
Simulating spatial functions with h() functions in lookup
table form

Stephen Eglen

May 22, 2013

Abstract

This document describes functions in the R package sjedmin for simulating univariate and
bivariate spatial patterns using h() functions that have been specified as look up tables (LUTs).
Specifying h() as a LUT rather than in a functional form has the advantage that it is easy to write
the h() function in R and then do the simulation of patterns in C. It also allows you to use the non-
parametric estimators of h() from spatstat package directly. (This document is created from the
Rnw source file, hlookup.Rnw, which is found in the extras subdirectory of the sjedmin package.)

1 The h function
The h function can be used in a pairwise interaction point process (PIPP) model to specify interactions
between pairs of cells. The h function can be given either as a function, with parameters controlling
its shape, or as a lookup table (LUT). The advantage of a LUT is that gives us a lot of freedom in
deciding what kinds of h() functions we want to use when simulating spatial point patterns.

By a LUT I simply mean a table where for certain distances, d, we provide the corresponding
value of h(d), e.g. here is a LUT for a simple step function around the point d = 20:

> h <- function(d) {

+ ifelse(d>20, 1, 0)

+ }

> d <- seq(from=6, to=30, by=2)

> h1 <- h(d)

> print(lut1 <- rbind(d, h1))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

d 6 8 10 12 14 16 18 20 22 24 26 28 30

h1 0 0 0 0 0 0 0 0 1 1 1 1 1

So, in this LUT, if we want to find the value of h() when d=24, we just lookup the corresponding
value in the LUT. In my code, linear interpolation between entries is used, which can be a little
confusing, especially in the case of a step function:

> hlookup(h1, d, 21)

[1] 0.5

Here it thinks h(21) = 0.5, since it has interpolated linearly between the LUT entries at 20 and 22.
(In this case, to mimic a step function, it would be better to use d values at 19.99 and 20.01).

Here is a more natural example, using the h() parameterisation suggested by Peter recently.
1

> hpar <- function(d,theta) {

+ ## Choice of h() suggested by Peter.

+ delta<-theta[1]

+ sigma<-theta[2]

+ kappa<-theta[3]

+ res <- (0*(d<delta)) + (d>=delta)*(1-exp(-((d-delta)/sigma)^kappa))

+ if (any (is.nan(res)))

+ res[which(is.nan(res))] <- 0

+

+ res

+ }

> theta <- c(35, 70, 4)

> x <- seq(from=0, to=200, by=1) #just used for plotting purposes.

> plot(x, hpar(x, theta), type='l')
> x.lut <- seq(from=30, to=160, by=10)

> y.lut <- hpar(x.lut, theta)

> points(x.lut, y.lut, pch=19, col='red')
> lines(x, sapply(x, function(d) {hlookup(y.lut, x.lut, d)}), col='red')

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

hp
ar

(x
, t

he
ta

)

● ● ●
●

●

●

●

●

●

●

●
● ● ●

Here, the black curve is the true h() function from the parametric h function; the red circles are
the entries from the LUT (x.lut, y.lut). The hlookup() routine linearly interpolates between these LUT
entries to produce a close approximation to the real function. (So close that hopefully the underlying
black curve is mostly covered by the red line.)

The hlookup() function makes several assumptions about the LUT:
2

1. The d entries (distance) are ordered, smallest first.

2. Below the first entry in the LUT, it is assumed that h(d)=0.

3. After the last entry in the LUT, it is assumed that h(d)=1.

These last two points can be seen in the example above, since x.lut is only in the range [30,160].
Note also that the d values do not need to be equally-spaced along the x axis, they simply need to be
monotically increasing.

2 Simulating univariate spatial patterns
The routine pipp.lookup() will take an h() function in the form of a LUT and simulate a pattern
according to that h function. Here is an example, using the previous LUT:

> w <- c(200, 1500, 300, 1000)

> npts <- 100

> p <- pipp.lookup(w=w, n1=npts, pts=NULL,

+ h=y.lut, d=x.lut, nsweeps=10, verbose=F)

> plot(p)

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

200 400 600 800 1000 1200 1400

20
0

40
0

60
0

80
0

10
00

12
00

pipp OK

x$x

x$
y

Compare this with a plot where the interactions are over smaller distances:

3

> p <- pipp.lookup(w=w, n1=npts, pts=NULL,

+ h=hpar(x.lut, theta=c(35, 50, 1)),

+ d=x.lut, nsweeps=10, verbose=F)

> plot(p)

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

200 400 600 800 1000 1200 1400

20
0

40
0

60
0

80
0

10
00

12
00

pipp OK

x$x

x$
y

The arguments to pipp.lookup are:

w Sampling window, given as (xlo, xhi, ylo, yhi).

n1 Number of points to simulate.

pts Initial set of points to start moving, if not NULL. If given, the points must be given as an array of
size (n1,2).

h The h values (y-axis values) for the LUT.

d The d values (x-axis values) for the LUT.

nsweeps The number of sweeps (where one sweep consists of moving all cells, in turn, once).

verbose A debugging argument.

2.1 Non-parametric estimates of h()
Note that we can also use the spatstat library to compute a non parametric estimate of h() and then
directly simulate from that estimate. Here we use the spatstat library to compute an estimate of h()
for the on amacrine cells, and then simulate them.

4

> library(spatstat)

> data(amacrine)

> amac.on <- unmark(amacrine[amacrine$marks == "on"])

> rs <- seq(from=0.025, by=0.025, length=10)

> qs <- quadscheme(amac.on, method="grid", ntile=c(40,30))

> x <- ppm(qs, ~1, PairPiece(r = rs), correction="isotropic")

> ## Now get the LUT entries.

> ## 2013-05-22, in future versions of spatstat, should do:

> ## h <- exp(coef(fitin(x))); see email from Adrian. (Version 1.31-3 of spatsat)

> h <- summary(x,quick=TRUE)$interaction$printable

> if (any(is.na(h)))

+ h[which(is.na(h))] <- 0

> x <- apply(rbind(rs, c(0, rs[1:(length(rs)-1)])), 2, mean)

> ## Now simulate using (x,h) as a LUT.

> p <- pipp.lookup(n1=amac.on$n, pts=NULL,

+ w=c(amac.on$window$xrange, amac.on$window$yrange),

+ h=h, d=x,nsweeps=10, verbose=F)

>

> par(mfrow=c(2,2))

> plot(amac.on)

> plot(x, h, main='non par estimate of h() for amac.on', type='l')
> plot(p, main='sim of amac.on from pipp.lookup')

amac.on

●
●

●
● ●

●
●

●●

●●

● ●

● ●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●
●
●

● ●

●

●

●
●

●
●

●
●
●

●

●
●

●
●

●
●

●

●
●

●
●

●●
●

●

●●
●

●

●
●

●
●

●
●●

● ●

●●●
●

● ●
●
●

●
●

●

●
●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●
●●

●
●

●
●

●●

● ● ●

●
●●

●
●

●●
●●

●

●
●

●
●●

●

●
●

●●
●

● ●●

●●
●
● ●●

●●
●
●

0.05 0.10 0.15 0.20

0.
0

0.
4

0.
8

non par estimate of h() for amac.on

x

h

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

sim of amac.on from pipp.lookup

x$x

x$
y

5

3 Simulating bivariate spatial patterns
A second routine, pipp2.lookup, allows us to provide three LUTs for simulating bivariate patterns:
h11 for interactions between type 1 cells, h22 for type 2 cells and h12 for interactions between the two
types of cells. The arguments to pipp2.lookup are similar to those for pipp.lookupm, as the following
example demonstrates:

> w <- c(0, 1000, 0, 1000)

> n1 <- 100; n2 <- 100

> h11.x <- seq(from=0, to=150, by=10)

> h11.y <- pnorm(h11.x, mean=90, sd=20)

> h22.x <- seq(from=0, to=150, by=10)

> h22.y <- pnorm(h11.x, mean=70, sd=10)

> h12.x <- seq(from=0, to=30, by=2)

> h12.y <- pnorm(h12.x, mean=20, sd=1)

> par(mfrow=c(1,2))

> plot(h11.x, h11.y, type='l', col='green')
> lines(h22.x, h22.y, col='orangered')
> lines(h12.x, h12.y, col='black')
> legend(100, .2, c(expression(h[11]), expression(h[22]), expression(h[12])),

+ text.col= c("green", "red", "black"))

> p <- pipp2.lookup(w=w, pts1=NULL, pts2=NULL, n1=n1, n2=n2,

+ h1=h11.y, d1=h11.x,

+ h2=h22.y, d2=h22.x,

+ h12=h12.y, d12=h12.x,

+ nsweeps=10, verbose=FALSE)

> plot(p)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h11.x

h1
1.

y

h11

h22

h12

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

0
50

0
10

00

pipp2

OK
x$x

x$
y

As a curious example, if we make the inhibition distance for h12 much larger than the homotypic
h() functions, we get clustering of cells:

6

> par(mfrow=c(1,2))

> h11.x <- seq(from=0, to=150, by=10)

> h11.y <- pnorm(h11.x, mean=60, sd=20)

> h22.x <- seq(from=0, to=150, by=10)

> h22.y <- pnorm(h11.x, mean=60, sd=10)

> h12.x <- seq(from=20, to=100, by=2)

> h12.y <- pnorm(h12.x, mean=80, sd=1)

> plot(h11.x, h11.y, type='l', col='green')
> lines(h22.x, h22.y, col='orangered')
> lines(h12.x, h12.y, col='black')
> legend(0, 1, c(expression(h[11]), expression(h[22]), expression(h[12])),

+ text.col= c("green", "red", "black"))

> p <- pipp2.lookup(w=w, pts1=NULL, pts2=NULL, n1=n1, n2=n2,

+ h1=h11.y, d1=h11.x,

+ h2=h22.y, d2=h22.x,

+ h12=h12.y, d12=h12.x,

+ nsweeps=10, verbose=FALSE)

> plot(p)

>

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h11.x

h1
1.

y

h11

h22

h12
● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

0
50

0
10

00

pipp2

OK
x$x

x$
y

4 Toroidal conditions for hlookup
The univariate function hlookup includes a flag for toroidal boundary conditions. Here is an example,
both without and with toroidal conditions. To check that the toroidal conditions are working, in the
plot below the original data set is inside the dashed rectangle; copies of the dataset are wrapped around
outside, just to check.

In this example, I use a simple inhibition for h(), such that all points closer than 70 units are
rejected.

7

> w <- c(200, 1500, 300, 1000)

> npts <- 100

> x.lut <- seq(from=30, to=160, by=10)

> y.lut <- ifelse(x.lut > 70, 1, 0)

> ##plot(x.lut, y.lut, pch=19, col='red', type='p')
> ##lines(x, sapply(x, function(d) {hlookup(y.lut, x.lut, d)}), col='red')
>

> par(mfrow=c(2,1), mar=c(3,2,3,1))

> for (tor in c(FALSE, TRUE)) {

+ p <- pipp.lookup(w=w, n1=npts, pts=NULL,

+ h=y.lut, d=x.lut, nsweeps=10, verbose=F, tor=tor)

+

+ x0 <- p$x; y0 <- p$y

+ wid <- w[2] - w[1]

+ ht <- w[4] - w[3]

+ all <- rbind(cbind(x0-wid, y0+ht),

+ cbind(x0, y0+ht),

+ cbind(x0+wid, y0+ht),

+ cbind(x0-wid, y0),

+ cbind(x0, y0),

+ cbind(x0+wid, y0),

+ cbind(x0-wid, y0-ht),

+ cbind(x0, y0-ht),

+ cbind(x0+wid, y0-ht)

+)

+

+ dw <- wid * .2

+ dh <- ht * .2

+ plot(all, xlim=c(w[1] - dw, w[2] + dw), ylim=c(w[3] - dh, w[4] + dh),

+ pch=19, cex=0.4, asp=1)

+ title(main=paste("tor ", tor))

+ rect(w[1], w[3], w[2], w[4], lty=2)

+

+ }

> par(mfrow=c(1,1))

8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−500 0 500 1000 1500 2000

20
0

60
0

10
00

x0

tor FALSE

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

−500 0 500 1000 1500 2000

20
0

60
0

10
00

tor TRUE

In the following, here are bivariate simulations, in each case the homotypic constraint is a hard
exclusion (at 100 um), and there is a heterotypic constrain set around 60±2 um. When tor is FALSE,
you should be able to see border cells that have cells outside the rectangle breaking the constraint.
This does not happen when tor is TRUE.

> r1 <- r2 <- 100 #diameter of exclusion zones.

> example.tor2 <- function(tor) {

+ w <- c(0, 1000, 200, 1500)

+ n1 <- n2 <- 75

+ h11.x <- seq(from=0, to=150, by=10)

+ h11.y <- ifelse(h11.x>r1, 1, 0)

+

+ h22.x <- seq(from=0, to=150, by=10)

+ h22.y <- ifelse(h22.x>r2, 1, 0)

+

+ h12.x <- seq(from=0, to=60, by=2)

+ h12.y <- pnorm(h12.x, mean=40, sd=1)
9

+

+ p <- pipp2.lookup(w=w, pts1=NULL, pts2=NULL, n1=n1, n2=n2,

+ h1=h11.y, d1=h11.x,

+ h2=h22.y, d2=h22.x,

+ h12=h12.y, d12=h12.x,

+ nsweeps=10, verbose=FALSE,tor=tor)

+ x0 <- p$x; y0 <- p$y

+ wid <- w[2] - w[1]; ht <- w[4] - w[3]

+ all <- rbind(cbind(x0-wid, y0+ht),

+ cbind(x0, y0+ht),

+ cbind(x0+wid, y0+ht),

+ cbind(x0-wid, y0),

+ cbind(x0, y0),

+ cbind(x0+wid, y0),

+ cbind(x0-wid, y0-ht),

+ cbind(x0, y0-ht),

+ cbind(x0+wid, y0-ht)

+)

+

+ dw <- wid * .2

+ dh <- ht * .2

+ cols <- c(rep("green", p$n1), rep("orangered", p$n2))

+ plot(all, xlim=c(w[1] - dw, w[2] + dw), ylim=c(w[3] - dh, w[4] + dh),

+ asp=1, col=cols, pch=19,cex=0.4)

+ title(main=paste("tor ", tor))

+ rect(w[1], w[3], w[2], w[4], lty=2)

+ symbols(x0, y0, circles=rep(r1/2, n1+n2), inch=FALSE, add=TRUE, fg=cols)

+ }

>

The next two plots show bivariate PIPP without and with toroidal conditions, using the same h
functions as before.

> example.tor2(tor=FALSE)

10

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

−500 0 500 1000 1500

0
50

0
10

00
15

00

x0

tor FALSE

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

> example.tor2(tor=TRUE)

11

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−500 0 500 1000 1500

0
50

0
10

00
15

00

x0

tor TRUE

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

12

