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1. The Schrödinger equation for a particle of mass m and charge q in an electro-

magnetic field is

i~
∂ψ

∂t
= − ~2

2m

(
∇− iq

~
A

)2

ψ + qφψ

Under a gauge transformation,

φ→ φ− ∂α

∂t
, A→ A +∇α .

Show that, with a suitable transformation of ψ, the Schrödinger equation transforms

into itself. Show that the probability density |ψ|2 is gauge invariant. Show that the

mechanical momentum π = −i~∇ − qA is gauge invariant. What is the physical

interpretation of the mechanical momentum?

2. A particle of charge q moving in a magnetic field B = ∇ × A = (0, 0, B) is

described by the Hamiltonian

H =
1

2m
(p− qA)2

where p is the canonical momentum. Show that the mechanical momentum π = p−qA
obeys

[πx, πy] = iq~B

Define

a =
1√

2q~B
(πx + iπy) and a† =

1√
2q~B

(πx − iπy)

What commutation relations do a and a† obey? Write the Hamiltonian in terms of a

and a† and hence solve for the spectrum.
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3i. Symmetric gauge is defined by A = B
2

(−y, x, 0). Confirm that this gives the

magnetic field B = (0, 0, B). Show that the Hamiltonian can be written as

H = − ~2

2m
∇2 +

qB

2m
Lz +

q2B2

8m
(x2 + y2)

where Lz is the component of the angular momentum parallel to B.

ii. Show that the operator a, defined in Question 2, takes the form

a = −i
√

2

(
lB

∂

∂w̄
+

w

4lB

)
where lB =

√
~/qB is the magnetic length and w = x+ iy is a complex coordinate on

the plane, with ∂ω̄ = 1
2
(∂x + i∂y) so that ∂ω̄ω = 0 and ∂ω̄ω̄ = 1 . Hence show that the

state

ψ(w) = f(w)e−|w|
2/4l2B

sits in the lowest Landau level for any holomorphic function f(w).

4. In the presence of a magnetic field B = (0, 0, B), a particle of charge q moves in

the (x, y)-plane on the trajectory,

x(t) = X +R sin(ωBt) and y(t) = Y +R cos(ωBt)

with ωB = qB/m. Working in symmetric gauge A = B
2

(−y, x, 0), show that the centre

of mass coordinates can be re-expressed as

X =
x

2
+

py
mωB

and Y =
y

2
− px
mωB

Viewed as quantum operators in the Heisenberg representation, show that both X and

Y do not change in time. Show that

[X, Y ] = −il2B

where l2B = ~/qB is the magnetic length. Use the Heisenberg uncertainty relation for

X and Y to estimate the number of states N that can sit in a region of area A.
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5. A particle of charge e and spin 1
2

with g-factor g = 2 moves in the (x, y)-plane in

the presence of a magnetic field of the form B = (0, 0, B). Show that the Hamiltonian

can be written as

H =
1

2m
Q2 with Q = (πxσx + πyσy)

where σ are the Pauli matrices and π is the mechanical momentum defined in earlier

questions.

Confirm that Q is Hermitian. Show that zero energy states are annihilated by Q.

Show that |ψ〉 and Q|ψ〉 are degenerate and hence deduce that the lowest Landau level

contains half the states of the higher Landau levels. What is the physical interpretation

of this? (Hint: consider the effect of Zeeman splitting on Landau levels.)

Working in Landau gauge, A = (0, Bx, 0) with B > 0, show that zero energy states

have spin up and take the form

ψ =

(
f(w) e−x

2/2l2B

0

)

with w = x + iy and l2B = ~/qB. Show by explicit calculation that there are no zero

energy spin down states.

6?. Near the Dirac point, an electron in graphene is described by the Hamiltonian

H = vFQ

with vF the Fermi velocity and Q the operator defined in Question 5. Working in

Landau gauge A = (0, Bx, 0), show that the Landau level spectrum is given by

E = ±vF
√

2~qB
√
n n = 0, 1, 2, . . .
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7. A particle of mass m is scattered by the symmetric square well potential given

by

V (x) =

{
−V0 |x| < a/2

0 |x| > a/2
with V0 > 0

The incoming and outgoing plane waves of even (+) and odd (−) parity are

I+(k;x) = e−ik|x| , I−(k;x) = sign(x) e−ik|x|

O+(k;x) = e+ik|x| , O−(k;x) = −sign(x) e+ik|x|

The corresponding scattering states for |x| > a/2 are

ψ+(k;x) = I+(k;x) + S++(k)O+(k;x)

ψ−(k;x) = I−(k;x) + S−−(k)O−(k;x)

where S++ and S−− are the diagonal elements of the S-matrix in the parity basis. By

imposing the boundary condition that (dψ/dx)/ψ is continuous at x = a/2 show that

S++ = −e−ika q tan(qa/2)− ik
q tan(qa/2) + ik

, S−− = e−ika
q + ik tan(qa/2)

q − ik tan(qa/2)

where q2 = k2 +U0 and U0 = 2mV0/~2.. Interpret the poles and zeros of S++ and S−−
in terms of bound states.

8. Carry out a similar analysis to that in Question 7, this time for the potential

V (x) = V0δ(x− 1) + V0δ(x+ 1)

with V0 > 0. Interpret the poles and zeros of S++ and S−− in the complex k-plane as

resonances, in the case where V0 � 1. Show that, approximately, the pole position in

S++ with the smallest real part lies at

k =
π

2
− π

2U0

+
π

2U2
0

− i π
2

4U2
0

where U0 = 2mV0/~2.
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