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David Tong, February 2017

1. The Schrodinger equation for a particle of mass m and charge ¢ in an electro-
magnetic field is
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Show that, with a suitable transformation of v, the Schrodinger equation transforms
into itself. Show that the probability density |¢|* is gauge invariant. Show that the
mechanical momentum ™ = —ihV — gqA is gauge invariant. What is the physical
interpretation of the mechanical momentum?

2. A particle of charge ¢ moving in a magnetic field B = V x A = (0,0, B) is
described by the Hamiltonian

1

H=—(p—qgA)?
2m(p qA)

where p is the canonical momentum. Show that the mechanical momentum @ = p—qA
obeys

[T,y = iqghB

Define

What commutation relations do a and a' obey? Write the Hamiltonian in terms of a
and a' and hence solve for the spectrum.



3i. Symmetric gauge is defined by A = %(—y,x, 0). Confirm that this gives the
magnetic field B = (0,0, B). Show that the Hamiltonian can be written as
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where L, is the component of the angular momentum parallel to B.

ii. Show that the operator a, defined in Question 2, takes the form
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where lg = /h/qB is the magnetic length and w = x + iy is a complex coordinate on
the plane, with 9; = 3(8, + id,) so that d,w = 0 and dyw = 1 . Hence show that the
state

Dlw) = f(w)e

sits in the lowest Landau level for any holomorphic function f(w).

4. In the presence of a magnetic field B = (0,0, B), a particle of charge ¢ moves in
the (z,y)-plane on the trajectory,

x(t) = X + Rsin(wpt) and y(t) =Y + Rcos(wgt)
with wp = ¢B/m. Working in symmetric gauge A = g(—y, z,0), show that the centre
of mass coordinates can be re-expressed as
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Viewed as quantum operators in the Heisenberg representation, show that both X and
Y do not change in time. Show that

[X,Y] = —il}

where 1% = h/qB is the magnetic length. Use the Heisenberg uncertainty relation for
X and Y to estimate the number of states A that can sit in a region of area A.



5. A particle of charge e and spin % with g-factor ¢ = 2 moves in the (z, y)-plane in
the presence of a magnetic field of the form B = (0,0, B). Show that the Hamiltonian
can be written as
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H= 3 Q* with Q = (7,0, +my0,)
where o are the Pauli matrices and 7 is the mechanical momentum defined in earlier
questions.

Confirm that ) is Hermitian. Show that zero energy states are annihilated by Q.
Show that |¢) and Q) are degenerate and hence deduce that the lowest Landau level
contains half the states of the higher Landau levels. What is the physical interpretation
of this? (Hint: consider the effect of Zeeman splitting on Landau levels.)

Working in Landau gauge, A = (0, Bx,0) with B > 0, show that zero energy states
have spin up and take the form
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with w = x + iy and [% = h/qB. Show by explicit calculation that there are no zero
energy spin down states.

6*. Near the Dirac point, an electron in graphene is described by the Hamiltonian

H = vpQ

with vp the Fermi velocity and () the operator defined in Question 5. Working in
Landau gauge A = (0, Bx,0), show that the Landau level spectrum is given by

E = +vp\/2hgB \/n n=0,1,2,...



7. A particle of mass m is scattered by the symmetric square well potential given

by
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The incoming and outgoing plane waves of even (+) and odd (—) parity are

Iy (k;x) = el . I_(k;z) = sign(x) e~k
O, (k;z) = o tiklz] ’ O_(k;z) = —sign(z) e tiklzl

The corresponding scattering states for |z| > a/2 are

Yi(kix) = Iy(kyz) 4+ S4v(k)O4(k;x)
v_(k;z) = I_(kiz)+ S_—(k)O-(k;x)

where S, and S__ are the diagonal elements of the S-matrix in the parity basis. By
imposing the boundary condition that (di/dx)/v is continuous at x = a/2 show that
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where ¢* = k* + Uy and Uy = 2mVy/R%.. Interpret the poles and zeros of S, and S__
in terms of bound states.

8. Carry out a similar analysis to that in Question 7, this time for the potential
Vi(z) =Vod(x — 1) + Voo(zx + 1)

with V5 > 0. Interpret the poles and zeros of S, and S__ in the complex k-plane as
resonances, in the case where V) > 1. Show that, approximately, the pole position in
S, 4 with the smallest real part lies at

s ™ 7'('2
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where Uy = 2mV}/h?.



