
10. Scattering Theory

The basic idea behind scattering theory is simple: there’s an object that you want to

understand. So you throw something at it. By analysing how that something bounces

o↵, you can glean information about the object itself.

A very familiar example of scattering theory is called “looking at things”. In this

section we’re going to explore what happens when you look at things by throwing a

quantum particle at an object.

10.1 Scattering in One Dimension

We start by considering a quantum particle moving along a line. The maths here will

be simple, but the physics is su�ciently interesting to exhibit many of the key ideas.

The object that we want to understand is some poten-
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Figure 89:

tial V (x). Importantly, the potential is localised to some

region of space which means that V (x) ! 0 as x ! ±1.

An example is shown to the right. We will need the poten-

tial to fall-o↵ to be suitably fast in what follows although,

for now, we won’t be careful about what this means. A

quantum particle moving along the line is governed by the

Schrödinger equation,

� ~2
2m

d2 

dx2
+ V (x) = E (10.1)

Solutions to this equation are energy eigenstates. They evolve in time as  (x, t) =

e�iEt/~ (x). For any potential, there are essentially two di↵erent kinds of states that

we’re interested in.

• Bound States are states that are localised in some region of space. The wavefunc-

tions are normalisable and have profiles that drop o↵ exponentially far from the

potential

 (x) ⇠ e��|x| as |x| ! 1

Because the potential vanishes in the asymptotic region, the Schrödinger equation

(10.1) relates the asymptotic fall-o↵ to the energy of the state,

E = �~2�2
2m

(10.2)

In particular, bound states have E < 0. Indeed, it is this property which ensures

that the particle is trapped within the potential and cannot escape to infinity.
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Bound states are rather special. In the absence of a potential, a solution which

decays exponentially to the left will grow exponentially to the far right. But, for

the state to be normalisable, the potential has to turn this behaviour around,

so the wavefunction decreases at both x ! �1 and x ! +1. This will only

happen for specific values of �. Ultimately, this is why the spectrum of bound

states is discrete, like in the hydrogen atom. It’s where the name “quantum”

comes from.

• Scattering States are not localised in space and, relatedly, the wavefunctions are

not normalisable. Instead, asymptotically, far from the potential, scattering states

take the form of plane waves. In one dimension, there are two possibilities

Right moving:  ⇠ eikx

Left moving:  ⇠ e�ikx

where k > 0. To see why these are left or right moving, we need to put the

time dependence back in. The wavefunctions then take the form e±ikx�iEt/~. The

peaks and troughs of the wave move to the right with the plus sign, and to the left

with the minus sign. Solving the Schrödinger equation in the asymptotic region

with V = 0 gives the energy

E =
~2k2

2m

Scattering states have E > 0. Note that, in contrast, to bound states, nothing

special has to happen to find scattering solutions. We expect to find solutions for

any choice of k.

This simple classification of solutions already tells us
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Figure 90:

something interesting. Suppose, for example, that the po-

tential looks something like the one shown in the figure.

You might think that we could find a localised solution

that is trapped between the two peaks, with E > 0. But

this can’t happen because if the wavefunction is to be nor-

malisable, it must have E < 0. The physical reason, of

course, is quantum tunnelling which allows the would-be bound state to escape to

infinity. We will learn more about this situation in Section 10.1.5.

10.1.1 Reflection and Transmission Amplitudes

Suppose that we stand a long way from the potential and throw particles in. What

comes out? This is answered by solving the Schrödinger equation for the scattering

– 301 –



states. Because we have a second order di↵erential equation, we expect that there

are two independent solutions for each value of k. We can think of these solutions

physically as what you get if you throw the particle in from the left or in from the

right. Let’s deal with each in turn.

Scattering from the Left

We throw the particle in from the left. When it hits the potential, one of two things

can happen: it can bounce back, or it can pass straight through. Of course, this being

quantum mechanics, it can quite happily do both at the same time. Mathematically,

this means that we are looking for a solution which asymptotically takes the form

 R(x) ⇠
(
eikx + re�ikx x ! �1
teikx x ! +1

(10.3)

We’ve labelled this state  R because the ingoing wave is right-moving. This can be seen

in the first term eikx which represents the particle we’re throwing in from x ! �1. The

second term re�ikx represents the particle that is reflected back to x ! �1 after hitting

the potential. The coe�cient r 2 C is called the reflection amplitude. Finally, the term

teikx at x ! +1 represents the particle passing through the potential. The coe�cient

t 2 C is called the transmission coe�cient. (Note: in this formula t is a complex

number that we have to determine; it is not time!) There is no term e�ikx at x ! +1
because we’re not throwing in any particles from that direction. Mathematically, we

have chosen the solution in which this term vanishes.

Before we proceed, it’s worth flagging up a conceptual point. Scattering is clearly

a dynamical process: the particle goes in, and then comes out again. Yet there’s no

explicit time dependence in our ansatz (10.3); instead, we have a solution formed of

plane waves, spread throughout all of space. It’s best to think of these plane waves

as describing a beam of particles, with the ansatz (10.3) giving us the steady-state

solution in the presence of the potential.

The probability for reflection R and transmission T are given by the usual quantum

mechanics rule:

R = |r|2 and T = |t|2

In general, both R and T will be functions of the wavenumber k. This is what we would

like to calculate for a given potential and we will see an example shortly. But, before

we do this, there are some observations that we can make using general statements

about quantum mechanics.
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Given a solution  (x) to the Schrödinger equation, we can construct a conserved

probability current

J(x) = �i
~
2m

✓
 ?d 

dx
�  

d ?

dx

◆

which obeys dJ/dx = 0. This means that J(x) is constant. (Mathematically, this is

the statement that the Wronskian is constant for the two solutions to the Schrödinger

equation). For our scattering solution  R, with asymptotic form (10.3), the probability

current as x ! �1 is given by

J(x) =
~k
2m

h �
e�ikx + r?e+ikx

� �
eikx � re�ikx

�
+
�
eikx + re�ikx

� �
e�ikx � r?e+ikx

� i

=
~k
m

�
1� |r|2

�
as x ! �1

Meanwhile, as x ! +1, we have

J(x) =
~k
2m

|t|2 as x ! +1

Equating the two gives

1� |r|2 = |t|2 ) R + T = 1 (10.4)

This should make us happy as it means that probabilities do what probabilities are

supposed to do. The particle can only get reflected or transmitted and the sum of the

probabilities to do these things equals one.

Scattering from the Right

This time, we throw the particle in from the right. Once again, it can bounce back o↵

the potential or pass straight through. Mathematically, we’re now looking for solutions

which take the asymptotic form

 L(x) ⇠
(
t0e�ikx x ! �1
e�ikx + r0e+ikx x ! +1

(10.5)

where we’ve now labelled this state  L because the ingoing wave, at x ! +1, is

left-moving. We’ve called the reflection and transmission amplitudes r0 and t0.
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There is a simple relation between the two solutions  R in (10.3) and  L in (10.5).

This follows because the potential V (x) in (10.1) is a real function, so if  R is a solution

then so is  ?
R. And, by linearity, so is  ?

R � r? R which is given by

 ?
R(x)� r? R(x) ⇠

(
(1� |r|2)e�ikx x ! �1
t?e�ikx � r?teikx x ! +1

This takes the same functional form as (10.5) except we need to divide through by t? to

make the normalisations agree. (Recall that scattering states aren’t normalised anyway

so we’re quite at liberty to do this.) Using 1 � |r|2 = |t|2, this tells us that there is a

solution of the form (10.5) with

t0 = t and r0 = �r?t

t?
(10.6)

Notice that the transition amplitudes are always the same, but the reflection amplitudes

can di↵er by a phase. Nonetheless, this is enough to ensure that the reflection probabil-

ities are the same whether we throw the particle from the left or right: R = |r|2 = |r0|2.

An Example: A Pothole in the Road

Let’s compute r and t for a simple potential, given by V(x)

a/2

−V

x

0

−a/2

Figure 91:

V (x) =

(
�V0 �a/2 < x < a/2

0 otherwise

with V0 > 0. This looks like a pothole in the middle of an,

otherwise, flat potential.

Outside the potential, we have the usual plane waves  ⇠ e±ikx. In the middle of

the potential, the solutions to the Schrödinger equation (10.1) take the form

 (x) = Aeiqx +Be�iqx x 2 [�a/2, a/2] (10.7)

where

q2 =
2mV0

~2 + k2

To compute the reflection and transmission amplitudes, r, r0 and t, we need to patch

the solution (10.7) with either (10.3) or (10.5) at the edges of the potential.

– 304 –



Let’s start by scattering from the left, with the solution (10.3) outside the potential.

Continuity of the wavefunction at x = ±a/2 tells us that

e�ika/2 + reika/2 = Ae�iqa/2 +Beiqa/2 and teika/2 = Aeiqa/2 +Be�iqa/2

Meanwhile, matching the derivatives of  at x = ±a gives

k

q

�
e�ika/2 � reika/2

�
= Ae�iqa/2 � Beiqa/2 and

kt

q
eika/2 = Aeiqa/2 � Be�iqa/2

These are four equations with four unknowns: A, B, r and t. One way to proceed is

to add and subtract the two equations on the right, and then do the same for the two

equations on the left. This allows us to eliminate A and B

A = t

✓
1 +

k

q

◆
ei(k�q)a/2 =

✓
1 +

k

q

◆
e�i(k�q)a/2 + r

✓
1� k

q

◆
ei(k+q)a/2

B = t

✓
1� k

q

◆
ei(k+q)a/2 =

✓
1� k

q

◆
e�i(k+q)a/2 + r

✓
1 +

k

q

◆
ei(k�q)a/2

We’ve still got some algebraic work ahead of us. It’s grungy but straightforward. Solv-

ing these two remaining equations gives us the reflection and transmission coe�cients

that we want. They are

r =
(k2 � q2) sin(qa)e�ika

(q2 + k2) sin(qa) + 2iqk cos(qa)

t =
2iqke�ika

(q2 + k2) sin(qa) + 2iqk cos(qa)
(10.8)

Even for this simple potential, the amplitudes are far from trivial. Indeed, they contain

a lot of information. Perhaps the simplest lesson we can extract comes from looking at

the limit k ! 0, where r ! �1 and t ! 0. This means that if you throw the particle

very softly (k ! 0), it won’t make it through the potential; it’s guaranteed to bounce

back.

Conversely, in the limit k ! 1, we have r = 0. (Recall that q2 = k2 + 2mV0/~2 so

we also have q ! 1 in this limit.) By conservation of probability, we must then have

|t| = 1 and the particle is guaranteed to pass through. This is what you might expect;

if you throw the particle hard enough, it barely notices that the potential is there.

There are also very specific values of the incoming momenta for which r = 0 and the

particle is assured of passage through the potential. This occurs when qa = n⇡ with

n 2 Z for which r = 0. Notice that you have to fine tune the incoming momenta so

that it depends on the details of the potential which, in this example, means V0 and a.
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We can repeat the calculation above for scattering from the right. In fact, for our

pothole potential, the result is exactly the same and we have r = r0. This arises because

V (x) = V (�x) so it’s no surprise that scattering from the left and right are the same.

We’ll revisit this in Section 10.1.3.

10.1.2 Introducing the S-Matrix

The S-matrix is a convenient way of packaging the information about reflection and

transmission coe�cients. It is useful both because it highlights new features of the

problem, and because it generalises to scattering in higher dimensions.

We will start by writing the above solutions in slightly di↵erent notation. We have

two ingoing asymptotic wavefunctions, one from the left and one from the right

Ingoing

8
>>><

>>>:

right-moving: IR(x) = e+ikx x ! �1

left-moving: IL(x) = e�ikx x ! +1

Similarly, there are two outgoing asymptotic wavefunctions,

Outgoing

8
>>>><

>>>>:

right-moving: OR(x) = e+ikx x ! +1

left-moving: OL(x) = e�ikx x ! �1

The two asymptotic solutions (10.3) and (10.5) can then be written as

 
 R

 L

!
=

 
IR

IL

!
+ S

 
OR

OL

!
(10.9)

where

S =

 
t r

r0 t0

!
(10.10)

This is the S-matrix. As we’ve seen, for any given problem the entries of the matrix

are rather complicated functions of k.
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The S-matrix has many nice properties, some of which we will describe in these

lectures. One of the simplest and most important is that S is unitary. To see this note

that

SS† =

 
|t0|2 + |r|2 t0r0? + rt?

t0?r0 + tr? |t|2 + |r0|2

!

Unitarity then follows from the conservation of probability. The o↵-diagonal elements

vanish by virtue of the relations t0 = t and r0 = �r?t/t? that we found in (10.6).

Meanwhile, the diagonal elements are equal to one by (10.4) and so SS† = 1. The

equivalence between conservation of probability and unitarity of the S-matrix is impor-

tant, and will generalise to higher dimensions. Indeed, in quantum mechanics the word

“unitarity” is often used synonymously with “conservation of probability”.

One further property follows from the fact that the wavefunctions  R(x) and  L(x)

do not change under complex conjugation if we simultaneously flip k ! �k. In other

words  (x; k) =  ?(x;�k). This means that the S-matrix obeys

S?(k) = S(�k)

There are a number of other, more hidden properties of the S-matrix that we will

uncover below.

10.1.3 A Parity Basis for Scattering

As we’ve seen above, for symmetric potentials, with V (x) = V (�x), scattering from

the left and right is the same. Let’s first make this statement more formal.

We introduce the parity operator P which acts on functions f(x) as

P : f(x) ! f(�x)

For symmetric potentials, we have [P,H] = 0 which means that eigenstates of the

Hamiltonian can be chosen so that they are also eigenstates of P . The parity operator

is Hermitian, P † = P , so its eigenvalues � are real. But we also have P 2f(x) = f(x),

which means that the eigenvalues must obey �2 = 1. Clearly there are only two

possibilities: � = +1 and � = �1, This means that eigenstates of the Hamiltonian can

be chosen to be either even functions (� = +1) or odd functions (� = �1).
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Above we worked with scattering eigenstates  R and  L. These are neither odd nor

even. Instead, for a symmetric potential, they are related by  L(x) =  R(�x). This is

the reason that symmetric potentials have r = r0. If we want to work with the parity

eigenstates, we take

 +(x) =  R(x) +  L(x) =  R(x) +  R(�x)

 �(x) = � R(x) +  L(x) = � R(x) +  R(�x)

which obey P ±(x) = ± ±(x).

Often, working with parity eigenstates makes the algebra a little easier. This is

particularly true if our problem has a parity-invariant potential, V (x) = V (�x).

The Pothole Example Revisited

Let’s see how the use of parity eigenstates can make our calculations simpler. We’ll

redo the scattering calculation in the pothole, but now we’ll take the asymptotic states

to be  + and  �. Physically, you can think of this experiment as throwing in particles

from both the left and right at the same time, with appropriate choices of signs.

We start with the even parity wavefunction  +. We want to patch this onto a solution

in the middle, but this too must have even parity. This mean that the solution in the

pothole takes the form

 +(x) = A(eiqx + e�iqx) x 2 [�a/2, a/2]

which now has only one unknown coe�cient, A. As previously, q2 = k2+2mV0/~2. We

still need to make sure that both the wavefunction and its derivative are continuous at

x = ±a/2. But, because we’re working with even functions, we only need to look at

one of these points. At x = a/2 we get

e�ika/2 + (r + t)eika/2 = A(eiqa/2 + e�iqa/2)
�
�e�ika/2 + (r + t)eika/2

�
=

q

k
A(eiqa/2 � e�iqa/2)

Notice that only the combination (r + t) appears. We have two equations with two

unknowns. If we divide the two equations and rearrange, we get

r + t = �e�ika q tan(qa/2)� ik

q tan(qa/2) + ik
(10.11)

which is all a lot easier than the messy manipulations we had to do when working with

 L and  R. Of course, we’ve only got an expression for (r + t). But we can play the
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same game for the odd parity eigenstates to get a corresponding expression for (r� t).

Now, the solution in the pothole takes the form

 �(x) = B(eiqx � e�iqx) x 2 [�a/2, a/2]

Requiring continuity of the wavefunction and its derivative at x = a/2 we get

e�ika/2 + (r � t)eika/2 = B(eiqa/2 � e�iqa/2)
�
�e�ika/2 + (r � t)eika/2

�
=

q

k
B(eiqa/2 + e�iqa/2)

Once again, dividing we find

r � t = e�ika q + ik tan(qa/2)

q � ik tan(qa/2)
(10.12)

It’s not immediately obvious that the expressions (10.11) and (10.12) are the same as

those for r and t that we derived previously. But a little bit of algebra should convince

you that they agree.

[A helping hand: this little bit of algebra is extremely fiddly if you don’t go about

it in the right way! Here’s a reasonably a streamlined approach. First define the

denominator of (10.8) as D(k) = (q2+k2) sin(qa)+2iqk cos(qa). Using the double-angle

formula from trigonometry, we can write this as D(k) = 2 cos2(qa/2)(q tan(qa/2) +

ik)(q�ik tan(qa/2)). We can then add the two expressions in (10.8), and use the double-

angle formula again, to get r + t = 2e�ika cos2(qa/2)(q tan(qa/2) � ik)(ik tan(qa/2) �
q)/D(k) This coincides with our formula (10.11). Similar games give us the formula

(10.12).]

The S-Matrix in the Parity Basis

We can also think about the S-matrix using our new basis of states. The asymptotic

ingoing modes are even and odd functions, given at |x| ! 1 by

Ingoing

8
>>>>><

>>>>>:

parity-even: I+(x) = e�ik|x|

parity-odd: I�(x) = sign(x) e�ik|x|

– 309 –



The two asymptotic outgoing modes are

Outgoing

8
>>>>>><

>>>>>>:

parity-even: O+(x) = e+ik|x|

parity-odd: O�(x) = �sign(x) e+ik|x|

These are related to our earlier modes by a simple change of basis,
 
I+

I�

!
= M

 
IR

IL

!
and

 
O+

O�

!
= M

 
OR

OL

!
with M =

 
1 1

�1 1

!

We can define an S-matrix with respect to this parity basis. In analogy with (10.9), we

write asymptotic solutions as
 
 +

 �

!
=

 
I+

I�

!
+ SP

 
O+

O�

!
(10.13)

where we use the notation SP to denote the S-matrix with respect to the parity basis.

We write

SP =

 
S++ S+�

S�+ S��

!

This is related to our earlier S-matrix by a change of basis. We have

SP = MSM�1 =

 
t+ (r + r0)/2 (r � r0)/2

(r0 � r)/2 t� (r + r0)/2

!

As you may expect, this basis is particularly useful if the underlying potential is sym-

metric, so V (x) = V (�x). In this case we have r = r0 and the S-matrix becomes

diagonal. The diagonal components are simply

S++ = t+ r and S�� = t� r

In fact, because Sp is unitary, each of these components must be a phase. This follows

because r and t are not independent. First, they obey |r|2 + |t|2 = 1. Moreover, when

r0 = r, the relation (10.6) becomes

rt? + r?t = 0 ) Re(rt?) = 0
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This is enough to ensure that both S++ and S�� are indeed phases. We write them as

S++ = e2i�+(k) and S�� = e2i��(k)

We learn that for scattering o↵ a symmetric potential, all the information is encoded

in two momentum-dependent phase shifts, �±(k) which tell us how the phases of the

outgoing waves O± are changed with respect to the ingoing waves I±.

10.1.4 Bound States

So far we’ve focussed only on the scattering states of the problem. We now look at

the bound states, which have energy E < 0 and are localised near inside the potential.

Here, something rather magical happens. It turns out that the information about these

bound states can be extracted from the S-matrix, which we constructed purely from

knowledge of the scattering states.

To find the bound states, we need to do something clever. We take our scattering

solutions, which depend on momentum k 2 R, and extend them to the complex mo-

mentum plane. This means that we analytically continue out solutions so that they

depend on k 2 C.

First note that the solutions with k 2 C still obey our original Schrödinger equation

(10.1) since, at no point in any of our derivation did we assume that k 2 R. The

only di�culty comes when we look at how the wavefunctions behave asymptotically.

In particular, any putative solution will, in general, diverge exponentially as x ! +1
or x ! �1, rendering the wavefunction non-normalisable. However, as we will now

show, there are certain solutions that survive.

For simplicity, let’s assume that we have a symmetric potential V (x) = V (�x).

As we’ve seen above, this means that there’s no mixing between the parity-even and

parity-odd wavefunctions. We start by looking at the parity-even states. The general

solution takes the form

 +(x) = I+(x) + S++O+(x) =

(
e+ikx + S++e�ikx x ! �1
e�ikx + S++e+ikx x ! +1

Suppose that we make k pure imaginary and write

k = i�

with � > 0. Then we get

 +(x) =

(
e��x + S++e+�x x ! �1
e+�x + S++e��x x ! +1

(10.14)
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Both terms proportional to S++ decay asymptotically, but the other terms diverge.

This is bad. However, there’s a get-out. For any fixed k (whether real or complex),

S++ is simply a number. That means that we’re quite at liberty to divide by it. Indeed,

the wavefunction above isn’t normalised anyway, so dividing by a constant isn’t going

to change anything. We get

 +(x) =

(
S�1
++ e��x + e+�x x ! �1
S�1
++ e+�x + e��x x ! +1

(10.15)

Now we can see the loop-hole. The wavefunction above is normalisable whenever we

can find a � > 0 such that

S++(k) ! 1 as k ! i�

This, then, is the magic of the S-matrix. Poles in the complex momentum plane that

lie on the positive imaginary axis (i.e. k = i� with � > 0) correspond to bound states.

This information also tells us the energy of the bound state since, as we saw in (10.2),

it is given by

E = �~2�2
2m

We could also have set k = �i�, with � > 0. In this case, it is the terms proportional

to S++ in (10.14) which diverge and the wavefunction is normalisable only if S++(k =

�i�) = 0. However, since S++ is a phase, this is guaranteed to be true whenever

S++(k = i�) has a pole, and simply gives us back the solution above.

Finally, note that exactly the same arguments hold for parity-odd wavefunctions.

There is a bound state whenever S��(k) has a pole at k = i� with � > 0.

An Example: Stuck in the Pothole

We can illustrate this with our favourite example of the square well, of depth �V0 and

width a. We already computed the S-matrix in (10.11) and (10.12). We have,

S++(k) = r + t = �e�ika q tan(qa/2)� ik

q tan(qa/2) + ik

where q2 = 2mV0/~2 + k2. Setting k = i�, we see that this has a pole when

� = q tan
⇣qa
2

⌘
with �2 + q2 =

2mV0

~2
These are the usual equations that you have to solve when finding parity-even bound

states in a square well. The form of the solutions is simplest to see if we plot these

equations, as shown in the left-hand of Figure 92. There is always at least one bound

state, with more appearing as the well gets deeper.

– 312 –



q

λ λ

q

Figure 92: Bound state of even parity always exist, since the two equations shown on the

left always have a solution with �, q > 0. Bound states of odd parity, shown on the right,

exist if the potential is deep enough.

Similarly, if we look at the parity-odd wavefunctions, we have

S��(k) = t� r = e�ika q + ik tan(qa/2)

q � ik tan(qa/2)

which has a pole at k = i� when

q = �� tan
⇣qa
2

⌘
with �2 + q2 =

2mV0

~2 (10.16)

This too reproduces the equations that we found in earlier courses in quantum mechan-

ics when searching for bound states in a square well. Now there is no guarantee that a

bound state exists; this only happens if the potential is deep enough.

10.1.5 Resonances

We might wonder if there’s any other information hidden in the analytic structure of

the S-matrix. In this section, we will see that there is, although its interpretation is a

little more subtle.

First, the physics. Let’s think back again to the

x

V(x)

Figure 93:

example shown on the right. One the one hand, we know

that there can be no bound states in such a trap because

they will have E > 0. Any particle that we place in the

trap will ultimately tunnel out. On the other hand, if the

walls of the trap are very large then we might expect that

the particle stays there for a long time before it eventually

escapes. In this situation, we talk of a resonance. These are also referred to as unstable

or metastable states. Our goal is to show how such resonances are encoded in the

S-matrix.
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Now, the maths. We’ll restrict attention to parity-even functions. Suppose that the

S-matrix S++ has a pole that lies on the complex momentum plane at position

k = k0 � i�

On general grounds, the S-matrix will have a second pole at �k? = �k0 � i�. We’d

like to interpret these poles. First note that the energy is also imaginary

E =
~2k2

2m
⌘ E0 � i

�

2
(10.17)

with E0 = ~2(k2
0 � �2)/2m and � = 2~2�k0/m. An imaginary energy may sound

strange, but it is has a very natural interpretation. Recall that the time dependence of

the wavefunction is given by

e�iEt/~ = e�iE0t/~ e��t/2~ (10.18)

This is the first clue that we need. We see that, for � > 0, the overall form of the

wavefunction decays exponentially with time. This is the characteristic behaviour of

unstable states. A wavefunction that is initially supported inside the trap will be very

small there at time much larger than ⌧ = ~/�. Here ⌧ is called the half-life of the state,

while � is usually referred to as the width of the state. (We’ll see why in Section 10.2).

Where does the particle go? Including the time dependence (10.18), the same argu-

ment that led us to (10.15) now tells us that when S++ ! 1, the solution takes the

asymptotic form

 +(x, t) =

(
e�iE0t/~ e�ik0x e��x��t/2~ x ! �1
e�iE0t/~ e+ik0x e+�x��t/2~ x ! +1

(10.19)

The first two exponential factors oscillate. But the final factor varies as

e±�(x⌥vt) where v =
�

2~� =
~k0
m

This has the interpretation of a particle moving with momentum ~k0. This, of course,
is the particle which has escaped the trap.

Note that for fixed time t, these wavefunctions are not normalisable: they diverge at

both x ! ±1. This shouldn’t concern us, because, although our wavefunctions are

eigenstates of the Hamiltonian, they are not interpreted as stationary states. Indeed,

it had to be the case. An unstable state has complex energy, but standard theorems

in linear algebra tell us that a Hermitian operator like the Hamiltonian must have real

eigenvalues. We have managed to evade this theorem only because these wavefunctions

are non-normalisable and so do not, strictly speaking, live in the Hilbert space.
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There’s a lesson buried in all of this. If we were to take the standard axioms of

quantum mechanics, we would simply throw away wavefunctions of the form (10.19)

on the grounds that they do not lie in the Hilbert space and so are unphysical. But

this would be a mistake: the wavefunctions do contain interesting physics, albeit of a

slightly di↵erent variety than we are used to. Sometimes it’s worth pushing our physical

theories beyond our comfort zone to see what is lurking there.

The upshot of this discussion is that poles of the S-matrix in the lower-half complex

plane correspond to resonances. It is often useful to write S++ as a function of energy

rather than momentum. (They are related by (10.17)). Since S++ is a phase, close to

a resonance it necessarily takes the form

S++ =
E � E0 � i�/2

E � E0 + i�/2

An Example: A Pair of Delta-Functions

A pair of delta functions provide a simple and tractable example to illustrate the idea

of resonances. The potential is given by

V (x) = V0

h
�(x� 1) + �(x+ 1)

i

Recall that the e↵ect of the delta-functions is simply to change the boundary condi-

tions at x = ±1 when solving the Schrödinger equation. All wavefunctions should be

continuous at x = ±1, but their derivatives are discontinuous. For example, at x = +1,

solutions obey

lim
✏!0

h
 0(1 + ✏)�  0(1� ✏)

i
= U0 (1) with U0 =

2mV0

~2

Working in the parity basis makes life simpler, not least because you only need to

consider the matching at one of the delta-functions, with the other then guaranteed.

The computation of the S-matrix is a problem on the exercise sheet. You will find

S++ = e�2ik


(2k � iU0)eik � iU0e�ik

(2k + iU0)e�ik + iU0eik

�

Note that the denominator is the complex conjugate of the numerator, ensuring that

S++ is a phase, as expected. The poles of this S-matrix are given by solutions to the

equation

e2ik = �
✓
1� 2ik

U0

◆
(10.20)
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To understand the physics behind this, let’s first look at the situation where U0 ! 1,

so that the weight of the delta-functions gets infinitely large. Then the poles sit at

e2ik = �1 ) k = kn =

✓
n+

1

2

◆
⇡

These correspond to bound states trapped between the V0 V0

+1−1

Figure 94:

two wavefunctions. For example, the n = 0 state is

shown in the figure. Note that they’re rather unusual

because the poles sit on the real k-axis, rather than the

imaginary k-axis. Correspondingly, these bound states

have E > 0. This strange behaviour is only allowed be-

cause we have an infinitely large potential which forbids

particles on one side of the barrier to cross to the other.

As a side remark, we note that this same impenetrable behaviour is seen in scattering.

When U0 ! 1, the S-matrix becomes S++ ! �e2ik. This tells us that a particle coming

from outside is completely reflected o↵ the infinitely large barrier. The minus sign is

the standard phase change after reflection. The factor of e2ik is because the waves are

forbidden from travelling through the region between the delta functions, which has

width x = 2. As a result, the phase is shifted by eikx from what it would be if the

barriers were removed.

Let’s now look at what happens when U0 is large, but finite? We’ll focus on the

lowest energy bound state with n = 0. We can expand (10.20) in 1/U0. (This too is

left as a problem on the exercise sheet.) We find

k =
⇡

2
+ ↵� i�

with

↵ ⇡ � ⇡

2U0
+

⇡

2U2
0

+O
✓

1

U3
0

◆
and � ⇡ ⇡2

4U2
0

+O
✓

1

U3
0

◆

Note, in particular, that � > 0, so the pole moves o↵ the real axis and into the lower

half-plane. This pole now has all the properties that we described at the beginning

of this section. It describes a state, trapped between the two delta-functions, which

decays with half-life

⌧ =
~
�
=

4mU2
0

~⇡3

✓
1 +O

✓
1

U0

◆◆

This is the resonance.
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10.2 Scattering in Three Dimensions

Our real interest in scattering is for particles moving in three spatial dimensions, with

Hamiltonian

H =
p2

2m
+ V (r)

Recall that there are two distinct interpretations for such a Hamiltonian

• We could think of this as the motion of a single particle, moving in a fixed back-

ground potential V (r). This would be appropriate, for example, in Rutherford’s

famous experiment where we fire an alpha particle at a gold nucleus.

• Alternatively, We could think of this as the relative motion of two particles,

separated by distance r, interacting through the force F = �rV (r). We could

take V (r) to be the Coulomb force, to describe the scattering of electrons, or the

Yukawa force to describe the scattering of neutrons.

In this section, we will use language appropriate to the first interpretation, but every-

thing we say holds equally well in the second. Throughout this section, we will work

with rotationally invariant (i.e. central) potentials, so that V (r) = V (|r|).

10.2.1 The Cross-Section

Our first goal is to decide what we want to calculate. The simple reflection and trans-

mission coe�cients of the one-dimensional problem are no longer appropriate. We need

to replace them by something a little more complicated. We start by thinking of the

classical situation.

Classical Scattering

Suppose that we throw in a single particle with ki-

b

θ

Figure 95:

netic energy E. Its initial trajectory is characterised

by the impact parameter b, defined as the closest the

particle would get to the scattering centre at r = 0

if there were no potential. The particle emerges with

scattering angle ✓, which is the angle between the

asymptotic incoming and outgoing trajectories, as

shown in the figure. By solving the classical equa-

tions of motion, we can compute ✓(b;E) or, equivalently, b(✓;E).

– 317 –



dσ

dΩ

b
b+db

φ

z

θ

−dθ θ

Figure 96: What becomes of an infinitesimal cross-sectional area after scattering.

Now consider a uniform beam of particles, each with kinetic energy E. We want to

understand what becomes of this beam. Consider the cross-sectional area, denoted d�

in Figure 96. We write this as

d� = b d� db

The particles within d� will evolve to the lie in a cone of solid angle d⌦, given by

d⌦ = sin ✓ d� d✓

where, for central potentials, the infinitesimal angles d� are the same in both these

formulae. The di↵erential cross-section is defined to be

d�

d⌦
=

b

sin ✓

����
db

d✓

����

The left-hand side should really be |d�/d⌦|, but we’ll usually drop the modulus. The

di↵erential cross-section is a function of incoming momentum k, together with the

outgoing angle ✓.

More colloquially, the di↵erential cross-section can be thought of as

d�

d⌦
d⌦ =

Number of particles scattered into d⌦ per unit time

Number of incident particles per area d� per unit time
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We write this in terms of flux, defined to be the number of particles per unit area per

unit time. In this language, the di↵erential cross-section is

d�

d⌦
=

Scattered flux

Incident flux

We can also define the total cross-section

�T =

Z
d⌦

d�

d⌦

Both the di↵erential cross-section and the total cross-section have units of area. The

usual unit used in particle physics, nuclear physics and atomic physics is the barn, with

1 barn = 10�28 m2. The total cross-section is a crude characterisation of the scattering

power of the potential. Roughly speaking, it can be thought of as the total area of the

incoming beam that is scattered. The di↵erential cross-section contains more detailed

information.

An Example: The Hard Sphere

Suppose that our particle bounces o↵ a hard sphere,

b

θα

α

α

Figure 97:

described by the potential V (r) = 1 for r  R. By star-

ing at the geometry shown in the figure, you can convince

yourself that b = R sin↵ and ✓ = ⇡ � 2↵. So in this case

b = R sin

✓
⇡

2
� ✓

2

◆
= R cos

✓

2

If b > R, clearly there is no scattering. The di↵erential

cross-section is

d�

d⌦
=

R2 cos(✓/2) sin(✓/2)

2 sin ✓
=

R2

4

Rather unusually, in this case d�/d⌦ is independent of both ✓ and E. The total cross-

section is

�T =

Z 2⇡

0

d�

Z +1

�1

d(cos ✓)
d�

d⌦
= ⇡R2 (10.21)

which, happily, coincides with the geometrical cross-section of the sphere.

This result reinforces the interpretation of the total cross-section that we mentioned

above; it is the area of the beam that is scattered. In general, the area of the beam

that is scattered will depend on the energy E of the incoming particles.
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Another Example: Rutherford Scattering

Rutherford scattering is the name given to scattering o↵ a repulsive Coulomb potential

of the form

V (r) =
A

r
with A > 0

where, for two particles of charge q1 and q2, we have A = q1q2/4⇡✏0. We studied

Rutherford scattering in the lectures on Dynamics and Relativity. We found12

2bE = A cot
✓

2

This gives the di↵erential cross-section,

d�

d⌦
=

b

sin ✓

����
db

d✓

���� =
✓

A

4E

◆2 1

sin4(✓/2)
(10.22)

This scattering amplitude played an important role in the history of physics. Ruther-

ford, together with Geiger and Marsden, fired alpha particles (a helium nucleus) at gold

foil. They discovered that the alpha particles could be deflected by a large angle, with

the cross-section given by (10.22). Rutherford realised that this meant the positive

charge of the atom was concentrated in a tiny, nucleus.

There is, however, a puzzle here. Rutherford did his experiment long before the

discovery of quantum mechanics. While his data agreed with the classical result (10.22),

there is no reason to believe that this classical result carries over to a full quantum

treatment. We’ll see how this pans out later in this section.

There’s a surprise when we try to calculate the total cross-section �T . We find that

it’s infinite! This is because the Coulomb force is long range. The potential decays to

V (r) ! 0 as r ! 1, but it drops o↵ very slowly. This will mean that we will have to

be careful when applying our formalism to the Coulomb force.

10.2.2 The Scattering Amplitude

The language of cross-sections is also very natural when we look at scattering in quan-

tum mechanics. As in Section 10.1, we set up the scattering problem as a solution to

the time-independent Schrödinger equation, which now reads

� ~2
2m

r2 + V (r)

�
 (r) = E (r) (10.23)

12See equation (4.20) of the Dynamics and Relativity lecture notes, where we denoted the scattering
angle by � instead of ✓.
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We will send in a plane wave with energy E which we choose to propagate along the

z-direction. This is just

 incident(r) = eikz

where E = ~2k2/2m. However, after scattering o↵ the po-

Figure 98:

tential, the wave doesn’t only bounce back in the z direction.

Instead, it spreads out spherically, albeit with a phase and

amplitude which can vary around the sphere. It’s hard to take

photographs of quantum wavefunctions, but the water waves

shown on the right give a good analogy for what’s going on.

Asymptotically, as r ! 1, this scattered wave takes the form

 scattered(r) = f(✓,�)
eikr

r
(10.24)

The 1/r fall-o↵ follows from solving the free Schrödinger equation; we’ll see this ex-

plicitly below. However, there is a simple intuition for this behaviour which follows

from thinking of | |2 as a probability, spreading over a sphere which grows as r2 as

r ! 1. The 1/r fall-o↵ ensures that this probability is conserved. Our final ansatz for

the asymptotic wavefunction is then

 (r) =  incident(r) +  scattered(r) (10.25)

The function f(✓,�) is called the scattering amplitude. For the central potentials con-

sidered here it is independent of �, so f = f(✓). It is the 3d generalisation of the

reflection and transmission coe�cients that we met in the previous section. Our goal

is to calculate it.

The scattering amplitude is very closely related to the di↵erential cross-section. To

see this, we can look at the probability current

J = �i
~
2m

⇣
 ?r � (r ?) 

⌘

which obeys r · J = 0. For the incident wave, we have

Jincident =
~k
m

ẑ

This is interpreted as a beam of particles with velocity v = ~k/m travelling in the

z-direction. Meanwhile, the for the scattered wave we use the fact that

r scattered =
ikf(✓)eikr

r
r̂+O

✓
1

r2

◆
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to find

Jscattered =
~k
m

1

r2
|f(✓)|2 r̂+O

✓
1

r3

◆

This means that, as r ! 1, the flux of outgoing particles crossing an area dA subtended

by the solid angle d⌦

Jscattered · r̂ dA =
~k
m

|f(✓)|2 d⌦

The di↵erential cross-section is defined to be the ratio of the scattered flux through d⌦,

divided by the incident flux. In other words, it is

d�

d⌦
=

~k|f(✓)|2/m
~k/m = |f(✓)|2

This is rather nice. It means that if we can compute the scattering amplitude f(✓), it

immediately tells us the di↵erential cross-section. The total cross-section is defined, as

before, as

�T =

Z
d⌦ |f(✓)|2

10.2.3 Partial Waves

To make progress, we need to start to look in a more detail at the solutions to the

Schrödinger equation (10.23). Because we’ve decided to work with rotationally invari-

ant potentials, it makes sense to label our wavefunctions by their angular momentum,

l. Let’s quickly review what this looks like.

A general wavefunction  (r, ✓,�) can be expanded in terms of spherical harmonics.

In this section, however, we only need to deal with wavefunctions of the for form  (r, ✓),

which are independent of �. Such functions have an expansion in terms of partial waves

 (r, ✓) =
X

l=0

Rl(r)Pl(cos ✓)

Here the Pl(cos ✓) are Legendre polynomials. They appear by virtue of being eigenstates

of the angular momentum operator L2,

L2 Pl(cos ✓) = ~2l(l + 1)Pl(cos ✓)

In more concrete terms, this is the statement that the Legendre polynomials Pl(w)

obey the di↵erential equation

d

dw
(1� w2)

dPl

dw
+ l(l + 1)Pl(w) = 0
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Meanwhile, the original Schrödinger equation (10.23) becomes an ordinary di↵erential

equation for the radial functions Rl,
✓

d2

dr2
+

2

r

d

dr
� l(l + 1)

r2
� U(r) + k2

◆
Rl(r) = 0 (10.26)

where we’ve used the expression for the energy, E = ~2k2/2m, and rescaled the potential

U(r) =
2m

~2 V (r)

Spherical Waves when U(r) = 0

We will assume that our potential drops o↵ su�ciently quickly so that asymptotically

our waves obey (10.26) with U(r) = 0. (We will be more precise about how fast U(r)

must fall o↵ later.) We can write the equation obeyed by Rl as
✓

d2

dr2
� l(l + 1)

r2
+ k2

◆
(rRl(r)) = 0 (10.27)

There are two s-wave solutions with l = 0, given by

R0(r) =
e±ikr

r
(10.28)

These are ingoing (minus sign) and outgoing (plus sign) spherical waves.

The solutions for l 6= 0 are more known as spherical Bessel functions and are described

below.

Plane Waves when U(r) = 0

Of course, when U = 0, the plane wave

 incident(r) = eikz = eikr cos ✓

is also a solution to the Schrödinger equation. Although it feels rather unnatural, it

must be possible to expand these solutions in terms of the spherical waves. To do this,

it is convenient to briefly introduce the coordinate ⇢ = kr. We write the plane wave

solution as

 incident(⇢, ✓) = ei⇢ cos ✓ =
X

l

(2l + 1)ul(⇢)Pl(cos ✓) (10.29)

where the factor of (2l+1) is for convenience and the function ul(⇢) are what we want

to determine. The Legendre polynomials have a nice orthogonality property,
Z +1

�1

dw Pl(w)Pm(w) =
2

2l + 1
�lm (10.30)
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We can use this to write

ul(⇢) =
1

2

Z +1

�1

dw ei⇢wPl(w) (10.31)

Our interest is only in the behaviour of the plane wave as ⇢! 1. To extract this, we

start by integrating by parts

ul(⇢) =
1

2


ei⇢wPl(w)

i⇢

�+1

�1

� 1

2i⇢

Z +1

�1

dw ei⇢w
dPl

dw

The Legendre polynomials obey Pl(1) = 1 and Pl(�1) = (�1)l. We then find

ul(⇢) =
1

2i⇢

⇥
ei⇢ � (�1)le�i⇢

⇤
+O

✓
1

⇢2

◆
(10.32)

where a further integration by parts will convince you that the remaining terms do

indeed drop o↵ as 1/⇢2. This is the result we need. As r ! 1, the incident plane wave

can be written as

 incident =
1X

l=0

2l + 1

2ik


eikr

r
� (�1)l

e�ikr

r

�
Pl(cos ✓) (10.33)

We learn that the ingoing plane wave decomposes into an outgoing spherical wave (the

first term) together with an ingoing spherical wave (the second term).

Phase Shifts

It’s been quite a long build up, but we now know what we want to calculate, and how

to do it! To recapitulate, we’d like to calculate the scattering amplitude f(✓) by finding

solutions of the asymptotic form

 (r) = eikz + f(✓)
eikr

r
as r ! 1

We still have a couple more definitions to make. First, we expand the scattering

amplitude in partial waves as

f(✓) =
1X

l=0

2l + 1

k
fl Pl(cos ✓) (10.34)

The normalisation coe�cients of 1/k and (2l+1) mean that the coe�cients fl sit nicely

with the expansion (10.33) of the plane wave in terms of spherical waves. We can then

write the asymptotic form of the wavefunction as a sum of ingoing and outgoing waves

 (r) ⇠
1X

l=0

2l + 1

2ik


(�1)l+1 e

�ikr

r
+ (1 + 2ifl)

eikr

r

�
Pl(cos ✓) (10.35)

where the first term is ingoing, and the second term is outgoing. For a given potential

V (r), we would like to compute the coe�cients fl which, in general, are functions of k.
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Note that the problem has decomposed into decoupled angular momentum sectors,

labelled by l = 0, 1, . . .. This is because we’re working with a rotationally symmetric

potential, which scatters an incoming wave, but does not change its angular momentum.

Moreover, for each l, our ansatz consists of an ingoing wave, together with an outgoing

wave. This is entirely analogous to our 1d solutions (10.9) when we first introduced

the S-matrix. We identify the coe�cients of the outgoing terms as the elements of the

S-matrix. For rotationally invariant potentials, the 3d S-matrix S is diagonal in the

angular momentum basis, with elements given by

Sl = 1 + 2ifl with l = 0, 1, 2, . . .

Now unitarity of the S-matrix — which is equivalent to conservation of particle number

— requires that these diagonal elements are a pure phase. We write

Sl = e2i�l ) fl =
1

2i
(e2i�l � 1) = ei�l sin �l

where �l are the phase shifts. Comparing back to (10.34), we see that the phase shifts

and scattering amplitude are related by

f(✓) =
1

2ik

1X

l=0

(2l + 1)
�
e2i�l � 1

�
Pl(cos ✓)

The picture that we have is entirely analogous to the 1d situation. A wave comes in,

and a wave goes out. Conservation of probability ensures that the amplitudes of these

waves are the same. All information about scattering is encoded in the phase shifts

�l(k) between the ingoing and outgoing waves.

10.2.4 The Optical Theorem

The di↵erential cross-section is d�/d⌦ = |f(✓)|2. Using the partial wave decomposition

(10.34), we have

d�

d⌦
=

1

k2

X

l,l0

(2l + 1)(2l0 + 1)flf
?
l0Pl(cos ✓)Pl0(cos ✓)

In computing the total cross-section �T , we can use the orthogonality of Legendre

polynomials (10.30) to write

�T = 2⇡

Z +1

�1

d(cos ✓)
d�

d⌦
=

4⇡

k2

X

l

(2l + 1)|fl|2 =
4⇡

k2

X

l

(2l + l) sin2 �l (10.36)
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We can compare this to our expansion (10.34). Using the fact that P (1) = 1, we have

f(0) =
X

l

2l + 1

k
ei�l sin �l

This tells us that the total cross-section is given by

�T =
4⇡

k
Imf(0)

This is known as the optical theorem.

Here’s some words that will hopefully build some intuition for the optical theorem.

The potential causes scattering from the forward direction (✓ = 0) to other directions.

Because total probability is conserved, clearly the amount of particles going in the

forward direction must decrease. However, this decrease in the forward direction must

be equal to the total increase in other directions – and this is what the total cross-

section �T measures. Finally, the amount of decrease in forward scattering is due to

interference between the incoming wave and outgoing waves, and so is proportional to

f(0).

Unitarity Bounds

If we think of the total cross-section as built from the cross-sections for each partial

wave then, from (10.36), we have

�T =
1X

l=0

�l with �l =
4⇡

k2
(2l + 1) sin2 �l (10.37)

Clearly each contribution is bounded as �l  4⇡(2l+1)/k2, with the maximum arising

when the phase shift is given by �l = ±⇡/2. This is called the unitarity bound.

There’s a straightforward, semi-classical way to understand these unitarity bounds. If

we send in a particle with momentum ~k and impact parameter b, then it has angular

momentum L = ~kb. This angular momentum is quantised. Roughly speaking, we

might expect that the particle has angular momentum ~l, with l 2 Z, when the impact

parameter lies in the window

l

k
 b  l + 1

k
(10.38)

If the particle gets scattered with 100% probability when it lies in this ring, then the

cross-section is equal to the area of the ring. This is

(l + 1)2⇡

k2
� l2⇡

k2
=

(2l + 1)⇡

k2
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This is almost the unitarity bound (10.37). It di↵ers by a factor 4. As we will now see,

that same factor of 4 di↵erence often arises between simple classical arguments and a

full quantum treatment of scattering processes.

10.2.5 An Example: A Hard Sphere and Spherical Bessel Functions

After all this formalism, let’s finally do an example. Our scattering region will be a

hard sphere of radius a, with potential

V (r) =

(
1 r < a

0 r > a

Since the wavefunction vanishes inside the sphere and is continuous, this potential is

equivalent to imposing the boundary condition  (a) = 0.

For r > a, the wavefunction can be decomposed in partial waves

 (r, ✓) =
X

l=0

Rl(r)Pl(cos ✓)

where the radial wavefunction obeys the free Schrödinger equation

✓
d2

d⇢2
� l(l + 1)

⇢2
+ 1

◆
(⇢Rl(⇢)) = 0 (10.39)

where we’re again using the coordinate ⇢ = kr. Solutions Rl(⇢) to this equation

are known as spherical Bessel functions and are denoted jl(⇢) and nl(⇢). They are

important enough that we take some time to describe their properties.

An Aside: Spherical Bessel Functions

The solutions to (10.39) are given by spherical Bessel functions, Rl(⇢) = jl(⇢) and

Rl(⇢) = nl(⇢), and can be written as13

jl(⇢) = (�⇢)l
✓
1

⇢

d

d⇢

◆l sin ⇢

⇢
and nl(⇢) = �(�⇢)l

✓
1

⇢

d

d⇢

◆l cos ⇢

⇢

Note that j0(⇢) = sin ⇢/⇢ and n0(⇢) = � cos ⇢/⇢, so the solutions (10.28) for free

spherical waves can be written as R0(⇢) = n0(⇢)± in0(⇢).

13Proofs of this statement, together with the asymptotic expansions given below, can be found in
the handout http://www.damtp.cam.ac.uk/user/tong/aqm/bessel.pdf.
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In what follows, it will be useful to have the asymptotic form of jl and nl. They are

given by

jl(⇢) !
sin(⇢� 1

2 l⇡)

⇢
and nl(⇢) ! �

cos(⇢� 1
2 l⇡)

⇢
as ⇢! 1 (10.40)

We see that at large r, the spherical Bessel functions look more or less the same for

all l, di↵ering only by a phase. In particular, the combinations jl ± nl look essentially

the same as the l = 0 spherical waves that we met in (10.28). However, the spherical

Bessel functions di↵er as we come in towards the origin. In particular, close to ⇢ = 0

we have

jl(⇢) !
⇢l

(2l + 1)!!
and nl(⇢) ! �(2l � 1)!! ⇢�(l+1) as ⇢! 0 (10.41)

where (2l + 1)!! = 1 · 3 · 5 · · · · (2l + 1) is the product of all odd numbers up to 2l + 1.

Note that jl(⇢) is regular near the origin, while nl diverges.

Before we proceed, it’s worth seeing how we write the plane wave eikz in terms of

spherical Bessel functions. We wrote the partial wave expansion (10.29) in terms of

functions ul(⇢), whose asymptotic expansion was given in (10.32). This can be rewritten

as

ul(⇢) ! il
sin(⇢� 1

2 l⇡)

⇢
as ⇢! 1

which tells us that we can identify the functions ul(⇢) as

ul(⇢) = iljl(⇢)

Back to the Hard Sphere

Returning to our hard sphere, the general solution for r � a can be written in the form,

Rl(r) = Al

h
cos↵l jl(⇢)� sin↵l nl(⇢)

i
(10.42)

where, as before, ⇢ = kr. Here Al and ↵l are two integration constants which we will

fix by the boundary condition. Because the Schrödinger equation is linear, nothing

fixes the overall coe�cient Al. In contrast, the integration constant ↵l will be fixed

by the boundary conditions at r = a. Moreover, this integration constant turns out

to be precisely the phase shift �l that we want to compute. To see this, we use the

asymptotic form of the spherical Bessel functions (10.40) to find

Rl(r) ⇠
1

⇢


cos↵l sin(⇢�

1

2
l⇡) + sin↵l cos(⇢�

1

2
l⇡)

�
=

1

⇢
sin(⇢� 1

2
l⇡ + ↵l)
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We can compare this to the expected asymptotic form (10.35) of the wavefunction

Rl(r) ⇠

(�1)l+1 e

�i⇢

⇢
+ e2i�l

ei⇢

⇢

�
=

ei�lei⇡l/2

⇢


� e�i(⇢+�l�⇡l/2) + ei(⇢+�l�⇡l/2)

�

to see that, as a function of ⇢ = kr, the two expressions agree provided

↵l = �l

In other words, if we can figure out the integration constant ↵l then we’ve found our

sought-after phase shift.

The boundary condition imposed by the hard sphere is simply Rl(a) = 0. This tells

us that

cos �l jl(ka) = sin �l nl(ka) ) tan �l =
jl(ka)

nl(ka)

This is the final result for this system. Now let’s try to extract some physics from it.

First note that for the l = 0 s-wave, the phase shift is given by exactly by

�0 = �ka

For small momenta, ka ⌧ 1, we can extract the behaviour of the higher l phase shifts

from ⇢! 0 behaviour of the spherical Bessel functions (10.41). We have

�l ⇡ � (ka)2l+1

(2l + 1)!! (2l � 1)!!

We see that for low momentum the phase shifts decrease as l increases. This is to

be expected: the higher l modes have to penetrate the repulsive angular momentum

⇠ ~l(l+1)/r2. Classically, this would prohibit the low-momentum modes from reaching

the sphere. Quantum mechanically, only the exponential tails of these modes reach

r = a which is why their scattering is suppressed.

For low momentum ka ⌧ 1, we now have all the information we need to compute

the total cross-section. The sum (10.36) is dominated by the l = 0 s-wave, and given

by

�T = 4⇡a2
⇣
1 +O

�
(ka)4

� ⌘

This is a factor of 4 bigger than the classical, geometric result (10.21)
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It’s also possible to extract analytic results for the phase shifts at high momentum

ka � 1. For this we need further properties of the spherical Bessel functions. Here

we simply state the results. The phase shifts �l vary between 0 and 2⇡ for l . ka.

However, when l > ka, the phase shifts quickly drop to zero. The intuition behind

this follows from the semi-classical analysis (10.38) which tells us that for l � ka, the

impact parameter is b � a. This makes it unsurprising that no scattering takes place in

this regime. It turns out that as ka ! 1, the total cross-section becomes �T ! 2⇡2a2.

The Scattering Length

The low-momentum behaviour �l ⇠ (ka)2l+1 that we saw is common to all scattering

potentials. It means that low-energy scattering is always dominated by the s-wave

whose phase shift scales as

�0 ⇠ �kas +O(k3) (10.43)

The coe�cients as is called the scattering length. As we have seen, for the hard sphere

as = a, the radius of the sphere. At low energies, the total cross-section is always given

by

�T ⇡ �0 = 4⇡a2s

The scattering length is a useful way to characterise the low-energy behaviour of a

potential. As we will see in examples below, as can be positive or negative and can, at

times, diverge.

10.2.6 Bound States

In this section we describe the e↵ects of bound states on scattering. Such states only

occur for attractive potentials, so we again take a sphere of radius a, but this time with

potential

V (r) =

(
�V0 r < a

0 r > a
(10.44)

It will be useful to define the following notation

U(r) =
2mV (r)

~2 and �2 =
2mV0

~2 (10.45)

We’ll start by focussing on the l = 0 s-wave. Outside the sphere, the wavefunction

satisfies the usual free Schrödinger equation (10.27)
✓

d2

dr2
+ k2

◆
(r ) = 0 r > a
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with general solution

 (r) =
A sin(kr + �0)

r
r > a (10.46)

The same argument that we made when discussing the hard sphere shows that the

integration constant �0 is the phase shift that we want to calculate. We do so by

matching the solution to the wavefunction inside the sphere, which satisfies
✓

d2

dr2
+ k2 + �2

◆
(r ) = 0 r < a

The requirement that the wavefunction is regular at the origin r = 0 picks the solution

inside the sphere to be

 (r) =
B sin(

p
k2 + �2r)

r
r < a (10.47)

The solutions (10.46) and (10.47) must be patched at r = a by requiring that both

 (a) and  0(a) are continuous. We get the answer quickest if we combine these two

and insist that  0/ is continuous at r = a, since this condition does not depend on

the uninteresting integration constants A and B. A quick calculation shows that it is

satisfied when

tan(ka+ �0)

ka
=

tan(
p
k2 + �2a)p

k2 + �2a
(10.48)

For very high momentum scattering, k2 � �2, we have �0 ! 0. This is to be expected:

the energy of the particle is so large that it doesn’t much care for the small, puny

potential and there is no scattering.

Bound States and the Scattering Length

Things are more interesting at low energies, k2 ⌧ �2 and ka ⌧ 1. We have

tan(ka+ �0)

ka
⇡ tan(�a)

�a
) tan(ka) + tan(�0)

1� tan(ka) tan(�0)
⇡ k

�
tan(�a)

Rearranging, we get

tan �0 = ka

✓
tan(�a)

�a
� 1

◆
+O(k3) (10.49)

If the phase shift �0 is small, then we can write tan �0 ⇡ �0 and, from (10.43), read o↵

the scattering length

as = a� tan(�a)

�
(10.50)
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Note that, for this approximation to hold, we need kas ⌧ 1, but the scattering length as
exhibits somewhat surprising behaviour. For small �, the scattering length is negative.

This can be thought of as due to the attractive nature of the potential, which pulls the

particle into the scattering region rather than repelling it. However, as � is increased,

the scattering length diverges to �1, before reappearing at +1. It continues this

pattern, oscillating between +1 and �1. Our task is to understand why this striking

behaviour is happening.

Before we proceed, note that all the calculations above also hold for repulsive poten-

tials with V0 < 0. In this case �, defined in (10.45) is pure imaginary and the scattering

length (10.50) becomes

as = a� tanh(|�|a)
|�| (V0 < 0)

Now the scattering length is always positive. It increases monotonically from as = 0

when � = 0, corresponding to no scattering, through to as = a when |�| ! 1, which

is our previous result for the hard-sphere. We see that whatever is causing the strange

oscillations in (10.50) does not occur for the repulsive potential.

The key to the divergent behaviour of the scattering length lies in the bound states

of the theory. It’s a simple matter to construct l = 0 bound states. We solve the

Schrödinger equation with the form

r (r) =

(
A sin(

p
�2 � �2r) r < a

Be��r r > a

The two solutions have the same energy E = �~2�2/2m. Matching the logarithmic

derivatives across r = a gives

tan(
p
�2 � �2a) = �

p
�2 � �2

�
(10.51)

This structure of the solutions is similar to what we saw in Section 10.1.4. Indeed, if

we write q2 = �2��2, then these equations take the same form as (10.16) that describe

odd-parity states in one-dimension. In particular, this means that if the potential is

too shallow then no bound states exist. As � gets larger, and the potential gets deeper,

bound states start to appear. They first arise when � = 0 and tan(�a) = 1, so that

� = �? =

✓
n+

1

2

◆
⇡

a
with n = 0, 1, . . .
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This coincides with the values for which the scattering length (10.50) diverges. For �

slightly less than �?, the bound state has not yet appeared and the scattering length

is very large and negative. For � slightly greater than �?, the new state exists and is

weakly bound, and the scattering length is large and positive. Meanwhile, when � = �?,

then there is a bound state which has energy E = 0. Such bound states are said to be

“at threshold”.

The incoming wave has energy slightly above E = 0 and mixes strongly with the

state with bound state – or almost bound state – with energy a little below E = 0.

This is what gives rise to the divergence in the cross-section. Specifically, when there is

a bound state exactly at threshold, tan �0 ! 1 and so the phase shift is �0 = (n+ 1
2)⇡.

(Note that at this point, we can no longer write �0 ⇡ �kas because as this is valid

only for kas ⌧ 1, but as is diverging.) The s-wave cross-section saturates the unitarity

bound (10.37)

�0 =
4⇡

k2

To understand why the formation of bound states gives rise to a divergent scattering

length, we can look at the analytic structure of the S-matrix at finite k. We know from

(10.48) that the phase shift is given by

tan(ka+ �0) =
kp

k2 + �2
tan(

p
k2 + �2a) ⌘ f(k)

Rearranging, we get the s-wave component of the S-matrix

S0(k) = e2i�0 = e�2ika 1 + if(k)

1� if(k)

The S-matrix has a pole at f(k) = �i, or for values of k such that

tan(
p

k2 + �2a) =

p
k2 + �2

ik
(10.52)

This has no solutions for real k. However, it does have solutions along the positive

imaginary k axis. If we set k = i�, the equation (10.52) coincides with the condition

for bound states (10.51).

Close to the pole, the S-matrix takes the form

S0(k) = e2i�0 =
i�+ k

i�� k

When the bound state approaches threshold, � is small and this form is valid in the

region k = 0. For k ⌧ �, we can expand in k/� to find �0 ⇡ �k/�, which tells us that

we should indeed expect to see a divergent scattering length as = 1/�.
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Figure 99: The cross-section for neutron scattering o↵ U-235.

When neutrons scatter o↵ large nuclei at low-energies they are very close to forming

a threshold bound state. The total cross-section for neutron scattering o↵ uranium 235

is shown in the figure14. You can see the large enhancement of the cross-section. This

is partly due to the bound state, although it is complicated by the presence of a large

number of resonances whose e↵ects we’ll discuss in the next section.

10.2.7 Resonances

We already met the idea of resonances in Section 10.1.5. These are unstable bound

states, which appear as poles of the S-matrix in the lower-half complex plane. Here we

see how these resonances a↵ect scattering in 3d.

It’s not hard to construct examples which exhibit resonances. Indeed, the attractive,

spherical potential (10.44) which has bound states also exhibits resonances. These

don’t occur for s-waves, but only for higher l, where the e↵ective potential includes

an e↵ective, repulsive angular momentum barrier. The algebra is not conceptually

any more di�cult than what we did above, but in practice rapidly becomes a blur of

spherical Bessel functions.

Alternatively, we could look at the somewhat simpler example of a delta-function

cage of the form V (r) = V0�(r � a), which is the obvious 3d generalisation of the

example we looked at in Section 10.1.5 and has s-wave resonances.

Rather than getting bogged down in any of these details, here we focus on the features

that are common to all these examples. In each case, the S-matrix has a pole. Thinking

in terms of energy E = ~2k2/2m, these poles occur at

E = E0 �
i�

2

14The data is taken from the Los Alamos on-line nuclear information tour.
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Figure 100: Distribution with �2 = 2... Figure 101: ...and with �2 = 15

This is the same result (10.17) that we saw in our 1d example. Close to the pole, the

S-matrix — which, by unitarity, is simply a phase — must take the form

S(E) = e2i�(E) = e2i✓(E)E � E0 � i�/2

E � E0 + i�/2
(10.53)

Here e2i✓(E) is the so-called continuum contribution; it is due to the usual, run-of-the-

mill phase shift that arises from scattering o↵ the potential. Here our interest is in

the contributions that come specifically from the resonance, so we’ll set ✓ = 0. From

(10.53), we have

cos 2� =
(E � E0)2 � �2/4

(E � E0)2 + �2/4
) sin2 � =

�2

4(E � E0)2 + �2

From this we can read o↵ the contribution to the total cross-section using (10.36). If

the pole occurs for a partial wave with angular momentum l, we have

�T ⇡ 4⇡

k2
(2l + 1)

�2

4(E � E0)2 + �2

This distribution is plotted in the figure, with E0 = 4 and �2 = 2 and 15. ( Remember

that there is an extra factor of E sitting in the k2 in the formula above). It is called the

Breit-Wigner distribution, or sometimes the Lorentzian distribution (although, strictly

speaking, neither of these has the extra factor of 1/k2). It exhibits a clear peak at

E = E0, whose width is given by �/2. Comparing to our discussion in Section 10.1.5,

we see that the lifetime of the resonance can be read o↵ from the width of the peak:

the narrower the peak, the longer lived the resonance.

The Breit-Wigner distribution is something of an iconic image in particle physics

because this is the way that we discover new particles. To explain this fully would

require us to move to the framework of quantum field theory, but we can get a sense
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Figure 102: The cross-section for the Z-

boson.

Figure 103: And for the Higgs boson.

for what’s going on from what we’ve seen above. The key fact is that most particles

in Nature are not stable. The exceptions are the electron, the proton, neutrinos and

photons. All other decay with some lifetime ⌧ . When we collide known particles —

typically electrons or protons — we can create new particles which, since they are

unstable, show up as resonances. The energy E0 corresponds to the mass of the new

particle through E0 = mc2, while the lifetime is seen in the width, ⌧ = 1/�.

Two examples are shown in the figures. The left-hand figure shows the cross-section,

now measured in pico-barns = 10�40 m2, for high-energy electron-positron scattering.

We see a large resonance peak which sits at a centre of mass energy E0 ⇡ 91 GeV

with width � ⇡ 2.5 GeV . Since we’re measuring the width in unit of energy, we need

a factor of ~ to convert to the lifetime

⌧ =
~
�

Using ~ ⇡ 6.6⇥ 10�16 eV , we find the lifetime of the Z-boson to be ⌧ ⇡ 3⇥ 10�25 s.

The right-hand figure shows the 2012 data from the discovery of the Higgs boson,

with mass E0 ⇡ 125 GeV . I should confess that the experiment doesn’t have the

resolution to show the Breit-Wigner shape in this case. The best that can be extracted

from this plot is a bound on the width of � < 17 MeV or so, while the true width is

predicted by theory to be � ⇠ 4 MeV .

10.3 The Lippmann-Schwinger Equation

So far, we’ve developed the machinery necessary to compute cross-sections, but our

examples have been rather artificial. The interactions between particles do not look
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like spherical potential wells or shells of delta-functions. Instead, they are smooth po-

tentials V (r), such as the Coulomb or Yukawa potentials. We would like to understand

scattering in these more realistic settings .

In principle, this is straightforward: you simply need to solve the relevant Schrödinger

equation, impose regularity at the origin, and then read o↵ the appropriate phase shifts

asymptotically. In practice, the solution to the Schrödinger equation is rarely known

analytically. (A counterexample to this is the Coulomb potential which will be discussed

in Section 10.4.) In this section, we present a di↵erent approach to scattering that makes

use of Green’s functions. This provides a platform to develop a perturbative approach

to understanding scattering for potentials that we actually care about. Moreover, these

Green’s functions methods also have applications in other areas of physics.

Our starting point is the Schrödinger equation

� ~2
2m

r2 + V (r)

�
 (r) = E (r) (10.54)

We’ll briefly use a more formal description of this equation, in order to write the

Lippmann-Schwinger equation in its most general form. We’ll then revert back to the

form (10.54) which, for the purposes of these lectures, is all we really care about. With

this in mind, we write the Schrödinger equation as

(H0 + V )| i = E| i

The idea here is that we’ve split the Hamiltonian up into a piece that is simple to

solve – in this case H0 = �~2r2/2m – and a more complicated piece, V . Trivially

re-arranging this equation gives

(E �H0)| i = V | i (10.55)

We can then formally re-arrange this equation once more to become

| i = |�i+ 1

E �H0
V | i (10.56)

Here |�i is a zero mode which obeys H0|�i = E|�i. If (10.56) is multiplied by E �H0

then the state |�i is annihilated and we get back to (10.55). However, the inverse

quantum operator (E � H0)�1 is somewhat subtle and, as we will see below, there is

very often an ambiguity in its definition. This ambiguity is resolved by writing this

inverse operator as (E � H0 + i✏)�1, and subsequently taking the limit ✏ ! 0+. We

then write

| i = |�i+ 1

E �H0 + i✏
V | i (10.57)
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This is the Lippmann-Schwinger equation. It is not really a solution to the Schrödinger

equation (10.54) since | i appears on both sides. It is more a rewriting of the Schrödinger

equation, but one which gives us a new way to move forward.

The Green’s Function

Let’s now write down the Lippmann-Schwinger equation for our Schrödinger equation

(10.54). We want the inverse operator (E �H0)�1. But this is precisely what we call

the Green’s function G0. It obeys
✓
E +

~2
2m

r2

◆
G0(E; r, r0) = �(r� r0)

The formulae will be somewhat simpler if we scale out the factor ~2/2m. We write

E =
~2k2

2m
so that

�
r2 + k2

�
G0(k; r, r

0) =
2m

~2 �(r� r0) (10.58)

We can solve for this Green’s function using the Fourier transform. First, we note that

translational invariance ensures that G0(k; r, r0) = G0(k; r � r0). Then we define the

Fourier transform

G̃0(k;q) =

Z
d3x e�iq·x G0(k;x) ) G0(k;x) =

Z
d3q

(2⇡)3
eiq·x G̃0(k;q)

Plugging this into our formula (10.58), we have

(�q2 + k2)G̃(k;q) =
2m

~2 ) G̃0(k;q) = �2m

~2
1

q2 � k2

So it’s simple to get the Green’s function in momentum space. Now we must invert it.

We have

G0(k;x) = �2m

~2

Z
d3q

(2⇡)3
eiq·x

q2 � k2

Here we run into the ambiguity that we promised above. When we do the integral

over q, we run into a singularity whenever q2 = k2. To define the integral, when we

integrate over q = |q|, we should define a contour in the complex q plane which skips

around the pole. We do this through the so-called “i✏ prescription” which, as the name

suggests, replaces the integral with

G+
0 (k;x) = �2m

~2

Z
d3q

(2⇡)3
eiq·x

q2 � k2 � i✏

Where we subsequently take ✏! 0+. This shifts the pole slightly o↵ the real q axis.
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The simplest way to do this integral is to go to polar coordinates for the q variable.

We have

G+
0 (k;x) = �2m

~2
1

(2⇡)3

Z 2⇡

0

d�

Z +1

�1

d(cos ✓)

Z
1

0

dq
q2 eiqx cos ✓

q2 � k2 � i✏

= �2m

~2
1

(2⇡)2

Z
1

0

dq
q

ix

eiqx � e�iqx

q2 � k2 � i✏

= �2m

~2
1

(2⇡)2
1

ix

Z
1

�1

dq
qeiqx

(q � k � i✏)(q + k + i✏)

where we’re allowed to factorise the denominator in

k+iε

q

ε−k−i

Figure 104:

this way, with k > 0, only because we’re ultimately

taking ✏ ! 0+. We can now complete the derivation

by contour integral. Since x > 0, we can complete the

contour in the upper half-plane, picking up the residue

from the pole at q = k+i✏. This gives our final answer,

G+
0 (k; r� r0) = �2m

~2
1

4⇡

e+ik|r�r0|

|r� r0| (10.59)

Note that had we chosen to add +i✏ rather than �i✏ to the denominator, we would

find the alternative Green’s function G�

0 (k;x) ⇠ e�ikx/4⇡x. We will justify the choice

of G+
0 below.

Our Lippmann-Schwinger Equation

To finally write down the Lippmann-Schwinger equation, we need to determine the

state |�i which is annihilated by E � H0. But, for us, this is simply the plane wave

solution

�(r) = eik·r

We can now write the formal Lippmann-Schwinger equation (10.57) in more concrete

form. It becomes

 (k; r) = eik·r � 2m

~2

Z
d3r0

e+ik|r�r0|

4⇡|r� r0| V (r0) (k; r0) (10.60)

It is simple to check that acting on this equation with the operator (r2 + k2) indeed

brings us back to the original Schrödinger equation (10.54). The Lippmann-Schwinger

equation is an integral equation, a reformulation of the more familiar Schrödinger dif-

ferential equation. It is not solution to the Schrödinger equation because we still have

to figure out what  is. We’ll o↵er a strategy for doing this in Section 10.3.1.
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The equation (10.60) has a very natural interpretation. The first term is simply the

ingoing wave with momentum ~k. The second term is the scattered wave. Note that

the factor eik|r�r0| tells us that this wave is moving outwards from the point r0. Had we

instead chosen the Green’s function G�

0 , we would have found a wave moving inwards

from infinity of the form e�ik|r�r0|. This is unphysical. This is the reason that we pick

the �i✏ prescription rather than +i✏.

To make contact with our earlier discussion of scattering, we look at the asymptotic

form of this outgoing wave at r ! 1. For this to work, we’ll assume that V (r0) has

support only in some finite region. We can then take the limit r � r0 and expand

|r� r0| =
p
r2 � 2r · r0 + r0 2 ⇡ r � r · r0

r

With V (r0) localised within some region, it makes sense to perform this expansion inside

the integral. In this approximation the Green’s function (10.59) can be written as

G+
0 (k; r� r0) ⇡ �2m

~2
1

4⇡

e+ikr

r
e�ikr̂·r0

and the Lippmann-Schwinger equation then becomes

 (k; r) ⇠ eik·r � 2m

~2
1

4⇡

Z
d3r0 e�ikr̂·r0V (r0) (k; r0)

�
eikr

r

Although we derived this by assuming that V (r) has compact support, we can actually

be a little more relaxed about this. The same result holds if we require that V (r0) ! 0

suitably quickly as r0 ! 1. Any potential which falls o↵ exponentially, or as a power-

law V (r) ⇠ 1/rn with n � 2, can be treated in this way. Note, however, that this

excludes the Coulomb potential. We will deal with this separately in Section 10.4.

If we set the ingoing wave to be along the z-axis, k = kẑ, then this takes the

asymptotic form (10.25) that we discussed previously

 (r) ⇠ eikz + f(✓,�)
eikr

r
(10.61)

The upshot of this analysis is that we identify the scattering amplitude as

f(✓,�) = �2m

~2
1

4⇡

Z
d3r0 e�ikr̂·r0V (r0) (k; r0)

where ✓ and � are the usual polar angles such that r̂ = (sin ✓ cos�, sin ✓ sin�, cos ✓).

This gives a simple way to compute the scattering amplitude, but only if we already

know the form of the wavefunction  (r0) in the scattering region where V (r0) 6= 0. Our

next task is to figure out how to compute  (r0).
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An Equation for Bound States

Above we’ve focussed on scattering states with energy E = ~2k2/2m > 0. However,

it is not di�cult to repeat everything for bound states with energy E = �~2�2/2m.

Indeed, in this case there is no ambiguity in the definition of the Green’s function. We

find that bound states must obey the integral equation

 (r) =
2m

~2

Z
d3r0

e��|r�r0|

4⇡|r� r0| V (r0) (r0)

We won’t attempt to solve this equation; instead our interest will focus on the Lippmann-

Schwinger equation for scattering states (10.60).

10.3.1 The Born Approximation

In this section we describe a perturbative solution to the Lippmann-Schwinger equation,

 (k; r) = eik·r +

Z
d3r0 G+

0 (k; r� r0)V (r0) (k; r0) (10.62)

This solution is known as the Born series.

We write  as a series expansion

 (r) =
1X

n=0

�n(r) (10.63)

where we take the leading term to be the plane wave

�0(r) = eik·r

This series solves (10.62) if the �n obey the recursion relation

�n+1(r) =

Z
d3r0 G+

0 (k; r� r0)V (r0)�n(r
0)

We will not be very precise here about the convergent properties of this series. Roughly

speaking, things will work nicely if the potential V is small, so each successive term is

smaller than those preceding it.

The Born approximation consists of taking just the leading order term �1 in this

expansion. (Strictly speaking this is the first Born approximation; the nth Born ap-

proximation consists of truncating the series at the nth term.) This is

 (r) = eik·r � 2m

~2
1

4⇡

Z
d3r0 eiq·r

0
V (r0)

�
eikr

r
(10.64)
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where

q = k� kr̂

can be thought of as the momentum transferred from the incoming wave to the outgoing

wave. With this in mind, it’s traditional to define the momentum of the outgoing wave

to be

k0 = kr̂

so that q = k�k0. Comparing the Born approximation (10.64) to the asymptotic form

(10.61), we see that the scattering amplitude is simply the Fourier transform of the

potential,

f(✓,�) ⇡ f0(✓,�) = �2m

~2
1

4⇡

Z
d3r0 eiq·r

0
V (r0)

�
⌘ � m

2⇡~2 Ṽ (q)

Note that the scattering amplitude is a function of ✓ and �,

k’

θ

φk

Figure 105:

but these variables are somewhat hidden on the notation of the

right-hand side. They’re sitting in the definition of q, with

k · k0 = k2 cos ✓, and the variable � determining the relative

orientation as shown in the figure. As we’ve seen before, for a

central potential V (r) = V (r), the resulting scattering ampli-

tude will be independent of �. Because the angular variables

are somewhat disguised, the scattering amplitude is sometimes

written as f(k,k0) instead of f(✓,�). Indeed, we’ll adopt this notation in Section 10.5.

Finally, the cross-section in the Born approximation is simply

d�

d⌦
⇡ |f0|2 =

⇣ m

2⇡~2
⌘2

|Ṽ (q)|2 (10.65)

There’s some physics in this simple formula. Suppose that your potential has some

short-distance structure on scales ⇠ L. Then the Fourier transform Ṽ (q) is only sensi-

tive to this when the momentum transfer is of order q ⇠ 1/L. This is a manifestation

of the uncertainty principle: if you want to probe short distance physics, you need high

momentum transfer.

10.3.2 The Yukawa Potential and the Coulomb Potential

At long distances, the strong nuclear force between, say, a proton and a neutron is well

modelled by the Yukawa potential

V (r) =
Ae�µr

r
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Figure 106: The cross-section for the

Yukawa potential...

Figure 107: ...and for the Coulomb po-

tential.

where 1/µ is said to be the range of the force. We can compute the Fourier transform

using the same kind of contour methods that we used in the previous section. We have

Ṽ (q) =
4⇡A

q2 + µ2

Writing this in terms of the scattering angle ✓, we recall that q = k� k0 with k0 = kr̂,

so that

q2 = 2k2 � 2k · k0 = 2k2(1� cos ✓) = 4k2 sin2(✓/2)

If we translate from momentum k to energy E = ~2k2/2m, then from (10.65), we have

the leading order contribution to the cross-section for the Yukawa potential given by

d�

d⌦
=

✓
2Am

~2µ2 + 8mE sin2(✓/2)

◆2

(10.66)

This is shown in the left-hand figure (for values A = m = ~µ = 1 and E = 1/4).

An Attempt at Rutherford Scattering

It’s tempting to look at what happens when µ ! 0, so that the Yukawa force becomes

the Coulomb force. For example, for electron-electron or proton-proton scattering, the

strength of the Coulomb force is A = e2/4⇡✏0. In this case, the cross-section (10.66)

becomes,

d�

d⌦
=

✓
A

4E

◆2 1

sin4(✓/2)
(10.67)

This is shown in the right-hand figure (with the same values). Note that there is an

enhancement of the cross-section at all scattering angles, but a divergence at forward

scattering.
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Rather remarkably, the quantum result (10.67) agrees with the classical cross-section

that we found in (10.22)! This is a surprise and is special to the Coulomb potential.

Rutherford was certainly a great scientist but, like many other great scientists before

him, he had his fair share of luck.

In fact, Rutherford’s luck ran deeper than you might think. It turns out that the

Born approximation is valid for the Yukawa potential in certain regimes, but is never

valid for the Coulomb potential! The di�culty stems from the long range nature of

the Coulomb force which means that the plane wave solutions �0 ⇠ eik·r are never

really good approximations to the asymptotic states. We will describe the correct

treatment of the Coulomb potential in Section 10.4 where we will see that, although

our approximation wasn’t valid, the result (10.67) is correct after all.

10.3.3 The Born Expansion

One can continue the Born expansion to higher orders. In compressed notation, the

solution (10.63) takes the form

 = �0 +

Z
G+

0 V �0 +

Z Z
G+

0 V G+
0 V �0 +

Z Z Z
G+

0 V G+
0 V G+

0 V �0 + . . .

This has a natural interpretation. The first term describes the incident plane wave

which doesn’t scatter at all. The second term describes the wave scattering once of

the potential, before propagating by G+
0 to the asymptotic regime. The third term

describes the wave scattering o↵ the potential, propagating some distance by G+
0 and

then scattering for a second time before leaving the region with the potential. In

general, the term with n copies of V should be thought of as the wave scattering n

times from the potential region.

There’s a useful diagrammatic way to write the resulting scattering amplitude. It is

given by

f(k,k0) =
kk’

k’−k

+
k’ q k

k’−q q−k

+
k’ kqq’

+ . . .

Each diagram is shorthand for an integral. Every black dot describes an insertion

p = Ũ(p)
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while each line describes an insertion of

q
=

�1

q2 � k2 + i✏

Meanwhile, for each internal line we include the integral

� 1

4⇡

Z
d3q

(2⇡)3

Although we’re dealing with wave scattering, it’s tempting to think of the lines as

describing the trajectory of a particle. Indeed, this diagrammatic picture is a precursor

to Feynman diagrams that occur in quantum field theory, where there’s a much closer

connection to the underlying particles.

10.4 Rutherford Scattering

Historically, some of the most important scattering problems in particle physics involved

the Coulomb potential. This is the problem of Rutherford scattering. Yet, as we

mentioned above, none of the techniques that we’ve mentioned so far are valid for

the Coulomb potential. This is mitigated somewhat by the fact that we get the right

answer whether we work classically (10.22) or using the Born approximation (10.67).

Nonetheless, this is a little unsatisfactory. After all, how do we know that this is the

right answer!

Here we show how to do Rutherford scattering properly. We want to solve the

Schrödinger equation
✓
� ~2
2m

r2 +
A

r

◆
 (r) = E (r)

where A > 0 for repulsive interactions and A < 0 for attractive interactions. It will

prove useful to rewrite this as
✓
r2 + k2 � 2�k

r

◆
 (r) = 0 (10.68)

where, as usual, E = ~2k2/2m while � = mA/~2k is a dimensional parameter which

characterises the strength of the Coulomb force.

The Asymptotic Form of the Wavefunction

Let’s start by understanding what the wavefunctions look like asymptotically. Repeat-

ing the analysis of Section 10.2.3, the radial wavefunction Rl(r) satisfies
✓

d2

dr2
+

2

r

d

dr
+ k2 � l(l + 1)

r2
� 2�k

r

◆
Rl(r) = 0
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Already here we can see what the issue is. At large distances, r ! 1, the Coulomb force

is more important than the angular momentum barrier. We saw in previous sections

that when � = 0, the asymptotic form of the wavefunction is given by Rl(r) = e±ikr/r

regardless of the value of l. However, when � 6= 0 we have to revisit this conclusion.

With the previous solution in mind, we will look for solutions which asymptotically

take the form

Rl(r) ⇠
e±ikr+g(r)

r

for some function g(r). Inserting this ansatz, we find that g(r) must satisfy

d2g

dr2
+

✓
dg

dr

◆2

± 2ik
dg

dr
=

2�k

r

But, for now, we care only about the asymptotic expression where the left-hand side is

dominated by the last term. We then have

±i
dg

dr
=
�

r
as r ! 1

which is solved, up to some constant, by g = ⌥i� log(kr). Clearly this diverges as

r ! 1 and so should be included in te asymptotic form. We learn that asymptotically

the radial wavefunctions take the form

Rl(r) ⇠
e±i(kr�� log(kr))

r

This extra logarithm in the phase of the wavefunction means that the whole framework

we described previously needs adjusting.

Note that this same analysis tells us that our previous formalism for scattering works

fine for any potential V (r) ⇠ 1/rn with n � 2. It is just the long-range Coulomb

potential that needs special treatment.

10.4.1 The Scattering Amplitude

To compute the amplitude for Rutherford scattering, we don’t need any new conceptual

ideas. But we do need to invoke some technical results about special functions. This

is because the solution to the Schrödinger equation (10.68) can be written as

 (r) = eik·re�⇡�/2�(1 + i�) 1F1

�
� i�; 1; i(kr � k · r)

�
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where 1F1

�
a; b;w

�
is the confluent hypergeometric function, defined by the series ex-

pansion

1F1

�
a; b;w

�
= 1 +

a

b
w +

a(a+ 1)

b(b+ 1)

w2

2!
+

a(a+ 1)(a+ 2)

b(b+ 1)(b+ 2)

w3

3!
+ . . .

We won’t prove that this is a solution to the Schrödinger equation. Moreover, the only

fact we’ll need about the hypergeometric function is its expansion for large |w|. For

our solution, this is an expansion in 1/(kr� k · r) and so is valid at large distance, but

not along the direction of the incident beam k. If we take k = kẑ, we have

 (r) ⇠ eikz+i� log(k(r�z)) � �

k(r � z)

�(1 + i�)

�(1� i�)
eikr�i� log(k(r�z)) + . . .

where the + . . . are corrections to both terms which are suppressed by 1/k(r� z). This

is now very similar to our usual asymptotic form (10.61), but with the corrected phases.

The first term describes the ingoing wave, the second term the scattered outgoing wave.

We can therefore write

 (r) ⇠ eikz+i� log(k(r�z)) + f(✓)
eikz�i� log(k(r�z))

r

where the scattering amplitude is given by

f(✓) = ��
k

�(1 + i�)

�(1� i�)

r

r � z
= � �

2k

�(1 + i�)

�(1� i�)

1

sin2(✓/2)
(10.69)

We learn that the cross-section is

d�

d⌦
= |f(✓)|2 =

✓
mA

2~2k2

◆2 1

sin4(✓/2)

This is the same result as we saw using the invalid Born approximation (10.67) and

the same result that we saw from a classical analysis (10.22). This shouldn’t give you

the wrong idea. In most situations if you use the wrong method you will get the wrong

answer! The Coulomb potential is an exception.

Recovering the Hydrogen Atom

There’s a rather nice exercise we can do with the scattering amplitude (10.69). When

� < 0, the Coulomb potential is attractive and has bound states. Moreover, these

bound states are simply those of the hydrogen atom that we met in our first course on

quantum mechanics. From our earlier analysis, we should be able to recover this from

the poles in the scattering amplitude.
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These arise from the gamma function �(z) which has no zeros, but has poles at

z = 0,�1,�2, . . .. The scattering amplitude therefore has poles when

1 + i� = �(n� 1) ) k = �i
mA

~2
1

n
with n = 1, 2, 3, . . .

For an attractive potential with A < 0, these poles lie along the positive imaginary

k-axis, as they should. We see that they correspond to bound states with energy

En =
~2k2

2m
= �mA2

2~2
1

n2

This, of course, is the familiar spectrum of the hydrogen atom.

10.5 Scattering O↵ a Lattice

For our final topic, we’ll return to the lattices that we introduced in Section 2. There,

we confidently described the various lattice structures that underly di↵erent solids. But

how do we know this? The answer, of course, is scattering. Firing a beam of particles

— whether neutrons, electrons or photons in the X-ray spectrum — at the solid reveals

a characteristic di↵raction pattern. Our goal here is to understand this within the

general context of scattering theory.

Our starting point is the standard asymptotic expression describing a wave scattering

o↵ a central potential, localised around the origin,

 (r) ⇠ eik·r + f(k;k0)
eikr

r
(10.70)

Here we’re using the notation, introduced in earlier sections, of the scattered momentum

k0 = kr̂

The idea here is that if you sit far away in the direction r̂, you will e↵ectively see a wave

with momentum k0. We therefore write f(k,k0) to mean the same thing as f(k; ✓,�).

Suppose now that the wave scatters o↵ a potential which is localised at some other

position, r = R. Then the equation (10.70) becomes

 (r) ⇠ eik·(r�R) + f(k,k0)
eik|r�R|

|r�R|

For r ! 1, we can expand

|r�R| =
p
r2 +R2 � 2r ·R ⇡ r

p
1� 2r ·R/r2 ⇡ r � r̂ ·R
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We then have

 (r) ⇠ e�ik·R


eik·r + f(k,k0)e�i(k0

�k)·R eikr

r

�
(10.71)

The overall factor is unimportant, since our interest lies in the phase shift between

the incident wave and the scattered wave. We see that we get an e↵ective scattering

amplitude

fR(k; r̂) = f(k,k0) eiq·R

where we have defined the transferred momentum

q = k� k0

Now let’s turn to a lattice of points ⇤. Ignoring multiple scatterings, the amplitude is

simply the sum of the amplitudes from each lattice point

f⇤(k,k
0) = f(k,k0)

X

R2⇤

eiq·R (10.72)

However, we already discussed the sum �(q) =
P

R2⇤ eiq·R in Section 2.2.2. The sum

has the nice property that it vanishes unless q lies in the reciprocal lattice ⇤?. This

is simple to see: since we have an infinite lattice it must be true that, for any vector

R0 2 ⇤,

�(q) ⌘
X

R2⇤

eiq·R =
X

R2⇤

eiq·(R�R0) = e�iq·R0�(q)

This means that either e�iq·R0 = 1 or �(q) = 0. The former result is equivalent to the

statement that q 2 ⇤?. More generally,
X

R2⇤

eiq·R ⌘ �(q) = V ?
X

Q2⇤?

�(q�Q) (10.73)

where V ? is the volume of the unit cell of ⇤?. We see that �(q) is very strongly

(formally, infinitely) peaked on the reciprocal lattice.

The upshot of this discussion is a lovely result: there is scattering from a lattice if

and only if

k� k0 2 ⇤? (10.74)

This is known as the Laue condition. If the scattered momentum does not satisfy

this condition, then the interference between all the di↵erent scattering sites results

in a vanishing wave. Only when the Laue condition is obeyed is this interference

constructive.
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Figure 108: The Ewald sphere. Figure 109: Salt.

Alternatively, the Laue condition can be viewed as momentum conservation, with

the intuition — garnered from Section 2 — that the lattice can only absorb momentum

in ⇤?.

Solutions to the Laue condition are not generic. If you take a lattice with a fixed

orientation and fire a beam with fixed k, chances are that there are no solutions to

(10.74). To see this, consider the reciprocal lattice as shown in the left-hand panel of

the figure. From the tip of k draw a sphere of radius k. This is sometimes known as

the Ewald sphere and its surface gives the possible transferred momenta q = k � k0.

There is scattering only if this surface passes through a point on the reciprocal lattice.

To get scattering, we must therefore either find a wave to vary the incoming momen-

tum k, or find a way to vary the orientation of the lattice. But when this is achieved,

the outgoing photons k0 = kr̂ sit only at very specific positions. In this way, we get to

literally take a photograph of the reciprocal lattice! The resulting di↵raction pattern

for salt (NaCl) which has a cubic lattice structure is shown in the right-hand panel.

The four-fold symmetry of the reciprocal lattice is clearly visible.

10.5.1 The Bragg Condition

There is an equivalent phrasing of the Laue condition in real space. Suppose that the

momentum vectors obey

k� k0 = Q 2 ⇤?

Since Q is a lattice vector, so too is nQ for all n 2 Z. Suppose that Q is minimal, so

that nQ is not a lattice a vector for any n < 1. Defining the angle ✓ by k ·k0 = k2 cos ✓,

we can take the square of the equation above to get

2k2(1� cos ✓) = 4k2 sin2(✓/2) = Q2 ) 2k sin(✓/2) = Q
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Figure 110: A quasi-crystal. Figure 111: DNA, Photograph 51.

We can massage this further. The vector Q 2 ⇤? defines a set of parallel planes in ⇤.

Known as Bragg planes, these are labelled by an integer n and defined by those a 2 ⇤

which obey a ·Q = 2⇡n. The distance between successive planes is

d =
2⇡

Q

Furthermore, the wavevector k corresponds to a wavelength � = 2⇡/k. We learn that

the Laue condition written as the requirement that

d x

θ/2 θ/2

Figure 112:

� = 2d sin(✓/2)

Repeating this argument for vectors nQ with n 2 Z, we

get

n� = 2d sin(✓/2)

This is the Bragg condition. It has a simple interpretation. For n = 1, we assume

that the wave scatters o↵ two consecutive planes of the lattice, as shown figure. The

wave which hits the lower plane travels an extra distance of 2x = 2d sin(✓/2). The

Bragg condition requires this extra distance to coincide with the wavelength of light.

In other words, it is the statement that waves reflecting o↵ consecutive planes interfere

constructively.

The Bragg condition gives us licence to think about scattering of light o↵ planes in

the lattice, rather than individual lattice sites. Moreover, it tells us that the wavelength

of light should be comparable to the atomic separation in the crystal. This means x-

rays. The technique of x-ray crystallography was pioneered by Max von Laue, who

won the 1914 Nobel prize. The Bragg law was developed by William Bragg, a fellow of

Trinity and director of the Cavendish. He shared the 1915 Nobel prize in physics with

his father, also William Bragg, for their development of crystallographic techniques.
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X-ray crystallography remains the most important technique to determine the struc-

ture of materials. Two examples of historical interest are shown in the figures. The

picture on the left is something of an enigma since it has five-fold symmetry. Yet

there are no Bravais lattices with this symmetry! The di↵raction pictures is revealing

a quasi-crystal, an ordered but non-periodic crystal. The image on the right was taken

by Rosalind Franklin and is known as “photograph 51”. It provided a major, and

somewhat controversial, hint to Crick and Watson in their discovery of the structure

of DNA.

10.5.2 The Structure Factor

Many crystals are described by a repeating ground of atoms, which each group sits on

an underlying Bravais lattice ⇤. The atoms in the group are displaced from the vertex

of the Bravais lattice by a vector di. We saw several examples of this in Section 2. In

such a situation, the scattering amplitude (10.72) is replaced by

flattice(k,k
0) = �(q)S(q)

where

S(q) =
X

i

fi(k,k
0)eiq·di

We have allowed for the possibility that each atom in the basis has a di↵erent scattering

amplitude fi(k,k0). The function S(q) is called the geometric structure factor.

An Example: BCC Lattice

As an example, consider the BCC lattice viewed as a simple cubic lattice of size a,

with two basis vectors sitting at d1 = 0 and d2 = a
2(1, 1, 1). If we take the atoms on

the points d1 and d2 to be identical, then the associated scattering amplitudes are also

equal: f1 = f2 = f .

We know that the scattering amplitude is non-vanishing only if the transferred mo-

mentum q lies on the reciprocal lattice, meaning

q =
2⇡

a
(n1, n2, n3) ni 2 Z

This then gives the structure factor

S(q) = f
�
eiq·d1 + eiq·d2

�

= f
�
1 + ei⇡

P
i ni
�
=

(
2

P
ni even

0
P

ni odd
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Figure 113: A BCC lattice as cubic lat-

tice + basis.

Figure 114: The reciprocal as a cubic

lattice minus a basis.

We see that not all points in the reciprocal lattice ⇤? contribute. If we draw the

reciprocal, simple cubic lattice and delete the odd points, as shown in the right-hand

figure, we find ourselves left with a FCC lattice. (Admittedly, the perspective in the

figure isn’t great.) But this is exactly what we expect since it is the reciprocal of the

BCC lattice.

Another Example: Diamond

A diamond lattice consists of two, interlaced FCC lattices with basis vectors d1 = 0

and d2 = a
4(1, 1, 1). An FCC lattice has reciprocal lattice vectors b1 = 2⇡

a (�1, 1, 1),

b2 =
2⇡
a (1,�1, 1) and b3 =

2⇡
a (1, 1,�1). For q =

P
i nibi, the structure factor is

S(q) = f
�
1 + ei(⇡/2)

P
i ni
�
=

8
>>>><

>>>>:

2
P

ni = 0 mod 4

1 + i
P

ni = 1 mod 4

0
P

ni = 2 mod 4

1� i
P

ni = 3 mod 4

10.5.3 The Debye-Waller Factor

So far, we’ve treated the lattice as a fixed, unmoving object. But we know from our

discussion in Section 4 that this is not realistic. The underlying atoms can move. We

would like to know what e↵ect this has on the scattering o↵ a lattice.

Let’s return to our result (10.72) for the scattering amplitude o↵ a Bravais lattice ⇤,

f⇤(k,k
0) = f(k,k0)

X

n

eiq·Rn

where f(k,k0) is the amplitude for scattering from each site, q = k� k0, and Rn 2 ⇤.

Since the atoms can move, the position Rn are no longer fixed. We should replace

Rn ! Rn + un(t)
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where, as in Section 4, un describes the deviation of the lattice from equilibrium. In

general, this deviation could arise from either thermal e↵ects or quantum e↵ects. In

keeping with the theme of these lectures, we will restrict to the latter. But this is

conceptually interesting: it means that the scattering amplitude includes the factor

�̃(q) =
X

n

eiq·Rn eiq·un

which is now a quantum operator. This is telling us something important. When a

particle – whether photon or neutron – scatters o↵ the lattice, it can now excite a

phonon mode. The scattering amplitude is a quantum operator because it includes all

possible end-states of the lattice.

This opens up a whole slew of new physics. We could, for example, now start to

compute inelastic scattering, in which the particle deposits some energy in the lattice.

Here, however, we will content ourselves with elastic scattering, which means that the

the lattice sits in its ground state |0i both before and after the scattering. For this, we

need to compute

�̃(q) =
X

n

eiq·Rn h0|eiq·un(t)|0i

To proceed, we need the results of Section 4.1.4 in which we treated lattice vibrations

quantum mechanically. For simplicity, let’s consider a simple cubic lattice so that the

the matrix element above factorises into terms in the x, y and z direction. For each of

these, we can use the formalism that we developed for the one-dimensional lattice.

The matrix element h0|eiq·un |0i is independent of time and is also translationally

invariant. This means that we can evaluate it at t = 0 and at the lattice site n = 0.

For a one-dimensional lattice with N sites, the expansion (4.11) gives

u0 =
X

k 6=0

s
~

2mN!(k)

⇣
a(k) + a†(k)

⌘
⌘ A+ A†

Here we’ve used the rescaling (4.14) so that the creation and annihilation operators

obey the usual commutation relations [a(k), a†(k0)] = �k,k0 . The operators a†(k) create

a phonon with momentum k and energy !(k). The operators A and A† then obey

[A,A†] =
X

k 6=0

~
2mN!(k)
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Our goal now is to compute h0|eiq(A+A†)|0i. For this we use the BCH formula,

eiq(A+A†) = eiqA
†
eiqA e

1
2 q

2[A†,A]

But the ground state of the lattice is defined to obey al|0i = 0 for all l. This means

that eiqA|0i = |0i. We end up with the result

h0|eiq·u0 |0i = e�W (q) where W (q) =
X

k

~q2

4mN!(k)

This is called the Debye-Waller factor. We see that the scattering amplitude becomes

f⇤(k,k
0) = e�W (q) f(k,k0)�(q)

Note that, perhaps surprisingly, the atomic vibrations do not broaden the Bragg peaks

away from q 2 ⇤?. Instead, they only diminish their intensity.
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