Applications of Quantum Mechanics: Example Sheet 1

David Tong, January 2017

la. Using a non-Gaussian trial wavefunction of your choice, estimate the ground state
energy of the quartic oscillator with Hamiltonian
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and compare your result with that obtained with a Gaussian wavefunction. What
motivated your choice?

[Suggestions: You could try ¢ = cos(rx/2a) or ¢ = (a? —z?) for |z| < a and vanishing
outside this interval.]

b. Use the Gaussian-type wavefunction ¢ (x) = ze~**/2 to obtain an estimate of the
energy of the first excited state of the quartic oscillator

[Hint: A handy way to do the integrals is to define I,, = ffooo dz 22"e¢=**" and to show
that I, = —2<1,.]
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2. A Hamiltonian takes the form H = T 4 V, with T the kinetic energy and V the
potential energy. Assuming a discrete energy spectrum, Fy < E; < Fy < ..., show that
the quantity (¢|H|v¢), where |¢) is normalized but otherwise arbitrary, is stationary
whenever |1) is an energy eigenstate of H.

Suppose now that V' is a homogeneous potential, satisfying V(Ax) = A"V (x). Show
that the virial theorem 2(¢|T'|1)) = n()|V|¢) holds for any energy eigenstate of H.

Show that there can be no localised states for n < —3.

3a. The Hamiltonian for a single electron orbiting a nucleus of charge 7 is
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Use the variational method with the trial wavefunction 1,(r) = e"/% where « is

a variational parameter and ay = 4mwegh?/me? is the Bohr radius. Show that the
minimum energy using this ansatz is
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Compare this to the true ground state energy.



b. The Hamiltonian for two electrons orbiting a nucleus of charge Z is
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Use the variational method with ansatz W(ry,re) = 9,(r1)t.(re) to estimate the
ground state energy. What physical effect underlies the new minimum value of a7

Hint: You will need the following integral
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c™*. I'm aware that this question is already rather long, so view this final part as very
optional: derive this integral.

4. A covalent bond forms because two ions can lower their energy by sharing an
electron. The simplest example occurs for the hydrogen molecule H, . The Hamiltonian
for a single electron, with position r, orbiting two protons which are separated by
distance R is given by
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to show that the energy can be written as
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where Ej is the ground state energy of hydrogen. Sketch (F) — Ej as a function of
R (you may need to do this numerically) and comment on the implications for the
binding of two protons.



5a. A simple model of a crystal consists of an infinite linear array of equally spaced
sites. The probability to sit at the n' site is 1, with n € Z and the time-independent
Schrodinger equation is
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where F, and the hopping parameter ¢ > 0 are both constant. Show that the energy
E of the electron must lie in a band |E — Fy| < 2t.

b. A defect is introduced into the crystal. As a result, the amplitude for jumping
between sites n = 0 and n = 1 is changed from —t to —s, with s > ¢. Obtain the new
Schrodinger equation for ¥y and ;. By considering solutions of the form
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show that ¢ = £¢/s and hence that the electron may be trapped near the origin. Show
that the energy of this localised electron is outside the original band.

6a. A quantized particle of mass m moves in one dimension in the presence of a
delta-function potential
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Show that there is a bound state with energy —h?A%/2m. The same particle now moves
in the potential

V(z) = —% Z d(z — na)
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Show that for Aa > 2, there is a negative band of energies with
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where p4 are determined by cosh(psa) — ﬁ sinh(p+a) = £1. Show that when a — oo
the band narrows down to the bound state energy.

[Hint: Use the obvious basis of negative energy solutions in the interval —a < x < 0,
and extend these to 0 < x < a to find the Floquet matrix.]



b. A defect is introduced into the crystal. The potential is now

Show that there exists a bound state satisfying ¢ (z+a) = ci(x) with |¢| < 1 for z > 0,

and ¢(—x) = ¢(z), if
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where F' is the Floquet matrix, defined with respect to the basis states e™* on the
interval 0 < < a. Show that this state has energy outside the original negative band,

7. Explain how, for a general one-dimensional periodic potential,
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the nearly-free electron model leads to a band structure for the energy levels. Deter-
mine, in this approximation, the energy gap between adjacent energy bands.

8. Consider the scaled Schrodinger equation
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where || is small. Using the nearly-free electron approximation, determine the energies
at the bottom and top of the lowest energy band, and also the Bloch states at these
energies.



