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1a. Using a non-Gaussian trial wavefunction of your choice, estimate the ground state

energy of the quartic oscillator with Hamiltonian

H = − d2

dx2
+ x4

and compare your result with that obtained with a Gaussian wavefunction. What

motivated your choice?

[Suggestions: You could try ψ = cos(πx/2α) or ψ = (α2−x2) for |x| < α and vanishing

outside this interval.]

b. Use the Gaussian-type wavefunction ψ(x) = xe−αx
2/2 to obtain an estimate of the

energy of the first excited state of the quartic oscillator

[Hint: A handy way to do the integrals is to define In =
∫∞
−∞ dx x

2ne−αx
2

and to show

that In+1 = − d
dα
In.]

2. A Hamiltonian takes the form H = T + V , with T the kinetic energy and V the

potential energy. Assuming a discrete energy spectrum, E0 < E1 < E2 < ..., show that

the quantity 〈ψ|H|ψ〉, where |ψ〉 is normalized but otherwise arbitrary, is stationary

whenever |ψ〉 is an energy eigenstate of H.

Suppose now that V is a homogeneous potential, satisfying V (λx) = λnV (x). Show

that the virial theorem 2〈ψ|T |ψ〉 = n〈ψ|V |ψ〉 holds for any energy eigenstate of H.

Show that there can be no localised states for integer n ≤ −3.

3a. The Hamiltonian for a single electron orbiting a nucleus of charge Z is

H =
p2

2m
− Ze2

4πε0r

Use the variational method with the trial wavefunction ψα(r) = e−αr/a0 where α is

a variational parameter and a0 = 4πε0~2/me2 is the Bohr radius. Show that the

minimum energy using this ansatz is

E0 = − ~2

2m

Z2

a20

Compare this to the true ground state energy.
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b. The Hamiltonian for two electrons orbiting a nucleus of charge Z is

H =
p2
1

2m
− Ze2

4πε0

1

r1
+

p2
2

2m
− Ze2

4πε0

1

r2
+

e2

4πε0

1

|r1 − r2|

Use the variational method with ansatz Ψ(r1, r2) = ψα(r1)ψα(r2) to estimate the

ground state energy. What physical effect underlies the new minimum value of α?

Hint: You will need the following integral∫
d3r1d

3r2
|ψα(r1)|2|ψα(r2)|2

|r1 − r2|
=

5π2

8

a50
α5

4*. A covalent bond forms because two ions can lower their energy by sharing an

electron. The simplest example occurs for the hydrogen moleculeH−2 . The Hamiltonian

for a single electron, with position r, orbiting two protons which are separated by

distance R is given by

H =
p2

2m
+

e2

4πε0

[
1

R
− 1

r
− 1

|r−R|

]
Use the un-normalised ansatz

Ψ = ψ(r) + ψ(r−R) with ψ =

√
1

πa30
e−r/a0

and the integrals

u(R) =

∫
d3r ψ(r)ψ(r−R) =

(
1 +

R

a0
+
R2

3a20

)
e−R/a0

v(R) =

∫
d3r

ψ(r)ψ(r−R)

r
=

1

a0

(
1 +

R

a0

)
e−R/a0

w(R) =

∫
d3r

ψ(r)2

|r−R|
=

1

R
− 1

R

(
1 +

R

a0

)
e−2R/a0

to show that the energy can be written as

〈E〉 − E0 =
e2

4πε0

(
1

R
− v(R) + w(R)

1 + u(R)

)
where E0 is the ground state energy of hydrogen. Sketch 〈E〉 − E0 as a function of

R (you may need to do this numerically) and comment on the implications for the

binding of two protons.
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5a. A simple model of a crystal consists of an infinite linear array of equally spaced

sites. The quantum amplitude to sit at the nth site is ψn, with n ∈ Z and the time-

independent Schrödinger equation is

Eψn = E0ψn − t(ψn−1 + ψn+1)

where E0 and the hopping parameter t > 0 are both constant. Show that the energy

E of the electron must lie in a band |E − E0| ≤ 2t.

b. A defect is introduced into the crystal. As a result, the amplitude for jumping

between sites n = 0 and n = 1 is changed from −t to −s, with s > t. Obtain the new

Schrödinger equation for ψ0 and ψ1. By considering solutions of the form

ψn =

{
α cn−1 n ≥ 1

β c−n n ≤ 0

show that c = ±t/s and hence that the electron may be trapped near the origin. Show

that the energy of this localised electron is outside the original band.

6a. A quantized particle of mass m moves in one dimension in the presence of a

delta-function potential

V (x) = −~2λ
m

δ(x)

Show that there is a bound state with energy −~2λ2/2m. The same particle now moves

in the potential

V (x) = −~2λ
m

∞∑
n=−∞

δ(x− na)

Show that for λa > 2, there is a negative band of energies with

−
~2µ2

+

2m
≤ E ≤ −

~2µ2
−

2m

where µ± are determined by cosh(µ±a)− λ
µ±

sinh(µ±a) = ±1. Show that when a→∞
the band narrows down to the bound state energy.

[Hint: Use the obvious basis of negative energy solutions in the interval −a < x < 0,

and extend these to 0 < x < a to find the Floquet matrix.]
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b. A defect is introduced into the crystal. The potential is now

V (x) = −~2λ
m

∑
n6=0

δ(x− na)− ~2γ
m

δ(x)

Show that there exists a bound state satisfying ψ(x+a) = cψ(x) with |c| < 1 for x > 0,

and ψ(−x) = ψ(x), if

F

(
µ− γ
µ+ γ

)
= c

(
µ− γ
µ+ γ

)

where F is the Floquet matrix, defined with respect to the basis states e±µx on the

interval 0 < x < a. Show that this state has energy outside the original negative band,

7. Explain how, for a general one-dimensional periodic potential,

V (x) =
∞∑
n=1

αn(e2πinx/a + e−2πinx/a) ,

the nearly-free electron model leads to a band structure for the energy levels. Deter-

mine, in this approximation, the energy gap between adjacent energy bands.

8. Consider the scaled Schrödinger equation

−d
2ψ

dx2
+ λ cos 2xψ = Eψ

where |λ| is small. Using the nearly-free electron approximation, determine the energies

at the bottom and top of the lowest energy band, and also the Bloch states at these

energies.
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