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Abstract

Beta retinal ganglion cells ~RGCs! of the cat are classified as either on-center or off-center, according to
their response to light. The cell bodies of these on- and off-center RGCs are spatially distributed into regular
patterns, known as retinal mosaics. In this paper, we investigate the nature of spatial dependencies between the
positioning of on- and off-center RGCs by analysing maps of RGCs and simulating these patterns. We introduce
principled approaches to parameter estimation, along with likelihood-based techniques to evaluate different
hypotheses. Spatial constraints between cells within-type and between-type are assumed to be controlled by
two univariate interaction functions and one bivariate interaction function. By making different assumptions on
the shape of the bivariate interaction function, we can compare the hypothesis of statistical independence against
the alternative hypothesis of functional independence, where interactions between type are limited to preventing
somal overlap. Our findings suggest that the mosaics of on- and off-center beta RGCs are likely to be generated
assuming functional independence between the two types. By contrast, allowing a more general form of bivariate
interaction function did not improve the likelihood of generating the observed maps. On- and off-center beta
RGCs are therefore likely to be positioned subject only to homotypic constraints and the physical constraint that
no two somas of opposite type can occupy the same position.
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Introduction

Beta ~X! retinal ganglion cells ~RGCs! are divided into on-center
and off-center types, depending on their response to light ~Kuffler,
1953; Enroth-Cugell & Robson, 1966; Boycott & Wässle, 1974!.
This physiological distinction of beta ganglion cells is mirrored by
an anatomical distinction: the dendrites of adult on-center cells
ramify mostly in the inner part of the inner plexiform layer ~IPL!,
whereas off-center dendrites are mostly found in the outer part of
the IPL ~Famiglietti, Jr. & Kolb, 1976; Nelson et al., 1978!. The
cell bodies of each type form a regular pattern, termed “retinal
mosaics” due to the way the cell bodies and dendrites tile the
retinal surface. An important question in developmental neurosci-
ence is to understand how the mosaics of on- and off-center RGCs
emerge during development. Two possibilities for their develop-
ment are:

1. A neuronal precursor cell has the potential to become either
an on- or off-center beta RGC. The choice of one precursor
cell to become, for example an on-center RGC, may inhibit
neighboring precursor cells from also adopting the on-center
type, driving them instead to become off-center cells. These
interactions between cells may be influenced by neuronal
activity ~Bodnarenko & Chalupa, 1993!.

2. The decision of a cell to become on- or off-center may be
driven by intrinsic factors, rather than heterotypic inter-
actions. An individual postmitotic cell may therefore be
destined to become an on-center beta RGC, rather than
passing through a phase when the cell is capable of becom-
ing either an on- or off-center RGC.

By studying the mosaics of on-and off-center beta cells at adult-
hood, we hope to be able to infer which of the above hypotheses
is more likely. In particular, if the mosaics of on- and off-center
cells are independent of each other at maturity, one would imagine
that the two types of cell develop independently. Conversely, if
there are spatial dependencies in the positioning of the two cell
types at adulthood, this may be the result of some heterotypic
interactions during development.
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Various statistical methods have been developed to test if a
sample of cell bodies is regularly distributed ~Wässle & Riemann,
1978; Cook, 1996!. Rodieck ~1991! introduced the density recov-
ery profile ~DRP!, which calculates the average number of cells as
a function of distance surrounding a cell in the array. Counts of
cells are plotted as a histogram showing the average density of
cells within a given range of distances, with the width of each
histogram bin typically 5–10 mm ~Fig. 1!. A flat histogram indi-
cates cells are positioned randomly with respect to each other.
However, a reduced density ~also known as a dip! in the left part
of the histogram indicates the cells are regularly arranged. Such
correlation techniques have been used previously in other areas of
spatial statistics ~Ripley, 1976, 1977!, but Rodieck’s approach has
been subsequently adopted for many studies of retinal organization
~e.g. Cook, 1996; Kouyama & Marshak, 1997; Rockhill et al.,
2000!.

This DRP method was extended to test for spatial dependencies
between two types of retinal cell ~Rodieck, 1991!, called the cross
DRP here. This method was used to investigate the spatial rela-
tionship between those cholinergic amacrine cells found in the
inner nuclear layer and those found in the ganglion cell layer
~Rodieck & Marshak, 1992!. No dips were found in the cross
DRPs of the cholinergic amacrines from macaque and human
retinas, and thus it was concluded that the two arrays of amacrines,
found in different layers of the retina, were spatially independent
of each other. This result confirmed earlier analysis by Diggle
~1986! also using second-order methods. The cross DRP has
subsequently been applied to several different pairs of retinal cell,
leading to the general conclusion that there are no spatial depen-
dencies between different types of retinal cell ~Rockhill et al.,
2000; Cook & Podugolnikova, 2001!. Only a few exceptions to
this conclusion have been reported ~Kouyama & Marshak, 1997;
Ahnelt et al., 2000; Zhan & Troy, 2000; Diggle et al., 2005!.
Additionally, cross-correlation techniques ~Diggle, 1986! were
used to demonstrate that dopaminergic amacrine cells found in two
different layers of ferret retina form a single functional population
~Eglen et al., 2003!.

One problem of the cross DRP method occurs when the somas
of the two cell types being compared are co-planar. Since the
somas are of finite size, there is a lower bound on the minimal
distance that can be observed between cells. This necessarily

results in a dip in the first bins of the cross DRP ~Fig. 1! and thus
the locations of the two cell types must be statistically dependent.
Many would regard this as a trivial dependence. In this paper, we
introduce a new model-based approach for testing independence
between cell types. We test for statistical dependence ~a useful
means to check that sample size is adequate! and for dependence
beyond that due simply to the restriction forced by distributing
finite-sized elements in the same plane. Following the statistical
formalism previously developed ~Diggle et al., 2005!, we call such
a dependence functional dependence.

Here we apply our models to the important problem of address-
ing whether the on- and off-center beta RGCs are statistically
and0or functionally independent of each other. We use the pairwise
interaction point process ~PIPP! model ~Ripley, 1976, 1977! to
replicate distributions of retinal cells, and use likelihood-based
methods of inference for evaluating different hypotheses regarding
interactions between the on- and off-center RGCs. These likelihood-
based inference methods have recently been described elsewhere
in detail ~Diggle et al., 2005!.

Materials and methods

Data sets

The bivariate data we have analyzed in this paper are shown in
Fig. 2. These fields will be referred to by their keys: W81S1 and
M623. Field W81S1 was created by digitizing the map shown in
Fig. 6 of Wässle et al. ~1981a!. Field M623 was taken from a
previous study ~Zhan & Troy, 2000!. These two are the only
published fields to our knowledge that are sufficiently spatially
homogeneous and contain enough cells for our analysis.

Confirmation of statistical dependence

Since the somas of on- and off-center RGCs are both located in the
ganglion cell layer, then strictly the on- and off-center cells cannot
be statistically independent. A failure to reject statistical indepen-
dence for these mosaics would indicate that we have insufficient
data to make inferences about the nature of the dependence
between the two types of cell. To test for statistical independence
between two fields, we have followed the approach of Diggle

Fig. 1. Example density recovery profiles of beta
RGCs. Two beta cell arrays ~M623 and W81S1!
were studied. ~A! DRP of the M623 on-center cells.
~B! Cross DRP of the M623 on- versus off-center
cells. In each plot, the dotted horizontal line shows
the expected profile if the points were randomly
arranged with respect to cells of same type ~A! and
cells of opposite type ~B!. The vertical line indicates
the effective radius of the central dip ~Rodieck,
1991!. In A, the dip in the profile out to around
100 mm indicates that the cells are regularly ar-
ranged. The dotted line indicates the density of the
on-center cells. In B, the dip out to 20 mm could
indicate either some form of spatial dependency
between the on- and off-center cells or it could just
reflect steric hindrance. Here, the dotted line indi-
cates the geometric mean of the on-center and off-
center densities ~Rodieck, 1991!. The DRPs for the
W81S1 dataset are qualitatively similar, and so are
not shown here.
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~1986!, which in turn uses Ripley’s ~1976! K function ~we define
K functions in a later section!. In this case, each simulation
consists of toroidally shifting all on-center cells by the same
random vector ~Lotwick & Silverman, 1982! and computing K12

between the shifted on-center cells and the original off-center cells.
We then compute the discrepancy between K12~t ! and the expected
value for no interaction:

T i ��
0

150 µm

~MK12
i ~t ! �Mpt 2 !2 dt. ~1!

Here i � 1 is for the real K12 function, and i � 2 . . . s � 1 are for
the K12 functions from s randomly shifted data sets. The number of
simulations, s, for each test is 999. If the rank of T1 among T is less
than @0.05 � ~1 � s!#, we can reject statistical independence at the
P � 0.05 level. The upper limit of integration used here, 150 mm,
was chosen based on the heuristic that the limit should typically be
no more than 1

4
_ the length of the shorter side of the rectangular

sampling area, as estimates of K become more variable with
increasing distances ~Diggle, 2002!.

PIPP model

The pairwise interaction point-process ~PIPP! model is a flexible
means to generate spatial distributions of points ~Diggle, 2002!.

Interactions between pairs of cells are controlled by an interaction
function, h~u!, where u is the distance between a pair of cells; the
joint probability density of a configuration of n cells is propor-
tional to the product of values of h~u! calculated for all pairs of
cells.

The simplest form of interaction function is h~u! � 1, which
implies that there is no spatial dependency between cells. Patterns
generated by such an interaction function exhibit complete spatial
randomness ~CSR!. The following interaction function is known as
simple inhibition since it just ensures that no two cells are less than
the threshold distance d apart:

simple inhibition: h~u! � �0 : u � d

1 : u � d
. ~2!

In the special case where d is set to the soma diameter, simple
inhibition implements the constraint that no two cell bodies can
overlap. For a given density of cells, the larger the value of d, the
more regular the pattern. Since the interaction function is circularly
symmetric, triangular ~but not rectangular! lattices can be gener-
ated by this model. This is appealing since previous work has
shown that jittered triangular lattices can also replicate beta RGC
maps ~Zhan & Troy, 2000!.

In this paper, we use a parametric form of h~u;u!, where u �
~d,f,a!, that is suitably flexible to generate a wide range of spatial
patterns:

Fig. 2. Mosaics of cat beta RGC somas used for this study.
Both maps drawn to the same scale with cell body diam-
eter assumed to be 15 mm ~W81S1! and 20 mm ~M623!.
Rectangles surrounding each plot indicate the sampling
window used. Beneath each field is an example simulation
of the field using the models developed in this paper ~see
later!.

Beta cell mosaics 861



h~u;u! � � 0 : u � d

1 � exp@�$~u � d!0f%a # : u � d
. ~3!

The parameter d controls when the interaction function first be-
comes nonzero; f determines the range of u over which the
interaction function changes from h~u! � 0 to h~u! � 1. As a
increases, the slope of the sigmoidal function increases. By vary-
ing the parameters of this function, we can create a wide range of
sigmoidal interaction functions, of varying extent and steepness.
Fig. 3 shows examples of different interaction functions and spatial
patterns generated by them.

We can extend the PIPP model from handling univariate data-
sets to bivariate datasets by introducing three functions, h11, h22, h12,
which describe, respectively, the interactions among on-center cells,
among off-center cells, and between the on- and off-center cells.

A sufficient condition for the PIPP model to be well-defined is
that the interaction functions should be restricted to take values
between 0 and 1. In the univariate case, this restriction implies that
the PIPP model can generate a wide range of patterns exhibiting
varying degrees of spatial regularity, from lattice-like patterns at
one extreme to complete spatial randomness at the other, but
cannot generate aggregated patterns. In the bivariate case, as
discussed by Diggle et al. ~2005!, the model can also generate
spatially aggregated patterns according to the interplay amongst all
three interaction functions.

To test for functional dependence between on- and off-center
cells, we can use the null hypothesis of simple inhibition with d12

set to the average soma diameter to describe the h12 interaction.
Simple inhibition for h12 can then be compared against the general
bivariate model, where h12~u!� h~u;u12!, that is, where we allow
the more flexible form of interaction function as specified in
eqn. ~3!.

2.3.1. Simulating PIPP models
Given the functions h11~u!, h22~u!, h12~u!, we can simulate a

bivariate spatial pattern of n1 on-center cells and n2 off-center cells

using a birth and death procedure ~Ripley, 1977, 1979! as outlined
below. The position of the ith type 1 cell is given by the two-
dimensional ~2D! vector x1i , and all cells are assumed to be
positioned within the sampling window A with area 6A6.

Initial conditions: n1 on-center cells and n2 off-center cells are
positioned randomly within the simulated array. Alternatively, we
can set the initial positions in the simulation to be the same as the
real positions; this helps reduce number of iterations needed for
convergence.

Birth-and-death step: One of the on-center cells, cell i , is de-
leted from the array. A new trial position x1i is generated at random
to replace cell i; that position is accepted with probability p:

p � )
j�1, j�i

n1

h11~7x1i � x1j7! )
j�1

n2

h12~7x1i � x2j7!. ~4!

The position of each on-center cell is updated in the same
fashion. Once all the on-center cells have been moved once, the
off-center cells are then moved, where this time the probability of
acceptance for a trial position x2i is

p � )
j�1, j�i

n2

h22~7x2i � x2j7! )
j�1

n1

h12~7x2i � x1j7!. ~5!

One sweep of the algorithm corresponds to moving all cells once.
Usually, around ten sweeps are sufficient for convergence of the
cell positions to a stable pattern ~Ripley, 1979!. The order in which
cells are moved within a sweep is not important as long as enough
sweeps are performed and the algorithm ensures that all cells are
visited equally often in the long run; two strategies which meet this
requirement are to visit each cell in turn, or to visit cells randomly.
When simulating the beta RGC maps, n1 is set to the number of
on-center cells, and n2 is the number of off-center cells. Further-
more, the size of the simulated field is the same as the real field so
that our simulated maps are of the same density.

Fig. 3. Examples of spatial point patterns created by various interaction functions. In each plot, we show the interaction function above
and a simulated data set below ~n � 100 points in a sample area of size 1000 mm � 1000 mm; cell bodies drawn assuming 10-µm
radius!. The regularity index ~RI ! of each spatial pattern is given above each plot. ~A! Complete spatial randomness ~CSR!; points can
be arbitrarily close or distant from each other. ~B! Simple inhibition ~d� 30 µm!. ~C! Simple inhibition ~d� 60 µm!. ~D! Sigmoidal
interaction function from equation 3 with ~a � 2,f � 20 µm, d � 40 µm!.
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Nonparametric estimation of interaction functions
Given a spatial point pattern, we can get a nonparametric

estimate of the interaction function using a version of maximum
pseudolikelihood estimation ~Besag, 1978! in conjunction with a
piece-wise constant specification of h~u!, as suggested in Heikki-
nen and Penttinen ~1999! and in Baddeley & Turner ~2000! and
implemented in the “spatstat” package for R ~Baddeley & Turner,
2005!. Once the nonparametric estimate of h~u! for a dataset has
been computed, it can be used directly to simulate new fields. This
provides a quick way for simulating new fields with similar spatial
properties to the real dataset.

Parametric fits to interaction functions
Previous work in retinal mosaics has mostly used ad-hoc

searching of parameter space to find the model parameters that
best fit the data. In this paper, we use a nonlinear least-squares
method to estimate univariate parameters within the model spec-
ified by eqn. ~3!. Least-squares fitting was performed in R using
the optim function. For the univariate fits, we estimated the
parameters a and f in eqn. ~3! but, rather than estimating d, we
constrained it to be 15 mm. This is our estimate of the lower bound
of soma diameter for beta RGCs, considering data from the current
maps and prior literature ~Stein et al., 1996; Zhan, 1996; Zhan &
Troy, 2000!.

For fitting the bivariate functional independence model, we use
a Monte Carlo likelihood ratio method as follows @a more detailed
description is given in ~Diggle et al., 2005!# .

The functional independence model includes a simple inhibi-
tory interaction function h12~u! as specified by eqn. ~2!, thereby
adding to the model a single parameter d12, the minimum permis-
sible distance between two cells of opposite types. For any value
of d12, we let R~d12! denote twice the Monte Carlo log-likelihood
ratio between the specified value of d12 and the value d12 � 0
corresponding to statistical independence. The Monte Carlo max-
imum likelihood estimate of d12 is the value Zd12 which maximises
R~d12!. To test the hypothesis that d12 � 0, that is, statistical
independence, against the more general alternative of functional
independence we then compare R~ Zd12! with the critical value of
the chi-squared distribution on 1 degree of freedom, but using
twice the required significance level because the null hypothesis
corresponds to the extreme of the permissible range of values for
d12; for example, the 10% critical value of chi-squared on 1 degree
of freedom is 2.71, and we therefore reject statistical independence
at the 5% level if R~ Zd12!� 2.71 ~Self & Liang, 1987!. If statistical
independence is rejected, an approximate 95% confidence interval
for d12 consists of all values of d12 for which R~ Zd12! � R~d12! is
less than 3.84, the 5% critical value of chi-squared on 1 degree of
freedom.

In principle, the likelihood ratio approach could be used to test
functional independence against general dependence, that is, a
model in which h12~u! is specified by the more flexible interaction
function @eqn. ~3!# . However, the distribution theory for this non-
regular multiparameter problem is not straightforward. For this
reason, we have chosen to test directly the goodness of fit of the
functional independence model, using methods described in the
following section.

Assessing goodness of fit

To evaluate the spatial distributions of cells, we have used various
spatial statistics. Many statistics have been proposed, none of
which alone is sufficient to capture all the properties of spatial

distributions. Our approach then has been to evaluate several
complementary measures, rather than compute an exhaustive list
of all known statistics.

The most familiar measure to visual neuroscientists is the
regularity index ~RI !, the mean of the nearest-neighbor distances
divided by the standard deviation of those distances ~Wässle &
Riemann, 1978!. The higher this number, the more regular the
distribution of cells. In practice, values above 2 typically indicate
a regular distribution of cells since the theoretical RI for a com-
pletely random process is @p0~4 � p!# 0.5 � 1.913; Cook ~1996!
provides tables giving thresholds for various cell densities and
aspect ratios. The RIs for several simulated arrays are shown in
Fig. 3.

We have also used K functions ~Ripley, 1976! to evaluate
second-order properties of our spatial patterns. The DRP, more
commonly used in studies of retinal mosaics, is simply the deriv-
ative of the K function; both are second-moment methods. An
advantage of K for relatively small datasets is that it avoids the
need for choosing an arbitrary bin-width. A counter-advantage of
the DRP is that many people are more comfortable interpreting
noncumulative functions ~DRP! than cumulative functions ~K !.
Estimates of K functions and related spatial distributions were
computed using the Splancs package in R ~Rowlingson & Diggle,
1993; R Development Core Team, 2005!.

The univariate estimated K function is defined as

K~t ! �
6A6

n~n � 1! (i�1

n

(
j�i

w~i, j !�1I ~7xi � xj7� t !. ~6!

I ~{! is the indicator function; it counts the number of cell pairs that
are less than or equal to some distance t apart from each other. The
term w~i, j ! is the weighting factor to adjust for border corrections;
it measures the fraction of the circumference of the circle centerd
at xi and with radius 7xi � xj7 that is within the sampling window
A. For a rectangular sampling window, an explicit formula can be
written for w ~Diggle, 2002!. Under the null hypothesis of CSR,
the theoretical K function is K~t ! � pt 2.

The bivariate estimated K function is similarly defined as

K12~t ! �
6A6

n1 n2
(
i�1

n1

(
j�1

n2

w~i, j !�1I ~7x1i � x2j7� t !, ~7!

where this time the weighting factor w~i, j ! is for the circle
centered at x1i and with radius 7x1i � x2j7. For plotting purposes,
we define L~t ! � ~K~t !0p!0.5. Under CSR, the theoretical L
function is L~t ! � t.

As a complement to K functions, we also measure G functions
~Diggle, 2002!. For the on-center cells

G1~t ! �
1

n1

I ~ yi � t !, ~8!

where yi is the distance of cell i to its nearest neighbor of the same
type. G2~t ! is defined similarly for the off-center cells. Hence G~t !
is a cumulative version of the empirical nearest-neighbor distribu-
tion measuring the fraction of cells whose nearest neighbor is of
distance less than t.

To evaluate the goodness of fit of our models, we use both
qualitative and quantitative tests. Informally, if the distribution
from the dataset falls within the 95% envelope of the simulations,
we suggest there is a good fit. This visual evaluation can be
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quantified by computing Monte Carlo p values. For each real and
simulated dataset, we compute some measure T. The rank of T
~largest first! is converted to a p value by dividing the rank by one
plus the number of simulations ~Barnard, 1963!. The choice of test
statistic T depends on the context, as outlined below.

Goodness of fit for G and K functions
To assess the goodness of fit using the G function, we use the

test statistic

T i ��
0

150 µm

@Gi ~t !� Gi~t !# 2 dt, ~9!

where G1 is calculated from the data, Gi , i � 2, . . . , s � 1
are calculated from s simulations of the model and Gi~t ! �
~10s!(j�i G j~t !. The T values are ranked as before to determine
significance. The same approach can be used to assess the
goodness of fit using the K function. For example, the test
statistic T for evaluating K1 is

T i ��
0

150 µm

~MK1
i ~t ! �MK1

i ~t !!2 dt, ~10!

where

K1
i~t ! �

1

s (j�i
K1

j ~t !.

Similar expressions can be determined to evaluate K2 and K1�2

~where 1 � 2 denotes that we consider all cells, irrespective of
polarity!. For convenience, the spatial functions are briefly sum-
marised in Table 1.

Voronoi-based measures
Finally, the Voronoi domains of cells are computed to deter-

mine which cells are considered as neighbors of each other. Two
cells are considered neighbors if they share an edge of a Voronoi
polygon. For each mosaic, we rank the neighbors by distance and
examine whether the nearest neighbors ~or second-nearest, third-

nearest! are of opposite type, or are of the same type. In addition,
we measure the fraction of all Voronoi neighbors that are of the
same type as a given cell. Cells that are defined as border cells
~those whose Voronoi polygon intersects with the boundary of the
tissue! are not included for measurement, but are eligible as nearest
neighbors of nonborder cells. Border cells are also excluded from
calculations of the regularity indices, which explains why our
values are higher than those previously reported for the W81S1
dataset ~Wässle et al., 1981a!.

Results

Following the methodology proposed by Diggle ~1986!, we first
test for statistical dependence ~Fig. 4!. It can be seen that, as
expected, statistical independence is rejected using the goodness-
of-fit approach. In particular, the experimental L12 function falls
below the 95% envelope of the simulated data sets in the range
0–20 mm. Furthermore, the T statistic @eqn. ~1!# for the real dataset
is larger than all of the simulations for map M623, and so we can
reject statistical independence with p � 0.001. Likewise, statistical
independence for W81S1 is rejected with p � 0.006. This confirms
that we have sufficient points in each of our two datasets for
further analysis.

Estimation of interaction functions

Fig. 5 summarizes the interaction functions that we calculated
from our datasets. The nonparametric estimates ~dotted lines! were
estimated from the data using a piece-wise constant specification
of h~u!. These are typically sigmoidal in nature: out to distances of
around 30–50 mm, h~u! is zero, reflecting the fact that no two cells
of the same type are close to each other. Over the next 50–100 mm
these estimates then rise typically to h~u!� 1 which indicates that

Table 1. Summary of the spatial functions used in the paper

Term Meaning

K~t ! Expected number of cells within distance t of an
arbitrary cell, divided by cell density. This is the
cumulative version of the density recovery pro-
file ~Rodieck, 1991!.

L1~t !, L2~t !, L1�2~t ! Normalized version of K~t !, useful for plotting
purposes since L~t ! � t if cells are randomly
arranged. Subscripts denote whether on-center
cells ~1!, off-center cells ~2!, or all cells ~1 � 2!
are being analyzed.

L12~t ! Bivariate version of the L function, measuring
the ~normalized! expected number of on-center
cells within a given distance of an arbitrary
off-center cell ~or vice-versa!. This function is
the ~normalized! cumulative version of the den-
sity recovery profile from the cross-correlogram
~Rodieck, 1991!.

G1~t !, G2~t ! Cumulative version of the nearest-neighbor dis-
tribution for on-center ~1! or off-center ~2! cells.

Fig. 4. Testing statistical independence of the two datasets. ~A! Testing
statistical independence of the M623 data set. The upper plot shows L12 for
the real data ~thick black line! and the 95% envelope of s � 999 simulations
created by toroidally shifting one of the datasets ~dotted lines!. Under
statistical independence we would expect L12~t !� t, i.e. for the data to fall
along the leading diagonal. Underneath the plot is the T score @eqn. ~1!# for
the real dataset ~tall thick line!, and for the 999 simulations ~thin lines!.
Only the ranks of T, rather than absolute values, are important here.
Statistical independence is rejected ~P � 0.001!. ~B! Like A, for the W81S1
dataset. Again statistical independence is rejected ~P � 0.006!.
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the cell positions are independent of each other beyond a certain
distance. With the exception of the M623 on-center cells, the
nonparametric estimate of h~u! peaks at a value greater than 1 at
distances around 100–150 mm. This does not necessarily indicate
a tendency for pairs of cells to aggregate at those distance, because
the statistical fluctuations in the nonparametric estimates of h~u!
increase with u. We evaluate the uncertainty in the nonparametric
estimation procedure in a later section, after the goodness-of-fit
simulations have been introduced.

Given the sigmoidal-like nature of these nonparametric esti-
mates of interaction functions, we then fit the parametric form of
a sigmoidal-like curve @eqn. ~3!# to each of these estimates. Fig. 5
shows the corresponding fits for each dataset, and the parameters
found are listed in Table 2. In general, there is good agreement
between the nonparametric estimates and the corresponding para-
metric fits; the two curves for each field obviously differ at
distances greater than around 100 mm, since the parametric curve
by definition has a maximal value of h~u! � 1.

Testing statistical independence versus functional
dependence

Using the estimates of a and f for each retinal mosaic, we then
used the likelihood ratio test to compare the likelihood of the form
of interaction between on- and off-center cells ~d12! under the two
hypotheses of statistical independence and functional independence

Under the null hypothesis of statistical independence, d12 � 0,
and using the univariate parameter fits, the log likelihood was
calculated ~Diggle et al., 2005!. Likewise, the log-likelihood was
calculated under the hypothesis of functional independence, in
which h12 took the form of eqn. ~2! with d12 varying from 0 to
either 18 or 20 mm in 1-µm increments. By definition, d12 could
not be greater than the smallest observed distance between cells of
opposite type, namely 20.0 mm for M623 and 18.1 mm for W81S1.
For each value of d12, we calculated twice the Monte-Carlo

log-likelihood ratio, R~d12!, as shown in Fig. 6. From these
profiles, we determined the maximum-likelihood estimates of Zd12

~Table 2! as the values corresponding to the maximal values of
R~d12!. Furthermore, we could then compute the 95% confidence
intervals for the estimate of d12, namely 9–18 mm for W81S1 and
13–20 mm for M623 ~horizontal arrow in Fig. 6!. For both maps,
our lower bound estimate of soma diameter, 15 mm, is within these
confidence intervals. We use the upper end of the confidence
interval as a point estimate because, for simple inhibitory models
this is generally the maximum-likelihood estimate. The values of
R~ Zd12! are compared with their reference distribution under the

Fig. 5. Summary of the interaction functions that were
computed from the fields. Dashed lines show the nonpara-
metric estimates of the interaction function. The solid
lines show the least-squares fit of the nonparametric esti-
mates to our parametric interaction function. See Table 2
for parameter values.

Table 2. Summary of parameter estimates for the
univariate functions h11~u!, h22~u! and the bivariate
function h12~u!a

f~µm! a d12 ~µm!

W81S1
h11~u! 67.94 7.81
h22~u! 66.27 5.40
h12~u! 18

M623
h11~u! 112.79 3.05
h22~u! 65.46 8.11
h12~u! 20

aFor the univariate fits, a and f are least-square estimates
~assuming d was fixed at 15 mm!. See also Fig. 5 for the
interaction functions using these parameter estimates. The
final column gives the maximum likelihood estimate of d12

assuming that the interaction between types is simple inhibi-
tion @eqn. ~2!# . See Fig. 6 and the section on Testing statistical
independence vs. functional dependence for how d12 was
determined for each field.
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null hypothesis of statistical independence, as described in a
previous section. In both cases, statistical independence was re-
jected ~p � 0.003 for W81S1 and p � 0.001 for M623!.

In principle, the likelihood ratio test can also be applied to
compare the likelihood when h12~u! is a simple inhibition function
versus when it can take a wider range of shapes through our
parameterization of h~u! @eqn. ~3!# . However, the distribution
theory is more complex than testing functional independence
against statistical independence, since three parameters need to be
optimized, rather than one, and all three are subject to boundary
constraints. Exploration of parameter space showed that no better
likelihoods were computed when h12~u! took the form of eqn. ~3!
rather than when h12~u! was fixed to be the simple inhibition
function @eqn. ~2!# . In this case therefore, the likelihood ratio was
not computed, as it was deemed to be too small to show any
difference between the two models. Hence, we conclude that the
general bivariate model does not fit the data any better than the
model assuming functional independence.

Goodness of fit for the interaction functions

As a complement to the likelihood ratio testing, we tested whether
our parametric interaction functions capture the spatial properties
of the retinal mosaics. We simulated fields using the bivariate PIPP
model ~see Methods!. An example of each simulated field can be
seen in Fig. 2, beneath the corresponding real field. Visually, the
real and simulated fields appear quite similar in their distributions.

To quantitatively evaluate the goodness of the fit of the model
to each dataset, we ran 999 simulations for each field, and com-
pared spatial distributions for the real field and the simulated
fields. Results for the two fields are shown in Figs. 7 and 8. In
these figures, solid lines show the L and G functions for the real
data, whereas dotted lines indicate the 95% envelope from the
simulations. ~L and G are summarized in Table 1!. In general ~but
see below for exceptions!, we find that the qualitative nature of the
fits of the model to the data is encouraging: for the L and G

functions, the real curve lies within the envelope formed by the
simulations. Occasionally, the real curve dips out of the range of
the simulations, but this tends to happen at larger distances, where
the estimates are less accurate anyway. This in general accounts for
the low p values.

L~t ! is derived from the K function, which measures the
expected number of cells within a distance t of a cell. The
univariate L functions ~L1 and L2! indicate that no two cells of the
same type are closer than around 50 mm. Furthermore, since
L~t !� t once t approaches 150 mm, this indicates interactions are
fairly short-range. When all cells are considered irrespective of
type, the L1�2 curves indicate that there are no interactions beyond
about 20 mm. Likewise, the bivariate L12 function shows inter-
actions between the two types that we believe are limited to
preventing somal overlap. Importantly, there is good agreement
~both visually using the simulation envelope and quantitatively
using the p values! between model and data for L12, strengthening
our conclusion of functional independence between the on- and
off-center arrays. Although some p values are quite small, in
general the 95% simulation envelopes mostly agree with the data.
The major exception for the fits to the L functions is L1 for M623:
the model fields are much less regular than M623 on. We believe
this to be caused by poor estimation of h~u! for this field, which
also affects G1 and the regularity indices for this field. Comparing
the interaction functions ~Fig. 5!, the h~u! function is much
broader for M623 on-center field than for the other three fields,
and this reduces the regularity of the simulated M623 on fields.

The G functions are cumulative nearest-neighbor distributions,
and are typical of that expected for regular distributions of cells.
The G distributions are further quantified in the regularity indices,
showing that either the on- or off-center map alone is more regular
than the mosaic of all beta RGCs. As mentioned above, the main
problem is with the G function for M623 on-center field, where the
simulations are less regular than the real field. However the G
functions for W81S1 show a minor discrepancy around G � 0.5,
which we think represents minor fluctuations responsible for the
low p values.

Finally, we have used the Voronoi tessellation to define which
cells are nearest neighbors ~and second-nearest, and so on! of each
other, and then to count the fraction of nearest neighbors that were
of opposite sign ~Zhan & Troy, 2000!. These measures show that
nearly all nearest neighbors are of the opposite type, as reported
before ~Wässle et al., 1981a!.

In summary, the model produces generally good fits to the data,
albeit with some discrepancies. The main point for using the
modelling was to test the hypothesis of functional independence,
rather than to get the best fits between model and data. Most of the
discrepancies are due to the poor fit of the model to the M623 on
data. If different parameters are selected ~by hand! for the M623
on-center field, fits for L1 and G1 improve ~Fig. 9!. However, the
advantage of the method presented here is that no hand-tuning of
parameter estimates is required.

Evaluating the uncertainty in nonparametric estima-
tion of h~{!
Our goodness-of-fit simulations indicate that our parametric

form of homotypic interaction functions @eqn. ~3!# captures the
spatial interactions among on- or off-center cells. One possible
concern using this parametric form is that it cannot represent any
interactions where h~u! � 1, and yet three of the four nonpara-
metric estimates of h~u! show rises above 1.0 for distances greater
than around 100 mm ~Fig. 5!. We consider now whether these rises

Fig. 6. Log-likelihood profile plot comparing the null hypothesis of statis-
tical independence against functional independence. For values of d12

greater than the smallest observed distance between cells of different types,
the log likelihood ratio is negative infinity. Horizontal bar denote 95%
confidence intervals for the value of d12 under functional independence.
Since the confidence intervals exclude zero, the null hypothesis of statis-
tical independence is rejected against the alternative of functional indepen-
dence. In both cases, the maximum likelihood estimate is at the upper end
of the confidence interval ~18 mm for W81S1 and 20 mm for M623!.
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above 1.0 might be explainable simply by statistical uncertainty in
the nonparametric estimation procedure. To test this, for each field,
we estimated h~u! from 99 of the simulated fields summarized in
Figs. 7 and 8. If the nonparametric estimation procedure is work-
ing reliably, the nonparametric estimates would be similar to the
known parametric shape of h~u! that we used for each simulation.
The results are shown in Fig. 10. We find that even when h~u! is
known to be constrained within @0.0, 1.0# , the nonparametric
estimation procedure often estimates h~u! � 1.0. We therefore
believe that the discrepancies between nonparametric and para-

metric estimates of h~u! in Fig. 5 are simply due to uncertainties
in the nonparametric estimation, and therefore do not invalidate a
model with h~u! limited to the range @0.0, 1.0# .

Discussion

We have demonstrated that the mosaics of on- and off-center beta
RGCs are broadly consistent with the functional independence
hypothesis. We have argued that functional independence, rather
than statistical independence, is the scientifically natural null

Fig. 7. Goodness-of-fit testing for W81S1 field with the bivariate PIPP model, using parameters listed in Table 2. Univariate L functions are plotted for
on-center ~1!, off-center ~2!, all cells irrespective of center ~1� 2!, and the bivariate L12 function. G function for both on- and off-center cells are also shown.
For L and G functions, the solid line is the observed value, and dotted lines indicate the 95% simulation envelope. P values denote the goodness of fit.
Bottom left: fraction of nearest-neighbors that are of opposite type. Diamonds indicate values from real maps, and box plots indicate the range of values
from the simulations. ~Each rectangle marks the 1st, 2nd, and 3rd quartile; whiskers are drawn out to 1.5 times the interquartile range, with small dots
indicating individual values outside that range.! Bottom right: regularity indices for real and simulated maps in same format.
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hypothesis and have used a likelihood ratio method to estimate the
functional independence parameter d12, having first confirmed that
the data do contain sufficient information formally to reject the
hypothesis of statistical independence. For both datasets, the con-
fidence interval for d12 includes the value 15 mm, consistent with
our estimate of the lower bound for soma diameter. We have used
a variety of ad hoc measures to evaluate the quality of our model
fits to the two datasets. In some cases, these reveal statistically
significant discrepancies between data and model. However, our
overall conclusion from graphical comparison between empirical
summaries of data and model ~Figs. 2, 7, and 8! is that the bivariate
functional independence model gives a good approximate descrip-
tion of the spatial structure of the RGC mosaics. Our conclusion of

functional independence between on-and off-center RGCs is in
general agreement with previous observations suggesting that spa-
tial dependencies between pairs of cell types are rare ~Kouyama &
Marshak, 1997; Rockhill et al., 2000; Ahnelt et al., 2000!.

Our results elaborate on an earlier model which suggested some
spatial dependencies between the on- and off-center beta RGCs
~Zhan & Troy, 2000!. In this model, two triangular lattices of cells
were jittered to create the final pattern of RGCs, under two
constraints: first, the two lattices had to be displaced from each
other by a fixed vector, and second, somal overlap was prohibited.
The first constraint does not embody any biological principle, but
is required as a consequence of starting with regular arrays. By
contrast, our current model takes a more developmental approach

Fig. 8. Goodness-of-fit testing for M623 field with the bivariate PIPP model, using parameters listed in Table 2. Plotting conventions
are the same as in Fig. 7.
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by gradually rearranging cell positions from random starting points,
and so does not require such a constraint. The second constraint,
preventing somal overlap, is common to both models, and we
believe is the only constraint acting between cells of different type.
Our current model also provides a more parsimonious explanation
for mosaic formation than a previous model where it was sug-
gested that lateral inhibition of cell fate followed by cell death

could generate the beta RGC mosaics ~Eglen & Willshaw, 2002!.
Finally, a recent model investigating the role of RGC mosaics upon
cortical orientation selectivity assumed statistical independence
between on- and off-center cells ~Ringach, 2004!. Our results
suggest that more realistic mosaics would be created by including
the constraint that somas should not overlap.

Mechanisms of pattern formation

Our current model suggests that beta retinal ganglion cells are
formed by mostly homotypic interactions: the extent of the het-
erotypic interactions ~up to 20 mm! is much smaller than the range
of homotypic interactions ~50–100 mm!. However, our model does
not suggest what biological mechanisms drive those interactions.
Previous work has shown that during development, RGCs move
laterally within the ganglion cell layer ~Reese & Galli-Resta, 2002!
and theoretical models suggest that this movement is sufficient to
drive mosaic formation ~Eglen et al., 2000!. We therefore suggest
that lateral movement of cell bodies is one mechanism by which
cells respond to the homotypic constraints upon cell positioning.
Our model suggests that the only heterotypic constraint is that
imposed naturally by preventing somas from occupying the same
space in the ganglion cell layer. Such a constraint may not apply in
the area centralis where cells are displaced vertically within the
ganglion cell layer ~Kolb & Nelson, 1984!.

However, although our current model suggests that there are
limited heterotypic constraints upon cell positioning, our model
cannot discriminate between alternative mechanisms ~reviewed in
Cook & Chalupa, 2000! that could potentially underly the homo-
typic constraints. This is because the homotypic interactions are
specified only in terms of the probabilities of finding cells at a
given distance from each other, without reference to how the
nervous system might determine those probabilities. However, our
model can predict the range over which such interactions may
exist. With the exception of the M623 on-center field, the homo-
typtic interaction functions have reached 1.0 by around 100 mm
~see Fig. 5!, and therefore suggests that homotypic interactions are
likely to be fairly local, around 100 mm or less.

Further elucidation of the mechanisms underlying mosaic for-
mation in the beta RGCs awaits more experimental data. The
availability of a neurochemical marker to distinguish on-center
versus off-center cells would be invaluable to allow the collection
of more experimental maps, especially if the marker reliably
identifies cell types early enough during development. To date,
such a marker has remained elusive, but previously, cytochrome
oxidase staining was used to label populations of RGCs, on the
basis that off-center cells were more heavily stained ~Kageyama &
Wong-Riley, 1984!. However, this technique worked better for
alpha than for beta RGCs, and although we believe similar devel-
opmental mechanisms might apply for alpha and beta RGCs, alpha
cells are of much lower density and so are likely to show nonsta-
tionarity within a field of sufficient sample size ~Wässle et al.,
1981b!. This nonstationarity is caused by the dependence of
eccentricity on cell density. Nonstationary data can be analyzed
and modelled in a similar fashion to the methods presented here,
but it requires the form of nonstationarity to be quantified so that
it can be taken into account.

Modeling considerations

The bivariate PIPP model is similar in spirit to the minimal
distance, or dmin, model, which has previously been used to

Fig. 9. Goodness-of-fit testing for M623 field, using different parameters
for M623 on ~f� 75 µm, a�10.0! with all other parameters as in Table 2.
~No attempt was made to optimize the parameters.! Compared with Fig. 8,
the fit between model and data for L1 and G1 are better ~although L1 still
shows discrepancies around 100–120 mm! without affecting the cross-
correlation curve ~L12!.

Fig. 10. Evaluating the statistical uncertainty in the nonparametric estima-
tion procedure. Solid line shows the nonparametric estimate of h~u! for
M623 off-center cells ~repeated from Fig. 5!. Dashed lines show the 95%
envelope from 99 simulations of the M623 off-center cells summarized in
Fig. 8. Simulations from the three other fields produced similar simulation
envelopes.
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replicate several different retinal mosaics ~Galli-Resta et al., 1997,
1999; Cellerino et al., 2000; Raven et al., 2003!. In this model,
cells are positioned serially into the mosaic at random, subject to
the constraint that the distance to the nearest-neighboring cell is
greater than some minimal distance, dmin. However, there are two
main differences between the two models.

First, if the interaction function for a univariate PIPP model
takes the form of simple inhibition with d in eqn. ~2! set to dmin,
the PIPP model can emulate the dmin model behavior. However, the
value of dmin is usually drawn from a Normal distribution and thus
varies from cell to cell. A randomly varying inhibition distance in
the dmin model is analogous to ~albeit formally different from!
allowing a non-simple inhibitory h~u! in the PIPP model.

The second difference between the two models is an imple-
mentation detail. The dmin model is usually implemented in a
sequential fashion: cells are added to the simulation serially until
enough cells have been positioned in the array. This means that
when the dmin parameter is large enough, later-positioned cells
have a much harder time being positioned in the array than
earlier-positioned cells. The dmin model therefore cannot generate
patterns that are highly regular; the typical packing density is about
0.55, which is quite low compared to the theoretical limit of 0.91
for cells arranged in a triangular lattice ~Tanemura, 1979; Diggle,
2002!. By contrast, the PIPP model is implemented using the birth
and death algorithm, whereby a given cell is repositioned many
times, and no one cell has a particular advantage from being placed
“earlier” than other cells. It is likely that the PIPP model is closer
to matching the biological reality than the dmin model, since cells
that arrive earlier in the destination layer of the retina probably
adjust their position in response to later arriving cells. The dmin

model can be implemented using a birth and death algorithm and
can replicate the spatial pattern of beta RGCs ~data not shown!.
This claim of biological plausibility for the PIPP model assumes
that lateral migration of RGCs is the dominant mechanism under-
lying the homotypic interactions. However, as mentioned in the
previous section, our PIPP model makes no claim as to whether
RGCs undergo lateral migration, rather than, say, cell death, to
form regular mosaics. In this sense, our PIPP model is like the dmin

model which shows that exclusion zone models can generate
mosaic patterns, but cannot show how the exclusion zone is
generated ~Galli-Resta et al., 1997!. To address this question
theoretically, models must be built that are based directly upon
particular developmental mechanisms.

Our approach to modeling retinal cell mosaics is novel, in that
it proposes using an initial nonparametric estimation procedure for
the interaction function h~u! ~Baddeley & Turner, 2000!, which
can then be used to suggest a suitable parametric form, and to
estimate model parameters routinely using a simple nonlinear
least-squares method. The fitted parametric model can then be
used to simulate fields similar in their spatial structure to the real
mosaics. Once the parametric form of h~u! is chosen, this method
is automatic and faster than exhaustive searches of parameter
space to find good fits between model and data ~Raven et al.,
2003!. However, the method is not yet robust since it could not
replicate well one of our four fields ~M623 on-center!. Some
hand-tuning of parameters to generate better fits may always be
possible.

Summary

In conclusion, our results suggest that the on- and off-center beta
RGCs are positioned functionally independently of each other,

subject only to the constraint that somas cannot overlap. This
suggests that beta RGCs are destined to become on- or off-center
at an early stage of development, and that competitive environ-
mental interactions between the cells to define their responsiveness
to light is unlikely. Such a view is supported by findings that show
alpha RGCs in ferret are able to recognize and make dendritic
contact with neighboring cells of the same polarity, even at very
early stages in development, prior to visual responses ~Lohmann &
Wong, 2001!. Furthermore, the relative numbers of on- versus
off-center alpha RGCs can vary with retinal eccentricity, in sup-
port of the two systems working independently ~Peichl, 1989!.
Given also physiological differences between on- and off-center
RGCs ~Chichilnisky & Kalmar, 2002!, it is more likely that the two
cell types develop independently rather than by relying on hetero-
typic developmental interactions.
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