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Abstract

The receptive fields of on- and off-center parasol cell mosaics independently tile the retina to ensure efficient sampling of
visual space. A recent theoretical model represented the on- and off-center mosaics by noisy hexagonal lattices of
slightly different density. When the two lattices are overlaid, long-range Moiré interference patterns are generated. These
Moiré interference patterns have been suggested to drive the formation of highly structured orientation maps in visual
cortex. Here, we show that noisy hexagonal lattices do not capture the spatial statistics of parasol cell mosaics. An
alternative model based upon local exclusion zones, termed as the pairwise interaction point process (PIPP) model,
generates patterns that are statistically indistinguishable from parasol cell mosaics. A key difference between the PIPP
model and the hexagonal lattice model is that the PIPP model does not generate Moiré interference patterns, and hence
stimulated orientation maps do not show any hexagonal structure. Finally, we estimate the spatial extent of spatial
correlations in parasol cell mosaics to be only 200–350 lm, far less than that required to generate Moiré interference.
We conclude that parasol cell mosaics are too disordered to drive the formation of highly structured orientation maps
in visual cortex.
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Introduction

Retinal neurons are spatially arranged in what are commonly termed
“retinal mosaics” due to the way that their cell bodies and dendrites
tile the retina (Wässle et al., 1981a,b). These nonrandom spatial
distributions of somas and dendrites are thought to ensure that the
visual world is efficiently processed and that nonrandom arrange-
ments may help in the developmental process of wiring up the retina
(Galli-Resta, 2002). These retinal mosaics are usually spatially
independent, such that there are no spatial relationships between cell
bodies of different type. This has been confirmed for a wide range of
different neuronal types (Rockhill et al., 2000; Diggle et al., 2006;
Eglen &Wong, 2008). In particular, the spatial positioning of the cell
bodies of on- and off-center beta retinal ganglion cells (RGCs) show
no spatial relationship to each other, beyond that constrained by cell
bodies not overlapping (Eglen et al., 2005).

These anatomical studies of RGC arrays have demonstrated little
support for the idea of an underlying regular, crystalline, structure.
Recently, however, multielectrode recordings have shown that the
functional receptive fields of individual types of RGCs tile the retina
(Gauthier et al., 2009) in a more regular fashion than either RGC cell
bodies or dendritic trees. A recent modeling study (Paik & Ringach,
2011) proposes that these regular receptive fieldmosaics play a role in

the development of highly structured orientation maps in visual
cortex. Given a population of on-center neurons arranged in a noisy
hexagonal lattice, and likewise for the off-center neurons, when the
two lattices are overlaid, long-range Moiré interference patterns are
generated. These hexagonal lattices, representing the RGC receptive
field centers, were used as input to a statistical model of wiring from
the retina to the cortex (Soodak, 1987; Ringach, 2004, 2007), sum-
marized in Fig. 1. The long-range interference patterns were proposed
to drive the generation of regular distributions of orientation
pinwheels in visual cortex (Paik & Ringach, 2011, 2012). Such
regular pinwheel distributions have been suggested to exist in a range
of species (Paik & Ringach, 2011).

The long-range (.1 mm) Moiré interference patterns generated
by hexagonal lattices effectively suggest that there are long-range
correlations in the positioning of the receptive fields of RGCs. Here,
we use statistical techniques to evaluate how well two competing
models can account for the observed spatial distribution of receptive
fields. In particular, we compare the hexagonal lattice model with
that of a different model where neurons are positioned randomly
subject only to exclusion zone constraints; these exclusion zone
models have previously been shown to account for a wide range of
patterns (Galli-Resta et al., 1997, 1999; Cellerino et al., 2000). We
find that exclusion zone models, but not hexagonal lattice models,
can quantitatively account for the observed distributions of receptive
field centers. We show that the prediction that retinal mosaics drive
the formation of regularly spaced pinwheels in visual cortex
critically depends on the long-range correlations generated by the
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hexagonal lattices. We also estimate the distance over which
receptive field centers are correlated from the observed receptive
fields. We find no evidence for long-range (.250 lm) correlations
in either observed data or exclusion zone models and extensive
(.3 mm) correlations in the low noise hexagonal lattice models. We
therefore conclude that parasol cell mosaics are too disordered to
drive the formation of regular patterns of pinwheels.

Materials and methods

Data sets

Two published data sets of primate parasol cells were analyzed:
(1) F07: on- and off-center parasol cells (Fig. 3 of Field &

Chichilnisky, 2007) and (2) G09: on- and off-center parasol cells
(Fig. 2A and 2B of Gauthier et al., 2009). The receptive field center
of each ganglion cell was calculated after thresholding the images.
For field G09, the relative positioning of the on- and off-center maps
could be determined from their borders. No common border
reference was available for field F07 as the receptive fields were
recorded separately. One on-center midget cell map was also
analyzed (Fig. 2C of Gauthier et al., 2009). This map has a higher
density of receptive fields than the parasol cell maps, but several
cells were missing from the map. We therefore restricted our
analysis of this map to autocorrelation, which is robust to under-
sampling (Cook, 1996). For the analysis of retinal mosaics, each cell
is represented by the midpoint of its receptive field.

Simulations of retinal mosaics

We have used the hexagonal lattice model of Paik and Ringach
(2011). For one mosaic, the lattice separation d is specified in
micrometers. We have set d to generate the same number of points as
observed in a given area (Table 1). Noise is added to the position of
each point in the lattice by drawing samples from the bivariate normal
distribution where the standard deviation r is expressed as a fraction
of the lattice separation. When overlaying the on- and off-center
mosaics, one map can be rotated by angle h relative to the other.

The pairwise interaction point process (PIPP) model is simulated
as before (Eglen et al., 2005). We assume statistical independence
between the on- and off-center mosaics as in principle receptive field
midpoints from cells of different type can be the same. [This is to be
compared with functional independence previously described for cell
body mosaics (Eglen et al., 2005; Diggle et al., 2006).] This means
that the on- and off-center mosaics are simulated separately and then
overlaid to produce a combined mosaic. To simulate one field, we
specify the interaction function h(u) as:

hðuÞ ¼ 1� exp½�fl=uga�; ð1Þ

where u is the distance between two points. The two parameters
(a and u) control the size of exclusion zone around each point and
were chosen by trial-and-error to reproduce the observed spatial
patterns. The parameters used for each map are listed in Table 1.

Analysis of retinal mosaics

Established methods were used to quantify the degree of patterning
in the observed and simulated mosaics. We also analyze patterns
of complete spatial randomness (CSR) as a control for these
measures:

1. Voronoi polygons were computed for each point (Fortune,
1987).

Fig. 1. Overview of the statistical wiring model. The receptive field
midpoints of on- and off-center RGCs (filled red circles and open blue
circles, respectively) are arranged in semiregular mosaics. A regular array of
cortical neurons (one shown as black square) is overlaid on top of this
population. A cortical unit receives input from RGCs whose receptive field
centers are within a given range (large filled gray circle) of the cortical
neuron, inversely proportional to the lateral distance from the cortical
neuron. This cortical unit receives strong input from one on-center and one
off-center RGC. These RGCs have Gaussian receptive field profiles (large
circles surrounding the two RGCs); the cortical unit thus has an oriented
receptive field summarized by the thick black line.

Table 1. Parameter values for each parasol cell mosaic

Field N Area (mm2) RI

Hex lattice PIPP

d (lm) rlo rhi u (lm) a

G09 ON 89 1.90 8.9 157 0.12 0.23 130 14.5
G09 OFF 117 2.04 9.1 142 0.11 0.23 125 13.0
F07 ON 76 2.85 8.2 208 0.12 0.21 183 13.0
F07 OFF 60 2.07 11.1 200 0.11 0.24 162 20.0

The number of points and the area of each field were measured from the previous publications (Field & Chichilnisky, 2007; Gauthier et al., 2009). RI denotes
the nearest neighbor regularity index (Wässle & Riemann, 1978). rlo and rhi are the low and high noise levels for the hexagonal lattice simulations, respectively.
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2. Topological disorder, l2 (Kram et al., 2010), was quantified
using:

l2 ¼ +
n
ðn� 6Þ2Pn;

where Pn is the probability of a Voronoi polygon having n
edges. Only Voronoi polygons that did not overlap with the
boundary of the sample window were used to estimate Pn. For
a perfect hexagonal lattice, all Voronoi polygons will have six
edges, and hence, l2 5 0. The larger the value of l2, the more
disordered the pattern. The expectation for CSR is l2 5 1.78
(Tanemura, 2003).

3. Autocorrelograms show the relative displacement between
any pair of points within a field (Rodieck, 1991). The central portion
of the autocorrelogram is typically empty, indicating exclusion zones
around each point, so that no two points are too close to each other.

4. For each point in a mosaic, the distance to its nearest
neighbor was calculated. The G function is the cumulative
distribution of these distances (Eglen et al., 2005). The steeper the
curve, the more regular the pattern.

5. The L function is the (scaled) expectation of the number of
points observed within a given distance of any point (Ripley, 1976;
Eglen et al., 2005). For patterns with no spatial structure, we would
expect L(t) 5 t. For regularly spaced patterns, we would expect
L(t) , t for small values of t.

Statistical analysis

To evaluate the fit between observed mosaics and simulations,
we have calculated Monte Carlo P values using established
methods (Diggle, 1986; Eglen et al., 2005). Each model is run,
using the same parameters but with different random numbers,
99 times. Each field (both observed and simulated) is then com-
pared against the other 99 fields, and a measure T calculated. The
100 T values are sorted, and the rank of the T measure cor-
responding to the observed field is divided by 100 to calculate a
P value. P values of 0.05 and smaller indicate that the model does
not fit the observed data at the 5% significance level. The smallest
P value calculated is thus 0.01 with 99 simulations. In addition
for the L and G functions, we have drawn the 95% confidence
levels from the simulations. Informally, if the measure from the
observed mosaics (solid lines in Fig. 2) falls within the confi-
dence intervals (dashed lines), then the model is a good fit to the
observed mosaic.

For the topological disorder parameter, l2, we plot, as dots, l2,i
for i5 2. . .n + 1 simulated mosaics (here, n5 99) along with l2,1 of
the observed field as a horizontal line. For a good fit between model
and data, l2,1 should fall within the distribution of simulated values.
To compute the P value for l2, we calculate Ti for observed and
simulated fields:

Ti ¼ l2;i �
+ j 6¼ il2; j

n

� �2

:

The T values are then ranked as above to calculate the P value.

Assessing long-range spatial order in retinal mosaics

We used three techniques to estimate the extent of long-range order
in retinal mosaics: (1) Kernel density estimates (KDEs), (2) density
recovery profiles (DRPs), and (3) assessing structure within each
DRP annulus.

Kernel density estimates
Autocorrelograms can be smoothed with kernels; the resulting

KDEs can be visualized as images. We have calculated the KDEs of
autocorrelograms using the quartic kernel with bandwidth h05 50lm,
with the R function kernel2d (Berman & Diggle, 1989; Rowlingson &
Diggle, 1993). This method includes edge correction factors to account
for the finite extents of the fields being analyzed.

Density recovery profiles
The DRP counts the density of points found in annuli of the

autocorrelogram (Rodieck, 1991). The method includes a compen-
sation factor f (Rodieck, 1991) to account for the problem that large
annuli will often fall outside the sample window and so counts
within each annulus will be lower than expected. The compensation
factor f is valid for annuli up to half the size of the shortest edge of
the rectangular sample window. The experimental fields analyzed
here are approximately 1 3 2 mm, so the DRP can be calculated
only out to at most 0.5 mm.

As well as calculating the DRP for the experimental fields, we
also calculate the DRP for 99 simulations of CSR with matching
density to the experimental fields. The DRPs from the CSR fields
are used to create 95% confidence intervals of the counts within
each annulus to assess what range of values would be expected
when there is no spatial structure in the mosaic.

Assessing structure within each DRP annulus
Spatial structure within the autocorrelogram might generate

clustering (or repulsion) of points within an annulus of the DRP.
By contrast, for points with no spatial structure, we expect points to
be randomly distributed within each annulus (except that each pair
of points generates two entries in the autocorrelogram opposite
each other within the same annulus). To assess this possibility, we
defined two new measures for quantifying structure within an
annulus (Fig. 8). We take each point within an annulus and measure
either the distance to the nearest neighboring point (D) or the angular
difference (Δh) to the next counterclockwise point within the annulus.
For each annulus, we plot the cumulative distribution ofD or Δh for all
points within the annulus. (For these calculations, unlike the DRP,
there is no compensation factor, but edge effects are expected to be
similar when analyzing observed and simulated fields.)

As well as computing the distribution of D and Δh for
autocorrelograms derived from observed fields, a PIPP simulation,
and a hexagonal lattice simulation, we plot the 95% confidence
intervals of these measures for autocorrelograms of 99 simulations
of CSR. These confidence intervals show the range of values
expected when there is no spatial structure in the mosaic. Informally,
if the distribution for a field falls within the confidence interval, we
suggest that there is no spatial structure of points within that
annulus. This can be formalized into an empirical P value using
the same formalism as for the G and L functions. P values of 0.05 or
less indicate that the distribution of points is nonrandomly distrib-
uted at the 5% significance level.

Statistical wiring model

We reimplemented the statistical wiring model for wiring the retina
to visual cortex (Fig. 1). All details were taken from previous
publications where possible (Ringach, 2004, 2007; Paik & Ringach,
2011). We simulated a 6 3 6 mm patch of retina, with cellular
densities for the on- and off-center RGCs matching field G09. The
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simulated cortex was 63 6 mmwith neurons spaced 10 lm apart on
a regular square grid. The retina and cortex were aligned to the same
size in retinal coordinates so that each RGC had a corresponding
preferred location in the cortex. After wiring the retina to the cortex,

we shrunk the cortex by a cortical magnification factor of 0.715
because the cortex and retina are of different sizes, as per Paik and
Ringach (2011). The receptive field of each RGC was modeled as
a bivariate Gaussian with standard deviation r 5 60 lm.

Fig. 2. Spatial statistics of the observed off-center receptive field mosaic (Gauthier et al., 2009) (column 1) and three different models
(columns 2–4). (A) Central region of the mosaics. Each point denotes one receptive field midpoint and is surrounded by its Voronoi
polygon. Scale bar: 250 lm. (B) Autocorrelogram of the points in (A), with annuli drawn 25 lm apart. (C) TheG function is the cumulative
distribution of nearest neighbor distances. For the models, the gray region shows the 95% confidence interval of distributions from each
model, and the solid line reflects the data (also shown in column 1). (D) L functions for data and models, drawn in the same format as for
panel (C). The dashed line indicates the expectation for CSR, L(t)5 t. (E) Topological disorder l2 for 99 simulations (black dots) and for
the data (horizontal line).
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Orientation selectivity indexes were computed for each cortical
neuron (Ringach, 2007); a neuron was deemed orientation selective
if its index exceeded 0.25. The orientation map was then smoothed
with a Gaussian window (r 5 140 lm), and the autocorrelation of
all oriented cortical units was then calculated and visualized as an
image (Paik & Ringach, 2011). Regularly spaced pinwheels are
indicated by repeating peaks in the autocorrelation plot.

Computational environment

All simulations and data analysis were performed in the R pro-
gramming language, version 2.13.1 (R Development Core Team,
2011), together with extra packages (Rowlingson & Diggle, 1993;
Furrer et al., 2011; Genz & Azzalini, 2011). Data files and code are
available upon request.

Results

Models of parasol cell mosaics

We first evaluated if the hexagonal lattice model can account for the
spatial properties of parasol cell mosaics. We do this independently
for on- and off-center mosaics and then combine the two mosaics
into one larger population. We have used spatial statistics to
quantitatively compare the observed and simulated mosaics. Fig. 2
shows the results for the off-center population from field G09.

Real mosaic
The first column of Fig. 2 shows the analysis of the real mosaic.

The points (Fig. 2A) represent the centers of individual off-center
parasol cells, overlaid with their Voronoi polygons. The points are
regularly arranged, and the autocorrelogram (Fig. 2B) shows a clear
exclusion zone of around 100 lm. The G function (Fig. 2C) reports
the cumulative distribution of nearest neighbor distances and shows
that most nearest neighbors are 100–150 lm apart. Fig. 2D shows
the L function, which reports the (scaled) average number of points
within a given distance of one neuron. The L function dips below the
expectation for a population of points positioned randomly, support-
ing the notion of an exclusion zone. Finally, in Fig. 2E, we show the
topological disorder, l2, whichmeasures the variability in the number
of Voronoi edges surrounding each point. For the real field in Fig. 2,
l2 5 0.68, indicating a quasiregular population. The absolute values
and profiles of these quantitative measures shown in panels C–E are
not critical, but instead by calculating the samemeasures on simulated
mosaics, we can then assess how well different models reproduce the
observed mosaic.

Hexagonal lattice model
The second column of Fig. 2 shows the results from using the

hexagonal lattice model with the same noise level (r5 0.11) as used
previously (Paik & Ringach, 2011). The autocorrelogram of the
simulated points (Fig. 2B, column 1 vs. column 2) showsmuchmore
clustering of points than is observed for the real mosaic.

The gray region in Fig. 2C, second column, indicates the 95%
confidence interval of the G function, estimated from 99 runs of the
hexagonal lattice with the same initial conditions, but using different
random numbers in the simulation. We have then overlaid the
G function (shown in column 1 of Fig. 2C) from the real mosaic
for comparison. The G function for the observed field falls within the
confidence interval of the simulations, indicating that the model can
reproduce this spatial property of the observed mosaic. This is

confirmed with empirical P values (defined in Materials and methods
section). P values of 0.05 and smaller indicate that the model does not
fit the data at the 5% significance level. Hence, according to the
G function, the hexagonal lattice model generates a good fit to the
data. This is to be expected, as the nearest neighbor distribution was
used to set the noise level (Paik & Ringach, 2011).

The confidence interval for the L functions from the hexagonal
lattice model (Fig. 2D, column 2) shows a different result, however.
Beyond about 150 lm, the L function for the hexagonal lattice
model begins to oscillate relative to the real data, resulting in a poor
fit (P 5 0.01). Finally, the values of topological disorder for the
hexagonal lattice model are much smaller than the real field, again
resulting in a poor fit (P5 0.01). In summary, the hexagonal lattice
model generates patterns similar to the observed mosaic according
to only one of three quantitative measures.

To attempt to improve fits for the hexagonal lattice model, we
tried different values of its key parameter, r, the noise level added
to the lattice. As the model was generating patterns that were too
regular compared to real mosaics, we tried larger noise levels
(shown in Fig. 2, column 3). Increasing the noise level has the
predicted effect of making the mosaics less regular, such that an
exclusion zone is no longer visible in the autocorrelogram. This
relative disorder is reflected in large discrepancies between model
and observed mosaic forG and L functions (Fig. 2C and 2D, column
3). However, the increased disorder in the simulated fields generates
larger values of l2, such that l2 for the real field falls within the
distribution of simulated l2 values. Additional simulations where
we systematically varied noise levels (Fig. 3), or imposed a lower
bound on the minimal distance allowed, showed a similar trend; we
could not find parameters such that there was a good fit between
model and data according to all three quantitative measures. We
therefore conclude that the hexagonal lattice model, as proposed by
Paik and Ringach (2011), cannot quantitatively account for the
spatial distribution of the receptive fields of parasol cells.

PIPP model
We therefore turned to a different model of retinal mosaic

formation, assuming that cells simply position themselves such that
they do not come too close to each other. This idea of an exclusion

Fig. 3. Effect of varying noise fraction in the hexagonal lattice model upon
goodness of fit P values between model and the G09 off field. For a given
noise level, we ran 99 simulations and evaluated the goodness of fit between
model and simulations for three quantitative measures as in Fig. 2. Low noise
levels produced good fits for the G function, whereas good fits according to
the l2 measure required high noise levels. By contrast, no noise level could
generate a suitable fit according to the L function.
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zone surrounding each neuron was first shown to quantitatively
account for the spatial position of cholinergic amacrine neurons in
rat (Galli-Resta et al., 1997). It has since replicated a wide range of
retinal mosaics (Eglen, 2006). Here, we used the PIPP exclusion
zone model, as we have previously shown that it generates mosaics
that quantitatively match anatomical RGC mosaics in cat (Eglen
et al., 2005). It has also been used in previous models of cortical
orientation selectivity (Ringach, 2007). Starting from a random
arrangement, points are repositioned randomly subject only to the
constraint, determined by an interaction function [h(�), eqn. (1)], that
no two points come too close to each other.

The PIPP model requires two parameters (Table 1) to determine
the shape of the exclusion zone around each cell. Fig. 2 (column 4)
shows the results of the PIPP model for one field. The autocorrelo-
gram from a simulated mosaic appears similar to that from the real
mosaic, which is confirmed by the nonsignificant P values from
three quantitative measures (Fig. 2C–2E, column 4; Table 2).
Although the real value of l2 is slightly higher than the median l2
of simulations, it is well within the expected range, as confirmed by
the high P value.

We have performed similar fits for the three other parasol mosaics
that were available to us (G09 on-center; F07 on-center; and F07
off-center), and the resulting P values are reported in Table 2. For
these three other fields, we found no suitable value of noise level in the
hexagonal lattice model could generate a good fit, but that the PIPP
model could also account for these fields. We conclude that the PIPP
model, but not the noisy hexagonal lattice model, accounts for the
spatial properties of parasol cell receptive field mosaics.

Midget cell mosaic
We have also analyzed a denser, but incomplete, mosaic, that of

the on-center midget cells (Fig. 4A). Autocorrelation is robust to
undersampling of retinal mosaics (Cook, 1996); Fig. 2C shows
a similar autocorrelogram to that of the parasol mosaics, with
a slightly smaller exclusion zone due to the higher density of points.
By contrast, the autocorrelogram of an undersampled low noise
hexagonal lattice (Fig. 2B and 2D) is much more regular, with
strong clustering. The DRPs quantify the difference in the two
autocorrelograms. Themidget cells (Fig. 2E) have an exclusion zone
around 75 lm, and after an increased density around 100 lm, the
profile recovers to the mean density. By contrast, after the exclusion

zone, the autocorrelogram of the hexagonal lattice shows prominent
oscillations. Finally, despite the large differences in the correlograms
(Fig. 2C vs. Fig. 2D), the cumulative nearest neighbor distribution (G)
of the two patterns is similar (Fig. 2H). Hence, the G function alone
(as used by Paik & Ringach, 2011) is inappropriate for assessing
similarity between real and simulated fields.

Effect of retinal mosaics upon cortical orientation selectivity

One key difference between the two types of model is that hexagonal
lattice models with low noise have an explicit long-range correlation
structure, whereas PIPP models do not. In the lattice model, the
position of two neurons even several millimeters apart is likely to be
highly correlated as they were originally positioned on a lattice with
known spacing. By contrast, the PIPP model simply prevents two
cells being too close to each other. For the parameters listed in
Table 1, this typically means an exclusion zone around each cell of
100–200 lm. In the PIPP model, there is, therefore, no explicit long-
range correlation structure imposed upon receptive field positions.

What impact might this presence or absence of long-range
correlation of receptive field positions have upon the model of
orientation selectivity proposed by Paik and Ringach (2011)? The
statistical wiring model (Fig. 1) simulates an array of cortical units
that receive inputs from topographically appropriate retinal neurons.
Each cortical neuron typically receives input from only a few on-
and off-center RGCs. The relative position of these retinal inputs
directly determines the receptive field of the cortical neuron. Most
receptive fields are oriented; cells with an orientation selectivity index
over 0.25 were considered orientation selective and further analyzed.

Assuming a hexagonal lattice model for retinal mosaics, the
existence of a regular pinwheel organization in orientation tuning
maps requires long-range correlational structure, which generates
Moiré interference patterns (Paik & Ringach, 2011). We have
verified that hexagonal lattices with low noise can drive the
formation of structured orientation columns (Fig. 5A) as shown
by highly regular autocorrelational structure. However, if we
increase the level of noise in the hexagonal lattice model to more
realistic levels, any long-range structure is substantially weakened.
Although individual cortical neurons are still orientation selective,
the autocorrelation of orientation maps has just a single central peak,
indicating no regularity in pinwheel positioning (Fig. 5B). Likewise,
when we use mosaics simulated by the PIPP model, as expected, no
regular pinwheel structure is observed (Fig. 5C).

Hence, we conclude that regular pinwheel structure is critically
dependent on the long-range correlations that are present in only
the low noise hexagonal lattice, but that these retinal mosaics are
unrealistic. As we use more appropriate retinal mosaics, the regular
pinwheel structure disappears.

Assessing long-range structure in retinal mosaics

Hexagonal lattices with low noise are inappropriate for capturing
local (up to 250 lm) spatial statistics of receptive field mosaics.
However, longer-range correlations might be present in the real
receptive field mosaics to drive the formation of cortical orientation
maps. To assess the extent of long-range structure, we have
therefore used three complementary techniques.

Kernel density estimates
Paik and Ringach used KDEs of the autocorrelograms of

receptive field centers to support the claim that there are long-

Table 2.Goodness of fit P values for the hexagonal lattice (both low
and high noise) and PIPP models for four parasol cell mosaics

Field Measure

P value

Hexlo Hexhi PIPP

GO9 OFF G 0.90 *0.01 0.07
L *0.01 *0.01 0.21
l2 *0.01 1.00 0.52

G09 ON G 0.51 *0.01 0.08
L *0.04 *0.01 0.19
l2 *0.01 0.91 0.42

F07 OFF G 0.49 *0.01 0.12
L 0.15 *0.01 0.35
l2 *0.01 0.78 0.17

F07 ON G 0.50 *0.01 0.30
L 0.09 *0.01 0.29
l2 *0.01 0.98 0.52

P values of 0.05 or less are starred (*) to denote significant difference
between model and observed field.
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Fig. 4.Analysis and modeling of on-center midget mosaic. (A) On-center midget mosaic with several missing cells (Gauthier et al., 2009).
Scale bar for (A), (B), and (G): 100 lm. (B) Hexagonal lattice mosaic (d 5 97 lm, r 5 0.12) with points deleted to match incomplete
mosaic in (A); see panel (G) for details. (C,D) Autocorrelogram of mosaics in (A) and (B), with 25 lm annuli. (E, F) DRPs for the mosaics
in panel (A) and (B). (G) The simulated mosaic in panel (B) was downsampled from a hexagonal lattice (small and large black dots)
covering the extent of observed points (large red dots, taken from panel A). For each observed point, the nearest neighboring simulated
point was found (large black dots connected by lines). Only the large black dots were analyzed in panel (B); small black dots were
discarded. (H) Despite differences in long-range structure, the cumulative distributions of nearest neighbor distances of observed (solid red
line) and simulated (dotted black line) points are similar.
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range correlations in the real mosaics (e.g., Supplementary Fig. 1
of Paik & Ringach, 2011). The KDE is a smoothed version of the
autocorrelograms presented in Fig. 2B, but typically calculated over
longer distances, and estimates the local density of points at any
given distance apart.

We have calculated the KDE for each autocorrelogram of the
four real receptive field mosaics (Fig. 6, left column) along with the
KDE of matching simulations from the low noise hexagonal lattice
(middle column) and the PIPP model (right column). The KDEs are
calculated out to 990 lm from the center (over a square region of
edge length 1400 lm). We set the bandwidth of the kernel used for
smoothing to 50 lm, as it resulted in a KDE for the G09 off field
similar to that shown by Paik and Ringach (2011). In each case, the
KDE of the real field and the PIPP field is similar, whereas
the hexagonal lattice models generate strong peaks and troughs in
the KDE. (A feature common to all KDEs is that the density
estimates are higher along the X direction than the Y direction; this is
simply because fields are twice as wide as they are high.) These
KDEs therefore support the notion that hexagonal lattices generate
long-range (up to almost 1 mm) correlations, but that these long-
range correlations are not observed in either the real data or in the
PIPP model. Even though our KDE for off-center field G09 (top left

image of Fig. 6) is qualitatively similar to that shown before
(supplementary Fig. 1 of Paik & Ringach, 2011), we have come
to a different conclusion because the earlier work did not compare
the nature of KDEs under different simulated conditions.

Density recovery profiles
The KDEs qualitatively assess the degree of order in autocor-

relograms. However, they do not quantify the degree of long-range
correlational structure. To do this, we use the DRP (Rodieck, 1991),
probably the most widely used tool for analyzing autocorrelograms of
retinal mosaics (Cook, 1996; Eglen, 2006). We compare the radial
and angular structure of the autocorrelograms from real or simulated
mosaics against autocorrelograms of patterns of CSR. This allows us
to assess whether the autocorrelogram structure matches that of
patterns where there are no correlations at any distance.

The DRPs for the four observed fields (Fig. 7, left column) all
show a similar pattern: an initial exclusion zone out to around
100 lm and then fluctuations around the mean density out to
500 lm, the maximum distance permitted by the correction factors
(see Materials and methods section). These fluctuations dampen
down by around 200 lm (for field G09) or 350 lm (for field F07,

Fig. 5.Cortical orientation preferencemaps (top row; scale bar is 1 mm on cortex) and their autocorrelation structure (bottom row; scale bar
is 0.81 mm on cortex) generated by statistical wiring model. Hexagonally spaced orientation maps are indicated by repeating peaks in the
autocorrelation plot. (A) The hexagonal lattice retinal mosaics with low noise (r 5 0.12) reproduce periodic cortical correlations as
reported before (Paik & Ringach, 2011, Fig. 2C). (B, C) With either high noise (r 5 0.23) hexagonal lattices or PIPP mosaics, periodic
cortical correlations are absent.
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Fig. 6.KDEs derived from autocorrelograms of each of the four observed fields and for fields simulated by low noise hexagonal lattice and
PIPP model of matching density. Scale bar at top is 200 lm.
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which is of lower density than G09), when the fluctuations are
within the 95% confidence intervals of DRPs fromCSR simulations.
Any radial variation in density of the autocorrelograms of the
observed fields is thus not discernible from random by at most
350 lm.

The DRPs for the low noise hexagonal lattices (Fig. 7, middle
column) show significant differences to the DRPs from the observed
fields out to the maximum extent measured. By contrast, the DRPs
for the PIPP simulations agree with the DRPs for the observed fields
(Fig. 7, right column).

Fig. 7. DRPs for observed data, low noise hexagonal lattice, and PIPP model. Left column: The DRP for each observed field; error bars
denote 95% confidence intervals of 99 CSR fields of same density as observed field. Solid horizontal line shows the mean density of the
observed field. Middle column: Each DRP bar denotes the mean density for 99 simulations of the observed data in left column (shown as
solid line); error bars denote 95% confidence intervals of the simulations. The lattice model displays large fluctuations in density at
increasing distances, which are absent in the data. Right column: Same as middle column but using the PIPP model. There is good
agreement between observed data and PIPP simulations.
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Analysis of autocorrelation structure
The DRP measures radial structure of autocorrelograms but

ignores any angular variation in the positioning of points within an
annulus. Significant variation of points within an annulus of the
DRP might occur if there is strong clustering of points driven by
long-range correlations. We have thus devised two new measures
(D and Δh; defined in Fig. 8 and inMaterials and methods section) to
quantify any structure within each DRP annulus.

Fig. 9 shows the cumulative distribution of nearest neighbor
distances (D) within each annulus of an autocorrelogram for the
different patterns. The central circle is empty due to the exclusion
zone within the observed and simulated spatial patterns. Up to
200 lm, all three spatial patterns diverge fromCSR. This is expected
due to the local exclusion zone (Figs. 2 and 7). Beyond 200 lm, the
curves for the observed field and the PIPP mosaic fall within the
confidence interval for CSR patterns. This indicates that, according
to this measure, points within annuli beyond 200 lm for both
observed fields and PIPP have no spatial structure. By contrast, the
low noise hexagonal lattice model remains outside the CSR envelope.
The curve for the low noise hexagonal lattice usually falls to the left of
the envelope, indicating more clustering of points than would be
expected by chance. This result does not depend on our choice of
clustering measure (D); similar results were observed when measur-
ing the distribution of angular differences (Δh) within each annulus
(Fig. 10).

Figs. 11 and 12 quantify the goodness of fit between these
distributions and the envelopes expected for autocorrelograms with
no spatial structure for all four parasol mosaics. Irrespective of the
measure used (D or Δh), beyond 200 lm, the structure within the
annuli for the experimental data are not significantly different (with
only 2 exceptions of 48 annuli) to the autocorrelograms of CSR
fields. The P value curves for the PIPPmodel show a similar trend to
the observed fields. By contrast, the P values for the low noise
hexagonal lattice are almost always less than 0.05 beyond 200 lm,
indicating that the hexagonal lattice model has more structure than
that observed.

Taking together the analysis of counts within each DRP
annulus (Fig. 7) and the analysis of structure within each annulus
of autocorrelograms (Figs. 11 and 12), our estimate of the extent of
spatial correlations within the observed fields is 200–350 lm.

Analysis of large simulated mosaics

The limited sample size of the observed fields (1 3 2 mm) allows
us to calculate the DRP out to at most 0.5 mm (Fig. 7). As larger
observed fields are not yet available, we have instead used the
simulations of larger fields (6 3 6 mm) to investigate the nature of
the DRPs over longer distances (Fig. 13) under different conditions.
(These simulated fields were used as input to the cortical model
summarized in Fig. 5.)

For the low noise hexagonal lattice, periodic oscillations around
the mean density persist out to 3 mm, the maximal value that we
can test (Fig. 13A). For the PIPP model (Fig. 13B), after the
exclusion zone, there is a peak (as seen in the G09 off field, Fig. 7,
and midget field, Fig. 4E) and modest oscillations that attenuate
around 250 lm. Such attenuated oscillations have previously been
observed in DRPs of chick photoreceptor mosaics (Fig. 3C of Kram
et al., 2010) and cat beta cell mosaics (Zhan & Troy, 2000) and
indicate regularity. After these oscillations, the DRP is flat, in-
dicating no correlations beyond around 250 lm (Fig. 13B).

Correlational distances required for regular pinwheel formation

We estimate that spatial correlations in the experimentally observed
fields (and PIPP model) extend to only about 200–350 lm, about 1–2
times d, the spacing of elements in the unjittered hexagonal lattice.
This is less than the period of Moiré interference patterns dM5 S3 d
(S5 4–16) predicted for pinwheel formation (Paik & Ringach, 2011)
and much less than the correlational distances of up to 3 mm found in
low noise hexagonal lattices (Fig. 13). We conclude that the arrays of
receptive field centers of parasol cells do not contain sufficiently long-
range correlational structure required by the Paik and Ringach (2011)
model to seed pinwheel structure.

Discussion

We have analyzed the spatial arrangement of receptive field centers
of parasol cells to assess if they contain long-range correlational
structure. Such long-range structure in receptive field center
positioning might drive the formation of structured orientation
pinwheels in visual cortex (Paik & Ringach, 2011). We find that
hexagonal lattices do not adequately account for the spatial statistics
observed in all four real parasol cell mosaics that we analyzed, as
simulated lattices are too regular. An alternative model (PIPP),
where each cell generates a local exclusion zone, provides better fits
to the observed data. When more realistic simulated mosaics are
input to the statistical wiring model, regularly spaced pinwheels fail
to develop, as the mosaics do not contain long-range correlations.
Finally, we have estimated the extent to which receptive field center
positions are correlated to be only about 200–350 lm. Taken
together, we believe that receptive field center mosaics do not
contain sufficiently long-range correlation structure to seed pinwheel
structure in visual cortex.

Modeling retinal mosaics

The results from Fig. 2 and Table 2 suggest to us that the hexagonal
lattice model is too regular to account for receptive field positioning.

Fig. 8.Measuring the structure within an annulus of the autocorrelogram. For
each point i within an annulus (here, the third, with its points highlighted in
black), D is the distance to the nearest neighboring point; Δh is the angular
difference to the next counterclockwise point within the annulus.
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Fig. 9. Evaluating structure within each annulus of autocorrelograms using D measure. Each plot shows the cumulative distribution of
points within an annulus to their nearest neighbor; each annulus is 50 lmwide, noted in the bottom right of each plot as (lower, upper). The
cumulative distribution is shown for observed data (solid blue line: G09 off) and simulations from either PIPP (dashed green line) or low
noise hexagonal lattice (dotted orange line). The gray region shows the 95% confidence interval derived from 99 simulations of CSR. See
Figs. 11 and 12 for statistical evaluation of the fits between the CSR envelope and the observed and simulated fields.
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Previous work modeling cell body mosaics with hexagonal lattices
used higher levels of noise (Zhan & Troy, 2000). As more noise is
added to the lattice for modeling receptive field centers, fits to some
measures improve but at the expense of worse fits to other measures.

Both hexagonal lattice and PIPP models are phenomenological
rather than mechanistic (Eglen, 2012). This is a limitation of both
models, but the focus here is on understanding the possible impact of
such patterns, rather than how they develop. Despite this, there is

Fig. 10. Evaluating structure within each annulus of autocorrelograms using Δh measure. Each plot shows the cumulative distribution of
the angular difference of points within an annulus to its counterclockwise neighbor within the annulus. Plots shown in the same format as
Fig. 9.
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a difference in the two models. The PIPP model uses local exclusion
zones, typically up to 100–150 lm; no global order is imposed.
Molecules (Kay et al., 2012) andmechanisms have been proposed to
underlie such exclusion zones, including cell death and lateral
migration of developing cell bodies (Reese &Galli-Resta, 2002). By
contrast, hexagonal lattice models generate long-range correlations
because there is a global pattern imposed on cells within an array.
There is no evidence, to our knowledge, for such global prepattern-
ing of retinal mosaics.

We have focused in this paper on the analysis of parasol cell
mosaics, as this is the population of primate RGCs for which
there is most complete spatial information. We suggest however
that midget cells have similar short-range organization, based on
analysis of an undersampled mosaic (Fig. 4). Together, both
parasol and midget cells account for the majority of RGCs that
project to the lateral geniculate nucleus (Perry et al., 1984). We
would expect the retinal mosaics of the remaining RGCs to
follow similar local organizational principles. However, even if

Fig. 11.Goodness of fit testing for nearest neighbor distance distributions (D) in autocorrelograms. Each plot calculates the goodness of fit
between the autocorrelogram of a field (observed, one PIPP simulation or one low noise hexagonal lattice simulation) and the envelope of
99 CSR simulations as quantified in Fig. 9. An empirical P value is calculated independently for each annulus (50 lm wide) of the
autocorrelogram out to a maximum of 500 lm. The y-axis is plotted on a logarithmic scale to emphasize whether the P value is 0.05 (dotted
horizontal line) or less. P values of 0.05 or less indicate that the structure of the points within an annulus differs from that expected for
random patterns at the 5% significance level.
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they did exhibit any longer-range organization, its effect is
likely to be quite small given they would comprise a minority
of RGCs.

Orientation maps in different species

Paik and Ringach (2011) showed that the spacing between in-
terference patterns is affected by the angle h, which determines the
orientation of one hexagonal lattice to the other. By varying h, the
statistical wiring model can generate maps that look smooth, as in
cat, or with little order among neighboring cortical neurons, as in
mouse (Fig. 2 of Paik & Ringach, 2011). The value of h is not
directly measured, nor estimated, from the observed RGC mosaics

but is a free parameter of the hexagonal lattice model that can be
varied to generate different patterns.

Within the framework of the statistical wiring model, we
suggest an alternative mechanism by which orientation maps can
vary (following Sirotin & Das, 2010). Smooth orientation maps can
arise in high-density cortical maps (such as cat or primate) because
neighboring cortical neurons are likely to receive similar inputs. By
contrast, lower density cortical maps (such as mouse) generate more
salt-and-pepper style orientation maps because cortical inputs no
longer sample similar inputs. When the density of cortical neurons
was reduced 100-fold (to simulate that of a mouse cortex),
neighboring cortical neurons no longer shared similar orientation
preferences (Hore, 2011).

Fig. 12. Goodness of fit testing for angular difference (Δh) distributions in autocorrelograms. Plots shown in the same format as Fig. 11.
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Concerns with the statistical wiring model

Here, we have focused on the nature of retinal mosaics used as
input to the statistical wiring model. We have used the cortical
model to read out any long-range correlational structure in the
retinal mosaics. Although we could replicate the finding that
hexagonally spaced pinwheels can emerge from a (low noise)
hexagonal lattice, as expected, these regular orientation maps do
not form in the absence of retinal long-range correlations.

From a developmental perspective, however, we note several
concerns with the statistical wiring model. Most critically, it
assumes that the problem of wiring RGCs to the topographically
appropriate part of cortex has already been solved. The creation of
topographically ordered projections involves many developmental
processes (Huberman et al., 2008) each of which are likely to add
significant levels of noise to the projections from retina to cortex,
perturbing the relative spatial arrangement of retinal inputs. The
statistical wiring model also does not describe any possible topo-
graphic rearrangements caused by the visual mapping passing
through the lateral geniculate nucleus. Nor does it take any account
of multiple types of RGC (Field & Chichilnisky, 2007) that in-
dependently tile visual space and which could drive orientation
selectivity. In particular, midget on- and off-center cells (Fig. 4) are
certainly arranged into mosaics at a higher density than parasol cells
(Dacey & Petersen, 1992; Dacey, 1993). Assuming that the Paik
and Ringach model was correct, parasol and midget cells would

independently generate patterns on two different spatial scales due to
the Moiré interference from the parasol and midget mosaics. This has
not been observed. Understanding the development and mechanisms
of orientation tuning in visual cortex has a long history, and given
other mechanisms that have been proposed (Swindale, 1996), we
find the statistical wiring hypothesis unlikely to be a dominant
mechanism.

Aside from concerns with the statistical wiring model itself,
there are other concerns surrounding the structure of orientation
maps. Paik and Ringach (2011) present evidence that orientation
pinwheels in four different species are hexagonally arranged.
Preliminary analysis (Keil et al., 2012)1 suggests that the method
used by Paik and Ringach to detect hexagonal structure is fairly
insensitive, as the method also predicts hexagonality in control maps
with no hexagonal structure (Schnabel et al., 2007). Alternative
methods devised by Keil et al. show that the degree of hexagonal
structure found in cortical orientation maps is indistinguishable from
these control maps. Hence, not only is there little long-range order in
retinal mosaics, cortical orientation maps are unlikely to be
hexagonally arranged.

Fig. 13. DRPs for 63 6 mm fields simulated to match the spatial statistics of off-center (left column) and on-center (right column) maps
from field G09. Each DRP annulus was 50 lm, calculated out to the maximum distance (3 mm) allowed by the compensation factor, but is
shown out to only 1.5 mm in (B) as the DRP remained flat beyond 1.5 mm.

1Keil, W., Schnabel, M., Coppola, D.M., Loewel, S., White, L.E.,
Kaschube, M. & Wolf, F. (2012). Orientation maps lack hexagonal order.
Program No. 568.06 Presentation Abstract. 2012 Neuroscience Meeting
Planner. New Orleans, LA: Society for Neuroscience.
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More experimental data are required to examine if there is long-
range spatial order in retinal mosaics. We anticipate that larger-
scale multielectrode arrays will soon record the receptive field
layout of larger populations of neurons (Berdondini et al., 2009).
Further technological developments might also allow us to compare
the relative organization of physiological and anatomical retinal
mosaics. However, using quantitative spatial analysis and compu-
tational modeling, we predict that spatial correlations in mosaics are
too short ranged to drive regular pinwheel patterns in visual cortex.
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