
Notes on Spherical Bessel Functions

Spherical Bessel functions play an important role in scattering theory. They obey

the equation
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The solutions are denoted as jl(x) and nl(x). In this note, we derive some of their

properties.

Before we proceed, I should stress that spherical Bessel functions are not the same

thing as Bessel functions, which are usually denoted as Jν(x) and Nν(x). However,

they are related; you can check that the function
√
x jl(x) and

√
xnl(x) obey the

Bessel equation.

Recursive Solution

Let yl(x) = xl Yl(x). It is straightforward to show that this new function Yl obeys
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It’s simple to solve this for low l. First notice that although we’re ultimately we’re

interested in l = 0, 1, 2, . . . the equation also makes sense for l = −1 where the two

solutions are simply

Y−1(x) = cos x and Y−1(x) = sin x

It is not very much harder to solve for l = 0 where the two solutions are

Y0(x) =
sinx

x
and Y0(x) = −cosx

x

where the overall minus sign is by convention. For higher l, we can solve recursively.

To do this, we first differentiate (2) again to get
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After dividing by 1/x, we can write this as
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which is the same equation as (2), but with (l + 1) replaced by (l + 2). This means

that we can take

Yl = −1

x

dYl−1

dx
=

(
−1

x

d

dx

)l
Y0

where, once again, the choice of minus sign is by convention. Putting all this together,

we arrive at two recursive solutions to the spherical Bessel equation given by yl(x) =

jl(x) and yl(x) = nl(x) where

jl(x) = (−x)l
(

1

x

d
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)l
sinx
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and nl(x) = −(−x)l
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Asymptotic Behaviour

For scattering problems we usually need the asymptotic behaviour of these functions,

both at x→∞ and x→ 0. We start with large x. Here, the spherical Bessel functions

are largest if the d/dx factors keep hitting the trigonometric sinx and cosx factors,

leaving us with a term which scales as 1/x at large distances. Specifically, we have

jl(x) →

{
(−1)l/2 sinx/x l even

−(−1)(l−1)/2 cosx/x l odd

and

nl(x) →

{
−(−1)l/2 cosx/x l even

−(−1)(l−1)/2 sinx/x l odd

We can combine these to write

jl(x)→ sin(x− (lπ/2))

x
and nl(x)→ −cos(x− (lπ/2))

x
as x→∞

To see the small x behaviour of jl(x), we Taylor expand

sinx

x
=
x− 1

3!
x3 + 1

5!
x5 + . . .

x

After hitting this with ( 1
x
d
dx

)l, the leading order piece will come from the (−1)l

(2l+1)!
x2l term.

The differentiation will pull down a factor 2l(2l− 2)(2l− 4) . . .. The upshot is that at

small x we have

jl(x) ≈ xl

1 · 3 · 5 . . . (2l + 1)
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Meanwhile for nl(x), we have
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=
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2
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x

This time the leading term comes from repeatedly differentiating the 1/x piece. We

have (
1

x

d

dx

)l
1

x
= (−1)l

1 · 3 · 5 . . . (2l − 1)

x2l+1

This means that the solution nl(x) diverges at the origin, and is given by

nl(x)→ −1.3.5. . . . (2l − 1)

xl+1
as x→ 0

where the numerator is simply 1 when l = 0.
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