
Modelling the Bivariate Spatial Distribution of

Amacrine Cells

Peter J Diggle1, Stephen J. Eglen2, and John B. Troy3

1 Lancaster University and Johns Hopkins University School of Public Health
p.diggle@lancaster.ac.uk

2 University of Cambridge S.J.Eglen@damtp.cam.ac.uk
3 Northwestern University, USA j-troy@northwestern.edu

1 Introduction

1.1 Biological background

Humans and many vertebrates have a very highly specialised visual system
that allows us to perceive the world. Our capacity to see begins at the back of
the eye, where a neural structure called the retina converts light into electri-
cal activity. The retina is a three-dimensional structure, composed of several
types of cell (Figure 1). The light is first converted into neural activity by
the photoreceptors, which then pass their signals through several types of
interneuron. Eventually the activity reaches the retinal ganglion cells, which
then send the signals to the brain.

There are many different types of neuron in the retina; with a few excep-
tions, each type of neuron is arranged in a regular fashion so that the visual
world is systematically sampled, without leaving any ‘holes’ in visual space.
In this chapter, we will focus on the spatial positioning of two types of retinal
neuron, known as the cholinergic amacrine cells (Famiglietti, 1983; Tauchi and
Masland, 1984). These interneurons modulate the pattern of visual informa-
tion as it passes through the retina, and are thought to play an important
role in the detection of motion in particular directions (Euler, Detwiler and
Denk, 2002). There are two types of cholinergic amacrine cell, depending on
the depth within the retina at which the cell body is found. Cells found within
the inner nuclear layer are termed “off” cells here, whilst cells found in the
ganglion cell layer are termed “on” cells.

We are interested in studying the spatial dependency between the positions
of on and off cells because we hope this will tell us something about how the
two cell types emerge during development: do the two cell types emerge from
a single undifferentiated population, or do they develop independently of each
other? Also, in more general terms, this question that we ask here about the
cholinergic amacrine cells could be asked of other cell types. In the special
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case when the two types of retinal neuron are in different layers, existing
approaches (Diggle, 1986) may be suitable to test for independence. However,
these techniques are a priori invalid when both cell types occur in the same
layer, because in these circumstances the physical space required by each cell
formally precludes statistical independence of the two component arrays.

Fig. 1. Cross-section through the different layers of the retina. Layers are named
to left, for reference. (OS: outer segments; ONL: outer nuclear layer; OPL: outer
plexiform layer; INL: inner nuclear layer; IPL: inner plexiform layer; GCL: ganglion
cell layer). Light enters the eye through the front (at bottom) and travels through the
retina where it is converted to electrical activity by the photoreceptors. Two main
cell types can be classified into “on” (open circles) or “off” (filled circles) depending
on where their dendritic processes terminate within the IPL. Cholinergic amacrine
cells (AC) are found at two different layers, whereas retinal ganglion cells (RGCs)
are normally all located within the GCL. RGCs are the only cells that send their
information along the optic nerve to the brain. Many cell types have been omitted
from this diagram for simplicity.

The data that we shall analyse are shown in Figure 2. This shows a single,
bivariate spatial point pattern taken from the retina of a rabbit, in which
the two types of point correspond to the positions of the centres of 152 “on”
and 142 “off” amacrine cells; these data are from Wieniawa-Narkiewicz (1983)
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and were kindly made available to us by Prof. Abbie Hughes. For a general
discussion of the biological background to these data, see Hughes (1985).

The pattern has been recorded within a rectangular section of the retina,
of dimension 1060 by 662 µm. Visually, both on and off cells exhibit patterns
which are more regular than would be the case for completely random pat-
terns, i.e. realisations of homogeneous Poisson point processes. In particular,
there is a pronounced inhibitory effect, meaning that no two on cells, and no
two off cells, can be located arbitrarily close together. The inhibitory effect is
much less pronounced between cells of opposite type. For example, the mini-
mum observed distance between any two on cells is 21.4µm, between any two
off cells is 15.8µm, and between any pair of on and off cells is 5µm. We shall
use 1µm as the unit of distance throughout.

Fig. 2. The cholinergic amacrine data. On and off cells are shown as open and
closed circles, respectively. The rectangular region on which the cells are observed
has dimension 1060 by 662 µm. Cell bodies are drawn to scale (10 µm diameter).
Cells of opposite polarity (on vs off) can partially overlap, since they are located in
different layers, but cells of like polarity never overlap.

Previous analyses of the data have been reported by Diggle (1986), where
non-parametric methods led to the conclusion that the two component pat-
terns were approximately independent, and by Diggle and Gratton (1984) and
Diggle (2003) who used the data to illustrate the fitting of univariate models
by ad hoc and likelihood-based methods, respectively. Our goal in the cur-
rent chapter is to demonstrate how recently developed Monte Carlo methods
for conducting likelihood-based analysis of realistic point process models can
lead to sharper inferences about the bivariate structure of the data. In par-
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ticular, we will formulate and fit a bivariate pairwise interaction model for
the amacrines data, and will argue that likelihood-based inference within this
model is both statistically more efficient and scientifically more relevant than
ad hoc testing of benchmark hypotheses such as independence.

One major limitation of the analysis reported here is that the data are
unreplicated, i.e. they consist of a single point pattern. The literature on
the statistical analysis of replicated spatial point pattern data is surprisingly
sparse. Diggle, Lang and Benes (1991) and Baddeley, Moyeed, Howard and
Boyde (1993) consider methods based on pooled estimates of non-parametric
functional summary statistics such as the K-function (Ripley, 1976, 1977).
Diggle, Mateu and Clough (2000) compare parametric and non-parametric
approaches to testing for differences between replicated patterns in two or
more experimental groups. We are assembling a collection of replicated pat-
terns of retinal cells and intend to analyse these using parametric, likelihood-
based methods of the kind described in the current chapter. We will report
separately on the analyses of these data in due course.

2 Pairwise interaction point processes

2.1 Univariate pairwise interaction point processes

Markov point processes were introduced by Ripley and Kelly (1977). Van
Lieshout (2000) discusses their construction, properties and uses as statistical
models for spatial point patterns.

Pairwise interaction point processes are perhaps the most widely used
sub-class of Markov point processes, In particular, they provide a flexible,
parsimonious class of models for point patterns which display varying degrees
of spatial regularity, as exhibited by our data.

Let X = {xi : i = 1, ..., n} be an observed spatial point pattern on a planar
region A, hence each xi ∈ A and all points in A are observed. We call the
points of the process events to distinguish them from arbitrary points x ∈ A.
In a pairwise interaction point process, the likelihood ratio for X with respect
to a homogeneous Poisson process of unit intensity takes the form

cβn

n
∏

i=2

i−1
∏

j=1

h(||xi − xj ||). (1)

In (1), || · || denotes Euclidean distance, h(u) : u ≥ 0 is the pairwise inter-
action function, β reflects the intensity of the process and c is a normalising
constant whose analytic form is typically intractable.

The essence of the model (1) lies in the interaction function, h(·). When
h(u) = 1 for all u, the process is a homogeneous Poisson process of intensity
β. When h(u) = 0 for 0 ≤ u ≤ δ, no two events can occur less than a
distance δ apart and the process is said to display strict inhibition. Values
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of h(u) intermediate between zero and one correspond to non-strict forms
of inhibition in which close pairs of events are relatively unlikely, but not
ruled out completely. The smallest distance ρ such that h(u) = 1 for all
u > ρ is called the range of the process. Models with h(u) > 1 for certain
ranges of u are potentially invalid because the likelihood ratio (1) may not be
integrable over A; an early example is the Strauss (1975) model for clustering,
subsequently shown by Kelly and Ripley (1976) to be invalid. In theory, models
with h(u) = 0 for u ≤ δ and h(u) > 1 for δ < u < ρ could be used to model
aggregated spatial patterns, but in practice such models are not very useful
because they correspond to very extreme forms of spatial aggregation, in a
sense made precise by Gates and Westcott (1986).

In (1), conditioning on the observed number of events in A leads to a joint
probability density function for X , proportional to

f(X) =

n
∏

i=2

i−1
∏

j=1

h(||xi − xj ||). (2)

In the general inhibitory case, i.e. when h(u) ≤ 1 for all u, and when n
is large, the distinction between processes with a fixed or random number of
events in A is relatively unimportant. In what follows, we shall consider only
the case of fixed n. Hence, we do not attempt to make inferences about the
intensity of the process, but only about the form of the interaction function
h(u) = h(u; θ). The log-likelihood for θ is then given by

log L(θ) = log f(X ; θ) + log c(θ) (3)

where c(θ) is the normalising constant for (2). Figure 3 shows a realisation
of a process with interaction function h(u) = 1 − exp(−u/φ) for each of
φ = 0.01, 0.05, 0.10, 0.15 and, in each case, n = 100 events on the unit square.
The progressive development of spatial regularity as the value of φ increases
is clear. The simulations were generated on a toroidal region which was then
unwrapped to form the unit square A; this counteracts a tendency for events
to be artificially concentrated near the edge of A when the model is strongly
inhibitory, i.e. in the present context, when φ is large.

2.2 Bivariate pairwise interaction point processes

A bivariate spatial pattern consists of two sets of locations corresponding to
two distinguishable types of event, which in our application are the on and
off cells.

Let X1 = {x1i : i = 1, ..., n1} and X2 = {x2i : i = 1, ..., n2} represent a
bivariate spatial point pattern of events in a region A. A bivariate pairwise
interaction model is specified by three interaction functions, h11(·), h22(·) and
h12(·), which operate between pairs of events of type 1, pairs of events of type
2, and pairs of events of opposite type, respectively. Then, if we condition on
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Fig. 3. Simulated realisations of pairwise interaction point processes each with 100
events on the unit square and interaction function h(u) = 1−exp(−u/φ). The values
of φ are 0.01 (top-left), 0.05 (top-right), 0.1 (bottom-left) and 0.15 (bottom-right)

the observed numbers of events, n1 and n2, the probability density of (X1, X2)
is proportional to

f(X1, X2) = P11P22P12, (4)

where

P11 =

n1
∏

i=2

i−1
∏

j=1

h11(||x1i − x1j ||), (5)
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P22 =

n2
∏

i=2

i−1
∏

j=1

h22(||x2i − x2j ||), (6)

and

P12 =

n1
∏

i=1

n2
∏

j=1

h12(||x1i − x2j ||). (7)

Equation (4) is a natural bivariate counterpart of (2). An important feature
of the bivariate model is that its marginal properties depend on all three
interaction functions. To illustrate this, we use the family of simple inhibitory
interaction functions,

hij(u) =

{

0 : u < δij

1 : u ≥ δij
(8)

and specify δ11 = δ22 = 0.025. If we also specify δ12 = 0, then the two
component processes are independent copies of a univariate simple inhibition
process. The left-hand panel of Figure 4 shows a realisation of this bivari-
ate process. The two univariate components each display spatial regularity
because of the inhibition effect but, because the two components are inde-
pendent, arbitrarily close pairs of opposite type can and do occur. If we now
introduce a strongly inhibitory interaction between events of opposite type
by specifying δ12 = 0.1, the effect is very different, as shown in Figure 4.
The cross-inhibitory effect between events of opposite type leads to compo-
nent patterns which are marginally spatially aggregated, albeit with a clearly
discernible local inhibitory effect, and jointly spatially segregated.

3 Monte Carlo likelihood inference

The generally agreed “gold standard” for statistical estimation and hypoth-
esis testing is to use likelihood-based methods; specifically, within a classical
inferential framework, estimates should be maximum likelihood estimates and
tests should be likelihood ratio tests.

The difficulty with applying this gold standard to our model is that the
normalising constant for the joint probability density of (X1, X2), and hence
the likelihood function for θ, is intractable. Geyer and Thompson (1992) pro-
vided an ingenious solution to this problem, which allows us to use simula-
tions of the process at any fixed value θ0 to compute an approximation to
the likelihood ratio with respect to θ0 for any value of θ. In the present con-
text of pairwise interaction point processes, the argument runs as follows –
we describe only the univariate case explicitly, but the extension to bivariate
processes is obvious.

Let c(θ) be the normalising constant associated with the model (2), hence

c(θ)−1 =

∫

f(X ; θ)dX
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Fig. 4. Simulated realisations of bivariate pairwise interaction point processes each
with 50 events of either type on the unit square and simple inhibitory interaction
functions. In both panels, the minimum permissible distance between any two events
of the same type is 0.025. In the left-hand panel, the two component patterns are
independent. In the right-hand panel, the minimum permissible distance between
any two events of opposite types is 0.1.

Now, for any fixed θ0, write

c(θ)−1 =

∫

f(X ; θ) ×
c(θ0)

c(θ0)
×

f(X ; θ0)

f(X ; θ0)
dX, (9)

define r(X ; θ, θ0) = f(X ; θ)/f(X ; θ0) and re-arrange the right-hand-side of
(9) to give

c(θ)−1 = c(θ0)
−1Eθ0

[r(X ; θ, θ0)].

Hence, the normalised joint density for X can be expressed as

g(X ; θ) = c(θ0)f(X ; θ)/Eθ0
[r(X ; θ, θ0)].

Since θ0 is a constant, it follows that the maximum likelihood estimator θ̂
maximises

Lθ0
(θ) = log f(X ; θ) − log Eθ0

[r(X ; θ, θ0)]. (10)

The Monte Carlo method replaces the expectation on the right-hand-side of
(10) by a Monte Carlo estimate, computed from s replicate simulations. Hence
the Monte Carlo maximum likelihood estimate maximises

Lθ0,s(θ) = log f(X ; θ) − log s−1

s
∑

j=1

[r(Xj ; θ, θ0)], (11)

where the Xj : j = 1, ..., s are simulated realisations with θ = θ0.
Whilst the computations needed to secure a sufficiently accurate approx-

imation can be time-consuming, the implication of Geyer and Thompson’s
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work is that in principle there is no obstacle to using likelihood-based infer-
ence rather than the more ad hoc methods which are traditionally used to
analyse spatial point pattern data. For a more detailed account, see Geyer
(1999).

Note that (11) defines a whole family of estimation criteria according to
the choices made for θ0 and s, and that for given s the extent of the stochastic
variation introduced by the Monte Carlo simulation depends crucially on the
choice of θ0. In practice, the method works best when θ0 is close to θ̂. Our
approach has been to conduct a sequence of numerical optimisations of (11),
updating θ0 to the current maximising value after each stage until no further
material change occurs, and increasing s until the Monte Carlo component of
variance is negligible compared with the inherent uncertainty in θ̂ as measured
by the Hessian matrix.

Whilst we favour Monte Carlo likelihood-based methods for formal para-
metric inference, in our opinion more ad hoc methods still have a useful role to
play in the overall analysis. We use them to provide good initial values of θ0 for
the Monte Carlo likelihood calculations, and as checks on the goodness-of-fit
of the final models produced by the likelihood-based analysis.

4 Analysis of the amacrines data

4.1 Exploratory analysis

A standard tool for exploratory analysis of spatial point pattern data is the
K-function, introduced by Ripley (1976, 1977) and, in the bivariate case, by
Lotwick and Silverman (1982). In its basic form, the K-function describes
the second-order properties of a stationary spatial point process. Baddeley,
Moller and Waagepetersen (2000) extend its definition to include processes
with spatially varying intensities. For the current application, we shall assume
stationarity.

In the stationary bivariate case, if λj denotes the intensity, or expected
number per unit area, of type j events, then λjKij(u) represents the expected
number of additional type j events within distance u of an arbitrary type i
event. If the component pattern of type j events is a homogeneous Poisson
process, then Kjj(u) = πu2. Spatially aggregated and spatially regular pro-
cesses typically have Kjj(u) > πu2 and Kjj(u) < πu2, respectively. If type
1 and 2 events are generated by independent processes, then K12(u) = πu2.
If type 1 and 2 events are generated by randomly labelling the events of a
univariate process, i.e. types are assigned by the results of a sequence of in-
dependent Bernoulli trials, then K11(u) = K22(u) = K12(u). In particular,
independence and random labelling are equivalent if and only if the compo-
nent processes are homogeneous Poisson processes. These results explain why
we favour plotting estimates K̂ij(u)−πu2, rather than the K̂ij(u) themselves.
Several different estimators have been proposed, whose principal differences
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concern their method of dealing with edge-effects; see, for example, Ohser and
Stoyan (1981), Stein (1991) or Baddeley (1999). We use the original estima-
tors proposed by Ripley (1976, 1977) and, in the bivariate case, by Lotwick
and Silverman (1982).

Figure 5 shows the estimates K̂ij(u) − πu2 for the amacrines data. Note

firstly that K̂11(u) and K̂22(u) are close together, suggesting that they may
be generated by the same underlying process. Also, both estimates follow the
parabola −πu2 at small distances, i.e. K̂11(u) = K̂22(u) = 0, confirming the
visual impression of a strict inhibitory effect within each of the component
patterns. In contrast, K̂12(u)−πu2 fluctuates around zero at small u. This be-
haviour, coupled with the fact that the sampling variance of K̂12(u) increases
with u, is consistent with the component processes being approximately inde-
pendent. Note also that the magnitude of the difference between K̂11(u) and
K̂22(u) derives from the combination of sampling variation in the estimates
and the difference, if any, between the two underyling theoretical functions;
it therefore provides an informal upper bound for the sampling variation, and
on this basis we can conclude that the much larger difference between the
K̂jj(u) and K̂12(u) is incompatible with random labelling.
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Fig. 5. Estimates of the K-functions for the on and off cells. Each plotted function
is K̂(u) − πu2. The dashed line corresponds to K̂11(u) (on cells), the dotted line to
K̂22(u) (off cells) and the solid line to K̂12(u). The parabola −πu2 is also shown as
a solid line.
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4.2 Structural hypotheses for the amacrines data

The exploratory analysis suggests that, purely from a statistical perspective,
an inhibitory, bivariate pairwise interaction process with independent compo-
nents and a common underlying model for the two components may provide
a reasonable fit to the data. For many retinal cells, the hypothesis of statis-
tical independence is strictly implausible because their cell bodies lie in the
same cellular layer and two cells cannot occupy the same space. A more ap-
propriate benchmark hypothesis, which we shall call functional independence
is that the only form of interaction between type 1 and type 2 events is a
simple inhibitory effect due to the physical size of the cells, i.e. an interaction
function h12(u) of the form given by (8), with the value of δ12 no greater than
the typical size of an individual cell.

A second hypothesis which is of some biological interest is common com-
ponents, by which we mean that the data are generated by a bivariate model
with h11(u) = h22(u). Our analysis will therefore include formal tests of sta-
tistical independence, structural independence and common components.

4.3 Non-parametric estimation

We use the method of maximum pseudo-likelihood (Besag, Milne and Zachary,
1982; Baddeley and Turner, 2000) to obtain non-parametric estimates of the
interaction functions h11(u) and h22(u). Formally, this is achieved by fitting
a deliberately over-parameterised model in which the interaction function is
assumed to be piecewise constant, with the heights of the pieces as its param-
eters.

Figure 6 shows the results. The estimates of the two interaction functions
are quite similar, adding weight to the evidence for a common components
model.

Figure 6 also suggests what approximate shape a more parsimonious para-
metric model for the interaction functions would need to accommodate. We
shall use functions hij within the parametric family h(u, θ) where θ = (δ, φ, α)
and

h(u; θ) =

{

0 : u ≤ δ
1 − exp[−{(u− δ)/φ}α] : u > δ

(12)

This allows a wide range of inhibitory interactions within and between types
by varying the corresponding parameter vectors θ11, θ22 and θ12 so as to define
the corresponding interaction functions hij(u) = h(u; θij).

Because a large value for the parameter α allows h(u) to take values close
to zero even for relatively large values of u, we might expect the parameters
of (12) to be poorly identified. Our response to this, following the discussion
in Section 4.2, is to treat the values of δ11 and δ22 as fixed constants with
a common value 10, corresponding to the approximate physical size of the
cells (Famiglietti, 1985; Brandon, 1987). Of course, the model is at best an
approximation to nature, and we should not over-interpret this precise value;
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Fig. 6. Non-parametric maximum pseudo-likelihood estimates of the pairwise in-
teraction functions for on cells (solid line) and for off cells (dashed line).

rather, it represents a plausible lower limit on the physical size of the cells.
As we shall see, the model can still capture an effective inhibition distance
between cells which is substantially greater than 10.

It is harder to argue for an a priori fixed value of δ12 because of the
vertical displacement between the mature on and off cells. The on cells lie
somewhat deeper than the off cells and a pair of cells of opposite type could
in principle be almost co-located in the planar projection of the data. We
shall therefore treat δ12 as a parameter to be estimated; as discussed earlier,
inference concerning δ12 is of some biological interest in its own right.

4.4 Univariate parametric analysis

Under the working assumption of statistical independence, we can analyse the
two patterns separately and investigate whether a common set of parameters
provides a good fit to both. This analysis is also useful as a prelude to a
bivariate analysis, whether or not the independence hypothesis is sustainable.

To obtain initial values for numerical optimisation of the Monte Carlo log-
likelihood, we fitted the parametric form of h(u; θ) to each non-parametric
estimate of h(u) shown in Figure 6 by ordinary least squares. We then obtained
Monte Carlo maximum likelihood estimates of φ and α separately for each of
the two patterns, progressively increasing the number of Monte Carlo samples
from 10 to 1000, until the estimates stabilised.

To test whether a common set of parameters fitted both patterns, we re-
peated the optimisation process, but now maximising a pooled Monte Carlo
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log-likelihood with common parameter values for the two component patterns.
The resulting log-likelihood ratio test statistic was D = 1.36 on two degrees of
freedom, corresponding to p = 0.244. We therefore accepted the common com-
ponents hypothesis, which gave us the parameter estimates shown in Table
1. Approximate standard errors, and the correlation between φ̂ and α̂, were
derived from the estimated Hessian matrix of the pooled Monte Carlo log-
likelihood at its maximum. All optimisations used the built-in optim() func-
tion within R; for details, see http://www.r-project.org. Figure 7 compares
the fitted, common parametric form of h(u) with the two non-parametric esti-
mates. The fit appears to be satisfactory, but we postpone a formal goodness-
of-fit assessment until we have fitted a bivariate model.

Table 1. Monte Carlo maximum likelihood estimates, standard errors and correla-
tion, assuming independence between on and off amacrine cell patterns and common
parameter values.

Parameter Estimate Std Error Correlation

φ 49.08 2.51
α 2.92 0.25 -0.06
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Fig. 7. Non-parametric maximum pseudo-likelihood estimates of the pairwise inter-
action functions for on cells (solid line) and for off cells (dashed line), together with
parametric fit assuming common parameter values for both types of cell (dotted
line).
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4.5 Bivariate analysis

The first stage in the bivariate analysis is a simple likelihood ratio rest of
statistical independence against functional independence. To do this, we first
begin by estimating δ12, obtaining the maximum likelihood estimate δ̂12 = 4.9.
We then construct a likelihood ratio test of any fixed value of δ12 against
δ12 = 4.9. The set of values not rejected at the 5% level defines a Monte
Carlo 95% confidence interval for δ12. Note that all values of δ12 greater than
5, the smallest observed distance between a pair of cells of opposite type,
are automatically excluded according to the likelihood criterion, because all
such values are incompatible with the data. The resulting 95% confidence
interval is 2.3 ≤ δ12 < 5.0. In particular, this interval excludes zero, implying
that statistical independence is rejected at the conventional 5% level; more
precisely, the attained significance level of the likelihood ratio test of statistical
independence against functional independence is p = 0.021 (test statistic D =
5.30, P(χ2

1
> 5.30) = 0.021).

We next investigate whether there is any further degree of dependence
between the on and off cells by introducing additional parameters φ12 and
α12, holding the remaining parameters fixed at φ11 = φ22 = 49.08, α11 =
α22 = 2.92, δ11 = δ22 = 10 and δ12 = 4.9. The likelihood ratio test statistic to
compare functional independence against the general bivariate model is D =
0.30 on 2 degrees of freedom, corresponding to p = 0.861. Hence, functional
independence is not rejected.

To assess the goodness-of-fit to the bivariate, functional independence
model we again use the K-function (Ripley, 1976, 1977). We define three
test statistics

Tij =

150
∑

u=1

[{K̂ij(u) − K̄ij(u)}/u]2 (13)

where K̂ij(u) is the estimate of Kij(u) calculated from the data and K̄ij(u)
the corresponding mean of estimates from 99 simulations of the fitted model.
The three statistics of interest are T11 (on cells), T22 (off cells) and T12 (de-
pendence between on and off cells). The attained significance levels of the
three Monte Carlo tests were 0.11, 0.05 and 0.25 respectively, indicating a
reasonable overall fit; an admittedly conservative bound for the combined
significance level is 0.05 × 3 = 0.15. Figure 8 shows the three estimated K-
functions together with the pointwise envelopes from 99 simulations of the
fitted model. Although the estimated functions drift briefly outside the simu-
lation envelopes at large values of u, the estimates themselves are imprecise at
large values of u, as indicated by the widths of the simulation envelopes. This
also explains why we have chosen to discount progressively the influence of
estimates K̂ij(u) at large values of u in our construction of the test statistics
(13).
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5 Conclusions

5.1 Statistical summary

The bivariate pattern of the displaced amacrine cells is well described by a
pairwise interaction point process with functional independence between the
two component processes, i.e. the interaction between the on and off cells has
a simple inhibitory form, h(u) = 0 for u < δ12, h(u) = 1 for u ≥ δ12, with

estimated value δ̂12 = 4.9µm.
The two component patterns can be fitted with a common interaction

function of the form (12) with estimated parameter values δ̂jj = 10.0µm,

φ̂ = 49.1µm, α̂ = 2.92. The resulting fitted interaction function represents a
strongly inhibitory interaction within each component pattern, with an effec-
tive inhibition distance of about 20µm and an effective range of about 90µm.

5.2 Biological implications

The results from the bivariate analysis indicate that there is a small spatial
dependency between the positioning of the on and off cells, since one of our
conclusions is that δ12 is non-zero. This may appear to conflict with earlier
assumptions of independence between the two types (Diggle, 1986). However,
one advantage of the likelihood-based analysis over the earlier approach is
that we can create 95% confidence intervals (here 2.3 ≤ δ12 < 5.0). Hence, the
interaction distance between the on and off cells is around 5 µm at most, which
is smaller than the typical cell diameter (∼ 10µm). Therefore, any dependency
in the positioning of the two types is quite weak. However, this dependency
might reflect some early positioning constraints between the two cell types,
as would occur if, for example, immature cells were positioned in the same
layer before migrating to separate layers at a later developmental stage. By
repeating the analysis on many data sets of cholinergic amacrine cells, we aim
to determine how consistent is the evidence for this weak dependence between
patterns formed by the two types of cell.
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