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Recommended Books and Resources

There are many excellent books on Solid State Physics. The two canonical books are

e Ashcroft and Mermin, Solid State Physics

e Kittel, Introduction to Solid State Physics

Both of these go substantially beyond the material covered in this course. Personally,
I have a slight preference for the verbosity of Ashcroft and Mermin.

A somewhat friendlier, easier going book is
e Steve Simon, Solid State Physics Basics

It covers only the basics, but does so very well. (An earlier draft can be downloaded
from Steve Simon’s homepage; see below for a link.)

A number of lecture notes are available on the web. Links can be found on the course
webpage: http://www.damtp.cam.ac.uk/user/tong/solidstate.html
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0. Introduction

Solid state physics is the study of “stuft”; of how the wonderfully diverse properties of
solids can emerge from the simple laws that govern electrons and atoms.

There is one, over-riding, practical reason for wanting to understand the behaviour
of stuff: this is how we build things. In particular, it is how we build the delicate
and powerful technologies that underlie our society. Important though they are, such
practicalities will take a back seat in our story. Instead, our mantra is “knowledge
for its own sake”. Indeed, the subject of solid state physics turns out to be one of
extraordinary subtlety and beauty. If such knowledge ultimately proves useful, this is
merely a happy corollary.

We will develop only the basics of solid state physics. We will learn how electrons
glide through seemingly impenetrable solids, how their collective motion is described by
a Fermi surface, and how the vibrations of the underlying atoms get tied into bundles
of energy known as phonons. We will learn that electrons in magnetic fields can do
strange things and start to explore some of the roles that geometry and topology play
in quantum physics.

One of the ultimate surprises of solid state physics is how the subject later dovetails
with ideas from particle physics. At first glance, one might have thought these two
disciplines should have nothing to do with each other. Yet one of the most striking
themes in modern physics is how ideas from one have influenced the other. In large
part this is because both subjects rest on some of the deepest principles in physics:
ideas such symmetry, topology and universality. Although much of what we cover in
these lectures will be at a basic level, we will nonetheless see some hints of these deeper
connections. We will, for example, see the Dirac equation — originally introduced to
unify relativity and quantum mechanics — emerging from graphene. We will learn how
the vibrations of a lattice, and the resulting phonons, provide a baby introduction to
quantum field theory.



1. Particles in a Magnetic Field

The purpose of this chapter is to understand how quantum particles react to magnetic
fields. In contrast to later sections, we will not yet place these particles inside solids,
for the simple reason that there is plenty of interesting behaviour to discover before we
do this. Later, in Section 3.1, we will understand how these magnetic fields affect the
electrons in solids.

Before we get to describe quantum effects, we first need to highlight a few of the
more subtle aspects that arise when discussing classical physics in the presence of a
magnetic field.

1.1 Gauge Fields

Recall from our lectures on Electromagnetism that the electric field E(x,t) and mag-
netic field B(x, ) can be written in terms a scalar potential ¢(x, t) and a vector potential

A(x,t),

E:—w—%—‘? and B=V x A (1.1)

Both ¢ and A are referred to as gauge fields. When we first learn electromagnetism, they
are introduced merely as handy tricks to help solve the Maxwell equations. However,
as we proceed through theoretical physics, we learn that they play a more fundamental
role. In particular, they are necessary if we want to discuss a Lagrangian or Hamiltonian
approach to electromagnetism. We will soon see that these gauge fields are quite
indispensable in quantum mechanics.

The Lagrangian for a particle of charge ¢ and mass m moving in a background
electromagnetic fields is

1
L= §m)'c2+q5(-A—qu§ (1.2)

The classical equation of motion arising from this Lagrangian is
mX =q(E+%x x B)
This is the Lorentz force law.

Before we proceed I should warn you of a minus sign issue. We will work with
a general charge q. However, many textbooks work with the charge of the electron,
written as ¢ = —e. If this minus sign leans to confusion, you should blame Benjamin
Franklin.



An Example: Motion in a Constant Magnetic Field

We'll take a constant magnetic field, pointing in the z-direction: B = (0,0, B). We'll
take E = 0. The particle is free in the z-direction, with the equation of motion mz = 0.
The more interesting dynamics takes place in the (z,y)-plane where the equations of
motion are

mi = qBy and mj = —qBzt (1.3)
which has general solution is
x(t) = X 4+ Rsin(wp(t —tp)) and y(t) =Y + Rcos(wp(t — to))

We see that the particle moves in a circle which, for B > 0
and ¢ > 0, is in a clockwise direction. The cyclotron
frequency is defined by

_ 4B
_m

The centre of the circle (X,Y"), the radius of the circle R
and the phase ¢ are all arbitrary. These are the four integration constants expected in

wWB

(1.4)

Figure 1:

the solution of two, second order differential equations.

1.1.1 The Hamiltonian

The canonical momentum in the presence of gauge fields is

oL .
= o = mx + qA (1.5)

This clearly is not the same as what we naively call momentum, namely mx.

The Hamiltonian is given by

_ 1
H=%-p—L=c:—(p—qA)" +q¢
m

Written in terms of the velocity of the particle, the Hamiltonian looks the same as
it would in the absence of a magnetic field: H = %mig + q¢. This is the statement
that a magnetic field does no work and so doesn’t change the energy of the system.
However, there’s more to the Hamiltonian framework than just the value of H. We
need to remember which variables are canonical. This information is encoded in the
Poisson bracket structure of the theory (or, in fancy language, the symplectic structure
on phase space). The fact that x and p are canonical means that

{xi,pj} = (52']‘ Wlth {l‘i,l’j} = {pl7pj} = O



In the quantum theory, this structure transferred onto commutation relations between
operators, which become

[.Q?i,pj] = ZFLCSU with [l’i,.Tj] = [pzap]] =0

1.1.2 Gauge Transformations

The gauge fields A and ¢ are not unique. We can change them as
O
gb—)qzﬁ—a and A — A+ Va (1.6)

for any function a(x,t). Under these transformations, the electric and magnetic fields
(1.1) remain unchanged. The Lagrangian (1.2) changes by a total derivative, but this is
sufficient to ensure that the resulting equations of motion (1.3) are unchanged. Different
choices of « are said to be different choices of gauge. We'll see some examples below.

The existence of gauge transformations is a redundancy in our description of the
system: fields which differ by the transformation (1.6) describe physically identical
configurations. Nothing that we can physically measure can depend on our choice of
gauge. This, it turns out, is a beautifully subtle and powerful restriction. We will start
to explore some of these subtleties in Sections 1.3 and 1.4

The canonical momentum p defined in (1.5) is not gauge invariant: it transforms
as p — p + ¢Va. This means that the numerical value of p can’t have any physical
meaning since it depends on our choice of gauge. In contrast, the velocity of the particle
X is gauge invariant, and therefore physical.

The Schrodinger Equation

Finally, we can turn to the quantum theory. We’ll look at the spectrum in the next
section, but first we wish to understand how gauge transformations work. Following
the usual quantisation procedure, we replace the canonical momentum with

p — —ihV

The time-dependent Schrodinger equation for a particle in an electric and magnetic
field then takes the form
o

| 1 2
ihr = Hp = 5 (—mv - qA) b+ qéip (1.7)

The shift of the kinetic term to incorporate the vector potential A is sometimes referred
to as minimal coupling.



Before we solve for the spectrum, there are two lessons to take away. The first is that
it is not possible to formulate the quantum mechanics of particles moving in electric
and magnetic fields in terms of E and B alone. We're obliged to introduce the gauge
fields A and ¢. This might make you wonder if, perhaps, there is more to A and ¢
than we first thought. We’ll see the answer to this question in Section 1.3. (Spoiler:
the answer is yes.)

The second lesson follows from looking at how (1.7) fares under gauge transforma-
tions. It is simple to check that the Schrédinger equation transforms covariantly (i.e.
in a nice way) only if the wavefunction itself also transforms with a position-dependent
phase

Y(x,t) — eiqo‘(x’t)/h@b(x, t) (1.8)

This is closely related to the fact that p is not gauge invariant in the presence of a mag-
netic field. Importantly, this gauge transformation does not affect physical probabilities
which are given by []2.

The simplest way to see that the Schrodinger equation transforms nicely under the
gauge transformation (1.8) is to define the covariant derivatives

0 g 0 g
Dt——-i—%gzﬁ and DZ_%_ﬁA'L

In terms of these covariant derivatives, the Schrodinger equation becomes
h2
ihDy)p = ——D%) (1.9)
2m

But these covariant derivatives are designed to transform nicely under a gauge trans-
formation (1.6) and (1.8). You can check that they pick up only a phase

Db — 1" Dpp and D — €% Dy
This ensures that the Schrodinger equation (1.9) transforms covariantly.

1.2 Landau Levels

Our task now is to solve for the spectrum and wavefunctions of the Schrodinger equa-
tion. We are interested in the situation with vanishing electric field, E = 0, and
constant magnetic field. The quantum Hamiltonian is

H= %(p—qA)2 (1.10)



We take the magnetic field to lie in the z-direction, so that B = (0,0, B). To proceed,
we need to find a gauge potential A which obeys V x A = B. There is, of course, no
unique choice. Here we pick

A = (0,2B,0) (1.11)

This is called Landau gauge. Note that the magnetic field B = (0,0, B) is invariant
under both translational symmetry and rotational symmetry in the (x,y)-plane. How-
ever, the choice of A is not; it breaks translational symmetry in the x direction (but not
in the y direction) and rotational symmetry. This means that, while the physics will
be invariant under all symmetries, the intermediate calculations will not be manifestly
invariant. This kind of compromise is typical when dealing with magnetic field.

The Hamiltonian (1.10) becomes

1

H = (0} + (py — 4B2)* + p2)

Because we have manifest translational invariance in the y and z directions, we have
[py, H] = [ps, H] = 0 and can look for energy eigenstates which are also eigenstates of
py and p,. This motivates the ansatz

h(x) = Mty (a) (1.12)

Acting on this wavefunction with the momentum operators p, = —ihd, and p, = —ih0,,
we have

pgﬂ? - hkzﬂ/’ and pzl/J - hkzw

The time-independent Schrodinger equation is Hiy = K. Substituting our ansatz
(1.12) simply replaces p, and p, with their eigenvalues, and we have

() = 5 [0 + ik, — B2)? + 1282 (x) = By(x)

We can write this as an eigenvalue equation for the equation x(x). We have

i) = (B 5 ) (o

2m

where H is something very familiar: it’s the Hamiltonian for a harmonic oscillator in
the x direction, with the centre displaced from the origin,
1

H = —p?
2mpx+

2
mwsg
2

(z — k1) (1.13)



The frequency of the harmonic oscillator is again the cyloctron frequency wg = ¢B/m,
and we’ve also introduced a length scale [g. This is a characteristic length scale which
governs any quantum phenomena in a magnetic field. It is called the magnetic length.

—
B — qB

To give you some sense for this, in a magnetic field of B = 1 Tesla, the magnetic length
for an electron is lg ~ 2.5 x 1078 m.

Something rather strange has happened in the Hamiltonian (1.13): the momentum
in the y direction, hk,, has turned into the position of the harmonic oscillator in the
direction, which is now centred at = = k,l%.

We can immediately write down the energy eigenvalues of (1.13); they are simply
those of the harmonic oscillator

1 h2k?
E = hw - = =0,1,2,... 1.14
B <TL + 2> + m n 5 Ly 4y ( )
The wavefunctions depend on three quantum numbers, n € N and k,, k., € R. They
are

(@, y) ~ Ttz g (g — e 1) e @R 2 (1.15)

with H,, the usual Hermite polynomial wavefunctions of the harmonic oscillator. The ~
reflects the fact that we have made no attempt to normalise these these wavefunctions.

The wavefunctions look like strips, extended in the y direction but exponentially
localised around = = k,l% in the = direction. However, you shouldn’t read too much
into this. As we will see shortly, there is large degeneracy of wavefunctions and by
taking linear combinations of these states we can cook up wavefunctions that have
pretty much any shape you like.

1.2.1 Degeneracy

The dynamics of the particle in the z-direction is unaffected by the magnetic field
B = (0,0, B). To focus on the novel physics, let’s restrict to particles with k, = 0. The
energy spectrum then coincides with that of a harmonic oscillator,

E, = hwg (n + %) (1.16)



In the present context, these are called Landau levels. We B

see that, in the presence of a magnetic field, the energy levels | _
of a particle become equally spaced, with the gap between n=4

each level proportional to the magnetic field B. Note that nj
the energy spectrum looks very different from a free particle 2;1
moving in the (z,y)-plane. n=0

k
The states in a given Landau level are not unique. In-

stead, there is a huge degeneracy, with many states having Figure 2: Landau Levels
the same energy. We can see this in the form of the wave-

functions (1.15) which, when k, = 0, depend on two quantum numbers, n and k,. Yet
the energy (1.16) is independent of k.

Let’s determine how large this degeneracy of states is. To do so, we need to restrict
ourselves to a finite region of the (z,y)-plane. We pick a rectangle with sides of lengths
L, and L,. We want to know how many states fit inside this rectangle.

Having a finite size L, is like putting the system in a box in the y-direction. The
wavefunctions must obey

Uy +Ly,2) =v(yz) = =1
This means that the momentum £k, is quantised in units of 27 /L,,.

Having a finite size L, is somewhat more subtle. The reason is that, as we mentioned
above, the gauge choice (1.11) does not have manifest translational invariance in the
x-direction. This means that our argument will be a little heuristic. Because the
wavefunctions (1.15) are exponentially localised around x = k,l%, for a finite sample
restricted to 0 < x < L, we would expect the allowed £, values to range between
0<k, <L, / Z%. The end result is that the number of states in each Landau level is
given by

L, (%" L,L, qBA
_ i T it 1.1
N 2T /0 2ml3, 2mh (1.17)

where A = L, L, is the area of the sample. Strictly speaking, we should take the integer
part of the answer above.

The degeneracy (1.17) is very very large. Throwing in some numbers, there are
around 10! degenerate states per Landau level for electrons in a region of arca A =
1 em? in a magnetic field B ~ 0.1 T. This large degeneracy ultimately, this leads to
an array of dramatic and surprising physics.



1.2.2 Symmetric Gauge

It is worthwhile to repeat the calculations above using a different gauge choice. This
will give us a slightly different perspective on the physics. A natural choice is symmetric

gauge
1 B
A= X % B = 5(—y,$,0) (1.18)

This choice of gauge breaks translational symmetry in both the z and the y directions.
However, it does preserve rotational symmetry about the origin. This means that
angular momentum is now a good quantum number to label states.

In this gauge, the Hamiltonian is given by

1 qBy 2 qBx 2 9
H=— s+ — - —
om ( M > +(py 3 ) TP
h? B 2 B2
= —%VZ — ;]—mLZ—f—q8—m(l'2+y2) (1.19)

where we've introduced the angular momentum operator

Lz = TPy — YPzx

We'll again restrict to motion in the (z,y)-plane, so we focus on states with k, = 0.
It turns out that complex variables are particularly well suited to describing states in
symmetric gauge, in particular in the lowest Landau level with n = 0. We define

w=z+1y and w=x-—1y
Correspondingly, the complex derivatives are
0 0 = 1[0 0
— — i d d==(=—+1i—
(89& Zay> o 2 (83: +Z8y)

which obey 0w = 0w = 1 and 0w = Ow = 0. The Hamiltonian, restricted to states
with k, = 0, is then given by

a:

DN | —

2 2
2h 95 — W—BLZ n mwau_)

H=-——
m 2 8

where now

L. = h(wd — w)



It is simple to check that the states in the lowest Landau level take the form
¢O(w7 ﬂ)) _ f(w)€_|w|2/4l23

for any holomorphic function f(w). These all obey

Ho(w,8) = 2w, )

which is the statement that they lie in the lowest Landau level with n = 0. We can
further distinguish these states by requiring that they are also eigenvalues of L,. These
are satisfied by the monomials,

Yo = wMe P [y = M, (1.20)
for some positive integer M.

Degeneracy Revisited

In symmetric gauge, the profiles of the wavefunctions (1.20) form concentric rings
around the origin. The higher the angular momentum M, the further out the ring.
This, of course, is very different from the strip-like wavefunctions that we saw in Landau
gauge (1.15). You shouldn’t read too much into this other than the fact that the profile
of the wavefunctions is not telling us anything physical as it is not gauge invariant.

However, it’s worth revisiting the degeneracy of states in symmetric gauge. The
probability for a particle with angular momentum M is peaked on a ring of radius
r = v/2MIlp. This means that in a disc shaped region of area A = mR?, the number of
states is roughly (the integer part of)

BA
N = R?/2I /27l o

which agrees with our earlier result (1.17).

1.2.3 An Invitation to the Quantum Hall Effect

Take a system with some fixed number of electrons, which are restricted to move in
the (z,y)-plane. The charge of the electron is ¢ = —e. In the presence of a magnetic
field, these will first fill up the N’ = eBA/2mh states in the n = 0 lowest Landau level.
If any are left over they will then start to fill up the n = 1 Landau level, and so on.

Now suppose that we increase the magnetic field B. The number of states A/ housed
in each Landau level will increase, leading to a depletion of the higher Landau levels.
At certain, very special values of B, we will find some number of Landau levels that
are exactly filled. However, generically there will be a highest Landau level which is
only partially filled.

— 10 —



kQ i=2

R, (hle?)

Magnetic field (T)

Figure 3: The integer quantum Hall ef- Figure 4: The fractional quantum Hall
fect. effect.

This successive depletion of Landau levels gives rise to a number of striking signatures
in different physical quantities. Often these quantities oscillate, or jump discontinuously
as the number of occupied Landau levels varies. One particular example is the de Haas
van Alphen oscillations seen in the magnetic susceptibility which we describe in Section
3.3.4. Another example is the behaviour of the resistivity p. This relates the current
density J = (J,, J,) to the applied electric field E = (E,, E,),

E=pJ

In the presence of an applied magnetic field B = (0,0, B), the electrons move in circles.
This results in components of the current which are both parallel and perpendicular to
the electric field. This is modelled straightforwardly by taking p to be a matrix

p= ( Pax ny)
—Pzy Pzxx

where the form of the matrix follows from rotational invariance. Here p,, is called the
longitudinal resistivity while p,, is called the Hall resistivity.

In very clean samples, in strong magnetic fields, both components of the resistivity
exhibit very surprising behaviour. This is shown in the left-hand figure above. The
Hall resistivity p,, increases with B by forming a series of plateaux, on which it takes

values
2rh 1
Pey =~ 57, eN
The value of v (which is labelled i = 2,3,... in the data shown above) is measured

to be an integer to extraordinary accuracy — around one part in 10°. Meanwhile,

— 11 —



the longitudinal resistivity vanishes when p,, lies on a plateaux, but spikes whenever
there is a transition between different plateaux. This phenomenon, called the integer
Quantum Hall Effect, was discovered by Klaus von Klitzing in 1980. For this, he was
awarded the Nobel prize in 1985.

It turns out that the integer quantum Hall effect is a direct consequence of the
existence of discrete Landau levels. The plateaux occur when precisely v € Z* Landau
levels are filled. Of course, we're very used to seeing integers arising in quantum
mechanics — this, after all, is what the “quantum” in quantum mechanics means.
However, the quantisation of the resistivity p,, is something of a surprise because
this is a macroscopic quantity, involving the collective behaviour of many trillions of
electrons, swarming through a hot and dirty system. A full understanding of the integer
quantum Hall effect requires an appreciation of how the mathematics of topology fits
in with quantum mechanics. David Thouless (and, to some extent, Duncan Haldane)
were awarded the 2016 Nobel prize for understanding the underlying role of topology
in this system.

Subsequently it was realised that similar behaviour also happens when Landau levels
are partially filled. However, it doesn’t occur for any filling, but only very special
values. This is referred to as the fractional quantum Hall effect. The data is shown
in the right-hand figure. You can see clear plateaux when the lowest Landau level has
v = % of its states filled. There is another plateaux when v = % of the states are
filled, followed by a bewildering pattern of further plateaux, all of which occur when v
is some rational number. This was discovered by Tsui and Stormer in 1982. It called
the Fractional Quantum Hall Effect. The 1998 Nobel prize was awarded to Tsui and
Stormer, together with Laughlin who pioneered the first theoretical ideas to explain

this behaviour.

The fractional quantum Hall effect cannot be explained by treating the electrons
as free. Instead, it requires us to take interactions into account. We have seen that
each Landau level has a macroscopically large degeneracy. This degeneracy is lifted by
interactions, resulting in a new form of quantum liquid which exhibits some magical
properties. For example, in this state of matter the electron — which, of course,
is an indivisible particle — can split into constituent parts! The v = % state has
excitations which carry 1/3 of the charge of an electron. In other quantum Hall states,
the excitations have charge 1/5 or 1/4 of the electron. These particles also have a
number of other, even stranger properties to do with their quantum statistics and
there is hope that these may underly the construction of a quantum computer.

- 12 —



We will not delve into any further details of the quantum Hall effect. Suffice to say
that it is one of the richest and most beautiful subjects in theoretical physics. You can
find a fuller exploration of these ideas in the lecture notes devoted to the Quantum
Hall Effect.

1.3 The Aharonov-Bohm Effect

In our course on Electromagnetism, we learned that the gauge potential A, is unphys-
ical: the physical quantities that affect the motion of a particle are the electric and
magnetic fields. Yet we’ve seen above that we cannot formulate quantum mechanics
without introducing the gauge fields A and ¢. This might lead us to wonder whether
there is more to life than E and B alone. In this section we will see that things are,
indeed, somewhat more subtle.

1.3.1 Particles Moving around a Flux Tube

Consider the set-up shown in the figure. We have a solenoid B
of area A, carrying magnetic field B = (0,0, B) and therefore /\£ )
magnetic flux ® = BA. Outside the solenoid the magnetic B0
field is zero. However, the vector potential is not. This fol-
lows from Stokes’ theorem which tells us that the line integral
outside the solenoid is given by < ;
%Adx:/B-dS:(I)
S
This is simply solved in cylindrical polar coordinates by Figure 5:
)
Ay =—
* 7 oy

Now consider a charged quantum particle restricted to lie in a ring of radius r outside the
solenoid. The only dynamical degree of freedom is the angular coordinate ¢ € [0, 27).
The Hamiltonian is

1 ;1 L0 q®\?
0 =5 e —ade) =505 (‘%7; - %)

We’d like to see how the presence of this solenoid affects the particle. The energy
eigenstates are simply

) = e" nelZ (1.21)

— 13 —



n=0 n=1 n=2

Figure 6: The energy spectrum for a particle moving around a solenoid.

where the requirement that v is single valued around the circle means that we must
take n € Z. Plugging this into the time independent Schrodinger equation Hy = Ev,
we find the spectrum

1 g®\>  R? P\
E= - 12 = 2 z
2mi? ( " 27r) oz \" " %,) "€

where we've defined the quantum of flur ®9 = 27h/q. (Usually this quantum of flux

is defined using the electron charge ¢ = —e, with the minus signs massaged so that
oy = 27h/e > 0.)

Note that if ® is an integer multiple of ®, then the spectrum is unaffected by the
solenoid. But if the flux in the solenoid is not an integral multiple of ®; — and there is
no reason that it should be — then the spectrum gets shifted. We see that the energy
of the particle knows about the flux ® even though the particle never goes near the
region with magnetic field. The resulting energy spectrum is shown in Figure 6.

There is a slightly different way of looking at this result. Away from the solenoid,
the gauge field is a total divergence

A =Va with a:%

2T

This means that we can try to remove it by redefining the wavefunction to be

N E T NWE AT

h 2rh
However, there is an issue: the wavefunction should be single-valued. This, after all,
is how we got the quantisation condition n € Z in (1.21). This means that the gauge
transformation above is allowed only if ® is an integer multiple of &g = 2wh/q. Only
in this case is the particle unaffected by the solenoid. The obstacle arises from the fact
that the wavefunction of the particle winds around the solenoid. We see here the first
glimpses of how topology starts to feed into quantum mechanics.
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There are a number of further lessons lurking in this simple quantum mechanical
set-up. You can read about them in the lectures on the Quantum Hall Effect (see
Section 1.5.3) and the lectures on Gauge Theory (see Section 3.6.1).

1.3.2 Aharonov-Bohm Scattering

The fact that a quantum particle can be affected by A
even when restricted to regions where B = 0 was first %

pointed out by Aharonov and Bohm in a context which PIA
is closely related to the story above. They revisited the % [ Y0)
famous double-slit experiment, but now with a twist: P\/

a solenoid carrying flux ® is hidden behind the wall. 2 %
This set-up is shown in the figure below. Once again, -

the particle is forbidden from going near the solenoid. Fieure T:
Nonetheless, the presence of the magnetic flux affects & '

the resulting interference pattern, shown as the dotted line in the figure.

Consider a particle that obeys the free Schrodinger equation,

i(—mV—qA)sz — Ei

2m

We can formally remove the gauge field by writing
L NN
w60 =exp (7 [T AG) - ax') olx)

where the integral is over any path. Crucially, however, in the double-slit experiment
there are two paths, P, and P%». The phase picked up by the particle due to the gauge
field differs depending on which path is taken. The phase difference is given by

AN=L [ Aax-1 A-dx:gj{A.dx:g/B-ds
h Jp, h Jp, h h
Note that neither the phase arising from path Py, nor the phase arising from path P, is
gauge invariant. However, the difference between the two phases is gauge invariant. As
we see above, it is given by the flux through the solenoid. This is the Aharonov-Bohm

iq®/h

phase, e , an extra contribution that arises when charged particles move around

magnetic fields.

The Aharonov-Bohm phase manifests in the interference pattern seen on the screen.
As @ is changed, the interference pattern shifts, an effect which has been experimentally
observed. Only when @ is an integer multiple of ®( is the particle unaware of the
presence of the solenoid.
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1.4 Magnetic Monopoles

A magnetic monopole is a hypothetical object which emits a radial magnetic field of
the form

T /dS-B:g (1.22)

42

Here g is called the magnetic charge.

We learned in our first course on Electromagnetism that magnetic monopoles don’t
exist. First, and most importantly, they have never been observed. Second there’s a
law of physics which insists that they can’t exist. This is the Maxwell equation

V-B=0

Third, this particular Maxwell equation would appear to be non-negotiable. This is
because it follows from the definition of the magnetic field in terms of the gauge field

B=VxA = V-B=0

Moreover, as we’ve seen above, the gauge field A is necessary to describe the quantum
physics of particles moving in magnetic fields. Indeed, the Aharonov-Bohm effect tells
us that there is non-local information stored in A that can only be detected by particles
undergoing closed loops. All of this points to the fact that we would be wasting our
time discussing magnetic monopoles any further.

Happily, there is a glorious loophole in all of these arguments, first discovered by
Dirac, and magnetic monopoles play a crucial role in our understanding of the more
subtle effects in gauge theories. The essence of this loophole is that there is an ambiguity
in how we define the gauge potentials. In this section, we will see how this arises.

1.4.1 Dirac Quantisation

It turns out that not any magnetic charge ¢ is compatible with quantum mechanics.
Here we present several different arguments for the allowed values of g.

We start with the simplest and most physical of these arguments. Suppose that a
particle with charge ¢ moves along some closed path C' in the background of some gauge
potential A(x). Then, upon returning to its initial starting position, the wavefunction
of the particle picks up a phase

Y — M) with o= ]{ A - dx (1.23)
c

This is the Aharonov-Bohm phase described above.
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The phase of the wavefunction is not an observable quantity in quantum mechanics.
However, as we described above, the phase in (1.23) is really a phase difference. We
could, for example, place a particle in a superposition of two states, one of which stays
still while the other travels around the loop C'. The subsequent interference will depend

iqa/h

on the phase e , just like in the Aharonov-Bohm effect.

Let’s now see what this has to do with magnetic monopoles. We place our particle,
with electric charge ¢, in the background of a magnetic monopole with magnetic charge
g. We keep the magnetic monopole fixed, and let the electric particle undergo some
journey along a path C. We will ask only that the path C' avoids the origin where the
magnetic monopole is sitting. This is shown in the left-hand panel of the figure. Upon
returning, the particle picks up a phase €4*/" with

a:%Adx:/B-dS
c S

where, as shown in the figure, S is the area enclosed by C. Using the fact that fs2 B
dS = g, if the surface S makes a solid angle €2, this phase can be written as

Qg

a=—

AT
However, there’s an ambiguity in this computation. Instead of integrating over S, it
is equally valid to calculate the phase by integrating over S’, shown in the right-hand
panel of the figure. The solid angle formed by S’ is ' = 47w — . The phase is then
given by

/ (47T B Q)g

T T,

where the overall minus sign comes because the surface S’ has the opposite orientation
to S. As we mentioned above, the phase shift that we get in these calculations is
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observable: we can’t tolerate different answers from different calculations. This means
that we must have e"®/" = ¢%4®'/" This gives the condition

qg =2mhn  withn € Z (1.24)

This is the famous Dirac quantisation condition. The smallest such magnetic charge
has n = 1. It coincides with the quantum of flux, g = &g = 27h/q.

Above we worked with a single particle of charge q. Obviously, the same argument
must hold for any other particle of charge ¢’. There are two possibilities. The first is
that all particles carry charge that is an integer multiple of some smallest unit. In this
case, it’s sufficient to impose the Dirac quantisation condition (1.24) where ¢ is the
smallest unit of charge. For example, in our world we should take ¢ = +e to be the
electron or proton charge (or, if we look more closely in the Standard Model, we might
choose to take ¢ = —e/3, the charge of the down quark).

The second possibility is that the particles carry electric charges which are irrational
multiples of each other. For example, there may be a particle with charge ¢ and another
particle with charge v/2¢. In this case, no magnetic monopoles are allowed.

It’s sometimes said that the existence of a magnetic monopole would imply the
quantisation of electric charges. This, however, has it backwards. (It also misses the
point that we have a wonderful explanation of the quantisation of charges from the
story of anomaly cancellation in the Standard Model.) There are two possible groups
that could underly gauge transformations in electromagnetism. The first is U(1); this
has integer valued charges and admits magnetic monopoles. The second possibility is
R; this has irrational electric charges and forbids monopoles. All the evidence in our
world points to the fact that electromagnetism is governed by U(1) and that magnetic
monopoles should exist.

Above we looked at an electrically charged particle moving in the background of
a magnetically charged particle. It is simple to generalise the discussion to particles
that carry both electric and magnetic charges. These are called dyons. For two dyons,
with charges (q1, g1) and (go, g2), the generalisation of the Dirac quantisation condition
requires

Q192 — @291 € 2whZ

This is sometimes called the Dirac-Zwanziger condition.
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1.4.2 A Patchwork of Gauge Fields

The discussion above shows how quantum mechanics constrains the allowed values of
magnetic charge. It did not, however, address the main obstacle to constructing a
magnetic monopole out of gauge fields A when the condition B = V x A would seem
to explicitly forbid such objects.

Let’s see how to do this. Our goal is to write down a configuration of gauge fields
which give rise to the magnetic field (1.22) of a monopole which we will place at the
origin. However, we will need to be careful about what we want such a gauge field to

look like.

The first point is that we won’t insist that the gauge field is well defined at the origin.
After all, the gauge fields arising from an electron are not well defined at the position of
an electron and it would be churlish to require more from a monopole. This fact gives
us our first bit of leeway, because now we need to write down gauge fields on R3/{0},
as opposed to R? and the space with a point cut out enjoys some non-trivial topology
that we will make use of.

Consider the following gauge connection, written in spherical polar coordinates

1 —cosf
AY = g 2T e8Y 1.25
¢ dnr sind ( )
The resulting magnetic field is
1 0 10 P
B = A=———(A) sinf)r — -—(rA})0
VX rsineae( o Sinf)r rar(r s
Substituting in (1.25) gives
gr
= 1.26
4mr? (1.26)

In other words, this gauge field results in the magnetic monopole. But how is this
possible? Didn’t we learn in kindergarten that if we can write B = V x A then
[ dS-B =07 How does the gauge potential (1.25) manage to avoid this conclusion?

The answer is that AN in (1.25) is actually a singular gauge connection. It’s not just
singular at the origin, where we’'ve agreed this is allowed, but it is singular along an
entire half-line that extends from the origin to infinity. This is due to the 1/sin 6 term
which diverges at § = 0 and § = w. However, the numerator 1 — cos# has a zero when
f = 0 and the gauge connection is fine there. But the singularity along the half-line
0 = 7 remains. The upshot is that this gauge connection is not acceptable along the
line of the south pole, but is fine elsewhere. This is what the superscript N is there to
remind us: we can work with this gauge connection as long as we keep north.
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Now consider a different gauge connection

1+ cosf
AS — 9 2T CO8 1.27
¢ dmtr  sinf ( )
This again gives rise to the magnetic field (1.26). This time it is well behaved at § = ,
but singular at the north pole # = 0. The superscript S is there to remind us that this

connection is fine as long as we keep south.

At this point, we make use of the ambiguity in the gauge connection. We are going
to take A in the northern hemisphere and A® in the southern hemisphere. This is
allowed because the two gauge potentials are the same up to a gauge transformation,
A — A + Va. Recalling the expression for Va in spherical polars, we find that for
0 # 0,7, we can indeed relate Ag and Ai by a gauge transformation,

Ag:Ag%——@d,a where a:%

1.2
rsind T (1.28)

However, there’s still a question remaining: is this gauge transformation allowed? The
problem is that the function « is not single valued: a(¢ = 27) = a(¢ = 0) + g. And
this should concern us because, as we've seen in (1.8), the gauge transformation also
acts on the wavefunction of a quantum particle

w N eiqa/hw

There’s no reason that we should require the gauge transformation « to be single-
valued, but we do want the wavefunction 1 to be single-valued. This holds for the
gauge transformation (1.28) provided that we have

qg = 2mhn withn € Z

This, of course, is the Dirac quantisation condition (1.24).

Mathematically, we have constructed of a topologically non-trivial U(1) bundle over
the S? surrounding the origin. In this context, the integer n is called the first Chern
number.

1.4.3 Monopoles and Angular Momentum

Here we provide yet another derivation of the Dirac quantisation condition, this time
due to Saha. The key idea is that the quantisation of magnetic charge actually follows
from the more familiar quantisation of angular momentum. The twist is that, in the
presence of a magnetic monopole, angular momentum isn’t quite what you thought.
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To set the scene, let’s go back to the Lorentz force law

dp )

— =qgxx B

at !
with p = mx. Recall from our discussion in Section 1.1.1 that p defined here is not
the canonical momentum, a fact which is hiding in the background in the following
derivation. Now let’s consider this equation in the presence of a magnetic monopole,
with

B_ 0T
4 3

The monopole has rotational symmetry so we would expect that the angular momen-
tum, x X p, is conserved. Let’s check:

d
%:Xxp—{—xxp:xxp:qxx(ka)

27 XX&XX):%(E_E)

43 A \r  7r?
:i(%g>
dt \4m
We see that in the presence of a magnetic monopole, the naive
angular momentum x x p is not conserved! However, as we also
noticed in the lectures on Classical Dynamics (see Section 4.3.2),

we can easily write down a modified angular momentum that is
conserved, namely

szxp—Z—gf‘
T

The extra term can be thought of as the angular momentum stored

Figure 10:

in E x B. The surprise is that the system has angular momentum
even when the particle doesn’t move.

Before we move on, there’s a nice and quick corollary that we can draw from this.
The angular momentum vector L does not change with time. But the angle that the
particle makes with this vector is

L-r= _4_ constant
47
This means that the particle moves on a cone, with axis L and angle cos = —qg/4rn L.
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So far, our discussion has been classical. Now we invoke some simple quantum
mechanics: the angular momentum should be quantised. In particular, the angular
momentum in the z-direction should be L, € %hZ. Using the result above, we have

1
9 _ —~hn = qg=27hn withn € Z
A 2

Once again, we find the Dirac quantisation condition.

1.5 Spin in a Magnetic Field

As we’ve seen in previous courses, particles often carry an intrinsic angular momentum
called spin S. This spin is quantised in half-integer units. For examples, electrons have
spin % and their spin operator is written in terms of the Pauli matrices o,

S=—-0o
2

Importantly, the spin of any particle couples to a background magnetic field B. The
key idea here is that the intrinsic spin acts like a magnetic moment m which couples
to the magnetic field through the Hamiltonian

H=-m- B

The question we would like to answer is: what magnetic moment m should we associate

with spin?
A full answer to this question would require an ex- USRS X g
tended detour into the Dirac equation. Here we pro- /.

vide only some basic motivation. First consider a par-
ticle of charge ¢ moving with velocity v around a circle
of radius r as shown in the figure. From our lectures on Figure 11:
Electromagnetism, we know that the associated magnetic

moment is given by

m=Jdrxv=_1L
2 2m
where L = mr x v is the orbital angular momentum of the particle. Indeed, we already
saw the resulting coupling H = —(¢/2m)L - B in our derivation of the Hamiltonian in

symmetric gauge (1.19).
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Since the spin of a particle is another contribution to the angular momentum, we
might anticipate that the associated magnetic moment takes the form
4q
m=g—S
ng
where ¢ is some dimensionless number. (Note: g is unrelated to the magnetic charge
that we discussed in the previous section!) This, it turns out, is the right answer.

However, the value of g depends on the particle under consideration. The upshot is
that we should include a term in the Hamiltonian of the form

4q
H=-9g—S B 1.29
95 (1.29)
The g-factor
For fundamental particles with spin % — such as the electron — there is a long and

interesting history associated to determining the value of g. For the electron, this was
first measured experimentally to be

ge:2

Soon afterwards, Dirac wrote down his famous relativistic equation for the electron.
One of its first successes was the theoretical prediction g, = 2 for any spin % particle.
This means, for example, that the neutrinos and quarks also have g = 2.

This, however, was not the end of the story. With the development of quantum field
theory, it was realised that there are corrections to the value g. = 2. These can be
calculated and take the form of a series expansion, starting with

o

ge:2<1+——i—...> ~ 2.00232
2m

where o = €?/4meghe ~ 1/137 is the dimensionless fine structure constant which char-

acterises the strength of the Coulomb force. The most accurate experimental measure-

ment of the electron magnetic moment now yields the result

ge ~ 2.00231930436182 £ 2.6 x 1072

Theoretical calculations agree to the first ten significant figures or so. This is the most
impressive agreement between theory and experiment in all of science! Beyond that,
the value of « is not known accurately enough to make a comparison. Indeed, now
the measurement of the electron magnetic moment is used to define the fine structure
constant .
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While all fundamental spin % particles have g ~ 2, this does not hold for more
complicated objects. For example, the proton has

gp A 5.588

while the neutron — which of course, is a neutral particle, but still carries a magnetic
moment — has

gn A~ —3.823

where, because the neutron is neutral, the charge ¢ = e is used in the formula (1.29).
These measurements were one of the early hints that the proton and neutron are com-
posite objects.

1.5.1 Spin Precession

Consider a constant magnetic field B = (0,0, B). We would like to understand how
this affects the spin of an electron. We'll take g. = 2. We write the electric charge of

the electron as ¢ = —e so the Hamiltonian is
h
H=-—"0-B
2m

The eigenstates are simply the spin-up |1 ) and spin-down || ) states in the z-direction.
They have energies

hw hw
H|t)==71) and H|L)=-=7[])

where wp = eB/m is the cyclotron frequency which appears throughout this chapter.

What happens if we do not sit in an energy eigenstate. A
general spin state can be expressed in spherical polar coordinates
as

(0, 9)) = cos(6/2)[ 1) + e sin(6/2)[ 1)

As a check, note that [1)(0 = 7/2, ¢)) is an eigenstate of o® when
¢ = 0,7 and an eigenstate of ¢¥ when ¢ = 7/2,37/2 as it

Figure 12:

should be. The evolution of this state is determined by the time-
dependent Schrodinger equation

L OlY)
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which is easily solved to give

(0, 631)) = €712 | cos(8/2)| 1) + ¢ sin(6/2) 1)

We see that the effect of the magnetic field is to cause the spin to precess about the B
axis, as shown in the figure.
1.5.2 A First Look at the Zeeman Effect

The Zeeman effect describes the splitting of atomic energy levels in the presence of a
magnetic field. Consider, for example, the hydrogen atom with Hamiltonian

H = _h_2 2 _ 1 é
2m dmeg T
The energy levels are given by
a’mc? 1
En = — 5 ﬁ n €7z

where « is the fine structure constant. Each energy level has a degeneracy of states.
These are labelled by the angular momentum [ = 0,1,...,n — 1 and the z-component
of angular momentum m; = —I[, ..., +[. Furthermore, each electron carries one of two
spin states labelled by m, = :I:%. This results in a degeneracy given by

n—1
Degeneracy = 2 Z(Ql +1) = 2n?
1=0

Now we add a magnetic field B = (0,0, B). As we have seen, this results in perturbation
to the Hamiltonian which, to leading order in B, is given by

e
AH =" (L+gS)-B
2m( + 9.S)

In the presence of such a magnetic field, the degeneracy of the states is split. The
energy levels now depend on the quantum numbers n, m; and m, and are given by

En,m,s = En + %(ml + 2ms)B

The Zeeman effect is developed further in the Lectures on Topics in Quantum Mechanics.
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