/ t̃wk/) and Robert Hunt.

-0.1 Some History and Culture

Most of Vectors & Matrices used to be the first 24 lectures of a Algebra & Geometry course.9 A key
aspect of the latter course was to show how the same mathematical entity could be understood by either
an algebraic or a geometric approach. To some extent we adopt the same culture; hence for the same
mathematical entity we will swap between algebraic and geometric descriptions (having checked that
they are equivalent). Our aim will be to use the easiest way of looking at the same thing.

9 Algebra & Geometry was 48 lectures long, and was lectured on consecutive days (bar Sunday). Sanity eventually
prevailed, and the course was split into Vectors & Matrices and Groups.
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0 Revision

You should check that you recall the following.

0.1 The Greek Alphabet

A α alpha N ν nu
B β beta Ξ ξ xi
Γ γ gamma O o omicron
∆ δ delta Π π pi
E ε epsilon P ρ rho
Z ζ zeta Σ σ sigma
H η eta T τ tau
Θ θ theta Υ υ upsilon
I ι iota Φ φ phi
K κ kappa X χ chi
Λ λ lambda Ψ ψ psi
M µ mu Ω ω omega

There are also typographic variations of epsilon (i.e. ε), phi (i.e. ϕ), and rho (i.e. %).

0.2 Sums and Elementary Transcendental Functions

0.2.1 The sum of a geometric progression

n−1∑
k=0

ωk =
1− ωn

1− ω
. (0.1)

0.2.2 The binomial theorem

The binomial theorem for the expansion of powers of sums states that for a non-negative integer n,

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk , (0.2a)

where the binomial coefficients are given by(
n

k

)
=

n!

k! (n− k)!
. (0.2b)

0.2.3 The exponential function

One way to define the exponential function, exp(x), is by the series

exp(x) =

∞∑
n=0

xn

n!
. (0.3a)

From this definition one can deduce (after a little bit of work) that the exponential function has the
following properties

exp(0) = 1 , (0.3b)

exp(1) = e ≈ 2.71828183 , (0.3c)

exp(x+ y) = exp(x) exp(y) , (0.3d)

exp(−x) =
1

exp(x)
. (0.3e)
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Exercise. Show that if x is integer or rational then

ex = exp(x) . (0.4a)

If x is irrational we define ex to be exp(x), i.e.

ex ≡ exp(x) . (0.4b)

0.2.4 The logarithm

For a real number x > 0, the logarithm of x, i.e. log x (or lnx if you really want), is defined as the unique
solution y of the equation

exp(y) = x . (0.5a)

It has the following properties

log(1) = 0 , (0.5b)

log(e) = 1 , (0.5c)

log(exp(x)) = x , (0.5d)

log(xy) = log(x) + log(y) , (0.5e)

log(y) = − log

(
1

y

)
. (0.5f)

Exercise. Show that if x is integer or rational then

log(yx) = x log(y) . (0.6a)

If x is irrational we define log(yx) to be x log(y), i.e.

yx ≡ exp(x log(y)) . (0.6b)

0.2.5 The cosine and sine functions

The cosine and sine functions are defined by the series

cos(x) =

∞∑
n=0

(−)nx2n

2n!
, (0.7a)

sin(x) =

∞∑
n=0

(−)nx2n+1

(2n+ 1)!
. (0.7b)

0.2.6 Certain trigonometric identities

You should recall the following

sin(x± y) = sin(x) cos(y)± cos(x) sin(y) , (0.8a)

cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y) , (0.8b)

tan(x± y) =
tan(x)± tan(y)

1∓ tan(x) tan(y)
, (0.8c)

cos(x) + cos(y) = 2 cos

(
x+ y

2

)
cos

(
x− y

2

)
, (0.8d)

sin(x) + sin(y) = 2 sin

(
x+ y

2

)
cos

(
x− y

2

)
, (0.8e)

cos(x)− cos(y) = −2 sin

(
x+ y

2

)
sin

(
x− y

2

)
, (0.8f)

sin(x)− sin(y) = 2 cos

(
x+ y

2

)
sin

(
x− y

2

)
. (0.8g)
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0.2.7 The cosine rule

Let ABC be a triangle. Let the lengths of the sides
opposite vertices A, B and C be a, b and c respec-
tively. Further suppose that the angles subtended at
A, B and C are α, β and γ respectively. Then the
cosine rule (also known as the cosine formula or law
of cosines) states that

a2 = b2 + c2 − 2bc cosα , (0.9a)

b2 = a2 + c2 − 2ac cosβ , (0.9b)

c2 = a2 + b2 − 2ab cos γ . (0.9c)

Exercise: draw the figure (if it’s not there).

0.3 Elemetary Geometry

0.3.1 The equation of a line

In 2D Cartesian co-ordinates, (x, y), the equation of a line with slope m which passes through (x0, y0) is
given by

y − y0 = m(x− x0) . (0.10a)

In parametric form the equation of this line is given by

x = x0 + a t , y = y0 + am t , (0.10b)

where t is the parametric variable and a is an arbitrary real number.

0.3.2 The equation of a circle

In 2D Cartesian co-ordinates, (x, y), the equation of a circle of radius r and centre (p, q) is given by

(x− p)2 + (y − q)2 = r2 . (0.11)

0.3.3 Plane polar co-ordinates (r, θ)

In plane polar co-ordinates the co-ordinates of a
point are given in terms of a radial distance, r, from
the origin and a polar angle, θ, where 0 6 r <∞ and
0 6 θ < 2π. In terms of 2D Cartesian co-ordinates,
(x, y),

x = r cos θ , y = r sin θ . (0.12a)

From inverting (0.12a) it follows that

r =
√
x2 + y2 , (0.12b)

θ = arctan
(y
x

)
, (0.12c)

where the choice of arctan should be such that
0 < θ < π if y > 0, π < θ < 2π if y < 0, θ = 0 if
x > 0 and y = 0, and θ = π if x < 0 and y = 0.

Exercise: draw the figure (if it’s not there).

Remark: sometimes ρ and/or φ are used in place of r and/or θ respectively.
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0.4 Complex Numbers

All of you should have the equivalent of a Further Mathematics AS-level, and hence should have encoun-
tered complex numbers before. The following is ‘revision’, just in case you have not!

0.4.1 Real numbers

The real numbers are denoted by R and consist of:

integers, denoted by Z, . . .− 3, −2, −1, 0, 1, 2, . . .
rationals, denoted by Q, p/q where p, q are integers (q 6= 0)

irrationals, the rest of the reals, e.g.
√

2, e, π, π2.

We sometimes visualise real numbers as lying on a line (e.g. between any two distinct points on a line
there is another point, and between any two distinct real numbers there is always another real number).

0.4.2 i and the general solution of a quadratic equation

Consider the quadratic equation

αz2 + βz + γ = 0 : α, β, γ ∈ R , α 6= 0 ,

where ∈ means ‘belongs to’. This has two roots

z1 = −β +
√
β2 − 4αγ

2α
and z2 = −β −

√
β2 − 4αγ

2α
. (0.13)

If β2 > 4αγ then the roots are real (there is a repeated root if β2 = 4αγ). If β2 < 4αγ then the square
root is not equal to any real number. In order that we can always solve a quadratic equation, we introduce

i =
√
−1 . (0.14)

Remark: note that i is sometimes denoted by j by engineers (and MATLAB).

If β2 < 4αγ, (0.13) can now be rewritten

z1 = − β

2α
+ i

√
4αγ − β2

2α
and z2 = − β

2α
− i
√

4αγ − β2

2α
, (0.15)

where the square roots are now real [numbers]. Subject to us being happy with the introduction and
existence of i, we can now always solve a quadratic equation.

0.4.3 Complex numbers (by algebra)

Complex numbers are denoted by C. We define a complex number, say z, to be a number with the form

z = a+ ib, where a, b ∈ R, (0.16)

where i =
√
−1 (see (0.14)). We say that z ∈ C.

For z = a+ ib, we sometimes write

a = Re (z) : the real part of z,

b = Im (z) : the imaginary part of z.
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Remarks.

(i) C contains all real numbers since if a ∈ R then a+ i.0 ∈ C.

(ii) A complex number 0 + i.b is said to be pure imaginary.

(iii) Extending the number system from real (R) to complex (C) allows a number of important gener-
alisations, e.g. it is now possible to always to solve a quadratic equation (see §0.4.2), and it makes
solving certain differential equations much easier.

(iv) Complex numbers were first used by Tartaglia (1500-1557) and Cardano (1501-1576). The terms
real and imaginary were first introduced by Descartes (1596-1650).

Theorem 0.1. The representation of a complex number z in terms of its real and imaginary parts is
unique.

Proof. Assume ∃ a, b, c, d ∈ R such that

z = a+ ib = c+ id.

Then a− c = i (d− b), and so (a− c)2
= − (d− b)2

. But the only number greater than or equal to zero
that is equal to a number that is less than or equal to zero, is zero. Hence a = c and b = d.

Corollary 0.2. If z1 = z2 where z1, z2 ∈ C, then Re (z1) = Re (z2) and Im (z1) = Im (z2).

0.4.4 Algebraic manipulation of complex numbers

In order to manipulate complex numbers simply follow the rules for reals, but adding the rule i2 = −1.
Hence for z1 = a+ ib and z2 = c+ id, where a, b, c, d ∈ R, we have that

addition/subtraction : z1 + z2 = (a+ ib)± (c+ id) = (a± c) + i (b± d) ; (0.17a)

multiplication : z1 z2 = (a+ ib) (c+ id) = ac+ ibc+ ida+ (ib) (id)

= (ac− bd) + i (bc+ ad) ; (0.17b)

inverse : z−1
1 =

1

z
=

1

a+ ib

a− ib
a− ib

=
a

a2 + b2
− ib

a2 + b2
. (0.17c)

Remark. All the above operations on elements of C result in new elements of C. This is described as
closure: C is closed under addition and multiplication.

Exercises.

(i) For z−1
1 as defined in (0.17c), check that z1 z

−1
1 = 1 + i.0.

(ii) Show that addition is commutative and associative, i.e.

z1 + z2 = z2 + z1 and z1 + (z2 + z3) = (z1 + z2) + z3 . (0.18a)

(iii) Show that multiplication is commutative and associative, i.e.

z1z2 = z2z1 and z1(z2z3) = (z1z2)z3 . (0.18b)

(iv) Show that multiplication is distributive over addition, i.e.

z1(z2 + z3) = z1z2 + z1z3 . (0.18c)
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1 Complex Numbers

1.0 Why Study This?

For the same reason as we study real numbers, R: because they are useful and occur throughout mathe-
matics.

1.1 Functions of Complex Numbers

We may extend the idea of functions to complex numbers. A complex-valued function f is one that takes
a complex number as ‘input’ and defines a new complex number f(z) as ‘output’.

1.1.1 Complex conjugate

The complex conjugate of z = a + ib, which is usually written as z, but sometimes as z∗, is defined as
a− ib, i.e.

if z = a+ ib then z ≡ z∗ = a− ib. (1.1)

Exercises. Show that

(i)
z = z ; (1.2a)

(ii)
z1 ± z2 = z1 ± z2 ; (1.2b)

(iii)
z1z2 = z1 z2 ; (1.2c)

(iv)
(z−1) = (z)−1 . (1.2d)

Definition. Given a complex-valued function f , the complex conjugate function f is defined by

f (z) = f (z), and hence from (1.2a) f (z) = f (z). (1.3)

Example. Let f (z) = pz2 + qz + r with p, q, r ∈ C then by using (1.2b) and (1.2c)

f (z) ≡ f (z) = pz2 + qz + r = p z2 + q z + r.

Hence f (z) = p z2 + q z + r.

1.1.2 Modulus

The modulus of z = a+ ib, which is written as |z|, is defined as

|z| =
(
a2 + b2

)1/2
. (1.4)

Exercises. Show that

(i)
|z|2 = z z ; (1.5a)

(ii)

z−1 =
z

|z|2
. (1.5b)

1/03
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1.2 The Argand Diagram: Complex Numbers by Geometry

Consider the set of points in two dimensional (2D)
space referred to Cartesian axes. Then we can repre-
sent each z = x+iy ∈ C by the point (x, y), i.e. the real
and imaginary parts of z are viewed as co-ordinates in
an xy plot. We label the 2D vector between the origin

and (x, y), say
→
OP , by the complex number z. Such a

plot is called an Argand diagram (cf. the number line
for real numbers).

Remarks.

(i) The xy plane is referred to as the complex plane.
We refer to the x-axis as the real axis, and the
y-axis as the imaginary axis.

(ii) The Argand diagram was invented by Caspar
Wessel (1797), and re-invented by Jean-Robert
Argand (1806).

Modulus. The modulus of z corresponds to the mag-

nitude of the vector
→
OP since

|z| =
(
x2 + y2

)1/2
.

Complex conjugate. If
→
OP represents z, then

→
OP ′ rep-

resents z, where P ′ is the point (x,−y); i.e. P ′ is
P reflected in the x-axis.

Addition. Let z1 = x1 +iy1 be associated with P1, and
z2 = x2 + iy2 be associated with P2. Then

z3 = z1 + z2 = (x1 + x2) + i (y1 + y2) ,

is associated with the point P3 that is obtained
by completing the parallelogram P1OP2P3. In
terms of vector addition

→
OP3 =

→
OP1 +

→
OP2

=
→
OP2 +

→
OP1 ,

which is sometimes called the triangle law.
1/02

Theorem 1.1. If z1, z2 ∈ C then

|z1 + z2| 6 |z1|+ |z2| , (1.6a)

|z1 − z2| >
∣∣ |z1| − |z2|

∣∣ . (1.6b)

Remark. Result (1.6a) is known as the triangle inequality
(and is in fact one of many triangle inequalities).

Proof. Self-evident by geometry. Alternatively, by the co-
sine rule (0.9a)

|z1 + z2|2 = |z1|2 + |z2|2 − 2|z1| |z2| cosψ

6 |z1|2 + |z2|2 + 2|z1| |z2|
= (|z1|+ |z2|)2

.
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(1.6b) follows from (1.6a). Let z′1 = z1 + z2 and z′2 = z2, so that z1 = z′1 − z′2 and z2 = z′2. Then (1.6a)
implies that

|z′1| 6 |z′1 − z′2|+ |z′2| ,

and hence that
|z′1 − z′2| > |z′1| − |z′2| .

Interchanging z′1 and z′2 we also have that

|z′2 − z′1| = |z′1 − z′2| > |z′2| − |z′1| .

(1.6b) follows.

1.3 Polar (Modulus/Argument) Representation

Another helpful representation of complex numbers is
obtained by using plane polar co-ordinates to repre-
sent position in Argand diagram. Let x = r cos θ and
y = r sin θ, then

z = x+ iy = r cos θ + ir sin θ

= r (cos θ + i sin θ) . (1.7)

Note that
|z| =

(
x2 + y2

)1/2
= r . (1.8)

• Hence r is the modulus of z (mod(z) for short).

• θ is called the argument of z (arg (z) for short).

• The expression for z in terms of r and θ is called
the modulus/argument form.

1/06

The pair (r, θ) specifies z uniquely. However, z does not specify (r, θ) uniquely, since adding 2nπ to θ
(n ∈ Z, i.e. the integers) does not change z. For each z there is a unique value of the argument θ such
that −π < θ 6 π, sometimes called the principal value of the argument.

Remark. In order to get a unique value of the argument it is sometimes more convenient to restrict θ
to 0 6 θ < 2π (or to restrict θ to −π < θ 6 π or to . . . ).

1.3.1 Geometric interpretation of multiplication

Consider z1, z2 written in modulus argument form:

z1 = r1 (cos θ1 + i sin θ1) ,

z2 = r2 (cos θ2 + i sin θ2) .

Then, using (0.8a) and (0.8b),

z1z2 = r1r2 (cos θ1. cos θ2 − sin θ1. sin θ2

+i (sin θ1. cos θ2 + sin θ2. cos θ1))

= r1r2 (cos (θ1 + θ2) + i sin (θ1 + θ2)) . (1.9)
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Hence

|z1z2| = |z1| |z2| , (1.10a)

arg (z1z2) = arg (z1) + arg (z2) (+2nπ with n an arbitrary integer). (1.10b)

In words: multiplication of z1 by z2 scales z1 by | z2 | and rotates z1 by arg(z2).

Exercise. Find an equivalent result for z1/z2.1/07

1.4 The Exponential Function

1.4.1 The real exponential function

The real exponential function, exp(x), is defined by the power series

exp(x) = expx = 1 + x+
x2

2!
· · · =

∞∑
n=0

xn

n!
. (1.11)

This series converges for all x ∈ R (see the Analysis I course).

Worked exercise. Show for x, y ∈ R that

exp (x) exp (y) = exp (x+ y) . (1.12a)

Solution (well nearly a solution).

exp(x) exp(y) =

∞∑
n=0

xn

n!

∞∑
m=0

ym

m!

=

∞∑
r=0

r∑
m=0

xr−m

(r −m)!

ym

m!
for n = r −m

=

∞∑
r=0

1

r!

r∑
m=0

r!

(r −m)!m!
xr−mym

=

∞∑
r=0

(x+ y)r

r!
by the binomial theorem

= exp(x+ y) .
1/08

Definition. We write
exp(1) = e . (1.12b)

Worked exercise. Show for n, p, q ∈ Z, where without loss of generality (wlog) q > 0, that:

en = exp(n) and e
p
q = exp

(
p

q

)
.

Solution. For n = 1 there is nothing to prove. For n > 2, and using (1.12a),

exp(n) = exp(1) exp(n− 1) = e exp(n− 1) , and thence by induction exp(n) = en .

From the power series definition (1.11) with n = 0:

exp(0) = 1 = e0 .
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Also from (1.12a) we have that

exp(−1) exp(1) = exp(0) , and thence exp(−1) =
1

e
= e−1 .

For n 6 −2 proceed by induction as above.

Next note from applying (1.12a) q times that(
exp

(
p

q

))q
= exp (p) = ep .

Thence on taking the positive qth root

exp

(
p

q

)
= e

p
q .

Definition. For irrational x, define
ex = exp(x) . (1.12c)

From the above it follows that if y ∈ R, then it is consistent to write exp(y) = ey.

1.4.2 The complex exponential function

Definition. For z ∈ C, the complex exponential is defined by

exp(z) =

∞∑
n=0

zn

n!
. (1.13a)

This series converges for all finite |z| (again see the Analysis I course).

Definition. For z ∈ C and z 6∈ R we define

ez = exp(z) , (1.13b)

Remarks.

(i) When z ∈ R these definitions are consistent with (1.11) and (1.12c).

(ii) For z1, z2 ∈ C,
exp (z1) exp (z2) = exp (z1 + z2) , (1.13c)

with the proof essentially as for (1.12a).

(iii) From (1.13b) and (1.13c)

ez1ez2 = exp(z1) exp(z2) = exp(z1 + z2) = ez1+z2 . (1.13d)
1/09

1.4.3 The complex trigonometric functions

Definition.

cos w =

∞∑
n=0

(−1)
n w2n

(2n)!
and sin w =

∞∑
n=0

(−1)
n w2n+1

(2n+ 1)!
. (1.14)

Remark. For w ∈ R these definitions of cosine and sine are consistent with (0.7a) and (0.7b).
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Theorem 1.2. For w ∈ C
exp (iw) ≡ eiw = cos w + i sin w . (1.15)

Unlectured Proof. From (1.13a) and (1.14) we have that

exp (iw) =

∞∑
n=0

(iw)
n

n!
= 1 + iw − w2

2
− iw

3

3!
. . .

=

(
1− w2

2!
+
w4

4!
. . .

)
+ i

(
w − w3

3!
+
w5

5!
. . .

)
=

∞∑
n=0

(−1)
n w2n

(2n)!
+ i

∞∑
n=0

(−1)
n w2n+1

(2n+ 1)!

= cos w + i sin w ,

which is as required (as long as we do not mind living dangerously and re-ordering infinite series).

Remarks.

(i) From taking the complex conjugate of (1.15) and then exchanging w for w̄, or otherwise,

exp (−iw) ≡ e−iw = cos w − i sin w . (1.16)

(ii) From (1.15) and (1.16) it follows that

cos w = 1
2

(
eiw + e−iw

)
, and sin w =

1

2i

(
eiw − e−iw

)
. (1.17)

1/10
2/02

1.4.4 Relation to modulus/argument form

Let w = θ where θ ∈ R. Then from (1.15)

eiθ = cos θ + i sin θ . (1.18)

It follows from the polar representation (1.7) that

z = r (cos θ + i sin θ) = reiθ , (1.19)

with (again) r = |z| and θ = arg z. In this representation the multiplication of two complex numbers is
rather elegant:

z1z2 =
(
r1e

i θ1
) (
r2e

i θ2
)

= r1r2 e
i(θ1+θ2) ,

confirming (1.10a) and (1.10b).

1.4.5 Modulus/argument expression for 1

Consider solutions of
z = rei θ = 1 . (1.20a)

Since by definition r, θ ∈ R, it follows that r = 1 and

ei θ = cos θ + i sin θ = 1 ,

and thence that cos θ = 1 and sin θ = 0. We deduce that

r = 1 and θ = 2kπ with k ∈ Z. (1.20b)

2/03
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1.5 Roots of Unity

A root of unity is a solution of zn = 1, with z ∈ C and n a positive integer.

Theorem 1.3. There are n solutions of zn = 1 (i.e. there are n ‘nth roots of unity’)

Proof. One solution is z = 1. Seek more general solutions of the form z = r ei θ, with the restriction that
0 6 θ < 2π so that θ is not multi-valued. Then, from (0.18b) and (1.13d),(

r ei θ
)n

= rn
(
ei θ
)n

= rneinθ = 1 ; (1.21a)

hence from (1.20a) and (1.20b), rn = 1 and n θ = 2kπ with k ∈ Z. We conclude that within the
requirement that 0 6 θ < 2π, there are n distinct roots given by

r = 1 and θ =
2kπ

n
with k = 0, 1, . . . , n− 1. (1.21b)

Remark. If we write ω = e2π i/n, then the roots of zn = 1 are 1, ω, ω2, . . . , ωn−1. Further, for n > 2 it
follows from the sum of a geometric progression, (0.1), that

1 + ω + · · ·+ ωn−1 =

n−1∑
k=0

ωk =
1− ωn

1− ω
= 0 , (1.22)

because ωn = 1.

Geometric example. Solve z5 = 1.

Solution. Put z = ei θ, then we require that

e5i θ = e2πki for k ∈ Z.

There are thus five distinct roots given by

θ = 2πk/5 with k = 0, 1, 2, 3, 4.

Larger (or smaller) values of k yield no new roots. If
we write ω = e2π i/5, then the roots are 1, ω, ω2, ω3

and ω4, and from (1.22)

1 + ω + ω2 + ω3 + ω4 = 0 .

Each root corresponds to a vertex of a pentagon. 2/06

1.6 Logarithms and Complex Powers

We know already that if x ∈ R and x > 0, the
equation ey = x has a unique real solution, namely
y = log x (or lnx if you prefer).

Definition. For z ∈ C define log z as ‘the’ solution w of

ew = z . (1.23a)
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Remarks.

(i) By definition
exp(log(z)) = z . (1.23b)

(ii) Let y = log(z) and take the logarithm of both sides of (1.23b) to conclude that

log(exp(y)) = log(exp(log(z)))

= log(z)

= y . (1.23c)

To understand the nature of the complex logarithm let w = u + iv with u, v ∈ R. Then from (1.23a)
eu+iv = ew = z = reiθ, and hence

eu = |z| = r ,

v = arg z = θ + 2kπ for any k ∈ Z .

Thus
log z = w = u+ iv = log |z|+ i arg z . (1.24a)

Remark. Since arg z is a multi-valued function, so is log z.

Definition. The principal value of log z is such that

− π < arg z = Im(log z) 6 π. (1.24b)

Example. If z = −x with x ∈ R and x > 0, then

log z = log | −x | +i arg (−x)

= log | x | +(2k + 1)iπ for any k ∈ Z .

The principal value of log(−x) is log |x|+ iπ.

1.6.1 Complex powers

Recall the definition of xa, for x, a ∈ R, x > 0 and a irrational, namely

xa = ea log x = exp (a log x) .

Definition. For z 6= 0, z, w ∈ C, define zw by

zw = ew log z. (1.25)

Remark. Since log z is multi-valued so is zw, i.e. zw is only defined up to an arbitrary multiple of e2kiπw,
for any k ∈ Z.10

10 If z, w ∈ R, z > 0, then whether zw is single-valued or multi-valued depends on whether we are working in the field
of real numbers or the field of complex numbers. You can safely ignore this footnote if you do not know what a field is.
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Examples.

(i) For a, b ∈ C it follows from (1.25) that

zab = exp(ab log z) = exp(b(a log z)) = yb ,

where
log y = a log z .

But from the definition of the logarithm (1.23b) we have that exp(log(z)) = z. Hence

y = exp(a log z) ≡ za ,

and thus (after a little thought for the the second equality)

zab = (za)
b

=
(
zb
)a
. (1.26)

(ii) Unlectured. The value of ii is given by

ii = ei log i

= ei(log |i|+i arg i)

= ei(log 1+2ki π+iπ/2)

= e
−
(

2k+
1
2

)
π

for any k ∈ Z (which is real).
2/07

1.7 De Moivre’s Theorem

Theorem 1.4. De Moivre’s theorem states that for θ ∈ R and n ∈ Z

cosnθ + i sinnθ = (cos θ + i sin θ)
n
. (1.27)

Proof. From (1.18) and (1.26)

cosnθ + i sinnθ = ei (nθ)

=
(
ei θ
)n

= (cos θ + i sin θ)
n
.

Remark. Although de Moivre’s theorem requires θ ∈ R and n ∈ Z, equality (1.27) also holds for θ, n ∈ C
in the sense that when (cos θ + i sin θ)

n
as defined by (1.25) is multi-valued, the single-valued

(cosnθ + i sinnθ) is equal to one of the values of (cos θ + i sin θ)
n
.

Unlectured Alternative Proof. (1.27) is true for n = 0. Now argue by induction.

Assume true for n = p > 0, i.e. assume that (cos θ + i sin θ)
p

= cos pθ + i sin pθ. Then

(cos θ + i sin θ)
p+1

= (cos θ + i sin θ) (cos θ + i sin θ)
p

= (cos θ + i sin θ) (cos pθ + i sin pθ)

= cos θ. cos pθ − sin θ. sin pθ + i (sin θ. cos pθ + cos θ. sin pθ)

= cos (p+ 1) θ + i sin (p+ 1) θ .

Hence the result is true for n = p+ 1, and so holds for all n > 0. Now consider n < 0, say n = −p.
Then, using the proved result for p > 0,

(cos θ + i sin θ)
n

= (cos θ + i sin θ)
−p

=
1

(cos θ + i sin θ)
p

=
1

cos p θ + i sin pθ

= cos pθ − i sin p θ

= cosn θ + i sinnθ

Hence de Moivre’s theorem is true ∀ n ∈ Z.
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1.8 Lines and Circles in the Complex Plane

1.8.1 Lines

For fixed z0, w ∈ C with w 6= 0, and varying λ ∈ R,
the equation

z = z0 + λw (1.28a)

represents in the Argand diagram (complex plane)
points on straight line through z0 and parallel to w.

Remark. Since λ ∈ R, it follows that λ = λ̄, and
hence, since λ = (z − z0)/w, that

z − z0

w
=
z̄ − z̄0

w̄
.

Thus
zw̄ − z̄w = z0w̄ − z̄0w (1.28b)

is an alternative representation of the line.

Worked exercise. Show that z0w̄− z̄0w = 0 if and only if (iff) the line (1.28a) passes through the origin.

Solution. If the line passes through the origin then put z = 0 in (1.28b), and the result follows. If
z0w̄ − z̄0w = 0, then the equation of the line is zw̄ − z̄w = 0. This is satisfied by z = 0, and hence
the line passes through the origin.

Exercise. For non-zero w, z ∈ C show that if zw̄ − z̄w = 0, then z = γw for some γ ∈ R.

1.8.2 Circles

In the Argand diagram, a circle of radius r 6= 0 and
centre v (r ∈ R, v ∈ C) is given by

S = {z ∈ C : | z − v |= r} , (1.29a)

i.e. the set of complex numbers z such that |z − v| = r.

Remarks.

• If z = x+ iy and v = p+ iq then

|z − v|2 = (x− p)2
+ (y − q)2

= r2 ,

which is the equation for a circle with centre
(p, q) and radius r in Cartesian coordinates (see
(0.11)).

• Since |z − v|2 = (z̄ − v̄) (z − v), an alternative
equation for the circle is

|z|2 − v̄z − vz̄ + |v|2 = r2 . (1.29b)3/02
3/03
2/08

1.9 Möbius Transformations

Möbius transformations used to be part of the schedule. If you would like a preview see

http://www.youtube.com/watch?v=0z1fIsUNhO4 or
http://www.youtube.com/watch?v=JX3VmDgiFnY.
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2 Vector Algebra

2.0 Why Study This?

Many scientific quantities just have a magnitude, e.g. time, temperature, density, concentration. Such
quantities can be completely specified by a single number. We refer to such numbers as scalars. You
have learnt how to manipulate such scalars (e.g. by addition, subtraction, multiplication, differentiation)
since your first day in school (or possibly before that). A scalar, e.g. temperature T , that is a function
of position (x, y, z) is referred to as a scalar field; in the case of our example we write T ≡ T (x, y, z).

However other quantities have both a magnitude and a direction, e.g. the position of a particle, the
velocity of a particle, the direction of propagation of a wave, a force, an electric field, a magnetic field.
You need to know how to manipulate these quantities (e.g. by addition, subtraction, multiplication and,
next term, differentiation) if you are to be able to describe them mathematically.

2.1 Vectors

Geometric definition. A quantity that is specified by a
[positive] magnitude and a direction in space is called a
vector.

Geometric representation. We will represent a vector

v as a line segment, say
→
AB, with length |v| and with

direction/sense from A to B.

Remarks.

• For the purpose of this course the notes will represent vectors in bold, e.g. v. On the over-
head/blackboard I will put a squiggle under the v

∼
.11

• The magnitude of a vector v is written |v|.

• Two vectors u and v are equal if they have the same magnitude, i.e. |u| = |v|, and they are in the
same direction, i.e. u is parallel to v and in both vectors are in the same direction/sense.

• A vector, e.g. force F, that is a function of position (x, y, z) is referred to as a vector field; in the
case of our example we write F ≡ F(x, y, z).

2.1.1 Examples

(i) Every point P in 3D (or 2D) space has a position

vector, r, from some chosen origin O, with r =
→
OP

and r = OP = |r|.
Remarks.

• Often the position vector is represented by x
rather than r, but even then the length (i.e.
magnitude) is usually represented by r.

• The position vector is an example of a vector
field.

(ii) Every complex number corresponds to a unique
point in the complex plane, and hence to the po-
sition vector of that point.

4/03
2/09

11 Sophisticated mathematicians use neither bold nor squiggles; absent-minded lecturers like myself sometimes forget
the squiggles on the overhead, but sophisticated students allow for that.
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2.2 Properties of Vectors

2.2.1 Addition

Vectors add according to the geometric parallelo-
gram rule:

a + b = c , (2.1a)

or equivalently

→
OA +

→
OB =

→
OC , (2.1b)

where OACB is a parallelogram.

Remarks.

(i) Since a vector is defined by its magnitude and direction it follows that
→
OB=

→
AC and

→
OA=

→
BC.

Hence from parallelogram rule it is also true that

→
OC=

→
OA +

→
AC=

→
OB +

→
BC . (2.2)

We deduce that vector addition is commutative, i.e.

VA(i) a + b = b + a . (2.3)
2/10

(ii) Similarly we can deduce geometrically that vector addition is associative, i.e.

VA(ii) a + (b + c) = (a + b) + c . (2.4)

(iii) If |a| = 0, write a = 0, where 0 is the null vector or zero vector.12 For all vectors b

VA(iii) b + 0 = b , and from (2.3) 0 + b = b . (2.5)

(iv) Define the vector −a to be parallel to a, to have
the same magnitude as a, but to have the opposite
direction/sense (so that it is anti-parallel). This is
called the negative or inverse of a and is such that

VA(iv) (−a) + a = 0 . (2.6a)

Define subtraction of vectors by

b− a ≡ b + (−a) . (2.6b)
4/02

2.2.2 Multiplication by a scalar

If λ ∈ R then λa has magnitude |λ||a|, is parallel to a, and it has the same direction/sense as a if λ > 0,
has the opposite direction/sense as a if λ < 0, and is the zero vector, 0, if λ = 0 (see also (2.9b) below).

A number of geometric properties follow from the above definition. In what follows λ, µ ∈ R.

Distributive law:

SM(i) (λ+ µ)a = λa + µa , (2.7a)

SM(ii) λ(a + b) = λa + λb . (2.7b)

12 I have attempted to always write 0 in bold in the notes; if I have got it wrong somewhere then please email me.
However, on the overhead/blackboard you will need to be more ‘sophisticated’. I will try and get it right, but I will not
always. Depending on context 0 will sometimes mean 0 and sometimes 0.
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Associative law:

SM(iii) λ(µa) = (λµ)a . (2.8)

Multiplication by 1, 0 and -1:

SM(iv) 1 a = a , (2.9a)

0 a = 0 since 0 |a| = 0, (2.9b)

(−1) a = −a since | − 1| |a| = |a| and −1 < 0. (2.9c)

Definition. The vector c = λa + µb is described as a linear combination of a and b.

Unit vectors. Suppose a 6= 0, then define

â =
a

|a|
. (2.10)

â is termed a unit vector since

|â| =
∣∣∣∣ 1

|a|

∣∣∣∣ |a| = 1

|a|
|a| = 1 .

A ̂ is often used to indicate a unit vector, but note that this is a convention that is often broken
(e.g. see §2.8.1).

2.2.3 Example: the midpoints of the sides of any quadrilateral form a parallelogram

This an example of the fact that the rules of vector manipulation and their geometric interpretation can
be used to prove geometric theorems.

Denote the vertices of the quadrilateral by A, B, C

and D. Let a, b, c and d represent the sides
→
DA,

→
AB,

→
BC and

→
CD, and let P , Q, R and S denote the

respective midpoints. Then since the quadrilateral is
closed

a + b + c + d = 0 . (2.11)

Further →
PQ=

→
PA +

→
AQ= 1

2a + 1
2b .

Similarly, and by using (2.11),

→
RS = 1

2 (c + d)

= − 1
2 (a + b)

= −
→
PQ .

Thus
→
PQ=

→
SR, i.e. PQ and SR have equal magnitude and are parallel; similarly

→
QR=

→
PS. Hence PQSR

is a parallelogram.04/06

2.3 Vector Spaces

2.3.1 Algebraic definition

So far we have taken a geometric approach; now we take an algebraic approach. A vector space over the
real numbers is a set V of elements, or ‘vectors’, together with two binary operations

• vector addition denoted for a,b ∈ V by a + b, where a + b ∈ V so that there is closure under
vector addition;
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• scalar multiplication denoted for λ ∈ R and a ∈ V by λa, where λa ∈ V so that there is closure
under scalar multiplication;

satisfying the following eight axioms or rules:13

VA(i) addition is commutative, i.e. for all a,b ∈ V

a + b = b + a ; (2.12a)

VA(ii) addition is associative, i.e. for all a,b, c ∈ V

a + (b + c) = (a + b) + c ; (2.12b)

VA(iii) there exists an element 0 ∈ V , called the null or zero vector, such that for all a ∈ V

a + 0 = a , (2.12c)

i.e. vector addition has an identity element;

VA(iv) for all a ∈ V there exists an additive negative or inverse vector a′ ∈ V such that

a + a′ = 0 ; (2.12d)

SM(i) scalar multiplication is distributive over scalar addition, i.e. for all λ, µ ∈ R and a ∈ V

(λ+ µ)a = λa + µa ; (2.12e)

SM(ii) scalar multiplication is distributive over vector addition, i.e. for all λ ∈ R and a,b ∈ V

λ(a + b) = λa + λb ; (2.12f)

SM(iii) scalar multiplication of vectors is ‘associative’,14 i.e. for all λ, µ ∈ R and a ∈ V

λ(µa) = (λµ)a , (2.12g)

SM(iv) scalar multiplication has an identity element, i.e. for all a ∈ V

1 a = a , (2.12h)

where 1 is the multiplicative identity in R.

2.3.2 Examples

(i) For the set of vectors in 3D space, vector addition and scalar multiplication of vectors (as defined
in §2.2.1 and §2.2.2 respectively) satisfy the eight axioms or rules VA(i)-(iv) and SM(i)-(iv): see
(2.3), (2.4), (2.5), (2.6a), (2.7a), (2.7b), (2.8) and (2.9a). Hence the set of vectors in 3D space form
a vector space over the real numbers.

(ii) Let Rn be the set of all n−tuples {x = (x1, x2, . . . , xn) : xj ∈ R with j = 1, 2, . . . , n}, where n is
any strictly positive integer. If x,y ∈ Rn, with x as above and y = (y1, y2, . . . , yn), define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn) , (2.13a)

λx = (λx1, λx2, . . . , λxn) , (2.13b)

0 = (0, 0, . . . , 0) , (2.13c)

x′ = (−x1,−x2, . . . ,−xn) . (2.13d)

It is straightforward to check that VA(i)-(iv) and SM(i)-(iv) are satisfied. Hence Rn is a vector
space over R.

3/08

13 The first four mean that V is an abelian group under addition.
14 Strictly we are not asserting the associativity of an operation, since there are two different operations in question,

namely scalar multiplication of vectors (e.g. µa) and multiplication of real numbers (e.g. λµ).
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2.3.3 Properties of Vector Spaces (Unlectured)

(i) The zero vector 0 is unique. For suppose that 0 and 0′ are both zero vectors in V then from (2.12a)
and (2.12c) a = 0 + a and a + 0′ = a for all a ∈ V , and hence

0′ = 0 + 0′ = 0 .

(ii) The additive inverse of a vector a is unique. For suppose that both b and c are additive inverses
of a then

b = b + 0

= b + (a + c)

= (b + a) + c

= 0 + c

= c .

Definition. We denote the unique inverse of a by −a.

(iii) Definition. The existence of a unique negative/inverse vector allows us to subtract as well as add
vectors, by defining

b− a ≡ b + (−a) . (2.14)

(iv) Scalar multiplication by 0 yields the zero vector. For all a ∈ V

0a = 0 , (2.15)

since

0a = 0a + 0

= 0a + (a + (−a))

= (0a + a) + (−a)

= (0a + 1a) + (−a)

= (0 + 1)a + (−a)

= a + (−a)

= 0 .

Hence (2.9b) is a consequential property.

(v) Scalar multiplication by −1 yields the additive inverse of the vector. For all a ∈ V ,

(−1)a = −a , (2.16)

since

(−1)a = (−1)a + 0

= (−1)a + (a + (−a))

= ((−1)a + a) + (−a)

= (−1 + 1)a + (−a)

= 0a + (−a)

= 0 + (−a)

= −a .

Hence (2.9c) is a consequential property.
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(vi) Scalar multiplication with the zero vector yields the zero vector. For all λ ∈ R, λ0 = 0. To see this
we first observe that λ0 is a zero vector since

λ0 + λa = λ(0 + a)

= λa .

Next we appeal to the fact that the zero vector is unique to conclude that

λ0 = 0 . (2.17)

(vii) If λa = 0 then either a = 0 and/or λ = 0. First suppose that λ 6= 0, in which case there exists λ−1

such that λ−1λ = 1. Then we conclude that

a = 1 a

= (λ−1λ)a

= λ−1(λa)

= λ−10

= 0 .

If λa = 0, where λ ∈ R and a ∈ V , then one possibility from (2.15) is that λ = 0. So if λa = 0 then
either λ = 0 or a = 0.

(viii) Negation commutes freely. This is because for all λ ∈ R and a ∈ V

(−λ)a = (λ(−1))a

= λ((−1)a)

= λ(−a) , (2.18a)

and

(−λ)a = ((−1)λ)a

= (−1)(λa)

= −(λa) . (2.18b)

2.4 Scalar Product

Definition. The scalar product of two vectors a and b
is defined geometrically to be the real (scalar) number

a · b = |a||b| cos θ , (2.19)

where 0 6 θ 6 π is the non-reflex angle between a and b
once they have been placed ‘tail to tail’ or ‘head to head’.

Remark. The scalar product is also referred to as the dot
product.

2.4.1 Properties of the scalar product

(i) The scalar product is commutative:

SP(i) a · b = b · a . (2.20)

(ii) The scalar product of a vector with itself is the square of its modulus, and is thus positive:

SP(iii) a2 ≡ a · a = |a|2 > 0 . (2.21a)

Further, the scalar product of a vector with itself is zero [if and] only if the vector is the zero vector,
i.e.

SP(iv) a · a = 0 ⇒ a = 0 . (2.21b)
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(iii) If 0 6 θ < 1
2π, then a · b > 0, while if 1

2π < θ 6 π, then a · b < 0.

(iv) If a · b = 0 and a 6= 0 and b 6= 0, then a and b must be orthogonal, i.e. θ = 1
2π.

(v) Suppose λ ∈ R. If λ > 0 then

a · (λb) = |a||λb| cos θ

= |λ||a||b| cos θ

= |λ|a · b
= λa · b .

If instead λ < 0 then

a · (λb) = |a||λb| cos(π − θ)
= −|λ||a||b| cos θ

= −|λ|a · b
= λa · b .

Similarly, or by using (2.20), (λa) · b = λa · b. In
summary

a · (λb) = (λa) · b = λa · b . (2.22)

2.4.2 Projections

The projection of a onto b is that part of a that is parallel
to b (which here we will denote by a⊥).

From geometry, |a⊥| = |a| cos θ (assume for the time be-
ing that cos θ > 0). Thus since a⊥ is parallel to b, and

hence b̂ the unit vector in the direction of b:

a⊥ = |a⊥| b̂ = |a| cos θ b̂ . (2.23a)

Exercise. Show that (2.23a) remains true if cos θ < 0.

Hence from (2.19)

a⊥ = |a| a · b
|a||b|

b̂ =
a · b
|b|2

b = (a · b̂) b̂ . (2.23b)

3/07
3/09
3/10

2.4.3 The scalar product is distributive over vector addition

We wish to show that

a · (b + c) = a · b + a · c . (2.24a)

The result is [clearly] true if a = 0, so henceforth
assume a 6= 0. Then from (2.23b) (after exchanging
a for b, and b or c or (b + c) for a, etc.)

a · b
|a|2

a +
a · c
|a|2

a = {projection of b onto a}+ {projection of c onto a}

= {projection of (b + c) onto a} (by geometry)

=
a · (b + c)

|a|2
a ,

which is of the form, for some α, β, γ ∈ R,

αa + βa = γa .
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From SM(i), i.e. (2.7a), first note αa + βa = (α+ β)a; then ‘dot’ both sides with a to deduce that

(α+ β) a · a = γ a · a , and hence (since a 6= 0) that α+ β = γ .

The result (2.24a) follows.

Remark. Similarly, from using (2.22) it follows for λ, µ ∈ R that

SP(ii) a · (λb + µc) = λa · b + µa · c . (2.24b)

2.4.4 Example: the cosine rule

BC2 ≡ |
→
BC |2 = |

→
BA +

→
AC |2

=

(
→
BA +

→
AC

)
·
(
→
BA +

→
AC

)
=

→
BA ·

→
BA +

→
BA ·

→
AC +

→
AC ·

→
BA +

→
AC ·

→
AC

= BA2 + 2
→
BA ·

→
AC +AC2

= BA2 + 2BA AC cos θ +AC2

= BA2 − 2BA AC cosα+AC2 .

2.4.5 Algebraic definition of a scalar product

For an n-dimensional vector space V over the real numbers assign for every pair of vectors a, b ∈ V a
scalar product, or inner product, a · b ∈ R with the following properties.

SP(i) Symmetry, i.e.
a · b = b · a . (2.25a)

SP(ii) Linearity in the ‘second’ argument, i.e. for a,b, c ∈ V and λ, µ ∈ R

a · (λb + µc) = λa · b + µa · c . (2.25b)

Remark. From properties (2.25a) and (2.25b) we deduce that there is linearity in the ‘first’
argument, i.e. for a,b, c ∈ V and λ, µ ∈ R

(λa + µc) · b = b · (λa + µc)

= λb · a + µb · c
= λa · b + µc · b . (2.25c)

Corollary. For λ ∈ R it follows from (2.17) and (2.25b) that

a · 0 = a · (λ0) = λa · 0 , and hence that (λ− 1) a · 0 = 0 .

Choose λ with λ 6= 1 to deduce that

a · 0 = 0 . (2.25d)

SP(iii) Non-negativity, i.e. a scalar product of a vector with itself should be positive, i.e.

a · a > 0 . (2.25e)

This allows us to define
|a|2 = a · a , (2.25f)

where the real positive number |a| is a norm (cf. length) of the vector a. It follows from (2.25d)
with a = 0 that

|0|2 = 0 · 0 = 0 . (2.25g)

SP(iv) Non-degeneracy, i.e. the only vector of zero norm should be the zero vector, i.e.

|a| = 0 ⇒ a = 0 . (2.25h)
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Alternative notation. An alternative notation for scalar products and norms is

〈a |b 〉 ≡ a · b , (2.26a)

‖a‖ ≡ |a| = (a · a)
1
2 . (2.26b)

5/03

2.4.6 The Schwarz inequality (a.k.a. the Cauchy-Schwarz inequality)

Schwarz’s inequality states that
|a · b| 6 |a| |b| , (2.27)

with equality only when a = 0 and/or b = 0, or when a is a scalar multiple of b.

Proof. We present two proofs. First a geometric argument using (2.19):

|a · b| = |a||b|| cos θ| 6 |a||b|

with equality when a = 0 and/or b = 0, or if | cos θ| = 1, i.e. if a and b are parallel.

Second an algebraic argument that can be generalised. To start this proof consider, for λ ∈ R,

0 6 |a + λb|2 = (a + λb) · (a + λb) from (2.25e) and (2.25e) (or (2.21a))

= a · a + λa · b + λb · a + λ2b · b from (2.25b) and (2.25c) (or (2.20) and (2.24a))

= |a|2 + (2a · b)λ+ |b|2 λ2 from (2.25a) and (2.25f) (or (2.20)).

We have two cases to consider: b = 0 and b 6= 0. First, suppose that b = 0, so that |b| = 0. Then from
(2.25d) it follows that (2.27) is satisfied as an equality.

If |b| 6= 0 the right-hand-side is a quadratic in λ that,
since it is not negative, has at most one real root.
Hence ‘b2 6 4ac’, i.e.

(2a · b)
2 6 4|a|2|b|2 .

Schwarz’s inequality follows on taking the positive
square root, with equality only if a = −λb for some λ.

2.4.7 Triangle inequality

This triangle inequality is a generalisation of (1.6a) and states that

|a + b| 6 |a|+ |b| . (2.28)

Proof. Again there are a number of proofs. Geometrically (2.28) must be true since the length of one
side of a triangle is less than or equal to the sum of the lengths of the other two sides. More formally we
could proceed in an analogous manner to (1.6a) using the cosine rule.

An algebraic proof that generalises is to take the positive square root of the following inequality:

|a + b|2 = |a|2 + 2 a · b + |b|2 from above with λ = 1

6 |a|2 + 2|a · b|+ |b|2

6 |a|2 + 2|a| |b|+ |b|2 from (2.27)

6 (|a|+ |b|)2 .

Remark. In the same way that (1.6a) can be extended to (1.6b) we can similarly deduce that

|a− b| >
∣∣ |a| − |b| ∣∣ . (2.29)
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2.5 Vector Product

Definition. From a geometric standpoint, the vector product
a× b of an ordered pair a, b is a vector such that

(i)
|a× b| = |a||b| sin θ , (2.30)

with 0 6 θ 6 π defined as before;

(ii) a × b is perpendicular/orthogonal to both a and b (if
a× b 6= 0);

(iii) a × b has the sense/direction defined by the ‘right-hand
rule’, i.e. take a right hand, point the index finger in the
direction of a, the second finger in the direction of b, and
then a× b is in the direction of the thumb.

Remarks.

(i) The vector product is also referred to as the cross product.

(ii) An alternative notation (that is falling out of favour except on my overhead/blackboard) is a ∧ b.
5/02
4/08

2.5.1 Properties of the vector product

(i) The vector product is anti-commutative (from the right-hand rule):

a× b = −b× a . (2.31a)

(ii) The vector product of a vector with itself is zero:

a× a = 0 . (2.31b)

(iii) If a × b = 0 and a 6= 0 and b 6= 0, then θ = 0 or θ = π, i.e. a and b are parallel (or equivalently
there exists λ ∈ R such that a = λb).

(iv) It follows from the definition of the vector product

a× (λb) = λ (a× b) . (2.31c)

(v) For given â and b, suppose that the vector b′′(â,b) is constructed by two operations. First project
b onto a plane orthogonal to â to generate the vector b′. Next obtain b′′ by rotating b′ about â
by π

2 in an ‘anti-clockwise’ direction (‘anti-clockwise’ when looking in the opposite direction to â).

π 2

a π 2 a
a )

b
a

b’

θ

b’ is the projection of b onto

a

b’

b’’

b’’ is the result of rotating the vectorb’
the plane perpendicular to through an angle anti−clockwise about 

(looking in the opposite direction to

By geometry |b′| = |b| sin θ = |â× b|, and |b′′| = |b′|. Further, by construction â, b′ and b′′ form
an orthogonal right-handed triple. It follows that

b′′(â,b) ≡ â× b . (2.31d)
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(vi) We can use this geometric construction to show that

a× (b + c) = a× b + a× c . (2.31e)

To this end first note from geometry that

{projection of b onto plane ⊥ to a} + {projection of c onto plane ⊥ to a}
= {projection of (b + c) onto plane ⊥ to a} ,

i.e.

b′ + c′ = (b + c)
′
.

Next note that by rotating b′, c′ and (b + c)
′

by π
2

‘anti-clockwise’ about a it follows that

b′′ + c′′ = (b + c)
′′
.

Hence from property (2.31d)

â× b + â× c = â× (b + c) .

The result (2.31e) follows from multiplying by |a|.

2.5.2 Vector area of a triangle/parallelogram

Let O, A and B denote the vertices of a triangle, and let NB

be the altitude through B. Denote
→
OA and

→
OB by a and b

respectively. Then

area of triangle = 1
2 OA .NB = 1

2 OA .OB sin θ = 1
2 |a× b| .

The quantity 1
2a × b is referred to as the vector area of the

triangle. It has the same magnitude as the area of the triangle,
and is normal to OAB, i.e. normal to the plane containing a
and b.

Let O, A, C and B denote the vertices of a parallelogram, with
→
OA and

→
OB as before. Then

area of parallelogram = |a× b| ,

and the vector area of the parallelogram is a× b.

2.6 Triple Products

Given the scalar (‘dot’) product and the vector (‘cross’) product, we can form two triple products.

Scalar triple product:
(a× b) · c = c · (a× b) = − (b× a) · c , (2.32)

from using (2.20) and (2.31a).

Vector triple product:

(a× b)× c = −c× (a× b) = − (b× a)× c = c× (b× a) , (2.33)

from using (2.31a).5/06
4/09
4/10
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2.6.1 Properties of the scalar triple product

Volume of parallelepipeds. The volume of a parallelepiped
(or parallelipiped or parallelopiped or parallelopi-
pede or parallelopipedon) with edges a, b and c is

Volume = Base Area × Height

= |a× b| |c| cosφ

= | (a× b) · c| (2.34a)

= (a× b) · c > 0 , (2.34b)

if a, b and c have the sense of the right-hand rule.

Identities. Assume that the ordered triple (a,b, c) has the sense of the right-hand rule. Then so do the
ordered triples (b, c,a), and (c,a,b). Since the ordered scalar triple products will all equal the
volume of the same parallelepiped it follows that

(a× b) · c = (b× c) · a = (c× a) · b . (2.35a)

Further the ordered triples (a, c,b), (b,a, c) and (c,b,a) all have the sense of the left-hand rule,
and so their scalar triple products must all equal the ‘negative volume’ of the parallelepiped; thus

(a× c) · b = (b× a) · c = (c× b) · a = − (a× b) · c . (2.35b)

It also follows from the first two expression in (2.35a), and from the commutative property (2.20),
that

(a× b) · c = a · (b× c) , (2.35c)

and hence the order of the ‘cross’ and ‘dot’ is inconsequential.15 For this reason we sometimes use
the notation

[a,b, c] = (a× b) · c . (2.35d)

Coplanar vectors. If a, b and c are coplanar then

[a,b, c] = 0 ,

since the volume of the parallelepiped is zero. Conversely if non-zero a, b and c are such that
[a,b, c] = 0, then a, b and c are coplanar.

6/03
4/07

2.7 Spanning Sets, Linear Independence, Bases and Components

There are a large number of vectors in 2D or 3D space. Is there a way of expressing these vectors as a
combination of [a small number of] other vectors?

2.7.1 2D Space

First consider 2D space, an origin O, and two non-zero and non-parallel vectors a and b. Then the
position vector r of any point P in the plane can be expressed as

r =
→
OP= λa + µb , (2.36)

for suitable and unique real scalars λ and µ.

15 What is important is the order of a, b and c.
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Geometric construction. Draw a line through P par-

allel to
→
OA= a to intersect

→
OB= b (or its ex-

tension) at N (all non-parallel lines intersect).
Then there exist λ, µ ∈ R such that

→
ON= µb and

→
NP= λa ,

and hence

r =
→
OP= λa + µb .

Definition. We say that the set {a,b} spans the set of vectors lying in the plane.

Uniqueness. For given a and b, λ and µ are unique. For suppose that λ and µ are not-unique, and that
there exists λ, λ′, µ, µ′ ∈ R such that

r = λa + µb = λ′a + µ′b .

Rearranging the above it follows that

(λ− λ′)a = (µ′ − µ)b . (2.37)

Hence, since a and b are not parallel, λ− λ′ = µ− µ′ = 0. 16

Definition. We refer to (λ, µ) as the components of r with respect to the ordered pair of vectors a
and b.

Definition. If for two vectors a and b and α, β ∈ R,

α a + β b = 0 ⇒ α = β = 0 , (2.38)

then we say that a and b are linearly independent.

Definition. We say that the set {a,b} is a basis for the set of vectors lying the in plane if it is a
spanning set and a and b are linearly independent.

Remarks.

(i) Any two non-parallel vectors are linearly independent.

(ii) The set {a,b} does not have to be orthogonal to be a basis.

(iii) In 2D space a basis always consists of two vectors.17

2.7.2 3D Space

Next consider 3D space, an origin O, and three non-zero and non-coplanar vectors a, b and c (i.e.
[a,b, c] 6= 0). Then the position vector r of any point P in space can be expressed as

r =
→
OP= λa + µb + νc , (2.39)

for suitable and unique real scalars λ, µ and ν.

16 Alternatively, we may conclude this by ‘crossing’ (2.37) first with a, and then ‘crossing’ (2.37) with b.
17 As you will see below, and in Linear Algebra, this is a tautology.
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Geometric construction. Let Πab be the plane con-
taining a and b. Draw a line through P parallel

to
→
OC= c. This line cannot be parallel to Πab

because a, b and c are not coplanar. Hence it
will intersect Πab, say at N , and there will ex-

ist ν ∈ R such that
→
NP= νc. Further, since

→
ON lies in the plane Πab, from §2.7.1 there

exists λ, µ ∈ R such that
→
ON= λa + µb. It

follows that

r =
→
OP =

→
ON +

→
NP

= λa + µb + νc ,

for some λ, µ, ν ∈ R.

We conclude that if [a,b, c] 6= 0 then the set {a,b, c} spans 3D space. 6/02

Uniqueness. We can show that λ, µ and ν are unique by construction. Suppose that r is given by (2.39)
and consider

r · (b× c) = (λa + µb + νc) · (b× c)

= λa · (b× c) + µb · (b× c) + νc · (b× c)

= λa · (b× c) ,

since b · (b× c) = c · (b× c) = 0. Hence, and similarly or by permutation,

λ =
[r,b, c]

[a,b, c]
, µ =

[r, c,a]

[a,b, c]
, ν =

[r,a,b]

[a,b, c]
. (2.40)

Definition. We refer to (λ, µ, ν) as the components of r with respect to the ordered triple of vectors a,
b and c.

Definition. If for three vectors a, b and c and α, β, γ ∈ R,

α a + β b + γ c = 0 ⇒ α = β = γ = 0 , (2.41)

then we say that a, b and c are linearly independent.

Remarks.

(i) If [a,b, c] 6= 0 the uniqueness of λ, µ and ν means that since (0, 0, 0) is a solution to

λa + µb + νc = 0 , (2.42)

it is also the unique solution, and hence the set {a,b, c} is linearly independent.

(ii) If [a,b, c] 6= 0 the set {a,b, c} both spans 3D space and is linearly independent, it is hence a basis
for 3D space.

(iii) {a,b, c} do not have to be mutually orthogonal to be a basis.

(iv) In 3D space a basis always consists of three vectors.18

5/08

18 Another tautology.
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2.8 Orthogonal Bases

2.8.1 The Cartesian or standard basis in 3D

We have noted that {a,b, c} do not have to be mutually orthogonal (or right-handed) to be a basis.
However, matters are simplified if the basis vectors are mutually orthogonal and have unit magnitude,
in which case they are said to define a orthonormal basis. It is also conventional to order them so that
they are right-handed.

Let OX, OY , OZ be a right-handed set of Cartesian axes.
Let

i be the unit vector along OX ,
j be the unit vector along OY ,
k be the unit vector along OZ ,

where it is not conventional to add a .̂ Then the ordered
set {i, j,k} forms a basis for 3D space satisfying

i · i = j · j = k · k = 1 , (2.43a)

i · j = j · k = k · i = 0 , (2.43b)

i× j = k , j× k = i , k× i = j , (2.43c)

[i, j,k] = 1 . (2.43d)

Definition. If for a vector v and a Cartesian basis {i, j,k},

v = vxi + vyj + vzk , (2.44)

where vx, vy, vz ∈ R, we define (vx, vy, vz) to be the Cartesian components of v with respect to the
ordered basis {i, j,k}.

By ‘dotting’ (2.44) with i, j and k respectively, we deduce from (2.43a) and (2.43b) that

vx = v · i , vy = v · j , vz = v · k . (2.45)

Hence for all 3D vectors v
v = (v · i) i + (v · j) j + (v · k) k . (2.46)

Remarks.

(i) Assuming that we know the basis vectors (and remember that there are an uncountably infinite
number of Cartesian axes), we often write

v = (vx, vy, vz) . (2.47)

In terms of this notation

i = (1, 0, 0) , j = (0, 1, 0) , k = (0, 0, 1) . (2.48)

(ii) If the point P has the Cartesian co-ordinates (x, y, z), then the position vector

→
OP= r = x i + y j + z k , i.e. r = (x, y, z) . (2.49)

(iii) Every vector in 2D/3D space may be uniquely represented by two/three real numbers, so we often
write R2/R3 for 2D/3D space.
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2.8.2 Direction cosines

If t is a unit vector with components (tx, ty, tz) with
respect to the ordered basis {i, j,k}, then

tx = t · i = |t| |i| cosα , (2.50a)

where α is the angle between t and i. Hence if β
and γ are the angles between t and j, and t and k,
respectively, the direction cosines of t are defined by

t = (cosα, cosβ, cos γ) . (2.50b)

6/06

2.9 Vector Component Identities

Suppose that

a = axi + ayj + azk , b = bxi + byj + bzk and c = cxi + cyj + czk . (2.51)

Then we can deduce a number of vector identities for components (and one true vector identity).

Addition. From repeated application of (2.7a), (2.7b) and (2.8)

λa + µb = (λax + µbx)i + (λay + µby)j + (λaz + µbz)k . (2.52)

Scalar product. From repeated application of (2.8), (2.20), (2.22), (2.24a), (2.43a) and (2.43b)

a · b = (axi + ayj + azk) · (bxi + byj + bzk)

= axi · bxi + axi · byj + axi · bzk + . . .

= ax bx i · i + ax by i · j + ax bz i · k + . . .

= ax bx + ay by + az bz . (2.53)

Vector product. From repeated application of (2.8), (2.31a), (2.31b), (2.31c), (2.31e), (2.43c)

a× b = (axi + ayj + azk)× (bxi + byj + bzk)

= axi× bxi + axi× byj + axi× bzk + . . .

= ax bx i× i + ax by i× j + ax bz i× k + . . .

= (ay bz − az by)i + (az bx − ax bz)j + (ax by − ay bx)k . (2.54)

Scalar triple product. From (2.53) and (2.54)

(a× b) · c = ((ay bz − az by)i + (az bx − ax bz)j + (ax by − ay bx)k) · (cxi + cyj + czk)

= ax by cz + ay bz cx + az bx cy − ax bz cy − ay bx cz − az by cx . (2.55)5/09

Vector triple product. We wish to show that

a× (b× c) = (a · c)b− (a · b)c . (2.56)

Remark. Identity (2.56) has no component in the direction a, i.e. no component in the direction of the
vector outside the parentheses.

To prove this, begin with the x-component of the left-hand side of (2.56). Then from (2.54)(
a× (b× c)

)
x
≡ (a× (b× c)

)
· i = ay (b× c)z − az (b× c)y

= ay (bx cy − by cx)− az (bz cx − bx cz)
= (aycy + azcz)bx + axbxcx − axbxcx − (ayby + azbz)cx

= (a · c)bx − (a · b)cx

=
(
(a · c)b− (a · b)c

)
· i ≡

(
(a · c)b− (a · b)c

)
x
.

Now proceed similarly for the y and z components, or note that if its true for one component it must be
true for all components because of the arbitrary choice of axes.7/03

5/07
5/10
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2.10 Higher Dimensional Spaces

We can ‘boot-strap’ to higher dimensional spaces.

2.10.1 Rn

Recall that for fixed positive integer n, we defined Rn to be the set of all n−tuples

{x = (x1, x2, . . . , xn) : xj ∈ R with j = 1, 2, . . . , n} , (2.57)

with vector addition, scalar multiplication, the zero vector and the inverse vector defined by (2.13a),
(2.13b), (2.13c) and (2.13d) respectively.

2.10.2 Linear independence, spanning sets and bases in Rn

Definition. A set of m vectors {v1,v2, . . . vm}, vj ∈ Rn, j = 1, 2, . . . ,m, is linearly independent if for
all scalars λj ∈ R, j = 1, 2, . . . ,m,

m∑
i=1

λivi = 0 ⇒ λi = 0 for i = 1, 2, . . . ,m . (2.58)

Otherwise, the vectors are said to be linearly dependent since there exist scalars λj ∈ R, j = 1, 2, . . . ,m,
not all of which are zero, such that

m∑
i=1

λivi = 0 .

Definition. A subset S = {u1,u2, . . . um} of vectors in Rn is a spanning set for Rn if for every vector
v ∈ Rn, there exist scalars λj ∈ R, j = 1, 2, . . . ,m, such that

v = λ1u1 + λ2u2 + . . .+ λmum . (2.59)

Remark. We state (but do not prove) that m > n, and that for a given v the λj are not necessarily
unique if m > n.

Definition. A linearly independent subset of vectors that spans Rn is a basis of Rn.

Remark. Every basis of Rn has n elements (this statement will be proved in Linear Algebra).

Property (unproven). If the set S = {u1,u2, . . . un} is a basis of Rn, then for every vector v ∈ Rn there
exist unique scalars λj ∈ R, j = 1, 2, . . . , n, such that

v = λ1u1 + λ2u2 + . . .+ λnun . (2.60)

Definition. We refer to the λj , j = 1, 2, . . . , n, as the components of v with respect to the ordered basis
S.

Remarks.

(i) The xj , j = 1, 2, . . . , n, in the n-tuple (2.57) might be viewed as the components of a vector with
respect to the standard basis

e1 = (1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1) . (2.61a)

As such the definitions of vector addition and scalar multiplication in Rn, i.e. (2.13a) and (2.13b)
respectively, are consistent with our component notation in 2D and 3D.

(ii) In 3D we identify e1, e2 and e3 with i, j and k respectively, i.e.

e1 = i , e2 = j , e3 = k . (2.61b)
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2.10.3 Dimension

At school you used two axes to describe 2D space, and three axes to describe 3D space. We noted above
that 2D/3D space [always] has two/three vectors in a basis (corresponding to two/three axes). We now
turn this view of the world on its head.

Definition. We define the dimension of a space as the number of vectors in a basis of the space.

Remarks.

(i) This definition depends on the proof (given in Linear Algebra) that every basis of a vector space
has the same number of elements/vectors.

(ii) Hence Rn has dimension n.

2.10.4 The scalar product for Rn

We define the scalar product on Rn for x,y ∈ Rn as (cf. (2.53))

x · y =
n∑
i=1

xiyi = x1y1 + x2y2 + . . .+ xnyn . (2.62a)

Exercise. Show that for x,y, z ∈ Rn and λ, µ ∈ R,

SP(i) x · y = y · x , (2.62b)

SP(ii) x · (λy + µz) = λx · y + µx · z , (2.62c)

SP(iii) x · x > 0 , (2.62d)

SP(iv) x · x = 0 ⇒ x = 0 . (2.62e)

Remarks.

(i) The length, or Euclidean norm, of a vector x ∈ Rn is defined to be

|x| ≡ (x · x)
1
2 =

(
n∑
i=1

x2
i

) 1
2

,

while the interior angle θ between two vectors x and y is defined to be

θ = arccos

(
x · y
|x||y|

)
.

(ii) The Cauchy-Schwarz inequality (2.27) holds (use the ‘long’ algebraic proof).

(iii) Non-zero vectors x,y ∈ Rn are defined to be orthogonal if x · y = 0.

(iv) We need to be a little careful with the definition (2.62a). It is important to appreciate that the
scalar product for Rn as defined by (2.62a) is consistent with the scalar product for R3 defined in
(2.19) only when the xi and yi are components with respect to an orthonormal basis. To this end
it is helpful to view (2.62a) as the scalar product with respect to the standard basis

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

For the case when the xi and yi are components with respect to a non-orthonormal basis (e.g. a
non-orthogonal basis), the scalar product in n-dimensional space equivalent to (2.19) has a more
complicated form (for which we need matrices).
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2.10.5 Cn

Definition. For fixed positive integer n, define Cn to be the set of n-tuples (z1, z2, . . . , zn) of complex
numbers zi ∈ C, i = 1, . . . , n. For λ ∈ C and complex vectors u,v ∈ Cn, where

u = (u1, . . . , un) and v = (v1, . . . , vn),

define vector addition and scalar multiplication by

u + v = (u1 + v1, . . . , un + vn) ∈ Cn , (2.63a)

λu = (λu1, . . . , λun) ∈ Cn . (2.63b)

Remark. The standard basis for Rn, i.e.

e1 = (1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1), (2.64a)

also serves as a standard basis for Cn since

(i) the ei (i = 1, . . . , n) are still linearly independent, i.e. for all scalars λi ∈ C

n∑
i=1

λiei = (λ1, . . . , λn) = 0 ⇒ λi = 0 for i = 1, 2, . . . , n ,

(ii) and we can express any z ∈ Cn in terms of components as

z = (z1, . . . , zn) =

n∑
i=1

ziei . (2.64b)

Hence Cn has dimension n when viewed as a vector space over C.

2.10.6 The scalar product for Cn

We define the scalar product on Cn for u,v ∈ Cn as

u · v =

n∑
i=1

u∗i vi = u∗1v1 + u∗2v2 + . . .+ u∗nvn , (2.65)

where ∗ denotes a complex conjugate (do not forget the complex conjugate).

Exercise. Show that for u,v,w ∈ Cn and λ, µ ∈ C,

SP(i)∗ u · v = (v · u)
∗
, (2.66a)

SP(ii) u · (λv + µw) = λu · v + µu ·w , (2.66b)

SP(iii) |u|2 ≡ u · u > 0 , (2.66c)

SP(iv) |u| = 0 ⇒ u = 0 . (2.66d)

Remark. After minor modifications, the long proof of the Cauchy-Schwarz inequality (2.27) again holds.

Definition. Non-zero vectors u,v ∈ Cn are said to be orthogonal if u · v = 0.6/08

2.11 Suffix Notation

So far we have used dyadic notation for vectors. Suffix notation is an alternative means of expressing
vectors (and tensors). Once familiar with suffix notation, it is generally easier to manipulate vectors
using suffix notation.19

19 Although there are dissenters to that view.
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In (2.44) and (2.47) we introduced the notation

v = vxi + vyj + vzk = (vx, vy, vz) .

An alternative is to let vx = v1, vy = v2, and vz = v3, and use (2.61b) to write

v = v1e1 + v2e2 + v3e3 = (v1, v2, v3) (2.67a)

= {vi} for i = 1, 2, 3 . (2.67b)

Suffix notation. We will refer to v as {vi}, with the i = 1, 2, 3 understood; i is then termed a free suffix.

Remark. Sometimes we will denote the ith component of the vector v by (v)i, i.e. (v)i = vi.

Example: the position vector. The position vector r can be written as

r = (x, y, z) = (x1, x2, x3) = {xi} . (2.68)

Remark. The use of x, rather than r, for the position vector in dyadic notation possibly seems more
understandable given the above expression for the position vector in suffix notation. Henceforth we
will use x and r interchangeably.

2.11.1 Dyadic and suffix equivalents

If two vectors a and b are equal, we write

a = b , (2.69a)

or equivalently in component form

a1 = b1 , (2.69b)

a2 = b2 , (2.69c)

a3 = b3 . (2.69d)

In suffix notation we express this equality as

ai = bi for i = 1, 2, 3 . (2.69e)

This is a vector equation; when we omit the ’for i = 1, 2, 3’, it is understood that the one free suffix i
ranges through 1, 2, 3 so as to give three component equations. Similarly

c = λa + µb ⇔ ci = λai + µbi

⇔ cj = λaj + µbj

⇔ cα = λaα + µbα

⇔ cU = λaU + µbU ,

where is is assumed that i, j, α and U, respectively, range through (1, 2, 3).20

Remark. It does not matter what letter, or symbol, is chosen for the free suffix, but it must be the same
in each term.

Dummy suffices. In suffix notation the scalar product becomes

a · b = a1b1 + a2b2 + a3b3

=

3∑
i=1

aibi

=

3∑
k=1

akbk , etc.,

20 In higher dimensions the suffices would be assumed to range through the number of dimensions.
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where the i, k, etc. are referred to as dummy suffices since they are ‘summed out’ of the equation.
Similarly

a · b = λ ⇔
3∑

α=1

aαbα = λ ,

where we note that the equivalent equation on the right hand side has no free suffices since the
dummy suffix (in this case α) has again been summed out.

Further examples.

(i) As another example consider the equation (a · b)c = d. In suffix notation this becomes

3∑
k=1

(akbk) ci =

3∑
k=1

akbkci = di , (2.70)

where k is the dummy suffix, and i is the free suffix that is assumed to range through (1, 2, 3).
It is essential that we used different symbols for both the dummy and free suffices!

(ii) In suffix notation the expression (a · b)(c · d) becomes

(a · b)(c · d) =

(
3∑
i=1

aibi

) 3∑
j=1

cjdj


=

3∑
i=1

3∑
j=1

aibicjdj ,

where, especially after the rearrangement, it is essential that the dummy suffices are different.6/09
6/10

2.11.2 Summation convention

In the case of free suffices we are assuming that they range through (1, 2, 3) without the need to explicitly
say so. Under Einstein’s summation convention the explicit sum,

∑
, can be omitted for dummy suffices.21

In particular

• if a suffix appears once it is taken to be a free suffix and ranged through,

• if a suffix appears twice it is taken to be a dummy suffix and summed over,

• if a suffix appears more than twice in one term of an equation, something has gone wrong
(unless there is an explicit sum).

Remark. This notation is powerful because it is highly abbreviated (and so aids calculation, especially
in examinations), but the above rules must be followed, and remember to check your answers (e.g.
the free suffices should be identical on each side of an equation).

Examples. Under suffix notation and the summation convention

a + b = c can be written as ai + bi = ci ,

(a · b)c = d can be written as ai bi cj = dj ,

((a · b)c− (a · c)b)j can be written as ai bi cj − ak ck bj ,
or can be written as ai bi cj − ai ci bj ,
or can be written as ai(bi cj − ci bj) .

21 Learning to omit the explicit sum is a bit like learning to change gear when starting to drive. At first you have to
remind yourself that the sum is there, in the same way that you have to think consciously where to move gear knob. With
practice you will learn to note the existence of the sum unconsciously, in the same way that an experienced driver changes
gear unconsciously; however you will crash a few gears on the way!
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Under suffix notation the following equations make no sense

ak = bj because the free suffices are different,

((a · b)c)i = ai bi ci because i is repeated more than twice in one term on the left-hand side.

Under suffix notation the following equation is problematical (and probably best avoided unless
you will always remember to double count the i on the right-hand side)

ni ni = n2
i because i occurs twice on the left-hand side and only once on the right-hand side.8/03

6/07

2.11.3 Kronecker delta

The Kronecker delta, δij , i, j = 1, 2, 3, is a set of nine numbers defined by

δ11 = 1 , δ22 = 1 , δ33 = 1 , (2.71a)

δij = 0 if i 6= j . (2.71b)

This can be written as a matrix equation:δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33

 =

1 0 0
0 1 0
0 0 1

 . (2.71c)

Properties.

(i) δij is symmetric, i.e.
δij = δji .

(ii) Using the definition of the delta function:

aiδi1 =

3∑
i=1

aiδi1

= a1δ11 + a2δ21 + a3δ31

= a1 . (2.72a)

Similarly

aiδij = aj and ajδij = ai . (2.72b)

(iii)

δijδjk =

3∑
j=1

δijδjk = δik . (2.72c)

(iv)

δii =

3∑
i=1

δii = δ11 + δ22 + δ33 = 3 . (2.72d)

(v)
ap δpq bq = ap bp = aq bq = a · b . (2.72e)

2.11.4 More on basis vectors

Now that we have introduced suffix notation, it is more convenient to write e1, e2 and e3 for the Cartesian
unit vectors i, j and k (see also (2.61b)). An alternative notation is e(1), e(2) and e(3), where the use of
superscripts may help emphasise that the 1, 2 and 3 are labels rather than components.
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Then in terms of the superscript notation

e(i) · e(j) = δij , (2.73a)

a · e(i) = ai . (2.73b)

Thus the ith component of e(j) is given by(
e(j)
)
i

= e(j) · e(i)

= δij . (2.73c)

Similarly (
e(i)
)
j

= δij , (2.73d)

and equivalently

(ej)i = (ei)j = δij . (2.73e)
8/06

2.11.5 Part one of a dummy’s guide to permutations22

A permutation of degree n is a[n invertible] function, or map, that rearranges n distinct objects amongst
themselves. We will consider permutations of the set of the first n strictly positive integers {1, 2, . . . , n}.

If n = 3 there are 6 permutations (including the identity permutation) that re-arrange {1, 2, 3} to

{1, 2, 3}, {2, 3, 1}, {3, 1, 2}, (2.74a)

{1, 3, 2}, {2, 1, 3}, {3, 2, 1}. (2.74b)

(2.74a) and (2.74b) are known, respectively, as even and odd permutations of {1, 2, 3}.

Remark. Slightly more precisely: an ordered sequence is an even/odd permutation if the number of
pairwise swaps (or exchanges or transpositions) necessary to recover the original ordering, in this
case {1 2 3}, is even/odd.23

2.11.6 The Levi-Civita symbol or alternating tensor

Definition. We define εijk (i, j, k = 1, 2, 3) to be the set of 27 quantities such that

εijk =

 1 if i j k is an even permutation of 1 2 3;
−1 if i j k is an odd permutation of 1 2 3;
0 otherwise

(2.75)

The non-zero components of εijk are therefore

ε123 = ε231 = ε312 = 1 (2.76a)

ε132 = ε213 = ε321 = −1 (2.76b)

Further
εijk = εjki = εkij = −εikj = −εkji = −εjik . (2.76c)

8/02

Worked exercise. For a symmetric tensor sij , i, j = 1, 2, 3, such that sij = sji evaluate εijksij .

22 Which is not the same thing as Permutations for Dummies.
23 This definition requires a proof of the fact that the number of pairwise swaps is always even or odd: see Groups.
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Solution. By relabelling the dummy suffices we have from (2.76c) and the symmetry of sij that

3∑
i=1

3∑
j=1

εijksij =

3∑
a=1

3∑
b=1

εabksab =

3∑
j=1

3∑
i=1

εjiksji =

3∑
i=1

3∑
j=1

− εijksij , (2.77a)

or equivalently

εijksij = εabksab = εjiksji = −εijksij . (2.77b)

Hence we conclude that

εijksij = 0 . (2.77c)
7/08

2.11.7 The vector product in suffix notation

We claim that

(a× b)i =

3∑
j=1

3∑
k=1

εijk aj bk = εijk aj bk , (2.78)

where we note that there is one free suffix and two dummy suffices.

Check.

(a× b)1 =

3∑
j=1

3∑
k=1

ε1jk aj bk = ε123 a2 b3 + ε132 a3 b2 = a2 b3 − a3 b2 ,

as required from (2.54). Do we need to do more?

Example. From (2.72b), (2.73e) and (2.78)(
e(j) × e(k)

)
i

= εilm
(
e(j)
)
l

(
e(k)

)
m

= εilm δjl δkm

= εijk . (2.79)

2.11.8 An identity

Theorem 2.1.
εijkεipq = δjp δkq − δjq δkp . (2.80)

Remark. There are four free suffices/indices on each side, with i as a dummy suffix on the left-hand side.
Hence (2.80) represents 34 equations.

Proof. First suppose, say, j = k = 1; then

LHS = εi11εipq = 0 ,

RHS = δ1p δ1q − δ1q δ1p = 0 .

Similarly whenever j = k (or p = q). Next suppose, say, j = 1 and k = 2; then

LHS = εi12 εipq

= ε312 ε3pq

=

 1 if p = 1, q = 2
−1 if p = 2, q = 1
0 otherwise

,
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while

RHS = δ1p δ2q − δ1q δ2p

=

 1 if p = 1, q = 2
−1 if p = 2, q = 1
0 otherwise

.

Similarly whenever j 6= k.

Example. Take j = p in (2.80) as an example of a repeated suffix; then

εipkεipq = δpp δkq − δpq δkp
= 3δkq − δkq = 2δkq . (2.81)

7/10

2.11.9 Scalar triple product

In suffix notation the scalar triple product is given by

a · (b× c) = ai(b× c)i

= εijk ai bj ck . (2.82)7/09

2.11.10 Vector triple product

Using suffix notation for the vector triple product we recover(
a× (b× c)

)
i

= εijk aj (b× c)k
= εijk aj εklm bl cm

= −εkji εklm aj bl cm
= −(δjlδim − δjmδil) aj bl cm
= aj bi cj − aj bj ci
=

(
(a · c)b− (a · b)c

)
i
,

in agreement with (2.56).

2.11.11 Yet another proof of Schwarz’s inequality (Unlectured)

This time using the summation convention:

‖x‖2‖y‖2 − |x · y|2 = xixiyjyj − xiyixjyj
= 1

2xixiyjyj + 1
2xjxjyiyi − xiyixjyj

= 1
2 (xiyj − xjyi)(xiyj − xjyi)

> 0 .

2.12 Vector Equations

When presented with a vector equation one approach might be to write out the equation in components,
e.g. (x− a) · n = 0 would become

x1 n1 + x2 n2 + x3 n3 = a1 n1 + a2 n2 + a3 n3 . (2.83)

For given a,n ∈ R3 this is a single equation for three unknowns x = (x1, x2, x3) ∈ R3, and hence we
might expect two arbitrary parameters in the solution (as we shall see is the case in (2.89) below). An
alternative, and often better, way forward is to use vector manipulation to make progress.EJH

7/07

Worked Exercise. For given a,b, c ∈ R3 find solutions x ∈ R3 to

x− (x× a)× b = c . (2.84)

Mathematical Tripos: IA Vectors & Matrices 35 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2010



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

Solution. First expand the vector triple product using (2.56):

x− a(b · x) + x(a · b) = c ;

then dot this with b:

b · x = b · c ;

then substitute this result into the previous equation to obtain:

x(1 + a · b) = c + a(b · c) ;

now rearrange to deduce that

x =
c + a(b · c)

(1 + a · b)
.

Remark. For the case when a and c are not parallel we could have alternatively sought a solution
using a, c and a× c as a basis.

2.13 Lines, Planes and Spheres

Certain geometrical objects can be described by vector equations.

2.13.1 Lines

Consider the line through a point A parallel to a
vector t, and let P be a point on the line. Then the
vector equation for a point on the line is given by

→
OP =

→
OA +

→
AP

or equivalently, for some λ ∈ R,

x = a + λt . (2.85a)

We may eliminate λ from the equation by noting that x− a = λt, and hence

(x− a)× t = 0 . (2.85b)

This is an equivalent equation for the line since the solutions to (2.85b) for t 6= 0 are either x = a or
(x− a) parallel to t.9/03

Remark. Equation (2.85b) has many solutions; the multiplicity of the solutions is represented by a single
arbitrary scalar.

Worked Exercise. For given u, t ∈ R3 find solutions x ∈ R3 to

u = x× t . (2.86)

Solution. First ‘dot’ (2.86) with t to obtain

t · u = t · (x× t) = 0 .

Thus there are no solutions unless t · u = 0. Next ‘cross’ (2.86) with t to obtain

t× u = t× (x× t) = (t · t)x− (t · x)t .

Hence

x =
t× u

|t|2
+

(t · x)t

|t|2
.

Finally observe that if x is a solution to (2.86) so is x + µt for any µ ∈ R, i.e. solutions of
(2.86) can only be found up to an arbitrary multiple of t. Hence the general solution to (2.86),
assuming that t · u = 0, is

x =
t× u

|t|2
+ µt , (2.87)

i.e. a straight line in direction t through (t× u)/|t|2.9/02
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2.13.2 Planes

Consider a plane that goes through a point A and that
is orthogonal to a unit vector n; n is the normal to the
plane. Let P be any point in the plane. Then (cf. (2.83))

→
AP ·n = 0 ,( →

AO +
→
OP

)
· n = 0 ,

(x− a) · n = 0 . (2.88a)

Let Q be the point in the plane such that
→
OQ is parallel

to n. Suppose that
→
OQ= dn, then d is the distance of

the plane to O. Further, since Q is in the plane, it follows
from (2.88a) that

(dn− a) · n = 0 , and hence a · n = dn2 = d .

The equation of the plane is thus
x · n = a · n = d . (2.88b)

Remarks.

(i) If l and m are two linearly independent vectors such that l · n = 0 and m · n = 0 (so that both
vectors lie in the plane), then any point x in the plane may be written as

x = a + λl + µm , (2.89)

where λ, µ ∈ R.

(ii) (2.89) is a solution to equation (2.88b). The arbitrariness in the two independent arbitrary scalars
λ and µ means that the equation has [uncountably] many solutions.

9/06

Worked exercise. Under what conditions do the two lines L1 : (x− a)× t = 0 and L2 : (x− b)× u = 0
intersect?

Solution. If the lines are to intersect they cannot be paral-
lel, hence t and u must be linearly independent. L1

passes through a; let L′2 be the line passing through
a parallel to u. Let Π be the plane containing L1

and L′2, with normal t × u. Hence from (2.88a) the
equation specifying points on the plane Π is

Π : (x− a) · (t× u) = 0 . (2.90)

Because L2 is parallel to L′2 and thence Π, either
L2 intersects Π nowhere (in which case L1 does not
intersect L2), or L2 lies in Π (in which case L1 in-
tersects L2). If the latter case, then b lies in Π and
we deduce that a necessary condition for the lines to
intersect is that

(b− a) · (t× u) = 0 . (2.91)

Further, we can show that (2.91) is also a sufficient condition for the lines to intersect (assuming
that they are not parallel). For if (2.91) holds, then (b−a) must lie in the plane through the origin
that is normal to (t× u). This plane is spanned by t and u, and hence there must exist α, β ∈ R
such that

b− a = αt + βu .
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Let x be the point specified as follows:

x = a + αt = b− βu ;

then from the equation of a line, (2.85a), we deduce that x is a point on both L1 and L2 (as
required).

Hyper-plane in Rn. The (hyper-)plane in Rn that passes through b ∈ Rn and has normal n ∈ Rn, is
given by

Π = {x ∈ Rn : (x− b) · n = 0, b,n ∈ Rn with |n| = 1}. (2.92)

2.13.3 Spheres

Sphere in R3. The sphere in R3 with centre O and radius r ∈ R
is given by

Σ = {x ∈ R3 : |x| = r > 0, r ∈ R}. (2.93a)

Hyper-sphere in Rn. The (hyper-)sphere in Rn with centre
a ∈ Rn and radius r ∈ R is given by

Σ = {x ∈ Rn : |x−a| = r > 0, r ∈ R, a ∈ Rn}. (2.93b)8/08

2.14 Subspaces

2.14.1 Subspaces: informal discussion

Suppose the set {a,b, c} is a basis for 3D space. Form a set consisting of any two linearly independent
combinations of these vectors, e.g. {a,b}, or {a + c,a + b− c}. This new set spans a 2D plane that we
view as a subspace of 3D space.

Remarks.

(i) There are an infinite number of 2D subspaces of 3D space.

(ii) Similarly, we can define [an infinite number of] 1D subspaces of 3D space (or 2D space).

2.14.2 Subspaces: formal definition

Definition. A non-empty subset U of the elements of a vector space V is called a subspace of V if U is
a vector space under the same operations (i.e. vector addition and scalar multiplication) as are used to
define V .

Proper subspaces. Strictly V and {0} (i.e. the set containing the zero vector only) are subspaces of V .
A proper subspace is a subspace of V that is not V or {0}.

Theorem 2.2. A subset U of a vector space V is a subspace of V if and only if under operations defined
on V

(i) for each x,y ∈ U , x + y ∈ U ,

(ii) for each x ∈ U and λ ∈ R, λx ∈ U ,

i.e. if and only if U is closed under vector addition and scalar multiplication.
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Remark. We can combine (i) and (ii) as the single condition

for each x,y ∈ U and λ, µ ∈ R, λx + µy ∈ U . (2.94)

Proof.

Only if. If U is a subspace then it is a vector space, and hence (i) and (ii) hold from the definition
of a vector space..

If. It is straightforward to show that VA(i), VA(ii), SM(i), SM(ii), SM(iii) and SM(iv) hold, since
the elements of U are also elements of V . We need demonstrate that VA(iii) (i.e. 0 is an
element of U), and VA(iv) (i.e. the every element has an inverse in U) hold.

VA(iii). For each x ∈ U , it follows from (ii) that 0x ∈ U ; but since also x ∈ V it follows
from (2.9b) or (2.15) that 0x = 0. Hence 0 ∈ U .

VA(iv). For each x ∈ U , it follows from (ii) that (−1)x ∈ U ; but since also x ∈ V it follows
from (2.9c) or (2.16) that (−1)x = −x. Hence −x ∈ U .

2

2.14.3 Examples

(i) For n > 2 let U = {x ∈ Rn : x = (x1, x2, . . . , xn−1, 0) with xj ∈ R and j = 1, 2, . . . , n − 1}. Then
U is a subspace of Rn since, for x,y ∈ U and λ, µ ∈ R,

λ(x1, x2, . . . , xn−1, 0) + µ(y1, y2, . . . , yn−1, 0) = (λx1 + µy1, λx2 + µy2, . . . , λxn−1 + µyn−1, 0) .

Thus U is closed under vector addition and scalar multiplication, and is hence a subspace.

(ii) Consider the set W = {x ∈ Rn :
∑n
i=1 αixi = 0} for given scalars αj ∈ R (j = 1, 2, . . . , n). W is

a a hyper-plane through the origin (see (2.92)), and is a subspace of V since, for x,y ∈ W and
λ, µ ∈ R,

λx + µy = (λx1 + µy1, λx2 + µy2, . . . , λxn + µyn) ,

and
n∑
i=1

αi(λxi + µyi) = λ

n∑
i=1

αixi + µ

n∑
i=1

αiyi = 0 .

Thus W is closed under vector addition and scalar multiplication, and is hence a subspace.

(iii) For n > 2 consider the set W̃ = {x ∈ Rn :
∑n
i=1 αixi = 1} for given scalars αj ∈ R (j = 1, 2, . . . , n)

not all of which are zero (wlog α1 6= 0, if not reorder the numbering of the axes). W̃ is another
hyper-plane, but in this case it does not pass through the origin. It is not a subspace of Rn. To see
this either note that 0 6∈ W̃ , or consider x ∈ W̃ such that

x = (α−1
1 , 0, . . . , 0) .

Then x ∈ W̃ but x+x 6∈ W̃ since
∑n
i=1 αi(xi+xi) = 2. Thus W̃ is not closed under vector addition,

and so W̃ cannot be a subspace of Rn.
8/09
8/10

Mathematical Tripos: IA Vectors & Matrices 39 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2010



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

3 Matrices and Linear Maps

3.0 Why Study This?

A matrix is a rectangular table of elements. Matrices are used for a variety of purposes, e.g. describing
both linear equations and linear maps. They are important since, inter alia, many problems in the real
world are linear, e.g. electromagnetic waves satisfy linear equations, and almost all sounds you hear are
‘linear’ (exceptions being sonic booms). Moreover, many computational approaches to solving nonlinear
problems involve ‘linearisations’ at some point in the process (since computers are good at solving linear
problems). The aim of this section is to familiarise you with matrices.

3.1 An Example of a Linear Map

Let {e1, e2} be an orthonormal basis in 2D, and let u
be vector with components (u1, u2). Suppose that u
is rotated by an angle θ to become the vector u′ with
components (u′1, u

′
2). How are the (u′1, u

′
2) related to

the (u1, u2)?

Let u = |u| = |u′|, u · e1 = u cosψ and u · e2 = u sinψ, then by geometry

u′1 = u cos(ψ + θ) = u(cosψ cos θ − sinψ sin θ) = u1 cos θ − u2 sin θ (3.1a)

u′2 = u sin(ψ + θ) = u(cosψ sin θ + sinψ cos θ) = u1 sin θ + u2 cos θ (3.1b)

We can express this in suffix notation as (after temporarily suppressing the summation convention)

u′i =

2∑
j=1

Rijuj , (3.2)

where

R11 = cos θ , R12 = − sin θ , (3.3a)

R21 = sin θ , R22 = cos θ , (3.3b)

3.1.1 Matrix notation

The above equations can be written in a more convenient form by using matrix notation. Let u and u′

be the column matrices, or column vectors,

u =

(
u1

u2

)
and u′ =

(
u′1
u′2

)
(3.4a)

respectively, and let R be the 2× 2 square matrix

R =

(
R11 R12

R21 R22

)
. (3.4b)

Remarks.

• We call the Rij , i, j = 1, 2 the elements of the matrix R.

• Sometimes we write either R = {Rij} or Rij = (R)ij .

• The first suffix i is the row number, while the second suffix j is the column number.
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• We now have bold u denoting a vector, italic ui denoting a component of a vector, and sans serif
u denoting a column matrix of components.

• To try and avoid confusion we have introduced for a short while a specific notation for a column
matrix, i.e. u. However, in the case of a column matrix of vector components, i.e. a column vector,
an accepted convention is to use the standard notation for a vector, i.e. u. Hence we now have

u =

(
u1

u2

)
= (u1, u2) , (3.5)

where we draw attention to the commas on the RHS.

Equation (3.2) can now be expressed in matrix notation as

u′ = Ru or equivalently u′ = Ru , (3.6a)

where a matrix multiplication rule has been defined in terms of matrix elements as

u′i =

2∑
j=1

Rijuj , (3.6b)

and the [2D] rotation matrix, R(θ), is given by

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (3.6c)

3.2 Linear Maps

3.2.1 Notation

Definition. Let A,B be sets. A map T of A into B is a rule that assigns to each x ∈ A a unique x′ ∈ B.
We write

T : A→ B and/or x 7→ x′ = T (x)

Definition. A is the domain of T .

Definition. B is the range, or codomain, of T .

Definition. T (x) = x′ is the image of x under T .

Definition. T (A) is the image of A under T , i.e. the set of all image points x′ ∈ B of x ∈ A.

Remark. T (A) ⊆ B, but there may be elements of B that are not images of any x ∈ A.

3.2.2 Definition

We shall consider linear maps from Rn to Rm, or Cn to Cm, for m,n ∈ Z+. For definiteness we will work
with real linear maps, but the extension to complex linear maps is straightforward (except where noted
otherwise).

Definition. Let V,W be real vector spaces, e.g. V = Rn and W = Rm. The map T : V →W is a linear
map or linear transformation if for all a,b ∈ V and λ, µ ∈ R,

(i) T (a + b) = T (a) + T (b) , (3.7a)

(ii) T (λa) = λT (a) , (3.7b)

or equivalently if
T (λa + µb) = λT (a) + µT (b) . (3.8) 8/07
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Property. T (V ) is a subspace of W , since for T (a), T (b) ∈ T (V )

λT (a) + µT (b) = T (λa + µb) ∈ T (V ) for all λ, µ ∈ R. (3.9)

Now apply Theorem 2.2 on page 38.

The zero element. Since T (V ) is a subspace, it follows that 0 ∈ T (V ). However, we can say more than
that. Set b = 0∈ V in (3.7a), to deduce that

T (a) = T (a + 0) = T (a) + T (0) for all a ∈ V .

Thus from the uniqueness of the zero element it follows that T (0) = 0∈W .

Remark. T (b) = 0∈W does not imply b = 0∈ V .15/03

3.2.3 Examples

(i) Consider translation in R3, i.e. consider

x 7→ x′ = T (x) = x + a , where a ∈ R3 and a 6= 0 . (3.10a)

This is not a linear map by the strict definition of a linear map since

T (x) + T (y) = x + a + y + a = T (x + y) + a 6= T (x + y) .

(ii) Consider the projection, Pn : R3 → R3, onto a line with direction n ∈ R3 as defined by (cf. (2.23b))

x 7→ x′ = Pn(x) = (x · n)n where n · n = 1 . (3.10b)

From the observation that

Pn(λx1 + µx2) = ((λx1 + µx2) · n)n

= λ(x1 · n)n + µ(x2 · n)n

= λPn(x1) + µPn(x2)

we conclude that this is a linear map.

Remark. The image of Pn is given by Pn(R3) = {x ∈ R3 : x = λn for λ ∈ R}, which is a
1-dimensional subspace of R3.

(iii) As an example of a map where the domain has a higher dimension than the range consider
S : R3 → R2 where

(x, y, z) 7→ (x′, y′) = S(x) = (x+ y, 2x− z) . (3.10c)

S is a linear map since

S(λx1 + µx2) = ((λx1 + µx2) + (λy1 + µy2), 2(λx1 + µx2)− (λz1 + µz2))

= λ(x1 + y1, 2x1 − z1) + µ(x2 + y2, 2x2 − z2)

= λS(x1) + µS(x2) .

Remarks.

(a) The orthonormal basis vectors for R3, i.e. e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) are
mapped to the vectors

S(e1) = (1, 2)
S(e2) = (1, 0)
S(e3) = (0,−1)

 which are linearly dependent and span R2.

Hence S(R3) = R2.
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(b) We observe that

R3 = span{e1, e2, e3} and S(R3) = R2 = span{S(e1),S(e2),S(e3)}.

(c) We also observe that

S(e1)− S(e2) + 2S(e3) = 0∈ R2 which means that S(λ(e1 − e2 + 2e3)) = 0∈ R2 ,

for all λ ∈ R. Thus the whole of the subspace of R3 spanned by {e1 − e2 + 2e3}, i.e. the
1-dimensional line specified by λ(e1 − e2 + 2e3), is mapped onto 0∈ R2.

(iv) As an example of a map where the domain has a lower dimension than the range, let T : R2 → R4

where
(x, y) 7→ T (x, y) = (x+ y, x, y − 3x, y) . (3.10d)

T is a linear map since

T (λx1 + µx2) = ((λx1 + µx2) + (λy1 + µy2), λx1 + µx2, λy1 + µy2 − 3(λx1 + µx2), λy1 + µy2)

= λ(x1 + y1, x1, y1 − 3x1, y1) + µ(x2 + y2, x2, y2 − 3x2, y2)

= λT (x1) + µT (x2) .

Remarks.

(a) In this case we observe that the orthonormal basis vectors of R2 are mapped to the vectors

T (e1) = T ((1, 0)) = (1, 1,−3, 0)
T (e2) = T ((0, 1)) = (1, 0, 1, 1)

}
which are linearly independent,

and which form a basis for T (R2). Thus the subspace T (R2) = span{(1, 1,−3, 0), (1, 0, 1, 1)} of
R4 is two-dimensional.

(b) The only solution to T (x) = 0 is x = 0.

3.3 Rank, Kernel and Nullity

Let T : V → W be a linear map (say with V = Rn and W = Rm). Recall that T (V ) is the image of V
under T , and that T (V ) is a subspace of W .

Definition. The rank of T is the dimension of the image, i.e.

r(T ) = dim T (V ) . (3.11)

Examples. For S defined in (3.10c) and for T defined in (3.10d) we have seen that r(S) = 2 and r(T ) = 2.

Definition. The subset of V that maps to the zero element in W is called the kernel, or null space,
of T , i.e.

K(T ) = {v ∈ V : T (v) = 0 ∈W} . (3.12)
15/06
9/08
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Theorem 3.1. K(T ) is a subspace of V .

Proof. We will use Theorem 2.2 on page 38. To do so we need to show that if u,v ∈ K(T ) and λ, µ ∈ R
then λu + µv ∈ K(T ). However from (3.8)

T (λu + µv) = λT (u) + µT (v)

= λ0 + µ0

= 0 ,

and hence λu + µv ∈ K(T ).

Remark. Since T (0) = 0∈W , 0 ∈ K(T ) ⊆ V , so K(T ) contains at least 0.

Definition. The nullity of T is defined to be the dimension of the kernel, i.e.

n(T ) = dim K(T ) . (3.13)

Examples. For S defined in (3.10c) and for T defined in (3.10d) we have seen that n(S) = 1 and n(T ) = 0.

Theorem 3.2 (The Rank-Nullity Theorem). Let T : V →W be a linear map, then

r(T ) + n(T ) = dim V = dimension of domain . (3.14)

Proof. See Linear Algebra.

Examples. For S : R3 → R2 defined in (3.10c), and for T : R2 → R4 defined in (3.10d), we have that

r(S) + n(S) = 2 + 1 = dim R3 = dimension of domain ,

r(T ) + n(T ) = 2 + 0 = dim R2 = dimension of domain .

3.3.1 Unlectured further examples

(i) Consider projection onto a line, Pn : R3 → R3, where as in (2.23b) and (3.10b)

x 7→ x′ = Pn(x) = (x · n)n ,

and n is a fixed unit vector. Then

Pn(R3) = {x ∈ R3 : x = λn, λ ∈ R} ,

which is a line in R3; thus r(Pn) = 1. Further, the kernel is given by

K(Pn) = {x ∈ R3 : x · n = 0} ,

which is a plane in R3; thus n(Pn) = 2. We conclude that in accordance with (3.14)

r(Pn) + n(Pn) = 3 = dim R3 = dimension of domain .

(ii) Consider the map T : R2 → R3 such that

(x, y) 7→ T (x, y) = (2x+ 3y, 4x+ 6y,−2x− 3y) = (2x+ 3y)(1, 2,−1) .

T (R2) is the line x = λ(1, 2,−1) ∈ R3, and so the rank of the map is given by

r(T ) = dim T (R2) = 1 .

Further, x = (x, y) ∈ K(T ) if 2x+ 3y = 0, so

K(T ) = {x = (−3s, 2s) : s ∈ R} ,

which is a line in R2. Thus
n(T ) = dim K(T ) = 1 .

We conclude that in accordance with (3.14)

r(T ) + n(T ) = 2 = dim R2 = dimension of domain .
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3.4 Composition of Maps

Suppose that S : U → V and T : V → W are linear maps (say with U = R`, V = Rn and W = Rm)
such that

u 7→ v = S(u) , v 7→ w = T (v) . (3.15)

Definition. The composite or product map T S is
the map T S : U →W such that

u 7→ w = T (S(u)) ,

where we note that S acts first, then T .

Remark. For the map to be well-defined the domain
of T must include the image of S (as assumed above).

16/03

3.4.1 Examples

(i) Let Pn be a projection onto a line (see (3.10b)):

Pn : R3 → R3 .

Since the image ⊆ domain we may apply the map
twice, and show (by geometry or algebra) that

Pn Pn = P2
n = Pn . (3.16)

(ii) For the maps S : R3 → R2 and T : R2 → R4 as defined in (3.10c) and (3.10d), the composite map
T S : R3 → R4 is such that

T S(x, y, z) = T (S(x, y, z))

= T (x+ y, 2x− z)
= (3x+ y − z, x+ y,−x− 3y − z, 2x− z) .

Remark. ST not well defined because the range of T is not the domain of S.2416/02
9/09

3.5 Bases and the Matrix Description of Maps

Let {ej} (j = 1, . . . , n) be a basis for Rn (not necessarily orthonormal or even orthogonal, although it
may help to think of it as an orthonormal basis). Any x ∈ Rn has a unique expansion in terms of this
basis, namely

x =

n∑
j=1

xjej ,

where the xj are the components of x with respect to the given basis.

Consider a linear map A : Rn → Rm, where m,n ∈ Z+, i.e. a map x 7→ x′ = A(x), where x ∈ Rn and
x′ ∈ Rm. From the definition of a linear map, (3.8), it follows that

A(x) = A

 n∑
j=1

xjej

 =

n∑
j=1

xjA(ej) , (3.17a)

where A(ej) is the image of ej . In keeping with the above notation

e′j = A(ej) where e′j ∈ Rm. (3.17b)

9/10

24 Or, to be pedantic, a subspace of the domain of S.
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Let {fi} (i = 1, . . . ,m) be a basis of Rm, then since any vector in Rm can be expressed in terms of the
{fi}, there exist Aij ∈ R (i = 1, . . . ,m, j = 1, . . . , n) such that

e′j = A(ej) =

m∑
i=1

Aij fi . (3.18a)

Aij is the ith component of e′j = A(ej) with respect to the basis {fi} (i = 1, . . . ,m), i.e.

Aij = (e′j)i = (A(ej))i . (3.18b)

Hence, from (3.17a) and (3.18a), it follows that for general x ∈ Rn

x′ = A(x) =

n∑
j=1

xj

(
m∑
i=1

Aij fi

)

=

m∑
i=1

 n∑
j=1

Aij xj

 fi . (3.19a)

Thus, in component form

x′ =

m∑
i=1

x′i fi where x′i = (A(x))i =

n∑
j=1

Aij xj . (3.19b)

Alternatively, in long hand

x′1 = A11x1 + A12x2 + . . . + A1nxn ,
x′2 = A21x1 + A22x2 + . . . + A2nxn ,
... =

... +
... +

. . . +
... ,

x′m = Am1x1 + Am2x2 + . . . + Amnxn ,

(3.19c)

or in terms of the suffix notation and summation convention introduced earlier

x′i = Aijxj . (3.19d)

Since x was an arbitrary vector, what this means is that once we know the Aij we can calculate the results
of the mapping A : Rn → Rm for all elements of Rn. In other words, the mapping A : Rn → Rm is, once
bases in Rn and Rm have been chosen, completely specified by the m × n quantities Aij , i = 1, . . . ,m,
j = 1, . . . , n.

Remark. Comparing the definition of Aij from (3.18a) with the relationship (3.19d) between the com-
ponents of x′ = A(x) and x, we note that in some sense the relations ‘go opposite ways’.

A(ej) =

m∑
i=1

fiAij (j = 1, . . . , n) ,

x′i = (A(x))i =

n∑
j=1

Aijxj (i = 1, . . . , n) .
9/07

3.5.1 Matrix notation

As in (3.6a) and (3.6c) of §3.1.1, the above equations can be written in a more convenient form by using
matrix notation. Let x and x′ now be the column matrices, or column vectors,

x =


x1

x2

...
xn

 and x′ =


x′1
x′2
...
x′m

 (3.20a)
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respectively, and let A be the m× n rectangular matrix

A =


A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

Am1 Am2 . . . Amn

 . (3.20b)

Remarks.

(i) As before the first suffix i is the row number, the second suffix j is the column number, and we call
the Aij the elements of the matrix A.

(ii) In the case of maps from Cn to Cm, the Aij are in general complex numbers (i.e. A is in general a
complex matrix).

Using the same rules of multiplication as before, equation (3.19b), or equivalently (3.19c), or equivalently
(3.19d), can now be expressed in matrix notation as

x′1
x′2
...
x′m


︸ ︷︷ ︸

m× 1 matrix
(column vector
with m rows)

=


A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

Am1 Am2 . . . Amn


︸ ︷︷ ︸

m× n matrix
(m rows, n columns)


x1

x2

...
xn


︸ ︷︷ ︸

n× 1 matrix
(column vector
with n rows)

(3.21a)

i.e.
x′ = Ax , or equivalently x′ = Ax , where A = {Aij} . (3.21b)

Remarks.

(i) Since Aij = (e′j)i from (3.18b), it follows that

A =


(e′1)1 (e′2)1 . . . (e′n)1

(e′1)2 (e′2)2 . . . (e′n)2

...
...

. . .
...

(e′1)m (e′2)m . . . (e′n)m

 =
(
e′1 e′2 . . . e′n

)
, (3.22)

where the e′i on the RHS are to be interpreted as column vectors.

(ii) The elements of A depend on the choice of bases. Hence when specifying a matrix A associated
with a map A, it is necessary to give the bases with respect to which it has been constructed.

(iii) For i = 1, . . . ,m let ri be the vector with components equal to the elements of the ith row of A, i.e.

ri = (Ai1, Ai2, . . . , Ain) , for i = 1, 2, . . . ,m.

Then for real linear maps we see that in terms of the scalar product for vectors25

ith row of x′ = x′i = ri · x , for i = 1, 2, . . . ,m.

25 For complex linear maps this is not the case since the scalar product (2.65) involves a complex conjugate.
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3.5.2 Examples (including some important definitions of maps)

We consider maps R3 7→ R3; then since the domain and range are the same we choose fj = ej (j = 1, 2, 3).
Further we take the {ej}, j = 1, 2, 3, to be an orthonormal basis.

(i) Rotation. Consider rotation by an angle θ
about the x3 axis. Under such a rotation

e1 7→ e′1 = e1 cos θ + e2 sin θ ,

e2 7→ e′2 = −e1 sin θ + e2 cos θ ,

e3 7→ e′3 = e3 .

Thus from (3.22) the rotation matrix, R(θ), is given by (cf.(3.6c))

R(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (3.23)

(ii) Reflection. Consider reflection in the plane Π = {x ∈ R3 : x · n = 0 and |n| = 1}; here n is a con-
stant unit vector.

For a point P , let N be the foot of the perpendicular
from P to the plane. Suppose also that

→
OP= x 7→ HΠ(x) = x′ =

→
OP ′ .

Then →
NP ′=

→
PN= −

→
NP ,

and so

→
OP ′=

→
OP +

→
PN +

→
NP ′=

→
OP −2

→
NP .

But |NP | = |x · n| and

→
NP=

{
|NP |n if

→
NP has the same sense as n, i.e. x · n > 0

−|NP |n if
→
NP has the opposite sense as n, i.e. x · n < 0 .

Hence
→
NP= (x · n)n, and

→
OP ′= x′ = HΠ(x) = x− 2(x · n)n . (3.24)

We wish to construct the matrix H that represents HΠ (with respect to an orthonormal basis). To
this end consider the action of HΠ on each member of an orthonormal basis. Recalling that for an
orthonormal basis ej · n = nj , it follows that

HΠ(e1) = e′1 = e1 − 2n1n =

1
0
0

− 2n1

n1

n2

n3

 =

1− 2n2
1

−2n1n2

−2n1n3

 .

This is the first column of H. Similarly we obtain

H =

1− 2n2
1 −2n1n2 −2n1n3

−2n1n2 1− 2n2
2 −2n2n3

−2n1n3 −2n2n3 1− 2n2
3

 . (3.25a)

16/06

An easier derivation? Alternatively the same result can be obtained using suffix notation since
from (3.24)

x′i = xi − 2xjnjni

= δijxj − 2xjnjni

= (δij − 2ninj)xj

≡ Hijxj .
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Hence
(H)ij = Hij = δij − 2ninj , i, j = 1, 2, 3. (3.25b)

10/08

Unlectured worked exercise. Show that the reflection mapping is isometric, i.e. show that distances
are preserved by the mapping.

Answer. Suppose for j = 1, 2 that

xj 7→ x′j = xj − 2(xj · n)n .

Let x12 = x1 − x2 and x′12 = x′1 − x′2, then

|x′12|2 = |x1 − 2(x1 · n)n− x2 + 2(x2 · n)n|2

= |x12 − 2(x12 · n)n|2

= x12x12 − 4(x12 · n)(x12 · n) + 4(x12 · n)2n2

= |x12|2 ,

since n2 = 1, and as required for isometry.

(iii) Unlectured. Consider the map Qb : R3 → R3 defined by

x 7→ x′ = Qb(x) = b× x . (3.25z)

In order to construct the map’s matrix Q with respect to an orthonormal basis, first note that

Qb(e1) = (b1, b2, b3)× (1, 0, 0) = (0, b3,−b2) .

Now use formula (3.22) and similar expressions for Qb(e2) and Qb(e3) to deduce that

Qb =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 . (3.27a)

The elements {Qij} of Qb could also be derived as follows. From (3.19d) and (3.25z)

Qijxj = x′i = εijkbjxk = (εikjbk)xj .

Hence, in agreement with (3.27a),

Qij = εikjbk = −εijkbk . (3.27b)

(iv) Dilatation. Consider the mapping R3 → R3 defined by x 7→ x′ where

x′1 = λx1 , x′2 = µx2 , x′3 = νx3 where λ, µ, ν ∈ R and λ, µ, ν > 0.

Then
e′1 = λe1 , e′2 = µe2 , e′3 = νe3 ,

and so the map’s matrix with respect to an orthonormal basis, say D, is given by

D =

λ 0 0
0 µ 0
0 0 ν

 , (3.28)

where D is a dilatation matrix. The effect on the unit
cube 0 6 x1 6 1, 0 6 x2 6 1, 0 6 x3 6 1, of this map
is to send it to 0 6 x′1 6 λ, 0 6 x′2 6 µ, 0 6 x′3 6 ν,
i.e. to a cuboid that has been stretched or con-
tracted by different factors along the different Carte-
sian axes. If λ = µ = ν then the transformation is
called a pure dilatation. 17/03
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(v) Shear. A simple shear is a transformation in the plane, e.g. the x1x2-plane, that displaces points in
one direction, e.g. the x1 direction, by an amount proportional to the distance in that plane from,
say, the x1-axis. Under this transformation

e1 7→ e′1 = e1 , e2 7→ e′2 = e2 + λe1 , e3 7→ e′3 = e3 , where λ ∈ R. (3.29)

For this example the map’s shear matrix (with respect to an orthonormal basis), say Sλ, is given
by

Sλ =

1 λ 0
0 1 0
0 0 1

 . (3.30)

Check.

Sλ

ab
0

 =

a+ λb
b
0

 .

17/02
10/09
10/10

3.6 Algebra of Matrices

3.6.1 Addition

Let A : Rn → Rm and B : Rn → Rm be linear maps. Define the linear map (A+ B) : Rn → Rm by

(A+ B)(x) = A(x) + B(x) . (3.31a)

Suppose that A = {Aij}, B = {Bij} and (A + B) = {(A+B)ij} are the m× n matrices associated with
the maps, then (using the summation convention)

(A + B)ijxj = ((A+ B)(x))i

= A(x)i + (B)(x)i

= (Aij + Bij)xj .

Hence, for consistency, matrix addition must be defined by

A + B = {Aij +Bij} . (3.31b)

3.6.2 Multiplication by a scalar

Let A : Rn → Rm be a linear map. Then for given λ ∈ R define the linear map (λA) such that

(λA)(x) = λ(A(x)) . (3.32a)

Let A = {Aij} be the matrix of A, then from (3.19a)

((λA)(x))i = (λA(x))i

= λ(Aijxj)

= (λAij)xj .

Hence, for consistency the matrix of λA must be

λA = {λAij} , (3.32b)

which we use as the definition of a matrix multiplied by a scalar.
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3.6.3 Matrix multiplication

Let S : R` → Rn and T : Rn → Rm be linear maps. For given bases for R`, Rm and Rn, let

S = {Sij} be the n× ` matrix of S,
T = {Tij} be the m× n matrix of T .

Now consider the composite map W = T S : R` → Rm, with associated m× ` matrix W = {Wij}. If

x′ = S(x) and x′′ = T (x′) , (3.33a)

then from (3.19d),

x′j = Sjkxk and x′′i = Tijx
′
j (s.c.), (3.33b)

and thus

x′′i = Tij(Sjkxk) = (TijSjk)xk (s.c.). (3.34a)

However,

x′′ = T S(x) =W(x) and x′′i = Wikxk (s.c.) . (3.34b)

Hence because (3.34a) and (3.34b) must identical for arbitrary x, it follows that

Wik = TijSjk (s.c.) . (3.35)

We interpret (3.35) as defining the elements of the matrix product TS. In words, for real matrices

the ikth element of TS equals the scalar product of the ith row of T with the kth column of S.
10/07

Remarks.

(i) The above definition of matrix multiplication is consistent with the special case when S is a column
matrix (or column vector), i.e. the n = 1 special case considered in (3.21b).

(ii) For matrix multiplication to be well defined, the number of columns of T must equal the number
of rows of S; this is the case above since T is a m× n matrix, while S is a n× ` matrix.

(iii) If A is a p× q matrix, and B is a r × s matrix, then

AB exists only if q = r, and is then a p× s matrix;
BA exists only if s = p, and is then a r × q matrix.

For instance a b
c d
e f

(g h i
j k `

)
=

ag + bj ah+ bk ai+ b`
cg + dj ch+ dk ci+ d`
eg + fj eh+ fk ei+ f`

 ,

while (
g h i
j k `

)a b
c d
e f

 =

(
ga+ hc+ ie gb+ hd+ if
ja+ kc+ `e jb+ kd+ `f

)
.

(iv) Even if p = q = r = s, so that both AB and BA exist and have the same number of rows and
columns,

AB 6= BA in general, (3.36)
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i.e. matrix multiplication is not commutative. For instance(
0 1
1 0

)(
1 0
0 −1

)
=

(
0 −1
1 0

)
,

while (
1 0
0 −1

)(
0 1
1 0

)
=

(
0 1
−1 0

)
.

Property. The multiplication of matrices is associative, i.e. if A = {Aij}, B = {Bij} and C = {Cij} are
matrices such that AB and BC exist, then

A(BC) = (AB)C . (3.37)

Proof. In terms of suffix notation (and the summation convention)

(A(BC))ij = Aik(BC)kj = AikBk`C`j = Ai£B£UCUj ,

((AB)C)ij = (AB)ikCkj = Ai`B`kCkj = Ai£B£UCUj .

18/03

3.6.4 Transpose

Definition. If A = {Aij} is a m× n matrix, then its transpose AT is defined to be a n×m matrix with
elements

(AT)ij = (A)ji = Aji . (3.38a)

Property.
(AT)T = A . (3.38b)

Examples.

(i) 1 2
3 4
5 6

T

=

(
1 3 5
2 4 6

)
.

(ii)

If x =


x1

x2

...
xn

 is a column vector, xT =
(
x1 x2 . . . xn

)
is a row vector.

Remark. Recall that commas are sometimes important:

x =


x1

x2

...
xn

 = (x1, x2, . . . , xn) ,

xT =
(
x1 x2 . . . xn

)
.

Property. If A = {Aij} and B = {Bij} are matrices such that AB exists, then

(AB)T = BTAT . (3.39)
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Proof. ((AB)T)ij = (AB)ji

= AjkBki

= (B)ki(A)jk

= (BT)ik(AT)kj

= (BTAT)ij .

Example. Let x and y be 3× 1 column vectors, and let A = {Aij} be a 3× 3 matrix. Then

xTAy = xiAijyj = x£A£UyU .

is a 1× 1 matrix, i.e. a scalar. Further we can confirm that a scalar is its own transpose:

(xTAy)T = yTATx = yiAjixj = xjAjiyi = x£A£UyU = xTAy .

Definition. The Hermitian conjugate or conjugate transpose or adjoint of a matrix A = {Aij}, where
Aij ∈ C, is defined to be

A† = (AT)∗ = (A∗)T . (3.40)

Property. Similarly to transposes
A†† = A . (3.41a)

Property. If A = {Aij} and B = {Bij} are matrices such that AB exists, then

(AB)† = B†A† . (3.41b)

Proof. Add a few complex conjugates to the proof above.

3.6.5 Symmetric and Hermitian Matrices

Definition. A square n× n matrix A = {Aij} is symmetric if

A = AT , i.e. Aij = Aji . (3.42a)

Definition. A square n× n [complex] matrix A = {Aij} is Hermitian if

A = A† , i.e. Aij = A∗ji . (3.42b)
18/02

Definition. A square n× n matrix A = {Aij} is antisymmetric if

A = −AT , i.e. Aij = −Aji . (3.43a)

Remark. For an antisymmetric matrix, A11 = −A11, i.e. A11 = 0. Similarly we deduce that all the
diagonal elements of antisymmetric matrices are zero, i.e.

A11 = A22 = . . . = Ann = 0 . (3.43b)

Definition. A square n× n [complex] matrix A = {Aij} is skew-Hermitian if

A = −A† , i.e. Aij = −A∗ji . (3.43c)

Exercise. Show that all the diagonal elements of Hermitian and skew-Hermitian matrices are real and
pure imaginary respectively.
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Examples.

(i) A symmetric 3× 3 matrix S has the form

S =

a b c
b d e
c e f

 ,

i.e. it has six independent elements.

(ii) An antisymmetric 3× 3 matrix A has the form

A =

 0 a −b
−a 0 c
b −c 0

 ,

i.e. it has three independent elements.

Remark. Let a = v3, b = v2 and c = v1, then (cf. (3.27a) and (3.27b))

A = {Aij} = {εijkvk} . (3.44)

Thus each antisymmetric 3× 3 matrix corresponds to a unique vector v in R3.

3.6.6 Trace

Definition. The trace of a square n×n matrix A = {Aij} is equal to the sum of the diagonal elements,
i.e.

Tr(A) = Aii (s.c.) . (3.45)

Remark. Let B = {Bij} be a m × n matrix and C = {Cij} be a n ×m matrix, then BC and CB both
exist, but are not usually equal (even if m = n). However

Tr(BC) = (BC)ii = BijCji ,

T r(CB) = (CB)ii = CijBji = BijCji ,

and hence Tr(BC) = Tr(CB) (even if m 6= n so that the matrices are of different sizes).11/08

3.6.7 The unit or identity matrix

Definition. The unit or identity n× n matrix is defined to be

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 , (3.46)

i.e. all the elements are 0 except for the diagonal elements that are 1.

Example. The 3× 3 identity matrix is given by

I =

1 0 0
0 1 0
0 0 1

 = {δij} . (3.47)
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Property. Define the Kronecker delta in Rn such that

δij =

{
1 if i = j
0 if i 6= j

for i, j = 1, 2, . . . , n. (3.48)

Let A = {Aij} be a n× n matrix, then

(IA)ij = δikAkj = Aij ,

(AI)ij = Aikδkj = Aij ,

i.e.

IA = AI = A . (3.49)

3.6.8 Decomposition of a Square Matrix into Isotropic, Symmetric Trace-Free and Anti-
symmetric Parts

Suppose that B be a n× n square matrix. Construct the matrices A and S from B as follows:

A = 1
2

(
B− BT

)
, (3.50a)

S = 1
2

(
B + BT

)
. (3.50b)

Then A and S are antisymmetric and symmetric matrices respectively, and B is the sum of A and S, since

AT = 1
2

(
BT − B

)
= −A , (3.51a)

ST = 1
2

(
BT + B

)
= S , (3.51b)

A + S = 1
2

(
B− BT + B + BT

)
= B . (3.51c)

Let nσ be the trace of S, i.e. σ = 1
n Sii, and write

E = S− σI . (3.52)

Then E is a trace-free symmetric tensor, and

B = σI + E + A , (3.53)

which represents the decomposition of a square matrix into isotropic, symmetric trace-free and antisym-
metric parts.

Remark. For current purposes we define an isotropic matrix to be a scalar multiple of the identity
matrix. Strictly we are interested in isotropic tensors, which you will encounter in the Vector
Calculus course.

Application. Consider small deformations of a solid body. If x is the position vector of a point in the
body, suppose that it is deformed to Bx. Then

(i) σ represents the average [uniform] dilatation (i.e. ex-
pansion or contraction) of the deformation,

(ii) E is a measure of the strain of the deformation,

(iii) Ax is that part of the displacement representing the
average rotation of the deformation (A is sometimes
referred to as the spin matrix).11/09

11/10
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3.6.9 The inverse of a matrix

Definition. Let A be a m×n matrix. A n×m matrix B is a left inverse of A if BA = I. A n×m matrix
C is a right inverse of A if AC = I.

Property. If B is a left inverse of A and C is a right inverse of A then B = C and we write B = C = A−1.

Proof. From (3.37), (3.49), BA = I and AC = I it follows that

B = BI = B(AC) = (BA)C = IC = C .

Remark. This property is based on the premise that both a left inverse and right inverse exist. In general,
the existence of a left inverse does not necessarily guarantee the existence of a right inverse, or
vice versa. However, in the case of a square matrix, the existence of a left inverse does imply the
existence of a right inverse, and vice versa (see Linear Algebra for a general proof). The above
property then implies that they are the same matrix.

Definition. Let A be a n×n matrix. A is said to be invertible if there exists a n×n matrix B such that

BA = AB = I . (3.54)

The matrix B is called the inverse of A, is unique (see above) and is denoted by A−1 (see above).

Property. From (3.54) it follows that A = B−1 (in addition to B = A−1). Hence

A = (A−1)−1 . (3.55)

Property. Suppose that A and B are both invertible n× n matrices. Then

(AB)−1 = B−1A−1 . (3.56)

Proof. From using (3.37), (3.49) and (3.54) it follows that

B−1A−1(AB) = B−1(A−1A)B = B−1IB = B−1B = I ,

(AB)B−1A−1 = A(BB−1)A−1 = AIA−1 = AA−1 = I .11/07

3.6.10 Orthogonal and unitary matrices

Definition. An n× n real matrix A = {Aij} is orthogonal if

AAT = I = ATA , (3.57a)

i.e. if A is invertible and A−1 = AT.

Property: orthogonal rows and columns. In components (3.57a) becomes

(A)ik(AT)kj = AikAjk = δij . (3.57b)

Thus the real scalar product of the ith and jth rows of A is zero unless i = j in which case it is 1.
This implies that the rows of A form an orthonormal set. Similarly, since ATA = I,

(AT)ik(A)kj = AkiAkj = δij , (3.57c)

and so the columns of A also form an orthonormal set.
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Property: map of an orthonormal basis. Suppose that the map A : Rn → Rn has a matrix A with respect
to an orthonormal basis. Then from (3.22) we recall that

e1 7→ Ae1 the first column of A,

e2 7→ Ae2 the second column of A,

... 7→
...

en 7→ Aen the nth column of A.

Thus if A is an orthogonal matrix the {ei} transform to an orthonormal set (which may be right-
handed or left-handed depending on the sign of det A, where we define det A below).

Examples.

(i) With respect to an orthonormal basis, rotation by an angle θ about the x3 axis has the matrix
(see (3.23))

R =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (3.58a)

R is orthogonal since both the rows and the columns are orthogonal vectors, and thus

RRT = RTR = I . (3.58b)

(ii) By geometry (or by algebra by invoking formula (3.24) twice), the application of a reflection
map HΠ twice results in the identity map, i.e.

H2
Π = I . (3.59a)

Further, from (3.25b) the matrix of HΠ with respect
to an orthonormal basis is specified by

(H)ij = {δij − 2ninj} .

It follows from (3.59a), or a little manipulation, that

H2 = I . (3.59b)
Moreover H is symmetric, hence

H = HT , and so H2 = HHT = HTH = I . (3.60)

Thus H is orthogonal.19/02

Preservation of the real scalar product. Under a map represented by an orthogonal matrix with respect
to an orthonormal basis, a real scalar product is preserved. For suppose that, in component form,
x 7→ x′ = Ax and y 7→ y′ = Ay (note the use of sans serif), then

x′ · y′ = x′Ty′ (since the basis is orthonormal)

= (xTAT)(Ay)

= xT I y

= xTy

= x · y (since the basis is orthonormal) .

Isometric maps. If a linear map is represented by an orthogonal matrix A with respect to an orthonormal
basis, then the map is an isometry (i.e. distances are preserved by the mapping) since

|x′ − y′|2 = (x′ − y′) · (x′ − y′)

= (x− y) · (x− y)

= |x− y|2 .

Hence |x′ − y′| = |x− y|, i.e. lengths are preserved.
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Remark. The only length preserving maps of R3 are translations (which are not linear maps) and
reflections and rotations (which we have already seen are associated with orthogonal matrices).

Definition. A complex square matrix U is said to be unitary if its Hermitian conjugate is equal to its
inverse, i.e. if

U† = U−1 . (3.61)

Remark. Unitary matrices are to complex matrices what orthogonal matrices are to real matrices. Similar
properties to those above for orthogonal matrices also hold for unitary matrices when references to
real scalar products are replaced by references to complex scalar products (as defined by (2.65)).

3.7 Determinants

3.7.1 Determinants for 3× 3 matrices

Recall that the signed volume of the R3 parallelepiped defined by a, b and c is a · (b× c) (positive if a,
b and c are right-handed, negative if left-handed).

Consider the effect of a linear map, A : R3 → R3, on the volume of the unit cube defined by orthonormal
basis vectors ei. Let A = {Aij} be the matrix associated with A, then the volume of the mapped cube
is, with the aid of (2.73e) and (3.19d), given by

e′1 · e′2 × e′3 = εijk(e′1)i(e
′
2)j(e

′
3)k

= εijkAi`(e1)`Ajm(e2)mAkn(e3)n

= εijkAi`δ1`Ajmδ2mAknδ3n

= εijkAi1Aj2Ak3 . (3.62)

Definition. The determinant of a 3× 3 matrix A is given by

det A = εijkAi1Aj2Ak3 (3.63a)

= A11(A22A33 −A32A23) +A21(A32A13 −A12A33) +A31(A12A23 −A22A13) (3.63b)

= A11(A22A33 −A23A32) +A12(A23A31 −A21A33) +A13(A21A32 −A22A31) (3.63c)

= εijkA1iA2jA3k (3.63d)

= A11A22A33 +A12A23A31 +A13A21A32 −A11A23A32 −A12A21A33 −A13A22A31 . (3.63e)

Alternative notation. Alternative notations for the determinant of the matrix A include

det A ≡ |A | ≡

∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣ =
∣∣ e′1 e′2 e′3

∣∣ . (3.64)

Remarks.

(i) A linear map R3 → R3 is volume preserving if and only if the determinant of its matrix with respect
to an orthonormal basis is ±1 (strictly ‘an’ should be replaced by ‘any’, but we need some extra
machinery before we can prove that; see also (5.25a)).

(ii) If {ei} is a right-handed orthonormal basis then the set {e′i} is right-handed (but not necessarily
orthonormal or even orthogonal) if

∣∣ e′1 e′2 e′3
∣∣ > 0, and left-handed if

∣∣ e′1 e′2 e′3
∣∣ < 0.

(iii) If we like subscripts of subscripts

det A = εi1i2i3Ai11Ai22Ai33 = εj1j2j3A1j1A2j2A3j3 .

18/06
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Exercises.

(i) Show that the determinant of the rotation matrix R defined in (3.23) is +1.

(ii) Show that the determinant of the reflection matrix H defined in (3.25a), or equivalently (3.25b), is
−1 (since reflection sends a right-handed set of vectors to a left-handed set).

Triple-scalar product representation. Let Ai1 = αi, Aj2 = βj , Ak3 = γk, then from (3.63a)

det

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

 = εijkαiβjγk = α · (β × γ) . (3.65)

An abuse of notation. This is not for the faint-hearted. If you are into the abuse of notation show that

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ , (3.66)

where we are treating the vectors i, j and k, as ‘components’.19/03

3.7.2 Determinants for 2× 2 matrices

A map R3 → R3 is effectively two-dimensional if A13 = A31 = A23 = A32 = 0 and A33 = 1 (cf. (3.23)).
Hence for a 2× 2 matrix A we define the determinant to be given by (see (3.63b) or (3.63c))

det A ≡ |A | ≡
∣∣∣∣A11 A12

A21 A22

∣∣∣∣ = A11A22 −A12A21 . (3.67)

Remark. A map R2 → R2 is area preserving if det A = ±1.

Observation. We note that the expressions (3.63b) and (3.63c) for the determinant of a 3× 3 matrix can
be re-written as

det A = A11(A22A33 −A23A32)−A21(A12A33 −A13A32) +A31(A12A23 −A22A13) (3.68a)

= A11(A22A33 −A23A32)−A12(A21A33 −A23A31) +A13(A21A32 −A22A31) , (3.68b)

which in turn can be re-written as

det A = A11

∣∣∣∣A22 A23

A32 A33

∣∣∣∣−A21

∣∣∣∣A12 A13

A32 A33

∣∣∣∣+A31

∣∣∣∣A12 A13

A22 A23

∣∣∣∣ (3.69a)

= A11

∣∣∣∣A22 A23

A32 A33

∣∣∣∣−A12

∣∣∣∣A21 A23

A31 A33

∣∣∣∣+A13

∣∣∣∣A21 A22

A31 A32

∣∣∣∣ . (3.69b)

(3.69a) and (3.69b) are expansions of det A in terms of elements of the first column and row,
respectively, of A and determinants of 2× 2 sub-matrices.

Remark. Note the sign pattern in (3.69a) and (3.69b). 20/02
12/08

3.7.3 Part two of a dummy’s guide to permutations

As noted in part one, a permutation of degree n is a[n invertible] map that rearranges n distinct objects
amongst themselves. We will consider permutations of the set of the first n strictly positive integers
{1, 2, . . . , n}, and will state properties that will be proved at some point in the Groups course.

Remark. There are n! permutations in the set Sn of all permutations of {1, 2, . . . , n}.26

26 Sn is actually a group, referred to as the symmetric group.
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Notation. If ρ is a permutation, we write the map ρ in the form

ρ =

(
1 2 . . . n
ρ(1) ρ(2) . . . ρ(n)

)
. (3.70a)

It is not necessary to write the columns in order, e.g.

ρ =

(
1 2 3 4 5 6
5 6 3 1 4 2

)
=

(
1 5 4 2 6 3
5 4 1 6 2 3

)
. (3.70b)

Inverse. If

ρ =

(
1 2 . . . n
a1 a2 . . . an

)
, then ρ−1 =

(
a1 a2 . . . an
1 2 . . . n

)
. (3.70c)

Fixed Points. k is a fixed point of ρ if ρ(k) = k. By convention fixed points can be omitted from the
expression for ρ, e.g. ‘3’ is a fixed point in (3.70b) so

ρ =

(
1 2 3 4 5 6
5 6 3 1 4 2

)
=

(
1 5 4 2 6
5 4 1 6 2

)
. (3.70d)

Disjoint Permutations. Two permutations ρ1 and ρ2 are disjoint if for every k in {1, 2, . . . , n} either
ρ1(k) = k or ρ2(k) = k. For instance

ρ1 =

(
1 5 4
5 4 1

)
and ρ2 =

(
2 6
6 2

)
. (3.70e)

are disjoint permutations.

Remark. In general permutations do not commute. However, the composition maps formed by
disjoint permutations do commute, i.e. if ρ1 and ρ2 are disjoint permutations then ρ2ρ1 = ρ1ρ2.

Cycles. A cycle (a1, a2, . . . , aq) of length q (or q-cycle) is the permutation(
a1 a2 . . . aq−1 aq
a2 a3 . . . aq a1

)
. (3.70f)

For instance ρ1 and ρ2 in (3.70e) are a 3-cycle and a 2-cycle respectively.

The Standard Representation. Any permutation ρ can be expressed as a product of disjoint (and hence
commuting) cycles, say

ρ = ρm . . . ρ2ρ1 . (3.70g)

For instance from (3.70b), (3.70e) and (3.70j)

ρ =

(
1 2 3 4 5 6
5 6 3 1 4 2

)
=

(
1 5 4
5 4 1

)(
2 6
6 2

)
= (1, 5, 4) (2, 6) . (3.70h)

This description can be shown to be unique up to the ordering of the factors, and is called the
standard representation of ρ.

Transpositions. A 2-cycle, e.g. (a1, a2), is called a transposition. Since (a1, a2) = (a2, a1) a transposition
is its own inverse. A q-cycle can be expressed as a product of transpositions, viz:

(a1, a2, . . . , aq) = (a1, aq) . . . (a1, a3) (a1, a2) . (3.70i)

For instance

ρ1 =

(
1 5 4
5 4 1

)
= (1, 5, 4) = (1, 4) (1, 5) . (3.70j)

Product of Transpositions. It follows from (3.70i) and (3.70g) that any permutation can be represented
as a product of transpositions (this representation is not unique). For instance

ρ =

(
1 2 3 4 5 6
5 6 3 1 4 2

)
= (1, 4) (1, 5) (2, 6) = (5, 1) (5, 4) (2, 6) = (4, 5) (4, 1) (2, 6) . (3.70k)
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The Sign of a Permutation. If a permutation ρ is expressed as a product of transpositions, then it can
be proved that the number of transpositions is always either even or odd. Further, suppose that ρ
can be expressed as a product of r transpositions, then it is consistent to define the sign, ε(ρ), of
ρ to be (−)r. For instance, ε(ρ) = −1 for the permutation in (3.70k).

Further, it follows that if ρ and σ are permutations then

ε(ρσ) = ε(ρ) ε(σ) , (3.70l)

and thence by choosing σ = ρ−1 that

ε(ρ−1) = ε(ρ) . (3.70m)

The Levi-Civita Symbol. We can now generalise the Levi-Civita symbol to higher dimensions:

εj1j2...jn =

 +1 if (j1, j2, . . . , jn) is an even permutation of (1, 2, . . . , n)
−1 if (j1, j2, . . . , jn) is an odd permutation of (1, 2, . . . , n)
0 if any two labels are the same

. (3.70n)

Thus if (j1, j2, . . . , jn) is a permutation, εj1j2...jn is the sign of the permutation, otherwise εj1j2...jn
is zero.12/09

12/10

3.7.4 Determinants for n× n matrices

We define the determinant of a n× n matrix A by

det A =
∑

i1i2...in

εi1i2...inAi11Ai22 . . . Ainn . (3.71a)

Remarks.

(a) This definition is consistent with (3.63a) for 3× 3 matrices. It is also consistent with our definition
of the determinant of 2× 2 matrices.

(b) The only non-zero contributions to (3.71a) come from terms in which the factors Aikk are drawn
once and only once from each row and column.

(c) An equivalent definition to (3.71a) is

det A =
∑
σ∈Sn

ε(σ)Aσ(1)1Aσ(2)2 . . . Aσ(n)n , (3.71b)

where in essence we have expressed (i1, i2, . . . , in) in terms of a permutation σ.

Exercise. Show that det I = 1.12/07

3.7.5 Properties of determinants

(i) For any square matrix A
det A = det AT . (3.72)

Proof. Consider a single term in (3.71b) and let ρ be a permutation, then (writing σ(ρ(1)) = σρ(1))

Aσ(1)1Aσ(2)2 . . . Aσ(n)n = Aσρ(1)ρ(1)Aσρ(2)ρ(2) . . . Aσρ(n)ρ(n) , (3.73)

because the product on the right is simply a re-ordering. Now choose ρ = σ−1, and use the fact
that ε(σ) = ε(σ−1) from (3.70m), to conclude that

det A =
∑
σ∈Sn

ε(σ−1)A1σ−1(1)A2σ−1(2) . . . Anσ−1(n) .
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Every permutation has an inverse, so summing over σ is equivalent to summing over σ−1; hence

det A =
∑
σ∈Sn

ε(σ)A1σ(1)A2σ(2) . . . Anσ(n) (3.74a)

= det AT .

Remarks.

(a) For 3× 3 matrices (3.72) follows immediately from (3.63a) and (3.63d).

(b) From (3.74a) it follows that (cf. (3.71a))

det A =
∑

j1j2...jn

εj1j2...jnA1j1A2j2 . . . Anjn . (3.74b)

(ii) If a matrix B is obtained from A by multiplying any single row or column of A by λ then

det B = λ det A , (3.75)

Proof. From (3.72) we only need to prove the result for rows. Suppose that row r is multiplied by λ
then for j = 1, 2, . . . , n

Bij = Aij if i 6= r, Brj = λArj .

Hence from (3.74b)

det B = εj1...jr...jnB1j1 . . . Brjr . . . Bnjn

= εj1...jr...jnA1j1 . . . λArjr . . . Anjn

= λεj1...jr...jnA1j1 . . . Arjr . . . Anjn

= λ det A .

(iii) The determinant of the n× n matrix λA is given by

det(λA) = λn det A . (3.76)

Proof. From (3.74b)

det(λA) = εj1...jr...jnλA1j1λA2j2 . . . λAnjn

= λnεj1...jr...jnA1j1A2j2 . . . Anjn

= λn det A .

(iv) If a matrix B is obtained from A by interchanging two rows or two columns, then det B = −det A.

Proof. From (3.72) we only need to prove the result for rows. Suppose that rows r and s are
interchanged then for j = 1, 2, . . . , n

Bij = Aij if i 6= r, s, Brj = Asj , and Bsj = Arj .

Then from (3.74b)

det B = εj1...jr...js...jnB1j1 . . . Brjr . . . Bsjs . . . Bnjn

= εj1...jr...js...jnA1j1 . . . Asjr . . . Arjs . . . Anjn

= εj1...js...jr...jnA1j1 . . . Asjs . . . Arjr . . . Anjn relabel jr ↔ js

= −εj1...jr...js...jnA1j1 . . . Arjr . . . Asjs . . . Anjn permutate jr and js

= −det A . 2

Remark. If two rows or two columns of A are identical then det A = 0.

(v) If a matrix B is obtained from A by adding to a given row/column of A a multiple of another
row/column, then

det B = det A . (3.77)
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Proof. From (3.72) we only need to prove the result for rows. Suppose that to row r is added row
s 6= r multiplied by λ; then for j = 1, 2, . . . , n

Bij = Aij if i 6= r, Brj = Arj + λAsj .

Hence from (3.74b), and the fact that a determinant is zero if two rows are equal:

det B = εj1...jr...jnB1j1 . . . Brjr . . . Bnjn

= εj1...jr...jnA1j1 . . . Arjr . . . Anjn + εj1...jr...jnA1j1 . . . λAsjr . . . Anjn

= εj1...jr...jnA1j1 . . . Arjr . . . Anjn + λ 0

= det A .

(vi) If the rows or columns of a matrix A are linearly dependent then det A = 0.

Proof. From (3.72) we only need to prove the result for rows. Suppose that the rth row is linearly
dependent on the other rows. Express this row as a linear combination of the other rows. The
value of det A is unchanged by subtracting this linear combination from the rth row, and the
result is a row of zeros. If follows from (3.74a) or (3.74b) that det A = 0.

Contrapositive. The contrapositive of this result is that if det A 6= 0 the rows (and columns) of A
cannot be linearly dependent, i.e. they must be linearly independent. The converse, i.e. that
if det A = 0 the rows (and columns) must be linearly dependent, is also true (and proved on
page 74 or thereabouts).

3× 3 matrices. For 3× 3 matrices both original statement and the converse can be obtained from
(3.65). In particular, since α · (β × γ) = 0 if and only if α, β and γ are coplanar (i.e. linearly
dependent), det A = 0 if and only if the columns of A are linearly dependent (or from (3.72)
if and only if the rows of A are linearly dependent).

3.7.6 The determinant of a product

We first need a preliminary result. Let ρ be a permutation, then

ε(ρ) det A =
∑
σ∈Sn

ε(σ)Aσ(1)ρ(1)Aσ(2)ρ(2) . . . Aσ(n)ρ(n) . (3.78a)

Proof. ε(ρ) det A = ε(ρ)
∑
τ∈Sn

ε(τ)Aτ(1)1Aτ(2)2 . . . Aτ(n)n from (3.71b) with σ = τ

=
∑
τ∈Sn

ε(τρ)Aτρ(1)ρ(1)Aτρ(2)ρ(2) . . . Aτρ(n)ρ(n) from (3.70l) and (3.73)

=
∑
σ∈Sn

ε(σ)Aσ(1)ρ(1)Aσ(2)ρ(2) . . . Aσ(n)ρ(n) ,

since summing over σ = τρ is equivalent to summing over τ .

Similarly

ε(ρ) det A =
∑
σ∈Sn

ε(σ)Aρ(1)σ(1)Aρ(2)σ(2) . . . Aρ(n)σ(n) , (3.78b)

or equivalently

εp1p2...pn det A =
∑

i1i2...in

εi1i2...inAi1p1Ai2p2 . . . Ainpn , (3.78c)

=
∑

j1j2...jn

εj1j2...jnAp1j1Ap2j2 . . . Apnjn . (3.78d)
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Theorem 3.3. If A and B are both square matrices, then

det AB = (det A)(det B) . (3.79)

Proof. det AB = εi1i2...in(AB)i11(AB)i22 . . . (AB)inn from (3.71a)

= εi1i2...inAi1k1Bk11Ai2k2Bk22 . . . AinknBknn from (3.35)

= εi1i2...inAi1k1Ai2k2 . . . AinknBk11Bk22 . . . Bknn

= εk1k2...kn det ABk11Bk22 . . . Bknn from (3.78c)

= det A det B . from (3.71a)

Theorem 3.4. If A is orthogonal then
det A = ±1 . (3.80)

Proof. If A is orthogonal then AAT = I. It follows from (3.72) and (3.79) that

(det A)2 = (det A)(det AT) = det(AAT) = det I = 1 .

Hence det A = ±1.

Remark. This has already been verified for some reflection and rotation matrices.

3.7.7 Alternative proof of (3.78c) and (3.78d) for 3× 3 matrices (unlectured)

If A = {Aij} is a 3× 3 matrix, then the expressions (3.78c) and (3.78d) are equivalent to

εpqr det A = εijkAipAjqAkr , (3.81a)

εpqr det A = εijkApiAqjArk . (3.81b)

Proof. Start with (3.81b), and suppose that p = 1, q = 2, r = 3. Then (3.81b) is just (3.63d). Next
suppose that p and q are swapped. Then the sign of the left-hand side of (3.81b) reverses, while the
right-hand side becomes

εijkAqiApjArk = εjikAqjApiArk = −εijkApiAqjArk ,

so the sign of right-hand side also reverses. Similarly for swaps of p and r, or q and r. It follows that
(3.81b) holds for any {p, q, r} that is a permutation of {1, 2, 3}.

Suppose now that two (or more) of p, q and r in (3.81b) are equal. Wlog take p = q = 1, say. Then the
left-hand side is zero, while the right-hand side is

εijkA1iA1jArk = εjikA1jA1iArk = −εijkA1iA1jArk ,

which is also zero. Having covered all cases we conclude that (3.81b) is true.

Similarly for (3.81a) starting from (3.63a)

3.7.8 Minors and cofactors

For a square n× n matrix A = {Aij}, define Aij to be the (n− 1)× (n− 1) square matrix obtained by
eliminating the ith row and the jth column of A. Hence

Aij =



A11 . . . A1(j−1) A1(j+1) . . . A1n

...
. . .

...
...

. . .
...

A(i−1)1 . . . A(i−1)(j−1) A(i−1)(j+1) . . . A(i−1)n

A(i+1)1 . . . A(i+1)(j−1) A(i+1)(j+1) . . . A(i+1)n

...
. . .

...
...

. . .
...

An1 . . . An(j−1) An(j+1) . . . Ann


.
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Definition. Define the minor, Mij , of the ijth element of square matrix A to be the determinant of the
square matrix obtained by eliminating the ith row and the jth column of A, i.e.

Mij = det Aij . (3.82a)

Definition. Define the cofactor ∆ij of the ijth element of square matrix A as

∆ij = (−)i−jMij = (−)i−j det Aij . (3.82b)13/08

3.7.9 An alternative expression for determinants

Notation. First some notation. In what follows we will use a to denote that a symbol that is missing
from an otherwise natural sequence. For instance for some I we might re-order (3.74b) to obtain

det A =

n∑
jI=1

AIjI

n∑
j1j2...jI ...jn

εj1j2...jI ...jnA1j1A2j2 . . . AIjI . . . Anjn . (3.83a)

Further, let σ be the permutation that re-orders (1, . . . , jI , . . . , n) so that jI is moved to the Ith

position, with the rest of the numbers in their natural order. Hence

σ =



(
1 . . . I I + 1 . . . jI − 1 jI . . . n
1 . . . jI I . . . jI − 2 jI − 1 . . . n

)
= (I, jI), . . . , (jI − 2, jI), (jI − 1, jI)

if jI > I(
1 . . . jI jI + 1 . . . I − 1 I . . . n
1 . . . jI + 1 jI + 2 . . . I jI . . . n

)
= (I, jI), . . . , (jI + 2, jI), (jI + 1, jI)

if jI < I

,

with σ being the identity if jI = I. It follows that ε(σ) = (−)I−jI . Next let ρ be the permutation
that maps (1, . . . , jI , . . . , n) to (j1, . . . , jI , . . . , jn), i.e.

ρ =

(
1 . . . . . . jI . . . n
j1 . . . jI . . . . . . jn

)
.

Then ε(ρ) = εj1j2...jI ...jn , and the permutation ρσ reorders (1, . . . , jI , . . . , n) to (j1, . . . , jI , . . . , jn).
It follows that

εj1j2...jI ...jn = (−)I−jIεj1j2...jI ...jn . (3.83b)

Unlectured example. If n = 4, j1 = 4, j2 = 3, j3 = 1, j4 = 2 and I = 2, then

σ =

(
1 2 3 4
1 3 2 4

)
= (2, 3) , ρ =

(
1 2 4
4 1 2

)
= (1, 2)(1, 4) .

and

ρσ = (1, 2)(1, 4)(2, 3) =

(
1 2 3 4
4 3 1 2

)
=

(
1 2 3 4
j1 j2 j3 j4

)
.

Alternative Expression. We now observe from (3.82a), (3.82b), (3.83a) and (3.83b) that

det A =

n∑
jI=1

AIjI (−)I−jI

 n∑
j1j2...jI ...jn

εj1j2...jI ...jnA1j1A2j2 . . . AIjI . . . Anjn


=

n∑
jI=1

AIjI (−)I−jIMIjI (3.84a)

=

n∑
k=1

AIk∆Ik for any 1 6 I 6 n (beware: no s.c. over I). (3.84b)
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Similarly starting from (3.71a)

det A =

n∑
iJ=1

AiJJ(−)J−iJMiJJ (3.84c)

=

n∑
k=1

AkJ∆kJ for any 1 6 J 6 n (beware: no s.c. over J). (3.84d)

Equations (3.84b) and (3.84d), which are known as the Laplace expansion formulae, express det A
as a sum of n determinants each with one less row and column then the original. In principle we
could now recurse until the matrices are reduced in size to, say, 1× 1 matrices.13/09

13/10
Examples.

(a) For 3× 3 matrices see (3.68a) for (3.84d) with J = 1 and (3.68b) for (3.84b) with I = 1.

(b) Let us evaluate the following matrix using (3.84d) with J = 2, then

A =

∣∣∣∣∣∣
2 4 2
3 2 1
2 0 1

∣∣∣∣∣∣ = −4

∣∣∣∣3 1
2 1

∣∣∣∣+ 2

∣∣∣∣2 2
2 1

∣∣∣∣− 0

∣∣∣∣2 2
3 1

∣∣∣∣
= −4(1) + 2(−2)− 0(−4) = −8 , (3.85a)

or using (3.84b) with I = 3, then

A =

∣∣∣∣∣∣
2 4 2
3 2 1
2 0 1

∣∣∣∣∣∣ = +2

∣∣∣∣4 2
2 1

∣∣∣∣− 0

∣∣∣∣2 2
3 1

∣∣∣∣+ 1

∣∣∣∣2 4
3 2

∣∣∣∣
= 2(0)− 0(−4) + 1(−8) = −8 . (3.85b)

3.7.10 Practical evaluation of determinants

We can now combine (3.84b) and (3.84d) with earlier properties of determinants to obtain a practical
method of evaluating determinants.

First we note from (3.85a) and (3.85b) that it helps calculation to multiply the cofactors by zero; the ideal
row I or column J to choose would therefore have only one non-zero entry. However, we can arrange this.
Suppose for instance that A11 6= 0, then subtract A21/A11 times the first from the second row to obtain
a new matrix B. From (3.77) of property (v) on page 62 the determinant is unchanged, i.e. det B = det A,
but now B21 = 0. Rename B as A and recurse until Ai1 = 0 for i = 2, . . . , n. Then from (3.84d)

det A = A11∆11 .

Now recurse starting from the (n − 1) × (n − 1) matrix A11. If (A11)11 = 0 either swap rows and/or
columns so that (A11)11 6= 0, or alternatively choose another row/column to subtract multiples of.

Example. For A in (3.85a) or (3.85b), note that A32 = 0 so first subtract twice column 3 from column 1,
then at the 2× 2 matrix stage add twice column 1 to column 2, . . .∣∣∣∣∣∣

2 4 2
3 2 1
2 0 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
−2 4 2
1 2 1
0 0 1

∣∣∣∣∣∣ = 1

∣∣∣∣−2 4
1 2

∣∣∣∣ =

∣∣∣∣−2 0
1 4

∣∣∣∣ = −2
∣∣4∣∣ = 4

∣∣−2
∣∣ = −8 .

20/06
13/07
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4 Matrix Inverses and Linear Equations

4.0 Why Study This?

This section continues our study of linear mathematics. The ‘real’ world can often be described by
equations of various sorts. Some models result in linear equations of the type studied here. However,
even when the real world results in more complicated models, the solution of these more complicated
models often involves the solution of linear equations.

4.1 Solution of Two Linear Equations in Two Unknowns

Consider two linear equations in two unknowns:

A11x1 +A12x2 = d1 (4.1a)

A21x1 +A22x2 = d2 (4.1b)

or equivalently
Ax = d (4.2a)

where

x =

(
x1

x2

)
, d =

(
d1

d2

)
, and A = {Aij} (a 2× 2 matrix). (4.2b)

Now solve by forming suitable linear combinations of the two equations (e.g. A22× (4.1a)−A12× (4.1b))

(A11A22 −A21A12)x1 = A22d1 −A12d2 ,

(A21A12 −A22A11)x2 = A21d1 −A11d2 .

From (3.67) we have that

(A11A22 −A21A12) = det A =

∣∣∣∣A11 A12

A21 A22

∣∣∣∣ .
Thus, if det A 6= 0, the equations have a unique solution

x1 = (A22d1 −A12d2)/det A ,

x2 = (−A21d1 +A11d2)/ det A ,

i.e. (
x1

x2

)
=

1

det A

(
A22 −A12

−A21 A11

)(
d1

d2

)
. (4.3a)

However, from left multiplication of (4.2a) by A−1 (if it exists) we have that

x = A−1d . (4.3b)

We therefore conclude that

A−1 =
1

det A

(
A22 −A12

−A21 A11

)
. (4.4)

Exercise. Check that AA−1 = A−1A = I.21/03

4.2 The Inverse of a n× n Matrix

Recall from (3.84b) and (3.84d) that the determinant f a n × n matrix A can be expressed in terms of
the Laplace expansion formulae

det A =

n∑
k=1

AIk∆Ik for any 1 6 I 6 n (4.5a)

=

n∑
k=1

AkJ∆kJ for any 1 6 J 6 n. (4.5b)
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Let B be the matrix obtained by replacing the Ith row of A with one of the other rows, say the ith. Since
B has two identical rows det B = 0. However, replacing the Ith row by something else does not change
the cofactors ∆Ij of the elements in the Ith row. Hence the cofactors ∆Ij of the Ith row of A are also
the cofactors of the Ith row of B. Thus applying (4.5a) to the matrix B we conclude that

0 = det B

=

n∑
k=1

BIk∆Ik

=

n∑
k=1

Aik∆Ik for any i 6= I, 1 6 i, I 6 n. (4.6a)

Similarly by replacing the J th column and using (4.5b)

0 =

n∑
k=1

Akj∆kJ for any j 6= J , 1 6 j, J 6 n. (4.6b)

We can combine (4.5a), (4.5b), (4.6a) and (4.6b) to obtain the formulae, using the summation convention,

Aik∆jk = δij det A , (4.7a)

Aki∆kj = δij det A . (4.7b)

Theorem 4.1. Given a n× n matrix A with det A 6= 0, let B be the n× n with elements

Bij =
1

det A
∆ji , (4.8a)

then

AB = BA = I . (4.8b)

Proof. From (4.7a) and (4.8a),

(AB)ij = AikBkj

=
Aik∆jk

det A

=
δij det A

det A
= δij .

Hence AB = I. Similarly from (4.7b) and (4.8a), BA = I. It follows that B = A−1 and A is invertible.

We conclude that

(A−1)ij =
1

det A
∆ji . (4.9)

Example. Consider the simple shear matrix (see (3.30))

Sγ =

1 γ 0
0 1 0
0 0 1

 .

Then det Sγ = 1, and after a little manipulation

∆11 = 1 , ∆12 = 0 , ∆13 = 0 ,
∆21 = −γ , ∆22 = 1 , ∆23 = 0 ,
∆31 = 0 , ∆32 = 0 , ∆33 = 1 .

Hence

S−1
γ =

∆11 ∆21 ∆31

∆12 ∆22 ∆32

∆13 ∆23 ∆33

 =

1 −γ 0
0 1 0
0 0 1

 = S−γ .

This makes physical sense in that the effect of a shear γ is reversed by changing the sign of γ.21/02
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4.3 Solving Linear Equations

4.3.1 Inhomogeneous and homogeneous problems

Suppose that we wish to solve the system of equations

Ax = d , (4.10)

where A is a given m×n matrix, x is a n× 1 column vector of unknowns, and d is a given m× 1 column
vector.

Definition. If d 6= 0 then the system of equations (4.10) is said to be a system of inhomogeneous
equations.

Definition. The system of equations
Ax = 0 (4.11)

is said to be a system of homogeneous equations.

4.3.2 Solving linear equations: the slow way

Start by assuming that m = n so that A is a square matrix, and that that det A 6= 0. Then (4.10) has
the unique solution

x = A−1d . (4.12)

If we wished to solve (4.10) numerically, one method would be to calculate A−1 using (4.9), and then
form A−1d. However, before proceeding, let us estimate how many mathematical operations are required
to calculate the inverse using formula (4.9).

• The most expensive single step is calculating the determinant. Suppose we use one of the Laplace
expansion formulae (4.5a) or (4.5b) to do this (noting, in passing, that as a by-product of this
approach we will calculate one of the required rows/columns of cofactors).

• Let fn be the number of operations needed to calculate a n × n determinant. Since each n × n
determinant requires us to calculate n smaller (n− 1)× (n− 1) determinants, plus perform n
multiplications and (n− 1) additions,

fn = nfn−1 + 2n− 1 .

Similarly, it follows that each (n− 1)× (n− 1) determinant requires the calculation of (n − 1)
smaller (n− 2)× (n− 2) determinants; etc. We conclude that the calculation of a determinant
using (4.5a) or (4.5b) requires fn = O(n!) operations; note that this is marginally better than the
(n− 1)n! = O((n+ 1)!) operations that would result from using (3.71a) or (3.71b).

Exercise: As n → ∞ show that fn → n! e + k, where k is a constant (calculate k for a mars bar,
or see Appendix B on page D).

• To calculate the other n(n− 1) cofactors requires O(n(n− 1)(n− 1)!) operations.

• Once the inverse has been obtained, the final multiplication A−1d only requires O(n2) operations,
so for large n it follows that the calculation of the cofactors for the inverse dominate.

• The solution of (4.12) by this method therefore takes O(n.n!) operations, or equivalently O((n+1)!)
operations . . . which is rather large.
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4.3.3 Equivalent systems of equations: an example

Suppose that we wish to solve

x+ y = 1 (4.13a)

x− y = 0 , (4.13b)

then we might write

x =

(
x
y

)
, A =

(
1 1
1 −1

)
and d =

(
1
0

)
. (4.13c)

However, if we swap the order of the rows we are still solving the same system but now

x− y = 0 (4.14a)

x+ y = 1 , (4.14b)

while we might write

x =

(
x
y

)
, A =

(
1 −1
1 1

)
and d =

(
0
1

)
. (4.14c)

Similarly if we effectively swap the order of the columns

y + x = 1 (4.15a)

−y + x = 0 , (4.15b)

we might write

x =

(
y
x

)
, A =

(
1 1
−1 1

)
and d =

(
1
0

)
. (4.15c)

Whatever our [consistent] choice of x, A and d, the solution for x and y is the same.

4.3.4 Solving linear equations: a faster way by Gaussian elimination

A better method, than using the Laplace expansion formulae, is to use Gaussian elimination. Suppose
we wish to solve

A11 x1 +A12 x2 + . . .+A1n xn =d1 , (4.16a)

A21 x1 +A22 x2 + . . .+A2n xn =d2 , (4.16b)

... +
... +

. . . +
... =

... ,

Am1 x1 +Am2 x2 + . . .+Amn xn=dm . (4.16c)

Assume A11 6= 0, otherwise re-order the equations (i.e. rows) so that A11 6= 0. If that is not possible then
the first column is illusory (and x1 can be equal to anything), so relabel x2 → x1, . . . , xn → xn−1 and
x1 → xn, and start again.

Now use (4.16a) to eliminate x1 from (4.16b) to (4.16c) by forming

(4.16b)− A21

A11
× (4.16a) . . . (4.16c)− Am1

A11
× (4.16a) ,

so as to obtain (4.16a) plus(
A22 −

A21

A11
A12

)
x2 + . . .+

(
A2n −

A21

A11
A1n

)
xn =d2 −

A21

A11
d1 , (4.17a)

... +
. . . +

... =
... ,(

Am2 −
Am1

A11
A12

)
x2 + . . .+

(
Amn −

Am1

A11
A1n

)
xn=dm −

Am1

A11
d1 . (4.17b)
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In order to simplify notation let

A
(2)
22 =

(
A22 − A21

A11
A12

)
, A

(2)
2n =

(
A2n − A21

A11
A1n

)
, d

(2)
2 = d2 − A21

A11
d1 ,

...
...

...

A
(2)
m2 =

(
Am2 − Am1

A11
A12

)
, A

(2)
mn =

(
Amn − Am1

A11
A1n

)
, d

(2)
m = dm − Am1

A11
d1 ,

so that (4.16a) and (4.17a), . . . , (4.17b) become

A11 x1+A12 x2 + . . . +A1n xn=d1 , (4.18a)

A
(2)
22 x2 + . . . +A

(2)
2n xn =d

(2)
2 , (4.18b)

... +
. . . +

... =
...

A
(2)
m2x2+ . . . +A(2)

mnxn=d(2)
m . (4.18c)

In essence we have reduced a m× n system of equations for x1, x2, . . . , xn to a (m− 1)× (n− 1) system

of equations for x2, . . . , xn. We now recurse. Assume A
(2)
22 6= 0, otherwise re-order the equations (i.e.

rows) so that A
(2)
22 6= 0. If that is not possible then the [new] first column is absent (and x2 can be equal

to anything), so relabel x3 → x2, . . . , xn → xn−1 and x2 → xn (also remembering to relabel the first
equation (4.18a)), and continue.

At the end of the calculation the system will have the form

A11 x1+A12 x2 + . . .+A1r xr + . . .+A1n xn =d1 ,

A
(2)
22 x2 + . . .+A

(2)
2r xr + . . .+A

(2)
2n xn =d

(2)
2 ,

. . . +
... + . . .+

... =
... ,

A(r)
rr xr + . . .+A(r)

rn xn =d(r)
r ,

0 =d
(r)
r+1 ,

... =
... ,

0 =d(r)
m ,

where r 6 m and A
(i)
ii 6= 0. There are now three possibilities. 14/08

(i) If r < m and at least one of the numbers d
(r)
r+1, . . . , d

(r)
m is non-zero, then the equations are incon-

sistent and there is no solution. Such a system of equations is said to be overdetermined.

Example. Suppose

3x1+2x2+ x3=3 ,

6x1+3x2+3x3=0 ,

6x1+2x2+4x3=6 .

Eliminate the first column below the leading diagonal to obtain

3x1+2x2+ x3=3 ,

− x2+ x3=− 6 ,

−2x2+2x3=0 .

Eliminate the second column below the leading diagonal to obtain

3x1+2x2+ x3=3 ,

− x2+ x3=− 6 ,

0=12 .

The last equation is inconsistent.
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(ii) If r = n 6 m (and d
(r)
i = 0 for i = r + 1, . . . ,m if r < m), there is a unique solution for xn (the

solution to the nth equation), and thence by back substitution for xn−1 (by solving the (n − 1)th

equation), xn−2, . . . , x1. Such a system of equations is said to be determined.

Example. Suppose

2x1 + 5x2 = 2 ,

4x1 + 3x2 = 11 .

Then from multiplying the first equation by 2 and subtracting that from the second equation
we obtain

2x1 + 5x2 = 2 ,

−7x2 = 7 .

So x2 = −1, and by back substitution into the first equation we deduce that x1 = 7/2.14/09
14/10

(iii) If r < n (and d
(r)
i = 0 for i = r+1, . . . ,m if r < m), there are infinitely many solutions. Any of these

solutions is obtained by choosing values for the unknowns xr+1, . . . , xn, solving the rth equation
for xr, then the (r − 1)th equation for xr−1, and so on by back substitution until a solution for x1

is obtained. Such a system of equations is said to be underdetermined.

Example. Suppose

x1+ x2 =1 ,

2x1+2x2 =2 .

Eliminate the first column below the leading diagonal to obtain

x1+x2 =1 ,

0 =0 .

The general solution is therefore x1 = 1− x2, for any value of x2.14/07

Remarks.

(a) In order to avoid rounding error it is good practice to partial pivot, i.e. to reorder rows so that in
the leading column the coefficient with the largest modulus is on the leading diagonal. For instance,
at the first stage reorder the equations so that

|A11| = max( |A11|, |A21|, . . . , |Am1| ) .

(b) The operation count at stage r is O((m−r)(n−r)). If m = n the total operation count will therefore
be O(n3) . . . which is significantly less than O((n+ 1)!) if n� 1.

(c) The inverse and the determinant of a matrix can be calculated similarly in O(n3) operations (and it
is possible to do even better).

(d) A linear system is said to be consistent if it has at least one solution, but inconsistent if it has no
solutions at all.

(e) The following are referred to as elementary row operations:

(i) interchange of two rows,

(ii) addition of a constant multiple of one row to another,

(iii) multiplication of a row by a non-zero constant.

We refer to a linear system as being row-equivalent to another linear system if it can be obtained
from that linear system by elementary row operations. Row equivalent linear systems have the same
set of solutions.

We also note that if we accompany the interchange of two columns with an appropriate relabelling
of the xi, we again obtain an equivalent linear system.
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(f) In the case when m = n, so that the determinant of A is defined, the first two elementary row
operations, i.e.

(i) interchange of two rows,

(ii) addition of a constant multiple of one row to another,

together with

(iii) interchange of two columns,

change the value of the determinant by at most a sign. We conclude that if there are k row and
column swaps then O(n3) operations yields

det A = (−)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 . . . A1r A1 r+1 . . . A1n

0 A
(2)
22 . . . A

(2)
2r A

(2)
2 r+1 . . . A

(2)
2n

...
. . .

. . .
...

...
. . .

...

0 0
. . . A

(r)
rr A

(r)
r r+1 . . . A

(r)
rn

0 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4.19a)

where A11 6= 0 and A
(j)
jj 6= 0 (j = 2, . . . , r). It follows that if r < n, then det A = 0, while if r = n

det A = (−)kA11A
(2)
22 . . . A

(n)
nn 6= 0 . (4.19b)

4.4 The Rank of a Matrix

4.4.1 Definition

In (3.11) we defined the rank of a linear map A, Rn 7→ Rm to be the dimension of the image, i.e.

r(A) = dimA(Rn) . (4.20)

Let {ej} (j = 1, . . . , n) be a standard basis of Rn. Then, since by definition a basis spans the domain,
{A(ej)} (j = 1, . . . , n) must span the image of A. Further, the number of linearly independent vectors
in this set must equal r(A).

We also recall from (3.17b) and (3.22) that A(ej) (j = 1, . . . , n) are the column vectors of the matrix A
associated with the map A. It follows that

r(A) = dim span{Ae1,Ae2, . . . ,Aen}
= number of linearly independent columns of A.

Definition. The column rank of a matrix A is defined to be the maximum number of linearly independent
columns of A. The row rank of a matrix A is defined to be the maximum number of linearly independent
rows of A.

4.4.2 There is only one rank

Theorem 4.2. The row rank of a matrix is equal to its column rank. We denote the rank of a matrix A
by rank A, or r(A) if there is an associated map A.

Proof. Let r be the row rank of the matrix A, i.e. suppose that A has a linearly independent set of r row
vectors. Denote these row vectors by vT

k (k = 1, . . . , r) where, in terms of matrix coefficients,

vT
k =

(
vk1 vk2 . . . vkn

)
for k = 1, . . . , r .
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Denote the ith row of A, by rT
i , i.e.

rT
i =

(
Ai1 Ai2 . . . Ain

)
.

Then since every row of A can be written as a linear combination of the {vT
k } we have that

rT
i =

r∑
k=1

cikvT
k (1 6 i 6 m) ,

for some coefficients cik (1 6 i 6 m, 1 6 k 6 r). In terms of matrix coefficients

Aij =

r∑
k=1

cikvkj (1 6 i 6 m, 1 6 j 6 n) .

Alternatively, this expression can be written as
A1j

A2j

...
Amj

 =

r∑
k=1

vkj


c1k
c2k
...

cmk

 .

We conclude that any column of A can be expressed as a linear combination of the r column
vectors ck (1 6 k 6 r), where

ck =


c1k
c2k
...

cmk

 (1 6 k 6 r).

Therefore the column rank of A must be less than or equal to r, i.e.

r(A) 6 r .

We now apply the same argument to AT to deduce that

r 6 r(A) ,

and hence that r = r(A) ≡ rank A.

4.4.3 Calculation of rank

The number of linearly independent row vectors does not change under elementary row operations.
Nor does the number of linearly independent row vectors change if we reorder the basis vectors {ej}
(j = 1, . . . , n), i.e. reorder the columns. Hence we can use the technique of Gaussian elimination to
calculate the rank. In particular, from (4.19a) we see that the row rank (and column rank) of the matrix
A is r.

Remark. For the case when m = n suppose that det A = 0. Then from (4.19b) it follows r < n, and
thence from (4.19a) that the rows and columns of A are linearly dependent.

4.5 Solving Linear Equations: Homogeneous Problems

Henceforth we will restrict attention to the case m = n.

If det A 6= 0 then from Theorem 4.1 on page 68, A is invertible and A−1 exists. In such circumstances it
follows that the system of equations Ax = d has the unique solution x = A−1d.

If the system is homogeneous, i.e. if d = 0, then if det A 6= 0 the unique solution is x = A−10 = 0. The
contrapositive to this is that if Ax = 0 has a solution with x 6= 0, then det A = 0.

This section is concerned with understanding more fully what happens if det A = 0.21/06
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4.5.1 Geometrical view of Ax = 0

We start with a geometrical view of the solutions to Ax = 0 for the special case when A is a real 3× 3
matrix.

As before let rT
i (i = 1, 2, 3) be the row matrix with components equal to the elements of the ith row of

A; hence

A =

rT
1

rT
2

rT
3

 . (4.21)

The equations Ax = d and Ax = 0 may then be expressed as

rT
i x ≡ ri · x = di (i = 1, 2, 3) , (4.22a)

rT
i x ≡ ri · x = 0 (i = 1, 2, 3) , (4.22b)

respectively. Since each of these individual equations represents a plane in R3, the solution of each set
of 3 equations is the intersection of 3 planes.

For the homogeneous equations (4.22b) the three planes each pass through the origin, O. There are three
possibilities:

(i) the three planes intersect only at O;

(ii) the three planes have a common line (including O);

(iii) the three planes coincide.
22/03
15/08 We show that which of these cases occurs depends on rank A.

(i) If det A 6= 0 then (r1 × r2) · r3 6= 0, and the set {r1, r2, r3} consists of three linearly independent
vectors; hence span{r1, r2, r3} = R3 and rank A = 3. The first two equations of (4.22b) imply that
x must lie on the intersection of the planes r1 · x = 0 and r2 · x = 0, i.e. x must lie on the line

{x ∈ R3 : x = λt, λ ∈ R, t = r1 × r2}.

The final condition r3 ·x = 0 then implies that λ = 0 (since we have assumed that (r1×r2) ·r3 6= 0),
and hence that x = 0, i.e. the three planes intersect only at the origin. The solution space, i.e. the
kernel of the associated map A, thus has zero dimension when rank A = 3, i.e. n(A) = 0.

(ii) Next suppose that det A = 0. In this case the set {r1, r2, r3} is linearly dependent with the dimension
of span{r1, r2, r3} being equal to 2 or 1. First we consider the case when it is 2, i.e. the case when
rank A = 2. Assume wlog that r1 and r2 are two linearly independent vectors. Then as above the
first two equations of (4.22b) again imply that x must lie on the line

{x ∈ R3 : x = λt, λ ∈ R, t = r1 × r2}.

Since (r1 × r2) · r3 = 0, all points in this line satisfy r3 · x = 0. Hence the intersection of the three
planes is a line, i.e. the solution for x is a line. The solution space thus has dimension one when
rank A = 2, i.e. n(A) = 1.

(iii) Finally we need to consider the case when the dimension of span{r1, r2, r3} is 1, i.e. rank A = 1.
The three row vectors r1, r2 and r3 must then all be parallel. This means that each of r1 · x = 0,
r2 · x = 0 and r3 · x = 0 implies the others. Thus the intersection of the three planes is a plane, i.e.
solutions to (4.22b) lie on a plane. If a and b are any two linearly independent vectors such that
a · r1 = b · r1 = 0, then we may specify the plane, and thus the solution space, by (cf. (2.89))

{x ∈ R3 : x = λa + µb where λ, µ ∈ R} .

The solution space thus has dimension two when rank A = 1, i.e. n(A) = 2.

Remark. In each case r(A) + n(A) = 3.15/07
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4.5.2 Linear mapping view of Ax = 0

Consider the linear map A : Rn → Rm, such that x 7→ x′ = Ax, where A is the matrix of A with respect
to a basis. From our earlier definition (3.12), the kernel of A is given by

K(A) = {x ∈ Rn : Ax = 0} . (4.23)

The subspace K(A) is the solution space of Ax = 0, with a dimension denoted by n(A).15/09

(i) If n(A) = 0 then {A(ej)} (j = 1, . . . , n) is a linearly independent set since
n∑
j=1

λjA(ej) = 0

 ⇔

A
 n∑
j=1

λjej

 = 0


⇔


n∑
j=1

λjej = 0

 ,

and so λj = 0 (j = 1, . . . , n) since {ej} (j = 1, . . . , n) is a basis. It follows that the [column] rank
of A is n, i.e. r(A) = n.15/10

(ii) Suppose that nA ≡ n(A) > 0. Let {ui} (i = 1, . . . , nA) be a basis of the subspace K(A). Next
choose {vj 6∈ K(A)} (j = 1, . . . , n − nA) to extend this basis to form a basis of Rn (although
not proved, this is always possible). We claim that the set {A(vj)} (j = 1, . . . , n− nA) is linearly
independent. To see this note that

n−nA∑
j=1

λjA(vj) = 0

 ⇔

A
n−nA∑

j=1

λjvj

 = 0


⇔


n−nA∑
j=1

λjvj =

nA∑
i=1

µiui

 ,

for some µi (i = 1, . . . , nA). Hence

−
nA∑
i=1

µiui +

n−nA∑
j=1

λjvj = 0 ,

and so µ1 = . . . = µnA = λ1 = . . . = λn−nA = 0 since {u1, . . . ,unA ,v1, . . . ,vn−nA} is a basis
for Rn. We conclude that the set {A(vj)} (j = 1, . . . , n− nA) is linearly independent, that

dim span{A(u1), . . . ,A(unA),A(v1), . . . ,A(vn−nA)} = n− nA ,

and thence that
r(A) = n− nA .

Remark. The above proves in outline the Rank-Nullity Theorem (see Theorem 3.2 on page 44), i.e. that

r(A) + n(A) = dim Rn = dimension of domain . (4.24)

4.6 The General Solution of the Inhomogeneous Equation Ax = d

Again we will restrict attention to the case m = n.

• If det A 6= 0 then n(A) = 0, r(A) = n and I(A) = Rn (where I(A) is notation for the image of A).
Since d ∈ Rn, there must exist x ∈ Rn for which d is the image under A, i.e. x = A−1d exists and
is unique.
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• If det A = 0 then n(A) > 0, r(A) < n and I(A) is a subspace of Rn. Then

either d /∈ I(A), in which there are no solutions and
the equations are inconsistent;

or d ∈ I(A), in which case there is at least one
solution and the equations are consistent.

The latter case is described by Theorem 4.3 below.

Theorem 4.3. If d ∈ I(A) then the general solution to Ax = d can be written as x = x0 + y where x0

is a particular fixed solution of Ax = d and y is the general solution of Ax = 0.

Proof. First we note that x = x0 + y is a solution since Ax0 = d and Ay = 0, and thus

A(x0 + y) = d + 0 = d .

Further, if

(i) n(A) = 0, then y = 0 and the solution is unique.

(ii) n(A) > 0 then in terms of the notation of §4.5.2

y =

n(A)∑
j=1

µjuj , (4.25a)

and

x = x0 +

n(A)∑
j=1

µjuj . (4.25b)

Remark. Let us return to the three cases studied in our geometric view of §4.5.1. Suppose that the
equation is inhomogeneous, i.e. (4.22a), with a particular solution x = x0, then

(i) n(A) = 0, r(A) = 3, y = 0 and x = x0 is the unique solution.

(ii) n(A) = 1, r(A) = 2, y = λt and x = x0 + λt (a line).

(iii) n(A) = 2, r(A) = 1, y = λa + µb and x = x0 + λa + µb (a plane).

Example. Consider the (2× 2) inhomogeneous case of Ax = d where(
1 1
a 1

)(
x1

x2

)
=

(
1
b

)
. (4.26)

Since det A = (1− a), if a 6= 1 then det A 6= 0 and A−1 exists and is unique. Specifically

A−1 =
1

1− a

(
1 −1
−a 1

)
, and the unique solution is x = A−1

(
1
b

)
. (4.27)

If a = 1, then det A = 0, and

Ax =

(
x1 + x2

x1 + x2

)
= (x1 + x2)

(
1
1

)
.

Hence

I(A) = span

{(
1
1

)}
and K(A) = span

{(
1
−1

)}
,

and so r(A) = 1 and n(A) = 1. Whether there is a solution now depends on the value of b.
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• If b 6= 1 then

(
1
b

)
/∈ I(A), and there are no solutions because the equations are inconsistent.

• If b = 1 then

(
1
b

)
∈ I(A) and solutions exist (the equations are consistent). A particular

solution is

x0 =

(
1
0

)
.

The general solution is then x = x0 + y, where y is any vector in K(A), i.e.

x =

(
1
0

)
+ µ

(
1
−1

)
,

where µ ∈ R.

Definition. A n× n square matrix A is said to be singular if det A = 0 and non-singular if det A 6= 0.
22/06
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5 Eigenvalues and Eigenvectors

5.0 Why Study This?

The energy levels in quantum mechanics are eigenvalues, ionization potentials in Hartree-Fock theory
are eigenvalues, the principal moments of inertia of an inertia tensor are eigenvalues, the resonance
frequencies in mechanical systems (like a violin string, or a strand of DNA held fixed by optical tweezers,
or the Tacoma Narrows bridge: see http://www.youtube.com/watch?v=3mclp9QmCGs or http://www.

youtube.com/watch?v=j-zczJXSxnw or . . . ) are eigenvalues, etc.

5.1 Definitions and Basic Results

5.1.1 The Fundamental Theorem of Algebra

Let p(z) be the polynomial of degree (or order) m > 1,

p(z) =

m∑
j=0

cjz
j ,

where cj ∈ C (j = 0, 1, . . . ,m) and cm 6= 0. Then the Fundamental Theorem of Algebra states that the
equation

p(z) ≡
m∑
j=0

cjz
j = 0 ,

has a solution in C.

Remark. This will be proved when you come to study complex variable theory.

Corollary. An important corollary of this result is that if m > 1, cj ∈ C (j = 0, 1, . . . ,m) and cm 6= 0,
then we can find ω1, ω2, . . . , ωm ∈ C such that

p(z) ≡
m∑
j=0

cjz
j = cm

m∏
j=1

(z − ωj) .

Remarks.

(a) If (z − ω)k is a factor of p(z), but (z − ω)k+1 is not, we say that ω is a k times repeated root
of p(z), or that the root ω has a multiplicity of k.

(b) A complex polynomial of degree m has precisely m roots (each counted with its multiplicity).
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Example. The polynomial
z3 − z2 − z + 1 = (z − 1)2(z + 1) (5.1)

has the three roots −1, +1 and +1; the root +1 has a multiplicity of 2.16/08

5.1.2 Eigenvalues and eigenvectors of maps

Let A : Fn → Fn be a linear map, where F is either R or C.

Definition. If
A(x) = λx (5.2)

for some non-zero vector x ∈ Fn and λ ∈ F, we say that x is an eigenvector of A with eigenvalue λ.

Remarks.

(a) Let ` be the subspace (or line in Rn) defined by span{x}. Then A(`) ⊆ `, i.e. ` is an invariant
subspace (or invariant line) under A.

(b) If A(x) = λx then

Am(x) = λmx .

and

(c0 + c1A+ . . .+ cmAm) x = (c0 + c1λ+ . . .+ cmλ
m) x ,

where cj ∈ F (j = 0, 1, . . . ,m). Let p(z) be the polynomial

p(z) =

m∑
j=0

cjz
j .

Then for any polynomial p of A, and an eigenvector x of A,

p(A)x = p(λ)x .16/07

5.1.3 Eigenvalues and eigenvectors of matrices

Suppose that A is the square n× n matrix associated with the map A for a given basis. Then consistent
with the definition for maps, if

Ax = λx (5.3a)

for some non-zero vector x ∈ Fn and λ ∈ F, we say that x is an eigenvector of A with eigenvalue λ. This
equation can be rewritten as

(A− λI)x = 0 . (5.3b)

In §4.5 we concluded that an equation of the form (5.3b) has the unique solution x = 0 if det(A−λI) 6= 0.
It follows that if x is non-zero then

det(A− λI) = 0 . (5.4)

Further, we have seen that if det(A− λI) = 0, then there is at least one solution to (5.3b). We conclude
that λ is an eigenvalue of A if and only if (5.4) is satisfied.

Definition. Equation (5.4) is called the characteristic equation of the matrix A.

Definition. The characteristic polynomial of the matrix A is the polynomial

pA(λ) = det(A− λI) . (5.5)

From the definition of the determinant, e.g. (3.71a) or (3.74b), pA is an nth order polynomial in λ. The
roots of the characteristic polynomial are the eigenvalues of A.
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Example. Find the eigenvalues of

A =

(
0 1
−1 0

)
(5.6a)

Answer. From (5.4)

0 = det(A− λI) =

∣∣∣∣ −λ 1
−1 −λ

∣∣∣∣ = λ2 + 1 = (λ− ı)(λ+ ı) . (5.6b)

Whether or not A has eigenvalues now depends on the space that A maps from and to. If A (or A)
maps R2 to R2 then A has no eigenvalues, since the roots of the characteristic polynomial are
complex and from our definition only real eigenvalues are allowed. However, if A maps C2 to C2

the eigenvalues of A are ±ı. 16/09

Remark. The eigenvalues of a real matrix [that maps Cn to Cn] need not be real.

Property. For maps from Cn to Cn it follows from the Fundamental Theorem of Algebra and the stated
corollary that a n× n matrix has n eigenvalues (each counted with its multiplicity).

Assumption. Henceforth we will assume, unless stated otherwise, that our maps are from Cn to Cn.

Property. Suppose
pA(λ) = c0 + c1λ+ . . .+ cnλ

n , (5.7a)

and that the n eigenvalues are λ1, λ2, . . . , λn. Then

(i) c0 = det(A) = λ1λ2 . . . λn , (5.7b)

(ii) cn−1 = (−)n−1Tr(A) = (−)n−1(λ1 + λ2 + . . .+ λn) , (5.7c)

(iii) cn = (−)n . (5.7d)

Proof. From (3.71a)

det(A− λI) =
∑

i1i2...in

εi1i2...in(Ai11 − λδi11) . . . (Ainn − λδinn) . (5.7e)

The coefficient of λn comes from the single term (A11 − λ) . . . (Ann − λ), hence cn = (−)n. It then
follows that

pA(λ) = (λ1 − λ) . . . (λn − λ) . (5.7f)

Next, the coefficient of λn−1 also comes from the single term (A11 − λ) . . . (Ann − λ). Hence

cn−1 = (−)n−1(A11 +A22 + . . .+Ann)

= (−)n−1Tr(A)

= (−)n−1(λ1 + λ2 + . . .+ λn) ,

where the final line comes by identifying the coefficient of λn−1 in (5.7f). Finally from (5.5), (5.7a)
and (5.7f)

c0 = pA(0) = det A = λ1λ2 . . . λn .

5.2 Eigenspaces, Eigenvectors, Bases and Diagonal Matrices

5.2.1 Eigenspaces and multiplicity

The set of all eigenvectors corresponding to an eigenvalue λ, together with 0, is the kernel of the linear
map (A − λI); hence, from Theorem 3.1, it is a subspace. This subspace is called the eigenspace of λ,
and we will denote it by Eλ.

Check that Eλ is a subspace (Unlectured). Suppose that wi ∈ Eλ for i = 1, . . . , r, then

Awi = λwi for i = 1, . . . , r.
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Let

v =

r∑
i=1

ciwi

where ci ∈ C, then

Av =

r∑
i=1

ciAwi

= λ

r∑
i=1

ciwi

= λv ,

i.e. v is also an eigenvector with the same eigenvalue λ, and hence v ∈ Eλ. Thence from Theorem 2.2
Eλ is a subspace.

Definition. The multiplicity of an eigenvalue λ as a root of the characteristic polynomial is called the
algebraic multiplicity of λ, which we will denote by Mλ. If the characteristic polynomial has degree n,
then ∑

λ

Mλ = n . (5.8a)

An eigenvalue with an algebraic multiplicity greater then one is said to be degenerate.

Definition. The maximum number, mλ, of linearly independent eigenvectors corresponding to λ is
called the geometric multiplicity of λ. From the definition of the eigenspace of λ it follows that

mλ = dimEλ. (5.8b)

Unproved Statement. It is possible to prove that mλ 6Mλ.

Definition. The difference ∆λ = Mλ −mλ is called the defect of λ.

Remark. We shall see below that if the eigenvectors of a map form a basis of Fn (i.e. if there is no
eigenvalue with strictly positive defect), then it is possible to analyse the behaviour of that map
(and associated matrices) in terms of these eigenvectors. When the eigenvectors do not form a basis
then we need the concept of generalised eigenvectors (see Linear Algebra for details).

Definition. A vector x is a generalised eigenvector of a map A : Fn 7→ Fn if there is some eigenvalue
λ ∈ Fn and some k ∈ N such that

(A− λI)k(x) = 0 . (5.9)

Unproved Statement. The generalised eigenvectors of a map A : Fn 7→ Fn span Fn.

5.2.2 Linearly independent eigenvectors

Theorem 5.1. Suppose that the linear map A has distinct eigenvalues λ1, . . . , λr (i.e. λi 6= λj if i 6= j),
and corresponding non-zero eigenvectors x1, . . . ,xr, then x1, . . . ,xr are linearly independent.

Proof. Argue by contradiction by supposing that the proposition is false, i.e. suppose that x1, . . . ,xr
are linearly dependent. In particular suppose that there exist ci (i = 1, . . . , r), not all of which are
zero, such that

r∑
i=1

cixi = c1x1 + c2x2 + . . .+ crxr = 0 . (5.10a)
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Apply the operator

(A− λ1I) . . . (A− λK−1I)(A− λK+1I) . . . (A− λrI) =
∏

k=1,...,K,...,r

(A− λkI) (5.10b)

to (5.10a) to conclude that

0 =
∏

k=1,...,K,...,r

(A− λkI)

r∑
i=1

cixi

=

r∑
i=1

∏
k=1,...,K,...,r

ci (λi − λk) xi

=

 ∏
k=1,...,K,...,r

(λK − λk)

 cKxK .

However, the eigenvalues are distinct and the eigenvectors are non-zero. It follows that

cK = 0 (K = 1, . . . , r), (5.10c)

which is a contradiction.

Equivalent Proof (without use of the product sign: unlectured). As above suppose that the proposition is
false, i.e. suppose that x1, . . . ,xr are linearly dependent. Let

d1x1 + d2x2 + . . .+ dmxm = 0 , (5.10d)

where di 6= 0 (i = 1, . . . ,m), be the shortest non-trivial combination of linearly dependent eigen-
vectors (if necessary relabel the eigenvalues and eigenvectors so it is the first m that constitute the
shortest non-trivial combination of linearly dependent eigenvectors). Apply (A − λ1I) to (5.10d)
to conclude that

d2(λ2 − λ1)x2 + . . .+ dm(λm − λ1)xm = 0 .

Since all the eigenvalues are assumed to be distinct we now have a contradiction since we have a
shorter non-trivial combination of linearly dependent eigenvectors.

Remark. Since a set of linearly independent vectors in Fn can be no larger than n, a map A : Fn 7→ Fn
can have at most n distinct eigenvalues.27

Property. If a map A : Fn 7→ Fn has n distinct eigenvalues then it must have n linearly independent
eigenvectors, and these eigenvectors must be a basis for Fn.

Remark. If all eigenvalues of a map A : Fn 7→ Fn are distinct then the eigenvectors span Fn. If all the
eigenvalues are not distinct, then sometimes it is possible to find n eigenvectors that span Fn, and
sometimes it is not (see examples (ii) and (iii) below respectively).

5.2.3 Examples

(i) From (5.6b) the eigenvalues of

A =

(
0 1
−1 0

)
are distinct and equal to ±ı. In agreement with Theorem 5.1 the corresponding eigenvectors

λ1 = +ı : x1 =

(
1

+ı

)
,

λ2 = −ı : x2 =

(
1
−ı

)
,

are linearly independent, and are a basis for C2 (but not R2). We note that

Mı = mı = 1, ∆ı = 0 , M−ı = m−ı = 1, ∆−ı = 0 .

27 But we already knew that.
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(ii) Let A be the 3× 3 matrix

A =

−2 2 −3
2 1 −6
−1 −2 0

 .

This has the characteristic equation

pA = −λ3 − λ2 + 21λ+ 45 = 0 ,

with eigenvalues λ1 = 5, λ2 = λ3 = −3. The eigenvector corresponding to λ1 = 5 is

x1 =

 1
2
−1

 .

For λ2 = λ3 = −3 the equation for the eigenvectors becomes

(A + 3I)x =

 1 2 −3
2 4 −6
−1 −2 3

x = 0 .

This can be reduced by elementary row operations to1 2 −3
0 0 0
0 0 0

x = 0 ,

with general solution

x =

−2x2 + 3x3

x2

x3

 .

In this case, although two of the eigenvalues are equal, a basis of linearly independent eigenvectors
{x1,x2,x3} can be obtained by choosing, say,

x2 =

−2
1
0

 (x2 = 1, x3 = 0) ,

x3 =

3
0
1

 (x2 = 0, x3 = 1) .

We conclude that

M5 = m5 = 1, ∆5 = 0 , M−3 = m−3 = 2, ∆−3 = 0 .

(iii) Let A be the 3× 3 matrix

A =

−3 −1 1
−1 −3 1
−2 −2 0

 . (5.11a)

This has the characteristic equation

pA = −(λ+ 2)3 = 0 , (5.11b)

with eigenvalues λ1 = λ2 = λ3 = −2. Therefore there is a single equation for the eigenvectors, viz

(A + 2I)x =

−1 −1 1
−1 −1 1
−2 −2 2

x = 0 .
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This can be reduced by elementary row operations to−1 −1 1
0 0 0
0 0 0

x = 0 ,

with general solution

x =

−x2 + x3

x2

x3

 .

In this case only two linearly independent eigenvectors can be constructed, say,

x1 =

−1
1
0

 , x2 =

1
0
1

 , (5.11c)

and hence the eigenvectors do not span C3 (or R3) and cannot form a basis. We conclude that

M−2 = 3, m−2 = 2, ∆−2 = 1 .

Remarks.

• There are many alternative sets of linearly independent eigenvectors to (5.11c); for instance
the orthonormal eigenvectors

x1 =
1√
2

−1
1
0

 , x2 =
1√
6

1
1
2

 , (5.11d)

• Once we know that there is an eigenvalue of algebraic multiplicity 3, then there is a better
way to deduce that the eigenvectors do not span C3 . . . if we can change basis (see below and
Example Sheet 3 ).17/07

17/08
17/09

5.2.4 Diagonal matrices

Definition. A n× n matrix D = {Dij} is a diagonal matrix if Dij = 0 whenever i 6= j, i.e. if

D =



D11 0 0 . . . 0 0

0 D22 0
. . . 0 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

0 0 0
. . . Dn−1n−1 0

0 0 0 . . . 0 Dnn


. (5.12a)

Remark. Dij = Diiδij = Djjδij (no summation convention), hence

(D2)ij =
∑
k

DikDkj =
∑
k

DiiδikDkkδkj = D2
iiδij , (5.12b)

and so

Dm =



Dm
11 0 0 . . . 0 0

0 Dm
22 0

. . . 0 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

0 0 0
. . . Dm

n−1n−1 0
0 0 0 . . . 0 Dm

nn


. (5.12c)
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5.2.5 Eigenvectors as a basis lead to a diagonal matrix

Suppose that the linear map A : Fn 7→ Fn has n linearly independent eigenvectors, (v1, . . . ,vn), e.g.
because A has n distinct eigenvalues. Choose the eigenvectors as a basis, and note that

A(vi) = 0v1 + . . .+ λivi + . . .+ 0vn .

It follows from (3.22) that the matrix representing the map A with respect to the basis of eigenvectors
is diagonal, with the diagonal elements being the eigenvalues, viz.

A =
(
A(v1) A(v2) . . . A(vn)

)
=


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 . (5.13)

17/10

Converse. If the matrix A representing the map A with respect to a given basis is diagonal, then the basis
elements are eigenvectors and the diagonal elements of A are eigenvalues (since A(ei) = Aiiei).

Remark. If we wished to calculate powers of A it follows from (5.12c) that there would be an advantage
in choosing the eigenvectors as a basis. As an example of where such a need might arise let n towns
be called (rather uninterestingly) 1, 2, . . . , n. Write Aij = 1 if there is a road leading directly from

town i to town j and Aij = 0 otherwise (we take Aii = 0). If we write Am = {A(m)
ij } then A

(m)
ij is

the number of routes from i to j of length m. (A route of length m passes through m + 1 towns
including the starting and finishing towns. If you pass through the same town more than once each
visit is counted separately.)

5.3 Change of Basis

We have now identified as least two types of ‘nice’ bases, i.e.
orthonormal bases and bases of eigenvectors. A linear map A
does not change if we change basis, but the matrix representing
it does. The aim of this section, which is somewhat of a diver-
sion from our study of eigenvalues and eigenvectors, is to work
out how the elements of a matrix transform under a change of
basis.

To fix ideas it may help to think of a change of basis from the
standard orthonormal basis in R3 to a new basis which is not
necessarily orthonormal. However, we will work in Fn and will
not assume that either basis is orthonormal.

5.3.1 Transformation matrices

Let {ei : i = 1, . . . , n} and {ẽi : i = 1, . . . , n} be two sets of basis vectors for Fn. Since the {ei} is a basis,
the individual basis vectors of the basis {ẽi} can be written as

ẽj =

n∑
i=1

ei Pij (j = 1, . . . , n) , (5.14a)

for some numbers Pij , where Pij is the ith component of the vector ẽj in the basis {ei}. The numbers
Pij can be represented by a square n× n transformation matrix P

P =


P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn

 =
(
ẽ1 ẽ2 . . . ẽn

)
, (5.14b)
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where, as in (3.22), the ẽj on the right-hand side are to be interpreted as column vectors of the components
of the ẽj in the {ei} basis. P is the matrix with respect to the basis {ei} of the linear map P that
transforms the {ei} to the {ẽi}

Similarly, since the {ẽi} is a basis, the individual basis vectors of the basis {ei} can be written as

ei =

n∑
k=1

ẽkQki (i = 1, 2, . . . , n) , (5.15a)

for some numbers Qki, where Qki is the kth component of the vector ei in the basis {ẽk}. Again the Qki
can be viewed as the entries of a matrix Q

Q =


Q11 Q12 · · · Q1n

Q21 Q22 · · · Q2n

...
...

. . .
...

Qn1 Qn2 · · · Qnn

 =
(
e1 e2 . . . en

)
, (5.15b)

where in the final matrix the ej are to be interpreted as column vectors of the components of the ej in
the {ẽi} basis.

5.3.2 Properties of transformation matrices

From substituting (5.15a) into (5.14a) we have that

ẽj =

n∑
i=1

[ n∑
k=1

ẽkQki

]
Pij =

n∑
k=1

ẽk

[ n∑
i=1

QkiPij

]
. (5.16)

However, the set {ẽj} is a basis and so linearly independent. Thus, from noting that

ẽj =

n∑
k=1

ẽk δkj ,

or otherwise, it follows that
n∑
i=1

QkiPij = δkj . (5.17)

Hence in matrix notation, QP = I, where I is the identity matrix. Conversely, substituting (5.14a) into
(5.15a) leads to the conclusion that PQ = I (alternatively argue by a relabeling symmetry). Thus

Q = P−1 . (5.18)

5.3.3 Transformation law for vector components

Consider a vector u, and suppose that in terms of the {ei} basis it can be written in component form as

u =

n∑
i=1

uiei . (5.19a)

Similarly, in the {ẽi} basis suppose that u can be written in component form as

u =

n∑
j=1

ũj ẽj (5.19b)

=

n∑
j=1

ũj

n∑
i=1

eiPij from (5.14a)

=

n∑
i=1

ei

n∑
j=1

Pij ũj swap summation order.
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Since a basis representation is unique it follows from (5.19a) that

ui =

n∑
j=1

Pij ũj (i = 1, . . . , n) , (5.20a)

i.e. that

u = Pũ , (5.20b)

where we have deliberately used a sans serif font to indicate the column matrices of components (since
otherwise there is serious ambiguity). By applying P−1 to both sides of (5.20b) it follows that

ũ = P−1u . (5.20c)

Equations (5.20b) and (5.20c) relate the components of u with respect to the {ei} basis to the components
of u with respect to the {ẽi} basis.

Remark. Note from (5.14a) and (5.20a), i.e.

ẽj =

n∑
i=1

ei Pij (j = 1, . . . , n) ,

ui =

n∑
j=1

Pij ũj (i = 1, . . . , n) ,

that the basis vectors and coordinates in some sense ‘go opposite ways’. Compare also the definition
of Aij from (3.18a) with the relationship (3.19d) between the components of x′ = A(x) and x

A(ej) =

m∑
i=1

fiAij (j = 1, . . . , n) ,

x′i = (A(x))i =

n∑
j=1

Aijxj (i = 1, . . . , n) .

These relations also in some sense ‘go opposite ways’.

Worked Example. Let {e1 = (1, 0), e2 = (0, 1)} and {ẽ1 = (1, 1), ẽ2 = (−1, 1)} be two sets of basis vec-
tors in R2. Find the transformation matrix P that connects them. Verify the transformation law
for the components of an arbitrary vector u in the two coordinate systems.

Answer. We have that

ẽ1 = ( 1, 1) = (1, 0) + (0, 1) = e1 + e2 ,

ẽ2 = (−1, 1) = −1 (1, 0) + (0, 1) = −e1 + e2 .

Hence from comparison with (5.14a)

P11 = 1 , P21 = 1 , P12 = −1 and P22 = 1 ,

i.e.

P =

(
1 −1
1 1

)
.

Similarly, since

e1 = (1, 0) = 1
2 ( (1, 1)− (−1, 1) ) = 1

2 (ẽ1 − ẽ2) ,

e2 = (0, 1) = 1
2 ( (1, 1) + (−1, 1) ) = 1

2 (ẽ1 + ẽ2) ,

it follows from (5.15a) that

Q = P−1 = 1
2

(
1 1

−1 1

)
.

Mathematical Tripos: IA Vectors & Matrices 88 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2010



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

Exercise. Check that P−1P = PP−1 = I.

Now consider an arbitrary vector u. Then

u = u1e1 + u2e2

= 1
2u1(ẽ1 − ẽ2) + 1

2u2(ẽ1 + ẽ2)

= 1
2 (u1 + u2) ẽ1 − 1

2 (u1 − u2) ẽ2 .

Thus
ũ1 = 1

2 (u1 + u2) and ũ2 = − 1
2 (u1 − u2) ,

and thus from (5.20c), i.e. ũ = P−1u, we deduce that (as above)

P−1 = 1
2

(
1 1

−1 1

)
.

5.3.4 Transformation law for matrices representing linear maps from Fn to Fn

Now consider a linear map A : Fn → Fn under which u 7→ u′ = A(u) and (in terms of column vectors)

u′ = Au ,

where u′ and u are the component column matrices of u′ and u, respectively, with respect to the basis
{ei}, and A is the matrix of A with respect to this basis.

Let ũ′ and ũ be the component column matrices of u′ and u with respect to an alternative basis {ẽi}.
Then it follows from (5.20b) that

Pũ′ = APũ , i.e. ũ′ = (P−1AP) ũ .

We deduce that the matrix of A with respect to the alternative basis {ẽi} is given by

Ã = P−1AP . (5.21)

Example. Consider a simple shear with magnitude γ in the x1 direction within the (x1, x2) plane. Then
from (3.30) the matrix of this map with respect to the standard basis {ei} is

Sγ =

 1 γ 0
0 1 0
0 0 1

 .

Let {ẽ} be the basis obtained by rotating the stan-
dard basis by an angle θ about the x3 axis. Then

ẽ1 = cos θ e1 + sin θ e2 ,

ẽ2 = − sin θ e1 + cos θ e2 ,

ẽ3 = e3 ,

and thus

Pθ =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

We have already deduced that rotation matrices are orthogonal, see (3.58a) and (3.58b), and hence

P−1
θ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 = P−θ .
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Alternatively, we could have deduced that P−1
θ = P−θ by noting that the inverse of a rotation by

θ is a rotation by −θ. The matrix of the shear map with respect to new basis is thus given by

S̃γ = P−1SγP

=

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

cos θ + γ sin θ − sin θ + γ cos θ 0
sin θ cos θ 0

0 0 1


=

1 + γ sin θ cos θ γ cos2 θ 0
−γ sin2 θ 1− γ sin θ cos θ 0

0 0 1

 .

18/08

5.3.5 Transformation law for matrices representing linear maps from Fn to Fm

A similar approach may be used to deduce the matrix of the map A : Fn → Fm (where m 6= n) with
respect to new bases of both Fn and Fm.

Suppose that, as in §3.5, {ei} (i = 1, . . . , n) is a basis
of Fn, {fj} (j = 1, . . . ,m) is a basis of Fm, and A is the
matrix of A with respect to these two bases. As before

u 7→ u′ = A u (5.22a)

where u and u′ are component column matrices of u and
u′ with respect to bases {ei} and {fj} respectively. Now

consider new bases {ẽi} of Fn and {f̃j} of Fm, and let
P and S be the transformation matrices for components
between the {ei} and {ẽi} bases, and between the {fj}
and {f̃j} bases, respectively. Then

P =
(
ẽ1 . . . ẽn

)
and S =

(
f̃1 . . . f̃m

)
,

where P is a n×n matrix of components (see (5.14b)) and
S is a m×m matrix of components.

From (5.20a)
u = Pũ , and u′ = Sũ′ ,

where ũ and ũ′ are component column matrices of u and u′ with respect to bases {ẽi} and {f̃j} respec-
tively. Hence from (5.22a)

Sũ′ = APũ , and so ũ′ = S−1APũ .

It follows that S−1AP is the matrix of the map A with respect to the new bases {ẽi} and {f̃j}, i.e.

Ã = S−1AP . (5.22b)19/06
18/07
18/09

5.4 Similar Matrices

Definition. The n× n matrices A and B are similar, or conjugate28, if for some invertible matrix P

B = P−1AP . (5.23)

Remarks.

(a) Similarity is an equivalence relation.

(b) A map from A to P−1AP is sometimes known as a similarity transformation.

28 As in the Groups course.
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(c) From (5.21) the matrices representing a map A with respect to different bases are similar.

(d) The identity matrix (or a multiple of it) is similar only with itself (or a multiple of it) since

P−1IP = I . (5.24)

Exercise (see Example Sheet 4). Show that a n × n matrix with a unique eigenvalue (i.e. an eigenvalue
with an algebraic multiplicity of n), and with n linearly independent eigenvectors, has to be a
multiple of the identity matrix.18/10

Properties. Similar matrices have the same determinant and trace, since

(i) det(P−1AP) = det P−1 det A det P

= det A det(P−1P)

= det A , (5.25a)

(ii) Tr(P−1AP) = P−1
ij AjkPki

= AjkPkiP
−1
ij

= Ajkδkj

= Tr(A) . (5.25b)

Remark. The determinants and traces of matrices representing a map A with respect to different bases
are the same. We can therefore talk of the determinant and trace of a map.

Property. If A and B are similar (e.g. if they represent the same map A with respect to different bases),
then they have the same characteristic polynomial, and hence the same eigenvalues.

Proof. Suppose that B = P−1AP then from (3.79) and (5.5)

pB(λ) = det(B− λI)

= det(P−1AP− λP−1IP)

= det(P−1(A− λI)P)

= det(P−1) det(A− λI) det P

= det(A− λI) det(P−1P)

= pA(λ) . 2

Definition. The characteristic polynomial of the map A is the polynomial

pA(λ) = det(A− λI) , (5.25c)

where A is any matrix representation of A.

Property. Suppose that A and B are similar, and that λ and u are an eigenvalue and eigenvector of A.
Then v = P−1u is the corresponding eigenvector of B since

{Au = λu} ⇔
{

P−1A I u = P−1(λu)
}

⇔
{

P−1APP−1u = λP−1u
}

⇔ {Bv = λv} .

Remark. This also follows from (5.20c) and (5.21), since u and v are components of the same eigenvector,
and A and B are components of the same map, in different bases.

5.5 Diagonalizable Maps and Matrices

Recall from §5.2.5 that a matrix A representing a map A is diagonal with respect to a basis if and only
if the basis consists of eigenvectors.
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Definition. A linear map A : Fn 7→ Fn is said to be diagonalizable if Fn has a basis consisting of
eigenvectors of A.

Further, we have shown that a mapA with n distinct eigenvalues has a basis of eigenvectors. It follows that
if a matrix A has n distinct eigenvalues, then it is diagonalizable by means of a similarity transformation
using the transformation matrix that changes to a basis of eigenvectors.

Definition. More generally we say that a n× n matrix A [over F] is diagonalizable if A is similar with
a diagonal matrix, i.e. if there exists an invertible transformation matrix P [with entries in F] such that
P−1AP is diagonal.

5.5.1 When is a matrix diagonalizable?

While the requirement that a matrix A has n distinct eigenvalues is a sufficient condition for the matrix
to be diagonalizable, it is not a necessary condition. The requirement is that Fn has a basis consisting
of eigenvectors; this is possible even if the eigenvalues are not distinct as the following example shows.

Example. In example (ii) on page 84 we saw that if a map A is represented with respect to a given basis
by a matrix

A =

−2 2 −3
2 1 −6
−1 −2 0

 ,

then the map has an eigenvalue λ1 = 5 and a repeated eigenvalue λ2 = λ3 = −3. However, we can
still construct linearly independent eigenvectors

x1 =

 1
2
−1

 , x2 =

−2
1
0

 , x3 =

3
0
1

 .

Choose x1, x2 and x3 as new basis vectors. Then from (5.14b) with ẽi = xi, it follows that the
matrix for transforming components from the original basis to the eigenvector basis is given by

P =

 1 −2 3
2 1 0
−1 0 1

 .

From the expression for an inverse (4.9)

P−1 =
1

8

 1 2 −3
−2 4 6
1 2 5

 .

Hence from (5.21) the map A is represented with respect to the eigenvector basis by

P−1AP =
1

8

 1 2 −3
−2 4 6
1 2 5

−2 2 −3
2 1 −6
−1 −2 0

 1 −2 3
2 1 0
−1 0 1


=

5 0 0
0 −3 0
0 0 −3

 , (5.26)

as expected from (5.13).

We need to be able to count the number of linearly independent eigenvectors.

Proposition. Suppose λ1, . . . , λr are distinct eigenvalues of a linear map A : Fn 7→ Fn, and let Bi denote
a basis of the eigenspace Eλi . Then

B = B1 ∪B2 ∪ . . . ∪Br

is a linearly independent set.
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Proof. Argue by contradiction. Suppose that the set B is linearly dependent, i.e. suppose that there
exist cij ∈ F, not all of which are zero, such that

r∑
i=1

mλi∑
j=1

cijvij = 0 , (5.27)

where vij is the jth basis vector of Bi, and mλi is the geometric multiplicity of Bi. Apply the
operator (see (5.10b))

(A− λ1I) . . . (A− λK−1I)(A− λK+1I) . . . (A− λrI) =
∏

k=1,...,K,...,r

(A− λkI)

to (5.27) to conclude that

0 =
∏

k=1,...,K,...,r

(A− λkI)

r∑
i=1

mλi∑
j=1

cijvij

=

r∑
i=1

mλi∑
j=1

∏
k=1,...,K,...,r

cij (λi − λk) vij

=

mλK∑
j=1

 ∏
k=1,...,K,...,r

cKj (λK − λk)

vKj .

However, by definition of BK (K = 1, . . . , r), the {vKj}, (j = 1, . . . ,mλK ), are linearly indepen-
dent, and so we conclude (since λK 6= λk) that

cKj = 0 (K = 1, . . . , r, j = 1, . . . ,mλK ),

which is a contradiction.

Remark. If ∑
i

dimEλi ≡
∑
i

mλi = n , (5.28a)

i.e. if no eigenvalue has a non-zero defect, then B is a basis [of eigenvectors], and a matrix A
representing A is diagonalizable. However, a matrix with an eigenvalue that has a non-zero defect
does not have sufficient linearly independent eigenvectors to be diagonalizable, cf. example (iii) on
page 84.

Procedure (or ‘recipe’). We now can construct a procedure to find if a matrix A is diagonalizable, and
to diagonalize it where possible:

(i) Calculate the characteristic polynomial pA = det(A− λI).

(ii) Find all distinct roots, λ1, . . . , λr of pA.

(iii) For each λi find a basis Bi of the eigenspace Eλi .

(iv) If no eigenvalue has a non-zero defect, i.e. if (5.28a) is true, then A is diagonalizable by a
transformation matrix with columns that are the eigenvectors.

(v) However, if there is an eigenvalue with a non-zero defect, i.e. if∑
i

dimEλi ≡
∑
i

mλi < n , (5.28b)

then A is not diagonalizable.
19/07
19/08
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5.5.2 Canonical form of 2× 2 complex matrices

We claim that any 2× 2 complex matrix A is similar to one of

(i) :

(
λ1 0
0 λ2

)
, (ii) :

(
λ 0
0 λ

)
, (iii) :

(
λ 1
0 λ

)
, (5.29)

where λ1 6= λ2, and no two of these are similar.

Proof. If A has distinct eigenvalues, λ1 6= λ2 then, as shown above, A is diagonalizable by a similarity
transformation to form (i). Otherwise, λ1 = λ2 = λ, and two cases arise according as dimEλ = 2
and dimEλ = 1. If dimEλ = 2 then Eλ = C2. Let B = {u,v} be a basis of two linearly independent
vectors. Since Au = λu and Av = λv, A transforms to a diagonal matrix in this basis, i.e. there
exists a transformation matrix P such that

P−1AP =

(
λ 0
0 λ

)
= λI , (5.30)

i.e. form (ii). However, we can say more than this since it follows from (5.30) that A = λI (see also
the exercise on page 91 following (5.24)).19/09

If dimEλ = 1, take non-zero v ∈ Eλ, then {v} is a basis for Eλ. Extend this basis for Eλ to a
basis B = {v,w} for C2 by choosing w ∈ C2\Eλ. If Aw = αv + βw it follows that there exists a
transformation matrix P, that transforms the original basis to B, such that

Ã = P−1AP =

(
λ α
0 β

)
.

However, if Ã, and thence A, is to have an eigenvalue λ of algebraic multiplicity of 2, then

Ã =

(
λ α
0 λ

)
.

Further, we note that

(Ã− λI)2 =

(
0 α
0 0

)(
0 α
0 0

)
=

(
0 0
0 0

)
.

Let u = (Ã− λI)w (6= 0 since w is neither an eigenvector of A nor Ã). Then, because

(Ã− λI)u = (Ã− λI)2w = 0 ,

we conclude that u is an eigenvector of Ã (and w is a generalised eigenvector of Ã). Moreover, since

Ãw = u + λw ,

if we consider the alternative basis B̃ = {u,w} it follows that there is a transformation matrix,
say Q, such that

(PQ)−1A(PQ) = Q−1ÃQ =

(
λ 1
0 λ

)
.

We conclude that A is similar to a matrix of form (iii).

Remarks.

(a) We observe that (
λ1 0
0 λ2

)
is similar to

(
λ2 0
0 λ1

)
,

since (
0 1
1 0

)−1(
λ1 0
0 λ2

)(
0 1
1 0

)
=

(
λ2 0
0 λ1

)
, where

(
0 1
1 0

)−1

=

(
0 1
1 0

)
.
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(b) It is possible to show that canonical forms, or Jordan normal forms, exist for any dimension n.

Specifically, for any complex n× n matrix A there exists a similar matrix Ã = P−1AP such that

Ãii = λi, Ãi i+1 = {0, 1}, Ãij = 0 otherwise, (5.31)

i.e. the eigenvalues are on the diagonal of Ã, the super-diagonal consists of zeros or ones, and all
other elements of Ã are zero.2919/10

Unlectured example. For instance, suppose that as in example (iii) on page 84,

A =

−3 −1 1
−1 −3 1
−2 −2 0

 .

Recall that A has a single eigenvalue λ = −2 with an algebraic multiplicity of 3 with a defect of 1.
Consider a vector w that is linearly independent of the eigenvectors (5.11c) (or equivalently (5.11d)),
e.g.

w =

1
0
0

 .

Let

u = (A− λI)w = (A + 2I)w =

−1 −1 1
−1 −1 1
−2 −2 2

1
0
0

 =

−1
−1
−2

 ,

where it is straightforward to check that u is an eigenvector. Now form

P = (u w v) =

−1 1 1
−1 0 0
−2 0 1

 ,

where v is an eigenvector that is linearly independent of u. We can then show that

P−1 =

0 −1 0
1 1 −1
0 −2 1

 ,

and thence that A has a Jordan normal form

P−1AP =

−2 1 0
0 −2 0
0 0 −2

 .

5.5.3 Solution of second-order, constant coefficient, linear ordinary differential equations

Consider the solution of
ẍ+ bẋ+ cx = 0 , (5.32a)

where b and c are constants. If we let ẋ = y then this second-order equation can be expressed as two
first-order equations, namely

ẋ = y , (5.32b)

ẏ = −cx− by , (5.32c)

or in matrix form (
ẋ
ẏ

)
=

(
0 1
−c −b

)(
x
y

)
. (5.32d)

29 This is not the whole story, since Ã is in fact block diagonal, but you will have to wait for Linear Algebra to find out
about that.
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This is a special case of the general second-order system

ẋ = Ax , (5.33a)

where

x =

(
x
y

)
and A =

(
A11 A12

A21 A22

)
. (5.33b)

Let P be a transformation matrix, and let z = P−1x, then

ż = Bz , where B = P−1AP . (5.34)

By appropriate choice of P, it is possible to transform A to one of three canonical forms in (5.29). We
consider each of the three possibilities in turn.

(i) In this case

ż =

(
λ1 0
0 λ2

)
z , (5.35a)

i.e. if

z =

(
z1

z2

)
, then ż1 = λ1z1 and ż2 = λ2z2 . (5.35b)

This has solution

z =

(
α1eλ1t

α2eλ2t

)
, (5.35c)

where α1 and α2 are constants.

(ii) This is case (i) with λ1 = λ2 = λ, and with solution

z =

(
α1

α2

)
eλt . (5.36)

(iii) In this case

ż =

(
λ 1
0 λ

)
z , (5.37a)

i.e.

ż1 = λz1 + z2 and ż2 = λz2 , (5.37b)

which has solution

z =

(
α1 + α2t

α2

)
eλt . (5.37c)

We conclude that the general solution of (5.33a) is given by x = Pz where z is the appropriate one of
(5.35c), (5.36) or (5.37c).

Remark. If λ in case (iii) is pure imaginary, then this is a case of resonance in which the amplitude of
an oscillation grows algebraically in time.

5.6 Cayley-Hamilton Theorem

Theorem 5.2 (Cayley-Hamilton Theorem). Every complex square matrix satisfies its own characteristic
equation.

We will not provide a general proof (see Linear Algebra again); instead we restrict ourselves to certain
types of matrices.
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5.6.1 Proof for diagonal matrices

First we need two preliminary results.

(i) The eigenvalues of a diagonal matrix D are the diagonal entries, Dii. Hence if pD is the characteristic
polynomial of D, then pD(Dii) = det(D−DiiI) = 0 for each i.

(ii) Further, because Dm is diagonal for m ∈ N (see (5.12c)), it follows that for any polynomial p,

if D =

D11 . . . 0
...

. . .
...

0 . . . Dnn

 then p(D) =

p(D11) . . . 0
...

. . .
...

0 . . . p(Dnn)

 . (5.38)

We conclude that
pD(D) = 0 , (5.39)

i.e. that a diagonal matrix satisfies its own characteristic equation. 2

5.6.2 Proof for diagonalizable matrices

First we need two preliminary results.

(i) If A and B are similar matrices with A = PBP−1, then

Ai =
(
PBP−1

)i
= PBP−1 PBP−1 . . .PBP−1

= PBiP−1 . (5.40)

(ii) Further, on page 91 we deduced that similar matrices have the same characteristic polynomial, so
suppose that for similar matrices A and B

pA(z) = pB(z) =

n∑
i=0

ciz
i . (5.41)

Then from using (5.40)

pA(A) =

n∑
i=0

ciA
i

=

n∑
i=0

ciPBiP−1

= P

(
n∑
i=0

ciB
i

)
P−1

= P pB(B) P−1 (5.42)

Suppose that A is a diagonalizable matrix, i.e. suppose that there exists a transformation matrix P and
a diagonal matrix D such that A = PDP−1. Then from (5.39) and (5.42)

pA(A) = P pD(D) P−1

= P0P−1

= 0 . (5.43)
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Remark. Suppose that A is diagonalizable, invertible and that c0 6= 0 in (5.41). Then from (5.41) and
(5.43)

A−1pA(A) = c0A−1 + c1I . . .+ cnAn−1 = 0 ,

i.e.

A−1 = − 1

c0

(
c1I + . . .+ cnAn−1

)
. (5.44)

We conclude that it is possible to calculate A−1 from the positive powers of A.

5.6.3 Proof for 2× 2 matrices (Unlectured)

Let A be a 2 × 2 complex matrix. We have already proved A satisfies its own characteristic equation if
A is similar to case (i) or case (ii) of (5.29). For case (iii) A is similar to

B =

(
λ 1
0 λ

)
.

Further, pB(z) = det(B− zI) = (λ− z)2, and

pB(B) = (λI− B)2 =

(
0 −1
0 0

)(
0 −1
0 0

)
= 0 .

The result then follows since, from (5.42), pA(A) = P pB(B) P−1 = 0. 2

5.7 Eigenvalues and Eigenvectors of Hermitian Matrices

5.7.1 Revision

• From (2.62a) the scalar product on Rn for n-tuples u,v ∈ Rn is defined as

u · v =

n∑
k=1

ukvk = u1v1 + u2v2 + . . .+ unvn = uTv . (5.45a)

Vectors u,v ∈ Rn are said to be orthogonal if u · v = 0, or if uTv = 0 (which is equivalent for the
time being, assuming that we have an orthonormal basis).

• From (2.65) the scalar product on Cn for n-tuples u,v ∈ Cn is defined as

u · v =

n∑
k=1

u∗kvk = u∗1v1 + u∗2v2 + . . .+ u∗nvn = u†v , (5.45b)

where ∗ denotes a complex conjugate. Vectors u,v ∈ Cn are said to be orthogonal if u · v = 0, or
if u†v = 0 (which is equivalent for the time being, assuming that we have an orthonormal basis).

• An alternative notation for the scalar product and associated norm is

〈u |v 〉 ≡ u · v , (5.46a)

‖v‖ ≡ |v| = (v · v)
1
2 . (5.46b)

• From (3.42a) a square matrix A = {Aij} is symmetric if

AT = A , i.e. if ∀ i, j Aji = Aij . (5.47a)

• From (3.42b) a square matrix A = {Aij} is Hermitian if

A† = A , i.e. if ∀ i, j A∗ji = Aij . (5.47b)

Real symmetric matrices are Hermitian.
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• From (3.57a) a real square matrix Q is orthogonal if

QQT = I = QTQ . (5.48a)

The rows and columns of an orthogonal matrix each form an orthonormal set (using (5.45a) to
define orthogonality).

• From (3.61) a square matrix U is said to be unitary if its Hermitian conjugate is equal to its inverse,
i.e. if

UU† = I = U†U . (5.48b)

The rows and columns of an unitary matrix each form an orthonormal set (using (5.45b) to define
orthogonality). Orthogonal matrices are unitary.

5.7.2 The eigenvalues of an Hermitian matrix are real

Let H be an Hermitian matrix, and suppose that v is a non-zero eigenvector with eigenvalue λ. Then

H v = λ v , (5.49a)

and hence

v†H v = λ v†v . (5.49b)

Take the Hermitian conjugate of both sides; first the left hand side(
v†Hv

)†
= v†H†v since (AB)† = B†A† and (A†)† = A

= v†Hv since H is Hermitian, (5.50a)

and then the right

(λ v†v)† = λ∗v†v . (5.50b)

On equating the above two results we have that

v†Hv = λ∗v†v . (5.51)

It then follows from (5.49b) and (5.51) that

(λ− λ∗) v†v = 0 . (5.52)

However we have assumed that v is a non-zero eigenvector, so

v†v =

n∑
i=1

v∗i vi =

n∑
i=1

|vi|2 > 0 , (5.53)

and hence it follows from (5.52) that λ = λ∗, i.e. that λ is real.

Remark. Since a real symmetric matrix is Hermitian, we conclude that the eigenvalues of a real symmetric
matrix are real.

5.7.3 An n× n Hermitian matrix has n orthogonal eigenvectors: Part I

λi 6= λj. Let vi and vj be two eigenvectors of an Hermitian matrix H. First of all suppose that their
respective eigenvalues λi and λj are different, i.e. λi 6= λj . From pre-multiplying (5.49a) by (vj)

†,
and identifying v in (5.49a) with vi, we have that

vj
† H vi = λi vj

† vi . (5.54a)
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Similarly, by relabelling,

vi
† H vj = λj vi

† vj . (5.54b)

On taking the Hermitian conjugate of (5.54b) it follows that

vj
† H† vi = λ∗j vj

† vi .

However, H is Hermitian, i.e. H† = H, and we have seen above that the eigenvalue λj is real, hence

vj
†H vi = λj vj

† vi . (5.55)

On subtracting (5.55) from (5.54a) we obtain

0 = (λi − λj) vj
† vi . (5.56)

Hence if λi 6= λj it follows that

vj
† vi =

n∑
k=1

(vj)
∗
k(vi)k = 0 . (5.57)

Hence in terms of the complex scalar product (5.45b) the column vectors vi and vj are orthogonal.20/07
20/08

λi = λj. The case when there is a repeated eigenvalue is more difficult. However with sufficient mathe-
matical effort it can still be proved that orthogonal eigenvectors exist for the repeated eigenvalue
(see below). Initially we appeal to arm-waving arguments.

An ‘experimental’ approach. First adopt an ‘experimental’ approach. In real life it is highly unlikely
that two eigenvalues will be exactly equal (because of experimental error, etc.). Hence this
case never arises and we can assume that we have n orthogonal eigenvectors. In fact this is a
lousy argument since often it is precisely the cases where two eigenvalues are the same that
results in interesting physical phenomenon, e.g. the resonant solution (5.37c).20/09

A perturbation approach. Alternatively suppose that in the
real problem two eigenvalues are exactly equal. Introduce
a specific, but small, perturbation of size ε such that the
perturbed problem has unequal eigenvalues (this is highly
likely to be possible because the problem with equal eigen-
values is likely to be ‘structurally unstable’). Now let
ε → 0. For all non-zero values of ε (both positive and
negative) there will be n orthogonal eigenvectors, i.e. for
−1� ε < 0 there will be n orthogonal eigenvectors, and
for 0 < ε� 1 there will also be n orthogonal eigenvec-
tors. We now appeal to a continuity argument claiming
that there will be n orthogonal eigenvectors when ε = 0
because, crudely, there is nowhere for an eigenvector to
‘disappear’ to because of the orthogonality. We note that
this is different to the case when the eigenvectors do not
have to be orthogonal since then one of the eigenvectors
could ‘disappear’ by becoming parallel to one of the ex-
isting eigenvectors.

Example. For instance consider

H =

(
1 ε
ε 1

)
and J =

(
1 1
ε2 1

)
.

These matrices have eigenvalues and eigenvectors (see also (5.78), (5.80) and (5.82b))

H : λ1 = 1 + ε , λ2 = 1− ε , v1 =

(
1
1

)
, v2 =

(
1
−1

)
,

J : λ1 = 1 + ε , λ2 = 1− ε , v1 =

(
1
ε

)
, v2 =

(
1
−ε

)
.
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H is Hermitian for all ε, and there are two orthogonal eigenvectors for all ε. J has the same
eigenvalues as H, and it has two linearly independent eigenvectors if ε 6= 0. However, the
eigenvectors are not required to be orthogonal for all values of ε, which allows for the possibility
that in the limit ε → 0 that they can become parallel; this possibility is realised for J with
the result that there is only one eigenvector when ε = 0.

A proof. We need some machinery first.

5.7.4 The Gram-Schmidt process

If there are repeated eigenvalues, how do we ensure that the eigenvectors of the eigenspace are orthogonal.
More generally, given a finite, linearly independent set of vectors B = {w1, . . . ,wr} how do you generate

an orthogonal set B̃ = {v1, . . . ,vr}?

We define the operator that projects the vector w orthogonally onto the vector v by (cf. (3.10b))

Pv(w) =
v ·w
v · v

v . (5.58)

The Gram-Schmidt process then works as follows. Let

v1 = w1 , (5.59a)

v2 = w2 − Pv1(w2) , (5.59b)

v3 = w3 − Pv1(w3)− Pv2(w3) , (5.59c)

... =
...

vr = wr −
r−1∑
j=1

Pvj (wr) . (5.59d)

The set {v1, . . . ,vr} forms a system of orthogonal vectors. 20/10

Remark. We can interpret the process geometrically
as follows: at stage k, wk is first projected
orthogonally onto the subspace generated by
{v1, . . . ,vk−1}, and then the vector vk is de-
fined to be the difference between wk and this
projection.

Proof. To show that these formulae yield an orthogonal sequence, we proceed by induction. First we
observe that

v1 · v2 = v1 ·
(

w2 −
v1 ·w2

v1 · v1
v1

)
= v1 ·w2 −

v1 ·w2

v1 · v1
v1 · v1

= 0 .

Next we assume that {v1, . . . ,vk−1} are mutually orthogonal, i.e. for 1 6 i, j 6 k − 1 we assume
that vi · vj = 0 if i 6= j. Then for 1 6 i 6 k − 1,

vi · vk = vi ·

wk −
k−1∑
j=1

Pvj (wk)


= vi ·wk −

k−1∑
j=1

vj ·wk

vj · vj
vi · vj

= vi ·wk −
vi ·wk

vi · vi
vi · vi

= 0 .

We conclude that {v1, . . . ,vk} are mutually orthogonal.
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Linear independence. For what follows we need to know if the set B̃ = {v1, . . . ,vr} is linearly indepen-
dent.

Lemma. Any set of mutually orthogonal non-zero vectors vi, (i = 1, . . . , r), is linearly independent.

Proof. If the vi, (i = 1, . . . , r), are mutually orthogonal then from (5.45b)

n∑
k=1

(vi)
∗
k(vj)k = vi · vj = 0 if i 6= j . (5.60)

Suppose there exist ai, (i = 1, . . . , r), such that

r∑
j=1

ajvj = 0 . (5.61)

Then from forming the scalar product of (5.61) with vi and using (5.60) it follows that (no s.c.)

0 =

r∑
j=1

ajvi · vj = aivi · vi = ai

n∑
k=1

|(vi)k|2 . (5.62)

Since vi is non-zero it follows that ai = 0 (i = 1, . . . , r), and thence that the vectors are linearly
independent.

Remarks.

(a) Any set of n orthogonal vectors in Fn is a basis of Fn.

(b) Suppose that the Gram-Schmidt process is applied to a linearly dependent set of vectors. If
wk is the first vector that is a linear combination of w1,w2, . . . ,wk−1, then vk = 0.

(c) If an orthogonal set of vectors B̃ = {v1, . . . ,vr} is obtained by a Gram-Schmidt process from
a linearly independent set of eigenvectors B = {w1, . . . ,wr} with eigenvalue λ then the vi,
(i = 1, . . . , r) are also eigenvectors because an eigenspace is a subspace and each of the vi is
a linear combination of the wj , (j = 1, . . . , r).

Orthonormal sets. Suppose that {v1, . . . ,vr} is an orthogonal set. For non-zero µi ∈ C (i = 1, . . . , r),
another orthogonal set is {µ1v1, . . . , µrvr}, since

(µivi) · (µjvj) = µ∗iµj vi · vj = 0 if i 6= j . (5.63a)

Next, suppose we choose

µi =
1

|vi|
, and let ui =

vi
|vi|

, (5.63b)

then
|ui|2 = ui · ui =

vi · vi
|vi|2

= 1 . (5.63c)

Hence {u1, . . . ,ur} is an orthonormal set, i.e. ui · uj = δij .

Remark. If vi is an eigenvector then ui is also an eigenvector (since an eigenspace is a subspace).

Unitary transformation matrices. Suppose that U is the transformation matrix between an orthonormal
basis and a new orthonormal basis {u1, . . . ,un}, e.g. as defined by (5.63b). From (5.14b)

U =
(
u1 u2 . . . un

)
=


(u1)1 (u2)1 · · · (un)1

(u1)2 (u2)2 · · · (un)2

...
...

. . .
...

(u1)n (u2)n · · · (un)n

 . (5.64)

Then, by orthonormality,

(U† U)ij =

n∑
k=1

(U†)ik(U)kj =

n∑
k=1

(ui)
∗
k(uj)k = ui · uj = δij . (5.65a)
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Equivalently, in matrix notation,
U† U = I. (5.65b)

Transformation matrices are invertible, and hence we conclude that U† = U−1, i.e. that the trans-
formation matrix, U, between an orthonormal basis and a new orthonormal basis is a unitary
matrix.

5.7.5 An n× n Hermitian matrix has n orthogonal eigenvectors: Part II

λi = λj: Proof (unlectured).30 Armed with the Gram-Schmidt process we return to this case. Suppose
that λ1, . . . , λr are distinct eigenvalues of the Hermitian matrix H (reorder the eigenvalues if nec-
essary). Let a corresponding set of orthonormal eigenvectors be B = {v1, . . . ,vr}. Extend B to a
basis B′ = {v1, . . . ,vr,w1, . . . ,wn−r} of Fn (where w1, . . . ,wn−r are not necessarily eigenvectors
and/or orthogonal and/or normal). Next use the Gram-Schmidt process to obtain an orthonormal

basis B̃ = {v1, . . . ,vr,u1, . . . ,un−r}. Let P be the unitary n× n matrix

P = (v1 . . . vr u1 . . . un−r) . (5.66)

Then

P†HP = P−1HP =



λ1 0 . . . 0 0 . . . 0
0 λ2 . . . 0 0 . . . 0
...

...
. . .

...
...

...
...

0 0 . . . λr 0 . . . 0
0 0 . . . 0 c11 . . . c1 n−r
...

...
...

...
...

. . .
...

0 0 . . . 0 cn−r 1 . . . cn−r n−r


, (5.67)

where C is a real symmetric (n− r)× (n− r) matrix. The eigenvalues of C are also eigenvalues of
H, since

det(H− λI) = det(P†HP− λI)

= (λ1 − λ) . . . (λr − λ) det(C− λI) , (5.68)

and hence they are the repeated eigenvalues of H.

We now seek linearly independent eigenvectors of C; this is the problem we had before but in a
(n−r) dimensional space. For simplicity assume that the eigenvalues of C, λj (j = r + 1, . . . , n), are
distinct (if not, recurse); denote corresponding orthonormal eigenvectors by Vj (j = r + 1, . . . , n).
Let Q be the unitary n× n matrix

Q =



1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

...
...

0 0 . . . 1 0 . . . 0
0 0 . . . 0 V1 r+1 . . . V1 n

...
...

...
...

...
. . .

...
0 0 . . . 0 Vn−r r+1 . . . Vn−r n


, (5.69a)

then

Q†(P†HP)Q =



λ1 0 . . . 0 0 . . . 0
0 λ2 . . . 0 0 . . . 0
...

...
. . .

...
...

...
...

0 0 . . . λr 0 . . . 0
0 0 . . . 0 λr+1 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . λn


. (5.69b)

30 E.g. see Mathematical Methods in Physics and Engineering by John W. Dettman (Dover, 1988).
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The required n linearly independent eigenvectors are the columns of T, where

T = PQ . (5.70)

λi = λj: Example. Let A be the real symmetric matrix

A =

0 1 1
1 0 1
1 1 0

 . (5.71a)

The matrix (A + I) has rank 1, so −1 is an eigenvalue with an algebraic multiplicity of at least 2.
Further, from (5.7c)

λ1 + λ2 + λ3 = Tr(A) = 0 ,

and hence the other eigenvalue is 2. The eigenvectors are given by

v1 =

−s1 − t1
s1

t1

 , v2 =

−s2 − t2
s2

t2

 , v3 =

1
1
1

 , (5.71b)

where si and ti, (i = 1, 2), are real numbers. We note that v3 is orthogonal to v1 and v2 whatever
the choice of si and ti, (i = 1, 2). We now wish to choose si and ti, (i = 1, 2) so that all three
eigenvectors are mutually orthogonal.

Consider the vectors defined by the choice s1 = t2 = −1 and s2 = t1 = 0:

w1 =

 1
−1
0

 and w2 =

 1
0
−1

 ,

w1 and w2 are not mutually orthogonal, so apply the Gram-Schmidt process to obtain

v1 =

 1
−1
0

 , (5.71c)

v2 = w2 −
v†1w2

v†1v1

v1 =

 1
0
−1

− 1

2

 1
−1
0

 =
1

2

 1
1
−2

 . (5.71d)

It is straightforward to confirm that v1, v2 and v3 are mutually orthogonal eigenvectors.

λi = λj: Extended example (unlectured). Suppose H is the real symmetric matrix

H =

(
2 0
0 A

)
=


2 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

 . (5.72)

Then H has an eigenvalue λ = −1 with an algebraic multiplicity of 2 (like A), while the eigenvalue
λ = 2 now has an algebraic multiplicity of 2 (unlike A). Consider

v1 =


1
0
0
0

 , v2 =


0
1
−1
0

 , w1 =


0
0
0
1

 , w2 =


1
1
0
0

 , (5.73a)

where v1 and v2 are eigenvectors of λ = 2 and λ = −1 respectively, and w1 and w2 have been
chosen to be linearly independent of v1 and v2 (but no more). Applying the Gram-Schmidt process

v1 =


1
0
0
0

 , v2 =


0
1
−1
0

 , v3 =


0
0
0
1

 , (5.73b)

v4 = w2 −
v†1w2

v†1v1

v1 −
v†2w2

v†2v2

v2 −
v†3w2

v†3v3

v3 =
1

2


0
1
1
0

 . (5.73c)
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It then follows, in the notation of (5.66), (5.69a) and (5.70), that

P =


1 0 0 0

0 1/
√

2 0 1/
√

2

0 −1/
√

2 0 1/
√

2
0 0 1 0

 , P†HP =


2 0 0 0
0 −1 0 0

0 0 0
√

2

0 0
√

2 1

 , (5.74a)

Q =


1 0 0 0
0 1 0 0

0 0 −
√

2
3

√
1
3

0 0
√

1
3

√
2
3

 , T = PQ =


1 0 0 0

0 1/
√

2
√

1
6

√
1
3

0 −1/
√

2
√

1
6

√
1
3

0 0 −
√

2
3

√
1
3

 . (5.74b)

The orthonormal eigenvectors can be read off from the columns of T.

5.7.6 Diagonalization of Hermitian matrices

The eigenvectors of Hermitian matrices form a basis. Combining the results from the previous subsec-
tions we have that, whether or not two or more eigenvalues are equal, an n-dimensional Hermitian
matrix has n orthogonal, and thence linearly independent, eigenvectors that form a basis for Cn.

Orthonormal eigenvector bases. Further, from (5.63a)-(5.63c) we conclude that for Hermitian matrices
it is always possible to find n eigenvectors that form an orthonormal basis for Cn.

Hermitian matrices are diagonalizable. Let H be an Hermitian matrix. Since its eigenvectors, {vi}, form
a basis of Cn it follows that H is similar to a diagonal matrix Λ of eigenvalues, and that

Λ = P−1H P , (5.75a)

where P is the transformation matrix between the original basis and the new basis consisting of
eigenvectors, i.e. from (5.14b)

P =
(
v1 v2 . . . vn

)
=


(v1)1 (v2)1 · · · (vn)1

(v1)2 (v2)2 · · · (vn)2

...
...

. . .
...

(v1)n (v2)n · · · (vn)n

 . (5.75b)

21/07

Hermitian matrices are diagonalizable by unitary matrices. Suppose now that we choose to transform
from an orthonormal basis to an orthonormal basis of eigenvectors {u1, . . . ,un}. Then, from (5.64)
and (5.65b), we conclude that every Hermitian matrix, H, is diagonalizable by a transformation
U†H U, where U is a unitary matrix. In other words an Hermitian matrix, H, can be written in the
form

H = UΛU† , (5.76)

where U is unitary and Λ is a diagonal matrix of eigenvalues.

Real symmetric matrices. Real symmetric matrices are a special case of Hermitian matrices. In addition
to the eigenvalues being real, the eigenvectors are now real (or at least can be chosen to be so).
Further the unitary matrix (5.64) specialises to an orthogonal matrix. We conclude that a real
symmetric matrix, S, can be written in the form

S = QΛQT , (5.77)

where Q is an orthogonal matrix and Λ is a diagonal matrix of eigenvalues.
21/08
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5.7.7 Examples of diagonalization

Unlectured example. Find the orthogonal matrix that diagonalizes the real symmetric matrix

S =

(
1 β
β 1

)
where β is real. (5.78)

Answer. The characteristic equation is

0 =

∥∥∥∥ 1− λ β
β 1− λ

∥∥∥∥ = (1− λ)2 − β2 . (5.79)

The solutions to (5.79) are

λ =

{
λ+ = 1 + β

λ− = 1− β
. (5.80)

The corresponding eigenvectors v± are found from(
1− λ± β

β 1− λ±

)(
v± 1

v± 2

)
= 0 , (5.81a)

or

β

(
∓1 1

1 ∓1

)(
v± 1

v± 2

)
= 0 . (5.81b)

β 6= 0. In this case λ+ 6= λ−, and we have that

v± 2 = ± v± 1 . (5.82a)

On normalising v± so that v†± v± = 1, it follows that

v+ =
1√
2

(
1
1

)
, v− =

1√
2

(
1
−1

)
. (5.82b)

Note that v†+ v− = 0, as shown earlier.

β = 0. In this case S = I, and so any non-zero vector is an eigenvector with eigenvalue 1. In
agreement with the result stated earlier, two linearly-independent eigenvectors can still be
found, and we can choose them to be orthonormal, e.g. v+ and v− as above (if fact there is
an uncountable choice of orthonormal eigenvectors in this special case).

To diagonalize S when β 6= 0 (it already is diagonal if β = 0) we construct an orthogonal matrix Q
using (5.64):

Q =

(
v+ 1 v− 1

v+ 2 v− 2

)
=

( 1√
2

1√
2

1√
2
− 1√

2

)
=

1√
2

(
1 1

1 −1

)
. (5.83)

As a check we note that

QTQ =
1

2

(
1 1

1 −1

)(
1 1

1 −1

)
=

(
1 0

0 1

)
, (5.84)

and

QTS Q =
1

2

(
1 1

1 −1

)(
1 β

β 1

)(
1 1

1 −1

)

=
1

2

(
1 1

1 −1

)(
1 + β 1− β
1 + β −1 + β

)

=

(
1 + β 0

0 1− β

)
= Λ . (5.85)
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Degenerate example. Let A be the real symmetric matrix (5.71a), i.e.

A =

0 1 1
1 0 1
1 1 0

 .

Then from (5.71b), (5.71c) and (5.71d) three orthogonal eigenvectors are

v1 =

 1
−1
0

 , v2 =
1

2

 1
1
−2

 , v3 =

1
1
1

 ,

where v1 and v2 are eigenvectors of the degenerate eigenvalue λ = −1, and v3 is the eigenvector of
the eigenvalue λ = 2. By renormalising, three orthonormal eigenvectors are

u1 =
1√
2

 1
−1
0

 , u2 =
1√
6

 1
1
−2

 , u3 =
1√
3

1
1
1

 ,

and hence A can be diagonalized using the orthogonal transformation matrix

Q =


1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 −
√

2√
3

1√
3

 .

Exercise. Check that

QTQ = I and that QTAQ =

−1 0 0
0 −1 0
0 0 2

 .

21/09

5.7.8 Diagonalization of normal matrices

A square matrix A is said to be normal if

A†A = A A† . (5.86)

It is possible to show that normal matrices have n linearly independent eigenvectors and can always
be diagonalized. Hence, as well as Hermitian matrices, skew-Hermitian matrices (i.e. matrices such that
H† = −H) and unitary matrices can always be diagonalized.

5.8 Forms

Definition: form. A map F(x)

F(x) = x†Ax =

n∑
i=1

n∑
j=1

x∗iAijxj , (5.87a)

is called a [sesquilinear] form; A is called its coefficient matrix.

Definition: Hermitian form If A = H is an Hermitian matrix, the map F(x) : Cn 7→ C, where

F(x) = x†Hx =

n∑
i=1

n∑
j=1

x∗iHijxj , (5.87b)

is referred to as an Hermitian form on Cn.
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Hermitian forms are real. An Hermitian form is real since

(x†Hx)∗ = (x†Hx)† since a scalar is its own transpose

= x†H†x since (AB)† = B†A†

= x†Hx . since H is Hermitian

Definition: quadratic form. If A = S is a real symmetric matrix, the map F(x) : Rn 7→ R, where

F(x) = xTSx =

n∑
i=1

n∑
j=1

xiSijxj , (5.87c)

is referred to as a quadratic form on Rn.21/10

5.8.1 Eigenvectors and principal axes

From (5.76) the coefficient matrix, H, of a Hermitian form can be written as

H = UΛU† , (5.88a)

where U is unitary and Λ is a diagonal matrix of eigenvalues. Let

x′ = U†x , (5.88b)

then (5.87b) can be written as

F(x) = x†UΛU†x

= x′†Λx′ (5.88c)

=

n∑
i=1

λi|x′i|2 . (5.88d)

Transforming to a basis of orthonormal eigenvectors transforms the Hermitian form to a standard form
with no ‘off-diagonal’ terms. The orthonormal basis vectors that coincide with the eigenvectors of the
coefficient matrix, and which lead to the simplified version of the form, are known as principal axes.

Example. Let F(x) be the quadratic form

F(x) = 2x2 − 4xy + 5y2 = xTSx , (5.89a)

where

x =

(
x
y

)
and S =

(
2 −2
−2 5

)
. (5.89b)

What surface is described by F(x) = constant?

Solution. The eigenvalues of the real symmetric matrix S are λ1 = 1 and λ2 = 6, with corresponding
unit eigenvectors

u1 =
1√
5

(
2
1

)
and u2 =

1√
5

(
1
−2

)
. (5.89c)

The orthogonal matrix

Q =
1√
5

(
2 1
1 −2

)
(5.89d)

transforms the original orthonormal basis to a basis of principal axes. Hence S = QΛQT, where
Λ is a diagonal matrix of eigenvalues. It follows that F can be rewritten in the normalised
form

F = xTQΛQTx = x′TΛx′ = x′2 + 6y′2 , (5.89e)

where

x′ = QTx , i.e.

(
x′

y′

)
=

1√
5

(
2 1
1 −2

)(
x
y

)
. (5.89f)

The surface F(x) = constant is thus an ellipse.
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Hessian matrix. Let f : Rn → R be a function such that all the second-order partial derivatives exist.
The Hessian matrix H(a) of f at a ∈ Rn is defined to have components

Hij(a) =
∂2f

∂xi∂xj
(a) . (5.90a)

If f has continuous second-order partial derivatives, the mixed second-order partial derivatives
commute, in which case the Hessian matrix H is symmetric. Suppose now that the function f has
a critical point at a, i.e.

∂f

∂xj
(a) = 0 for j = 1, . . . , n. (5.90b)

We examine the variation in f near a. Then from Taylor’s Theorem, (5.90a) and (5.90b) we have
that near a

f(a + x) = f(a) +

n∑
i=1

xi
∂f

∂xi
(a) + 1

2

n∑
i=1

n∑
j=i

xi xj
∂2f

∂xi∂xj
(a) + o(|x|2)

= f(a) + 1
2

n∑
i=1

n∑
j=i

xiHij(a)xj + o(|x|2) . (5.90c)

Hence, if |x| � 1,

f(a + x)− f(a) ≈ 1
2

n∑
i,j=1

xiHij(a)xj = 1
2xTHx , (5.90d)

i.e. the variation in f near a is given by a quadratic form. Since H is a real symmetric matrix it
follows from (5.88c) that on transforming to the orthonormal basis of eigenvectors,

xTHx = x′
T

Λx′ (5.90e)

where Λ is the diagonal matrix of eigenvalues of H. It follows that close to a critical point

f(a + x)− f(a) ≈ 1
2x′

T
Λx′ = 1

2

(
λ1x

′
1
2

+ . . .+ λnx
′
n

2
)
. (5.90f)

As explained in Differential Equations:

(i) if all the eigenvalues of H(a) are strictly positive, f has a local minimum at a;

(ii) if all the eigenvalues of H(a) are strictly negative, f has a local maximum at a;

(iii) if H(a) has at least one strictly positive eigenvalue and at least one strictly negative eigenvalue,
then f has a saddle point at a;

(iv) otherwise, it is not possible to determine the nature of the critical point from the eigenvalues
of H(a).

5.8.2 Quadrics and conics

A quadric, or quadric surface, is the n-dimensional hypersurface defined by the zeros of a real quadratic
polynomial. For co-ordinates (x1, . . . , xn) the general quadric is defined by

n∑
i,j=1

xiAijxj +

n∑
i=1

bixi + c ≡ xTAx + bTx + c = 0 , (5.91a)

or equivalently

n∑
i,j=1

xjAijxi +

n∑
i=1

bixi + c ≡ xTATx + bTx + c = 0 , (5.91b)

where A is a n× n matrix, b is a n× 1 column vector and c is a constant. Let

S = 1
2

(
A + AT

)
, (5.91c)
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then from (5.91a) and (5.91b)

xTSx + bTx + c = 0 . (5.91d)

By taking the principal axes as basis vectors it follows that

x′
T

Λx′ + b′
T

x′ + c = 0 . (5.91e)

where Λ = QTSQ, b′ = QTb and x′ = QTx. If Λ does not have a zero eigenvalue, then it is invertible and
(5.91e) can be simplified further by a translation of the origin

x′ → x′ − 1
2 Λ−1b′ , (5.91f)

to obtain

x′
T

Λx′ = k . (5.91g)

where k is a constant. 22/07

Conic Sections. First suppose that n = 2 and that Λ (or equivalently S) does not have a zero eigenvalue,
then with

x′ =

(
x′

y′

)
and Λ =

(
λ1 0
0 λ2

)
, (5.92a)

(5.91g) becomes
λ1x

′2 + λ2y
′2 = k , (5.92b)

which is the normalised equation of a conic section.

λ1λ2 > 0. If λ1λ2 > 0, then k must have the same sign as the λj
(j = 1, 2), and (5.92b) is the equation of an ellipse with principal
axes coinciding with the x′ and y′ axes.

Scale. The scale of the ellipse is determined by k.

Shape. The shape of the ellipse is determined by the ratio of
eigenvalues λ1 and λ2.

Orientation. The orientation of the ellipse in the original basis is
determined by the eigenvectors of S.

In the degenerate case, λ1 = λ2, the ellipse becomes a circle with
no preferred principal axes. Any two orthogonal (and hence lin-
early independent) vectors may be chosen as the principal axes.

λ1λ2 < 0. If λ1λ2 < 0 then (5.92b) is the equation for a hyperbola with
principal axes coinciding with the x′ and y′ axes. Similar results
to above hold for the scale, shape and orientation.

λ1λ2 = 0. If λ1 = λ2 = 0, then there is no quadratic term, so assume
that only one eigenvalue is zero; wlog λ2 = 0. Then instead of
(5.91f), translate the origin according to

x′ → x′ − b′1
2λ1

, y′ → y′ − c

b′2
+

b′
2
1

4λ1b′2
, (5.93)

assuming b′2 6= 0, to obtain instead of (5.92b)

λ1x
′2 + b′2y

′ = 0 . (5.94)

This is the equation of a parabola with principal axes coinciding
with the x′ and y′ axes. Similar results to above hold for the scale,
shape and orientation.

Remark. If b′2 = 0, the equation for the conic section can be re-
duced (after a translation) to λ1x

′2 = k (cf. (5.92b)), with possible
solutions of zero (λ1k < 0), one (k = 0) or two (λ1k > 0) lines.22/08

22/09
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Figure 1: Ellipsoid (λ1 > 0, λ2 > 0, λ3 > 0, k > 0); Wikipedia.

Three Dimensions. If n = 3 and Λ does not have a zero eigenvalue, then with

x′ =

x′y′
z′

 and Λ =

λ1 0 0
0 λ2 0
0 0 λ3

 , (5.95a)

(5.91g) becomes
λ1x

′2 + λ2y
′2 + λ3z

′2 = k . (5.95b)

Analogously to the case of two dimensions, this equation describes a number of characteristic
surfaces.

Coefficients Quadric Surface

λ1 > 0, λ2 > 0, λ3 > 0, k > 0. Ellipsoid.
λ1 = λ2 > 0, λ3 > 0, k > 0. Spheroid: an example of a surface of revolution (in this

case about the z′ axis). The surface is a prolate spheroid if
λ1 = λ2 > λ3 and an oblate spheroid if λ1 = λ2 < λ3.

λ1 = λ2 = λ3 > 0, k > 0. Sphere.
λ1 > 0, λ2 > 0, λ3 = 0, k > 0. Elliptic cylinder.
λ1 > 0, λ2 > 0, λ3 < 0, k > 0. Hyperboloid of one sheet.
λ1 > 0, λ2 > 0, λ3 < 0, k = 0. Elliptical conical surface.
λ1 > 0, λ2 < 0, λ3 < 0, k > 0. Hyperboloid of two sheets.
λ1 > 0, λ2 = λ3 = 0, λ1k > 0. Plane.

5.9 More on Conic Sections

Conic sections arise in a number of applications, e.g. next term you will encounter them in the study of
orbits. The aim of this sub-section is to list a number of their properties.

We first note that there are a number of equivalent definitions of conic sections. We have already encoun-
tered the algebraic definitions in our classification of quadrics, but conic sections can also be characterised,
as the name suggests, by the shapes of the different types of intersection that a plane can make with a
right circular conical surface (or double cone); namely an ellipse, a parabola or a hyperbola. However,
there are other definitions.
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Figure 2: Prolate spheroid (λ1 = λ2 > λ3 > 0, k > 0) and oblate spheroid (0 < λ1 = λ2 < λ3, k > 0);
Wikipedia.

Figure 3: Hyperboloid of one sheet (λ1 > 0, λ2 > 0, λ3 < 0, k > 0) and hyperboloid of two sheets
(λ1 > 0, λ2 < 0, λ3 < 0, k > 0); Wikipedia.
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Figure 4: Paraboloid of revolution (λ1x
′2 + λ2y

′2 + z′ = 0, λ1 > 0, λ2 > 0) and hyperbolic paraboloid
(λ1x

′2 + λ2y
′2 + z′ = 0, λ1 < 0, λ2 > 0); Wikipedia.

5.9.1 The focus-directrix property

Another way to define conics is by two positive real parameters: a (which determines the size) and e (the
eccentricity, which determines the shape). The points (±ae, 0) are defined to be the foci of the conic
section, and the lines x = ±a/e are defined to be directrices. A conic section can then be defined to
be the set of points which obey the focus-directrix property: namely that the distance from a focus is
e times the distance from the directrix closest to that focus (but not passing through that focus in the
case e = 1). 22/10

0 < e < 1. From the focus-directrix property,√
(x− ae)2 + y2 = e

(a
e
− x
)
, (5.96a)

i.e.
x2

a2
+

y2

a2(1− e2)
= 1 . (5.96b)

This is an ellipse with semi-major axis a and semi-minor
axis a

√
1− e2. An ellipse is the intersection between a

conical surface and a plane which cuts through only one
half of that surface. The special case of a circle of radius
a is recovered in the limit e→ 0.

e > 1. From the focus-directrix property,√
(x− ae)2 + y2 = e

(
x− a

e

)
, (5.97a)

i.e.
x2

a2
− y2

a2(e2 − 1)
= 1 . (5.97b)

This is a hyperbola with semi-major axis a. A hyperbola
is the intersection between a conical surface and a plane
which cuts through both halves of that surface.
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e = 1. In this case, the relevant directrix that corresponding to
the focus at, say, x = a is the one at x = −a. Then from
the focus-directrix property,√

(x− a)2 + y2 = x+ a , (5.98a)

i.e.

y2 = 4ax . (5.98b)

This is a parabola. A parabola is the intersection of a
right circular conical surface and a plane parallel to a
generating straight line of that surface.

5.9.2 Ellipses and hyperbolae: another definition

Yet another definition of an ellipse is that it is the locus of
points such that the sum of the distances from any point
on the curve to the two foci is constant. Analogously, a
hyperbola is the locus of points such that the difference
in distance from any point on the curve to the two foci is
constant.

Ellipse. Hence for an ellipse we require that√
(x+ ae)2 + y2 +

√
(x− ae)2 + y2 = 2a ,

where the right-hand side comes from evaluating the left-hand side at x = a and y = 0. This
expression can be rearranged, and then squared, to obtain

(x+ ae)2 + y2 = 4a2 − 4a
√

(x− ae)2 + y2 + (x− ae)2 + y2 ,

or equivalently

a− ex =
√

(x− ae)2 + y2 .

Squaring again we obtain, as in (5.96b),

x2

a2
+

y2

a2(1− e2)
= 1 . (5.99)

Hyperbola. For a hyperbola we require that√
(x+ ae)2 + y2 −

√
(x− ae)2 + y2 = 2a ,

where the right-hand side comes from evaluating the left-hand
side at x = a and y = 0. This expression can be rearranged,
and then squared, to obtain

(x+ ae)2 + y2 = 4a2 + 4a
√

(x− ae)2 + y2 + (x− ae)2 + y2 ,

or equivalently

ex− a =
√

(x− ae)2 + y2 .

Squaring again we obtain, as in (5.97b),

x2

a2
− y2

a2(e2 − 1)
= 1 . (5.100)

Mathematical Tripos: IA Vectors & Matrices 114 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2010



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

5.9.3 Polar co-ordinate representation

It is also possible to obtain a description of conic sections using
polar co-ordinates. Place the origin of polar coordinates at the
focus which has the directrix to the right. Denote the distance
from the focus to the appropriate directrix by `/e for some `;
then

e 6= 1 : `/e = |a/e− ae| , i.e. ` = a|1− e2| , (5.101a)

e = 1 : ` = 2a . (5.101b)

From the focus-directrix property

r = e

(
`

e
− r cos θ

)
, (5.102a)

and so

r =
`

1 + e cos θ
. (5.102b)

Since r = ` when θ = 1
2π, ` is this the value of y immediately

above the focus. ` is known as the semi-latus rectum.

Asymptotes. Ellipses are bounded, but hyperbolae and parabolae are
unbounded. Further, it follows from (5.102b) that as r →∞

θ → ±θa where θa = cos−1

(
−1

e

)
,

where, as expected, θa only exists if e > 1. In the case of
hyperbolae it follows from (5.97b) or (5.100), that

y = ∓x
(
e2 − 1

) 1
2

(
1− a2

x2

) 1
2

≈ ±x tan θa ∓
a2 tan θa

2x
± . . . as |x| → ∞ . (5.103)

Hence as |x| → ∞ the hyperbola comes arbitrarily close to asymptotes at y = ±x tan θa.

5.9.4 The intersection of a plane with a conical surface (Unlectured)

A right circular cone is a surface on which every point P is
such that OP makes a fixed angle, say α (0 < α < 1

2π), with
a given axis that passes through O. The point O is referred to
as the vertex of the cone.

Let n be a unit vector parallel to the axis. Then from the above
description

x · n = |x| cosα . (5.104a)

The vector equation for a cone with its vertex at the origin is
thus

(x · n)
2

= x2 cos2 α , (5.104b)

where by squaring the equation we have included the ‘reverse’
cone to obtain the equation for a right circular conical surface.

By means of a translation we can now generalise (5.104b) to the equation for a conical surface with a
vertex at a general point a: [

(x− a) · n
]2

= (x− a)2 cos2 α . (5.104c)
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Component form. Suppose that in terms of a standard Cartesian basis

x = (x, y, z) , a = (a, b, c) , n = (l,m, n) ,

then (5.104c) becomes[
(x− a)l + (y − b)m+ (z − c)n

]2
=
[
(x− a)2 + (y − b)2 + (z − c)2

]
cos2 α . (5.105)

Intersection of a plane with a conical surface. Let us consider the intersection of this conical surface with
the plane z = 0. In that plane[

(x− a)l + (y − b)m− cn
]2

=
[
(x− a)2 + (y − b)2 + c2

]
cos2 α . (5.106)

This is a curve defined by a quadratic polynomial in x and y. In order to simplify the algebra
suppose that, wlog, we choose Cartesian axes so that the axis of the conical surface is in the yz
plane. In that case l = 0 and we can express n in component form as

n = (l,m, n) = (0, sinβ, cosβ) .

Further, translate the axes by the transformation

X = x− a , Y = y − b+
c sinβ cosβ

cos2 α− sin2 β
,

so that (5.106) becomes[(
Y − c sinβ cosβ

cos2 α− sin2 β

)
sinβ − c cosβ

]2

=

[
X2 +

(
Y − c sinβ cosβ

cos2 α− sin2 β

)2

+ c2
]

cos2 α ,

which can be simplified to

X2 cos2 α+ Y 2
(
cos2 α− sin2 β

)
=
c2 sin2 α cos2 α

cos2 α− sin2 β
. (5.107)

There are now three cases that need to be considered:
sin2 β < cos2 α, sin2 β > cos2 α and sin2 β = cos2 α.
To see why this is, consider graphs of the intersection
of the conical surface with the X = 0 plane, and for
definiteness suppose that 0 6 β 6 π

2 .

First suppose that

β + α <
π

2
i.e.

β < 1
2π − α

i.e.

sinβ < sin
(

1
2π − α

)
= cosα .

In this case the intersection of the conical surface with
the z = 0 plane will yield a closed curve.

Next suppose that

β + α >
π

2
i.e.

sinβ > cosα .

In this case the intersection of the conical surface with
the z = 0 plane will yield two open curves, while if
sinβ = cosα there will be one open curve.
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Define
c2 sin2 α

| cos2 α− sin2 β|
= A2 and

c2 sin2 α cos2 α(
cos2 α− sin2 β

)2 = B2 . (5.108)

sinβ < cosα. In this case (5.107) becomes

X2

A2
+
Y 2

B2
= 1 , (5.109a)

which we recognise as the equation of an ellipse
with semi-minor and semi-major axes of lengths
A and B respectively (from (5.108) it follows that
A < B).

sinβ > cosα. In this case

− X2

A2
+
Y 2

B2
= 1 , (5.109b)

which we recognise as the equation of a hyper-
bola, where B is one half of the distance between
the two vertices.

sinβ = cosα. In this case (5.106) becomes

X2 = −2c cotβ Y , (5.109c)

where

X = x−a and Y = y−b−c cot 2β , (5.109d)

which is the equation of a parabola.
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5.10 Singular Value Decomposition

We have seen that if no eigenvalue of a square matrix A has a non-zero defect, then the matrix has an
eigenvalue decomposition

A = PΛP−1 , (5.110a)

where P is a transformation matrix and Λ is the diagonal matrix of eigenvalues. Further, we have also
seen that, although not all matrices have eigenvalue decompositions, a Hermitian matrix H always has
an eigenvalue decomposition

H = UΛU† , (5.110b)

where U is a unitary matrix.

In this section we will show that any real or complex m×n matrix A has a factorization, called a Singular
Value Decomposition (SVD), of the form

A = UΣV† , (5.111a)

where U is a m ×m unitary matrix, Σ is an m × n rectangular diagonal matrix with non-negative real
numbers on the diagonal, and V is an n× n unitary matrix. The diagonal entries σi of Σ are known as
the singular values of A, and it is conventional to order them so that

σ1 > σ2 > . . . . (5.111b)

There are many applications of SVD, e.g. in signal processing and pattern recognition, and more specifi-
cally in measuring the growth rate of crystals in igneous rock, in understanding the reliability of seismic
data, in examining entanglement in quantum computation, and in characterising the policy positions of
politicians.

5.10.1 Construction

We generate a proof by constructing ‘the’, or more correctly ‘an’, SVD.

Let H be the n× n matrix
H = A†A . (5.112)

Since H† = (A†A)† = A†A, it follows that H is Hermitian. Hence there exists a n × n unitary matrix V
such that

V†A†AV = V†HV = Λ , (5.113)

where Λ is a n× n diagonal matrix of real eigenvalues. Arrange the columns of V so that

λ1 > λ2 > . . . (5.114)

Next consider the Hermitian form

x†Hx = x†A†Ax

= (Ax)†(Ax)

> 0 . (5.115)

By transforming to principal axes (e.g. see (5.88d)) it follows that

x†Hx =

n∑
i=1

λi|x′i|2 > 0 . (5.116)

Since the choice of x′ is arbitrary, it follows that (e.g. choose x′i = δij for some j for i = 1, n)

λj > 0 for all j = 1, n. (5.117)

Definition. A matrix H with eigenvalues that are non-negative is said to be positive semi-definite. A
matrix D with eigenvalues that are strictly positive is said to be positive definite.
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Partition Λ so that

Λ =

[
D 0
0 0

]
, (5.118)

where D is a r × r positive definite diagonal matrix with entries

Dii = σ2
i = λi > 0 . (5.119)

Partition V into n× r and n× (r − n) matrices V1 and V2:

V =
[

V1 V2

]
, (5.120a)

where, since V is unitary,

V†1V1 = I , V†2V2 = I , V†1V2 = 0 , V†2V1 = 0 . (5.120b)

With this definition it follows that[
V†1
V†2

]
A†A

[
V1 V2

]
=

[
V†1A†AV1 V†1A†AV2

V†2A†AV1 V†2A†AV2

]
=

[
D 0
0 0

]
, (5.121a)

and hence that

V†1A†AV1 = D , (5.121b)

V†2A†AV2 = (AV2)†(AV2) = 0 ⇒ AV2 = 0 . (5.121c)

Define U1 as the m× r matrix
U1 = AV1D−

1
2 , (5.122a)

and note that
U†1U1 = (D−

1
2 †V†1A†)AV1D−

1
2 = I . (5.122b)

We deduce

• that the column vectors of U1 are orthonormal,

• that the column vectors of U1 are linearly independent,

• and hence that r 6 m.

Further observe that

U1D
1
2 V†1 = AV1D−

1
2 D

1
2 V†1 = A . (5.122c)

This is almost the required result.

U1 comprises of r 6 m orthonormal column vectors in Cm. If necessary extend this set of vectors to an
orthonormal basis of Cm to form the m×m matrix U:

U =
[

U1 U2

]
, (5.123a)

where, by construction,

U†1U1 = I , U†2U2 = I , U†1U2 = 0 , U†2U1 = 0 . (5.123b)

Hence U†U = I, i.e. U is unitary. Next, recalling that r 6 m and r 6 n, define the m×n diagonal matrix
Σ by

Σ =

[
D

1
2 0

0 0

]
, (5.124)

where Σii = D
1
2
ii = σi > 0 (i 6 r). Then, as required,

UΣV† =
[

U1 U2

] [ D
1
2 0

0 0

] [
V†1
V†2

]
= U1D

1
2 V†1 = A . 2 (5.125)
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5.10.2 Remarks

Definition. The m columns of U and the n columns of V are called the left-singular vectors and the
right-singular vectors of A respectively.

• The right-singular vectors are eigenvectors of the matrix A†A, and the non-zero-singular values of
A are the square roots of the non-zero eigenvalues of A†A.

• For 1 6 j 6 r let uj and vj be the jth columns of U and V. Then since UΣV† = A

AV = UΣ ⇒ Avj = σjuj , (5.126a)

A†U = VΣ† ⇒ A†uj = σjvj . (5.126b)

It follows that
AA†uj = σjAvj = σ2

juj , (5.126c)

and hence that the left-singular vectors are eigenvectors of the matrix AA†, and the non-zero-
singular values of A are also the square roots of the non-zero eigenvalues of AA†.

Geometric Interpretation Consider the linear
transformation from Cn to Cm that takes a vector
x to Ax. Then the SVD says that one can find or-
thonormal bases of Cn and Cm such that the linear
transformation maps the jth (j = 1, . . . , r) basis vec-
tor of Cn to a non-negative multiple of the jth basis
vector of Cm, and sends the left-over basis vectors
to zero.
If we restrict to a real vector space, and consider
the sphere of radius one in Rn, then this sphere is
mapped to an ellipsoid in Rm, with the non-zero sin-
gular values being the lengths of the semi-axes of the
ellipsoid.

5.10.3 Linear Least Squares

Suppose that an m× n matrix A and a vector b ∈ Rm are given. If m < n the equation Ax = b usually
has an infinity of solutions. On the other hand, if there are more equations than unknowns, i.e. if m > n,
the system Ax = b is called overdetermined. In general, an overdetermined system has no solution, but
we would like to have Ax and b close in a sense. Choosing the Euclidean distance ‖z‖ = (

∑m
i=1 z

2
i )1/2 as

a measure of closeness, we obtain the following problem.

Problem 5.3 (Least squares in Rm). Given A ∈ Rm×n and b ∈ Rm, find

x∗ = min
x∈Rn

‖Ax− b‖2 , (5.127)

i.e., find x∗ ∈ Rn which minimizes ‖Ax− b‖2. This is called the least-squares problem.

Example Problem. Problems of this form occur frequently when we collect m observations (xi, yi),
which are typically prone to measurement error, and wish to exploit them to form an n-variable
linear model, typically with n� m. In statistics, this is called linear regression.

For instance, suppose that we have m measurements of F (x), and that we wish to model F with
a linear combination of n functions φj(x), i.e.

F (x) = c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) , and F (xi) ≈ yi, i = 1...m.
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0

2

4

6

8

2 4 6 8 10 12
x

xi yi
1 0.00
2 0.60
3 1.77
4 1.92
5 3.31
6 3.52
7 4.59
8 5.31
9 5.79
10 7.06
11 7.17

Figure 5: Least squares straight line data fitting.

Such a problem might occur if we were trying to match some planet observations to an ellipse.31

Hence we want to determine c such that the F (xi) ‘best’ fit the yi, i.e.

Ac =



φ1(x1) · · · φn(x1)
...

...
φ1(xn) · · · φn(xn)

...
...

φ1(xm) · · · φn(xm)


 c1

...
cn

 =



F (x1)
...

F (xn)
...

F (xm)

 ≈


y1

...
yn
...
ym

 = y.

There are many ways of doing this; we will determine the c that minimizes the sum of squares of
the deviation, i.e. we minimize

m∑
i=1

(F (xi)− yi)2
= ‖Ac− y‖2.

This leads to a linear system of equations for the determination of the unknown c.

Solution. We can solve the least squares problem using SVD. First use the SVD to write

Ax− b = UΣV†x− b = U(Σz− d) where z = V†x and d = U†b . (5.128)

Then

‖Ax− b‖2 = (z†Σ† − d†)U†U(Σz− d)

=

r∑
1

(σizi − di)2 +

m∑
r+1

d2
i

>
m∑
r+1

d2
i . (5.129)

Hence the least squares solution is given by

zi =
di
σi

for i = 1, . . . , r with zi arbitrary for i = r + 1, . . . ,m , (5.130a)

or in terms of x = Vz

xi =

r∑
j=1

Vijdj
σj

+

m∑
j=r+1

Vijzj for i = 1, . . . ,m . (5.130b)

31 Or Part III results to Part II results, or Part IA results to STEP results.
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5.10.4 Film

In 1976, Cleve Moler (the inventor of MATLAB) made a 6-minute film about the singular value decom-
position at what was then known as the Los Alamos Scientific Laboratory. Today the SVD is widely
used in scientific and engineering computation, but in 1976 the SVD was relatively unknown. A practical
algorithm for its computation had been developed only a few years earlier and the LINPACK project was
in the early stages of its implementation. The 3D computer graphics involved hidden line computations
(then relatively new). The computer output was 16mm celluloid film. The film has been digitized and
uploaded it to YouTube, and is available at

http://youtu.be/R9UoFyqJca8.

A description of the making of the film, and its use as background graphics in the first Star Trek movie,
is at:

http://blogs.mathworks.com/cleve/2012/12/10/1976-matrix-singular-value-decomposition-film/.
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6 Transformation Groups

6.1 Definition32

A group is a set G with a binary operation ∗ that satisfies the following four axioms.

Closure: for all a, b ∈ G,

a ∗ b ∈ G . (6.1a)

Associativity: for all a, b, c ∈ G

(a ∗ b) ∗ c = a ∗ (b ∗ c) . (6.1b)

Identity element: there exists an element e ∈ G such that for all a ∈ G,

e ∗ a = a ∗ e = a . (6.1c)

Inverse element: for each a ∈ G, there exists an element b ∈ G such that

a ∗ b = b ∗ a = e , (6.1d)

where e is an identity element.

6.2 The Set of Orthogonal Matrices is a Group

Let G be the set of all orthogonal matrices, i.e. the set of all matrices Q such that QTQ = I. We can
check that G is a group under matrix multiplication.

Closure. If P and Q are orthogonal, then R = PQ is orthogonal since

RTR = (PQ)TPQ = QTPTPQ = QTIQ = I . (6.2a)

Associativity. If P, Q and R are orthogonal (or indeed any matrices), then multiplication is associative
from (3.37), i.e. because

((PQ)R)ij = (PQ)ik(R)kj

= (P)i`(Q)`k(R)kj

= (P)i`(QR)`j

= (P(QR))ij . (6.2b)

Identity element. I is orthogonal, and thus in G, since

ITI = II = I . (6.2c)

I is also the identity element since if Q is orthogonal (or indeed any matrix) then from (3.49)

IQ = QI = Q . (6.2d)

Inverse element. If Q is orthogonal, then QT is the required inverse element because QT is itself orthog-
onal (since QTTQT = QQT = I) and

QQT = QTQ = I . (6.2e)

Definition. The group of n× n orthogonal matrices is known as O(n).
23/07
23/08

32 Revision for many of you, but not for those not taking Groups.
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6.2.1 The set of orthogonal matrices with determinant +1 is a group

From (3.80) we have that if Q is orthogonal, then det Q = ±1. The set of n×n orthogonal matrices with
determinant +1 is known as SO(n), and is a group. In order to show this we need to supplement (6.2a),
(6.2b), (6.2c), (6.2d) and (6.2e) with the observations that

(i) if P and Q are orthogonal with determinant +1 then R = PQ is orthogonal with determinant +1
(and multiplication is thus closed), since

det R = det(PQ) = det P det Q = +1 ; (6.3a)

(ii) det I = +1;

(iii) if Q is orthogonal with determinant +1 then, since det QT = det Q from (3.72), its inverse QT has
determinant +1, and is thus in SO(n).23/09

6.3 The Set of Length Preserving Transformation Matrices is a Group

The set of length preserving transformation matrices is a group because the set of length preserving
transformation matrices is the set of orthogonal matrices, which is a group. This follows from the following
theorem.

Theorem 6.1. Let P be a real n× n matrix. The following are equivalent:

(i) P is an orthogonal matrix;

(ii) |Px| = |x| for all column vectors x (i.e. lengths are preserved: P is said to be a linear isometry);

(iii) (Px)T(Py) = xTy for all column vectors x and y (i.e. scalar products are preserved);

(iv) if {v1, . . . , vn} are orthonormal, so are {Pv1, . . . ,Pvn};

(v) the columns of P are orthonormal.

Proof: (i) ⇒ (ii). Assume that PTP = PPT = I then

|Px|2 = (Px)T(Px) = xTPTPx = xTx = |x|2 .

Proof: (ii) ⇒ (iii). Assume that |Px| = |x| for all x, then

|P(x + y)|2 = |x + y|2

= (x + y)T(x + y)

= xTx + yTx + xTy + yTy

= |x|2 + 2xTy + |y|2 . (6.4a)

But we also have that

|P(x + y)|2 = |Px + Py|2

= |Px|2 + 2(Px)TPy + |Py|2

= |x|2 + 2(Px)TPy + |y|2 . (6.4b)

Comparing (6.4a) and (6.4b) it follows that

(Px)TPy = xTy . (6.4c)

Proof: (iii) ⇒ (iv). Assume (Px)T(Py) = xTy, then

(Pvi)
T(Pvj) = vT

i vj = δij .
23/10

Mathematical Tripos: IA Vectors & Matrices 119 c© S.J.Cowley@damtp.cam.ac.uk, Michaelmas 2010



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

Proof: (iv) ⇒ (v). Assume that if {v1, . . . , vn} are orthonormal, so are {Pv1, . . . ,Pvn}. Take {v1, . . . , vn}
to be the standard orthonormal basis {e1, . . . , en}, then {Pe1, . . . ,Pen} are orthonormal. But
{Pe1, . . . ,Pen} are the columns of P, so the result follows.

Proof: (v) ⇒ (i). If the columns of P are orthonormal then PTP = I, and thence (det P)2 = 1. Thus P
has a non-zero determinant and is invertible, with P−1 = PT. It follows that PPT = I, and so P is
orthogonal.

6.3.1 O(2) and SO(2)

All length preserving transformation matrices are thus orthogonal matrices. However, we can say more.

Proposition. Any matrix Q ∈ O(2) is one of the matrices(
cos θ − sin θ
sin θ cos θ

)
,

(
cos θ sin θ
sin θ − cos θ

)
. (6.5a)

for some θ ∈ [0, 2π).

Proof. Let

Q =

(
a b
c d

)
. (6.5b)

If Q ∈ O(2) then we require that QTQ = I, i.e.(
a c
b d

)(
a b
c d

)
=

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
=

(
1 0
0 1

)
. (6.5c)

Hence

a2 + c2 = b2 + d2 = 1 and ab = −cd . (6.5d)

The first of these relations allows us to choose θ so that a = cos θ and c = sin θ where 0 6 θ < 2π.
Further, QQT = I, and hence

a2 + b2 = c2 + d2 = 1 and ac = −bd . (6.5e)

It follows that

d = ± cos θ and b = ∓ sin θ , (6.5f)

and so Q is one of the matrices

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, H( 1

2θ) =

(
cos θ sin θ
sin θ − cos θ

)
.

Remarks.

(a) These matrices represent, respectively, a rotation of angle θ, and a reflection in the line

y cos
(

1
2θ
)

= x sin
(

1
2θ
)
. (6.6a)

(b) Since det R = +1 and det H = −1, any matrix A ∈ SO(2) is a rotation, i.e. if A ∈ SO(2) then

A =

(
cos θ − sin θ
sin θ cos θ

)
. (6.6b)

for some θ ∈ [0, 2π).
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(c) Since det(H( 1
2θ)H( 1

2φ)) = det(H( 1
2θ)) det(H( 1

2φ)) = +1, we conclude (from closure of O(2))
that two reflections are equivalent to a rotation.

Proposition. Any matrix Q ∈ O(2)\SO(2) is similar to the reflection

H( 1
2π) =

(
−1 0
0 1

)
. (6.7)

Proof. If Q ∈ O(2)\SO(2) then Q = H( 1
2θ) for some θ. Q is thus symmetric, and so has real eigenvalues.

Moreover, orthogonal matrices have eigenvalues of unit modulus (see Example Sheet 4 ), so since
det Q = −1 we deduce that Q has distinct eigenvalues +1 and −1. Thus Q is diagonalizable from
§5.5, and similar to

H( 1
2π) =

(
−1 0
0 1

)
.

6.4 Metrics (or how to confuse you completely about scalar products)

Suppose that {ui}, i = 1, . . . , n, is a (not necessarily orthogonal or orthonormal) basis of Rn. Let x and
y be any two vectors in Rn, and suppose that in terms of components

x =

n∑
i=1

xiui and y =

n∑
j=1

yjuj , (6.8)

Consider the scalar product x · y. As remarked in §2.10.4, for x,y, z ∈ Rn and λ, µ ∈ R,

x · (λy + µz) = λx · y + µx · z , (6.9a)

and since x · y = y · x,

(λy + µz) · x = λy · x + µ z · x . (6.9b)

Hence from (6.8)

x · y =

(
n∑
i=1

xiui

)
·

 n∑
j=1

yjuj


=

n∑
i=1

n∑
j=1

xiyj ui · uj from (6.9a) and (6.9b)

=

n∑
i=1

n∑
j=1

xiGijyj , (6.10a)

where
Gij = ui · uj (i, j = 1, . . . , n) , (6.10b)

are the scalar products of all pairs of basis vectors. In terms of the column vectors of components the
scalar product can be written as

x · y = xTG y , (6.10c)

where G is the symmetric matrix, or metric, with entries Gij .

Remark. If the {ui} form an orthonormal basis, i.e. are such that

Gij = ui · uj = δij , (6.11a)

then (6.10a), or equivalently (6.10c), reduces to (cf. (2.62a) or (5.45a))

x · y =

n∑
i=1

xiyi . (6.11b)

Restatement. We can now restate our result from §6.3: the set of transformation matrices that preserve
the scalar product with respect to the metric G = I form a group.
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6.5 Lorentz Transformations

Define the Minkowski metric in (1+1)-dimensional spacetime to be

J =

(
1 0
0 −1

)
, (6.12a)

and a Minkowski inner product of two vectors (or events) to be

〈x , y 〉 = xTJ y . (6.12b)

If

x =

(
x1

x2

)
and y =

(
y1

y2

)
, (6.12c)

then
〈x , y 〉 = x1y1 − x2y2 . (6.12d)

6.5.1 The set of transformation matrices that preserve the Minkowski inner product

Suppose that M is a transformation matrix that preserves the Minkowski inner product. Then we require
that for all vectors x and y

〈x , y 〉 = 〈Mx , My 〉 (6.13a)

i.e.

xTJ y = xTMTJMy , (6.13b)

or in terms of the summation convention

xkJk`y` = xkMpkJpqMq`y` . (6.13c)

Now choose xk = δik and y` = δj` to deduce that

Jij = MpiJpqMqj i.e. J = MTJM . (6.14)

Remark. Compare this with the condition, I = QTIQ, satisfied by transformation matrices Q that preserve
the scalar product with respect to the metric G = I.

Proposition. Any transformation matrix M that preserves the Minkowski inner product in (1+1)-dimen-
sional spacetime (and keeps the past in the past and the future in the future) is one of the matrices(

coshu sinhu
sinhu coshu

)
,

(
coshu − sinhu
sinhu − coshu

)
. (6.15a)

for some u ∈ R.

Proof. Let

M =

(
a b
c d

)
. (6.15b)

Then from (6.14) (
a c
b d

)(
1 0
0 −1

)(
a b
c d

)
=

(
a2 − c2 ab− cd
ab− cd b2 − d2

)
=

(
1 0
0 −1

)
. (6.15c)

Hence

a2 − c2 = 1 , b2 − d2 = −1 and ab = cd . (6.15d)
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If the past is to remain the past and the future to remain the future, then it turns out that we
require a > 0. So from the first two equations of (6.15d)(

a
c

)
=

(
coshu
sinhu

)
,

(
b
d

)
= ±

(
sinhw
coshw

)
, (6.15e)

where u,w ∈ R. The last equation of (6.15d) then gives that u = w. Hence M is one of the matrices

Hu =

(
coshu sinhu
sinhu coshu

)
, Ku/2 =

(
coshu − sinhu
sinhu − coshu

)
.

Remarks.

(a) Hu and Ku/2 are known as hyperbolic rotations and hyperbolic reflections respectively.

(b) Define the Lorentz matrix, Bv, by

Bv =
1√

1− v2

(
1 v
v 1

)
, (6.16a)

where v ∈ R. A transformation matrix of this form is known as a boost (or a boost by a
velocity v). The set of transformation boosts and hyperbolic rotations are the same since

Hu = Btanhu or equivalently Htanh−1 v = Bv . (6.16b)

6.5.2 The set of Lorentz boosts forms a group

Closure. The set is closed since

HuHw =

(
coshu sinhu
sinhu coshu

)(
coshw sinhw
sinhw coshw

)
=

(
cosh(u+ w) sinh(u+ w)
sinh(u+ w) cosh(u+ w)

)
= Hu+w . (6.17a)

Associativity. Matrix multiplication is associative.

Identity element. The identity element is a member of the set since

H0 = I . (6.17b)

Inverse element. Hu has an inverse element in the set, namely H−u, since from (6.17a) and (6.17b)

HuH−u = H0 = I . (6.17c)

Remark. To be continued in Special Relativity.
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A Möbius Transformations

Consider a map of C→ C (‘C into C’) defined by

z 7→ z′ = f (z) =
az + b

cz + d
, (A.1)

where a, b, c, d ∈ C are constants. We require that

(a) c and d are not both zero, so that the map is finite (except at z = −d/c);

(b) different points map to different points, i.e. if z1 6= z2 then z′1 6= z′2, i.e. we require that

az1 + b

cz1 + d
6= az2 + b

cz2 + d
, or equivalently (ad− bc)(z1 − z2) 6= 0 , i.e. (ad− bc) 6= 0 .

Remarks.

(i) Condition (a) is a subset of condition (b), hence we need only require that (ad− bc) 6= 0.

(ii) f(z) maps every point of the complex plane, except z = −d/c, into another (z = −d/c is mapped
to infinity).

(iii) Adding the ‘point at infinity’ makes f complete.

A.1 Composition

Consider a second Möbius transformation

z′ 7→ z′′ = g (z′) =
αz′ + β

γz′ + δ
where α, β, γ, δ ∈ C, and αδ − βγ 6= 0 .

Then the combined map z 7→ z′′ is also a Möbius transformation:

z′′ = g (z′) = g (f (z))

=
α
(
az+b
cz+d

)
+ β

γ
(
az+b
cz+d

)
+ δ

=
α (az + b) + β (cz + d)

γ (az + b) + δ (cz + d)

=
(αa+ βc) z + (αb+ βd)

(γa+ δc) z + (γb+ δd)
, (A.2)

where we note that (αa+ βc) (γb+ δd) − (αb+ βd) (γa+ δc) = (ad − bc)(αδ − βγ) 6= 0. Therefore the
set of all Möbius maps is closed under composition.

A.2 Inverse

For the a, b, c, d ∈ R as in (A.1), consider the Möbius map

z′′ =
−dz′ + b

cz′ − a
, (A.3)

i.e. α = −d, β = b, γ = c and δ = −a. Then from (A.2), z′′ = z. We conclude that (A.3) is the inverse
to (A.1), and vice versa.
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Remarks.

(i) (A.1) maps C \{−d/c} to C \{a/c}, while (A.3) maps C \{a/c} to C \{−d/c}.

(ii) The inverse (A.3) can be deduced from (A.1) by formal manipulation.

Exercise. For Möbius maps f , g and h demonstrate that the maps are associative, i.e. (fg)h = f(gh).

A.3 Basic Maps
Translation. Put a = 1, c = 0 and d = 1 to obtain

z′ = z + b . (A.4a)

This map represents a translation; e.g lines map to parallel
lines, while circles map to circles of the same radius but
with a centre offset by b.

Dilatation and Rotation. Next put b = 0, c = 0 and d = 1 so
that

z′ = az = |a||z| ei(arg a+arg z) . (A.4b)

This map scales z by |a| and rotates z by arg a about the
origin O.

The line z = z0 + λw, where λ ∈ R and w ∈ C, becomes

z′ = az0 + λaw = z′0 + λw′ ,

where z′0 = az0 and w′ = aw, which is just another line.

The circle |z − v| = r becomes∣∣∣∣z′a − v
∣∣∣∣ = r or equivalently |z′ − v′| = r′ ,

where v′ = av and r′ = |a|r, which is just another circle.

Inversion and Reflection. Now put a = 0, b = 1, c = 1 and
d = 0, so that z′ = 1

z . Thus if z = reiθ then

z′ =
1

r
e−iθ , i.e. |z′| = |z|−1 and arg z′ = − arg z.

Hence this map represents inversion in the unit circle cen-
tred on the origin O, and reflection in the real axis.

The line z = z0 + λw, or equivalently (see (1.28b))

zw̄ − z̄w = z0w̄ − z̄0w ,

becomes
w̄

z′
− w

z̄′
= z0w̄ − z̄0w .

By multiplying by |z′|2, etc., this equation can be rewrit-
ten successively as

z̄′w̄ − z′w = (z0w̄ − z̄0w) z′z̄′

z′z̄′ − z̄′w̄

z0w̄ − z̄0w
− z′w

z̄0w − z0w̄
= 0∣∣∣∣z′ − w̄

z0w̄ − z̄0w

∣∣∣∣2 =

∣∣∣∣ w̄

z0w̄ − z̄0w

∣∣∣∣2 .
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From (1.29a) this is a circle (which passes through the

origin) with centre w̄
z0w̄−z̄0w and radius

∣∣∣ w̄
z0w̄−z̄0w

∣∣∣. The

exception is when z0w̄−z̄0w = 0, in which case the original
line passes through the origin, and the mapped curve,
z̄′w̄ − z′w = 0, is also a straight line through the origin.

Further, under the map z′ = 1
z the circle | z − v |= r

becomes ∣∣∣∣ 1

z′
− v
∣∣∣∣ = r , i.e. |1− vz′| = r|z′| .

Hence

(1− vz′)
(
1− v̄z̄′

)
= r2z̄′z′ ,

or equivalently

z′z̄′
(
|v|2 − r2

)
− vz′ − v̄z̄′ + 1 = 0 ,

or equivalently

z′z̄′ − v

(|v|2 − r2)
z′ − v̄

(|v|2 − r2)
z̄′ +

|v|2

(|v|2 − r2)
2 =

r2

(|v|2 − r2)
2 .

From (1.29b) this is the equation for a circle with centre v̄/(|v|2− r2) and radius r/(|v|2− r2). The
exception is if |v|2 = r2, in which case the original circle passed through the origin, and the map
reduces to

vz′ + v̄z̄′ = 1 ,

which is the equation of a straight line.

Summary. Under inversion and reflection, circles and straight lines which do not pass through the
origin map to circles, while circles and straight lines that do pass through origin map to straight
lines.

A.4 The General Möbius Map

The reason for introducing the basic maps above is that the general Möbius map can be generated by
composition of translation, dilatation and rotation, and inversion and reflection. To see this consider the
sequence:

dilatation and rotation z 7→ z1 = cz (c 6= 0)

translation z1 7→ z2 = z1 + d

inversion and reflection z2 7→ z3 = 1/z2

dilatation and rotation z3 7→ z4 =

(
bc− ad

c

)
z3 (bc 6= ad)

translation z4 7→ z5 = z4 + a/c (c 6= 0)

Exercises.

(i) Show that

z5 =
az + b

cz + d
.

(ii) Construct a similar sequence if c = 0 and d 6= 0.

The above implies that a general Möbius map transforms circles and straight lines to circles and straight
lines (since each constituent transformation does so).
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B The Operation Count for the Laplace Expansion Formulae

On page 69 there was an exercise to find the number of operations, fn, needed to calculate a n × n
determinant using the Laplace expansion formulae. Since each n×n determinant requires us to calculate
n smaller (n− 1)× (n− 1) determinants, plus perform n multiplications and (n− 1) additions,

fn = nfn−1 + 2n− 1 .

Hence
fn + 2

n!
=

(fn−1 + 2)

(n− 1)!
+

1

n!
,

and so by recursion

fn + 2

n!
=

(f1 + 2)

1!
+

n∑
r=2

1

r!

But f1 = 0, and so

fn = n!

n∑
r=0

1

r!
− 2

= n!e− 2− n!

∞∑
r=n+1

1

r!

→ n!e− 2 as n→∞.
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