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1. The semi-classical equations of motion for an electron of charge −e and energy E(k)

moving in a magnetic field B are

~
dk

dt
= −ev ×B and v =

1

~
∂E

∂k

Show that, in momentum space, the electrons orbit the Fermi surface E(kF ) in a plane

perpendicular to B. Show that the orbit of the electron in position space, projected onto

the plane perpendicular to B, traces out the perimeter of a cross-section of the Fermi

surface. [Hint: Consider the evolution of the position r⊥ = r− (B̂ · r)B̂, perpendicular

to the magnetic field.]

A free electron has E(k) = ~2k2/2m. Use the results above to show that, for any

value of k · B, the electron orbits the Fermi surface with cyclotron frequency ωB =

eB/m. Show that the time taken to orbit the Fermi surface can be written as

T =
2π

ωB

=
~2

eB

∂A(E)

∂E

∣∣∣∣
k·B

where A(E) is the cross-sectional area of the Fermi surface with Fermi energy E.

[An Aside: This formula is important because it holds for Fermi surfaces of any

shape.]

2. A one-dimensional crystal comprises a chain of atoms of mass m equally spaced

by a distance a when in equilibrium. The forces between the atoms are such that the

effective spring constants are alternately λ and αλ. Show that the dispersion relation

for phonons has the form

ω±(k)2 =
λ

m

[
(1 + α)±

√
1 + 2α cos 2ka+ α2

]
where the wavenumber k satisfies −π/2a ≤ k ≤ π/2a. What is the speed of sound in

this crystal?
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3. The Schrödinger equation for a particle of massm and charge q in an electromagnetic

field is

i~
∂ψ

∂t
= − ~2

2m

(
∇− iq

~
A

)2

ψ + qφψ

Under a gauge transformation,

φ→ φ− ∂α

∂t
, A→ A +∇α .

Show that, with a suitable transformation of ψ, the Schrödinger equation transforms

into itself. Show that the probability density |ψ|2 is gauge invariant. Show that the

mechanical momentum π = −i~∇ − qA is gauge invariant. What is the physical

interpretation of the mechanical momentum?

4. A particle of charge q moving in a magnetic field B = ∇×A = (0, 0, B) is described

by the Hamiltonian

H =
1

2m
(p− qA)2

where p is the canonical momentum. Show that the mechanical momentum π = p−qA
obeys

[πx, πy] = iq~B

Define

a =
1√

2q~B
(πx + iπy) and a† =

1√
2q~B

(πx − iπy)

What commutation relations do a and a† obey? Write the Hamiltonian in terms of a

and a† and hence solve for the spectrum.

5a. Symmetric gauge is defined by A = B
2

(−y, x, 0). Confirm that this gives the

magnetic field B = (0, 0, B). Show that the Hamiltonian can be written as

H = − ~2

2m
∇2 − qB

2m
Lz +

q2B2

8m
(x2 + y2)

where Lz is the component of the angular momentum parallel to B.
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b. Show that the operator a, defined in Question 4, takes the form

a = −i
√

2

(
lB

∂

∂w̄
+

w

4lB

)
where lB =

√
~/qB is the magnetic length and w = x+ iy is a complex coordinate on

the plane, with ∂ω̄ = 1
2
(∂x + i∂y) so that ∂ω̄ω = 0 and ∂ω̄ω̄ = 1 . Hence show that the

state

ψ(w) = f(w)e−|w|
2/4l2B

sits in the lowest Landau level for any holomorphic function f(w).

6. In the presence of a magnetic field B = (0, 0, B), a particle of charge q moves in the

(x, y)-plane on the trajectory,

x(t) = X +R sin(ωBt) and y(t) = Y +R cos(ωBt)

with ωB = qB/m. Working in symmetric gauge A = B
2

(−y, x, 0), show that the centre

of mass coordinates can be re-expressed as

X =
x

2
+

py
mωB

and Y =
y

2
− px
mωB

Viewed as quantum operators in the Heisenberg representation, show that both X and

Y do not change in time. Show that

[X, Y ] = −il2B

where l2B = ~/qB is the magnetic length. Use the Heisenberg uncertainty relation for

X and Y to estimate the number of states N that can sit in a region of area A.

7. A particle of charge e and spin 1
2

with g-factor g = 2 moves in the (x, y)-plane in

the presence of a magnetic field of the form B = (0, 0, B). Show that the Hamiltonian

can be written as

H =
1

2m
Q2 with Q = (πxσx + πyσy)

where σ are the Pauli matrices and π is the mechanical momentum defined in earlier

questions.

Confirm that Q is Hermitian. Show that zero energy states are annihilated by Q.

Show that |ψ〉 and Q|ψ〉 are degenerate and hence deduce that the lowest Landau level
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contains half the states of the higher Landau levels. What is the physical interpretation

of this? (Hint: consider the effect of Zeeman splitting on Landau levels.)

Working in Landau gauge, A = (0, Bx, 0) with B > 0, show that zero energy states

have spin up and take the form

ψ =

(
f(w) e−x

2/2l2B

0

)

with w = x + iy and l2B = ~/qB. Show by explicit calculation that there are no zero

energy spin down states.

8?. Near the Dirac point, an electron in graphene is described by the Hamiltonian

H = vFQ

with vF the Fermi velocity and Q the operator defined in Question 5. Working in

Landau gauge A = (0, Bx, 0), show that the Landau level spectrum is given by

E = ±vF
√

2~qB
√
n n = 0, 1, 2, . . .
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