
2. Approximation Methods

Physicists have a dirty secret: we’re not very good at solving equations. More precisely,

humans aren’t very good at solving equations. We know this because we have computers

and they’re much better at solving things than we are.

We usually do a good job of hiding this secret when teaching physics. In quantum

physics we start with examples like the harmonic oscillator or the hydrogen atom and

then proudly demonstrate how clever we all are by solving the Schrödinger equation

exactly. But there are very very few examples where we can write down the solution in

closed form. For the vast majority of problems, the answer is something complicated

that isn’t captured by some simple mathematical formula. For these problems we need

to develop di↵erent tools.

You already met one of these tools in an earlier course: it’s called perturbation theory

and it’s useful whenever the problem we want to solve is, in some sense, close to one

that we’ve already solved. This works for a surprisingly large number of problems.

Indeed, one of the arts of theoretical physics is making everything look like a coupled

harmonic oscillator so that you can use perturbation theory. But there are also many

problems for which perturbation theory fails dismally and we need to find another

approach. In general, there’s no panacea, no universal solution to all problems in

quantum mechanics. Instead, the best we can hope for is to build a collection of tools.

Then, whenever we’re faced with a new problem we can root around in our toolbox,

hoping to find a method that works. The purpose of this chapter is to stock up your

toolbox.

2.1 The Variational Method

The variational method provides a simple way to place an upper bound on the ground

state energy of any quantum system and is particularly useful when trying to demon-

strate that bound states exist. In some cases, it can also be used to estimate higher

energy levels too.

2.1.1 An Upper Bound on the Ground State

We start with a quantum system with Hamiltonian H. We will assume that H has a

discrete spectrum

H|ni = En|ni n = 0, 1, . . .

with the energy eigenvalues ordered such that En  En+1. The simplest application of

the variational method places an upper bound on the value of the ground state energy

E0.
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Theorem: Consider an arbitrary state | i. The expected value of the energy obeys

the inequality

hEi = h |H| i � E0

Proof: The proposed claim is, hopefully, intuitive and the proof is straightforward.

We expand | i =
P

n an|ni with
P

n |an|2 = 1 to ensure that h | i = 1. Then

hEi =
1X

n,m=0

a?manhm|H|ni =
1X

n,m=0

a?manEn�mn

=
1X

n=0

|an|2En = E0

1X

n=0

|an|2 +
1X

n=0

|an|2(En � E0) � E0

In the case of a non-degenerate ground state, we have equality only if a0 = 1 which

implies an = 0 for all n 6= 0. ⇤

Now consider a family of states, | (↵)i, depending on some number of parameters

↵i. If we like, we can relax our assumption that the states are normalised and define

E(↵) =
h (↵)|H| (↵)i
h (↵)| (↵)i

This is sometimes called the Rayleigh-Ritz quotient. We still have

E(↵) � E0 for all ↵

The most stringent bound on the ground state energy comes from the minimum value

of E(↵) over the range of ↵. This, of course, obeys

@E

@↵i

����
↵=↵?

= 0

giving us the upper bound E0  E(↵?). This is the essence of the variational method.

The variational method does not tell us how far above the ground state E(↵?) lies.

It would be much better if we could also get a lower bound for E0 so that we can

say for sure that ground state energy sits within a particular range. However, for

particles moving in a general potential V (x), the only lower bound that is known is

E0 > minV (x). Since we’re often interested in potentials like V (x) ⇠ �1/r, which

have no lower bound this is not particularly useful.

Despite these limitations, when used cleverly by choosing a set of states | (↵)i
which are likely to be fairly close to the ground state, the variational method can

give remarkably accurate results.
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An Example: A Quartic Potential

Consider a particle moving in one-dimension in a quartic potential. The Hamiltonian,

written in units where everything is set to one, is

H = � d2

dx2
+ x4

Unlike the harmonic oscillator, this problem does not have simple solution. Nonetheless,

it is easy to solve numerically where one finds

E0 ⇡ 1.06

Let’s see how close we get with the variational
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Figure 1:

method. We need to cook up a trial wavefunction

which we think might look something like the true

ground state. The potential is shown on the right

and, on general grounds, the ground state wave-

function should have support where the potential is

smallest; an example is shown in orange. All we need

to do is write down a function which has vaguely this

shape. We will take

 (x;↵) =
⇣↵
⇡

⌘1/4
e�↵x2/2

where the factor in front ensures that this wavefunction is normalised. You can check

that this isn’t an eigenstate of the Hamiltonian. But it does have the expected crude

features of the ground state: e.g. it goes up in the middle and has no nodes. (Indeed,

it’s actually the ground state of the harmonic oscillator). The expected energy is

E(↵) =

r
↵

⇡

Z
dx (↵� ↵2x2 + x4)e�↵x2

=
↵

2
+

3

4↵2

The minimum value occurs at ↵3

? = 3, giving

E(↵?) ⇡ 1.08

We see that our guess does pretty well, getting within 2% of the true value. You can

try other trial wavefunctions which have the same basic shape and see how they do.
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How Accurate is the Variational Method?

Formally, we can see why a clever application of the variational method will give a

good estimate of the ground state energy. Suppose that the trial wavefunction which

minimizes the energy di↵ers from the true ground state by

| (↵?)i =
1p

1 + ✏2
(|0i+ ✏|�i)

where |�i is a normalised state, orthogonal to the ground state, h0|�i = 0, and ✏ is

assumed to be small. Then our guess at the energy is

E(↵?) =
1

1 + ✏2
⇥
h0|H|0i+ ✏(h0|H|�i+ h�|H|0i) + ✏2h�|H|�i

⇤

Importantly the terms linear in ✏ vanish. This is because h�|H|0i = E0h�|0i = 0. We

can then expand the remaining terms as

E(↵?) = E0 + ✏2 (h�|H|�i � E0) +O(✏2)

This means that if the di↵erence from the true ground state is O(✏), then the di↵erence

from the ground state energy is O(✏2). This is the reason that the variational method

often does quite well.

Nonetheless, one flaw with the variational method is that unless someone tells us

the true answer, we have no way of telling how good our approximation is. Or, in the

language above, we have no way of estimating the size of ✏. Despite this, we will see

below that there are some useful things we can do with it.

2.1.2 An Example: The Helium Atom

One important application of quantum mechanics is to explain the structure of atoms.

Here we will look at two simple approaches to understand an atom with two electrons.

This atom is helium.

The Hamiltonian for two electrons, each of charge �e, orbiting a nucleus of charge

Ze is

H =
p2

1

2m
� Ze2

4⇡✏0

1

r1
+

p2

2

2m
� Ze2

4⇡✏0

1

r2
+

e2

4⇡✏0

1

|x1 � x2|
(2.1)

For helium, Z = 2 but, for reasons that will become clear, we will leave it arbitrary

and only set it to Z = 2 at the end of the calculation.
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If we ignore the final term, then this Hamiltonian is easy to solve: it simply consists

of two independent copies of the hydrogen atom. The eigenstates would be

 (x1,x2) =  n1,l1,m1(x1) n2,l2,m2(x2)

where  n,l,m(r) are the usual energy eigenstates of the hydrogen atom. We should

remember that the electrons are fermions so we can’t put them in the same state.

However, electrons also have a spin degree of freedom which we have neglected above.

This means that two electrons can have the same spatial wavefunction as long as one

is spin up and the other spin down.

Ignoring the interaction term between electrons gives the energy

E = �Z2

✓
1

n2

1

+
1

n2

2

◆
Ry (2.2)

where Ry is the Rydberg constant, given by

Ry =
me4

32⇡2✏2
0
~2 ⇡ 13.6 eV

Setting Z = 2 and n1 = n2 = 1, this very naive approach suggests that the ground

state of helium has energy E0 = �8Ry ⇡ �109 eV . The true ground state of helium

turns out to have energy

E0 ⇡ �79.0 eV (2.3)

Our task is to find a method to take into account the final, interaction term between

electrons in (2.1) and so get closer to the true result (2.3) Here we try two alternatives.

Perturbation Theory

Our first approach is to treat the Coulomb energy between two electrons as a pertur-

bation on the original problem. Before proceeding, there is a question that we should

always ask in perturbation theory: what is the small, dimensionless parameter that

ensures that the additional term is smaller than the original terms?

For us, we need a reason to justify why the last term in the Hamiltonian (2.1) is likely

to be smaller than the other two potential terms. All are due to the Coulomb force, so

come with a factor of e2/4⇡✏0. But the interactions with the nucleus also come with a

factor of Z. This is absent in the electron-electron interaction. This, then, is what we

hang our hopes on: the perturbative expansion will be an expansion in 1/Z. Of course,

ultimately we will set 1/Z = 1/2 which is not a terribly small number. This might give

us concern that perturbation theory will not be very accurate for this problem.
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We now place each electron in the usual hydrogen ground state  1,0,0(x), adapted to

general Z

 1,0,0(x) =

s
Z3

⇡a3
0

e�Zr/a0 (2.4)

where a0 is the Bohr radius, defined as

a0 =
4⇡✏0~2
me2

⇡ 5⇥ 10�11 m

To leading order, the shift of the ground state energy is given by the standard result

of first order perturbation theory,

�E =
e2

4⇡✏0

Z
d3x1d

3x2

| 1,0,0(x1)|2| 1,0,0(x2)|2
|x1 � x2|

We need to compute this integral.

The trick is to pick the right coordinate system.
x1

r
2

θ2

φ
2

Figure 2:

We will work in spherical polar coordinates for both

particles. However, we will choose the z axis for the

second particle to lie along the direction x1 set by the

first particle. The advantage of this choice is that the

angle ✓ between the two particles coincides with the

polar angle ✓2 for the second particle. In particular, the

separation between the two particles particles can be

written as

|x1 � x2| =
p

(x1 � x2)2 =
q

r2
1
+ r2

2
� 2r1r2 cos ✓2

In these coordinates, it is simple to do the integration over the angular variables for

the first particle, and over �2 for the second. The shift in the energy then becomes

�E =
8⇡2e2

4⇡✏0

✓
Z3

⇡a3
0

◆2 Z
dr1 r2

1
e�2Zr1/a0

Z
dr2 r2

2
e�2Zr2/a0

⇥
Z

+1

�1

d(cos ✓2)
1p

r2
1
+ r2

2
� 2r1r2 cos ✓2

= �2⇡e2

✏0

✓
Z3

⇡a3
0

◆2 Z
dr1 r2

1
e�2Zr1/a0

Z
dr2 r2

2
e�2Zr2/a0

p
(r1 � r2)2 �

p
(r1 + r2)2

r1r2

= �2⇡e2

✏0

✓
Z3

⇡a3
0

◆2 Z
dr1 r2

1
e�2Zr1/a0

Z
dr2 r2

2
e�2Zr2/a0

|r1 � r2|� |r1 + r2|
r1r2
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Those modulus signs are a little odd, but easily dealt with. Because the integral is

symmetric in r1 and r2, the regime r1 > r2 must give the same result as the regime

r1 < r2. We can then focus on one of these regimes — say r1 > r2 where |r1 � r2| �
|r1 + r2| = �2r2 — and just double our result. We have

�E =
8⇡e2

✏0

✓
Z3

⇡a3
0

◆2 Z 1

r2

dr1 r1 e
�2Zr1/a0

Z
1

0

dr2 r2
2
e�2Zr2/a0

=
8⇡e2

✏0

✓
Z3

⇡a3
0

◆2 Z 1

0

dr2 r2
2

✓
a0r2
2Z

+
a2
0

4Z2

◆
e�4Zr2/a0

=
5

8

Ze2

4⇡✏0a0
=

5Z

4
Ry

Using first order perturbation, we find that the ground state energy of helium is

E0 ⇡ E +�E =

✓
�2Z2 +

5Z

4

◆
Ry ⇡ �74.8 eV

This is much closer to the correct value of E0 ⇡ �79 eV . In fact, given that our

perturbative expansion parameter is 1/Z = 1/2, it’s much better than we might have

anticipated.

The Variational Method

We’ll now try again, this time using the variational method. For our trial wavefunction

we pick  (x1,x2) =  (x1) (x2) where

 (x;↵) =

s
↵3

⇡a3
0

e�↵r/a0 (2.5)

This is almost the same as the hydrogen ground state (2.4) that we worked with above.

The only di↵erence is that we’ve replaced the atomic number Z with a general param-

eter ↵ that we will allow to vary. We can tell immediately that this approach must do

at least as well at estimating the ground state energy because setting ↵ = Z reproduces

the results of first order perturbation theory.

The expectation of the energy using our trial wavefunction is

E(↵) =

Z
d3x1d

3x2  
?(x1) 

?(x2)H (x1) (x2)

with H the di↵erential operator given in (2.1). Now we have to evaluate all terms in

the Hamiltonian afresh. However, there is trick we can use. We know that (2.5) is the

ground state of the Hamiltonian

H↵ =
p2

2m
� ↵e2

4⇡✏0

1

r
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where we’ve replaced Z by ↵ in the second term. With this observation, we write the

helium Hamiltonian (2.1) as

H = H↵(p1, r1) +H↵(p2, r2) +
e2

4⇡✏0


(↵� Z)

✓
1

r1
+

1

r2

◆
+

1

|x1 � x2|

�

Written in this way, the expected energy becomes

E(↵) = �2↵2 Ry +
e2

4⇡✏0


2(↵� Z)

Z
d3x

| (x)|2
r

+

Z
d3x1d

3x2

| (x1)|2| (x2)|2
|x1 � x2|

�

Here, the first term comes from the fact that our trial wavefunction is the ground state

of H↵ with ground state energy given by (2.2). We still need to compute the integrals

in the second and third term. But both of these are straightforward. The first is

Z
d3x

| (x)|2
r

= 4⇡
↵3

⇡a3
0

Z
dr re�2↵r/a0 =

↵

a0

Meanwhile, the final integral is the same as we computed in our perturbative calcula-

tion. It is
Z

d3x1d
3x2

| (x1)|2| (x2)|2
|x1 � x2|

=
5↵

8a0

Putting this together, we have

E(↵) =

✓
�2↵2 + 4(↵� Z)↵ +

5

4
↵

◆
Ry

This is minimized for ↵? = Z � 5/16. The minimum value of the energy is then

E(↵?) = �2

✓
Z � 5

16

◆2

Ry ⇡ �77.5 eV (2.6)

We see that this is somewhat closer to the true value of E0 ⇡ �79.0 eV .

There’s one last bit of physics hidden in this calculation. The optimum trial wave-

function that we ended up using was that of an electron orbiting a nucleus with charge

(Z � 5/16)e, rather than charge Ze. This has a nice interpretation: the charge of the

nucleus is screened by the presence of the other electron.

2.1.3 Do Bound States Exist?

There is one kind of question where variational methods can give a definitive answer.

This is the question of the existence of bound states.
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Consider a particle moving in a localised potential V (x), such that V (x) ! 0 as

x ! 1. A bound state is an energy eigenstate with E < 0. For some potentials,

there exist an infinite number of bound states; the Coulomb potential V = 1/r in

three dimensions is a familiar example. For other potentials there will be only a finite

number. And for some potentials there will be none. How can we tell what properties

a given potential has?

Clearly the variational method can be used to prove the existence of a bound state.

All we need to do is exhibit a trial wavefunction which has E < 0. This then ensures

that the true ground state also has E0 < 0.

An Example: The Hydrogen Anion

A hydrogen anion H� consists of a single proton, with two electrons in its orbit. But

does a bound state of two electrons and a proton exist?

The Hamiltonian for H� is the same as that for helium, (2.1), but now with Z = 1.

This means that we can import all the calculations of the previous section. In particular,

our variational method gives a minimum energy (2.6) which is negative when we set

Z = 1. This tells us that a bound state of two electrons and a proton does indeed exist.

An Example: The Yukawa Potential

The Yukawa potential in three dimensions takes the form

V (r) = �A
e��r

r
(2.7)

For A > 0, this is an attractive potential. Note that if we set � = 0, this coincides with

the Coulomb force. However, for � 6= 0 the Yukawa force drops o↵ much more quickly.

The Yukawa potential arises in a number of di↵erent places in physics. Here are two

examples:

• In a metal, electric charge is screened. This was described in Section 7.7 of the

lecture notes on Electromagnetism. This causes the Coulomb potential to be

replaced by the Yukawa potential.

• The strong nuclear force between a proton and a neutron is complicated. However,

at suitably large distances it is well approximated by the Yukawa potential, with

r the relative separation of the proton and neutron. Indeed, this is the context in

which Yukawa first suggested his potential. Thus the question of whether (2.7)

admits a bound state is the question of whether a proton and neutron can bind

together.
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A spoiler: the hydrogen atom has stable isotope known as deuterium. Its nu-

cleus, known as the deuteron, consists of a proton and neutron. Thus, experiment

tells us that a bound state must exist. We’d like to understand this theoretically,

if only to be sure that the experiments aren’t wrong!

The Hamiltonian is

H = � ~2
2m

r2 + V (r)

In the context of deuterium, r is the distance between the proton and neutron so m

should really be interpreted as the reduced mass m = mpmn/(mp +mn) ⇡ mp/2. We

will work with a familiar trial wavefunction,

 (x;↵) =

r
↵3

⇡
e�↵r

This is the ground state of the hydrogen atom. The factor in front ensures that the

wavefunction is normalised:
R
d3x | |2 = 1. A short calculation shows that the expected

energy is

E(↵) =
~2↵2

2m
� 4A↵3

(�+ 2↵)2

It’s easy to check that there is a value of ↵ for which E(↵) < 0 whenever

� <
Am

~2
This guarantees that the Yukawa potential has a bound state when the parameters lie

within this regime. We cannot, however, infer the converse: this method doesn’t tell

us whether there is a bound state when � > Am/~2.

It turns out that for � suitably large, bound states do cease to exist. The simple

variational method above gets this qualitative bit of physics right, but it does not do

so well in estimating the bound. Numerical results tell us that there should be a bound

state whenever � . 2.4Am/~2.

Bound States and The Virial Theorem

There is a connection between these ideas and the virial theorem. Let’s first remind

ourselves what the virial theorem is in this context. Suppose that we have a particle

in d dimensions, moving in the potential

V (x) = Arn (2.8)

This means that the potential scales as V (�x) = �nV (x). We will assume that there

is a normalised ground state with wavefunction  0(x).
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The ground state energy is

E0 =

Z
ddx

~2
2m

|r 0(x)|2 + V (x)| 0(x)|2 ⌘ hT i0 + hV i0

Now consider the trial wavefunction  (x) = ↵d/2 0(↵x), where the prefactor ensures

that  (x) continues to be normalised. From the scaling property of the potential (2.8),

it is simple to show that

E(↵) = ↵2hT i0 + ↵�nhV i0

The minimum of E(↵) is at

dE

d↵
= 2↵hT i0 � n↵�n+1hV i0 = 0

But this minimum must sit at ↵ = 1 since, by construction, this is the true ground

state. We learn that for the homogeneous potentials (2.8), we have

2hT i0 = nhV i0 (2.9)

This is the virial theorem.

Let’s now apply this to our question of bound states. Here are some examples:

• V ⇠ �1/r: This is the Coulomb potential. The virial theorem tells us that

E0 = hT i0 + hV i0 = �hT i0 < 0. In other words, we proved what we already

know: the Coulomb potential has bound states.

There’s a subtlety here. Nowhere in our argument of the virial theorem did we

state that the potential (2.8) has A < 0. Our conclusion above would seem to

hold for A > 0, yet this is clearly wrong: the repulsive potential V ⇠ +1/r has

no bound states. What did we miss? Well, we assumed right at the beginning of

the argument that the ground state  0 was normalisable. For repulsive potentials

like V ⇠ 1/r this is not true: all states are asymptotically plane waves of the

form eik·x. The virial theorem is not valid for repulsive potentials of this kind.

• V ⇠ �1/r3: Now the virial theorem tells us that E0 = 1

3
hT i0 > 0. This is

actually a contradiction! In a potential like V ⇠ 1/r3, any state with E > 0 is

non-normalisable since it mixes with the asymptotic plane waves. It must be that

this potential has no localised states.
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This result might seem surprising. Any potential V ⇠ �rn with n  �3

descends steeply at the origin and you might think that this makes it e�cient

at trapping particles there. The trouble is that it is too e�cient. The kinetic

energy of the particle is not su�cient to hold it up at some finite distance, and

the particle falls towards the origin. Such potentials have no bound states.

Bound States in One Dimension

There is an exact and rather pretty result V(x)

x

Figure 3: Does a bound state exist?

that holds for particles moving in one-dimension.

Consider a particle moving in a potential V (x)

such that V (x) = 0 for |x| > L. However, when

|x| < L, the potential can do anything you like:

it can be positive or negative, oscillate wildly or

behave very calmly.

Theorem: A bound state exists whenever
R
dx V (x) < 0. In other words, a bound

state exists whenever the potential is ”mostly attractive”.

Proof: We use the Gaussian variational ansatz

 (x;↵) =
⇣↵
⇡

⌘1/4
e�↵x2/2

Then we find

E(↵) =
~2↵
4m

+

r
↵

⇡

Z
1

�1

dx V (x)e�↵x2

where the ~2↵/4m term comes from the kinetic energy. The trick is to look at the

function

E(↵)p
↵

=
~2
p
↵

4m
+

1p
⇡

Z
1

�1

dx V (x)e�↵x2

This is a continuous function of ↵. In the limit ↵ ! 0, we have

E(↵)p
↵

! 1p
⇡

Z
1

�1

dx V (x)

If
R
dx V (x) < 0 then lim↵!0 E(↵)/

p
↵ < 0 and, by continuity, there must be some

small ↵ > 0 for which E(↵) < 0. This ensures that a bound state exists. ⇤

Once again, the converse to this statement does not hold. There are potentials withR
dx V (x) > 0 which do admit bound states.
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You may wonder if we can extend this result to higher dimensions. It turns out that

there is an analogous statement in two dimensions1. However, in three dimensions or

higher there is no such statement. In that case, if the potential is suitably shallow there

are no bound states.

2.1.4 An Upper Bound on Excited States

So far, we’ve focussed only on approximating the energy of the ground state. Can we

also use the variational method to give a bound on the energy of excited states?

This is rather more tricky. We can make progress if we know the ground state |0i
exactly. In this case, we construct a trial wavefunction | (↵)i that is orthogonal to the

ground state,

h (↵)|0i = 0 for all ↵ (2.10)

Now we can simply rerun our arguments of Section 2.1.1. The minimum of E(↵) =

h (↵)|H| (↵)i provides an upper bound on the energy E1 of the first excited state.

In principle, we could then repeat this argument. Working with a trial wavefunction

that is orthogonal to both |0i and |1i will provide an upper bound on the energy E2 of

the second excited state.

In practice, this approach is not much use. Usually, if we’re working with the varia-

tional method then it’s because we don’t have an exact expression for the ground state,

making it di�cult to construct a trial wavefunction obeying (2.10). If all we have is

an approximation to the ground state, this is no good at all in providing a bound for

excited states.

There is, however, one situation where we can make progress: this is if our Hamilto-

nian has some symmetry or, equivalently, some other conserved quantity. If we know

the quantum number of the ground state under this symmetry then we can guarantee

(2.10) by constructing our trial wavefunction to have a di↵erent quantum number.

An Example: Parity and the Quartic Potential

For a simple example of this, let’s return to the quartic potential of Section 2.1.1. The

Hamiltonian is

H = � d2

dx2
+ x4

1More details can be found in the paper by Barry Simon, “The bound state of weakly coupled

Schrödinger operators in one and two dimensions”, Ann. Phys. 97, 2 (1976), which you can download
here.
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This Hamiltonian is invariant under parity, mapping x ! �x. The true ground state

must be even under parity. We can therefore construct a class of trial wavefunctions

for the first excited state which are odd under parity. An obvious choice is

 (x;↵) =

✓
4↵3

⇡

◆1/4

x e�↵x2/2

Churning through some algebra, one finds that the minimum energy using this wave-

function is

E(↵?) ⇡ 3.85

The true value is E1 ⇡ 3.80.

2.2 WKB

The WKB approximation is a method for solving the one-dimensional Schrödinger

equation. The approximation is valid in situations where the potential changes slowly

compared to the de Broglie wavelength � = 2⇡~/p of the particle. The basic idea is that
the wavefunction will be approximately that of a free particle, but with an amplitude

and phase that vary to compensate the changes in the potential.

The method is named after the physicists Wentzel, Kramers and Brillouin. It is

sometimes called the WKBJ approximation, with Harold Je↵reys’ name tagged on

the end to recognise the fact that he discovered before any of the other three. The

main applications of the method are in estimating bound state energies and computing

tunnelling rates.

2.2.1 The Semi-Classical Expansion

Before we jump into the quantum problem, let’s build some classical intuition. Suppose

that a one-dimensional potential V (x) takes the form shown on the left-hand figure

below. A classical particle with energy E will oscillate backwards and forwards, with

momentum given by

p(x) ⌘ ~k(x) ⌘
⇣
2m (E � V (x))

⌘1/2
(2.11)

Clearly, the particle only exists in the regions where E � V (x). At the points where

E = V (x), it turns around and goes back the other way.
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x
E

V(x)

x
E

V(x) , ψ(x)

Figure 4: The classical state. Figure 5: The quantum state.

Now let’s think about a quantum particle. Suppose that the potential varies slowly.

This means that if we zoom into some part of the figure then the potential will be

approximately constant. We may imagine that in this part of the potential, we can

approximate the wavefunction by the plane wave  (x) ⇠ eip(x)x. However, the wave-

function also spreads beyond the region where the classical particle can reach. Here

E < V (x) and so, taken at face value, (2.11) tells us that p(x) becomes purely imagi-

nary. This means that the ansatz  (x) ⇠ eip(x)x will lead to an exponentially decaying

tail of the wavefunction (at least if we pick the minus sign correctly). But that’s exactly

what we expect the wavefunction to do in this region.

These ideas form the basis of the WKB approximation. Our goal now is to place

them on a more systematic footing. To this end, consider the one-dimensional time-

independent Schrödinger equation

� ~2
2m

d2 

dx2
+ V (x) = E 

It will prove useful to write this as

d2 

dx2
+

2m

~2 (E � V (x)) = 0

Motivated by our discussion above, we will look for solutions of the form

 (x) = eiW (x)/~

Plugging this ansatz into the Schrödinger equation leaves us with the di↵erential equa-

tion

i~d
2W

dx2
�
✓
dW

dx

◆2

+ p(x)2 = 0 (2.12)

where the classical momentum p(x) defined in (2.11) makes an appearance.
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The plane wave solutions arise whenW (x) = ~kx, in which case the second derivative

in (2.12) vanishes. Here we’ll look for solutions where this second derivative is merely

small, meaning

~
����
d2W

dx2

����⌧
����
dW

dx

����
2

(2.13)

We refer to this as the semi-classical limit.

Roughly speaking, (2.13) can be thought of as the ~ ! 0 limit. Indeed, mathemati-

cally, it makes sense to attempt to solve (2.12) using a power series in ~. As physicists,
this should makes us squirm a little as ~ is dimensionful, and so can’t be “small”. But

we’ll first solve the problem and then get a better understanding of when the solution

is valid. For these purposes, we treat p(x) as the background potential which we will

take to be O(~0). We expand our solution as

W (x) = W0(x) + ~W1(x) + ~2W2(x) + . . .

Plugging this ansatz into (2.12) gives
h
�W 0

0
(x)2 + p(x)2

i
+ ~

h
iW

00

0
(x)� 2W 0

0
(x)W 0

1
(x)
i
+O(~2) = 0

We see that we can now hope to solve these equations order by order in ~. The first is
straightforward,

W 0

0
(x) = ±p(x) ) W0(x) = ±

Z x

dx0 p(x0)

This is actually something that arises also in classical mechanics: it is the Hamilton-

Jacobi function. More details can be found in Sections 4.7 and 4.8 of the lecture notes

on Classical Dynamics.

At O(~), we have

W 0

1
(x) =

i

2

W
00
0
(x)

W 0

0
(x)

=
i

2

p0(x)

p(x)
) W1(x) =

i

2
log p(x) + c

for some constant c. Putting these together gives us the WKB approximation to the

wavefunction,

 (x) ⇡ Ap
p(x)

exp

✓
± i

~

Z x

dx0 p(x0)

◆
(2.14)

The probability of finding a particle at x is, of course, | (x)|2 ⇠ 1/p(x). This is intu-

itive: the probability of finding a particle in some region point should be proportional

to how long it spends there which, in turn, is inversely proportional to its momentum.
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Validity of WKB

Before moving on, let’s try to get a better feeling for the validity of the WKB approx-

imation. To leading order, our requirement (2.13) reads

~
����
dp

dx

����⌧ |p(x)|2 ) 1

2⇡

d�

dx
⌧ 1

where � = 2⇡~/p is the de Broglie wavelength. This is the statement that the de Broglie

wavelength of the particle does not change considerably over distances comparable to

its wavelength.

Alternatively, we can phrase this as a condition on the potential. Using (2.11), we

have

�(x)

����
dV

dx

����⌧ 4⇡ ⇥ |p(x)|2
2m

which roughly says that the change of the potential energy over a de Broglie wavelength

should be much less than the kinetic energy (with the factor of 4⇡ giving an order of

magnitude in leniency.)

The Need for a Matching Condition

Let’s take a slowly varying potential. We want to find a solution to the Schrödinger

equation with some energy E.

The WKB approximation does provides a solution in regions where E � V (x) and,

correspondingly, p(x) is real. This is the case in the middle of the potential, where

the wavefunction oscillates. The WKB approximation also provides a solutions when

E ⌧ V (x), where p(x) is imaginary. This is the case to the far left and far right, where

the wavefunction su↵ers either exponential decay or growth

 (x) ⇡ A

2m(V (x)� E))1/4
exp

✓
±1

~

Z x

dx0
p
2m(V (x0)� E)

◆

The choice of ± is typically fixed by normalisability requirements.

But what happens in the region near E = V (x)? Here the WKB approximation is

never valid and the putative wavefunction (2.14) diverges because p(x) = 0. What to

do?

The point x0 where p(x0) = 0 is the classical turning point. The key idea that

makes the WKB approximation work is matching. This means that we use the WKB

approximation where it is valid. But in the neighbourhood of any turning point we will

instead find a di↵erent solution. This will then be matched onto our WKB solution.
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So what is the Schrödinger equation that we want to solve in the vicinity of x0? We

expand the potential energy, keeping only the linear term

V (x) ⇡ E + C(x� x0) + . . .

The Schrödinger equation is then

� ~2
2m

d2 

dx2
+ C(x� x0) = 0 (2.15)

We will solve this Schrödinger equation exactly, and then match this solution to the

WKB wavefunction (2.14) to the left and right.

2.2.2 A Linear Potential and the Airy Function

The problem of the Schrödinger equation for a linear potential is interesting in its

own right. For example, this describes a particle in a constant gravitational field

with x the distance above the Earth. (In this case, we would place a hard wall —

corresponding to the surface of the Earth — at x = 0 by requiring that  (0) = 0.)

Another example involves quarkonium, a bound state of a heavy quark and anti-quark.

Due to confinement of QCD, these experience a linearly growing potential between

them.

For a linear potential V (x) = Cx, with C constant, the Schrödinger equation is

� ~2
2m

d2 

dx2
+ Cx = E (2.16)

Before proceeding, it’s best rescale our variables to absorb all the factors floating

around. Define the dimensionless position

u =

✓
2mC

~2

◆1/3

(x� E/C) (2.17)

Then the Schrödinger equation (2.16) becomes

d2 

du2
� u = 0 (2.18)

This is known as the Airy equation. The solution is the Airy function,  (u) = Ai(u),

which is defined by the somewhat strange looking integral

Ai(u) =
1

⇡

Z
1

0

dt cos

✓
t3

3
+ ut

◆
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Figure 6: The Airy function.

To check this, note that
✓

d2

du2
� u

◆
Ai(u) = � 1

⇡

Z
1

0

dt (t2 + u) cos

✓
t3

3
+ ut

◆

= � 1

⇡

Z
1

0

dt
d

dt
sin

✓
t3

3
+ ut

◆

The lower limit of the integral clearly vanishes. The upper limit is more tricky. Heuris-

tically, it vanishes as sin t3 oscillates more and more quickly as t ! 1. More care is

needed to make a rigorous argument.

A plot of the Airy function is shown in Figure 6. It has the nice property that it

oscillates for u < 0, but decays exponentially for u > 0. Indeed, it can be shown that

the asymptotic behaviour is given by

Ai(u) ⇠ 1

2

✓
1

⇡
p
u

◆1/2

exp

✓
�2

3
u3/2

◆
u � 0 (2.19)

and

Ai(u) ⇠
✓

1

⇡
p
�u

◆1/2

cos

✓
2

3
u
p
�u+

⇡

4

◆
u ⌧ 0 (2.20)

This kind of behaviour is what we would expect physically. Tracing through our defini-

tions above, the region u < 0 corresponds to E > V (x) and the wavefunction oscillates.

Meanwhile, u > 0 corresponds to E < V (x) and the wavefunction dies quickly.

The Airy equation (2.18) is a second order di↵erential equation and so must have a

second solution. This is known as Bi(u). It has the property that it diverges as x ! 1,

so does not qualify as a good wavefunction in our problem.
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An Aside: Quarkonium

Take a quark and anti-quark and separate them. The quarks generate a field which is

associated to the strong nuclear force and is sometimes called the chromoelectric field.

Just like in Maxwell theory, this field gives rise to a force between the two quarks.

Classically the force between two quarks scales as

Figure 7:

V ⇠ 1/r, just like the Coulomb force. However, quan-

tum fluctuations of the chromoelectric field dramati-

cally change this behaviour and the chromoelectric field

forms a collimated flux tube linking the quarks. A nu-

merical simulation of this e↵ect is shown on the right2.

The upshot of this is that the potential between two

quarks changes from being V ⇠ 1/r to the form

V = Cr (2.21)

This means that, in sharp contrast to other forces, it gets harder and harder to separate

quarks. This behaviour is known as confinement. The coe�cient C is referred to as

the string tension.

We won’t explain here why the potential takes the linear form (2.21). (In fact, you

won’t find a simple explanation of that anywhere! It’s closely related to the Clay

millenium prize problem on Yang-Mills theory. A large part of the lecture notes on

Gauge Theory is devoted to an intuitive understanding of how confinement comes

about.) Instead we’ll just look at the spectrum of states that arises when two quarks

experience a linear potential. These states are called quarkonium. The Schrödinger

equation is

� ~2
2m

✓
1

r2
d

dr

✓
r2
d 

dr

◆
� l(l + 1)

r2
 (r)

◆
+ Cr (r) = E (r)

There is an interesting story about how this spectrum depends on the angular momen-

tum l but, for now, we look at the l = 0 sector. Defining � = r and the dimensionless

coordinate u = (2mC/~2)1/3(r�E/C) as in (2.17), we see that this once again reduces

to the Airy equation, with solutions given by �(u) = Ai(u)

So far there is no quantisation of the allowed energy E. This comes from the require-

ment that �(r = 0) = 0. In other words,

Ai

 
�
✓

2m

~2C2

◆1/3

E

!
= 0

2This is part of a set of animations of QCD, the theory of the strong force. You can see them at
Derek Leinweber’s webpage. They’re pretty!
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The zeros of the Airy function Ai(y) can be computed numerically. The first few occur

at y = �y?, with

y? = 2.34, 4.09, 5.52, 6.79, 7.94, 9.02, . . .

The first few energy levels are then E = (~2C2/2m)1/3y?.

An Application: Matching the WKB Solution

For us, the main purpose in introducing the Airy function is to put it to work in the

WKB approximation. The Airy function solves the Schrödinger equation (2.15) in the

vicinity of the turning point x0 where, comparing to (2.16), we see that we should set

x0 = E/C. The asymptotic behaviour (2.19) and (2.20) is exactly what we need to

match onto the WKB solution (2.14).

Let’s see how this works. First consider u ⌧ 0, corresponding to x ⌧ x0. Here

E > V (x) and we have the oscillatory solution. We want to rewrite this in terms of our

original variables. In this region, V (x) ⇡ E + C(x� x0), so we can justifiably replace

|u| =
✓
2mC

~2

◆1/3

(x0 � x) =

✓
2m

~2C2

◆1/3

(E � V (x))

where we’ve used our definition of p(x) given in (2.11). In these variables, the asymp-

totic form of the Airy function (2.20) is given by

Ai(x) ⇠
 

(2mC~)1/3

⇡
p

2m(E � V (x))

!1/2

cos

✓
1

~

Z x

x0

dx0
p
2m(E � V (x0)) +

⇡

4

◆
(2.22)

This takes the same oscillatory form as the WKB solution (2.14). The two solutions

can be patched together simply by picking an appropriate normalisation factor and

phase for the WKB solution.

Similarly, in the region u � 0, the exponentially decaying form of the Airy function

(2.19) can be written as

Ai(x) ⇠ 1

2

 
(2mC~)1/3

⇡
p

2m(V (x)� E)|

!1/2

exp

✓
�1

~

Z x

x0

dx0
p
2m((V (x0)� E)

◆
(2.23)

This too has the same form as the exponentially decaying WKB solution (2.14).

This, then, is how we piece together solutions. In regions where E > V (x), the

WKB approximation gives oscillating solutions. In regimes where E < V (x), it gives

exponentially decaying solutions. The Airy function interpolates between these two

regimes. The following examples describes this method in practice.
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2.2.3 Bound State Spectrum

As an example of this matching, let’s return to the po-

x
E

V(x)

ba

Figure 8:

tential shown on the right. Our goal is to compute the

spectrum of bound states. We first split the potential

into three regions where the WKB approximation can

be trusted:

Region 1 x ⌧ a

Region 2 a ⌧ x ⌧ b

Region 3 x � b

We’ll start in the left-most Region 1. Here the WKB

approximation tells us that the solution dies exponentially as

 1(x) ⇡
A

2m(V (x)� E))1/4
exp

✓
�
Z a

x

dx0
p

2m(V (x0)� E)

◆

As we approach x = a, the potential takes the linear form V (x) ⇡ E + V 0(a)(x � a)

and this coincides with the asymptotic form (2.19) of the Airy function Ai(�u). We

then follow this Airy function through to Region 2 where the asymptotic form (2.22)

tells us that we have

 2(x) ⇡
2A

2m(V (x)� E))1/4
cos

✓
1

~

Z x

a

dx0
p
2m(E � V (x0))� ⇡

4

◆
(2.24)

Note the minus sign in the phase shift �⇡/4. This arises because we’re working with

Ai(�u). The Airy function takes this form close to x = a where V (x) is linear. But, as

we saw above, we can now extend this solution throughout Region 2 where it coincides

with the WKB approximation.

We now repeat this procedure to match Regions 2 an 3. When x � b, the WKB

approximation tells us that the wavefunction is

 3(x) ⇡
A0

2m(V (x)� E))1/4
exp

✓
�
Z x

b

dx0
p

2m(V (x)� E)

◆

Matching to the Airy function across the turning point x = b, we have

 2(x) ⇡
2A0

2m(V (x)� E))1/4
cos

✓
1

~

Z x

b

dx0
p
2m(E � V (x0)) +

⇡

4

◆
(2.25)

We’re left with two expressions (2.24) and (2.25) for the wavefunction in Region 2.

Clearly these must agree. Equating the two tells us that |A| = |A0|, but they may di↵er

– 45 –



by a sign, since this can be compensated by the cos function. Insisting that the two

cos functions agree, up to sign, gives us the condition

1

~

Z x

a

dx0
p
2m(E � V (x0))� ⇡

4
=

1

~

Z x

b

dx0
p

2m(E � V (x0)) +
⇡

4
+ n⇡

for some integer n. Rearranging gives
Z b

a

dx0
p

2m(E � V (x0)) =

✓
n+

1

2

◆
~⇡ (2.26)

To complete this expression, we should recall what we mean by a and b. For a given

energy E, these are the extreme values of the classical trajectory where p(x) = 0. In

other words, we can write a = xmin and b = xmax. If we write our final expression in

terms of the momentum p(x), it takes the simple form
Z xmax

xmin

dx0 p(x0) =

✓
n+

1

2

◆
~⇡ (2.27)

An Example: The Harmonic Oscillator

To illustrate this, let’s look at an example that we all known and love: the harmonic

oscillator with V (x) = m2!2x2. The quantisation condition (2.26) becomes
Z xmax

xmin

dx
p

2m(E �m2!2x2) =
2mE

m!

⇡

2
=

✓
n+

1

2

◆
~⇡ ) E =

✓
n+

1

2

◆
~!

This, of course, is the exact spectrum of the harmonic oscillator. I should confess that

this is something of a fluke. In general, we will not get the exact answer. For most

potentials, the accuracy of the answer improves as n increases. This is because the high

n are high energy states. These have large momentum and, hence, small de Broglie

wavelength, which is where the WKB approximation works best.

2.2.4 Bohr-Sommerfeld Quantisation

TheWKB approximation underlies an important piece of history from the pre-Schrödinger

era of quantum mechanics. We can rewrite the quantisation condition (2.27) as
I

dx p(x) =

✓
n+

1

2

◆
2⇡~

where
H
means that we take a closed path in phase space which, in this one-dimensional

example, is from xmin to xmax and back again. This gives the extra factor of 2 on the

right-hand side. You may recognise the left-hand-side as the adiabatic invariant from

the Classical Dynamics lectures. This is a sensible object to quantise as it doesn’t

change if we slowly vary the parameters of the system.
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In the old days of quantum mechanics, Bohr and Sommerfeld introduced an ad-hoc

method of quantisation. They suggested that one should impose the condition

I
dx p(x) = 2⇡n~

with n an integer. They didn’t include the factor of 1/2. They made this guess because

it turns out to correctly describe the spectrum of the hydrogen atom. This too is

something of a fluke! But it was an important fluke that laid the groundwork for

the full development of quantum mechanics. The WKB approximation provides an

a-posteriori justification of the Bohr-Sommerfeld quantisation rule, laced with some

irony: they guessed the wrong approximate quantisation rule which, for the system

they were interested in, just happened to give the correct answer!

More generally, “Bohr-Sommerfeld quantisation” means packaging up a 2d-dimensional

phase space of the system into small parcels of volume (2⇡~)d and assigning a quan-

tum state to each. It is, at best, a crude approximation to the correct quantisation

treatment.

2.2.5 Tunnelling out of a Trap

For our final application of the WKB approximation, we look at the problem of tun-

nelling out of a trap. This kind of problem was first introduced by Gammow as a model

for alpa decay.

Consider the potential shown in the figure, with

x

 (x)ψV(x) , 

Figure 9:

functional form

V (x) =

(
�V0 x < R

+↵/x x > R

We’ll think of this as a one-dimensional problem; it is

not di�cult to generalise to a three dimensions. Here R

is to be thought of as the size of the nucleus, V0 models

the nuclear binding energy while, outside the nucleus,

the particle feels a Coulomb repulsion. If we take the particle to have charge q (for

an alpha particle, this is q = 2e) and the nucleus that remains to have charge Ze, we

should have

↵ =
Zqe

4⇡✏0
(2.28)
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Any state with E < 0 is bound and cannot leave the trap. (These are shown in green

in the figure.) But those with 0 < E < ↵/R are bound only classically; quantum

mechanics allows them to tunnel through the barrier and escape to infinity. We would

like to calculate the rate at which this happens.

In the region x < R, the wavefunction has the form

 inside(x) = Aeikx with E =
~2k2

2m

After tunnelling, the particle emerges at distance x = x? defined by E = ↵/x?. For

x > x?, the wavefunction again oscillates, with a form given by the WKB approximation

(2.14), However, the amplitude of this wavefunction di↵ers from the value A. The ratio

of these two amplitudes determines the tunnelling rate.

To compute this, we patch the two wavefunctions together using the exponentially

decaying WKB solution in the region R < x < x?. This gives

 (x?) =  (R) e�S/~

where the exponent is given by the integral

S =

Z x?

R

dx0

r
2m
⇣↵
x0

� E
⌘

(2.29)

This integral is particularly simple to compute in the limit R ! 0 where it is given by

S =

r
2m

E
⇡↵ =

2⇡↵

~v

where, in the second equality, we’ve set the energy of the particle equal to its classical

kinetic energy: E = 1

2
mv2.

The transmission probability T is then given by

T =
| (x?)|2
| (R)|2 = e�2S/~ (2.30)

This already contains some interesting information. In particular, recalling the defini-

tion of ↵ in (2.28), we see that the larger the charge of the nucleus, the less likely the

decay.

– 48 –



Usually we discuss the decay of atomic nuclei in terms of lifetimes. We can compute

this by adding some simple (semi)-classical ideas to the above analysis. Inside the trap,

the particle is bouncing backwards and forwards with velocity

v0 =

r
2(E + V0)

m

This means that the particle hits the barrier with frequency ⌫ = v0/R. The decay rate

is then � = ⌫e�2S/~ and the lifetime is

⌧ =
R
p
mp

2(E + V0)
e2S/~

We didn’t really treat the dependence on R correctly above. We set R = 0 when

evaluating the exponent in (2.29), but retained it in the pre-factor. A better treatment

does not change the qualitative results.

One Last Thing...

It is not di�cult to extend this to a general potential V (x) as
V(x)

x

Figure 10:

shown in the figure. In all cases, the transmission probability

has an exponential fall-o↵ of the form T ⇠ e�2S/~ where S

is given by

S =

Z x1

x0

dx0
p

2m(V (x)� E) (2.31)

where the positions x0 and x1 are the classical values where

V (x) = E, so that the integral is performed only over the forbidden region of the

potential.

There is a lovely interpretation of this result that has its heart in the path integral

formulation of quantum mechanics. Consider the a classical system with the potential

�V (x) rather than +V (x). In other words, we turn the potential upside down. The

action for such a system is

S[x(t)] =

Z t1

t0

dt
1

2
mẋ2 + V (x)

In this auxiliary system, there is a classical solution, xcl(t) which bounces between the

two turning points, so xcl(t0) = x0 and xcl(t1) = x1. It turns out that the exponent

(2.31) is precisely the value of the action evaluated on this solution

S = S[xcl(t)]

This result essentially follows from the discussion of Hamilton-Jacobi theory in the

Classical Dynamics lecture notes.
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2.3 Changing Hamiltonians, Fast and Slow

You learned in the previous course how to set-up perturbation theory when the Hamil-

tonian H(t) changes with time. There are, however, two extreme situations where life

is somewhat easier. This is when the changes to the Hamiltonian are either very fast,

or very slow.

2.3.1 The Sudden Approximation

We start with the fast case. We consider the situation where the system starts with

some Hamiltonian H0, but then very quickly changes to another Hamiltonian H. This

occurs over a small timescale ⌧ .

Of course “very quickly” is relative. We require that the time ⌧ is much smaller than

any characteristic time scale of the original system. These time scales are set by the

energy splitting, so we must have

⌧ ⌧ ~
�E

If these conditions are obeyed, the physics is very intuitive. The system originally sits

in some state | i. But the change happens so quickly that the state does not have a

chance to respond. After time ⌧ , the system still sits in the same state | i. The only

di↵erence is that the time dynamics is now governed by H rather than H0.

An Example: Tritium

Tritium, 3H, is an isotope of hydrogen whose nucleus contains a single proton and two

neutrons. It is unstable with a half-life of around 12 years. It su↵ers beta decay to

helium, emitting an electron and anti-neutrino in the process

3H ! 3He+ + e� + ⌫̄e

The electron is emitted with a fairly wide range of energies, whose mean is E ⇠ 5.6 keV .

Since the mass of the electron is mc2 ⇡ 511 keV , the electron departs with a speed

given by E = 1

2
mv2 (we could use the relativistic formula E = m�c2 but it doesn’t

a↵ect the answer too much). This is v ⇡ 0.15 c. The time taken to leave the atom is

then ⌧ ⇡ a0/v ⇡ 10�19 s where a0 ⇡ 5⇥ 10�11 m is the Bohr radius.

We’ll initially take the electron in the tritium atom to sit in its ground state. The

first excited state has energy di↵erence �E = 3

4
E0 ⇡ 10 eV , corresponding to a time

scale ~/�E ⇡ 6.5 ⇥ 10�17 s. We therefore find ⌧ ⌧ ~/�E by almost two orders of

magnitude. This justifies our use of the sudden approximation.
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The electron ground state of the tritium atom is the same as that of hydrogen, namely

 0 =

s
Z3

⇡a3
0

e�Zr/a0 with Z = 1

After the beta decay, the electron remains in this same state, but this is no longer an

energy eigenstate. Indeed, the ground state of helium takes the same functional form,

but with Z = 2. The probability that the electron sits in the ground state of helium is

given by the overlap

P =

����
Z

d3x  ?
0
(x;Z = 1) 0(x;Z = 2)

����
2

=
83

36
⇡ 0.7

We see that 70% of the time the electron remains in the ground state. The rest of the

time it sits in some excited state, and subsequently decays down to the ground state.

2.3.2 An Example: Quantum Quench of a Harmonic Oscillator

There are a number of experimental situation where one deliberately make a rapid

change to the Hamiltonian. This forces the system away from equilibrium, with the

goal of opening a window on interesting dynamics. In this situation, the process of the

sudden change of the Hamiltonian is called a quantum quench.

As usual, the harmonic oscillator provides a particularly simple example. Suppose

that we start with the Hamiltonian

H0 =
p2

2m
+

1

2
!2

0
x2 = ~!0

✓
a†
0
a0 +

1

2

◆

where

a0 =
1p

2m!0

(m!0x+ ip)

Then, on a time scale ⌧ ⌧ ~/!0, we change the frequency of the oscillator so that the

Hamiltonian becomes

H =
p2

2m
+

1

2
!2x2 = ~!

✓
a†a+

1

2

◆

Clearly the wavefunctions for energy eigenstates are closely related since the change in

frequency can be compensated by rescaling x. However, here we would like to answer

di↵erent questions: if we originally sit in the ground state of H0, which state of H do

we end up in?
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A little bit of algebra shows that we can write the new annihilation operator as

a =
1p
2m!

(m!x+ ip) =
1

2

✓r
!

!0

+

r
!0

!

◆
a0 +

1

2

✓r
!

!0

�
r
!0

!

◆
a†
0

Let’s denote the ground state of H0 by |;i. It obeys a0|;i = 0. In terms of our new

creation and annihilation operators, this state satisfies (! + !0)a|;i = (! � !0)a†|;i.
Expanded in terms of the eigenstates |ni, n = 0, 1, . . . of H, we find that it involves

the whole slew of parity-even excited states

|;i =
1X

n=0

↵2n|2ni with ↵2n+2 =

r
2n+ 1

2n+ 2

✓
! � !0

! + !0

◆
↵2n

We can also address more detailed questions about the dynamics. Suppose that the

quench takes place at time t = 0. Working in the Heisenberg picture, we know that

h;|x2(0)|;i = ~
2m!0

and h;|p2(0)|;i = ~m!0

2

The position operator now evolves, governed by the new Hamiltonian H,

x(t) = x(0) cos(!t) +
p(0)

m!
sin(!t)

With a little bit of algebra we find that, for t2 > t1, the positions are correlated as

h;|x(t2)x(t1)|;i =
~

2m!


e�i!(t2�t1) +

(!2 � !2

0
) cos(!(t2 + t1)) + (! � !0)2 cos(!(t2 � t1))

2!!0

�

The first term is the evolution of an energy eigenstate; this is what we would get if no

quench took place. The other terms are due to the quench. The surprise is the existence

of the term that depends on (t1 + t2). This is not time translationally invariant, even

though both times are measured after t = 0. This means that the state carries a

memory of the traumatic event that happened during the quench.

2.3.3 The Adiabatic Approximation

We now turn to the opposite limit, when the Hamiltonian changes very slowly. Here

“slow” is again relative to the energy splitting ~/�E, as we will see below.

Consider a Hamiltonian H(�) which depends on some number of parameters �i. For

simplicity, we will assume that H has a discrete spectrum. We write these states as

H|n(�)i = En(�)|n(�)i (2.32)

Let’s place ourselves in one of these energy eigenstates. Now vary the parameters �i.

The adiabatic theorem states that if �i are changed suitably slowly, then the system

will cling to the energy eigenstate |n(�(t))i that we started o↵ in.
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To see this, we want to solve the time-dependent Schrödinger equation

i~@| (t)i
@t

= H| (t)i

We expand the solution in a basis of instantaneous energy eigenstates,

| (t)i =
X

m

am(t) e
i⇠m(t) |m(�(t))i (2.33)

Here am(t) are coe�cients that we wish to determine, while ⇠m(t) is the usual energy-

dependent phase factor

⇠m(t) = �1

~

Z t

0

dt0 Em(t
0)

To proceed, we substitute our ansatz (2.33) into the Schrödinger equation to find

X

m


ȧm ei⇠m |m(�)i+ am ei⇠m

@

@�i
|m(�)i�̇i

�
= 0

where we’ve cancelled the two terms which depend on En. Taking the inner product

with hn(�)| gives

ȧn = �
X

m

ame
i(⇠m�⇠n)hn(�)| @

@�i
|m(�)i �̇i

= �ian Ai(�) �̇
i �

X

m 6=n

ame
i(⇠m�⇠n)hn(�)| @

@�i
|m(�)i �̇i (2.34)

In the second line, we’ve singled out the m = n term and defined

Ai(�) = �ihn| @
@�i

|ni (2.35)

This is called the Berry connection. It plays a very important role in many aspects of

theoretical physics, and we’ll see some examples in Section 2.3.4.

First, we need to deal with the second term in (2.34). We will argue that this is

small. To see this, we return to our original definition (2.32) and di↵erentiate with

respect to �,

@H

@�i
|mi+H

@

@�i
|mi = @Em

@�i
|mi+ Em

@

@�i
|mi

Now take the inner product with hn| where n 6= m to find

(Em � En)hn|
@

@�i
|mi = hn|@H

@�i
|mi

– 53 –



This means that the second term in (2.34) is proportional to

hn| @
@�i

|mi �̇i = hn|@H
@�i

|mi �̇i

Em � En
(2.36)

The adiabatic theorem holds when the change of parameters �̇i is much smaller than

the splitting of energy levels Em � En. In this limit, we can ignore this term. From

(2.34), we’re then left with

ȧn = �ianAi�̇

This is easily solved to give

an = Cn exp

✓
�i

Z t

0

dt0 Ai(�(t
0)) �̇i

◆
(2.37)

where Cn are constants.

This is the adiabatic theorem. If we start at time t = 0 with am = �mn, so the system

is in a definite energy eigenstate |ni, then the system remains in the state |n(�)i as

we vary �. This is true as long as ~�̇i ⌧ �E, so that we can drop the term (2.36).

In particular, this means that when we vary the parameters �, we should be careful

to avoid level crossing, where another state becomes degenerate with the |n(�)i that

we’re sitting in. In this case, we will have Em = En for some |mi and all bets are o↵:

when the states separate again, there’s no simple way to tell which linear combinations

of the state we now sit in.

However, level crossings are rare in quantum mechanics. In general, you have to tune

three parameters to specific values in order to get two states to have the same energy.

This follows by thinking about a general Hermitian 2⇥ 2 matrix which can be viewed

as the Hamiltonian for the two states of interest. The general Hermitian 2⇥ 2 matrix

depends on 4 parameters, but its eigenvalues only coincide if it is proportional to the

identity matrix. This means that three of those parameters have to be set to zero.

2.3.4 Berry Phase

There is a surprise hiding in the details of the adiabatic theorem. As we vary the

parameters �, the phase of the state |n(�)i changes but there are two contributions,

rather than one. The first is the usual “e�iEt/~” phase that we expect for an energy

eigenstate; this is shown explicitly in our original ansatz (2.33). But there is also a

second contribution to the phase, shown in (2.37).
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To highlight the distinction between these two contributions, suppose that we vary

the parameters � but, finally we put them back to their starting values. This means

that we trace out a closed path C in the space of parameters. The second contribution

(2.37) can now be written as

ei� = exp

✓
�i

I

C

d�i Ai(�)

◆
(2.38)

In contrast to the energy-dependent phase, this does not depend on the time taken to

make the journey in parameter space. Instead, it depends only on the path we take

through parameter space.

Although the extra contribution (2.38) was correctly included in many calculations

over the decades, its general status was only appreciated by Michael Berry in 1984.

It is known as the Berry phase. It plays an important role in many of the more

subtle applications that are related to topology, such as the quantum Hall e↵ect and

topological insulators.

There is some very pretty geometry underlying the Berry phase. We can start to get

a feel for this by looking a little more closely at the Berry connection (2.35). This is

an example of a kind of object that you’ve seen before: it is like the gauge potential in

electromagnetism! Let’s explore this analogy a little further.

In the relativistic form of electromagnetism, we have a gauge potential Aµ(x) where

µ = 0, 1, 2, 3 and x are coordinates over Minkowski spacetime. There is a redundancy

in the description of the gauge potential: all physics remains invariant under the gauge

transformation

Aµ ! A0

µ = Aµ + @µ! (2.39)

for any function !(x). In our course on Electromagnetism, we were learned that if we

want to extract the physical information contained in Aµ, we should compute the field

strength

Fµ⌫ =
@Aµ

@x⌫
� @A⌫

@xµ

This contains the electric and magnetic fields. It is invariant under gauge transforma-

tions.
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Now let’s compare this to the Berry connection Ai(�). Of course, this no longer

depends on the coordinates of Minkowski space; instead it depends on the parameters

�i. The number of these parameters is arbitrary; let’s suppose that we have d of them.

This means that i = 1, . . . , d. In the language of di↵erential geometry Ai(�) is said to

be a one-form over the space of parameters, while Aµ(x) is said to be a one-form over

Minkowski space.

There is also a redundancy in the information contained in the Berry connection

Ai(�). This follows from the arbitrary choice we made in fixing the phase of the

reference states |n(�)i. We could just as happily have chosen a di↵erent set of reference

states which di↵er by a phase. Moreover, we could pick a di↵erent phase for every choice

of parameters �,

|n0(�)i = ei!(�) |n(�)i

for any function !(�). If we compute the Berry connection arising from this new choice,

we have

A0

i = �ihn0| @
@�i

|n0i = Ai +
@!

@�i
(2.40)

This takes the same form as the gauge transformation (2.39).

Following the analogy with electromagnetism, we might expect that the physical

information in the Berry connection can be found in the gauge invariant field strength

which, mathematically, is known as the curvature of the connection,

Fij(�) =
@Ai

@�j
� @Aj

@�i

It’s certainly true that F contains some physical information about our quantum sys-

tem, but it’s not the only gauge invariant quantity of interest. In the present context,

the most natural thing to compute is the Berry phase (2.38). Importantly, this too is

independent of the arbitrariness arising from the gauge transformation (2.40). This is

because
H
@i! d�i = 0. Indeed, we’ve already seen this same expression in the context

of electromagnetism: it is the Aharonov-Bohm phase that we also met in the lectures

on Solid State Physics.

In fact, it’s possible to write the Berry phase in terms of the field strength using the

higher-dimensional version of Stokes’ theorem

ei� = exp

✓
�i

I

C

Ai(�) d�
i

◆
= exp

✓
�i

Z

S

Fij dS
ij

◆
(2.41)

where S is a two-dimensional surface in the parameter space bounded by the path C.

– 56 –



2.3.5 An Example: A Spin in a Magnetic Field

The standard example of the Berry phase is very simple. It is a spin, with a Hilbert

space consisting of just two states. The spin is placed in a magnetic field B. We met

the Hamiltonian in this system when we discussed particles in a magnetic field in the

lectures on Solid State Physics: it is

H = �B · � +B

where � are the triplet of Pauli vectors. We’ve set the magnetic moment of the particle

to unity for convenience, and we’ve also added the constant o↵set B = |B| to this

Hamiltonian to ensure that the ground state always has vanishing energy. This is so

that the phase e�iEt/~ will vanish for the ground state and we can focus on the Berry

phase that we care about.

The Hamiltonian has two eigenvalues: 0 and +2B. We denote the ground state as

|# i and the excited state as |" i,

H|# i = 0 and H|" i = 2B|" i

Note that these two states are non-degenerate as long as B 6= 0.

We are going to treat the magnetic field as the parameters, so that �i ⌘ Bi in this

example. Be warned: this means that things are about to get confusing because we’ll

be talking about Berry connections Ai and curvatures Fij over the space of magnetic

fields. (As opposed to electromagnetism where we talk about magnetic fields over

actual space).

The specific form of | " i and | # i will depend on the orientation of B. To provide

more explicit forms for these states, we write the magnetic field B in spherical polar

coordinates

B =

0

BB@

B sin ✓ cos�

B sin ✓ sin�

B cos ✓

1

CCA

with ✓ 2 [0, ⇡] and � 2 [0, 2⇡) The Hamiltonian then reads

H = �B

 
cos ✓ � 1 e�i� sin ✓

e+i� sin ✓ � cos ✓ � 1

!
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In these coordinates, two normalised eigenstates are given by

|# i =
 
e�i� sin ✓/2

� cos ✓/2

!
and |" i =

 
e�i� cos ✓/2

sin ✓/2

!

These states play the role of our |n(�)i that we had in our general derivation. Note,

however, that they are not well defined for all values of B. When we have ✓ = ⇡, the

angular coordinate � is not well defined. This means that | # i and | " i don’t have

well defined phases. This kind of behaviour is typical of systems with non-trivial Berry

phase.

We can easily compute the Berry phase arising from these states (staying away from

✓ = ⇡ to be on the safe side). We have

A✓ = �ih# | @
@✓

|# i = 0 and A� = �ih# | @
@�

|# i = � sin2

✓
✓

2

◆

The resulting Berry curvature in polar coordinates is

F✓� =
@A�

@✓
� @A✓

@�
= �1

2
sin ✓

This is simpler if we translate it back to cartesian coordinates where the rotational

symmetry is more manifest. It becomes

Fij(B) = �✏ijk
Bk

2|B|3

But this is interesting. It is a magnetic monopole. Except now it’s not a magnetic

monopole of electromagnetism. Instead it is, rather confusingly, a magnetic monopole

in the space of magnetic fields.

Note that the magnetic monopole sits at the point B = 0 where the two energy levels

coincide. Here, the field strength is singular. This is the point where we can no longer

trust the Berry phase computation. Nonetheless, it is the presence of this level crossing

and the resulting singularity which is dominating the physics of the Berry phase.

The magnetic monopole has charge g = �1/2, meaning that the integral of the Berry

curvature over any two-sphere S2 which surrounds the origin is

Z

S2

Fij dS
ij = 4⇡g = �2⇡ (2.42)
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B

S

C

C

S’

Figure 11: Integrating over S... Figure 12: ...or over S0.

Using this, we can easily compute the Berry phase for any path C that we choose to

take in the space of magnetic fields B. We only insist that the path C avoids the origin.

Suppose that the surface S, bounded by C, makes a solid angle ⌦. Then, using the

form (2.41) of the Berry phase, we have

ei� = exp

✓
�i

Z

S

Fij dS
ij

◆
= exp

✓
i⌦

2

◆
(2.43)

Note, however, that there is an ambiguity in this computation. We could choose to

form S as shown in the left hand figure. But we could equally well choose the surface

S 0 to go around the back of the sphere, as shown in the right-hand figure. In this case,

the solid angle formed by S 0 is ⌦0 = 4⇡�⌦. Computing the Berry phase using S 0 gives

ei�
0
= exp

✓
�i

Z

S0
Fij dS

ij

◆
= exp

✓
�i(4⇡ � ⌦)

2

◆
= ei� (2.44)

where the di↵erence in sign in the second equality comes because the surface now has

opposite orientation. So, happily, the two computations agree. Note, however, that

this agreement requires that the charge of the monopole in (2.42) is 2g 2 Z.

The discussion above is a repeat of Dirac’s argument for the quantisation of magnetic

charge; this can also be found in the lectures on Solid State Physics and the lectures on

Gauge Theory (where you’ll even find the same figures!). Dirac’s quantisation argument

extends to a general Berry curvature Fij with an arbitrary number of parameters: the

integral of the curvature over any closed surface must be quantised in units of 2⇡,
Z

Fij dS
ij = 2⇡C (2.45)

The integer C 2 Z is called the Chern number.

You can read more about extensions of the Berry phase and its applications in the

lectures on the Quantum Hall E↵ect.

– 59 –



2.3.6 The Born-Oppenheimer Approximation

“I couldn’t find any mistake - did you really do this alone?”

Oppenheimer to his research supervisor Max Born

The Born-Oppenhemier approximation is an approach to solving quantum mechan-

ical problems in which there is a hierarchy of scales. The standard example is a bunch

of nuclei, each with position R↵ mass M↵ and charge Z↵e, interacting with a bunch of

electrons, each with position ri, mass m and charge �e. The Hamiltonian is

H =
X

↵

~2
2M↵

r2

↵ +
X

i

~2
2m

r2

i +
e2

4⇡✏0

 
X

i,j

1

|ri � rj|
+
X

↵,i

Z↵Z�

|R↵ �R�|
�
X

i,↵

Z↵

|ri �R↵|

!

This simple Hamiltonian is believed to describe much of what we see around us in

the world, so much so that some condensed matter physicists will refer to this, only

half-jokingly, as the “theory of everything”. Of course, the information about any

complex system is deeply hidden within this equation, and the art of physics is finding

approximation schemes, or emergent organising principles, to extract this information.

The hierarchy of scales in the Hamiltonian above arises because of the mass di↵erence

between the nuclei and the electrons. Recall that the proton-to-electron mass ratio is

mp/me ⇡ 1836. This means that the nuclei are cumbersome and slow, while the

electrons are nimble and quick. Relatedly, the nuclei wavefunctions are much more

localised than the electron wavefunctions. This motivates us to first fix the positions

of the nuclei and look at the electron Hamiltonian, and only later solve for the nuclei

dynamics. This is the essence of the Born-Oppenheimer approximation.

To this end, we write

H = Hnucl +Hel

where

Hnucl = �
X

↵

~2
2M↵

r2

↵ +
e2

4⇡✏0

X

↵,i

Z↵Z�

|R↵ �R�|

and

Hel = �
X

i

~2
2m

r2

i +
e2

4⇡✏0

 
X

i,j

1

|ri � rj|
�
X

i,↵

Z↵

|ri �R↵|

!

We then solve for the eigenstates of He, where the nuclei positions R are viewed as

parameters which, as in the adiabatic approximation, will subsequently vary slowly.

– 60 –



The only di↵erence with our previous discussion is that the time evolution of R is

determined by the dynamics of the system, rather than under the control of some

experimenter.

For fixed R, the instantaneous electron wavefunctions are

Hel �n(r;R) = ✏n(R)�n(r;R)

In what follows, we will assume that the energy levels are non-degenerate. (There is

an interesting generalisation if there is a degeneracy which we will not discuss in these

lectures.) We then make the ansatz for the wavefunction of the full system

 (r,R) =
X

n

�n(R)�n(r;R)

We’d like to write down an e↵ective Hamiltonian which governs the nuclei wavefunctions

�n(R). This is straightforward. The wavefunction  obeys

(Hnucl +Hel) = E 

Switching to bra-ket notation for the electron eigenstates, we can write this as
X

n

h�m|Hnucl�n|�ni+ ✏m(R)�m = E�m (2.46)

Now Hnucl contains the kinetic term r2

R, and this acts both on the nuclei wavefunction

�n, but also on the electron wavefunction �n(r;R) where the nuclei positions sit as

parameters. We have

h�m|r2

R�n|�ni =
X

k

⇣
�mkrR + h�m|rR|�ki

⌘⇣
�knrR + h�k|rR|�ni

⌘
�n

We now argue that, as in Section 2.3.3, the o↵-diagonal terms are small. The same

analysis as in (2.36) shows that they can be written as

X

k 6=n

h�n|rR|�kih�k|rR|�ni =
X

k 6=n

����
h�n|(rRHel)|�ki

✏n � ✏k

����
2

In the spirit of the adiabatic approximation, these can be neglected as long as the

motion of the nuclei is smaller than the splitting of the electron energy levels. In this

limit, we get a simple e↵ective Hamiltonian for the nuclei (2.46). The Hamiltonian

depends on the state |�ni that the electrons sit in, and is given by

He↵

n = �
X

↵

~2
2M↵

(r↵ � iAn,↵)
2 +

e2

4⇡✏0

X

↵,i

Z↵Z�

|R↵ �R�|
+ ✏n(R)
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We see that the electron energy level ✏n(R) acts as an e↵ective potential for the nuclei.

Perhaps more surprisingly, the Berry connection

An,↵ = �ih�n|rR↵ |�ni

also makes an appearance, now acting as an e↵ective magnetic field in which the nuclei

R↵ moves.

The idea of the Born-Oppenheimer approximation is that we can first solve for the

fast-moving degrees of freedom, to find an e↵ective action for the slow-moving degrees

of freedom. We sometimes say that we have “integrated out” the electron degrees of

freedom, language which really comes from the path integral formulation of quantum

mechanics. This is a very powerful idea, and one which becomes increasingly important

as we progress in theoretical physics. Indeed, this simple idea underpins the Wilsonian

renormalisation group which we will meet in later courses.

2.3.7 An Example: Molecules

The Born-Oppenheimer approximation plays a key role in chemistry (and, therefore,

in life in general). This is because it provides quantitative insight into the formation of

covalent bonds, in which its energetically preferable for nuclei to stick together because

the gain in energy from sharing an electron beats their mutual Coulomb repulsion.

The simplest example is the formation of the hydrogen molecule H�

2
, consisting of

two protons and a single electron. If we fix the proton separation to R, then the

resulting Hamiltonian for the electrons is

Hel = � ~2
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To proceed, we will combine the Born-Oppenheimer approximation with the variational

method that we met in Section 2.1. Our ultimate goal is simply to show that a bound

state exists. For this, the e↵ective potential energy is much more important than the

Berry connection. We will consider two possible ansatze for the electron ground state

�±(r) = A±

⇣
 0(r)±  0(r�R)

⌘

where

 0 =

s
1

⇡a3
0

e�r/a0

is the ground state wavefunction of hydrogen, which has energy E0 = �e2/8⇡✏0a0.
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Figure 13: The potential for  + Figure 14: The potential for  �

Although  0 is normalised, the full wavefunction �± is not. The normalisation condition

gives
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This is the first of several, rather tedious integrals that we have in store. They can all be

done using the kind of techniques that we introduced in Section 2.1.2 when discussing

helium. Here I’ll simply state the answers. It turns out that
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Moreover, we’ll also need

v(R) =

Z
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The expected energy in the state  ±(r) can be calculated to be

✏±(R) = h�±|Hel|�±i = E0 � 2A2

±

⇣
w(R)± v(R)

⌘

This means that the nuclei experience an e↵ective potential energy given by

V e↵

±
(R) =

e2
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This makes sense: as R ! 1, we get Ve↵ ! E0, which is the energy of a hydrogen atom.

Above, we have sketched the e↵ective potential V e↵

±
�E0 for the two wavefunctions �±.

We see that the state �+ gives rise to a minimum below zero. This is indicating the

existence of a molecular bound state. In contrast, there is no such bound state for ��.

This di↵erence is primarily due to the fact that �+ varies more slowly and so costs less

kinetic energy.

– 63 –


