
Chapter 12
Cellular spacing: analysis and modelling of
retinal mosaics

Stephen J. Eglen

Abstract A key step in nervous system development is the spatial positioning of
neurons within a structure. In this chapter I review the mechanisms by which the
cellular spacing of neuronal networks emerges. In particular, I focus on the spatial
distribution of neurons within the retina. The retina is ideal for studying such devel-
opmental mechanisms because of its multilayered structure and specific neurochem-
ical markers can reliably label all neurons of a given type. This chapter describes the
quantitative methods used for assessing spatial regularity of neuronal distributions
and computational methods for simulating these distributions.

12.1 Introduction

The retina is a relatively small neural structure located at the back of the eye. It is a
multilayered structure (Figure 12.1): photoreceptors toward the back of the eye con-
vert light into neural activity which then propagates through several layers where it
is modulated by lateral connections (via horizontal and amacrine cells) until reach-
ing the ganglion cell layer. Retinal ganglion cells (RGCs) encode the visual scene
into spike trains which then leave along the optic nerve and into the brain for further
processing. For a general overview of retinal processing, see Wässle (2004).

The layered organisation of the retina makes for relatively easy identification of
cell type, as each cell type tends to occur in only one layer of the retina. Taking
a cross section through one of the layers, such as the ganglion cell layer, reveals
a further aspect of structural organisation within the retina. Cells of a given type
are positioned semi-regularly through a layer, forming what is commonly termed a
retinal mosaic, due to the way that the cell bodies and their dendrites tile the sur-
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face (Figure 12.2). (For the rest of this article, when I refer to retinal mosaics, it
will mostly refer to the positioning of the cell body, assuming that the surrounding
dendritic arbor is also tiled. For further details on modelling dendritic growth, see
Chapter 13.) Most cell types form independent mosaics (see later for a rigorous def-
inition of independence), such that the presence of a retinal mosaic is often used to
determine whether a given population forms an independent type (Cook, 1998). To-
gether with reliable biochemical markers for reliably staining individual cell types,
this has meant the catalogue of cell types (five classes, divided into about 60 types,
depending on species) within the retina is nearing completion (Masland, 2004).

What function might such retinal mosaics perform? For photoreceptors, having
a regular spacing of neurons is presumably necessary to sample the entire visual
field, avoiding any ‘blind spots’. However, the spatial distribution of photorecep-
tors is slightly different to that of other cell types as they tend to be tightly packed
against each other (Figure 12.3). Short wavelength cones (‘blue cones’) tend to be
regularly spaced, as they are relatively sparse compared to the medium/long wave-
length cones, which are randomly arranged (Roorda et al, 2001). However, in other
layers of the retina, after sampling of the visual world, the advantages of a regular
mosaic are not so obvious. One hypothesis is that regular arrangements of individual
cell types in different layers may aid in the developmental wiring of connections be-
tween cell types (Galli-Resta, 2002). Chapter 14 discusses the wiring of connections
between neurons.) However, this wiring hypothesis has yet to be explored.

In this chapter I will describe the quantitative methods for the analysis and mod-
elling of retinal mosaics, with an aim to understanding the developmental mecha-
nisms that can generate such regular distributions of neurons. Although this work
focuses on retinal neurons, it is hoped that similar principles apply to other parts
of the CNS. Whether regular distributions of neurons exist or not in other parts of
the CNS is still unclear, due to the larger number of cell types in other regions, and
the lack of reliable markers for staining individual cell types early in development
(Cook and Chalupa, 2000).

12.2 Quantifying regularity

Several methods have been developed for the quantification of the spatial distribu-
tion of retinal neurons. In this section, I briefly outline the main methods employed.
The methods will be demonstrated on an example data set, shown in Figure 12.4.

12.2.1 Regularity index

The most popular method for quantifying mosaic measures is the regularity in-
dex (Wässle and Riemann, 1978). For each neuron in the field, the distance to the
nearest-neighbouring neuron is measured and plotted in a histogram. The regularity
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Fig. 12.1 Cross-section of a vertebrate retina. The retina is organised into three cell-dense lay-
ers (ONL: outer nuclear layer, INL: inner nuclear layer, GCL: ganglion cell layer). Connections
between layers are predominantly made in the OPL (outer plexiform layer) and IPL (inner plexi-
form layer). Each of these layers can be regarded as a two-dimensional sheet. There are five major
classes of retinal neuron: photoreceptors (P), horizontal cells (H), bipolar cells (B), amacrine cells
(A) and retinal ganglion cells (RGC). Photoreceptors transduce light into neural activity, which
then propagates to the RGCs via the bipolar cells. Both the horizontal and amacrine cells have
widespread lateral interactions that modulate neural activity. Finally, axons of the RGCs form the
optic nerve, carrying the neural signal from the eye to the brain for further processing. Cells of a
particular class are usually restricted to a given layer within the retina, allowing for easier iden-
tification of individual cell classes. The spatial location of all neurons within a layer can then be
revealed using various staining techniques (see Figures 12.2,12.3).
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Fig. 12.2 Regular arrangement of on-centre alpha retinal ganglion cells from cat retina. The area
shown is approximately 1.7×1.2 mm. The dendrites around each cell body tile the retinal surface,
and the cell bodies seem roughly equally-spaced from each other. In this article, ’field’ means the
area of tissue within which the neurons are observed. Other neurons (e.g. off-centre alpha retinal
ganglion cells) within the same layer are not shown. Reproduced by permission from Macmillan
Publishers Ltd: Nature 292:344–345, copyright 1981.

Fig. 12.3 Close packing of
cone photoreceptors in a hu-
man retina (subject named
MD). The three different
classes of photoreceptor are
coloured blue (short wave-
length), green (medium
wavelength) and red (long
wavelength). Approximate
width of view: 20 arc min.
Reproduced from (Hofer et al,
2005) with permission of the
Society for Neuroscience.
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index (RI) is simply the mean of this distribution divided by its standard deviation.
For the example in Figure 12.4, the RI of 5.1 indicates a highly regular mosaic.

Calculating a measure such as this immediately raises the question of how to in-
terpret this number. Cook (1996) first investigated the properties of the RI (termed
the conformity ratio in his article). The baseline to compare against is when the
neurons are placed at random throughout the field — this is termed complete spatial
randomness (CSR). The RI for neurons arranged randomly is 1.9, and the more reg-
ular the arrangement, the higher the RI. For retinal mosaics observed to date, the RI
is typically 3–8. However, the exact threshold for determining whether the mosaic
is non-randomly arranged depends on the number of neurons and the geometry of
the field (Cook, 1996). Furthermore, the physical size of the soma may introduce
lower limits onto the size of the nearest-neighbour distances. However, all of these
can be handled appropriately by using Monte-Carlo techniques, see later.

Fig. 12.4 Example mosaic
(synthetic data set). Neurons
are drawn as circles with
10 µm diameter representing
typical soma size; scale bar:
100 µm. Each neuron is
surrounded by its Voronoi
polygon, showing the region
of space closest to that point.
The histogram underneath
shows the distribution of
nearest-neighbour distances,
along with the regularity
index (RI) of 5.1. This RI is
typical of regular mosaics,
such as cholinergic amacrine
neurons. Nearest neighbour (µm)
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12.2.2 Autocorrelation methods

A key limitation of the RI measure is that it is based only on the distribution of
distances to nearest-neighbours. Autocorrelation-based methods are more powerful
as they include the relative distance of all points, not just the nearest-neighbour.
Such autocorrelation methods were made popular in the retinal mosaic literature by
Rodieck (1991), although these methods were introduced much earlier in the spatial
statistics literature (Ripley, 1976). An autocorrelation plot is created by taking one
cell as the reference neuron, and plotting the relative position of all other neurons
in a plot. This is repeated using each neuron as a reference neuron to build up the
autocorrelation plot shown in Figure 12.5A. Annuli are drawn 10 µm apart, and
clearly show a ‘exclusion zone’ effect: no two neurons are closer than about 40 µm
apart, but beyond this distance, there is no further structure to the plot. This indicates
that neurons perhaps are operating under the rule that they simply should avoid
becoming ‘too close’ to each other, but there are no further constraints imposed.

Within each annulus of the autocorrelation plot, there is rarely little spatial vari-
ation. Each annulus can thus concisely be described by one number, the density of
points in that annulus. The density of each annulus then forms the density recovery
profile (DRP; Figure 12.5B) which is the usual way of summarising the autocor-
relation. Again this clearly shows the exclusion zone principle acting up to around
40 µm, and beyond that the density of each annulus fluctuates around the mean den-
sity (horizontal line). Further quantification of the DRP is possible; for example,
the size of the exclusion zone can be quantified by the effective radius shown in the
figure as a vertical line; see (Rodieck, 1991) for further details. The DRP and its
associated statistics are useful complements to the nearest-neighbour methods.

One limitation of the DRP approach is that the results may be dependent on the
size of each annulus: smaller annuli should lead to more sensitive estimation of DRP
parameters such as the effective radius. However with smaller annuli, the neuronal
counts within each annulus can be quite small and thus the density estimates may
vary significantly. Cumulative histograms of counts are more robust, by avoiding bin
sizes, and have been proposed in spatial statistics (Ripley, 1976; Diggle, 2002). In
particular, Ripley’s K function is effectively the integral of the DRP. The K function
is defined as:

K(t) =
|A|

n(n− 1)

n

∑
i=1
∑
j �=i

w(i, j)−1I(||xi − x j|| ≤ t) (12.1)

In this function, xi is a 2-d vector representing the position of neuron i; hence I(·)
counts how many pairs of neuron are less than or equal to some distance t apart.
|A| is the field area, and n is the number of neurons. The term w(i, j) is a weighting
factor to correct for border effects, as described in the next section (Diggle, 2002).
Under the null hypothesis of CSR, the theoretical K function is K(t) = πt 2. Finally,
L(t) = (K(t)/π)0.5 is used for plotting purposes.

Figure 12.5C shows the L function corresponding to the DRP in panel B. The null
hypothesis of CSR is given by L(t) = t, shown in the dotted line, and deviations of
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L(t) below that line indicate regularity, as is the case here. (L(t)> t would indicate
that the neurons are clustered, rather than spaced-apart.)

Many other statistics are also available, including Voronoi-based measures, as
well as other cumulative distance functions from the spatial statistics literature (no-
tably the F and G functions); for further details, see (Diggle, 2002). It is an open
question as to which of these functions are most useful for discriminating patterns,
hence it is good practice to compare the effectiveness of several functions.

Fig. 12.5 Autocorrelation-
based analysis of the mosaic
shown in Figure 12.4. A:
autocorrelation plot. Each dot
represents the position of a
cell relative to another neuron
in the field. Annuli are spaced
10 µm apart. The lack of
cells in the first four annuli
indicate the presence of an
exclusion zone. B: density
recovery profile (DRP). Each
bar in the histogram shows
the density of points in the
corresponding annulus of
the autocorrelation plot. The
horizontal line indicates the
mean density of points (166
cells/mm2) and the vertical
line (at 38 µm) shows the
effective radius (see text). C:
The L function is the scaled
integral of the DRP. Solid
line indicates the L function
for the mosaic; dotted line
indicates the curve that would
be expected if the points were
arranged randomly.
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12.2.3 Boundary effects

Fig. 12.6 Demonstration of
boundary effects. The solid
rectangle indicates the bound-
ary region under study, with a
central safety zone shown as
dotted lines. Individual points
(1, 2, a, b and c) are referred
to in the text.

1
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Figure 12.6 demonstrates the problems associated with boundary effects when
quantifying retinal mosaics. For example, when finding the nearest neighbours, for
cells in the centre of the region (e.g. cell 1) it is clear which cell is the nearest
neighbour (cell 2). However, for a cell close to the boundary, such as cell a, although
cell b is the closest within the field, there might have been another cell just to the
right of the field that was closer to cell a (e.g. at point c or anywhere within the
circle outside the field). Hence the estimate of the nearest neighbour for cells at the
border is unreliable. To determine which cells are located at the border, we can add
a ‘safety zone’, marked by the dotted line, and consider only the nearest-neighbour
distances for neurons within the safety zone (filled symbols). However, what size of
safety zone should be imposed? The larger the safety zone around the edge of the
field, the smaller the impact of boundary cells. With larger safety zones however,
fewer neurons are left within the safety region, and hence fewer samples to estimate
the RI.

Imposing a safety zone is therefore simple, but requires another parameter (the
width of the safety zone) and often discards a lot of data. Another technique for
identifying border cells is to use the Voronoi tessellation, and label neurons as being
at the border if their Voronoi polygon intersects with the field boundary. However, a
subtler approach to handling boundary effects is to use weighting factors such that a
contribution of e.g. each nearest-neighbour distance is measured, but the distances
are weighted according to how close a neuron is to the border. One such edge-
correction technique is to measure the fraction of the circumference of a circle (e.g.
shown for point a in Figure 12.6) that lies within the field (Ripley, 1976; Diggle,
2002). This edge-correction term accounts for the w(i, j) term in equation 12.1.

Another concern with boundary procedures that is often overlooked is the size of
the field itself. Often, retinal mosaics are described simply by the x,y locations of
each neuron — the coordinates of the (usually rectangular) field which determine
which neurons are recorded are often not kept. As seen above, the position of the
boundary is important, and affects the reliability of the measures taken from the
mosaic. In the absence of a reported boundary region, one can be estimated by using
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the extreme x and y coordinates of all the neurons. This is the smallest possible field,
and although it is the maximum likelihood estimate (Ripley and Rasson, 1977), it is
obviously an underestimate.

Ideally therefore, the field is decided in advance, placed onto the retinal tissue,
and the positions of all neurons within that field should be recorded. What size
should the field be? For practical purposes, most software assumes rectangular re-
gion (although some, such as SPLANCS (Rowlingson and Diggle, 1993) can handle
arbitrary closed polygons). It should also be large enough to contain enough cells
(e.g. at least 50), but small enough so that long-range spatial variations in density
can be ignored. Again, some methodologies exist for handling non-homogeneities
in spatial density across the field (Baddeley and Turner, 2005). However, often the
long-range density variations observed across the retinal surface mean that investi-
gators do not use very large fields, typically smaller than 1 mm × 1 mm.

12.3 Phenomenological approaches to modelling

What are the mechanisms underlying the development of these retinal mosaics?
Progenitors of retinal neurons divide at the location of the photoreceptor layer, and
once the neurons become postmitotic (i.e. stop dividing), they migrate through the
retina to the appropriate layer for a given cell type. Certain cell types then migrate
laterally within a layer to reach their final position (Reese and Galli-Resta, 2002).
As well as these migratory processes, many other developmental mechanisms are
thought to be involved, including lateral inhibition of cell fate and cell death (Reese
and Galli-Resta, 2002). For a general review of the developmental mechanisms, see
Cook and Chalupa (2000).

In addition to experimental approaches to understanding mosaic formation, theo-
retical modelling can help us evaluate the potential of different developmental mech-
anisms for generating such regular patterns. In this chapter I compare two styles of
modelling:

phenomenological the focus is on generating model output that looks similar to
observed data, using mechanisms that may or may not be biologically plausible.

mechanistic the primary concern is on modelling the cellular processes thought
to be involved, rather than focusing on model output.

These two approaches are common in areas of biological modelling (e.g. see
Nathan and Muller-Landau (2000)). In this section, I describe the phenomenological
approaches; mechanistic approaches are discussed in the following section.
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12.3.1 Exclusion zone models

The exclusion zone model is fairly straightforward and simply embodies the lo-
cal rule that no two neurons should come closer to each other than some minimal
distance. This local exclusion zone should then be able to recreate the hole seen
in autocorrelation plots. This style of model was first applied to retinal mosaics by
Shapiro et al (1985), who examined the spatial distribution of blue cone photorecep-
tors in macaque retinas. However, the exclusion zone model has been popularised by
the more recent work of Galli-Resta and colleagues (Galli-Resta et al, 1997), where
the model is termed the dmin model, where dmin is the main parameter of the model,
representing the diameter of the exclusion zone. The value of d min is normally not
fixed, but drawn from a normal distribution with a given mean and standard devia-
tion. The other parameters of the model (the field size and the number of cells) are
taken from the observed mosaic being modelled.

The dmin model is an example of a serial model, where neurons are positioned
one-by-one into the field (Figure 12.7). The starting point therefore is an empty
field, the same size as the mosaic being modelled. A trial point is selected at random
within the field, and a value for dmin is sampled from the normal distribution. If the
nearest-neighbouring neuron in the field is closer than d min, the trial cell is rejected,
otherwise the trial cell is added into the field. This process continues until either the
desired number of neurons have been added into the field or until it is no longer
possible to fit any more neurons.

Once a field has been simulated using the dmin model, it can be compared against
the observed mosaic (Figure 12.8). Visual comparisons are often inadequate, and
so we use the quantitative methods (outlined in Section 12.2) to compare observed
with simulated mosaics. We take advantage of the fact that we can generate many
instances of simulated mosaics to estimate the goodness of fit. For example, if we
use the RI as the metric to quantify regularity, we calculate the RI of the observed
mosaic and the RI of each of 99 simulated mosaics from the d min model (fixing
the parameter values, and just varying the random number generator for positioning
neurons). Informally, for a good fit, the RI of the observed mosaic should fall within
the range of RIs generated by the dmin model.

This assessment of goodness of fit can then be quantified by calculating an em-
pirical p value. If the RI of the observed mosaic is x1 and the RI of n− 1 simulated
mosaics are x2 . . .xn, then for each mosaic i we calculate a ui value which determines
the difference between the RI for mosaic i and the average RI of all other mosaics:

ui = abs

(
xi − 1

n− 1 ∑j �=i

x j

)

The expectation then is that if the model is a good fit to the data, u 1 should be of
similar magnitude to all other u scores. A p value can then be calculated by sorting
the values of u, largest first, and then counting the position of u 1 and dividing by n.
For example, if u1 was the ninth largest value of u out of 100, the p value would be
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Fig. 12.7 Generation of a simulated mosaic using the dmin exclusion zone. In each panel, the
rectangle shows the field with the trial cell surrounded by a circular exclusion zone. If no other
cell is positioned within the exclusion zone, the trial cell is accepted into the field (panel D shows
a trial cell being rejected). Panel A shows the starting condition: since there are no previous cells,
the first trial cell is always accepted. Panel F shows the final mosaic after the desired number of
cells have been added.

0.09. In this context, small p values indicates a poor fit of the model to the data, and
the better the fit, the larger the p value. (Hence this test is one-tailed, and the model
does not fit the data if p≤ 0.05 at the 5% significance level.) This procedure is rather
general and can be adopted for other regularity measures, even for measures which
are functions of distance, such as the L function; see (Diggle, 1986) for details.

This model assessment procedure is demonstrated in Figure 12.8. Three differ-
ent parameter values for the dmin normal distribution are compared to see how well
they can replicate an example mosaic (shown in panel A). Out of the three models,
model 2 shows the best fit of simulated regularity indexes to the observed regu-



12 Stephen J. Eglen

larity index. This is confirmed by computing the u scores and p values. Clearly,
quantitative methods are required for comparing observed data and model output,
as there are no strong visual differences among the three alternative models shown
in Figure 12.8B–D.

Finally, Figure 12.9 shows the p values obtained by this procedure for a range
of different model parameters. As the dmin model is relatively fast, such exhaustive
parameter searches are feasible, and can easily pinpoint parts of parameter space
where the model fits the data. For more complex models, an exhaustive approach is
not feasible, and instead a heuristic search procedure should be used. Some other
phenomenological models from the spatial statistics literature have specialised fit-
ting procedures – for example see the R package SPATSTAT for details (Baddeley
and Turner, 2005).

Evaluation of dmin model

The dmin model has been used to fit a wide range of mosaics of different cell types
and different species (Galli-Resta et al, 1997, 1999; Cellerino et al, 2000; Raven
et al, 2003). This strongly suggests that a homotypic exclusion zone is sufficient to
generate a retinal mosaic. (In this context, homotypic means that interactions are
restricted to cells of the same type; heterotypic interactions involve cells of dif-
ferent types.) This means it is unlikely that long-range interactions are required
between cells of the same type, nor are interactions needed between cells of differ-
ent types, confirming results from cross-correlation analysis (Rockhill et al, 2000;
Mack, 2007). However, the dmin model does not say anything about the biological
mechanisms underlying the generation of such local exclusion zones. I return to this
topic in section 12.4.

12.3.2 Other phenomenological models

The dmin model is one instantiation of a whole class of phenomenological models
whereby spatial points exhibit mutual exclusion (Diggle, 2002). A generalisation of
this style of model is the pairwise interaction point process whereby a non-negative
function h(t) influences the probability of any two cells being a distance t apart. The
shape of h(t) can then determine both excitatory and inhibitory interactions between
pairs of points, as demonstrated by Diggle (2002). These models also allow for
a ‘birth-and-death’ style of cell positioning: cells are initially positioned randomly
within the field, and then individual cells are killed and move to new positions. Such
birth-and-death algorithms need several iterations to converge, but are preferable to
the serial methods which may introduce order artifacts (cells added later into the
field are more difficult to position than earlier-born cells). For further details see
(Diggle, 2002; Eglen et al, 2005).
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data model 1: dmin N(16,2)

model 2: dmin N(21,6) model 3: dmin N(20,10)

2 3 4 5 6 7
regularity index

0.0 0.5 1.0 1.5
U score

model 1
p=0.01

model 2
p=0.96

model 3
p=0.01

A B

C D

E F

Fig. 12.8 Fitting the dmin model to an example mosaic. A: example observed mosaic (cholinergic
amacrine cells in rat). The field of view is 400×400 µm2. B–D: example simulations using three
different values for dmin parameters; in each case the dmin value is drawn from a normal distribution
with given mean and s.d. E–F: assessing the fit of each model to the data. In E, each row shows
the regularity index from 99 simulations of each model; the larger vertical line in each case is the
regularity of the observed data in A (4.16). Informally, the model fits the data if the observed RI
falls within the range of the RIs generated by the model. Panel F shows the u score for each mosaic
(real or simulated), with the score for the real mosaic drawn with a larger line. Whereas model 1
and 3 can be rejected, model 2 fits the data.
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Fig. 12.9 Exhaustive parameter search of the dmin model to fit the observed mosaic shown in Fig-
ure 12.8A. For each value of the mean and s.d. of the dmin model, 99 simulations were generated,
and the p value for comparing real and simulated mosaics obtained. The area of the square in each
case is proportional to the p value.

Finally, in contrast to the models whereby local order emerges from random
initial conditions, another class of model has been proposed for modelling retinal
mosaics whereby an initially regular hexagonal mosaic is distorted to match the
observed pattern. This ‘distorted lattice’ approach has been used to model the dis-
tribution of horizontal cells (Ammermüller et al, 1993) and retinal ganglion cells
(Zhan and Troy, 2000). Although these models can recreate the spatial properties
of observed retinal mosaics, they are of limited utility in informing us about the de-
velopmental mechanisms underlying mosaic generation as they require hexagonal
mosaics to be first created and then distorted.

12.4 Mechanistic models

In this section I briefly discuss mechanistic models that have been proposed for
generation of retinal mosaics. The key focus of these models is to help further un-
derstand the developmental mechanisms underlying pattern formation, as opposed
to observing a good statistical fit between model and data. For further details of
these models, the reader is referred to the original references and (Eglen, 2006).
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12.4.1 Lateral migration

Once retinal neurons become postmitotic, they migrate radially through the layers of
the retina until they arrive at the layer that is appropriate for their cell type. Whilst
they migrate through the layers, it is thought that cells of the same type do not
respect any minimal spacing rule (Galli-Resta et al, 1997). They therefore arrive
randomly spaced over a period of several days. However, once they arrive in the
destination layer, they appear to move laterally within the layer. The amount of
lateral movement observed varies by cell type (Reese et al, 1999), and those that
move more tend to have more regular mosaics.

What causes the lateral movement of neurons within their destination layer?
Early evidence suggested a correlation between the time of movement and the first
emergence of neurites in horizontal cells (Reese et al, 1999). This suggested that
dendritic interactions might underlie the lateral migration, a hypothesis that was
investigated using modelling techniques (Eglen et al, 2000), described in the next
paragraph. Subsequently, further evidence for the role of dendritic interactions in
mosaic formation came from work by Galli-Resta showing that temporary disrup-
tion of microtubules in dendrites caused mosaics to collapse; once microtubule func-
tion restored, mosaic organization returned (Galli-Resta et al, 2002). Most recently,
mosaics are disrupted in mice lacking the cell adhesion molecule DSCAM, possi-
bly as a consequence of altered dendritic fasciculation among homotypic neurons
(Fuerst et al, 2008).

In the lateral migration model (Eglen et al, 2000), neurons initially have small
circular dendritic arbors. Each cell receives input from its neighbours in propor-
tion to the amount of dendritic overlap, and arbor size varies to maintain a fixed
amount of input from neighbouring cells (van Ooyen and van Pelt, 1994). In addi-
tion, cells repel each other in proportion to their dendritic overlap. In this manner, as
dendritic arbors develop, cells gradually begin to repel each other; once arbor sizes
have stabilised, the cells then gradually settle into a regular hexagonal-like mosaic
layout. The amounts that each cell moves is small, in line with the lateral distances
observed experimentally (Reese et al, 1999). One limitation of the model is that it
usually generates mosaics with regularity indexes that are much higher than those
observed experimentally. This is because the model dendrites are perfectly circular
and the amount of overlap between arbors is calculated exactly. Reducing the preci-
sion with which the amount of overlap is detected produces more realistic mosaics
(Eglen et al, 2000). Subsequent modelling work has also examined in detail the me-
chanical forces that might compose the dendritic interactions, thus moving towards
more realistic description of the developing dendrites (Ruggiero et al, 2004).

12.4.2 Lateral inhibition of cell fate

The eventual identity of any given neuron in the retina is not predetermined early in
development but is influenced by many intrinsic and environmental factors during
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development. Many cell fate mechanisms influence the identity of a given cell. One
of the most common is lateral inhibition: neighbouring neurons compete to inhibit
each other from acquiring a particular fate. There are many molecular pathways by
which this lateral inhibition is mediated, but most notable is that of Delta-Notch
signalling (Frankfort and Mardon, 2002). Cell fate mechanisms can therefore nat-
urally impose minimal distance constraints as they prevent neighbours from being
the same type of neuron.

The effect of cell fate interactions upon the relative numbers of primary and sec-
ondary fate neurons was studied by Honda et al (1990). This early modelling study
showed that lateral inhibitory mechanisms are sufficient to generate the correct rel-
ative numbers of primary and secondary fate neurons in developing grasshopper
neuroblasts. We have subsequently shown that lateral inhibition can generate reg-
ular primary fate mosaics from an initial irregular distribution of undifferentiated
neurons (Eglen and Willshaw, 2002). However, if the initial population of undiffer-
entiated neurons is already regular, the subsequent mosaic of primary fate neurons
is not more regular than the initial population. Stochastic cell fate processes have
also been shown theoretically to be sufficient to account for the generation of reg-
ular mosaics in zebrafish photoreceptors (Tohya et al, 1999). Further work by this
group showed that these zebrafish mosaics could equivalently be generated by cell
rearrangement processes (Mochizuki, 2002; Tohya et al, 2003).

12.4.3 Cell death

Many more neurons are produced in development than survive to adulthood. For
example, estimates suggest that 50–90% of RGCS that are born will die before
adulthood (Finlay and Pallas, 1989). This programmed cell death may have many
roles in development, including the refinement of retinal projections to their targets
(O’Leary et al, 1986). Cell death might be an active process in forming retinal mo-
saics, by removing those inappropriately-positioned neurons that are too close to
their neighbours (Jeyarasasingam et al, 1998; Cook and Chalupa, 2000). The mech-
anisms by which neurons detect that they are too close too each other are however
unknown. Furthermore, computer modelling of this process suggests that the cell
death would need to be highly selective or the level of cell death would need to be
very high to transform an irregular mosaic into a regular mosaic (Eglen and Will-
shaw, 2002). These modelling studies would therefore suggest that cell death alone
does not account for the emergence of RGC mosaics (Jeyarasasingam et al, 1998).
Cell death could however account for the generation of other mosaics, e.g. dopamin-
ergic amacrine neurons (Raven et al, 2003), as the level of naturally-occurring cell
death is very high and the final mosaics are only mildly regular.
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12.4.4 Interactions between developmental mechanisms

Although cell death alone could not account for the emergence of RGC mosaics,
it is likely that many mechanisms can co-operate to generate regular mosaics. In-
deed, combining lateral inhibition of cell fate with cell death is sufficient to gen-
erate highly regular RGC-like mosaics (Eglen and Willshaw, 2002). The effects of
interactions between several developmental mechanisms has been studied within
the context of cellular patterns in the chick inner ear, the basilar papilla (Goodyear
and Richardson, 1997), where primary fate cells are regularly distributed across the
surface (Podgorski et al, 2007). Three different mechanisms were studied: lateral
inhibition of cell fate, cell death, and differential adhesion. Individually, no single
mechanism could account for the generation of the primary fate mosaics. However,
iteratively coupling these mechanisms robustly generated regular patterns over a
wide range of initial conditions. These results suggest that modelling the interac-
tions between developmental mechanisms is clearly important before one can fully
understand the relative role of individual processes, such as cell death.

12.5 Exclusion zone modelling: application to two types of
neuron

This previous section has outlined several mechanisms that could underlie the gener-
ation of retinal mosaics, and in particular how an exclusion zone might be generated.
If we assume that exclusion zones can somehow be generated, then it is natural to
return to the dmin model and see how else it can be used to investigate mosaic forma-
tion. In particular, in this section we consider whether the dmin model can account
for the generation of cellular patterns involving two related cell types.

Out of the 60+ cell types in the retina, there are several types of cell that come in
complementary pairs (Cook and Chalupa, 2000). For example, the most prominent
example of complementary pairing is the classification of alpha and beta RGCs into
two types: on-centre or off-centre, depending on their response to light (Wässle et al,
1981a,b). Likewise, in both cat and macaque, horizontal cells are divided into two
types, each regularly arranged (Wässle et al, 1978, 2000). In this section I show how
exclusion zone modelling can test whether heterotypic developmental interactions
are required to generate these mosaics.

Figure 12.10A shows the regular arrangement of two types of horizontal cell in
macaque (Wässle et al, 2000). There are roughly twice as many type 1 neurons
as type 2 neurons. The regularity index for all neurons (irrespective of type) is just
under 4.0 (Figure 12.11), which is relatively high and thus lead to the suggestion that
the two types of neuron might interact to create this high regularity (Wässle et al,
2000). To test this hypothesis, we extended the exclusion zone model to include two
types of neurons (Eglen and Wong, 2008). Each neuron respected the exclusion zone
only of cells of the same type; the only interaction between cells of different type
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H1
H2

A B

Fig. 12.10 Regular arrangement of two types of horizontal cells. A: observed distribution from
macaque retina. Type 1 neurons are drawn as open circles, type 2 cells are filled. B: example output
from the extended dmin model, assuming no interactions between cell types except for preventing
somal overlap.

was that they could not come closer than about 12 µm, the average soma diameter, to
prevent somal overlap. This model generated retinal mosaics that were both visually
(Figure 12.10B) and quantitatively similar, as assessed by distribution of regularity
indexes (Figure 12.11) and L functions (Eglen and Wong, 2008). Thus, the exclusion
zone model predicts that horizontal cell mosaics can emerge without heterotypic
interactions. A similar conclusion was reached for the generation of two types of
beta RGCs in cat, using a more flexible exclusion zone technique (Eglen et al, 2005).

Fig. 12.11 Quantitative com-
parison of the extended dmin
model with the macaque
horizontal cells. The hori-
zontal grey line shows the
observed regularity index for
either type 1 neurons, type
2 neurons, or all neurons,
irrespective of type. Black
dots indicate the regularity
index from 99 simulations.
The observed regularity index
falls within the range of the
99 simulations, indicating a
good fit between model and
data.
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12.6 Future directions

The retina is an ideal system for investigating questions of cellular patterning for
several reasons. First, there is a comprehensive catalogue of individual retinal cell
types (Masland, 2004), and although the number of cells seems large (60+), it is pre-
sumably much smaller than in other parts of the nervous system. Second, most cells
of an individual type are located at a single depth within the retina, reducing the
problem of cellular arrangements from three- to two-dimensions. Third, there are
several selective neurochemical markers available to reliably stain individual cell
types. (However, most of these markers only work reliably in adulthood, rather than
early in development.) To see whether the principles of cellular organisation gener-
alise from the retina to other parts of the central nervous system, several experimen-
tal challenges must be overcome. For example, we need reliable techniques for iden-
tifying and labelling individual cell types. Moving from two- to three-dimensional
space will require accurate reconstruction within a volume (Oberlaender et al, 2009).
By contrast, most of the theoretical techniques should generalise from the retina to
other parts of the CNS (e.g. (Prodanov and Feirabend, 2007; Prodanov et al, 2007))
and into three dimensions (Baddeley et al, 1993). Most of the computational tools
are also freely available in either Matlab or R (Rowlingson and Diggle, 1993; Bad-
deley and Turner, 2005; Eglen et al, 2008). Finally, aside from investigating devel-
opmental mechanisms, the analysis of spatial patterning of neurons in adulthood is
also important in several clinical contexts (Diggle et al, 1991; Cotter et al, 2002;
Lei et al, 2009). There has been relatively little modelling of spatial patterning in
these clinical contexts, but as the technical limitations described above are over-
come, I hope that computational modelling will be a useful tool in understanding
the generation and perturbation of these patterns.
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12.7 Further Reading

• Statistical analysis of spatial point patterns (Diggle, 2002). This is a short but
comprehensive description of most of the key techniques described in this chap-
ter.

• Principles of computational modelling in neuroscience (Sterratt et al, 2011).
Comprehensive textbook on modelling neural systems, including a chapter on
neural development.

• Retinal development (Sernagor et al, 2006). Edited collection of articles describ-
ing the different stages of vertebrate retinal development.
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Wässle H, Riemann HJ (1978) The mosaic of nerve cells in the mammalian retina.
Proceedings of the Royal Society of London Series B 200:441–461
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