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Abstract

A well known limitation with stretched vortex solutions of the 3D Navier—Stokes (and Euler) equations, such as those of
Burgers type, is that they possess uni-directional vorticity which is stretched by a strain field that is decoupled from them.
It is shown here that these drawbacks can be partially circumvented by considering a class of velocity fields of the type
u= (u(x,y, ), uz(x,y,t),y(x,y,0)z+ W(x, y, 1)) whereus, uz, y andW are functions ofc, y andr but notz. It turns
out that the equations for the third component of vortiaityand W decouple. More specifically, solutions of Burgers type
can be constructed by introducing a strain field iatsuch thate = (—(y/2)x — (v/2)y. yz) + (—¥y, ¥x, W). The strain
rate,y (1), is solely a function of time and is related to the pressure via a Riccati equyation? + p..(r) = 0. A constraint
on p,.(¢) is that it must be spatially uniform. The decoupling«ef and W allows the equation fows to be mapped to the
usual general 2D problem through the use of Lundgren’s transformation, while thit é@an be mapped to the equation
of a 2D passive scalar. Whewy stretches thefV compresses and vice versa. Various solutionsifoare discussed and
some Zr-periodicf-dependent solutions fa¥ are presented which take the form of a convergent power series in a similarity
variable. Hence the vorticiy = (r_]'Wg, -W,, a)g) has nonzero components in the azimuthal and radial as well as the axial
directions. For the Euler problem, the equation Wrcan sustain a vortex sheet type of solution where jumpd iaccur
whend passes through multiples 0f2©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Stretched vortices of Burgers type, which are exact solutions of the Navier—Stokes equations, are often used as
typical solutions to illustrate the tube-sheet paradigm of modern turbulence theory [1-9]. In reality they are pseudo-
3D in nature as they are composed of 2D flows superimposed on a 3D vorticity free strain field, a fact exploited
by Lundgren in his transformation [2]. Depending on whether a tube or shear layer symmetry has been chosen,
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corresponding to uni-axial or bi-axial strain [3], they have the properties that the voudiiiitstly lies respectively
either along the axis of the tube or in the plane of the layer and secondly that it aligns with an eigenvector of
the strain matrixS. While numerical simulations [10,11] and experiments [12] have shown that, in a spatially
averaged sense, alignment of the vorticity veeawith the intermediate eigenvector 6fis favoured (for a list
of references see [13]), it is clear tHatal vorticity accumulation and alignment processes are more complicated
than this [14,15]. For instance, the solution for the Burgers vortex has the drawback that it is stretched by a strain
field that is decoupled from the flow around it and that its vorticity is unidirectional [1-3]. Complicated vortical
structures caused by both vortex stretching and compression have a dynamic complexity that requires a more subtle
theoretical explanation (see the recent review by Pullin and Saffman [16]). Itis shown in this paper that it is possible
to construct a more general class of stretched vortex solutions of the 3D Navier—Stokes (and Euler) equations which
have nonzero components of vorticity in the radial, azimuthal and the axial directions and that these components
are stretched or compressed by a strain that is dynamically coupled to the pressure field. Nevertheless, conventional
Burgers vortices are generally the final asymptotic state if the strain/(atds a positive function of timey (¢)
itself plays a fundamental role in the coupling between the axial and horizontal components and that in turn, this
object is driven by the second partial derivative of the prespuréhrough a Riccati equation.

These results are achieved in two stages. The first stage is to consider a generalisation of what is often referred
to as ‘columnar flow’, the velocity field for which is given by

w=(ur(x,y, t), uz(x,y, 1), y(x,y, )z + W(x, y, 1)) 1)

with u1, up andy satisfying a continuity condition. The distinguished vertical variabéppears only linearly in
us3, whereasu1, up, y andW are functions only of the horizontal co-ordinates and time. In polar co-ordinates the
vorticity field takes the form

w= (w(r), ?, a)g) = (r_l(Z)/e + Wo), —(zyr + W,), ws) 2

where ther, 6 subscripts refer to partial derivatives. This shows that nonzero radial and azimuthal components are
dependent on at least oneyobr W possessing some form of nontrivial spatial structure. In Section 2.1 it is shown
that an unusual decoupling takes place betwegand W with y satisfying a nonlinear equation which is related

to the second-derivative of the pressurg,, which is constrained to be spatially uniform. The second stage is to
solve these equations fars and W. To construct stretched vortex solutions of Burgers type it is necessary to be
more specific with the velocity field in Eq. (1) and introduce a strain field structure:indmdu2

u=(~3rOx. -3y Oy v©O) + (=¥, v, W) ®)

wherews = Yo + ¥y With ¥ = ¥ (x, y, 1). Despite the fact that has been chosen to be spatially uniform in Eq.
(3), solutions forW which are dependent onandd can generate nonzero componentd ande. The unusual
decoupling betweetnz andW can be exploited advantageously by applying Lundgren’s transformation which maps
the equation fow3z to a general 2D problem in the usual way [2]. In addition, the equatioi¥fas mapped to
the equation for the evolution of a passive scalar following this flow. The rojeisfparticularly important in this
process. One of the fundamental objects in Lundgren’s transformation is the quantity expfoty(t’) dr’ (see
Section 2.2), which obviously grows or decays depending on the sign\Whens increasesvs stretches, while
o andw™ compressw therefore rotates to align more closely with thaxis. Conversely, when decreases
the opposite process occurs andotates towards the horizontal plane. This effect is orchestrated. ihrough a
Riccati equation foiy.

Perhaps the most spectacular solution of the Navier—Stokes equations is Lundgren’s approximate 2D spiral
solution forws. It is the only solution whose energy spectrum has &2 factor [2]. In Section 3 it is shown how
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2 -periodich-dependent solutions fa¥ can be found in terms of a convergent power series solution in a similarity
variable. The difference between this constructiofi-dependent solutions fa¥, which are not obviously of spiral
form, and that of Lundgren faps, is that the:® term in the Jacobian is taken from the exact point source solution
for the Burgers vortex. Of course;dependence i’ results in a nonzere™ component.

In the case of the Euler equations it is shown in Section 4 that given suitable initial conditions, a vortex sheet-like
solution can be found where a jumpWn occurs every time the azimuthal anglpasses through=2 This produces
aé-function in the radial component of vorticity. In addition, the example of Stuart’s vortices [17] is used to illustrate
how a solution of the basic 2D equation can be used to construct a solutionWf ¢lggation.

There exists a substantial body of literature on exact solutions of the Navier—Stokes equations of which the
Burgers solutions are the most well known. In addition, there are also steady periodic ABC flows [18] and the
Kelvin mode shear flow solutions of Craik and Criminale [19]. Takaoka has discussed a restricted case of the type
of velocity field given in Eq. (3) in order to investigate reconnection processes bt sy, restricted to being
functions oft only [20]. With particular relevance to the class of flows given in Eq. (1) but Wite= 0, Sullivan
[21] extended the steady solution for a viscous vortex embedded in a radially inward asymmetric stagnation point
flow over a plane boundary [1,22]. This vortex naturally divides into two cells and the solution has been extended
by Bellamy-Knights to take account of a moving separation surface between them [23].

2. Decoupling in 3D Navier—Stokes solutions
2.1. The evolution of the columnar flow velocity field

Consider the Navier—Stokes equations

D .

D—I: =vAu — Vp, dive =0 (4)
where the total derivative is given by

D d

= - = V. 5

D a1 +u (5)

p = p(x,y,z,t) is the pressure and is the full 3D Laplacian operator. Let = (u1, up, u3) be a candidate
velocity field solution of Eq. (4) taken in the form

up = ui(x, y, 1), uz = uz(x, y, 1), uzg=2zy(x,y, 1) + W(x,y, 1) (6)
with z appearing only in3. With this velocity field the total derivative is now

b _ 20 + 0 + 0 + @y + W) 0 (7)
— = —4ui— +ur— —.
Di o Mgy TH2e, T 0z

Note that whenever this operates on the variablgsV andy (as well ast; anduy), which are all functions of
x, y andt but notz, then it behaves as a 2D operator. We also define the 2D version of the Laplacian operator as
3% 92

A= — + —.
2 9x2  9y2?

8

With u defined in Eq. (6) the vorticity vector in Cartesian co-ordinates for this flow is given by

w = (a)la w2, 6()3) = (Wy + ZVya _W)C — Vx> U x — “l,y)- (9)
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where thex, y subscripts refer to partial derivatives. This vorticity vector must satisfy

D
Fc;) = Sw +vAw (10)

wheres is the strain matrix whose elements are
Sij = 3uij +ujp). (11)

The subtle nonlocal relations that hold betwaeni», W and the components afwould not, at first glance, appear
to engender optimism that any simple pattern could emerge. Remarkably, however, a decoupling occurs, the precise
nature of which is expressed in the following.

Theorem 1. With the columnar type velocity field defined in. &), wz, W andy satisfy

Dw3

— = Aowa, 12
Di yw3 + vAsrw3 (12)
DW

—=—yW Ao W, 13
Ds YW +vA; (13)
Dy

E + VZ + p (1) = vAgy (14)

with 1y andu» satisfying the continuity condition

Uiy +uzy+y=0. (15)

Remark 1. Note that the second partiatderivative of the pressurg,, must be spatially uniform, a constraint
necessary for the existence of such flows

Remark 2. The calculations of this paper have been performed without the inclusion of rotation. Not surprisingly,
the addition of this effect makes little difference as the proof will show; the inclusio2®$au in the Navier—Stokes
equations adds no extra factor to the equationifeif £ points in thek direction. The theorem therefore remains,

in essence, the same exceptdar— w3 + 222, which corresponds to a change in the horizontal flow problem

Proof. The evolution of the third velocity componesnt = yz + W in the Navier—Stokes equations is given by

(zA2y + AW) D otw by 2 e (2w (16)
V - = — = —_— —_—
A2y 2 Pz D1 )4 Z Di Y D1 Y
which, on integration with respect o gives
1 D DW
—p(x, y,2,1) = Ezz (—DJ; +y?- UAZV) +z (—Dt +yW— vA2W> + flx, v, 0). 17)

However, from the first two components of the Navier—Stokes equations, we know,thad p, must be inde-
pendent of. For this to be true the coefficients oaindz? in Eq. (17) must necessarily satisfy

DW
—+yW —vAIW = c1(2) (18)
Dt
and
D
X2 vagy = ). (19)

Dt
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c1(t) can be taken as zero without loss of generality as this term is like an acceleration of the co-ordinate frame in
the z-direction. Equation (17) shows that(r) = — p..(¢). This obviously restrictp., to being spatially uniform.
To find the evolution ofvsz we consider the strain matrix= {S;;}

Ui x (1/2)(ul,y + u2,x) (1/2)(2)/)6 + Wy)
S = (1/2)(1"1,)/ + u2,x) uzy (1/2)(Zyv + Wy) . (20)
/)@y + Wy) (/D (zyy + Wy) Y

Egs. (9) and (20) show that
(Sw)3 = yw3 (21)

so the third component of Eq. (10) shows tlatdecouples fronW to give

Dw3
F = Yw3 + vAza)g. (22)

Finally two checks should be applied. It is straightforward to demonstrate that the evoluigr=0fy, + W, and
w2 = —(zyx + Wy) in Eq. (10) is consistent with Eqgs. (12)—(15). It is also straightforward to demonstrate that the
Poisson equatiorAp = u; ju;; is also consistent with Egs. (12)—(15). |

2.2. Results for a strain field

It is instructive to be more specific and breakandu» into a strain part and a 2D part in the conventional way

uil = _gx - %, Uz = _%y + Uy (23)

by introducing a stream functiopi(x, y, ¢). The variable/, which now can be identified as the strain rate, is taken
as a function of time only = y (¢). The continuity condition is now satisfied. Equations (12) and (13) in Theorem
1 now become

Dw3
D = Yy (ws + vAzws, (24)
DW
E = —)/(I)W +vAL W, (25)

where the total derivative is given by

D ad y ad a
— = —+y— )+ ey, ). 26
Dt ot 2 <x dx yay) xy () (26)

New co-ordinates can be found by Lundgren’s transformation [2]

t
s(t) = exp</ y (&) dﬂ) (27)
0

t
£ =s'?x, n=sY?y, T = / s dr. (28)
0
The vorticity componenbs and the velocity componeft can be rescaled into new variables thus

Qa(E, 1, 7) =5 twalx,y, 1) and W(E, n, 1) =sW(x, y,1). (29)
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In the (&, n) variables define the 2D Laplaciaxp as

. 3% 92
Ap= — 4+ — 30
2= 521 5,2 (30)
and the operatob /Dt as
D ad
— = — 4+ Je (W, - 31
Dt~ ag e (W) (31)

whereW (¢, n, 1) = ¥(x,y,1). It is now easily shown that Egs. (24) and (25), together with Eq. (26), can be
transformed into the scaled variabkes and)V expressed in the new co-ordinate systén, ). The result can
be summarised as follows:

Theorem 2. The quantityQ23(&, n, T) evolves according to the 2D Navier—Stokes problem

DQ -
T vAQs (32)
Dt

with Q3 = A,W, whereasV (&, 1, 1) is a passive scalar and is found from solving the 2D linear problem

D ~

bW = VA W. (33)

Dt
The strain ratey () is governed by the Riccati equation

Y +7/2+pzz(t) =0 (34)
Remark 3. As Lundgren has show2], Eq. (32) is the standard 2D Navier—Stokes equation expressed in the
(&, n, ) variables. Solutions of this can then be mapped back into the original 3D probléis a passive scalar

driven by this flow and is solved from the linear.E83) once derivatives ob have been determined from Eg§2).
In Sections3 and4 we show how this might be exploited through some examples

Remark 4. Wheny < 0itis possible that the domaine [0, oo] could map on to a finite section of theaxis. For
example, ify = —yp = constanwith g > 0thens = exp(—ypt) andt = yo_l[l —exp(—yot)]. Hencer € [0, oo]
maps onta < [0, yo‘l]. If ¥ is such thak decays less strongly then theaxis could be infinite

2.3. ARiccati equation foy

Eqg. (29) shows that the sign of determines whethevz and W grow or decay. The strain rage satisfies an
equation of Riccati type which can be linearized. Actually the linearizing transformation is none other than Eq.
(27). Indeed satisfies

5+ {p--()}s = 0. (35)

Thuss(¢) is an eigenvector of the classical Sturm-Liouville equation corresponding to a zero eigenvalue. Itis known
(see for example [24]) that j#,, (t) remains positive for all thens will develop a zero in finite time, in which case
y — *o00. We illustrate the relationship between., s andy by considering some explicit examples. Let

pa2(t) = —a?® = const (36)
then Eq. (35) yields
s = exp(xat) or s = coshat (37)
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Hence
y =xa or y =atanhat. (38)

The second form ofs above satisfiey — a ast — oo. We note that a zero in will appear from the other
hyperbolic solution wherg blows up at = 0. Another form ofp_, which also gives an explicit is

p.. = a®(2secBar — 1) (39)
which is positive at = 0 but becomes negative afcreases. In this case= sechur and so
y = —atanhat. (40)

Clearlyy — —a ast — oo. The case when is spatially dependent is discussed in Section 5

It is worth noting that no other second spatial derivative other fhat) drivess(¢) which, in turn, controls
the growth or decay of the azimuthal and vertical vorticity components. The restrictiop,thaiust be spatially
uniform does not apply tp = p(x, y, z, t) itself as Eq. (17) shows thatis a function of all three spatial variables
with the horizontal parf (x, y, t) being found by solving a 2D Poisson equation.

3. Solutions of the Navier—Stokes equations

In addition to the transformation that reduces the evolutiom®fo a 2D problem, Lundgren also produced
spiral solutions of the Euler and Navier—Stokes equations [2] (see also [16]). These solutionXayesiod are
therefore obtained from Eq. (32). Since this equation is decoupled¥thrthe spiral solution is still appropriate
here with)V passively following this flow. Here we briefly discuss this solution in the context of this paper, to see
if it is appropriate to use it when looking for exact solutions¥r Indeed, how the Navier—Stokes spiral solution
is constructed gives an idea of hewdependent solutions fo1 might be found.

In the inviscid case, Lundgren’s idea was to look for a solution of Eq. (3202foin the form of a set of Dirac
8-functions [2]

Q3(p.6.7) = 20 T;(p)d [9 — (o)t — ej] (41)
j

wherep is the 2D radial variable in the — 7 plane such thab? = £2 + 2. Equation (41) could be envisaged as
representing a set of radial vortex sheets at arjlesd strength§';. Q(p) = p~tu® is taken to be thaverage
angular velocity. Clearly the sheets in Eq. (41) have a spiral structure of theferr(p)z.

Viscous corrections to this for the Navier—Stokes equations were obtained by considering the full equation for
Q3

920 16Q 1 92Q
3 1993 3> (42)

023  ~ 0923
e = (GRS B
with the -dependence beingz2periodic. The angular velocit® = p~1W, was taken to be independentobn
the grounds that it is a rapidly decaying functiorrafnd so can be replaced by its asymptotic vabde). Lundgren
then demonstrated that the viscous corrections to the Fourier series solution of Eq. (42) matched the Fourier series
representation of Eq. (41) in the limit— 0.

In theory, this spiral solution fof23 could also be used farV but in practice the inviscid limit leads us into
trouble in this case. It must be remembered Wvait a velocity field and therefore the radial component of vorticity
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contains aWy term. In the inviscid limit this means we would have a derivative éffanction, leading us into
difficulties with generalised functions. To find simptdependent solutions fo# requires a modification of the

idea used in Eq. (42) to which we turn in Section 3.2. Before this, however, we discuss axisymmetric solutions for
Qz andW.

3.1. Axisymmetric solutions fo#/

Equation (32) implies that axisymmetric solutions g can be found from the diffusion equation

GI9) 3°Q3  13Q
e _ (28 29 (43)
T p2  p dp
A point source solution of this equation is
2
a p
Qs(p, T) = —exp[——] : (44)
T 4vt

This is the particular solution often used for the Burgers vortex where the paranietary dimensionless constant.
As an example lef = yp = constant whergg > 0. Thens = exp(yot) andt = yo‘l (exp(yot) — 1). Thus

exp(yot exp(yot)r?
w3 = 55 = 0 o) ol voexptonr® | (45)
exp(yot) — 1 dv(exp(yot) — 1)
In the large time limit
2
lim w3 = ayo exp{—m} ) (46)
t—00 4y
For W, the equivalent axisymmetric point source solution of Eq. (33) is
Y] 2
W(p,r)z—exp{—p—} 47)
T 4vt

where, for dimensional reasons, we must take ¢, a length, which could be any natural scale in the flow. The
azimuthal vorticity component® is given by

0® = W _ 120V (48)
ar ap
so it follows that
w® ) 2
— = ——exp|—]|. 49
r 2vt? p[ 4U‘L':| (49)

If y = y0 > 0 we conclude that whereag equilibrates to a finite constant value at any finite radiua contrast,
»® decreases to zero.
Reversing the sign of so thaty = —yp = constant fp > 0) we discover that = exp(—yot) andt =
yo_l(l — exp(—yot)). Hencer — yo‘l ast — oo ands — 0. In consequence
® g2
. w .
lim — = o and limwsz=0. (50)
t—o0 r v t—00
These two examples in whigh takes opposite signs illustrates the point thatandw® stretch or compress in
opposite fashions.
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3.2. Solutions fodV dependent oA

In looking for asymmetric solutions faV we use axisymmetric solutions f@¥3 (and hencel’) to find solutions
for W that are dependent enlt is not generally valid for a Navier—Stokes flow to admit solutions which jump each
time# passes through2because of the problems arising from ¥, term in the Laplacian. Solutions which are
2m-periodic ind are more suitable. To achieve this goal consider solutions of Eq. (33Yforterms ofp, 6

w1 W 1aw 192w
— LW =y ——F+——+ =—=]. 51
ar T plee (B v(3p2+p8p+p2892> 1)
To calculated, in the Jacobian we integrafes = A,V to obtain
19w 1 [* , ,
- = —zf Qa(p’, 1)p dp’. (52)
pop  pJo
and use the point source solution (44) to obtain
10w
1 _ 18 (53)
p ap p
where
2
0
(== (54)
VT
and
f(&)=2a {1 — exp(—%)} . (55)

This procedure is similar to that used in Eq. (42) except that we are using the point source solution instead of the
Q(p) factor used by Lundgren. Hence we have an inbuitependence in the coefficierif’. The partial differential
equation (51) in three variablép, 7, 8) can now be transformed into one in two variables?)

2w 1 1\aw 1 [da’Ww E)4Y%
et (305) 3 e (G 10 %7) =0 (©0

In order to find separable solutions of this it is convenient to consider the complex fubct@ated toV by

W = Re{V} (57)
which satisfies

92y 1 1\aoYy 1 [0%v B

a—§‘2+<z+z>&+P(W_f@)£>:O (58)

Now we look for separable solutions which ate-periodic in6
V=U()e™ (59)

wheren is an integer. The complex functian(¢) satisfies

d?u 1 1\dd [n?+inf(©)
w(Gg)a (T u=o ©0
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where f(¢) is defined in Eq. (55). This ordinary differential equation has a regular singular pajn=a0 and
an irregular singular point at infinity. Neglecting the exponential parf @f) when|¢| is large, the appropriate
asymptotic expansion in the latter case is [25,26]

> b
e t/ANOp
U, =e 21: o (61)
p=

In the finite¢ -plane U/ possesses a convergent power series solution whose form is dictated by its associated indicial
equation. For smal, f(¢) takes the forny (¢) ~ a¢ /2 so the two roots of the indicial equatiah(1/2)n, differ by

an integer. Thus one of the two solutions has a logarithmic singularity=a0. Excluding this solution, it follows

that the physically admissible solution of Eq. (60) is given by the series

0
Uy =¢"?) ame™, n#0 (62)
m=0
which converges for all finite. Therefore our admissible solution iy is
W =Re) U, " (63)
n#0

4. Results for the Euler equations

For the flow with the velocity field given in Eq. (1), and in the case of zero viscosity, an immediate corollary of
Theorem 1 is
D (w3W)
Dt
This result is independent ¢f and demonstrates in the simplest manner possibledyoandW must increase and
decrease in an opposite fashion. To see havand W evolve individually we must restrict the flow to that of the
strain field of Eq. (23). In this case, Egs. (32) and (33) in Theorem 1 reduce to

0. (64)

DQ3 0923
= — 4+ J:, (V,Q3) =0 65
Dt 97 + é,n( 3) ( )
and
DW ow
- = — 4+ L, (I, W) =0 66
Dr o T Jen( ) (66)

whereQ2z = Wge + W,,,. Eq. (65) is no more than the standard 2D Euler problem in Lundgren’s variables. Equation
(66) for W is the equation of a 2D passive scalar following this flow. Many solutions of the 2D Euler equations
are catalogued in Saffman’s book [4] and also in [27-31]. Hence we look here at only two examples. In the first
example we consider Eq. (66){n 6, ¢) co-ordinates to look at the evolution of a passive vortex sheet. In the second
we consider the case of Stuart’s vortices uging;, t) variables.

4.1. Solutions foWV representing a vortex sheet

Consider Eq. (66) fowV written in terms ofr, 6, t andyr
ow ( yr ) ow

1
—_— —J, , =0. 67
Jat 2/ or + r o) (67)
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We take a similar approach to that of the previous section for the Navier—Stokes equations where axisymmetric
solutions forws andy from Eq. (65) were used to look for asymmetric solutionsWdr Eq. (67) is a linear first

order equation with variable coefficients

ow (yr) 8W+<181//) ow

3 \2/)ar "\rar) a0

No discontinuities occur if initial data isr/2periodic but if it is not then’ must undergo a jump every tinte
passes throughi2 Hencew™ = r~19W /96 must have & (6)-function structure representing a vortex sheet. In
terms of characteristics in the, 6) plane, rays will satisfy

dr yr do 1oy

=0. (68)

da 2 dr roor’
On these rays = s~ /2. Thus when is increasing the sheet rolls up whereas whéndecreasing the sheet rolls
out and the evolution of (z) on these rays is driven by,. The whole structure is passive as it obviously advects
with the 2D part of the flow. One physical analogy is that the sheet is akin to a flag, attached to a flagpole, the
latter representing the tubular structuress It is worth noting that as well havings6)-function structure i
representing a vortex sheet, across which the pressure is continuous, we also have @jimagih= —aW/ar.

(69)

4.2. Stuart’s vortices

The steady ‘cat’s eye’ type solution (static in the sense of being independenha$ been discussed by Stuart
[17] who took23 as a function ofl only. This choice makes the Jacobian nonlinearity in Eq. (65) identically zero.
Specifically he took

Q3 =Vee + V¥, = e 2V, (70)

The choice of the exponential on the right hand side makes Eq. (70) into Liouville’s equation which can be solved
exactly

¥ = log (C coshyp ++/C2—1 cosg) ) (71)

When 1< C < oo the stream lines have a cat’s eye structure. In the lthit> 1 this gives the 2D velocity
componend W /dn = tanhy which corresponds to a homogeneous shear layer profile. Thedimit oo gives the
stream function for a 2D array of point vortices. For heequation we know thatV is a passive scalar following
this flow; because of this we have the freedom to chdt'sgiso as an arbitrary function @f. A convenient choice
is W = Q3 = e 2¥ which means that

W= (C coshny + Jez -1 coss)_2 . (72)
This solution has & = sectfy profile in theC = 1 limit. The two components of vorticity; andw, now become
oy — s~120, — —25~Y2C sinhp i (73)
(C coshy ++/C2 -1 COSE)
and
oy — 5120, — —2512,/C2 — 1sing (74)

(C coshy ++/C2 -1 cosg)s'
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Not surprisingly these two components become significant whedecreasing. While they are independent of the
‘time’ variable r they are not steady in real timevhich is built into& andn throughs (7).

5. Conclusion

The conclusion reached in this paper is that it is possible to extend the Burgers vortex to a more general class of
vortices which have horizontal components of vorticity which interact with the axial component in an oppositional
manner. While we have produced analytical solutionsioim Section 3 in order to illustrate the stretching and
compressive processes involved, it is obvious that beclWise a passive scalar, a class of numerical solutions
could be found which would depend on the underlying 2D flow problen®fpand on the initial conditions fary.

The stretching and compressive processes in the problem are driyemvhich, in turn, is controlled by (¢).
Apparently this is an arbitrary function but we interpret its physical role as simply being the way the vortex connects
with, and is influenced by, the rest of the flow. Having to keeyniform in space unfortunately defeats the object

of trying to establish a connection between the strain and the vorticity field. This would reqtoreave some

form of spatial structure. Hence we replace Eq. (23) with

u= (_ﬂxv_ﬂyv VZ)_’_(_wys Wx, W), (75)

whereg = B(r, 0, t) andy = y(r, 6, t). Theorem 1 still holds but the continuity condition needs to be recomputed
to give

9p

y=2B+r— (76)
ar
whences becomes
1/ re,t
B = —2/ 'y, 0,t)dr + ( > ). 77)
r 0 r
One must however revert to using the total derivative in Eq. (14) so the equatigrifarow
d d 1
= Br o 200 Y) + Y2 peclt) = viay. (78)

Egs. (77) and (78) are a pair of integro-partial differential equationsdrand: driven by p,.(¢). It is an open
guestion whether this equation has any spatially dependent solutiops éeen axisymmetric ones, when, (¢)

is uniform in the spatial variables. The possibility of using Lundgren’s transformation is also sacrificed because
ands are space dependent.

The spatial uniformity ofp_.(¢) required by Theorem 1 is a dramatic constraint. In Navier—Stokes turbulence,
vortices are observed to have finite lifetimes and the mechanisms proposed in this paper may have a bearing on
this. The ideal flows discussed here are infinite in domain and energy but, in reality, one could expect flows of
this type to havep,, spatially uniform only over a finite region. It would be interesting to investigate what global
conditions might be needed to achieve this. If the spatial uniformity constraipt.@n failed in a given region
then a vortex tube could break down and its vorticity concentration dissolve. Moreoverpwaeniform in space
the vorticity solutions displayed in this paper are uniform in the varialaled are therefore tube-like in character
with a uniformity inz. Helical structures in 3D flows [32] are much more difficult to find and require a more subtle
z-structure in the velocity and vorticity field than that used in Eq. (1). For the latter, if asymmetric solutions are taken
for W as in Section 3 then these tubes will possess a rich internal radial and azimuthal structure. The inclusion of the
componen®, however, means that typically lies neither in the horizontal plane nor along ghaxis, nor will it
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align with an eigenvector of as it does for the standard Burgers solutions. Let us illustrate this with two examples.
Consider the stretching ratewhich is defined in terms of the strain mat§x This object has been discussed in
some detail in [13] and can be expressed as a Biot—Savart type of integral [33,34]

o - Sw (79)

o=

[ORN0)]
Consider firsty = yp = constant whergg > 0. We know in this case thatis increasing exponentially sz
grows butW decays. In the large time limé will rotate to the vertical position and — yp. Consider now the
second case when = —yp = constant withyp > 0. s decreases exponentially ag decays but grows. In the
large time limitw will move into the horizontal plane and — yo/2. The two examples discussed above are ideal
cases in whichy remains constant in magnitude and sign and in both case#l asymptotically align with an
eigenvector ofS. In a real flow, however, will vary with time and therefore will rotate between the-axis and

the horizontal plane, thereby moving out of alignment with the eigenvectdsiofa given region, however, if the
strain is uniaxial for large times thenends up as a positive function. In this case, the axial component of vorticity
wins out and the conventional Burgers vortex is the final asymptotic state.
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