Notes on Spherical Bessel Functions

Spherical Bessel functions play an important role in scattering theory. They obey
the equation
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The solutions are denoted as j;(z) and n;(z). In this note, we derive some of their
properties.

Before we proceed, I should stress that spherical Bessel functions are not the same
thing as Bessel functions, which are usually denoted as J,(x) and N,(z). However,
they are related; you can check that the function \/z j(z) and /x ni(x) obey the
Bessel equation.

Recursive Solution
Let y;(z) = 2' Yi(z). It is straightforward to show that this new function Y; obeys
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It’s simple to solve this for low [. First notice that although we’re ultimately we’re
interested in [ = 0,1,2,... the equation also makes sense for [ = —1 where the two
solutions are simply

Y i(x) =cosz and Y_i(z)=sinzx

It is not very much harder to solve for [ = 0 where the two solutions are

Yo(z) = sn;x and  Yo(z) = _co;x

where the overall minus sign is by convention. For higher [, we can solve recursively.
To do this, we first differentiate (2) again to get
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After dividing by 1/z, we can write this as
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which is the same equation as (2), but with (I + 1) replaced by (I + 2). This means
that we can take
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where, once again, the choice of minus sign is by convention. Putting all this together,
we arrive at two recursive solutions to the spherical Bessel equation given by y;(x) =
Ji(x) and y;(z) = ny(x) where
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Asymptotic Behaviour

For scattering problems we usually need the asymptotic behaviour of these functions,
both at x+ — oo and x — 0. We start with large x. Here, the spherical Bessel functions
are largest if the d/dx factors keep hitting the trigonometric sinz and cosz factors,
leaving us with a term which scales as 1/x at large distances. Specifically, we have
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We can combine these to write
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To see the small x behaviour of j;(z), we Taylor expand
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After hitting this with (14!, the leading order piece will come from the (gl_ﬂl)!xm term.

The differentiation will pull down a factor 2{(20 — 2)(2] — 4) .... The upshot is that at
small = we have
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Meanwhile for n;(x), we have
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This time the leading term comes from repeatedly differentiating the 1/z piece. We
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This means that the solution n;(z) diverges at the origin, and is given by
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where the numerator is simply 1 when [ = 0.



