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Abstract

Let q(x, t) satisfy an integrable nonlinear evolution PDE on the interval 0 < x < L, and let the
order of the highest x-derivative be n. For a problem to be at least linearly well-posed one must
prescribe N boundary conditions at x = 0 and n − N boundary conditions at x = L, where if n is
even, N = n/2, and if n is odd, N is either (n − 1)/2 or (n + 1)/2, depending on the sign of ∂n

x q.
For example, for the sine-Gordon (sG) equation one must prescribe one boundary condition at each
end, while for the modified Korteweg-de Vries (mKdV) equations involving qt + qxxx and qt − qxxx

one must prescribe one and two boundary conditions, respectively, at x = 0. We will refer to these
two mKdV equations as mKdV I and mKdV II, respectively.

Here we analyze the Dirichlet problem for the sG equation, as well as typical boundary value
problems for the mKdV I and mKdV II equations. We first show that the unknown boundary
values at each end (for example, qx(0, t) and qx(L, t) in the case of the Dirichlet problem for the sG
equation) can be expressed in terms of the given initial and boundary conditions through a system of
four nonlinear ODEs. For the sG and the focusing versions of mKdV I and mKdV II equations, this
system has a global solution, while for the defocusing versions of mKdV I and mKdV II equations, the
global existence remains open. We then show that q(x, t) can be expressed in terms of the solution
of a 2 × 2 matrix Riemann-Hilbert problem formulated in the complex k-plane. This problem has
explicit (x, t) dependence in the form of an exponential; for example, for the case of the sG this
exponential is exp{i(k− 1/k)x+ i(k +1/k)t}. Furthermore, the relevant jump matrices are explicitly
given in terms of the spectral functions {a(k), b(k)}, {A(k), B(k)}, and {A(k),B(k)}, which in turn
are defined in terms of the initial conditions, of the boundary values of q and of its x-derivatives
at x = 0, and of the boundary values of q and of its x-derivatives at x = L, respectively. This
Riemann-Hilbert problem has a global solution.

1 Introduction

The sine-Gordon (sG), the modified Korteweg-de Vries I (mKdV I) and the modified Korteweg-de Vries
II (mKdV II) equations are examples of integrable nonlinear evolution equations in one space variable.
Integrable PDEs have the distinctive property that they can be written as the compatibility condition of
two linear eigenvalue equations, which are called a Lax pair [1]. An effective method for solving the initial
value problem for integrable evolution equations on the line was discovered in 1967 [2]. This method can be
thought of as a nonlinear Fourier transform method. It was realized in [3] that the extension of this method
to initial boundary value problems requires a deeper understanding of the following question: What is
the fundamental transform for solving initial boundary value problems for linear evolution equations
with x-derivatives of arbitrary order? The investigation of this question has led to the discovery of a
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general approach for solving boundary value problems for linear and for integrable nonlinear PDEs [4].
For integrable nonlinear evolution PDEs this approach is based on the simultaneous spectral analysis of
the two linear eigenvalue equations forming the Lax pair, and on the investigation of the so-called global
relation, which is an algebraic relation coupling the relevant spectral functions.

Regarding initial boundary value problems for nonlinear integrable evolution equations on the half-line
we note the following: The rigorous implementation of the method of [3] to the nonlinear Schrödinger
equation (NLS) was presented in [5]. Analogous results for the sG, the KdV (with dominant surface
tension) and the mKdV II equations were presented in [6] and [7]. The most difficult step in the method
of [3] is the analysis of the global relation. Although rigorous results in this direction were obtained in
[5], the relevant formalism is quite complicated. A dramatic simplification was announced in [8] where
it was shown that the global relation can be effectively analyzed if one introduces a Gelfand-Levitan-
Marchenko representation for the eigenfunction of the t-part of the Lax pair evaluated at x = 0. If this
eigenfunction is denoted by (Φ1(t, k), Φ2(t, k))T , and if the functions involved in its Gelfand-Levitan-
Marchenko representation are denoted by {L̂j, M̂j}2

1, then it is shown in [8] that, in the case of the

Dirichlet problem for the NLS equation, qx(0, t) can be explicitly expressed in terms of {L̂j, M̂j}2
1 and of

the initial and boundary conditions (q(x, 0) and q(0, t)). This yields qx(0, t) in terms of a system of four
nonlinear ODEs satisfied by the functions {L̂j, M̂j}2

1. A further important development is presented in

[9], where it is shown that it is possible to express {L̂j, M̂j}2
1 in terms of Φ1 and Φ2. Thus the formalism

presented in [9] expresses qx(0, t) in terms of a system of two nonlinear ODEs satisfied by the functions
Φ1 and Φ2. Similarly, it is shown in [9] that the unknown boundary values for the sG, the mKdV I, and
the mKdV II equations can also be expressed in terms of a system of two nonlinear ODEs. Furthermore,
it is shown in [9] that this system for the sG and for the focusing versions of the NLS,the mKdV I, and
the mKdV II equations has a global solution.

Regarding initial boundary value problems for nonlinear integrable evolution equations on the interval
we note the following: The solution q(x, t) of the mKdV II equation in terms of a 2× 2 matrix Riemann-
Hilbert problem was obtained in [10]. However, the relevant global relation was not analyzed in this
paper. The analogous RH problem for the NLS equation together with the analysis of the global relation
is presented in [11]; the latter analysis is based on the results of [8].

In the present paper, using the general methodology of [6] and the recent results of [9], we analyze
the following IBV problems:

• sG
∂2q

∂t2
−

∂2q

∂x2
+ sin q = 0, 0 < x < L, 0 < t < T, (1.1)

q(x, 0) = q0(x), qt(x, 0) = q1(x), 0 < x < L,

q(0, t) = g0(t), q(L, t) = h0(t), 0 < t < T (1.2)

• MKdV I
∂q

∂t
+

∂3q

∂x3
− 6λq2qx = 0, λ = ±1, 0 < x < L, 0 < t < T, (1.3)

q(x, 0) = q0(x), 0 < x < L,

q(0, t) = g0(t), q(L, t) = h0(t), qx(L, t) = h1(t), 0 < t < T (1.4)

• mKdV II
∂q

∂t
−

∂3q

∂x3
+ 6λq2qx = 0, λ = ±1, 0 < x < L, 0 < t < T, (1.5)

q(x, 0) = q0(x), 0 < x < L,

q(0, t) = g0(t), qx(0, t) = g1(t), q(L, t) = h0(t), 0 < t < T (1.6)

We assume that q(x, t) is a real-valued function and that the functions q0(x), q1(x), gj(t), hj(t)
are sufficiently smooth. We also assume that the given initial and boundary values are compatible at
{x = 0, t = 0} and at {x = L, t = 0}.
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The above equations admit a Lax pair formulation of the form

µx + if1(k)σ̂3µ = Q(x, t, k)µ,

µt + if2(k)σ̂3µ = Q̃(x, t, k)µ, k ∈ C. (1.7)

Here σ̂ denotes the matrix commutator with the Pauli matrix σ3:

σ3 = diag{1,−1}, σ̂3A = [σ3, A], eσ̂3A = eσ3Ae−σ3 ,

for any 2 × 2 matrix A.
The eigenfunction µ(x, t, k) is a 2 × 2 matrix valued function of the arguments indicated, f1(k) and

f2(k) are given analytic functions of k, and the 2×2 matrix valued functions Q and Q̃ are given functions
of k, of q(x, t), and of the derivatives of q(x, t). The particular form of these functions for the sG, the
mKdV I, and the mKdV II equations will be given in Section 2.

The analysis of an initial boundary value problem for an equation possessing the Lax pair (1.7) involves
the following steps.

Step 1: A Riemann-Hilbert formulation under the assumption of existence.
We assume that there exists a smooth solution q(x, t), 0 < x < L, 0 < t < T .
We use the simultaneous spectral analysis of the associated Lax pair to express q(x, t) in terms of the

solution of a 2× 2-matrix Riemann- Hilbert (RH) problem defined in the complex k-plane. This problem
has explicit (x, t) dependence in the form of exp{2i(f1(k)x + f2(k)t)}, and it is uniquely defined in terms
of the so-called spectral functions,

{a(k), b(k)}, {A(k), B(k)}, {A(k),B(k)}. (1.8)

The spectral functions {a(k), b(k)} are expressed in terms of the initial conditions, while {A(k), B(k)}
and {A(k),B(k)} are expressed in terms of the boundary values {gl(t)}

n−1
0 and {hl(t)}

n−1
0 , respectively,

where gl(t) = ∂l
xq(0, t) and hl(t) = ∂l

xq(L, t). For the sG equation, n = 2, while for the mKdV I and
mKdV II equations, n = 3.

Furthermore, we will show that the spectral functions (1.8) are not independent but they satisfy the
global relation

e2if1(k)L

(

a(k̄)A(k) − ρb(k̄)B(k)

)

B(k) −

(

a(k)B(k) − b(k)A(k)

)

A(k) = e2if2(k)T c(k), (1.9)

where c(k) = c(k; T ) is of O

(

1 + e2if1(k)L

k

)

as |k| → ∞ and

ρ =

{

λ for mKdV I and II
−1 for sG

Step 2: Existence under the assumption that the spectral functions satisfy the global rela-

tion.
Motivated from the results of Step 1, we define the spectral functions (1.8) in terms of the initial

conditions and in terms of the smooth functions {gl(t)}
n−1
0 and {hl(t)}

n−1
0 . We assume that the boundary

values are such that the spectral functions satisfy the global relation (1.9). We also define q(x, t) in terms
of the solution of the RH problem formulated in Step 1. We then prove that: (i) q(x, t) is defined globally
for all 0 < x < L, 0 < t < T ; (ii) q(x, t) solves the given nonlinear equation; (iii) q(x, t) satisfies the
initial conditions; furthermore, ∂l

xq(0, t) = gl(t), ∂l
xq(L, t) = hl(t), 0 ≤ l ≤ n − 1.

Step 3: The analysis of the global relation

Given a subset of the boundary values {gl(t)}
n−1
0 and {hl(t)}

n−1
0 as boundary conditions (N boundary

conditions at x = 0 and n − N boundary conditions at x = L), we characterize the remaining part of
the boundary values through the solution of a system of nonlinear ODEs. For the sG and the mKdV I
equations, N = 1, while for the mKdV II equations, N = 2. In certain cases this system can be shown
to have a global solution.
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Figure 1: The contours used for the definition of µj , j = 1, . . . , 4

We now discuss further the above steps.
The analysis of Step 1 is based on the introduction of appropriate eigenfunctions which satisfy both

parts of the Lax pair. It was shown in [12] that for a polygonal domain with N corners, there exists a
canonical way of choosing such eigenfunctions: there exist N such eigenfunctions, each of them normalized
with respect to each corner. Thus in our case we introduce four eigenfunctions, {µj(x, t, k)}4

1, see Figure
1, such that

µ1(0, T, k) = I, µ2(0, 0, k) = I, µ3(L, 0, k) = I, µ4(L, T, k) = I, (1.10)

where µj are 2 × 2 matrices and I = diag{1, 1}.
It can be shown that these eigenfunctions are simply related through three matrices s, S, and SL,

s(k) = µ3(0, 0, k), S(k) =
(

eif2(k)Tσ3µ2(0, T, k)e−if2(k)Tσ3

)−1

,

SL(k) =
(

eif2(k)Tσ3µ3(L, T, k)e−if2(k)Tσ3

)−1

. (1.11)

Theses matrices satisfy certain symmetry properties, thus they can be denoted by

s(k) =

(

a(k̄) b(k)

ρb(k̄) a(k)

)

, S(k) =

(

A(k̄) B(k)

ρB(k̄) A(k)

)

, SL(k) =

(

A(k̄) B(k)

ρB(k̄) A(k)

)

. (1.12)

Regarding Step 2 we note that equations (1.11) and (1.12) motivate the definitions

a(k) = ϕ2(0, k), b(k) = ϕ1(0, k),

A(k) = Φ2(T, k̄), B(k) = −e2if2(k)T Φ1(T, k),

A(k) = Ψ2(T, k̄), B(k) = −e2if2(k)T Ψ1(T, k), k ∈ C, (1.13)

where the vectors

(ϕ1(x, k), ϕ2(x, k))
T

, (Φ1(t, k), Φ2(t, k))
T

, (Ψ1(t, k), Ψ2(t, k))
T

(1.14)

satisfy the boundary conditions

(

ϕ1(L, k)
ϕ2(L, k)

)

=

(

0
1

)

,

(

Φ1(0, k)
Φ2(0, k)

)

=

(

0
1

)

,

(

Ψ1(0, k)
Ψ2(0, k)

)

=

(

0
1

)

(1.15)

and they solve the x-part of the Lax pair evaluated at t = 0, the t-part of the Lax pair evaluated at
x = 0, and the t-part of the Lax pair evaluated at x = L, respectively. Thus the vectors (1.14) depend
on the initial conditions, on the boundary values at x = 0, {gl(t)}

n−1
0 , and on the boundary values at

x = L, {hl(t)}
n−1
0 , respectively.

The global existence of q(x, t) is based on the unique solvability of the associated RH problem, which
in turn is based on the distinctive nature of the functions defining the jump matrices: the functions
have explicit (x, t) dependence in an exponential form and they involve the spectral functions s(k), S(k),
and SL(k), which have the symmetry properties expressed in (1.12). Using theses facts it can be shown
that the associated homogeneous RH problem has only the trivial solution (i.e. there exists a vanishing
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lemma). The proof that q(x, t) solves the given nonlinear PDE uses the standard arguments of the
dressing method [15]. The proof that q(x, 0) = q0(x) (q(x, 0) = q0(x) and qt(x, 0) = q1(x) in the case
of the SG) is based on the fact that the RH problem satisfied at t = 0 is equivalent to a RH problem
derived in terms of s(k) which characterizes q0(x) (q0(x) and q1(x) in the case of the sG). The proofs
that {∂l

xq(0, t) = gl(t)}
n−1
0 and that {∂l

xq(L, t) = hl(t)}
n−1
0 make crucial use of the global relation (1.9).

Thus this relation is not only a necessary condition but it is also a sufficient condition for existence.
Hence given initial conditions and a subset of {gl(t), hl(t)}

n−1
0 defining a well-posed initial- boundary

value problem, the main problem becomes to show that the global relation characterizes the remaining
part of {gl(t), hl(t)}

n−1
0 .

The analysis of Step 3 is based on the Gelfand-Levitan-Marchenko representation of the eigenfunctions
Φ(t, k) and Ψ(t, k). For example, in the case of the sG equation, it can be shown [9] that Φ can be expressed
in terms of four functions {Mj(t, s), Lj(t, s)}2

1, −t < s < t, t > 0, satisfying a hyperbolic system of four
PDEs as well as the Goursat boundary conditions on the characteristics:

L1(t, t) = −
1

8
(ġ0(t) + g1(t)), L2(t,−t) = 0,

M1(t, t) = −
1

4
sin g0(t), M2(t,−t) = 0. (1.16)

Similarly, Ψ can be expressed in terms of four functions {Mj(t, s),Lj(t, s)}2
1, −t < s < t, t > 0, satisfying

L1(t, t) = −
1

8
(ḣ0(t) + h1(t)), L2(t,−t) = 0,

M1(t, t) = −
1

4
sin h0(t), M2(t,−t) = 0. (1.17)

Using the definitions (1.13) and letting T to vary, it can be shown that [9]

A(t, k) = 1 +

∫ t

0

e
i
2 (k+1/k)τ

(

2L2(t, t − 2τ) −
i

k

[

−M2(t, t − 2τ) + tan

(

g0(t)

2

)

M1(t, t − 2τ)

])

dτ,

B(t, k) = −

∫ t

0

e
i
2 (k+1/k)τ

(

2iL1(t, 2τ − t) −
1

k

[

M1(t, 2τ − t) + tan

(

g0(t)

2

)

M2(t, 2τ − t)

])

dτ.

(1.18)

Similar expressions are valid for A and B, with Lj, Mj , g0 replaced by Lj , Mj , h0, respectively. Sub-
stituting the expressions for A, B, A, B in the global relation (1.9) and letting k → 1/k in the resulting
equation, we obtain two relations coupling

g0, h0, Lj, Mj,Lj ,Mj. (1.19)

It is remarkable that these two relations can be explicitly solved for g1 and h1 in terms of the quantities
appearing in (1.19).

Having solved the global relation it is now possible to formulate the final result in terms of the
functions Φ1, Φ2, Ψ1, Ψ2, see equations (4.21) and (4.25).

2 A Riemann-Hilbert problem formulation under the assump-

tion of existence

Let σj denote the Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

The sG and the mKdV equations admit the Lax pair formulation (1.7), where f1, f2, Q, and Q̃ are given
below.
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• sG: f1(k) = 1
4

(

k − 1
k

)

, f2(k) = 1
4

(

k + 1
k

)

,

Q(x, t, k) = −
i

4
(qx + qt)σ1 −

i sin q

4k
σ2 +

i

4k
(cos q − 1)σ3, (2.1a)

Q̃(x, t, k) = Q(x, t,−k). (2.1b)

• mKdV I: f1(k) = k, f2(k) = 4k3,

Q(x, t, k) =

(

0 q
λq 0

)

, (2.2a)

Q̃(x, t, k) = 4k2Q − 2ik(Q2 + Qx)σ3 + 2Q3 − Qxx. (2.2b)

• mKdV II: f1(k) = −k, f2(k) = 4k3,

Q(x, t, k) =

(

0 q
λq 0

)

, (2.3a)

Q̃(x, t, k) = −4k2Q − 2ik(Q2 + Qx)σ3 − 2Q3 + Qxx. (2.3b)

The Lax pair (1.7) can be written as

d
(

ei(f1(k)x+f2(k)t)σ̂3µ
)

= W, (2.4)

where W is the exact 1-form defined by

W (x, t, k) = ei(f1(k)x+f2(k)t)σ̂3

(

Qµdx + Q̃µdt
)

. (2.5)

Throughout this section we assume that there exists a sufficiently smooth solution q(x, t), 0 < x < L,
0 < t < T of the corresponding nonlinear equation.

2.1 Eigenfunctions

Define the matrix-valued functions µj by

µj(x, t, k) = I +

∫ (x,t)

(xj ,tj)

e−i(f1(k)x+f2(k)t)σ̂3W (y, τ, k), j = 1, 2, 3, 4, (2.6)

where (x1, t1) = (0, T ), (x2, t2) = (0, 0), (x3, t3) = (L, 0), (x4, t4) = (L, T ). If the paths of integration are
chosen to be parallel to the x and t axes, then (2.6) yields the following equations:

µ1(x, t, k) = I +

∫ x

0

e−if1(k)(x−y)σ̂3(Qµ1)(y, t, k)dy − e−if1(k)xσ̂3

∫ T

t

e−if2(k)(t−τ)σ̂3(Q̃µ1)(0, τ, k)dτ,

(2.7a)

µ2(x, t, k) = I +

∫ x

0

e−if1(k)(x−y)σ̂3(Qµ2)(y, t, k)dy + e−if1(k)xσ̂3

∫ t

0

e−if2(k)(t−τ)σ̂3(Q̃µ2)(0, τ, k)dτ,

(2.7b)

µ3(x, t, k) = I −

∫ L

x

e−if1(k)(x−y)σ̂3(Qµ3)(y, t, k)dy + e−if1(k)(x−L)σ̂3

∫ t

0

e−if2(k)(t−τ)σ̂3(Q̃µ3)(L, τ, k)dτ,

(2.7c)

µ4(x, t, k) = I −

∫ L

x

e−if1(k)(x−y)σ̂3(Qµ4)(y, t, k)dy − e−if1(k)(x−L)σ̂3

∫ T

t

e−if2(k)(t−τ)σ̂3(Q̃µ4)(L, τ, k)dτ.

(2.7d)
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Figure 2: The domains Dj , j = 1, . . . , 4 for mKdV I, mKdV II, and SG equations

The domains where the exponentials appearing in (2.7) are bounded, are separated by the curves
{k ∈ C | Im f1(k) · Im f2(k) = 0}. Define the domains Dj , j = 1, 2, 3, 4, as follows:

D1 = {k | Im f1(k) > 0 ∩ Im f2(k) > 0},

D2 = {k | Im f1(k) > 0 ∩ Im f2(k) < 0},

D3 = {k | Im f1(k) < 0 ∩ Im f2(k) > 0},

D4 = {k | Im f1(k) < 0 ∩ Im f2(k) < 0}. (2.8)

Let the columns of a 2 × 2 matrix µ be denoted as (µ(1) µ(2)). Then the columns of µj are analytic
and bounded in the following domains in the complex k-plane (which are determined by the domains of
boundedness of the exponentials involved in the relative integral equations):

µ
(1)
1 , µ

(2)
3 : D2,

µ
(2)
1 , µ

(1)
3 : D3,

µ
(1)
2 , µ

(2)
4 : D1,

µ
(2)
2 , µ

(1)
4 : D4.

Thus, in each Dj there exists a 2 × 2 matrix-valued eigenfunction, which is analytic and bounded.

For example, in D1 the matrix is (µ
(1)
2 µ

(2)
4 ), etc.

For particular values of x or t, the domains of boundedness of the eigenfunctions are larger than
indicated above. In particular, for t = 0, the domain of boundedness of µ2 are the following:

µ
(1)
2 (x, 0, k), µ

(2)
3 (x, 0, k) : {Im f1(k) > 0} = D1 ∪ D2,

µ
(2)
2 (x, 0, k), µ

(1)
3 (x, 0, k) : {Im f1(k) < 0} = D3 ∪ D4.

For x = 0, the domain of boundedness of µ1 and µ2 are the following:

µ
(1)
1 (0, t, k) and µ

(2)
2 (0, t, k) : {Im f2(k) < 0} = D2 ∪ D4,

µ
(2)
1 (0, t, k) and µ

(1)
2 (0, t, k) : {Im f2(k) > 0} = D1 ∪ D3.

For x = L, the domain of boundedness of µ3 and µ4 are the following:

µ
(2)
3 (L, t, k) and µ

(1)
4 (L, t, k) : {Im f2(k) < 0} = D2 ∪ D4,

µ
(1)
3 (L, t, k) and µ

(2)
4 (L, t, k) : {Im f2(k) > 0} = D1 ∪ D3.

2.2 Other properties of eigenfunctions

The matrices Q and Q̃ have certain symmetry properties, which, in turn imply the following symmetries
for µ:

(µ(x, t, k))11 = (µ(x, t, k̄))22, (µ(x, t, k))12 = ρ(µ(x, t, k̄))21 (2.9)
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and
µ(x, t,−k) = µ(x, t, k̄). (2.10)

In the domains where µ is bounded,

µ(x, t, k) = I + O

(

1

k

)

, |k| → ∞. (2.11)

The fact that Q and Q̃ are traceless together with (2.11) imply

det µ(x, t, k) = 1. (2.12)

2.3 Spectral functions

Since the eigenfunctions µj are solutions of the system of differential equations (1.7), they are simply
related as follows:

µ3(x, t, k) = µ2(x, t, k)e−i(f1(k)x+f2(k)t)σ̂3s(k), (2.13a)

µ1(x, t, k) = µ2(x, t, k)e−i(f1(k)x+f2(k)t)σ̂3S(k), (2.13b)

µ4(x, t, k) = µ3(x, t, k)e−i(f1(k)(x−L)+f2(k)t)σ̂3SL(k). (2.13c)

Evaluating (2.13a) at x = t = 0, we find

s(k) = µ3(0, 0, k). (2.14)

Evaluating (2.13b) at x = t = 0, we find

S(k) = µ1(0, 0, k); (2.15)

evaluating (2.13b) at x = 0, t = T , we find S(k) =
(

eif2(k)T σ̂3µ2(0, T, k)
)−1

.
Evaluating (2.13c) at x = L, t = 0, we find

SL(k) = µ4(L, 0, k); (2.16)

evaluating (2.13c) at x = L, t = T , we find SL(k) =
(

eif2(k)T σ̂3µ3(L, T, k)
)−1

.
Equations (2.13a), (2.13b) imply

µ4(x, t, k) = µ2(x, t, k)e−i(f1(k)x+f2(k)t)σ̂3s(k)eif1(k)Lσ̂3SL(k). (2.17)

The definitions of s(k), S(k), and SL(k) imply the following results:

s(k) = I −

∫ L

0

eif1(k)yσ̂3 (Qµ3)(y, 0, k)dy, (2.18)

where µ3(x, 0, k), 0 < x < L, is the solution of the integral equation

µ3(x, 0, k) = I −

∫ L

x

e−if1(k)(x−y)σ̂3(Qµ3)(y, 0, k)dy. (2.19)

Similarly,

S(k) =

(

I +

∫ T

0

eif2(k)τσ̂3(Q̃µ2)(0, τ, k)dτ

)−1

, (2.20)

SL(k) =

(

I +

∫ T

0

eif2(k)τσ̂3(Q̃µ3)(L, τ, k)dτ

)−1

, (2.21)
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where µ2(0, t, k) and µ3(L, t, k), 0 < t < T are the solutions of the integral equations

µ2(0, t, k) = I +

∫ t

0

e−if2(k)(t−τ)σ̂3(Q̃µ2)(0, τ, k)dτ, (2.22)

µ3(L, t, k) = I +

∫ t

0

e−if2(k)(t−τ)σ̂3(Q̃µ3)(L, τ, k)dτ, (2.23)

respectively. Note that Q(x, 0) is determined by q(x, 0) (q(x, 0) and qt(x, 0) for the sG), Q̃(0, t, k) is
determined by {∂l

xq(0, t)}n−1
0 , and Q̃(L, t, k) is determined by {∂l

xq(L, t)}n−1
0 .

The symmetry properties (1.12) of the spectral functions follow from the symmetry properties (2.9)
of the associated eigenfunctions.

Equations (2.18) - (2.23) and the determinant condition (2.12) imply the following properties of the
spectral functions:

a(k), b(k)

• For the mKdV I and II, a(k) and b(k) are entire functions; for the sG, a(k) and b(k) are analytic
in the punctured plane C \ {0}.

• a(k), b(k), a(k̄)e2if1(k)L, b(k̄)e2if1(k)L are bounded in D̄1 ∪ D̄2 (here D̄ denotes the closure of a
domain D).

•

a(k) = 1 + O

(

1 + e2if1(k)L

k

)

, b(k) = O

(

1 + e2if1(k)L

k

)

, |k| → ∞. (2.24)

• a(k)a(k̄) − ρb(k)b(k̄) = 1, k ∈ C.

• a(−k) = a(k̄), b(−k) = b(k̄).

A(k), B(k)

• For the mKdV I and II, A(k) and B(k) are entire functions; for the sG, A(k) and B(k) are analytic
in the punctured plane C \ {0}.

• A(k) and B(k) are bounded in D̄1 ∪ D̄3.

•

A(k) = 1 + O

(

1 + e2if2(k)T

k

)

, B(k) = O

(

1 + e2if2(k)T

k

)

, k → ∞. (2.25)

• A(k)A(k̄) − ρB(k)B(k̄) = 1, k ∈ C.

• A(−k) = A(k̄), B(−k) = B(k̄).

A(k),B(k)

Same as A(k), B(k).

We note that q(x, 0) (q(x, 0) and qt(x, 0) for the sG equation) can be expressed in terms of {a(k), b(k)}
through the solution of a Riemann-Hilbert problem [6]. This problem is a singular RH problem: its
solution can have poles (at possible zeros of a and ā), therefore, residue relations have to be added to its
formulations. Here we present an alternative construction of the RH problem, which is regular relative
to an augmented contour containing additional parts {k ∈ C : |k| = Rj} surrounding the poles of f1(k)
and f2(k) (see [13]). In such a formulation, we need not any hypothesis on zeros of a(k).
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mKdV I mKdV II sG

R R R100 00

Figure 3: The oriented contours Σ(x) for the mKdV I, mKdV II, and SG equations (jump across the thin
part of the contours is trivial)

Define the domain D0 as follows:

D0 =

{

|k| < R for MKdV I and II

ε < |k| < R for sG
, (2.26)

where ε and R are chosen such that all the zeros of a(k) from D1 ∪ D2 are in D0.
Define a sectionally holomorphic, matrix-valued function M (x)(x, k):

M (x)(x, k) =































(

µ
(1)
3 (x, 0, k)

µ
(2)
2 (x, 0, k)

a(k̄)

)

k ∈ (D3 ∪ D4) \ D̄0

(

µ
(1)
2 (x, 0, k)

a(k)
µ

(2)
3 (x, 0, k)

)

k ∈ (D1 ∪ D2) \ D̄0

µ2(x, 0, k) k ∈ D0.

(2.27)

Similarly to µ3(x, 0, k), µ2(x, 0, k) in (2.27) is determined by (2.7b) for t = 0. Then the limits

M
(x)
± (x, ζ) of M (x)(x, k) as k approaches the oriented contour Σ(x) in the complex k-plane from the

corresponding side (see Figure 3) are related by the jump matrix J (x)(x, ζ):

M
(x)
− (x, ζ) = M

(x)
+ (x, ζ)J (x)(x, ζ), ζ ∈ Σ(x), (2.28)

where

J (x)(x, k) =







































































































1 −
b(k)

ā(k)
e−2if1(k)x

ρ
b̄(k)

a(k)
e2if1(k)x 1 − ρ

∣

∣

∣

∣

b(k)

ā(k)

∣

∣

∣

∣

2









k ∈ Γ1

I k ∈ ∂{D1 ∪ D2} ∩ D̄0





a(k̄) 0

ρb(k̄)e−2if1(k)x 1

a(k̄)



 k ∈ ∂{D3 ∪ D4 \ D̄0} \ Γ̄1





a(k) −b(k)e−2if1(k)x

0
1

a(k)



 k ∈ ∂{D1 ∪ D2 \ D̄0} \ Γ̄1

(2.29)

with Γ1 = ∂{D1 ∪ D2} \ D̄0; here ∂{D} denotes the boundary of a domain D.

10



mKdV I,II sG

R R1

Figure 4: The oriented contours Σ for the mKdV and sG equations (the jump across the thin part of the
contours is trivial)

Define a sectionally holomorphic, matrix-valued function M (t,0)(t, k):

M (t,0)(t, k) =































(

µ
(1)
1 (0, t, k)

µ
(2)
2 (0, t, k)

A(k̄)

)

k ∈ (D2 ∪ D4) \ D̄0

(

µ
(1)
2 (0, t, k)

A(k)
µ

(2)
1 (0, t, k)

)

k ∈ (D1 ∪ D3) \ D̄0

µ2(0, t, k) k ∈ D0,

(2.30)

where D0 is of the form (2.26) containing all the zeros of A(k) in D1 ∪ D3. Similarly to µ2(0, t, k),

µ1(0, t, k) in (2.30) is determined by (2.7a) for x = 0. Then the limits M
(t,0)
± (t, ζ) of M (t,0)(t, k) as k

approaches the contour Σ in the complex k-plane, see Figure 4, are related by the jump matrix J (t,0)(t, ζ):

M
(t,0)
− (t, ζ) = M

(t,0)
+ (t, ζ)J (t,0)(t, ζ), ζ ∈ Σ, (2.31)

where

J (t,0)(t, k) =















































































































1 −B(k)

A(k̄)
e−2if2(k)t

ρB(k̄)
A(k) e2if2(k)t 1

A(k)A(k̄)









k ∈ Γ2

I k ∈ ∂{D1 ∪ D3} ∩ D̄0





A(k) −B(k)e−2if2(k)t

0 1
A(k)



 k ∈ ∂{(D1 ∪ D3) \ D̄0} \ Γ̄2







A(k̄) 0

λB(k̄)e2if2(k)t 1

A(k̄)






k ∈ ∂{(D2 ∪ D4) \ D̄0} \ Γ̄2

(2.32)

with Γ2 = ∂{D1 ∪ D3} \ D̄0.
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Similarly, define a sectionally holomorphic, matrix-valued function M (t,L)(t, k):

M (t,L)(t, k) =































(

µ
(1)
4 (L, t, k)

µ
(2)
3 (L, t, k)

A(k̄)

)

k ∈ (D2 ∪ D4) \ D̄0

(

µ
(1)
3 (L, t, k)

A(k)
µ

(2)
4 (L, t, k)

)

k ∈ (D1 ∪ D3) \ D̄0

µ3(L, t, k) k ∈ D0,

(2.33)

where D0 is of the form (2.26) containing all the zeros of A(k) in D1 ∪ D3. Similarly to µ3(L, t, k),

µ4(L, t, k) in (2.33) is determined by (2.7d) for x = L. Then the limits M
(t,L)
± (t, ζ) of M (t,L)(t, k) as k

approaches the contour Σ are related by the jump matrix J (t,L)(t, ζ):

M
(t,L)
− (t, ζ) = M

(t,L)
+ (t, ζ)J (t,L)(t, ζ), ζ ∈ Σ, (2.34)

where J (t,L)(t, ζ) is constructed similarly to (2.32) with A(k), B(k) replaced by A(k),B(k).

2.4 Global relation

Evaluating equation (2.17) at x = 0, t = T , and writing µ2(0, T, k) in terms of S(k) we find

µ4(0, T, k) = e−if2(k)T σ̂3S−1(k)s(k)eif1(k)Lσ̂3SL(k).

Multiplying this equation by exp{if2(k)T σ̂3} and using the definition of µ4(x, T, k) we find

−I + S−1(k)s(k)
[

eif1(k)Lσ̂3SL(k)
]

+ eif2(k)T σ̂3

∫ L

0

eif1(k)yσ̂3 (Qµ4)(y, T, k)dy = 0. (2.35)

The (12) element of (2.35) is (k ∈ C)

e2if1(k)L

(

a(k̄)A(k) − λb(k̄)B(k)

)

B(k) −

(

a(k)B(k) − b(k)A(k)

)

A(k) = e2if2(k)T c(k), (2.36)

where

c(k) = c(k, T ) = −

∫ L

0

e2if1(k)y(Qµ4)12(y, T, k)dy = (µ4)12(0, T, k) (2.37)

is of O
(

(1 + e2if1(k)L)/k
)

as k → ∞.
Equation (2.36) expresses, in the spectral terms, the relation between the initial and boundary values

of the solution of the given nonlinear equation.

2.5 The jump conditions for the eigenfunctions

Relating the vector solutions of (1.7) in the respective domains by using (2.13) and the definitions of the
spectral functions (2.14)–(2.16), we find

M−(x, t, k) = M+(x, t, k)J(x, t, k), k ∈ Σ, (2.38)
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where M±(x, t, k) are the limit values (as k approaches Σ from Ω±) of a sectionally holomorphic function
M(x, t, k) defined as follows:

M =







































































































(

µ
(1)
3

µ
(2)
1

d(k̄)

)

, k ∈ D3 \ D̄0

(

µ
(1)
4 a(k̄)

d1(k̄)

µ
(2)
2

a(k̄)

)

, k ∈ D4 \ D̄0

(

µ
(1)
1

d(k)
µ

(2)
3

)

, k ∈ D2 \ D̄0

(

µ
(1)
2

a(k)

µ
(2)
4 a(k)

d1(k)

)

, k ∈ D1 \ D̄0

µ2, k ∈ D0

(2.39)

where

d(k) = a(k)A(k̄) − ρb(k)B(k̄), k ∈ D2 ∪ D4,

d1(k) = a(k)A1(k) + ρe2if1(k)Lb(k̄)B1(k), k ∈ D1 ∪ D3. (2.40)

The jump matrix J(x, t, k) has explicit (x, t) dependence:

J(x, t, k) = e(−if1(k)x−if2(k)t)σ̂3J0(k), (2.41)

where J0(k) is constructed from the elements of the spectral functions:

• For k ∈ Σ, Im f1(k) ≤ 0 we have

J0(k) =























































































































(

1 −ρΓ(k̄)
0 1

)(

1 0

ρΓ1(k̄) 1

)

, k ∈ (D̄3 ∩ D̄4) \ D̄0

(

1 −Γ1(k)
0 1

)(

1 −γ(k)
ργ̄(k) 1 − ρ|γ(k)|2

)(

1 0

ρΓ1(k̄) 1

)

, k ∈ (D̄4 ∩ D̄1) \ D̄0

(

1 −ρΓ(k̄)
0 1

)(

1 − ρ|γ(k)|2 γ(k)
−ργ̄(k) 1

)(

1 0
Γ(k) 1

)

, k ∈ (D̄2 ∩ D̄3) \ D̄0





A(k)

d(k̄)
−

B(k)

d(k̄)

−ρb(k̄) a(k̄)



 , k ∈ ∂D0 ∩ D3





a(k̄) 0

ρΓ2(k̄)
1

a(k̄)



 , k ∈ ∂D0 ∩ D4

(2.42)

• For k ∈ Σ, Im f1(k) > 0 we have

J0(k) =

(

−1 0
0 ρ

)

J∗

0 (k̄)

(

−1 0
0 ρ

)

• For k ∈ Σ, k ∈ D0 we have J0(k) = I.
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Here

γ(k) =
b(k)

ā(k)
, Γ(k) =

λB(k̄)

a(k)d(k)
,

Γ1(k) =
e2if1(k)La(k)B(k)

d1(k)
, Γ2(k) =

Γ1(k)

a(k)
+ b(k), (2.43)

and the parameters ε and R determining the domain D0 are chosen such that all zeros of a(k), d(k), and
d1(k) from Im f1(k) ≥ 0 are in D0.

3 Existence under assumption that the global relation is valid

The analysis of section 2 motivates the following definitions and results.

Definition 1. Denote by Q(x)(x, k) the matrix Q(x, 0, k), in which q(x, 0) (q(x, 0) and qt(x, 0) for the
sG) are replaced by q0(x) (q0(x) and q1(x), respectively).

Given a smooth function q0(x) ( two smooth functions, q0(x) and q1(x), for the sG), define the vector
ϕ(x, k) = (ϕ1, ϕ2)

T as the unique solution of

ϕ1x + 2if1(k)ϕ1 = Q
(x)
11 ϕ1 + Q

(x)
12 ϕ2,

ϕ2x = Q
(x)
21 ϕ1 + Q

(x)
22 ϕ2, 0 < x < L k ∈ C

ϕ(L, k) = (0, 1)T . (3.1)

Given ϕ(x, k) define the functions a(k) and b(k) by

a(k) = ϕ2(0, k), b(k) = ϕ1(0, k), k ∈ C. (3.2)

Then a(k) and b(k) have the properties (2.24). Definition 1 gives rise to the map

S : {q0(x)} 7→ {a(k), b(k)} (3.3)

({q0(x), q1(x)} 7→ {a(k), b(k)} in the case of the sG). The inverse of this map,

Q : {a(k), b(k)} 7→ {q0(x)}

({a(k), b(k)} 7→ {q0(x), q1(x)} in the case of the sG) can be defined as follows:

mKdV I : q0(x) = 2i lim
k→∞

(

kM (x)(x, k)
)

12
; (3.4a)

mKdV II : q0(x) = −2i lim
k→∞

(

kM (x)(x, k)
)

12
; (3.4b)

sG : cos q0(x) = 1 + 2 lim
k→∞

{

(

kM (x)(x, k)
)2

12
+ 2i∂x

(

kM (x)(x, k)
)

22

}

,

q1(x) = −
dq0

dx
(x) − 2 lim

k→∞

(

kM (x)(x, k)
)

12
, (3.4c)

where M (x)(x, k) is the solution of the following RH problem:

• M (x)(x, k) is a sectionally holomorphic function relative to the contour Σ(x).

• the limits M
(x)
± (x, ζ) of M (x)(x, k) as k approaches Σ(x) are related by (2.28), where the jump

matrix J (x)(x, ζ) is constructed from a(k) and b(k) following (2.29).

• M (x)(x, k) = I + O

(

1

k

)

, k → ∞.
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Definition 2. Denote by Q(t,0)(t, k) the matrix Q̃(0, t, k), in which ∂ql
x(0, t) are replaced by gl(t), 0 ≤

l ≤ n − 1.
Given smooth functions gl(t), 0 ≤ l ≤ n − 1, define the vector Φ(t, k) = (Φ1, Φ2)

T as the unique
solution of

Φ1t + 2if2(k)Φ1 = Q
(t,0)
11 Φ1 + Q

(t,0)
12 Φ2,

Φ2t = Q
(t,0)
21 Φ1 + Q

(t,0)
22 Φ2, 0 < t < T k ∈ C

Φ(0, k) = (0, 1)T . (3.5)

Given Φ(t, k) define the functions A(k) and B(k) by

A(k) = Φ2(T, k̄), B(k) = −Φ1(T, k)e2if2(k)T , k ∈ C. (3.6)

Then A(k) and B(k) have the properties (2.25). Definition 2 gives rise to the map

S(0) : {gl(t), 0 ≤ l ≤ n − 1} 7→ {A(k), B(k)}. (3.7)

The inverse of this map,
Q(0) : {A(k), B(k)} 7→ {gl(t), 0 ≤ l ≤ n − 1}

can be defined as follows:

mKdV I : g0(t) = 2i lim
k→∞

k
(

M (t,0)(t, k)
)

12
,

g1(t) = lim
k→∞

{

4k2(M (t,0)(t, k))12 + 2ig0(t)k(M (t,0)(t, k))22

}

,

g2(t) = lim
k→∞

{

ρg3
0(t) − 8ik3(M (t,0)(t, k))12 + 4g0(t)k

2(M (t,0)(t, k))22

+2ig1(t)k(M (t,0)(t, k))22

}

; (3.8a)

mKdV II : g0(t) = −2i lim
k→∞

k
(

M (t,0)(t, k)
)

12
,

g1(t) = lim
k→∞

{

4k2(M (t,0)(t, k))12 − 2ig0(t)k(M (t,0)(t, k))22

}

,

g2(t) = lim
k→∞

{

ρg3
0(t) + 8ik3(M (t,0)(t, k))12 + 4g0(t)k

2(M (t,0)(t, k))22

−2ig1(t)k(M (t,0)(t, k))22

}

; (3.8b)

sG : cos g0(t) = 1 − 2 lim
k→∞

{

(kM (t,0)(t, k))212 + 2i
d

dt
lim

k→∞

(

kM (t,0)(t, k)
)

22

}

,

g1(t) = −
d

dt
g0(t) − 2 lim

k→∞

(

kM (t,0)(t, k)
)

12
, (3.8c)

where M (t,0)(t, k) is the solution of the following RH problem:

• M (t,0)(t, k) is a sectionally holomorphic function relative to the contour Σ.

• the limits M
(t,0)
± (t, ζ) of M (t,0)(t, k) as k approaches Σ from Ω± are related by (2.31), where the

jump matrix J (t,0)(t, ζ) is constructed from A(k) and B(k) following (2.32).

• M (t,0)(t, k) = I + O

(

1

k

)

, k → ∞.

Definition 3. Denote by Q(t,L)(t, k) the matrix Q̃(L, t, k), in which ∂ql
x(L, t) are replaced by hl(t),

0 ≤ l ≤ n − 1.
Given smooth functions hl(t), 0 ≤ l ≤ n−1, define the vector Ψ(t, k) = (Ψ1, Ψ2)

T by equations similar
to (3.5) with Q(t,0) replaced by Q(t,L).

Given Ψ(t, k) define the functions A(k) and B(k) by

A(k) = Ψ2(T, k̄), B(k) = −Ψ1(T, k)e2if2(k)T , k ∈ C. (3.9)
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The maps
S(L) : {hl(t), 0 ≤ l ≤ n − 1} 7→ {A(k),B(k)} (3.10)

and
Q(L) : {A(k),B(k)} 7→ {hl(t), 0 ≤ l ≤ n − 1}

are defined exactly as above, the notations M (t,L)(t, k) and J (t,L)(t, ζ) being used instead of M (t,0)(t, k)
and J (t,0)(t, ζ), respectively.

Definition 4. Given the smooth function q0(x) (q0(x) and q1(x) for the sG equation) define a(k), b(k)
according to definition 1. Suppose that there exist smooth functions {gl(t)}

n−1
0 and {hl(t)}

n−1
0 such that:

• The associated A(k), B(k), A(k), B(k), defined according to definitions 2 and 3, satisfy the relation

e2if1(k)L

(

a(k̄)A(k) − λb(k̄)B(k)

)

B(k) −

(

a(k)B(k) − b(k)A(k)

)

A(k) = e2if2(k)T c(k), (3.11)

where c(k) = c(k, T ) is an entire function, which is O
(

(1 + e2if1(k)L)/k
)

as k → ∞.

•

gl(0) =
dlq0

dxl
(0), hl(0) =

dlq0

dxl
(L), 0 ≤ l ≤ n − 1

• for the sG: q1(0) = g′0(0), q1(L) = h′
0(0)

Then we call the functions {gl(t)}
n−1
0 , {hl(t)}

n−1
0 an admissible set of functions with respect to q0(x)

(q0(x) and q1(x) for the sG equation).

The main result on the inverse spectral problem is the following:

Theorem 1. Let q0(x) be a smooth function (for the sG, let qj(x), j = 0, 1, be smooth functions).
Suppose that the set of functions {gl(t)}

n−1
0 , {hl(t)}

n−1
0 is admissible with respect to q0(x) (q0(x) and

q1(x)).
Define M(x, t, k) as the solution of the following 2 × 2 matrix RH problem:

• M is sectionally holomorphic in k ∈ C \ Σ.

• For k ∈ Σ, M satisfies the jump conditions (2.38), where the jump matrix J is defined in terms of
the spectral functions a, b, A, B,A and B by equations (2.41) - (2.43).

• As k → ∞,

M(x, t, k) = I + O

(

1

k

)

. (3.12)

Then:

1. M(x, t, k) exists and is unique;

2. The function q(x, t) defined in terms of M(x, t, k) by

q(x, t) = 2i lim
k→∞

k (M(x, t, k))12 , (3.13a)

q(x, t) = −2i lim
k→∞

k (M(x, t, k))12 , (3.13b)

cos q(x, t) = 1 + 2 lim
k→∞

{

k(M(x, t, k))212 + 2i∂xk(M(x, t, k))22
}

(3.13c)

satisfies the MKdV I, the MKdV II, and the sG, respectively;

3. The function q(x, t) satisfies the initial and boundary conditions

q(x, 0) = q0(x) (and qt(x, 0) = q1(x) for the SG),

{∂l
xq(0, t) = gl(t)}

n−1
0 , {∂l

xq(L, t) = hl(t)}
n−1
0 , (3.14)
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Proof. The proof follows the same lines as in the case of nonlinear integrable equations on the half-line
see [6]; for the more detailed presentation, see [5] for the case of the NLS equation. The main steps of
the proof include the following.

1. The RH problem in question is regular; its unique solvability is a consequence of a ”vanishing lemma”
for the associated RH problem with the vanishing condition at infinity M = O(1/k), k → ∞ (see [14]).

2. The proof that the constructed q(x, t) solves the mKdV equation is straightforward and follows the
proof (the so-called dressing method) in the case of a whole line problem, see [15].

3. The proof that q satisfies the initial condition q(x, 0) = q0(x) follows from the fact that it is possible
to map the RH problem for M(x, 0, k) to that for M (x)(x, k) such that

M (x)(x, k) = M(x, 0, k)P (x)(x, k) (3.15)

where P (x)(x, k) is piecewise holomorphic relative to Σ and P (x)(x, k) = I + O
(

1
k

)

as k → ∞.
From (2.27) and (2.39) it follows that

P (x)(x, k) =







































































(

1 −ρΓ(k̄)e−2if1(k)x

0 1

)

, k ∈ D3 \ D̄0

(

1 0

−ρΓ1(k̄)e2if1(k)x 1

)

, k ∈ D4 \ D̄0

(

1 0
−Γ(k)e2if1(k)x 1

)

, k ∈ D2 \ D̄0

(

1 −Γ1(k)e−2if1(k)x

0 1

)

, k ∈ D1 \ D̄0

(3.16)

Now (2.24) and (2.25) imply that Γ(k̄) is O
(

1
k

)

in D3 and Γ1(k̄)e2if1(k)x = O
(

1
k

)

e−2if1(k)(L−x) in D4,

respectively. Similarly, Γ(k) is O
(

1
k

)

in D2 and Γ1(k)e−2if1(k)x = O
(

1
k

)

e2if1(k)(L−x) in D1, respectively.

Therefore, P (x)(x, k) = I + P
(x)
off (x, k), where P

(x)
off (x, k) is off- diagonal and exponentially decaying as

k → ∞ for Im k 6= 0. Finally, the asymptotics (3.4) and (3.13) for t = 0 yield q0(x) = q(x, 0).

4. The proof that q satisfies the boundary conditions {∂l
xq(0, t) = gl(t)}

n−1
0 and {∂l

xq(L, t) = hl(t)}
n−1
0

is, in turn, based on the maps M(0, t, k) 7→ M (t)(t, k) and M(L, t, k) 7→ M
(t)
1 (t, k):

M (t)(t, k) = M(0, t, k)P (t)(t, k), M
(t)
1 (t, k) = M(L, t, k)P

(t)
1 (t, k). (3.17)

In this case, the fact that P (t) and P
(t)
1 in the corresponding domains are I + O

(

1
k

)

, is a consequence
of the global relation. Consider, for instance, the domain Im f1(k) < 0 (considerations in the domain
Im f1(k) > 0 are similar). We have

P (t)(t, k) =



























































































1

d(k̄)
0

−ρ
b(k̄)

A(k)
e2if2(k)t d(k̄)













, k ∈ D3 \ D̄0















A(k̄)

a(k̄)
0

−
(GR)(k̄)a(k̄)

d1(k̄)
e2if2(k)t a(k̄)

A(k̄)















, k ∈ D4 \ D̄0

(3.18)
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where (GR)(k) is the l.h.s. of the global relation (1.9). Therefore, it is the global relation (1.9) for k ∈ D1

that gives (GR)(k̄)e2if2(k)T = O
(

1
k

)

for k ∈ D4 (D4 is symmetric to D1 under complex conjugation) and,

consequently, P
(t)
21 (t, k) = O

(

1
k

)

for k ∈ D4 and t < T .

The transformation matrix P
(t)
1 (t, k) is written as

P
(t)
1 (t, k) =















































































1

A1(k)

(GR)(k)

d(k̄)
e−2i(f1(k)L+f2(k)t)

0 A1(k)









, k ∈ D3 \ D̄0















d1(k̄)

a(k̄)

b(k)

a(k̄)A1(k̄)
e−2i(f1(k)L+f2(k)t)

0
a(k̄)

d1(k̄)















, k ∈ D4 \ D̄0

(3.19)

Now (1.9) in D3 gives

(GR)(k)e−2i(f1(k)L+f2(k)T ) = O

(

1

k

)

,

hence, (P
(t)
1 )12(t, k) = O

(

1
k

)

for t < T and k ∈ D3. The boundedness of (P
(t)
1 )12 in D4 follows from

(2.24).

Finally, we obtain that P (t)(t, k) is bounded and piecewise analytic and P (t)(t, k) = P
(t)
diag(t, k) +

P
(t)
off (t, k), where P

(t)
diag(t, k) is a diagonal matrix and P

(t)
off (t, k) is off-diagonal and exponentially decaying

as k → ∞, and P
(t)
diag = I + O

(

1
k

)

. Similarly, P
(t)
1 (t, k) = (P

(t)
1 )diag(t, k) + (P

(t)
1 )off (t, k) with the same

properties. Now recall that in the dressing method, one obtains expressions for ∂l
xq(x, t) in terms of

M(x, t, k). Since these expressions evaluated at x = 0 are Eqs. (3.8) with M (t) replaced by M(0, t, k)
(similarly for x = L and M(L, t, k)), the maps (3.17) provide the boundary conditions at x = 0 and
x = L. Alternatively, one can use the fact that the multiplication by a diagonal matrix does not affect
the r.h.s. of (3.8).

4 Analysis of the global relation

The analysis of the global relation consists in the following. First, we consider (2.36) as a family of
relations parametrized by t ∈ (0, T ), with A = A(t, k), B = B(t, k), A = A(t, k), B = B(t, k), and
c = c(t, k). Then, we substitute the spectral functions A(t, k), B(t, k), A(t, k), B(t, k) in (2.36) by their
integral representations in the form

A(t, k) = 1 + 2

∫ t

0

F2(t, t − 2τ, k̄)e2if2(k)τdτ,

B(t, k) = −2

∫ t

0

F1(t, 2τ − t, k)e2if2(k)τdτ (4.1)

(with similar expressions for A(t, k) and B(t, k)), where F1(t, s, k) and F2(t, s, k) are polynomials (in
the case of the mKdV equations) or rational functions (in the case of the sG) in k with coefficients
satisfying a linear system of differential equations determined by the boundary values {gl(t)}

n−1
0 and

{hl(t)}
n−1
0 . Further, we use certain symmetries of A(t, k), B(t, k), A(t, k), B(t, k) and integrate the

resulting expressions (multiplied by appropriate exponentials) over the boundary of some domain in the
k-plane. Finally, assuming that a set of boundary values corresponding to some well-posed problem is
given, we resolve the obtained system of equations in terms of the unknown boundary values.

sG:
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Lemma 1. The spectral functions A(t, k), B(t, k), A(t, k), B(t, k) have the following integral represen-
tations

A(t, k) = 1 + 2

∫ t

0

F2(t, t − 2τ, k̄)e
i
2 (k+ 1

k
)τdτ,

B(t, k) = −2

∫ t

0

F1(t, 2τ − t, k)e
i
2 (k+ 1

k
)τdτ,

A(t, k) = 1 + 2

∫ t

0

F2(t, t − 2τ, k̄)e
i
2 (k+ 1

k
)τdτ,

B(t, k) = −2

∫ t

0

F1(t, 2τ − t, k)e
i
2 (k+ 1

k
)τdτ. (4.2)

Here F1 and F2 are polynomials in 1/k of degree 1:

F1(t, s, k) =
1

k
F

(1)
1 (t, s) + F

(0)
1 (t, s)

≡ −
1

2k

[

M1(t, s) + tan
g0(t)

2
M2(t, s)

]

+ iL1(t, s),

F2(t, s, k) =
1

k
F

(1)
2 (t, s) + F

(0)
2 (t, s)

≡ −
i

2k

[

−M2(t, s) + tan
g0(t)

2
M1(t, s)

]

+ L2(t, s), (4.3)

where Lj(t, s) and Mj(t, s), j = 1, 2 solve the Goursat problem for a certain system of linear differential
equations in the domain 0 < t < T , −t < s < t with coefficients determined by g0(t) and g1(t) and with
the boundary conditions

L1(t, t) = −
1

8
(ġ0(t) + g1(t)), L2(t,−t) = 0,

M1(t, t) = −
1

4
sin g0(t), M2(t,−t) = 0. (4.4)

Analogously, the functions F1 and F2 are expressed in terms of Lj and Mj satisfying the similar
system of equations, with {gl(t)}1

0 replaced by {hl(t)}1
0; particularly,

L1(t, t) = −
1

8
(ġ0(t) + g1(t)), L2(t,−t) = 0,

M1(t, t) = −
1

4
sin g0(t), M2(t,−t) = 0. (4.5)

The proof of the lemma is based on the Gelfand-Levitan-Marchenko representation for the solution
of the t-equation in the Lax pair (1.7) with the initial condition µ(0, k) = I:

µ(t, k) = I +

∫ t

−t

(

L(t, s) +
1

k
M(t, s)

)

e
i
4 (k+ 1

k
)(t−s)σ3ds,

the distinctive feature of which is the explicit k-dependence. The functions Lj and Mj are simply ex-
pressed in terms of the matrix entries of L and M . For the NLS equation, the corresponding representation
is presented in details in [8]. For the sG equation, the details are given in [9].

To avoid routine technical complications, we will continue the analysis of the global relation in the
case a(k) ≡ 1, b(k) ≡ 0 corresponding to the zero initial conditions q(x, 0) = qt(x, 0) = 0. In this case,
the global relation (2.36) takes the form

e
i
2 (k− 1

k
)LA(t, k)B(t, k) − B(t, k)A(t, k) = e

i
2 (k+ 1

k
)tc(t, k). (4.6)

From (2.37) and (2.7d) it follows that

c(t, k) = O

(

1

k

)

as k → ∞, k ∈ D1 = {k : Im k ≥ 0, |k| ≥ 1} (4.7)
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and e−
i
2 (k− 1

k
)Lc(t, k) is bounded in D3 = {k : Im k ≤ 0, |k| ≤ 1}.

In the case of the sG equation, the given (linearly well-posed) boundary conditions are g0(t) and h0(t),
and we are looking for expressions for g1(t) and h1(t).

Substitute (4.2) into (4.6) and rewrite the resulting equation in the form:

−e
i
2 (k− 1

k
)L

∫ t

0

F
(0)
1 (t, 2τ − t)e

i
2 (k+ 1

k
)τdτ +

∫ t

0

F
(0)
1 (t, 2τ − t)e

i
2 (k+ 1

k
)τdτ =

G(t, k) +
1

2
e

i
2 (k+ 1

k
)tc(t, k), (4.8)

where

G(t, k) = e
i
2 (k− 1

k
)L

(

1

k

∫ t

0

F
(1)
1 (t, 2τ − t)e

i
2 (k+ 1

k
)τdτ

+2

∫ t

0

F2(t, t − 2τ, k̄)e
i
2 (k+ 1

k
)τdτ

∫ t

0

F1(t, t − 2τ, k)e
i
2 (k+ 1

k
)τdτ

)

−
1

k

∫ t

0

F
(1)
1 (t, 2τ − t)e

i
2 (k+ 1

k
)τdτ

−2

∫ t

0

F2(t, t − 2τ, k̄)e
i
2 (k+ 1

k
)τdτ

∫ t

0

F1(t, t − 2τ, k)e
i
2 (k+ 1

k
)τdτ. (4.9)

We consider (4.8) in the domain D1 = {k : Im k ≥ 0, |k| ≥ 1} where all the terms of (4.8) are bounded.
In order to obtain another equation with terms bounded in D1, we replace k by 1/k in (4.8) and multiply

by e
i
2 (k− 1

k
)L; the resulting equation is

−

∫ t

0

F
(0)
1 (t, 2τ − t)e

i
2 (k+ 1

k
)τdτ + e

i
2 (k− 1

k
)L

∫ t

0

F
(0)
1 (t, 2τ − t)e

i
2 (k+ 1

k
)τdτ =

e
i
2 (k− 1

k
)LG(t,

1

k
) +

1

2
e

i
2 (k+ 1

k
)te

i
2 (k− 1

k
)Lc(t,

1

k
). (4.10)

Equations (4.8) and (4.10) can be written in the vector form:

E(k)U(t, k) = H(t, k) +
1

2
e

i
2 (k+ 1

k
)tHc(t, k), k ∈ D1, (4.11)

where

E(k) =

(

−e
i
2 (k− 1

k
)L 1

−1 e
i
2 (k− 1

k
)L

)

,

U(t, k) =

(∫ t

0

F
(0)
1 (t, 2τ − t)e

i
2 (k+ 1

k
)τdτ

∫ t

0

F
(0)
1 (t, 2τ − t)e

i
2 (k+ 1

k
)τdτ

)T

,

H(t, k) =

(

G(t, k)

e
i
2 (k− 1

k
)LG(t, 1

k )

)

, Hc(t, k) =

(

c(t, k)

e
i
2 (k− 1

k
)Lc(t, 1

k )

)

.

Since det E(k) = 1 − ei(k− 1
k
)L, E−1(k) is bounded in the domain D

(0)
1 ⊂ D1, the boundary of which is

the boundary of D1 deformed toward the interior of D1 such that it passes above the zeros of det E(k):

k = πn
L ±

√

π2n2

L2 + 1, n ∈ Z.

Multiplying (4.11) by E−1(k)
(

1 − 1
k2

)

e−
i
2 (k+ 1

k
)t′ , 0 < t′ < t, and integrating over the contour ∂D

(0)
1 ,

we obtain the following equation:

∫

∂D
(0)
1

U(t, k)

(

1 −
1

k2

)

e−
i
2 (k+ 1

k
)t′dk =

∫

∂D
(0)
1

E−1(k)

(

1 −
1

k2

)(

H(t, k) +
1

2
e

i
2 (k+ 1

k
)tHc(t, k)

)

e−
i
2 (k+ 1

k
)t′dk. (4.12)
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Using the identity

∫

∂D
(0)
1

(

1 −
1

k2

)∫ t

0

α(τ)e
i
2 (k+ 1

k
)(τ−t′)dtdk = 4πα(t′), 0 < t′ < t

valid for any smooth function α(τ), τ ∈ [0, t] (which follows from the usual Fourier transform identity),
the left-hand side of (4.12) becomes

4π
(

F
(0)
1 (t, 2t′ − t) F

(0)
1 (t, 2t′ − t)

)T

.

Since c(t, k) = O(1/k) as k → ∞ in D1, the terms in the right-hand side of (4.12) involving c(t, k), vanish

(by Jordan’s Lemma). The integration by parts shows that G(t, k) = O(1/k) on ∂D
(0)
1 , so that the

integrals involving G(t, k) exist in the L2 sense. On the other hand, the functions c(t, 1/k) and G(t, 1/k)
do not vanish as k → ∞. The following lemma describes the behavior of c(t, k) and G(t, k) as k → 0 for
Im k ≤ 0, which in turn gives the behavior of c(t, 1/k) and G(t, 1/k) as k → ∞ in D1.

Lemma 2. The following asymptotics hold as k → 0 in Im k ≤ 0:

(i) e−
i
2 (k− 1

k
)LG(t, k) = e

i
2k

t
(

−α(t) + e
i
2k

Lβ(t)
)

+ O(k)

(ii) 1
2e−

i
2 (k− 1

k
)Lc(t, k) = α(t) − e

i
2k

Lβ(t) + O(k),

where

α(t) =
i

2
sin

h0(t)

2
cos

g0(t)

2
,

β(t) =
i

2
sin

g0(t)

2
cos

h0(t)

2
.

Proof. (i) By the definition, G(t, k) = 1
2

(

B(t, k)A(t, k) − e
i
2 (k− 1

k
)LA(t, k)B(t, k)

)

+ O(k), k → 0. From

(2.15) and (2.16) it follows that A, B and A,B can be expressed via the second columns of µ1(0, 0, k) and
µ4(0, 0, k), respectively:

(

B(T, k)
A(T, k)

)

= µ
(2)
1 (0, 0, k),

(

B(T, k)
A(T, k)

)

= µ
(2)
4 (0, 0, k).

In order to study the small k behavior of µ
(2)
1 (0, 0, k) we notice that Q̃ in (2.1b) can be written as

Q̃(x, t, k) = −
i

4
(qx(x, t) + qt(x, t))σ1 +

i

4k
(σ3 − Λ−1(x, t)σ3Λ(x, t)),

where

Λ(x, t) =

(

1 + cos q(x, t) i sin q(x, t)
i sin q(x, t) 1 + cos q(x, t)

)

.

This suggests to represent µ1(0, t, k), 0 ≤ t ≤ T in the form

µ1(0, t, k) = Λ−1(0, t)ν1(t, k)e−
i
4 (k+ 1

k
)σ3(t−T )Λ(0, T )e

i
4 (k+ 1

k
)σ3(t−T ),

where ν1(t, k) satisfies a differential t-equation similar to that for µ1(0, t, k), see (1.7), but with the
right-hand side which is non-singular at k = 0:

dν1

dt
+

i

4
(k +

1

k
)σ̂3ν1 = Q̂(t, k)ν1 (4.13)

where

Q̂(t, k) = −
ik

4

(

−1 + cos g0(t) −i sin g0(t)
i sin g0(t) 1 − cos g0(t)

)

−
g′0(t)

2
sin g0(t)I −

i

4
(g1(t) − g′0(t))σ1
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and ν1(T, k) = I. Now the small k behavior of ν1(t, k) can be easily obtained from the analysis of the
corresponding Volterra integral equations satisfied by the columns of ν1(t, k). More precisely, since

µ
(2)
1 (0, t, k) = Λ−1(0, t)

(

ν
(1)
1 (t, k)e−

i
2 (k+ 1

k
)(t−T ) ν

(2)
1 (t, k)

)

Λ(2)(0, T ), (4.14)

we need the Volterra integral equations for ν̃
(1)
1 := ν

(1)
1 e−

i
2 (k+ 1

k
)(t−T ) and ν2. From (4.13) we deduce the

integral equations

ν̃
(1)
1 (t, k) =

(

e−
i
2 (k+ 1

k
)(t−T )

0

)

−

∫ T

t

(

e−
i
2 (k+ 1

k
)(t−τ) 0

0 1

)

Q̂(τ, k)ν̃
(1)
1 (τ, k)dτ

and

ν
(2)
1 (t, k) =

(

0
1

)

−

∫ T

t

(

e−
i
2 (k+ 1

k
)(t−τ) 0

0 1

)

Q̂(τ, k)ν
(2)
1 (τ, k)dτ,

from which we conclude that

ν̃
(1)
1 (t, k) =

(

cos
g0(t)

2

cos
g0(T )

2

0

)

e−
i
2 (k+ 1

k
)(t−T ) + O(k),

ν
(2)
1 (t, k) =

(

0
cos

g0(t)
2

cos
g0(T )

2

)

+ O(k) (4.15)

as k → 0, Im k ≤ 0.
Finally, combining (4.14) and (4.15) evaluated at t = 0, we obtain

(

B(T, k)
A(T, k)

)

=

(

i sin g0(T )
2 cos g0(0)

2 e
i

2k
T − i sin g0(0)

2 cos g0(T )
2

sin g0(0)
2 sin g0(T )

2 + cos g0(0)
2 cos g0(T )

2

)

+ O(k), k → 0, Im k ≤ 0.

Particularly, in the case of g0(0) = 0, we have (replacing T by t)

B(t, k) = i sin
g0(t)

2
exp

{

i

2k
t

}

+ O(k), A(t, k) = cos
g0(t)

2
+ O(k).

Similarly,

B(t, k) = i sin
h0(t)

2
exp

{

i

2k
t

}

+ O(k), A(t, k) = cos
h0(t)

2
+ O(k),

and statement (i) of the lemma follows.

(ii) Since c(T, k) = (µ4)12(0, T, k), we need to study the small k behavior of µ4(0, T, k). The analysis
follows the same lines as in the proof of (i). Namely, we notice that Q in (2.1a) can be written as

Q(x, t, k) = −
i

4
(qx(x, t) + qt(x, t))σ1 −

i

4k
(σ3 − Λ−1(x, t)σ3Λ(x, t)),

which suggests to represent µ4(x, T, k), 0 ≤ x ≤ L in the form

µ4(x, T, k) = Λ−1(x, T )ν4(x, k)e−
i
4 (k− 1

k
)σ3(x−L)Λ(L, T )e

i
4 (k− 1

k
)σ3(x−L), (4.16)

where ν4(x, k) satisfies the x-differential equation

dν4

dx
+

i

4
(k −

1

k
)σ̂3ν4 = Q̌(x, k)ν4 (4.17)

with

Q̌(x, k) = −
ik

4

(

−1 + cos q(x, T ) −i sin q(x, T )
i sin q(x, T ) 1 − cos q(x, T )

)

−
qx(x, T )

2
sin q(x, T )I +

i

4
(qx(x, T ) − qt(x, T ))σ1.
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From (4.16) we have

µ
(2)
4 (x, T, k)e−

i
2 (k− 1

k
)(L−x) = Λ−1(x, T )(ν

(1)
4 (x, k) ν

(1)
4 (x, k)e−

i
2 (k− 1

k
)(L−x))Λ(2)(L, T ). (4.18)

Equation (4.17) together with the initial condition ν4(L, k) = I leads to the Volterra integral equations

for ν
(1)
4 and ν̃

(2)
4 := ν

(2)
4 e−

i
4 (k− 1

k
)(L−x):

ν
(1)
4 (x, k) =

(

1
0

)

−

∫ L

x

(

1 0

0 e−
i
2 (k− 1

k
)(y−x)

)

Q̌(x, y)ν
(1)
4 (y, k)dy,

ν̃
(2)
4 (x, k) =

(

0

e−
i
2 (k− 1

k
)(L−x)

)

−

∫ L

x

(

1 0

0 e−
i
2 (k− 1

k
)(y−x)

)

Q̌(x, y)ν̃
(2)
4 (y, k)dy,

from which we conclude that

ν
(1)
4 (x, k) =

(

cos
q(x,T )

2

cos q(L,T )
2

0

)

+ O(k),

ν̃
(2)
4 (x, k) =

(

0
cos

q(x,T )
2

cos q(L,T )
2

)

e−
i
2 (k− 1

k
)(L−x) + O(k) (4.19)

as k → 0, Im k ≤ 0. Substituting this into (4.18) and evaluating at x = 0 gives

(µ4)12(0, T, k)e−
i
2 (k− 1

k
)L = i cos

q(0, T )

2
sin

q(L, T )

2
− i sin

q(0, T )

2
cos

q(L, T )

2
exp

{

i

2k
L

}

+ O(k).

Taking into account that q(0, T ) = g0(T ) and q(L, T ) = h0(T ) and replacing T by t we obtain statement
(ii). Lemma is proved.

Rewrite the right-hand side of (4.12) as
∫

∂D
(0)
1

E−1(k)

(

1 −
1

k2

)

H̃(t, k)e−
i
2 (k+ 1

k
)t′dk +

∫

∂D
(0)
1

E−1(k)

(

1 −
1

k2

)

H̃c(t, k)e
i
2 (k+ 1

k
)(t−t′)dk, (4.20)

where

H̃(t, k) =

(

G(t, k)

e
i
2 (k− 1

k
)LG(t, 1

k ) + e
i
2 (k+ 1

k
)t
(

α(t) − e
ik
2 Lβ(t)

)

)

and

H̃c(t, k) =

( 1
2c(t, k)

1
2e

i
2 (k− 1

k
)Lc(t, 1

k ) − α(t) + e
ik
2 Lβ(t).

)

Then Jordan’s Lemma together with Lemma 2 implies that the second integral in (4.20) vanishes. Hence,
we arrive at the following equation

(

F
(0)
1 (t, 2t′ − t)

F
(0)
1 (t, 2t′ − t)

)

=
1

4π

∫

∂D
(0)
1

E−1(k)

(

1 −
1

k2

)

H̃(t, k)e−
i
2 (k+ 1

k
)t′dk.

Evaluating this at t′ = t and using (4.4) and (4.5) in the left-hand side, we find the following equations
for g1(t) and h1(t):

g1(t) = −ġ0(t) +
2i

π

∫

∂D
(0)
1

1

1 − ei(k−1/k)L

(

1 −
1

k2

){

e
i
2 (k− 1

k
)Le−

i
2 (k+ 1

k
)t(G(t, k) − G(t,

1

k
)

−
i

2
sin

h0(t)

2
cos

g0(t)

2
+

i

2
sin

g0(t)

2
cos

h0(t)

2
e

ik
2 L

}

,

h1(t) = −ḣ0(t) +
2i

π

∫

∂D
(0)
1

1

1 − ei(k−1/k)L

(

1 −
1

k2

){

e−
i
2 (k+ 1

k
)t

(

G(t, k) − ei(k− 1
k
)LG(t,

1

k
)

)

−e
i
2 (k− 1

k
)L

(

i

2
sin

h0(t)

2
cos

g0(t)

2
+

i

2
sin

g0(t)

2
cos

h0(t)

2
e

ik
2 L

)}

. (4.21)
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The functions G(t, k) and G(t, 1
k ) involved in (4.21) can be expressed in terms of Φ(t, k) and Ψ(t, k),

see Definitions 2 and 3. Indeed, (3.6) and (3.9) together with (4.2) give

∫ t

0

F1(t, 2τ − t, k)e
i
2 (k+ 1

k
)τdτ =

1

2
Φ1(t, k)e

i
2 (k+ 1

k
)t,

∫ t

0

F1(t, 2τ − t, k)e
i
2 (k+ 1

k
)τdτ =

1

2
Ψ1(t, k)e

i
2 (k+ 1

k
)t, (4.22)

∫ t

0

F2(t, t − 2τ, k̄)e
i
2 (k+ 1

k
)τdτ =

1

2
(Φ2(t, k̄) − 1),

∫ t

0

F2(t, t − 2τ, k̄)e
i
2 (k+ 1

k
)τdτ =

1

2
(Ψ2(t, k̄) − 1). (4.23)

Since the exponentials in (4.22) depend on k only through k + 1/k, supplementing (4.22) with the two
equations obtained from (4.22) by replacing k with 1/k and taking into account (4.3) we find the following
expressions

1

k

∫ t

0

F
(1)
1 (t, 2τ − t, k)e

i
2 (k+ 1

k
)τdτ =

1

2

1

1 − k2
e

i
2 (k+ 1

k
)t

(

Φ1(t, k) − Φ1(t,
1

k
)

)

,

1

k

∫ t

0

F
(1)
1 (t, 2τ − t, k)e

i
2 (k+ 1

k
)τdτ =

1

2

1

1 − k2
e

i
2 (k+ 1

k
)t

(

Ψ1(t, k) − Ψ1(t,
1

k
)

)

. (4.24)

Substituting (4.22)-(4.24) into (4.9) we obtain the following expression for G:

G(t, k) =
1

2
e

i
2 (k+ 1

k
)t

{

e
i
2 (k− 1

k
)L

[

1

1 − k2
(Ψ1(t, k) − Ψ1(t,

1

k
)) + (Φ2(t, k̄) − 1)Ψ1(t, k)

]

−
1

1 − k2
(Φ1(t, k) − Φ1(t,

1

k
)) − (Ψ2(t, k̄) − 1)Φ1(t, k)

}

. (4.25)

Using (4.25) in (4.21) we obtain the equations for g1 and h1 in terms of Φ and Ψ. These equations,
together with (3.5) and the similar equation for Ψ(t, k) constitute a system of four nonlinear ODEs for
Φ1, Φ2, Ψ1, and Ψ2, which in turn is equivalent to four nonlinear integral equations of the Volterra type.

mKdV I:

Lemma 3. The spectral functions A(t, k), B(t, k), A(t, k), B(t, k) have the following integral represen-
tations

A(t, k) = 1 + 2

∫ t

0

F2(t, t − 2τ, k̄)e8ik3τdτ,

B(t, k) = −2

∫ t

0

F1(t, 2τ − t, k)e8ik3τdτ,

A(t, k) = 1 + 2

∫ t

0

F2(t, t − 2τ, k̄)e8ik3τdτ,

B(t, k) = −2

∫ t

0

F1(t, 2τ − t, k)e8ik3τdτ. (4.26)
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Here F1 and F2 are polynomials in k of degree 2:

F1(t, s, k) = k2F
(2)
1 (t, s) + ikF

(1)
1 (t, s) + F

(0)
1 (t, s)

≡ k2N1(t, s) + ik(M1(t, s) −
1

2
g0(t)N2(t, s))

+L1(t, s) +
1

2
g0(t)M2(t, s)) +

1

4
g1(t)N2(t, s),

F2(t, s, k) = k2F
(2)
2 (t, s) + ikF

(1)
2 (t, s) + F

(0)
2 (t, s)

≡ k2N2(t, s) + ik(M2(t, s) +
λ

2
g0(t)N1(t, s))

+L2(t, s) +
λ

2
g0(t)M1(t, s)) +

λ

4
g1(t)N1(t, s), (4.27)

where Lj(t, s), Mj(t, s), and Nj(t, s), j = 1, 2 solve the Goursat problem for a system of linear differential
equations with coefficients determined by {gl(t)}2

0 and with the boundary conditions

L2(t,−t) = M2(t,−t) = N2(t,−t) = 0,

L1(t, t) = λg3
0(t) −

1

2
g2(t),

M1(t, t) = g1(t),

N1(t, t) = 2g0(t). (4.28)

Analogously, the functions F1 and F2 are expressed in terms of Lj, Mj, and Nj satisfying the similar
system of equations, with {gl(t)}2

0 replaced by {hl(t)}2
0.

Similarly to the sG equation, the proof of the lemma is based on the Gelfand-Levitan-Marchenko
representation for the solution of the t-equation in the Lax pair (1.7) with the initial condition µ(0, k) = I
(x is fixed):

µ(t, k) = I +

∫ t

−t

(

L(t, s) + ikM(t, s) + k2N(t, s)
)

e4ik3(t−s)σ3ds.

The functions Lj , Mj , and Nj are simply expressed in terms of the matrix entries of L, M , and N . The
details can be found in [9].

As in the case of the sG equation, we will continue the analysis of the global relation in the case
a(k) ≡ 1, b(k) ≡ 0 corresponding to the zero initial conditions q(x, 0) = 0. In this case, it follows from
(2.36) that

e2ikLA(t, k)B(t, k) − B(t, k)A(t, k) = e8ik3tc(t, k), k ∈ D1 ∪ D3, (4.29)

where

c(t, k) = O

(

1

k

)

, k ∈ D1 = {k : Im k > 0, Imk3 > 0},

e−2ikLc(t, k) = O

(

1

k

)

, k ∈ D3 = {k : Im k < 0, Imk3 > 0}. (4.30)

In the case of the mKdV I equation, the given (linearly well-posed) boundary conditions are g0(t),
h0(t), and h1(t), and we are looking for expressions for g1(t), g2(t), and h2(t).

Substitute (4.26) into (4.29) and rewrite the resulting equation in the form:

−e2ikL

∫ t

0

F
(0)
1 (t, 2τ − t)e8ik3τdτ +

∫ t

0

F
(0)
1 (t, 2τ − t)e8ik3τdτ

+ik

∫ t

0

F
(1)
1 (t, 2τ − t)e8ik3τdτ = G1(t, k) + G2(t, k) + e8ik3tc(t, k), (4.31)
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where

G1(t, k) = e2ikL

(

ik

∫ t

0

F
(1)
1 (t, 2τ − t)e8ik3τdτ + k2

∫ t

0

F
(2)
1 (t, 2τ − t)e8ik3τdτ

)

−k2

∫ t

0

F
(2)
1 (t, 2τ − t)e8ik3τdτ, (4.32)

G2(t, k) = 2e2ikL

∫ t

0

F2(t, t − 2τ, k)e8ik3τdτ

∫ t

0

F1(t, 2τ − t, k)e8ik3τdτ

−2

∫ t

0

F2(t, t − 2τ, k)e8ik3τdτ

∫ t

0

F1(t, 2τ − t, k)e8ik3τdτ. (4.33)

Let D = {k : 0 < arg k < π/3}. Considering (4.31) in D as well as replacing k by Ek and by E2k in

(4.31), where E = e
2πi
3 , we obtain three equations, which are valid for k ∈ D. These equations can be

written in the vector form as follows:

E(k)U(t, k) = H1(t, k) + H2(t, k) + e8ik3tHc(t, k), k ∈ D, (4.34)

where

E(k) =





−e2ikL 1 1
−e2iEkL 1 E

−1 e−2iE2kL E2e−2iE2kL



 ,

U(t, k) =
(∫ t

0

F
(0)
1 (t, 2τ − t)e8ik3τdτ,

∫ t

0

F
(0)
1 (t, 2τ − t)e8ik3τdτ, ik

∫ t

0

F
(1)
1 (t, 2τ − t)e8ik3τdτ

)T

,

Hj(t, k) =
(

Gj(t, k), Gj(t, Ek), e−2iE2kLGj(t, E
2k)
)T

, j = 1, 2,

Hc(t, k) =
(

c(t, k), c(t, Ek), e−2iE2kLc(t, E2k)
)T

.

Notice that det E(k) → 1 − E 6= 0 as |k| → ∞, k ∈ D̄.

Multiply (4.34) by diag{k2, k2,−ik}E−1(k)e−8ik3t′ , 0 < t′ < t, and integrate over the contour ∂D(0),
which is the boundary of D deformed (in its finite part) to pass above the zeros of det E(k). Then (4.30)
implies that the term containing Hc vanishes.

In order to evaluate the other terms we will use the following identities (see, e.g., [8]):

∫

∂D(0)

k2

∫ t

0

α(τ)e8ik3(τ−t′)dτdk =
π

12
α(t′), (4.35)

∫

∂D(0)

km

∫ t

0

α(τ)e8ik3(τ−t′)dτdk =

∫

∂D(0)

km

(

∫ t′

0

α(τ)e8ik3(τ−t′)dτ −
1

8ik3
α(t′)

)

dk, (4.36)

where m = 3, 4 and α(τ) is a smooth function for 0 < τ < t. Then the integration by part together with
Jordan’s lemma show that one can pass to the limit as t′ → t in the right-hand side of (4.36).

Applying (4.36) to the integral term containing H1 one obtains

∫

∂D(0)

diag{k2, k2,−ik}E−1(k)H1(t, k)e−8ik3t′dk =

∫

∂D(0)





k2 0 0
0 k2 0
0 0 −ik



 E−1(k)





G̃1(t, t
′, k)

G̃1(t, t
′, Ek)

e−2iE2kLG̃1(t, t
′, E2k)



 dk, (4.37)
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where

G̃1(t, t
′, k) = e2ikL

{

ik

∫ t′

0

F
(1)
1 (t, 2τ − t)e8ik3(τ−t′)dτ −

1

8k2
F

(1)
1 (t, 2t′ − t)

+ k2

∫ t′

0

F
(2)
1 (t, 2τ − t)e8ik3(τ−t′)dτ −

1

8ik
F

(2)
1 (t, 2t′ − t)

}

−k2

∫ t′

0

F
(2)
1 (t, 2τ − t)e8ik3(τ−t′)dτ +

1

8ik
F

(2)
1 (t, 2t′ − t). (4.38)

Applying (4.35) to the integral in the left-hand side of (4.34) we arrive at the equation







F
(0)
1 (t, 2t′ − t)

F
(0)
1 (t, 2t′ − t)

F
(1)
1 (t, 2t′ − t)






=

12

π

∫

∂D(0)





k2 0 0
0 k2 0
0 0 −ik



 E−1(k)





G̃1(t, t
′, k)

G̃1(t, t
′, Ek)

e−2iE2kLG̃1(t, t
′, E2k)



 dk

+
12

π

∫

∂D(0)





k2 0 0
0 k2 0
0 0 −ik



 E−1(k)





G2(t, k)
G2(t, Ek)

e−2iE2kLG2(t, E
2k)



 e−8ik3t′dk

(4.39)

Evaluating this equation at t′ = t and using (4.27) and (4.28) we find the following equations for h2(t),
g1(t), and g2(t):

g1(t) =
1

2
g0(t)N2(t, t) −

12i

π

∫

∂D(0)

k
[

E−1(k)
]

3





G̃1(t, k)

G̃1(t, Ek)

e−2iE2kLG̃1(t, E
2k)



 dk

−
12i

π

∫

∂D(0)

k
[

E−1(k)
]

3





G2(t, k)
G2(t, Ek)

e−2iE2kLG2(t, E
2k)



 e−8ik3tdk,

g2(t) = 2λg3
0(t) + g0(t)M2(t, t) +

1

2
g1(t)N2(t, t) −

24

π

∫

∂D(0)

k2
[

E−1(k)
]

2





G̃1(t, k)

G̃1(t, Ek)

e−2iE2kLG̃1(t, E
2k)



 dk

−
24

π

∫

∂D(0)

k2
[

E−1(k)
]

2





G2(t, k)
G2(t, Ek)

e−2iE2kLG2(t, E
2k)



 e−8ik3tdk,

h2(t) = 2λh3
0(t) + h0(t)M2(t, t) +

1

2
h1(t)N2(t, t) −

24

π

∫

∂D(0)

k2
[

E−1(k)
]

1





G̃1(t, k)

G̃1(t, Ek)

e−2iE2kLG̃1(t, E
2k)



 dk

−
24

π

∫

∂D(0)

k2
[

E−1(k)
]

1





G2(t, k)
G2(t, Ek)

e−2iE2kLG2(t, E
2k)



 e−8ik3tdk, (4.40)

where
[

E−1(k)
]

j
, j = 1, 2, 3, denotes the jth row of E−1(k) and

G̃1(t, k) = e2ikL

{

ik

∫ t

0

(

M1(t, 2τ − t) −
1

2
h0(t)N2(t, 2τ − t)

)

e8ik3(τ−t)dτ −
1

8k2
h1(t)

+
1

16k2
h0(t)N2(t, t) + k2

∫ t

0

N1(t, 2τ − t)e8ik3(τ−t)dτ −
1

4ik
h0(t)

}

−k2

∫ t

0

N1(t, 2τ − t)e8ik3(τ−t)dτ +
1

4ik
g0(t). (4.41)
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The functions G̃1(t, k), G2(t, k), N2(t, t), M2(t, t), N2(t, t), and M2(t, t) involved in (4.40) can be
expressed in terms of Φ(t, k) and Ψ(t, k), see Definitions 2 and 3. Indeed, (3.6) and (3.9) together with
(4.2) give

∫ t

0

F1(t, 2τ − t, k)e8ik3τdτ =
1

2
Φ1(t, k)e8ik3t, (4.42)

∫ t

0

F1(t, 2τ − t, k)e8ik3τdτ =
1

2
Ψ1(t, k)e8ik3t, (4.43)

∫ t

0

F2(t, t − 2τ, k̄)e8ik3τdτ =
1

2
(Φ2(t, k̄) − 1), (4.44)

∫ t

0

F2(t, t − 2τ, k̄)e8ik3τdτ =
1

2
(Ψ2(t, k̄) − 1). (4.45)

Hence, G2(t, k) can be written as follows:

G2(t, k) =
1

2
e8ik3t

{

e2ikL(Φ2(t, k̄) − 1)Ψ1(t, k) − (Ψ2(t, k̄) − 1)Φ1(t, k)
}

. (4.46)

Since the exponentials in (4.42) depend on k only through k3, supplementing (4.42) with the two
equations obtained from (4.42) by replacing k with Ek and E2k and taking into account (4.27) we obtain
a linear system of equations, the solution of which gives







k2
∫ t

0
F

(2)
1 (t, 2τ − t, k)e8ik3τdτ

ik
∫ t

0 F
(1)
1 (t, 2τ − t, k)e8ik3τdτ

∫ t

0
F

(0)
1 (t, 2τ − t, k)e8ik3τdτ






=

1

6
e8ik3t





Φ1(t, k) + EΦ1(t, Ek) + E2Φ1(t, E
2k)

Φ1(t, k) + E2Φ1(t, Ek) + EΦ1(t, E
2k)

Φ1(t, k) + Φ1(t, Ek) + Φ1(t, E
2k)



 (4.47)

Similarly, supplementing (4.44) with the two equations obtained from (4.44) by replacing k with Ek
and E2k and taking into account (4.27) we find







k2
∫ t

0
F

(2)
2 (t, t − 2τ, k)e8ik3τdτ

ik
∫ t

0 F
(1)
2 (t, t − 2τ, k)e8ik3τdτ

∫ t

0 F
(0)
2 (t, t − 2τ, k)e8ik3τdτ






=

1

6





Φ2(t, k) + EΦ2(t, Ek) + E2Φ2(t, E
2k)

Φ2(t, k) + E2Φ2(t, Ek) + EΦ2(t, E
2k)

Φ1(t, k) + Φ1(t, Ek) + Φ1(t, E
2k) − 3



 (4.48)

Using (4.35) and the expressions for F
(1)
2 (t, s) and F

(2)
2 (t, s) in terms of Nj(t, s), j = 1, 2 and M2(t, s),

see (4.27), from (4.48) we conclude that

N2(t, t) =
2

π

∫

∂D(0)

(

Φ2(t, k) + EΦ2(t, Ek) + E2Φ2(t, E
2k)
)

dk,

M2(t, t) = −λg2
0(t) −

2i

π

∫

∂D(0)

k
(

Φ2(t, k) + E2Φ2(t, Ek) + EΦ2(t, E
2k)
)

dk. (4.49)

Similarly,

N2(t, t) =
2

π

∫

∂D(0)

(

Ψ2(t, k) + EΨ2(t, Ek) + E2Ψ2(t, E
2k)
)

dk,

M2(t, t) = −λg2
0(t) −

2i

π

∫

∂D(0)

k
(

Ψ2(t, k) + E2Ψ2(t, Ek) + EΨ2(t, E
2k)
)

dk. (4.50)
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Substituting (4.47) and (4.50) into (4.41) we obtain the following expression for G̃1:

G̃1(t, k) = e2ikL

{

1

3
e8ik3t

[

Ψ1(t, k) − Ψ1(t, Ek) − Ψ1(t, E
2k)
]

−
1

8k2
h1(t) −

1

4ik
h0(t)

+
1

8πk2
h0(t)

∫

∂D(0)

(

Ψ2(t, ζ) + EΨ2(t, Eζ) + E2Ψ2(t, E
2ζ)
)

dζ







−
1

6
e8ik3t

[

Φ1(t, k) + EΦ1(t, Ek) + E2Φ1(t, E
2k)
]

+
1

4ik
g0(t). (4.51)

Using (4.46), (4.51), (4.49), and (4.50) in (4.40) we obtain the equations for g1, g2, and h2 in terms of
Φ and Ψ. These equations, together with (3.5) and the similar equation for Ψ(t, k) constitute a system
of four nonlinear ODEs for Φ1, Φ2, Ψ1, and Ψ2.

mKdV II:

The integral representations for A and B are the same as in (4.26)- (4.28) but with g0 and g2 replaced
by −g0 and −g2, respectively. Similarly, the integral representations for A and B are the same as in the
case of the mKdV I, with h0 and h2 replaced by −h0 and −h2, respectively.

The global relation (4.29) and relations (4.30) become

e−2ikLA(t, k)B(t, k) − B(t, k)A(t, k) = e8ik3tc(t, k), k ∈ D1 ∪ D3, (4.52)

and

c(t, k) = O

(

1

k

)

, k ∈ D1 = {k : Im k < 0, Imk3 > 0},

e2ikLc(t, k) = O

(

1

k

)

, k ∈ D3 = {k : Im k > 0, Imk3 > 0}, (4.53)

respectively.
Let g0(t), g1(t), and h0(t) be the given boundary conditions. Then the analysis of the global relation

consists in finding equations for g2, h1, and h2. Substitute (4.26) into (4.52) and rewrite the resulting
equation in the form:

−e−2ikL

∫ t

0

F
(0)
1 (t, 2τ − t)e8ik3τdτ − e−2ikLik

∫ t

0

F
(1)
1 (t, 2τ − t)e8ik3τdτ

+

∫ t

0

F
(0)
1 (t, 2τ − t)e8ik3τdτ = G1(t, k) + G2(t, k) + e8ik3tc(t, k), (4.54)

where

G1(t, k) = e−2ikLk2

∫ t

0

F
(2)
1 (t, 2τ − t)e8ik3τdτ − ik

∫ t

0

F
(1)
1 (t, 2τ − t)e8ik3τdτ

−k2

∫ t

0

F
(2)
1 (t, 2τ − t)e8ik3τdτ, (4.55)

G2(t, k) = 2e−2ikL

∫ t

0

F2(t, t − 2τ, k)e8ik3τdτ

∫ t

0

F1(t, 2τ − t, k)e8ik3τdτ

−2

∫ t

0

F2(t, t − 2τ, k)e8ik3τdτ

∫ t

0

F1(t, 2τ − t, k)e8ik3τdτ. (4.56)

Let, as above, D = {k : 0 < arg k < π/3}. Considering (4.54) in D as well as replacing k by Ek and

by E2k in (4.54), where E = e
2πi
3 , we get three equations valid for k ∈ D, which can be written in the

vector form as follows:

E(k)U(t, k) = H1(t, k) + H2(t, k) + e8ik3tHc(t, k), k ∈ D, (4.57)
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where

E(k) =





−1 −1 e2ikL

−1 −E e2iEkL

−e−2iE2kL −E2e−2iE2kL 1



 ,

U(t, k) =
(∫ t

0

F
(0)
1 (t, 2τ − t)e8ik3τdτ, ik

∫ t

0

F
(1)
1 (t, 2τ − t)e8ik3τdτ,

∫ t

0

F
(0)
1 (t, 2τ − t)e8ik3τdτ

)T

,

Hj(t, k) =
(

e2ikLGj(t, k), e2iEkLGj(t, Ek), Gj(t, E
2k)
)T

, j = 1, 2,

Hc(t, k) =
(

e2ikLc(t, k), e2iEkLc(t, Ek), c(t, E2k)
)T

.

Notice that det E(k) → E − 1 6= 0 as |k| → ∞, k ∈ D̄.

Multiply (4.57) by diag{k2,−ik, k2}E−1(k)e−8ik3t′ , 0 < t′ < t, and integrate over the contour ∂D(0),
which is the boundary of D deformed (in its finite part) to pass above the zeros of det E(k). Then (4.53)
implies that the term containing Hc vanishes, and the resulting equation takes the form







F
(0)
1 (t, 2t′ − t)

F
(1)
1 (t, 2t′ − t)

F
(0)
1 (t, 2t′ − t)






=

12

π

∫

∂D(0)





k2 0 0
0 k2 0
0 0 −ik



 E−1(k)





e2ikLG̃1(t, t
′, k)

e2iEkLG̃1(t, t
′, Ek)

G̃1(t, t
′, E2k)



 dk

+
12

π

∫

∂D(0)





k2 0 0
0 k2 0
0 0 −ik



 E−1(k)





e2ikLG2(t, k)
e2iEkLG2(t, Ek)

G2(t, E
2k)



 e−8ik3t′dk

(4.58)

where

G̃1(t, t
′, k) = e−2ikL

{

k2

∫ t′

0

F
(2)
1 (t, 2τ − t)e8ik3(τ−t′)dτ −

1

8ik
F

(2)
1 (t, 2t′ − t)

}

−ik

∫ t′

0

F
(1)
1 (t, 2τ − t)e8ik3(τ−t′)dτ +

1

8k2
F

(1)
1 (t, 2t′ − t)

−k2

∫ t′

0

F
(2)
1 (t, 2τ − t)e8ik3(τ−t′)dτ +

1

8ik
F

(2)
1 (t, 2t′ − t). (4.59)

Evaluating this equation at t′ = t and using (4.27) and (4.28) we find the following equations for g2(t),
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h1(t), and h2(t):

g1(t) = −
1

2
g0(t)N2(t, t) −

12i

π

∫

∂D(0)

k
[

E−1(k)
]

3





e2ikLG̃1(t, k)

e2iEkLG̃1(t, Ek)

G̃1(t, E
2k)





−
12i

π

∫

∂D(0)

k
[

E−1(k)
]

2





e2ikLG2(t, k)
e2iEkLG2(t, Ek)

G2(t, E
2k)



 e−8ik3tdk,

h1(t) = −
1

2
h0(t)N2(t, t) −

12i

π

∫

∂D(0)

k
[

E−1(k)
]

2





e2ikLG̃1(t, k)

e2iEkLG̃1(t, Ek)

G̃1(t, E
2k)



 dk

−
12i

π

∫

∂D(0)

k
[

E−1(k)
]

3





e2ikLG2(t, k)
e2iEkLG2(t, Ek)

G2(t, E
2k)



 e−8ik3tdk,

h2(t) = 2λh3
0(t) + h0(t)M2(t, t) −

1

2
h1(t)N2(t, t) +

24

π

∫

∂D(0)

k2
[

E−1(k)
]

1





e2ikLG̃1(t, k)

e2iEkLG̃1(t, Ek)

G̃1(t, E
2k)



 dk

+
24

π

∫

∂D(0)

k2
[

E−1(k)
]

1





e2ikLG2(t, k)
e2iEkLG2(t, Ek)

G2(t, E
2k)



 e−8ik3tdk, (4.60)

where

G̃1(t, k) = e−2ikL

{

k2

∫ t

0

N1(t, 2τ − t)e8ik3(τ−t)dτ +
1

4ik
h0(t)

}

−ik

∫ t

0

(

M1(t, 2τ − t) +
1

2
g0(t)N2(t, 2τ − t)

)

e8ik3(τ−t)dτ +
1

8k2
g1(t)

+
1

16k2
g0(t)N2(t, t) − k2

∫ t

0

N1(t, 2τ − t)e8ik3(τ−t)dτ −
1

4ik
g0(t). (4.61)

Now one can express the functions involved in (4.60) in terms of Φ and Ψ. The formulas for N2(t, t),
M2(t, t), N2(t, t), and M2(t, t) have the same form as in the case of mKdV I, (4.49) and (4.50), whereas

G2(t, k) =
1

2
e8ik3t

{

e−2ikL(Φ2(t, k̄) − 1)Ψ1(t, k) − (Ψ2(t, k̄) − 1)Φ1(t, k)
}

(4.62)

and

G̃1(t, k) = e−2ikL

{

1

6
e8ik3t

[

Ψ1(t, k) + EΨ1(t, Ek) + E2Ψ1(t, E
2k)
]

+
1

4ik
h0(t)

}

−
1

3
e8ik3t

[

Φ1(t, k) − Φ1(t, Ek) − Φ1(t, E
2k)
]

+
1

8k2
g1(t) −

1

4ik
g0(t)

+
1

8πk2
g0(t)

∫

∂D(0)

(

Φ2(t, ζ) + EΦ2(t, Eζ) + E2Φ2(t, E
2ζ)
)

dζ. (4.63)

5 Conclusions

We have presented a general method for the analysis of initial boundary value problems for nonlinear
integrable evolution equations on the finite interval and have applied this method to the sine-Gordon and
the two mKdV equations. In particular:

1. Given the Dirichlet data for the sG equation, q(0, t) = g0(t) and q(L, t) = g1(t), we have charac-
terized the Neumann boundary values qx(0, t) = g1(t) and qx(L, t) = h1(t) through a system of
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nonlinear ODEs for the functions Φ1, Φ2, Ψ1, and Ψ2. The functions Φ1 and Φ2 satisfy equations
(3.5), the functions Ψ1 and Ψ2 satisfy similar equations, and the Neumann boundary values are
given by equations (4.21) and (4.25).

Similarly, given the boundary data q(0, t) = g0(t), q(L, t) = h0(t), qx(L, t) = h1(t) for the mKdV I
equation (q(0, t) = g0(t), qx(0, t) = g1(t), q(L, t) = h0(t) for the mKdV II equation), we have
characterized the boundary values qx(0, t) = g1(t), qxx(0, t) = g2(t), qxx(L, t) = h2(t) (qxx(0, t) =
g2(t), qx(L, t) = h1(t), qxx(L, t) = h2(t), respectively) through a system of nonlinear ODEs.

2. Given the initial conditions q(x, 0) = q0(x) (q(x, 0) = q0(x) and qt(x, 0) = q1(x) for the sG equation)
we have defined {a(k), b(k)}, see Definition 1. Given {gl(t)}

n−1
0 we have defined {A(k), B(k)}, and

given {hl(t)}
n−1
0 we have defined {A(k),B(k)}, see Definitions 2 and 3.

3. Given {a(k), b(k), A(k), B(k),A(k),B(k)} we have defined a Riemann-Hilbert problem for M(x, t, k)
and then we have defined q(x, t) in terms of M . We have shown that q(x, t) solves the given nonlinear
equation and that

q(x, 0) = q0(x) (and qt(x, 0) = q1(x) for sG )

∂l
xq(0, t) = gl(t), ∂l

xq(L, t) = hl(t), 0 ≤ l ≤ n − 1,

see Theorem 1.

The most difficult step of this method is the analysis of the global relation coupling the spectral
functions. Generally, this leads to a system of nonlinear ODEs. For integrable evolution PDEs on the
half-line, there exist particular boundary conditions, the so-called linearizable boundary conditions, for
which this nonlinear system can be avoided: the global relation yields directly S(k) in terms of s(k) and
the prescribed boundary conditions [5, 6, 7]. Different aspects of linearizable boundary conditions have
been studied by a number of authors, see, for example, [16]-[19]. The analysis of linearizable boundary
conditions on a finite domain will be presented elsewhere. Here we only note that x-periodic boundary
conditions belong to the linearizable class. In this case S(k) = SL(k) and the global relation simplifies.
The analysis of this simplified global relation, together with the results presented in this paper, yields a
new formalism for the solution of this classical problem.

The main advantage of the inverse scattering method, in comparison with the standard PDE tech-
niques, is that it yields explicit asymptotic results. Indeed, using the inverse scattering method, the
solution of the Cauchy problem on the line for an integrable nonlinear PDE can be expressed through
the solution of a matrix Riemann-Hilbert problem which has a jump matrix involving an exponential
(x, t)-dependence. By making use of the Deift-Zhou method [20] (which is a nonlinear version of the
classical steepest descent method), it is possible to compute explicitly the long time behavior of the
solution. Furthermore, using a nontrivial extension of the Deift-Zhou method [21], it is also possible to
compute the small dispersion limit of the solution. Neither of these two important asymptotic results
can be obtained by standard PDE techniques.

An important feature of the method of [3] is that it yields the solution of the given initial boundary
value problem in terms of a matrix Riemann-Hilbert problem which also involves a jump matrix with
an exponential (x, t)-dependence. The curve along which this jump matrix is defined, is now more
complicated, but this does not pose any additional difficulties. Thus, it is again possible to obtain explicit
asymptotic results. Indeed, for problems on the half-line, the long time asymptotics for decreasing and
for time-periodic boundary conditions is obtained in [22]-[25] (see also [5] and [7]). Furthermore, the zero
dispersion limit of the NLS equation is computed in [26]. For problems on the interval, it is again possible
to study the asymptotic properties of the solution. In particular, it should be possible to study the small
dispersion limit.

Another important feature of the method of [3] is that it characterizes the generalized Dirichlet-to-
Neumann map. For example, for the Dirichlet problem for the NLS equation on the half-line, the method
of [3] yields qx(0, t) in terms of q(x, 0) and q(0, t). Actually, it is shown in [8] and [9] that qx(0, t) can
be expressed explicitly through the solution of a system of nonlinear ODEs uniquely defined in terms of
q(x, 0) and q(0, t). This is the first time in the literature that such an explicit result is obtained for a
nonlinear evolution PDE. In this paper we have presented similar results for initial boundary problems
on the interval. For example, for the case of the Dirichlet problem for the sG equation, equations (4.21)
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and (4.25) express qx(0, t) and qx(L, t) in terms of a system of four nonlinear ODEs which is uniquely
defined in terms of q(x, 0), qt(x, 0), q(0, t), and q(L, t). Such explicit results cannot be obtained by the
standard PDE techniques.
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