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Some Probabilistic and Statistical Problems
in the Analysis of DNA Sequences

Simon Tavaré
ABSTRACT. This paper concentrates on statistical
aspecta of the estimation of substitution rates and
divergence times on the basis of DNA aequence data. A
new method of estimation 18 suggestad, and exhibited
uaing data from serum albumin and «-fetoproteln. The

divergence time of rat and mouse is estimated using a
tree calibrated by the human-rat divergence time. Some
inherent difticulties in these methods are highlighted
by statlstical analysis of the sequences.

I. INTRODUCTION

This paper s concerned with probabilistic and statiastical
questions relating to the estimation of substitution rates and
divergence times on the basis on DNA sequence data. Suppose that
we have two functionally homologous genes taken one from each of
two species. On the basis of just the observed differences in
base composition of the two sequences, we want to estimate the
time of divergence of the two species, and to estimate parameters
of the evolutionary process that led to these observed
differences,.

A general model of this procese of mutation should take account
of the relative roles of weubstitution, insertion and deletion,
duplication and transposition as forces that change the atructure
of genea over time. Here I will focus only on the effects of
substitution, the replacement of one base by another. I will alao
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58 SIMON TAVARE

assume that the two sequences under comparison are of the same
base length n, say.

We will label the four bases A, C, G, T by 1, 2, 3, 4
respectively, and let Axuﬁav. <»Anvv denote the bases that occur

at the »a:

time units after divergence. The assumption of divergence from a

position (1 $ i £ n) in species 1 and 2 respectively, t

common ancestor means that

xonv = <quv. i=1,2, ..., n. (1.1)

This article is divided into six sections. In Section 2, we
review some stochastic models for the behavior of the process
{(X(t), Y(t)), t 2 0) which describes the base composition of two
homologous nucleotide positions in the sequences. Section 3 and 4
discuss some statistical guestions concerning estimation of
evolutionary parameters and goodness-of-fit tests for these
models. The methods are illustrated with respect to the serum
albumin and a-fetoprotein genes of man, mouse and rat. In Section
5 we treat the problem of estimating the divergence time of two
specles on the basis of sequence data when the phylogeny length is
calibrated by a more distant sequence of known divergence.

Section 6 contains some concluding comments.

II. STOCHASTIC MODELS OF SUBSTITUTIONS

We need to model the stochastic behavior of the process {(X(t),
Y(t)), t 2 0} in which t denotes time of divergence from the

common ancestor, and X{(:-), Y(-) denote respectively the nucleotide

in homologous positions in sequence 1 and sequence 2. As in
(1.1), we have X(0) = Y(0) and subsequently X(-) and Y(-) evolve
independently.

The substitution process {X{(t), t 2 0} can be described by the

transition functions
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Pyj(t) = PIX(E) = JIX(0) = 1, (2.1)

with a corresponding function for the Y(-) process. If we define

nC:v = PX(t) = 1, Y(t) = j|X(0) = Y(0)], (2.2)

then our assumptions readily give

4
X Y
£, .(t) = ® p,.(t) p,. (t) (2.3)
ij ~N~ el e]
where
K, = P[X(0) = ¢} = P[Y(0) = 2]. (2.4)
It is often assumed that
Pyy(t) = p{j(t) = py (1), (2.5)

Under this assumption, if we write mn = Auﬁuanvv. and vn =

AvHuAnvv. then (2.3) becomes in matrix notation:

T
F vn F

¢ tzo0 (2.8)

0 vn.
where mo = diag A:H. au. :w, ﬂnv.

It remains, of course, to specify P The model most

.
frequently used 1is the case in which {X(t), t 2 0} is a
continuous-time time-homogeneous Markov chain, in which case we

have (cf. Karlin and Taylor (1975), Ch. 4)
-4
Qt nt?
P =e := M Q" 7. t >0 (2.7)
n=0

Here Q = Anuuv is the generator of Avnv“ Q satisfies

nuu 20 (i# 3); q = =z 0; Q1 =0, (2.8)

944



60 SIMON TAVARE
where muﬁp.p....p_q_ 0=(0, o...._oua. We also make a stationarity
requirement by assuming that £ = nna_..._ap“ satiasfies

xXQ=~0. (2.9)

I[f we alsc aasume that {Y(t), t & 0} has the same stochastic
structure as X{-} (so that, in particular, {2.5) holds) then the
marginal distributions of X(t) and Y(t) are identical (and equal
to x} for all t.

From now until the end of Section 3, we will assume that X(-)
and Y(+) are stochastically identical. The evolutionary parameter
of interest is then the compound parameter X defined by

4
K := 2t ", q,. {2.10)
3, %

Under the stationarity assumption (2.9), K 1s the mean numbar
of substitutiona per homologous nucleotide site since divergence.
0Of course, if t 1s known, then the substitution rate can be
estimated, and vice-veraa.

We will now review some of the apecific forms for the
substitution rate matrix Q. The progenitor of these is due to
Jukea and Cantor (1969).

Example 2.1
In this case, substitutions occur at the polnts of a Polason
process of rate A, and when a substitution occurs it 1s equally
likely to be to any of the other three bases. Hence
-1 1/3 1/3 1/3
1/3 -1 1/3 1/3
x = (1/4, 1/4, 1/4, 1/4), @ = A 1/3 173 -1 1/3 .
1/3 1/3 1/3 -1

The parameter K {3 given by K = 2taA.
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We would 1like to relax the assumption of wuniform bhasge
composition and equally likely substitutions.

Example 2.2

A  model which retains the assumptions of uniform base
composition, and a Poisson subatitution acheme was proposed by
Kimura (1981) to allow for different transition and transversion
probabilities. The rate matrix tekes the form

A c G T
-A " « P
Q= ¥ =-A B o
o B ~A ]
A a L ~A

where A ~a + 8 + v, The special case ¥ = S was studied by
Kimura(1980); see also Kimura (1983, Ch. 4). Other cases in which
the 4 and T frequencies are equal (as are the C and G freguencies)
are the four parameter model of Aoki et ml. (1981) and the five
parameter model of Takahata and Kimura (1981).

Example 2.3

A model that allows for arbitrary base freguencies and posaibly
ditferent substitution rates was proposed by Kimura (1981), This

six parameter process has the form

A c G T
. a 3 oy
Q- B - = B
BB, - B .
A a « .
the diagonal elements being determined by (2.8). Further

properties of this model may be found in Gojoborl et al. ({(1982).
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Example 2.4

Felsenstein (1981), in a study of maximum likelihood methods
for evolutionary trees, uses a generalization of the Jukes-Cantor
model that also allows for arbitrary bese frequencles. In
generator form, we take ® arbitrary, and set

’ Fa T3 T,
HH . ﬂ.@ Hh
.
Qepu . x, . x, .
”H HM 30 .

This model correspends to embedding a sequence of independent and
identically distributed substitutions in a Poisson procesa of rate
M. A similar example was studied by Tejima and Nei (1982).

It has been noted by several authors (Neyman (1971), Kaplan and
Langley (1979), Felsenstein (1981) among others) that the
assumption of reveraibility of the substitution process affords a
useful simplification. Intuitively, the observation that X{-)
(say) 1s reversible means that the substitution process viewed
from now into the future is probabilistically identical to ite
behavior from now back into the past. Mathematically, the
atationary Markov process X(-) is reversible if and only if there
exists a collection of positive numbers :u aumming to unity that
satisfy the balance eguations

Hha_u = uunu». 151, 1% 4. (2.11)
When such exist, then n {s the stationary distribution of the

process, 1l.e., (2.9) holds. Reversibility ia discussed at length
by Kelly (197¢) and Kellson {1980), for example. From (2.7) and
(2.11) it follows that xpuwuhnv - nguhnAav. 151, js4, t=2 0,

and hence we have
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nwmﬁﬂv = ahuhuamﬂv {2.12a)

or, in matrix notation {cf. (2.8))

wn - wownd. {2.12b)

The reversibility property is shared by several of the previous
examples; it 18 readily checked that the process with Q matrices
given in Examples 1, 2 and 4 are reversible.

This suggestas that =2  general model incorporating the
reversibility property should be studied:

Example 2.5

The generator § of a reversible process with stationary
probabilities ® = Aau. nn. aw. znv can be expressed as a nine

parameter matrix

. e x, Xq
nuuu\nu . X, Xy

Q- LT N . % (2.13)
aHua\aa nmauxaa auum\nﬁ -

satisfying X 0, 15 1% 8, and the diagonal elements once more
determined by (2.8).
111. ESTIMATION OF SUBSTITUTION RATES

3.1 Statistical Methods

Having described the process by which a particular homologous
slite evolves, we now model the stochastic structure of ﬁnxp_nv.

<unn__. t20;1=1, ..., n}, The simplest assumption here 1

that each pair of homologous nucleotides behaves independently and
identically. That is, assume

Axhanv. <~Hn__. 1=1 ..., nare i.i.d. random (3.1)
vectors with common distribution that of (X(t), Y(t)).
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It 1s well known that, particularly in coding regions, the
structure of the base sequence iz not that of independent
identically distributed bases, (cf. Smith et al (1983)). As a
consequence, it is customary to analyze the substitution proceas
in coding regilons according to base position in the codon. We
therefore analyze three separate sequences, the first base
position seguence then being Axwmnmﬁﬁu_ <mm|»anvv. 1i=1..., nm,

where n = 3m. Another reason for studying the sequences by base
position iIn the codon involves degeneracy in the genetic gode.
Many substitutione in the third position of codons are silent
(that is, do not change the amino-acld the codon represents). One
might therefore expect heterogeneity of the substitution process
along & coding region, 1in wviclation of the f.1.d. assumption
(3.1).

For convenlence we will denote either the whole sequences or

the aequences of pwn. nnn or @qn codon positions by nx»ﬁn-.dpﬁﬁvv.

i=1, ..., n. Our data now comprise the ohservations N = {N

i)’
121, ] % 4} where

zHu = number of times we observe

() =4, Y, (t) = §, 1S ¢sn, (3.2)

Under the assumption {(3.1), the Az_uv have a joint wmultinomial

distribution with parameters n, and mn given by (2.8). Using

observations on AzHuu we want to find an estimator K of the
substitution parameter
4
K« 2t X, q,.
qN_ ¢
and an estimate of the asymptotic (as n - «) variance of K.
The estimation theory for the Felsenstein model of Example 2.4
i3 readily elucidated. Here we have
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4

K = 2tuH, where H = M. = (1-x), (3.3)
I=1

Since p,,(t) = eM s+ (1-eFYx,, it follows that if

1j

D« 328,

im )

.u.

is the number of non-identical nucleotide sites, then D has a
-2ut

binomial distribution with parametera n and p = (1 - e 2 YR, 1f

we asaume that w, and therefore H, is known, then the magimum

likelihood estimator of K is

- d D
xm = -H &n (1 - mu. d = ot (3.4)

-

xw inherite 1its asymptotic distribution from that of d. By the

‘Delta method' (¢f. Serfling (1980, p. 122)) we find that

-

2
K, © Ak, L2UD)) (3.5)
n{H-p}

where AN(u, nwv denotes "asymptotically normal, with mean u and
variance 0m.=

In the sapecial case H « 3/4 that obtains when x - (1/4, 1/4,

1/4, 1/4), this model differs only notationally from Example 2.1.
From (3.4) we obtain the Jukes-Cantor {1989) estimator

- 3 4d D
K= -Sena-§H, a-l (3.8)
and
Rye * AN(K, oeﬁu-u_n, . (3.7)
n{3-4p)

The varlance term in (3.7) le due to Kimura and Ohta (1972); in
practice, p 1is esatimated from the data by d. If x ia assumed

unknown, and hence must be estimated from the data, then the
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variance of xw is no longer given by the appropriate term in
(3.5). The correct term can readily be calculated numerically.
The estimation theory of Example 2.2 is given by Kimura (1981).

Table 3.1 describes this model in more detail.

Table 3.1
Combinations of bases

Difference Transition type Transversion type

X TCAG TACG TGCA
Y CTGA ATGC 6 TACG

Frequency P Q R

With this notation, the estimator of K is

xx = 1/4 en[(1 2P 2Q)(1 2P 2R)(1 2Q 2R)], (3.8)

and the asymptotic varifance 1s given by Kimura's equation [12].
Kaplan and Risko (1982) proposed an interesting alternative

approach to the estimation of substitution rates. Suppose that

the Q matrix is of the form Q = A(R 1), where x‘Aﬁ*_v is a
stochastic matrix with 1~hvc. I £ 1 % 4. The substitution
parameter 1s K = 2At, and their estimator of K is
Kooo201 S el )y, da D (3.9)
KR n , N 3.¢
and
m “ AN(K S - =) (3.10)
KR "n(1 d)(1+en(1 d)"° e
This estimator was derived by approximating the form of w.. and
it should apply to cases in which d is c¢lose to 0. See  also

Kaplan (1983). Estimation theory for Example 2.4 is discussed in

detail by Gojobori et al. (1982).
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3.2 The reversible model

The final c¢ase we consider here is for a general reversible
model of Example 2.5, There are essentially two different

approaches to this, depending on what is assumed about x. If we

def ine

N,, + N 12 i< jsa,

then under the model of (2.12) and (2.13) the joint distribution

of Az*wv is multinomial, with parameters n, and An&_v. say, where

mppety gy
€y (3.11)

w_:c:AmS. 1< 1< js 4.

If m is assumed unknown, and hence has to be estimated from the

data, the statistical problem reduces to the estimation of the

nine parameters A»xu. me. Ty pxa_ :A. ﬁm. :wv of the Q matrix

in (2.13) from the multinomial data (M, }, with cell probabilities

1j

Am~uv. I't can be shown that the maximum likelihood estimators of

these parameters may often be found by solving the equations

n ﬂz : :c:chcv (3.12)
where z*w Azw“ + Zu#v\m. and Q is given by a matrix of the form
(2.13). Computationally, this is straightforward because such

Q matrices are diagonalizable, so that exp(Q) may be computed

easily; cf. Keilson (1979), p. 33 34, for example. The Jjoint
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asymptotic distribution of the estimators then follows from
astandard theory.

While (3.12) provides a simple method for eatimating the
parameters, it is not always true that (3.12} has a solution
satiefying the .reetrictions of (2.13) (for example, 1f some
zuu = 0; gee Table 3.2). In these cases, estimation of the

parameters ia more complicated.
When % is assumed known, as in the models of Pelsenstein {1981}

and Kimura (1681), then we can approach the problem in a different
way. Our basic data remain the multinomjally dietributed
cbaervationa Aznuv. and the cell probabilities Awhuv determinad

now by Just six (compound) parameters Hwnp. oy tX.). We can

]
estimate them by wusing, for example, minimum chi-squared
estimation or least aquares estimation techniques,

In elther case, we arrive at estimates of the elements of Q
which have a joint asymptotic distribution that is multivariate
normal, the parameters of which cen be estimated from the data.
Hence we can also estimate the substitution parameter K. Some
examples of the methed are given in the next section, and detailed
discussion of these and related methods appears in Tavare and
Janzen (1985).

3.3 Some datae
In this section we will illuastrate the results of theae methoda

with two data sets, The genes are a-fetoprotein {(Human [Morinaga
et al. (1883}], Rat [Jagodzinski et al.{1081)] and Mouse [Law et
al. (1981}] and Serum Albumin (Human [Dugalczyk et al. (1982),
Lawn et al. (1881)], Rat [Sargent et al. (1881)], and Mouse).
Betimates of K using different estimators are given in Tables 3.2
and 3.3.
The results in Tables 3.2 and 3.3 are qualitatively similar to

those found by other authors. Because of the chemical structure
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of DNA and the degeneracy in the genetic code, one would expect

that in coding regions the second bhase should have the lowest rate
of acceptable substitutions, and the third base the highest rate,
All the estimators give similar results either when the divergence
time or when the substitution rate is small. The most noticeable
differences occur for estimates of high rates, where the models

with fewer parameters give lower values of K.

Table 3.2
Estimates of K (and atanderd devietion) for Serum albumin.*

Estimator Base position ip codon (n = 608}

K 1 2 3

JC .1752 (.0186)  .1387 (.0182) .8568 (.0483)
(3.8), (3.7)

P 1786 (.0187)  .1892 (.0183)  .8573 (.0484)
(3.4}, (3.8)

K 1760 (.0188) .1389 (.0163) 7230 {.0842)
(3.8)

KR LATT8 (.0192) .1403 (.0168) .B987 (.0548)
(3.9), (3.10)

(1]

Reversible L1794 (.0198) 1415 {.0189) .T274 (.0659)
(3.12)

* Pase length 1824 bases. FEsatimates based on Rat-Man

data.
t Standard deviatlon assuming Z is unknown 1w seme as

that given to 4 d.p.

**Egtimation of parameters not possible by method of
{3.12), since no GT or TG sites were found in data.
Pigures given here correspond to seguence with one GT-
site added to the sequence.
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Table 3.3
Estimates of K (and standard errora) for alpha-fetoprotein.*
ki e pos n =5

K 1 2 8

JC .2208 (.0224) 1614 (.0200) L4840 (.0377)
(s.6), (3.7)

P .2308 (.0228) .1921 (.0201) .4846 {.0378)
(3.4), (3.8)

K L2324 (.0229) .19386 (.0205) 5178 {.0482)
(3.8)

KR .2342 (.p232) .1945 (.0208) .5048 {.0411)
(3.9), (3.10)

Reversible .2343 (.0234) L1967 (.0212) .5206 {.0458)
(3.12)

*Base length 1758 bases. Estimates based on Mouse-Nan
data.
tStandard deviation assuming x is unknown is same as

that given to 4 d.p.
IV. A STATISTICAL LOOK AT THE SUBSTITUTION PROCESS

The previous sections of this article have described in some
detall a class of Markovian stochastic models that have been used
to estimate subatitution rates from sequence data, In this
section, T want to look briefly at some satatistical problems
associated with the selection of classes of processes that
adequately deacribe (in a statistical sense) the observations.

The data used in studies of the type deacribed here involve
observations taken at a aingle time point, t. On the basis of
such data, we want to assess something of the nature of the
substitution process over time. One particular guestion is
whether the substitution process haa proceeded at the same rate in
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both species. The following examples illustrate the
possibilities,

Example 4.1

We suppose that the substitution process is described by (2.3),

where P . = Aumhaawu and P, = nuMunn__ are the transition

Yt
matrices of Markov processes of the form (2.7). We will look at a
variation of the Felsenstein model of Example 2.4, in which the
generators ax and 04 are given by

D= - tﬂow DcN - t%- D - ’H :N * ‘ﬁ

1 % %3
where Ql = 0, and ma 1 =1, PFrom (2.3), we have
F, =P B P (F, = diag(x x,))
t " Txt o'yt 0 i bl CAREERA T
Qpt  Qut
-F, e Py {by reversibility) ,
(Q,+Q,)t
" ua [ ax o< {since Q_, 04 commute) ,
T2
- wo e XY .

For this wmodel, the mean number K of substitutions per aite is

u.=£+tt§.=.M=:_-Jr

An eatimator of K 1is the Felsenstein estimator mm described

by(3.4): note that it 1is based solely on the number of sites
showing non-identical bases,. The parameters Hy and t< are

confounded in the definition of K, and identical estimates of K
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can erise from models with equal substitution ratea or with widely

different rates.

Example 4.2

A simple modification of the Jukes-Cantor process described in
Example 2.1 is to make the substitutiona In one gene occur at the
points of a non-homogeneous Polsson process wlith intensity
function A{u), u > 0, while those in the other gene occur at the
points of a Poisson process of rate A. The mean and variance of
the number of substitutions per homologous nucleotide site is then
K« At + ﬁ“ Af{uydu, If h” Au)du = At, (for example, if A{u) =

>\on m.:m.e\w-“@»\NHn\mAsm.n_vwswsn:aanﬁntauuca
statistically indistinguishable from those produced by the
standard Jukes-Cantor process.

These two elementary examples suggest that care should be taken
in making inferences about the substitution procese on the basis
of data taken at a gingle time point. However, some asaumptions
of the modele of Sections 2 and 3 can be checked by a
non-parametric approach.

To describe these methods, we return to the basic description

of (2.3). Dropping the t's for notational convenlence, we have

X Y
n_.._ |Nuo ua.—uau. (4.1)
Under (4.1}, the marginal distribution of X ia

X
£, =Plx=1]- Maau& ;151K 4, {4.2)
e
while that of Y lsa

Y
na.. -.He....__.wa.o: 115 1$ 4. (4.3)
If. as in (2.5), umh - uwu ® py, for a1l { and J then F = (f,,) 1s

symmetric, and the marginals of X and ¥ will be identical. Notice
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X k
13 and v»u {tor all i, j) for

that we only require equality of P
the single (special} time point t; recall Example 4.2.

4.1 Contingency table methods

Under the assumption (3.1} of independent and identically

distributed nucleotide sites, the observation matrix znnz_uv
defined by (3.2) has the form of a contingency table, with
underlying cell probabilities F = Annu_. Some questions of

interest to our modelling problem may now be re-expressed as
hypothesis tests about the atructure of (two-way) contingency
tables. Perhaps the most useful test of this type involves the
test for symmetry of F. Seversl such tests have been proposed,
but the simplest one for our purposes 1s that deviead by Bowker
(1948). Under the null hypothesis that P is symmetric with wpu+
nuu > 0, he established that the statistic

o, - N2
K - 22 mu R A (4.4)
1¢g 4 A

is asymptoticaily as n «+ » distributed as xm with 6 degrees of

freedom, In Table 4.1, we give observed values of the xw
statiatic for the data used in Table 3,2 and 3.3.
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Table 4.1

Observed xm valueas for test of symmetry (4.4).%*

Sequences Base position

1 2 3
Albumin 20.1% 5.49%* B55.33
{Rat-Man)
a-fetoprotein 4,38 1.72 45.82
{Mouse-~Man ]

™
8% significance point of xw = 12,80
1% significance point of x> = 16.81

"
5 degrees of freedom

The results of this sacreening suggest that for the third
position data, the Markovian models described 1n Section 3 are not

appropriate.
0f course, we may have marginal homogeneity (that ie, n~+ -
n+~_ ¥ i) without symmetry. Such behavior 1ie exhibited, for

exanple by Markovian models in which the initial distribution of X
and Y s the stationary distribution of both om and o<. Once

more, several methods to Judge the hypothesis of marginal
homogeneity have been proposed. Maximum likelihood and minimum
discrimination information approaches use iterative methods (cf.
Ireland et al. (1969}, Madansky (1963). See also the approach of
arizzle et al, (1969}). However, a simple test statistic has beaen
described by Stuart (1955). Define

< =
Nivog By N2 Ny

] i
Let <aA<_uu be a 3 x 3 matrix with elements

and n-nzu+ - 2+a. i=1, 2, 3.
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chp - z~+ + =+H - NZHH. <mu - |Azpu + ZHu-. 1w 3.
Ifd = _nu. nn. aw_. then the statlstic

2 -aTvly

(4.5)

has asymptotically a xm distribution with 3 degrees of freedom
under the null hypothesis of marginal homogeneity. Table 4.2

gives the observed wm values for our data sets.

Table 4.2
Observed wu valuea for test of marginal homogeneity (4.8).%

Sequences Dase position
1 2 3
Albumin 13.19 5.18 54.86
{Rat-Xan)
a-fetoprotein 2,81 1.03 45.04
(Mouge-Man)

®
8% significance point of xw - 7.82

2

1x signiticance point of x° « 11.34

Note that the third position data exhibits high marginal in-
homogeneity, suggesting once more that the Markov models analyzed
in Sections 2 and 3 are not appropriate.

Note that a process in which F hae neither the marginal
homogeneity nor the symmetry property could still be generated by
a time-homogeneous Markovian acheme, but the generators ax and 04

should be different, and % cannot then be the statjonary

diastribution for both X and ¥ (for then, marginal homogeneity
would obtain). It je worth noting that in this case, the quantity
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K in (2.10) that we have tried to estimate is no longer the
mean number of substitutiona per slte In time t, but should be
interpraeted in an asymptotic sense.

Finally, even if the assumption of marginal homogenelity Is
reasonable, we can further teat for the form of the resultant
marginal distribution. For example, one property of the Kimura
model of Example 2.2 12 that the marginal distribution is x =

{1/4, 1/4, 1/4, 1/4}. We may test such an assumption within our
contingency table framework by testing F for given marginals (in
this caee, both being ® given above). Methods for testing for

given mwmarginals are deacribed by Ireland and Kullback (1968), for
example, These methods are, once more, I1terative in spirit;
rather than record the details, we give in Table 4.3 the valuea of
the goodneas-of-fit statistic for the data of first and second
codon positionsa. The third position data are omitted, since
narginal homogeneity 18 ruled out by the results of Table 4.2.

The results in Table 4.3 show that the data are incompatible
with = = (1/4, 1/4, 1/4, 1/4). From the point of view of

estimating K within the Markovian framework, this might not seem
to matter; in both firat and second base positions, the data in
Tables 3.2 and 3.3 have aimilar estimatea of K for many underlying
models. However, one queation of interest involves estimation of
transversion and transition ratea. These estimates are based on a
more detalled examination of estimates of the elements of Q, and
such eatimates are particularly sensitive to departures from the

underlying form of x.
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Table 4.3
Observed value of test of given marginals

x = (1/4, 1/4, 1/4, 1/4) in both species.

Base poajtion

Sequences 1 2

Albumin 53.5%4 75.08
(Rat~Man)

a-fetoprotein 24. 60 61.08
(Mouge-Man)

»
aaunasuponnnavohsnon xw nuu.uo

1% signficence point of x» = 16.81

4.2 Independence

The contingency table analyses presentead here depend a good
deal on the assumption that homologous aites behave independently
and identically. This assumption then allows us to use standard
asymptotic resulta for contingency tables. Several muthora have
studied the effects of serial dependence on the asymptotic
behavior of such 'standard' contingency table teat statistics.
The results of these studles auggest that departures from
independence can cause serious dietortions in the 'usual’ x» teats
(cf. Tavar€ and Altham {1983}, Tavaré (1964), Gleser and Moore
(1983, 1584)). We therefore analyzed the bame composition of each
gene in each epecies of the basic data set described in Section
3.3 uvaing standard Markov chain methods; cf. Chatfleld (1973).

The results Indicated, perhaps surprisingly, that each of the
three codon position sequences is not inconsistent with
independence. While marginal independence of this type is not
sufficlent to eatablish the stronger independence required in
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{9.1), the results indicate that for the sequences examined here,

{3.1) may not be unreasonable.
V. ESTIMATING DIVERGENCE TIME FROM A CALIBRATED TREE

Suppose now that we have homoalogous sequences from three
specles, and that the species have the known phylogeny displayed
in Figure 5.1.

Figure 5.1

In Figure 5.1, x» denotesz the nucleotide appearing at a particular

homologous site in species {, { = 1, 2, 3, We will assume that
the phylogeny is calibrated {perhaps from the fossil record, ae in
Jacobs and Pilbeam {1880)), in that t = an + nm is assumed known.

The problem is to satimate the divergence time t_ of specles 2 and

2
3, and alsoc to estimate tha variance of this estimate.
For simplicity, we will assume that the substitution process

leading to the observations .x-. X xwu has the same stochastic

N-
structure in each arm of the tree, and that each process s
Markovian with transition matrix P, - Aupuﬁu_-. ag described by

one of the models In Section 2. If we define
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nnuw =- vﬁxu =1, x» = 3, %w = k),

then by conditioning on the ancestral nucleotide at pogitions A
and B in Figure 5.1, we have

nﬁux. NAaq un__ﬁu+ﬂn_ w gnuﬂﬂpwguunﬂ~_5uwﬁﬂ~,.Aa.H_
wherse x. ie the probability of base r at node A. If we assume
once more that % is the stationary distribution for P.. and P, is

reversible, then Felsenstein's (1981) "Pulley Principle” reducea
{(3.1) to
£y ™ w my Pay(ty * 2800, (600, (8, (5.2}
To proceed further, we assume a model like Felsenstein's glven
in Example 2.4. The aimple structure allows us to compute (5.2)
eanily. Under the assumption that each homologous site behaves
independently and identically, the random variables z»ux glven by

z - - - -
13k number of times we observe xp i, xm J. xw k
in the n homologous sites
have a joint multinomial distribution with parameters n and nnhw.

1 = 1, 3, k< 4. Once more using +' to denote summation over
that index, define

Njpg =2 Nyg, = #(K) = X)) ,
1

Nig .Mz?H - #X, = X},
1

Nos = M Nogg = #Xy = %33,
1
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and set d /an. In the notation of (3.3), we have

17 = Ny

B(G(d,,* d,0)) = 1 - K + he Tt

~2ut
-1 - 2 (5.3)
mﬁn»m_ 1 -H + He .
Hence we may use as an estimator of n» the quantity
nm = ¢t &n a»\an 7y (3.4)
1 1 _ -
where 7, = mmu\nnnum +dg) - (1 - W1, 7, = mmnmm (1 - H)], and

H = M ahau - HHH iz zssumed known.

The asymptotic varlance of dm can be estimated f{rom the

asymptotic Joint  normality of (d d d,.} using the

12’ 13’ 23
multivariate delta method yet again; numerical values are readily
evaluated on a computer.

To give a flavor of the results, we present in Tables 5.1 and

5.2 the estimates of the divergence time of rat Axmv and mouse

(X.) based on a tree calibrated by the known divergence time t of

3
man Axuu and rat, using the duta for <«-fetoproteln and serum

albumin deacribed in Section 3.3.

The discussion of Section 4 suggests that the assumptions made
in arriving at the estimates in Table 5.1 and 5.2 may not be
appropriate for the 1st and 3rd codon position data; recall the
inherent asymmetry involved in 3rd positions. The second poaition
leads to estimates of 14.8 (serum albumin) and 33.1
{a-fetoprotein) million years (MY) for the divergence time of rat
and mouse. A common estimate, based on both genes, is then about
23.8 + 4.87 MY. Thie figure ie eomewhat larger than the 8-14 MY

figure suggested by Jacobs and Pilbeam on the basis of fosasil

evidence.
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Table 5.1

Divergence time _ﬁnw In millions of years (MY} of mouse

and rat based on data from Serum Albumin gene.*
Time of divergence of man and rat taken to be

t = 80 MY
Base position
in codon t, * std. error
i 33.8 + 5.91
2 14.8 + 4.27
3 30.8 + 3.03
*Paged on 1254 homologous gites
Table 5.2

Divergence time Aamu in millions of years (MY) of mouse

and rat based on data from a-fetoprotein gene. *
Time of divergence of man and rat taken to be

t = 80 MY
Base position
in codon t, + std. error
1 33.5 + 5.15
2 33.1 + 5.91
3 36.3 + 3.93

*Based on 1551 homologous gites
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There are many directione in which analyses of this sort can be
extended. Most chvioualy, we could use other Markovian models of
the type described in Sections 2 and 3. The general reversible

modela aeem particularly tractable; a crude estimate of nm for the

above data 4is 14.4 (serum albumin) and 32.6 (a-fetoprotein) MY,
with an average of 23.5 MY; this differs little from the simpler
Felsensteln model's results. Kaplan and Risko (1982) extend their
method for two species (cf. 3.9) and 8.10)) to the case of m
species with known phylogeny; their approach could easily be
modified to attack the present problem, too.

From a statistical point of view, the methoda described in
Section 4 will apply equally well In this setting; the analyses of
contingency tables suggested there carry over to three- and higher
dimensional tables also. The stochastic methods here can also be
extended to cover the case of 4 or more apeciea with known
phylogeny.

VI. CONCLUSIONS

This paper has given a rather bald account of the mathematical
and statistical aspects of one problem in the theory of molecular
evolution. Without a doubt, the mathematical models studied here
are groesly simplified. Nevertheless, the vast amounts of data
available on DNA sequences suggest that wuseful models can be
developed. The satatistical approaches outlined here should be
useful in finding parsimonfous descriptions of the data.

I have not touched on some related aspects of the central
problem. In particular, there are several studies focuseing on
the estimation of transition and transversion probabilitiea; cf.
Fitch (1980) and Holmquist (1983). Estimation in the Markov
models discussed here provides another statistical approach that

may prove useful.
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One area which we are studying involves the fitting of more
general models that allow for the observed asymmetry in the data
of third codon positiona, Such models will also allow us to
assess the stability of estimates of divergence times based on
sequence data; Tavar§ and Janzen (1983),

The difficult and <challenging problema of statistical
estimation of the phylogeny itself have not beaen described here.
Felsenstein (1983) provides an excellent goverview of this area.
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