
3. Atoms

The periodic table is one of the most iconic images in science. All elements are classified

in groups, ranging from metals on the left that go bang when you drop them in water

through to gases on the right that don’t do very much at all.

However, the periodic table contains plenty of hints that it is not the last word in

science. There are patterns and order that run through it, all hinting at some deeper

underlying structure. That structure, we now know, is quantum mechanics.

The most important pattern is also the most obvious: the elements are ordered,

labelled by an integer, Z. This is the atomic number which counts the number of

protons in the nucleus. The atomic number is the first time that the integers genuinely

play a role in physics. They arise, like most other integers in physics, as the spectrum

of a particular Schrödinger equation. This equation is rather complicated and we

won’t describe it in this course but, for what it’s worth, it involves a Hamiltonian

which describes the interactions of quarks and is known as the theory of quantum

chromodynamics.

While the atomic number is related to the quantum mechanics of quarks, all the

other features of the periodic table arise from the quantum mechanics of the electrons.
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The purpose of this section is to explain some of the crudest features of the table

from first principles. We will answer questions like: what determines the number of

elements in each row? Why are there gaps at the top, and two rows at the bottom

that we can’t fit in elsewhere? What’s special about the sequence of atomic numbers

2, 10, 18, 26, 54, 86, . . . that label the inert gases?

We will also look at more quantitative properties of atoms, in particular their energy

levels, and the ionization energy needed to remove a single electron. In principle, all of

chemistry follows from solving the Schrödinger equation for some number of electrons.

However, solving the Schrödinger equation for many particles is hard and there is a

long path between “in principle” and “in practice”. In this section, we take the first

steps down this path.

3.1 Hydrogen

We’re going to start by looking at a very simple system that consists of a nucleus with

just a single electron. This, of course, is hydrogen.

Now I know what you’re thinking: you already solved the hydrogen atom in your

first course on quantum mechanics. But you didn’t quite do it properly. There are a

number of subtleties that were missed in that first attempt. Here we’re going to explore

these subtleties.

3.1.1 A Review of the Hydrogen Atom

We usually treat the hydrogen atom by considering an electron of charge �e orbiting

a proton of charge +e. With a view to subsequent applications, we will generalise this

slightly: we consider a nucleus of charge Ze, still orbited by a single electron of charge

�e. This means that we are also describing ions such as He+ (for Z = 2) or Li2+ (for

Z = 3). The Hamiltonian is

H = � ~2
2m

r2 � 1

4⇡✏0

Ze2

r
(3.1)

The mass m is usually taken to be the electron mass me but since this is a two-body

problem it’s more correct to think of it as the reduced mass. (See, for example, Section

5.1.5 of the lectures on Dynamics and Relatvity.) This means that m = meM/(me +

M) ⇡ me �m2

e/M where M is the mass of the nucleus. The resulting m is very close

to the electron mass. For example, for hydrogen where the nucleus is a single proton,

M = mp ⇡ 1836me.
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The Schrödinger equation is the eigenvalue problem

H = En 

This is the problem that you solved in your first course. The solutions are

 n,l,m(r, ✓,�) = Rn,l(r)Yl,m(✓,�) (3.2)

where Rn,l(r) are the (generalised) Laguerre polynomials and Yl,m(✓,�) are spherical

harmonics. with energy eigenvalues. The states are labelled by three quantum numbers,

n, l and m, which take integer values in the range

n = 1, 2, 3, . . . , l = 0, 1, . . . , n� 1 , m = �l, . . . ,+l

(Don’t confuse the quantum number m with the mass m! Both will appear in formulae

below, but it should be obvious which is which.) Importantly, the energy eigenvalue

only depends on the first of these quantum numbers n,

En = �
✓
Ze2

4⇡✏0

◆2 m

2~2
1

n2
n 2 Z

where, just in case you weren’t sure, it’s the mass m that appears in this formula. This

is sometimes written as

En = �Z2 Ry

n2

where Ry ⇡ 13.6 eV is known as the Rydberg energy; it is the binding energy the

ground state of hydrogen. Alternatively, it is useful to write the energy levels as

En = �(Z↵)2mc2

2n2
where ↵ =

e2

4⇡✏0~c
(3.3)

This may appear slightly odd as we’ve introduced factors of the speed of light c which

subsequently cancel those in ↵. Writing it this way means that we can immediately

see how the binding energies compare to the rest mass energy mc2 of the electron. The

quantity ↵ is dimensionless and take the value ↵ ⇡ 1/137. It is called the fine structure

constant, a name that arises because it was first introduced in the calculations of the

“fine structure” of hydrogen that we will see below. The fine structure constant should

be thought of as the way to characterise the strength of the electromagnetic force.

Some Definitions

This energy spectrum can be seen experimentally as spectral lines. These are due to

excited electrons dropping from one state n to a lower state n0 < n, emitting a photon

of fixed frequency ~! = En � En0 . When the electron drops down to the ground state

with n0 = 1, the resulting lines are called the Lyman series. When the electron drops

to higher states n0 > 1, the sequences are referred to as Balmer, Paschen and so on.
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Instead of using the angular momentum quantum number l to label the state, they

are sometimes referred to as letters. l = 0, 1, 2, 3 are called s, p, d and f respectively.

The names are old fashioned and come from the observed quality of spectral lines; they

stand for sharp, principal, di↵use and fundamental, but they remain standard when

describing atomic structure.

Degeneracy

The fact that the energy depends only on n and not on the angular momentum quantum

numbers l and m means that each energy eigenvalue is degenerate. For fixed l, there

are 2l + 1 states labelled by m. Which means that for a fixed n, the total number of

states is

Degeneracy =
n�1X

l=0

2l + 1 = n2

Moreover, each electron also carries a spin degree of freedom. Measured along a given

axis, this spin can either be up (which means ms =
1

2
) or down (ms = �1

2
). Including

this spin, the total degeneracy of states with energy En is

Degeneracy = 2n2

The main reason for revisiting the quantum mechanics of hydrogen is to understand

what becomes of this degeneracy. Before we proceed, it’s worth first thinking about

where this degeneracy comes from. Usually in quantum mechanics, any degeneracy is

related to a conservation law which, in turn, are related to symmetries. The hydrogen

atom is no exception.

The most subtle degeneracy to explain is the fact that the energy does not depend on

l. This follows from the fact that the Hamiltonian (3.1) has a rather special conserved

symmetry known as the Runge-Lenz vector. (We’ve met this in earlier courses in

classical and quantum mechanics.) This follows, ultimately, from a hidden SO(4)

symmetry in the formulation of the hydrogen atom. We therefore expect that any

deviation from (3.1) will lift the degeneracy in l.

Meanwhile, the degeneracy in m follows simply from rotational invariance and the

corresponding conservation of angular momentum L. We don’t, therefore, expect this

to be lifted unless something breaks the underlying rotational symmetry of the problem.
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Finally, the overall factor of 2 comes, of course, from the spin S. The degeneracy

must, therefore, follow from the conservation of spin. Yet there is no such conservation

law; spin is just another form of angular momentum. The only thing that is really

conserved is the total angular momentum J = L + S. We would therefore expect any

addition to the Hamiltonian (3.1) which recognises that only J is conserved to lift this

spin degeneracy.

We’ll now see in detail how this plays out. As we’ll show, there are a number of

di↵erent e↵ects which split these energy levels. These e↵ects collectively go by the

name of fine structure and hyperfine structure.

3.1.2 Relativistic Motion

The “fine structure” corrections to the hydrogen spectrum all arise from relativistic

corrections. There are three di↵erent relativistic e↵ects that we need to take into

account: we will treat the first here, and the others in Sections 3.1.3 and 3.1.4

You can run into di�culties if you naively try to incorporate special relativity into

quantum mechanics. To do things properly, you need to work in the framework of

Quantum Field Theory and the Dirac equation, both of which are beyond the scope

of this course. However, we’re only going to be interested in situations where the

relativistic e↵ects can be thought of as small corrections to our original result. In

this situation, it’s usually safe to stick with single-particle quantum mechanics and use

perturbation theory. That’s the approach that we’ll take here. Nonetheless, a number

of the results that we’ll derive below can only be rigorously justified by working with

the Dirac equation.

The first, and most straightforward, relativistic shift of the energy levels comes simply

from the fact that the e↵ective velocity of electrons in an atom is a substantial fraction

of the speed of light. Recall that the energy of a relativistic particle is

E =
p

p2c2 +m2c4 ⇡ mc2 +
p2

2m
� p4

8m3c2
+ . . .

The constant term mc2 can be neglected and the next term is the usual non-relativistic

kinetic energy which feeds into the Hamiltonian (3.1). Here we’ll treat the third term

as a perturbation of our hydrogen Hamiltonian

�H = � p4

8m3c2
(3.4)

At first glance, it looks as if we’re going to be dealing with degenerate perturbation

theory. However, this particular perturbation is blind to both angular momentum
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quantum numbers l and m, as well as the spin ms. This follows straightforwardly from

the fact that [�H,L2] = [�H,Lz] = 0. If we denote the states (3.2) as |nlmi, then it’s

simple to show that

hnlm|�H|nl0m0i = 0 unless l = l0 and m = m0

This means that the energy shifts are

(�E1)n,l = h�Hin,l

where we’re introduced the notation h�Hin,l = hnlm|�H|nlmi and we’ve used the

fact that the perturbation preserves SO(3) rotational invariance to anticipate that the

change of energy won’t depend on the quantum number m. We want to compute this

overlap. In fact, it’s simplest to massage it a little bit by writing

�H = � 1

2mc2
[H � V (r)]2

where V (r) = Ze2/4⇡✏0r. This gives us the expression

(�E1)n,l = � 1

2mc2
⇥
E2

n � 2En hV (r)in,l + hV (r)2in,l
⇤

(3.5)

and our new goal is to compute the expectation values h1/rin,l and h1/r2in,l for the

hydrogen atom wavefunctions.

The first of these follows from the virial theorem (see Section 2.1.3) which tells us that

the relative contribution from the kinetic energy and potential energy is 2hT i = �hV i,
so that hEi = hT i+ hV i = 1

2
hV i. Then,

⌧
1

r

�

n,l

= � 1

Z↵~c hV in,l = � 1

Z↵~c 2En =
Z

a0

1

n2
(3.6)

where a0 = ~/↵mc is the Bohr radius, the length scale characteristic of the hydrogen

atom.

Next up is h1/r2i. Here there’s a cunning trick. For any quantum system, if we took

the Hamiltonian H and perturbed it to H + �/r2, then the leading order correction to

the energy levels would be h�/r2i. But, for the hydrogen atom, such a perturbation

can be absorbed into the angular momentum terms,

~2
2m

l(l + 1)

r2
+
�

r2
=

~2
2m

l0(l0 + 1)

r2
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But this is again of the form of the hydrogen atom Hamiltonian and we can solve

it exactly. The only di↵erence is that l0 is no longer an integer but some function

l0(�). The exact energy levels of the Hamiltonian with l0 follow from our first course

on quantum mechanics: they are

E(l0) = �mc2(Z↵)2
1

2(k + l0 + 1)2

Usually we would define the integer n = k + l + 1 to get the usual spectrum En given

in (3.3). Here, instead, we Taylor expand E(�) around � = 0 to get

E(l0) = En + (Z↵)2mc2


1

(k + l0 + 1)3
dl0

d�

�����
�=0

�+ . . .

= En +
Z2

a2
0

2�

n3(2l + 1)
+ . . .

From this we can read o↵ the expectation value that we wanted: it is the leading

correction to our exact result,
⌧

1

r2

�

n,l

=
Z2

a2
0

2

n3(2l + 1)
(3.7)

The two expectation values (3.6) and (3.7) are what we need to compute the shift of

the energy levels (3.5). We have

(�E1)n,l = �(Z↵)4mc2

2

✓
n

l + 1/2
� 3

4

◆
1

n4
(3.8)

As anticipated above, the relativistic e↵ect removes the degeneracy in the quantum

number l.

Notice that the size of the correction is of order (Z↵)4. This is smaller than the

original energy (3.3) by a factor of (Z↵)2. Although we may not have realised it, (Z↵)2

is the dimensionless ratio which we’re relying on to be small so that perturbation theory

is valid. (Or, for higher states, (Z↵/n)2).

It’s worth asking why we ended up with a perturbation to the energy which is smaller

by a factor of (Z↵)2. Because this was a relativistic correction, we expect it to be of

order v2/c2 where v is the characteristic velocity of the electron. We can understand

this by invoking the virial theorem which, in general, states that the expectation value

of the kinetic energy hT i is related to the expectation value of the energy V ⇠ rn by

2hT i = nhV i. For the hydrogen atom, this means that hT i = 1

2
mhv2i = �1

2
hV i. Since,

from the ground state energy (3.3), we know that E1 = hT i + hV i = mc2(Z↵)2/2 we

have hv2i = (Z↵)2c2 which confirms that (Z↵)2 is indeed the small parameter in the

problem.
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3.1.3 Spin-Orbit Coupling and Thomas Precession

The second shift of the energy levels comes from an interaction between the electron

spin S and its angular momentum L. This is known as the spin-orbit coupling.

The first fact we will need is that spin endows the electron with a magnetic dipole

moment given by

m = �g
e

2m
S (3.9)

The coe�cient of proportionality is called the gyromagnetic ratio or, sometimes, just

the g-factor. To leading order g = 2 for the electron. This fact follows from the Dirac

equation for the electron. We won’t derive this here and, for now, you will have to take

this fact on face value. A more precise analysis using quantum field theory shows that

g receives small corrections. The current best known value is g = 2.00231930436182 . . .,

but we’ll stick with g = 2 in our analysis below.

The second fact that we need is that the energy of a magnetic moment m in a

magnetic field B is given by

E = �B ·m

This is something we derived in Section 3 of the lectures on Electromagnetism.

The final fact is the Lorentz transformation of the electric field: as electron moving

with velocity v in an electric field E will experience a magnetic field

B =
�

c2
v ⇥ E

This was derived in Section 5 of the lectures on Electromagnetism.

We now apply this to the electron in orbit around the nucleus. The electron expe-

riences a radial electric field given by E = �r�(r) with �(r) = Ze/4⇡✏0r. Putting

everything together, the resulting magnetic field interacts with the spin, giving rise to

a correction to the energy of the electron

�E = � e�

mc2
(v ⇥r�) · S = � e

(mc)2
@�

@r
(p⇥ r̂) · S =

e

(mc)2
1

r

@�

@r
L · S

where p = m�v is the momentum and L = r⇥p is the angular momentum. This is the

promised spin-orbit coupling, in a form which we can promote to an operator. Thus

the spin-orbit correction to the Hamiltonian is

�HSO =
e

(mc)2
1

r

@�

@r
L · S (3.10)

Except. . ..
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Thomas Precession

It turns that the interaction (3.10) is actually incorrect by a factor of 1/2. This is

because of a subtle, relativistic e↵ect known as Thomas precession.

Thomas precession arises because the electron orbiting the nucleus is in a non-inertial

frame. As we will now explain, this means that even if the electron experienced no

magnetic field, its spin would still precess around the orbit.

The basic physics follows from the structure of the Lorentz group. (See Section 7

of the lectures on Dynamics and Relativity.) Consider a Lorentz boost ⇤(v) in the

x-direction, followed by a Lorentz boost ⇤0(v0) in the y-direction. Some simple matrix

multiplication will convince you that the resulting Lorentz transformation cannot be

written solely as a boost. Instead, it is a boost together with a rotation,

⇤0(v0)⇤(v) = R(✓)⇤00(v00)

where ⇤00(v00) is an appropriate boost while r(✓) is a rotation in the x � y plane.

This rotation is known as the Wigner rotation (or sometimes the Thomas rotation).

Although we will not need this fact below, you can check that cos ✓ = (�+�0)/(��0+1)

with � and �0 the usual relativistic factors.

Now we’re going to apply this to a classical electron in orbit around the nucleus. At

a fixed moment in time, it is moving with some velocity v relative to the nucleus. At

some moment of time later, v + �v. The net e↵ect of these two boosts is, as above, a

boost together with a rotation.

If the electron were a point particle, the Wigner rota- v

θ

x

y

Figure 15:

tion would have no e↵ect. However, the electron is not a

point particle: it carries a spin degree of freedom S and this

is rotated by the Wigner/Thomas e↵ect. The cumulative

e↵ect of these rotations is that the spin precesses as the

electron orbits the nucleus. We would like to calculate how

much.

The correct way to compute the precession is to integrate up the consecutive, in-

finitesimal Lorentz transformations as the electron orbits the nucleus. Here, instead,

we present a quick and dirty derivation. We approximate the circular orbit of the

electron by an N -sided polygon. Clearly in the lab frame, at the end of each segment

the electron shifts it velocity by an angle ✓ = 2⇡/N . However, in the electron’s frame

there is a Lorentz contraction along the direction parallel to the electron’s motion. This
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means that the electron thinks it rotates by the larger angle tan ✓0 = x/(�/y) which,

for N large, is ✓0 ⇡ 2⇡�/N . The upshot it that, by the time the electron has completed

a full orbit, it thinks that it has rotated by an excess angle of

�✓ = 2⇡(� � 1) ⇡ 2⇡v2

2c2

where we have expanded the relativistic factor � = (1� v2/c2)�1/2 ⇡ 1 + v2/2c2.

This is all we need to determine the precession rate, !T . If the particle traverses the

orbit with speed v and period T , then

!T =
�✓

T
⇡ 2⇡v2

2c2T
=

av

2c2

where, in the final step, we’ve replaced the period T with the acceleration a = v2/R =

2⇡v/T .

Our derivation above tells us the angular precession. But what does this mean for a

vector like S? A little thought shows that the component of S that lies perpendicular

to the plane of the orbit remains unchanged, while the component that lies within the

plane precesses with frequency !T . In other words,

@S

@t
= !T ⇥ S with !T =

v ⇥ a

2c2
(3.11)

This is Thomas precession. The e↵ect is purely kinematic, due to the fact that the

electron is not in an inertial frame. It can be thought of as a relativistic analog of the

Coriolis force.

Finally, note that in several places above, we needed the assumption that v/c is

small. Correspondingly, our final result (3.11) is only the leading order answer. The

correct answer turns out to be

!T =
�2

� + 1

v ⇥ a

2c2

However, (3.11) will su�ce for our purposes.

Thomas Precession and the Spin-Orbit Coupling

Let’s now see how the existence of Thomas precession a↵ects the spin orbit coupling.

Again, we’ll start with some basics. Classically, the energy E = �(e/m)B · S means
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that a spin will experience a torque when placed in a magnetic field. This, in turn, will

cause it to precesss

@S

@t
= B⇥ S

However, we’ve seen that Thomas precession (3.11) gives a further contribution to this.

So the correct equation should be

@S

@t
= B⇥ S+ !T ⇥ S

The energy functional which gives rise to this is

E =
e

m
B · S+ !T · S

Working to leading order in v/c, we massage the second term as

!T · S =
e

2mc2
(v ⇥r�) · S = � e

2(mc)2
1

r

@�

@r
L · S

where we’ve used Newton’s second law to write ma = er�. We see that comes with the

opposite sign and half the magnitude of the original contribution (3.10) to the energy.

Adding the two together gives the final result for the correction to the Hamiltonian due

to the spin-orbit coupling

�HSO =
e

2(mc)2
1

r

@�

@r
L · S (3.12)

with �(r) the electrostatic potential which, for us, is � = Ze/4⇡✏0r.

Computing the Spin-Orbit Energy Shift

Before our perturbation, the electron states were labelled by |nlmi, together with

the spin ±1/2. The spin-orbit coupling will split the spin and angular momentum l

degeneracy of the spectrum. To anticipate this, we should label these states by the

total angular momentum

J = L+ S

which takes quantum numbers j = l ± 1/2 with l = 0, 1, . . .. (When l = 0, we only

have j = 1/2.) Each state can therefore be labelled by |n, j,mj; li where |mj|  j and

the additional label l is there to remind us where these states came from.
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We want to compute the eigenvalue of L ·S acting on these states. The simplest way

to do this is to consider J2 = L2 + S2 + 2L · S, which tells us that

L · S |n, j,mj; li =
~2
2

✓
j(j + 1)� l(l + 1)� 3

4

◆
|n, j,mj; li

=
~2
2

(
�(l + 1)|n, j,mj; li j = l � 1

2
(l 6= 0)

l|n, j,mj; li j = l + 1

2

(3.13)

As in Section 3.1.2, when computing degenerate perturbation theory with |n, j,mj; li,
the o↵-diagonal matrix elements vanish. We are left with the shift of the energy eigen-

values given by

(�E2)n,j;l = h�HSOin,j;l

where h�HSOin,j;l = hn, j,mj; l|�HSO|n, j,mj; li.

With �HSO given in (3.10), and �(r) = Ze/4⇡✏0r, the shift of energy levels are

(�E2)n,j;l = � Ze2~2
4.4⇡✏0(mc)2

(
�(l + 1)

l

)⌧
1

r3

�

n,j;l

where, as in (3.13), the upper entry in {·} corresponds to j = l � 1

2
(with l 6= 0) and

the lower entry corresponds to j = l + 1

2
. Note that when l = 0, we have �E2 = 0

because there is no angular momentum for the spin to couple to.

In the previous section, we needed to compute h1/ri and h1/r2i. We see that now

we need to compute h1/r3i. Once again, there is a cute trick. This time, we introduce

a new “radial momentum” observable

p̃ = �i~
✓
@

@r
+

1

r

◆

It’s simple to check that the radial part of the Hamiltonian can be written as

H = � ~2
2m

✓
1

r2
@

@r
r2
@

@r

◆
+

~2l(l + 1)

2mr2
� Ze2

4⇡✏0r

=
p̃2

2m
+

~2l(l + 1)

2mr2
� Ze2

4⇡✏0r

A quick computation shows that

[p̃, H] = �i~
✓
�~2l(l + 1)

mr3
+

Ze2

4⇡✏0r2

◆
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Clearly this commutator doesn’t vanish. However, when evaluated on an energy eigen-

state, we must have h[p̃, H]in,j,l = 0. From our expression above, this tells us that

⌧
1

r3

�

n,j;l

=
Z

a0

1

l(l + 1)

⌧
1

r2

�

n,j;l

=

✓
Z

a0

◆3 1

l(l + 1

2
)(l + 1)

1

n3
(l 6= 0)

where we’ve used our earlier result (3.7) and, as before, a0 = ~/↵mc is the Bohr radius.

Putting this together, and re-writing the resulting expression in terms of j rather than

l, we find that the shift of energy levels due to spin-orbit coupling is

(�E2)n,j;l =
(Z↵)4mc2

4

(
� 1

j+1

1

j

)
1

j + 1

2

1

n3

This is the same order of magnitude as the first fine-structure shift (3.8) which, re-

written in terms of j = l ± 1

2
, becomes

(�E1)n,l = �(Z↵)4mc2

2

 (
1

j+1

1

j

)
� 3

4n

!
1

n3

Combining these results, we get an expression which happily looks the same regardless

of the minus sign in j = l ± 1

2
. It is

(�E1)n,l + (�E2)n,j;l =
(Z↵)4mc2

2

✓
3

4n
� 2

2j + 1

◆
1

n3
(3.14)

where we should remember that for l = 0, (�E2)n,j;l = 0 and we only get the (�E1)n,l
term.

3.1.4 Zitterbewegung and the Darwin Term

There is one final contribution to the fine structure of the hydrogen atom. This one

is somewhat more subtle than the others and a correct derivation really requires us to

use the Dirac equation. Here we give a rather hand-waving explanation.

One of the main lessons from combining quantum mechanics with special relativity is

that particles are not point-like. A particle of mass m has a size given by the Compton

wavelength,

� =
~
mc

For the electron, � ⇡ 3⇥10�11 cm. Roughly speaking, if you look at a distance smaller

than this you will see a swarm of particle and anti-particles and the single particle that

you started with becomes blurred by this surrounding crowd.

– 76 –



Quantum field theory provides the framework to deal with this. However, within the

framework of quantum mechanics it is something that we have to put in by hand. In

this context, it is sometimes called Zitterbewegung, or “trembling motion”. Suppose

that a particle moves in a potential V (r). Then, if the particle sits at position r0, it

will experience the average of the potential in some region which is smeared a distance

⇠ � around r0. To include this, we Taylor expand the potential

V (r) = V (r0) + h�ri · @V
@r

+
1

2
h�ri�rji

@2V

@ri@rj
+ . . .

By rotational symmetry, h�ri = 0. Meanwhile, we take

h�ri�rji =
✓
�

2

◆2

�ij

I don’t have an argument for the factor of 1/2 on the right-hand-side of this expectation

value. You will have to resort to the Dirac equation to see this. This gives a further

contribution to the Hamiltonian, known as the Darwin term

�HDarwin =
~2

8m2c2
r2V (3.15)

For the Coulomb potential, this becomes

�HDarwin =
Z↵~3
8m2c

4⇡�3(r)

However, all wavefunctions with l > 0 are vanishing at the origin and so una↵ected by

the Darwin term. Only those with l = 0, have a correction to their energy given by

(�E3)n,l = h�HDarwinin,l =
Z↵~3⇡
2m2c

| nlm(r = 0)|2

The normalised wavefunction takes the form  nlm(r) = Rnl(r)Ylm(✓,�). For l = 0, we

have Y00 = 1/
p
4⇡ and the radial wavefunction take the form

Rn,l=0(r) = �

s✓
2Z

na0

◆3 (n� 1)!

2n(n!)3
e�r/na0 L1

n(2r/na0)

Now we need to dig out some properties of Laguerre polynomials. We will need the

facts that L1

n(x) = dLn(x)/dx and Ln(x) ⇡ n! � n!nx + O(x2) so that L1

n(0) = n!n.

The wavefunction at the origin then becomes

| n,l=0(0)|2 =
Z3

a3
0
⇡n3

(3.16)

From this we get

(�E3)n,l =
(Z↵)4mc2

2

1

n3
�l0 (3.17)
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A Combined Spin-Orbit-Darwin Term

Our derivation of the spin-orbit term (3.12), including Thomas precession, and the

Darwin term (3.15) was somewhat involved and, at times, a little hand-wavy. In fact,

there’s a simple way to combine these two expressions which, ultimately, fits nicely

with the Dirac equation. We claim that the combined expression for the fine structure

can be written as

�H = �HSO +�HDarwin = � 1

8m2c2
[� · p, [� · p, V (r)]] (3.18)

Here � = (�1, �2, �3) are the three Pauli matrices and are related to the spin operator

by S = 1

2
~�. Note that, other than the usual kinetic energy, the term (3.18) is the only

other term that we can write down that is quadratic in momentum and involves only

the spin matrices S and the potential. The factor of 1/m2c2 is fixed on dimensional

grounds but the overall coe�cient of 1/8 is not: you have to do one of the calculations

above to fix this.

Let’s now show that (3.18) does indeed reproduce the combined spin-orbit and Dar-

win couplings as claimed. Expanding, we have

[� · p, [� · p, V ]] = p2V � V p2 � 2� · pV � · p
= �~2r2V � 4(rV ⇥ p) · S

where, in going to the second line, we’ve used �i�j = �ij + i✏ijk�k, together with the

usual operator expressions p = �i~r and S = 1

2
~�. We recognise the first term as

the Darwin contribution (3.15) (up to an overall constant). For the second term, we

need the fact that V (r) is a central potential, with rV = (dV/dr)r̂. A little algebra

shows that this then coincides with the spin-orbit term (3.12), with L = r⇥p and the

potential energy V related to the electrostatic potential as V = e�. Again, we stress

that we need one of our previous arguments to fix the overall coe�cient of �1/8 in

(3.18), but this form fixes the relative coe�cient between spin-orbit and Darwin.

3.1.5 Finally, Fine-Structure

It’s been quite a long journey. Our fine structure calculations have revealed three

contributions, the first two given by (3.14) and the third by (3.17). Recall that the

spin-orbit coupling in (3.14) gave vanishing contribution when l = 0. Rather curiously,

the Darwin term gives a contribution only when l = 0 which coincides with the formal

answer for the spin-orbit coupling when l = 0, j = 1/2. The upshot of this is that the

answer (3.14) we found before actually holds for all l. In other words, adding all the
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contributions together, (�E)n,j = (�E1)n,l + (�E2)n,j;l + (�E3)n,l, we have our final

result for the fine structure of the hydrogen atom

(�E)n,j =
(Z↵)4mc2

2

✓
3

4n
� 2

2j + 1

◆
1

n3

We learn that the energy splitting depends only on j. This didn’t have to be the case.

There is no symmetry that requires states with j = |l ± 1

2
| to have the same energy.

We refer to this as an accidental degeneracy. Meanwhile, the energy of each state is

independent of the remaining angular momentum quantum number m  l. This is not

accidental: it is guaranteed by rotational invariance.

To describe the states of hydrogen, we use the notation n#j where we replace #

with the letter that denotes the orbital angular momentum l. The ground state is then

1s1/2. This is doubly degenerate as there is no angular momentum, so the spin states

are not split by spin-orbit coupling. The first excited states are 2s1/2 (two spin states)

which is degenerate with 2p1/2 (three angular momentum states). Similarly, as we go

up the spectrum we find that the 3p3/2 and 3d3/2 states are degenerate and so on.

The Result from the Dirac Equation

Our fine structure calculations have all treated relativistic e↵ects perturbatively in

v2/c2. As we explained in Section 3.1.2, for the hydrogen atom this is equivalent to an

expansion in 1/(Z↵)2. In fact, for this problem there is an exact answer. The derivation

of this requires the Dirac equation and is beyond the scope of this course; instead we

simply state the answer. The energy levels of the relativistic hydrogen atom are given

by

En,j = mc2

0

@1 +

0

@ Z↵

n� j � 1

2
+
q

(j + 1

2
)2 � (Z↵)2

1

A
2 1

A

�1/2

(3.19)

Expanding in 1/(Z↵) gives

En,j = mc2
✓
1� (Z↵)2

1

2n2
+ (Z↵)4

✓
3

4n
� 2

2j + 1

◆
1

2n3
+ . . .

◆

The first term is, of course, the rest mass of the electron. The second term is the

usual hydrogen binding energy, while the final term is the fine structure corrections

that we’ve laboriously computed above.
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The Lamb Shift

It turns out that the “exact” result (3.19) is not exact at all! In 1947, Willis Lamb

reported the experimental discovery of a splitting between the 2s1/2 and 2p1/2 states.

For this, he won the 1955 Nobel prize. The e↵ect is now referred to as the Lamb shift.

The Lamb shift cannot be understood using the kind of single-particle quantum

mechanics that we’re discussing in this course. It is caused by quantum fluctuations

of the electromagnetic field and needs the full machinery of quantum field theory,

specifically quantum electrodymamics, or QED for short. Historically the experimental

discovery of the Lamb shift was one of the prime motivations that led people to develop

the framework of quantum field theory.

3.1.6 Hyperfine Structure

Both the fine structure corrections and the QED corrections treat the nucleus of the

atom as a point-like object. This means that, although the corrections are complicated,

the problem always has rotational symmetry.

In reality, however, the nucleus has structure. This structure a↵ects the atomic

energy levels, giving rise to what is called hyperfine structure. There are a number of

di↵erent e↵ects that fall under this heading.

The most important e↵ects come from the magnetic dipole moment of the nucleus.

Each constituent neutron and proton is a fermion, which means that they have an

internal intrinsic spin 1/2. This is described by the quantum operator I. This, in turn,

gives the nucleus a magnetic dipole moment

mN = gN
Ze

2M
I

This takes the same form as (3.9) for the electron magnetic moment. Here M is the

mass of the nucleus while gN is the nucleus gyromagnetic factor.

The Dirac equation predicts that every fundamental fermion has g = 2 (plus some

small corrections). However, neither the proton nor the neutron are fundamental par-

ticles. At a cartoon level, we say that each is made of three smaller particles called

quarks. The reality is much more complicated! Each proton and neutron is made of

many hundreds of quarks and anti-quarks, constantly popping in an out of existence,

bound together by a swarm of further particles called gluons. It is, in short, a mess.

The cartoon picture of each proton and neutron containing three quarks arises because,

at any given time, each contains three more quarks than anti-quarks.
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The fact that the protons and neutrons are not fundamental first reveals itself in

their anomalously large gyromagnetic factors. These are

gproton ⇡ 5.56 and gneutron ⇡ �3.83

The minus sign for the neutron means that a neutron spin precesses in the opposite

direction to a proton spin. Moreover, the spins point in opposite directions in their

ground state.

Now we can describe the ways in which the nuclear structure a↵ects the energy levels

of the atom

• Both the electron and the nucleus carry a magnetic moment. But we know from

our first course on Electromagnetism that there is an interaction between nearby

magnetic moments. This will lead to a coupling of the form I · S between the

nucleus and electron spins.

• The orbital motion of the electron also creates a further magnetic field, parallel

to L. This subsequently interacts with the magnetic moment of the nucleus,

resulting in a coupling of the form I · L.

• The nucleus may have an electric quadrupole moment. This means that the

electron no longer experiences a rotationally invariant potential.

For most purposes, the e↵ects due to the nuclear magnetic moment are much larger

than those due to its electric quadrupole moment. Here we restrict attention to s-wave

states of the electron, so that we only have to worry about the first e↵ect above.

To proceed, we first need a result from classical electromagnetism. A magnetic

moment mN placed at the origin will set up a magnetic field

B =
2µ0

3
mN�

3(0) +
µ0

4⇡r3
(3(mN · r̂)r̂�mN) (3.20)

The second term is the long-distance magnetic field and was derived in Section 3 of

the Electromagnetism lectures. The first term is the magnetic field inside a current

loop, in the limit where the loop shrinks to zero size, keeping the dipole moment fixed.

(It actually follows from one of the problem sheet questions in the Electromagnetism

course.)
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The electron spin interacts with this nuclear magnetic field through the hyperfine

Hamiltonian

�H = �m ·B =
e

m
S ·B

For the s-wave, the contribution from the second term in (3.20) vanishes and we only

have to compute the first term. Writing the magnetic moments in terms of the spin,

and using the expression (3.16) for the s-wave wavefunction at the origin, the hyperfine

Hamiltonian becomes

�H =
2µ0gNZe2

6Mm
| n,l=0(0)|2 S · I

=
4

3

m

M
(Z↵)4mc2

1

n3

1

~2 S · I (3.21)

where, in the second line, we’ve used our previous expression (3.16) for the value of the

wavefunction at the origin, | n,l=0(0)|2 = Z3/a3
0
⇡n3, together with the usual definitions

a0 = ~/↵mc and ↵ = e2/4⇡✏0~c

We see that the hyperfine splitting (3.21) has the same parametric form as the

fine structure, with the exception that it is further suppressed by the ratio of masses

m/M . For hydrogen with Z = 1, we should take M = mp, the proton mass, and

m/mp ⇡ 1/1836. So we expect this splitting to be three orders of magnitude smaller

than the fine structure splitting.

We can evaluate the eigenvalues of the operator S · I in the same way as we dealt

with the spin orbit coupling in Section 3.1.3. We define the total spin as F = S + I.

For hydrogen, where both the electron and proton have spin 1/2, we have

1

~2S · I = 1

2~2
�
F2 � S2 � I2

�
=

1

2

✓
F (F + 1)� 3

2

◆
=

1

2

(
�3

2
F = 0

1

2
F = 1

(3.22)

This gives rise to the splitting between the spin up and spin down states of the electron.

Or, equivalently, between the total spin F = 0 and F = 1 of the atom.

The 21cm Line

The most important application of hyperfine structure is the splitting of the 1s1/2
ground state of hydrogen. As we see from (3.22), the F = 0 spin singlet state has lower

energy than the F = 1 spin state. The energy di↵erence is

�E1s1/2 =
4↵4m2c2

3M
⇡ 9.39⇥ 10�25 J
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This is small. But it’s not that small. The temperature of the cosmic microwave

background is T ⇡ 2.7K which corresponds to an energy of E = kBT ⇡ 3.7⇥10�23 J >

�E1s1/2 . This means that the hydrogen that is spread throughout space, even far from

stars and galaxies, will have its F = 1 states excited by the background thermal bath

of the universe.

When an electron drops from the F = 1 state to the F = 0 state, it emits a photon

with energy �E1s1/2 . This has frequency ⇠ 1400 MHz and wavelength ⇠ 21 cm. This

is important. The wavelength is much longer than the size of dust particles which float

around in space, blocking our view. This means that, in contrast to visible light, the

21cm emission line from hydrogen can pass unimpeded through dust. This makes it

invaluable in astronomy and cosmology.

For example, the hydrogen line allowed us to discover that our home, the Milky way,

is a spiral galaxy. In this case, the velocity of the hydrogen gas in the spiral arms could

be detected by the red-shift of the 21cm line. Similarly, the 21cm line has allowed us

to map the distribution of hydrogen around other

Figure 16:

galaxies. It shows that hydrogen sitting in the out-

skirts of the galaxies is rotating much too fast to be

held in place by the gravity from the visible mat-

ter alone. This is one of the key pieces of evidence

for dark matter. An example from the KAT7 tele-

scope, a precursor to the square kilometer array, is

shown on the right. The green contours depict the

hydrogen, as measured by the 21cm line, stretching

far beyond the visible galaxy.

Looking forwards, there is optimism that the 21cm

line will allow us to see the “dark ages” of cosmol-

ogy, the period several hundreds of millions of years

between when the fireball of the Big Bang cooled and the first stars appeared.

Caesium

Caesium has atomic number 55 and. Its nucleus has spin I = 7/2. The mixing with the

outer electron spin results in a hyperfine splitting of the ground state into two states,

one with F = 3 and the other with F = 4. The frequency of the transition between

these is now used as the definition of a time. A second is defined as 9192631770 cycles

of the hyperfine transition frequency of caesium 133.
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3.1.7 Atoms in an Expanding Universe

After getting our hands dirty understanding some subtleties of atomic spectra, let’s

now waste our time doing something silly but fun..

The universe is expanding. We know this because galaxies get farther apart over time.

But what does this expansion of space do to atoms? Is the electron in a hydrogen atom

getting slowly, but inexorably, dragged away from the proton? The answer, as we shall

see, is no. But there is some interesting, if entirely unobservable, physics involved.

First we need a way to capture the expansion of the universe. Ultimately, this is an

e↵ect that should be described using General Relativity. But it turns out that there

is a simple, Newtonian analog that can be used when the expansion is driven by a

cosmological constant ⇤ which, happily, is the case in our current universe. In this

case, the potential for an electron orbiting a nucleus gets an extra term,

V (r) = �Z↵~c
r

� 1

6
m⇤r2 (3.23)

The cosmological constant acts like an inverted harmonic

Figure 17:

oscillator. It means that, for suitable large distances,

particles get pushed apart from each other, which is the

expected e↵ect of an expanding universe. Note that the

additional term is proportional to m, the mass of the

electron. This is a reflection of the equivalence principle,

which says that gravitational forces are proportional to

the mass of the particle. A derivation of the Newtonian

form of the cosmological constant (3.23) can be found in

the lectures on Cosmology.

The form of this potential is shown in the figure although, as we will soon see, this

is not particularly to scale. Notably, there is a turning point. We’ll be careless with

overall constants and just focus on order of magnitudes. The turning point then sits at

r3? ⇠ Z↵
~
mc

c2

⇤

Besides the dimensionless constant Z↵, there are two di↵erent length scales in this

expression. The first is the Compton wavelengh of the electron,

~
mc

⇡ 10�12 m
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The second is the length scale associated to the expansion of the universe

c2

⇤
⇡ (1027 m)2

The turning point in the potential occurs at an appropriate mean of these two scales,

which turns out to be

r? ⇡ 1014 m

This is about r? ⇡ 0.01 lightyears. It is rather large, at least as far as atoms are

concerned.

Without doing any further calculations, we can see the e↵ect of the expansion of the

universe. Needless to say, for atoms that spread to any distance r ⌧ r?, the expansion

of the universe doesn’t play any role. That’s deeply unsurprising. And, of course, holds

for all actual atoms. But if we take the calculation above seriously, then electron orbits

that extend to r ⇠ r? would be unstable to being ripped apart from by the expansion

of spacetime!

What does this mean for the hydrogen atom? The Bohr radius is a0 ⇡ 5⇥ 10�11 m

and the wavefunction for the nth excited state can be shown to be peaked around a

distance ⇠ n2a0. All of which suggests that the first n ⇡ 1012 excited states still exist,

but after that the electron’s life gets more perilous. (See, I told you that this section

would be slightly silly.)

However, there is another concern. An electron bound state in the potential (3.23)

is always susceptible to tunnelling through the barrier. This would be a quantum

tunnelling e↵ect on cosmological scales and result in the instability of matter. Should

we be worried?

This is the kind of “tunnelling out of a trap” calculation that we did in Section

2.2.5. Following the steps that we took there, we can get an estimate for the lifetime

of hydrogen of the form

⌧ ⇠ ⌧0 e
2S/~

Here ⌧0 is the appropriate atomic time scale. As we saw earlier in this section, the

electron in the ground state has average speed hvi = c↵. It sits at a Bohr a0 = ~/mc↵,

from which we can extract a time scale

⌧0 =
~

mc2↵2
⇠ 2⇥ 10�17 s
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Roughly speaking, this is the time taken for the electron to make a single orbit (ignoring

factors of 2⇡.) That leaves us with the exponential factor that comes from tunnelling.

Recall that the all-important factor of S is the action

S =

Z x1

x0

dr0
p
2m(V (x0)� E)

The potential is given in (3.23). Here we should take E = 1

2
mc2↵2, the ground state

energy of hydrogen. The limits of the integral are taken between x0 ⇡
p
~/mc↵ and

x1 ⇡
p
c2↵2/⇤ which is where the integrand vanishes (and I’m being sloppy about

various factors at this stage). This integral is entirely dominated by the upper limit

and, again ignoring various factors, is given by

S ⇡ mc2↵2

p
⇤

This is the ratio of an atomic scale by a cosmological scale. It’s going to be large.

Indeed, you can check that S/~ ⇡ 1038. We learn that the expected lifetime of a

hydrogen atom, before it is unceremoniously torn apart by the expansion of the universe,

is roughly

⌧ ⇡ e10
38
⌧0

This isn’t something that should keep you awake at night. Indeed, numbers like e10
38

are so ridiculously large that it doesn’t matter what units you measure them in: it’s

more or less the same timescale whether you measure it in Planck units, seconds, or

Hubble times.

3.2 Atomic Structure

In this section, we finally move away from hydrogen and discuss atoms further up the

periodic table. The Hamiltonian for N electrons orbiting a nucleus with atomic number

Z is

H =
NX

i=1

✓
� ~2
2m

r2

i �
Ze2

4⇡✏0

1

ri

◆
+
X

i<j

e2

4⇡✏0

1

|ri � rj|
(3.24)

For a neutral atom, we take N = Z. However, in what follows it will be useful to keep

N and Z independent. For example, this will allows us to describe ions.
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We can, of course, add to this Hamiltonian relativistic fine structure and hyperfine

structure interactions of the kind we described in the previous section. We won’t do this.

As we will see, the Hamiltonian (3.24) will contain more than enough to keep us busy.

Our goal is to find its energy eigenstates. Further, because electrons are fermions, we

should restrict ourselves to wavefunctions which are anti-symmetric under the exchange

of any two electrons.

It is a simple matter to write down the Schrödinger equation describing a general

atom. It is another thing to solve it! No exact solutions of (3.24) are known for

N � 2. Instead, we will look at a number of di↵erent approximation schemes to try

to understand some aspects of atomic structure. We start in this section by making

the drastic assumption that the electrons don’t exert a force on each other. This is

not particularly realistic, but it means that we can neglect the final interaction term

in (3.24). In this case, the Hamiltonian reduces to N copies of

H0 = � ~2
2m

r2 � Ze2

4⇡✏0

1

r

This, of course, is the Hamiltonian for the hydrogen atom, albeit with the proton charge

+e replaced by Ze. And, as reviewed in Section 3.1.1, we know everything about the

solutions with this Hamiltonian.

3.2.1 A Closer Look at the Periodic Table

Ignoring the interaction between electrons gives us an eminently solvable problem. The

only novelty comes from the Pauli exclusion principle which insists that no two electrons

can sit in the same state. The ground state of a multi-electron atom consists of filing

the first Z available single-particle states of the hydrogen atom.

However, as we’ve seen above, there is a large degeneracy of energy levels in the

hydrogen atom. This means that, for general Z, the rule above does not specify a

unique ground state for the atom. Nonetheless, when Z hits certain magic numbers,

there will be a unique ground state. This occurs when there are exactly the right

number of electrons to fill energy levels. Those magic numbers are:

n l Degeneracy N

1 0 2 2

2 0,1 2⇥ (1 + 3) = 8 2 + 8 = 10

3 0,1,2 2⇥ (1 + 3 + 5) = 18 2 + 8 + 18 = 28

4 0,1,2,3 2⇥ (1 + 3 + 5 + 7) = 32 2 + 8 + 18 + 32 = 60
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This simple minded approach suggests that at the magic numbers Z = 2, 10, 28, 60, . . .

the atoms will have a full shell of electrons. If we were to add one more electron it

would have to sit in a higher energy level, so would be less tightly bound. We might,

then, want to predict from our simple minded non-interacting model that atoms with

these special values of Z will be the most chemically stable.

A look at the periodic table shows that

Figure 18:

our prediction is not very impressive! We

learn in school that the most chemically

stable elements are the inert Noble gases

on the far right. We can quantify this by

looking at the ionization energies of atoms

as a function of Z, as shown on the right

which shows that the most stable elements

have Z = 2, 10, 18, 36, 54, 86 and 118.

We see that our non-interacting model

gets the first two numbers right, but after

that it all goes pear shaped. In particular,

we predicted that Z = 28 would be special

but this corresponds to nickel which sits slap in the middle of the transition metals!

Meanwhile, we missed argon, a stable Noble gas with Z = 18. Of course, there’s no

secret about what we did wrong. Our task is to find a way to include the interactions

between electrons to explain why the Noble gases are stable.

Before we return to the Schrödinger equation, we will build some intuition by looking

more closely at the arrangement of electrons that arise in the periodic table. First some

notation. We describe the configuration of electrons by listing the hydrogen orbitals

that are filled, using the notation n#p where # is the letter (s, p, d, f, etc.) denoting

the l quantum number and p is the number of electrons in these states.

The electrons which have the same value of n are said to sit in the same shell.

Electrons that have the same value of n and l are said to sit in the same sub-shell.

Each sub-shell contains 2(l+1) di↵erent states. Electrons which sit in fully filled shells

(or sometimes sub-shells) are said to be part of the core electrons. Those which sit in

partially filled shells are said to form the valence electrons. The valence electrons lie

farthest from the nucleus of the atom and are primarily responsible for its chemical

properties.
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There are only two elements with all electrons lying in the n = 1 shell. These are

hydrogen and helium

Z 1 2

Element H He

Electrons 1s1 1s2

Next, the elements with electrons in the first two shells. These are

Z 3 4 5 6 7 8 9 10

Li Be B C N O F Ne

[He]+ 2s1 2s2 2s22p1 2s22p2 2s22p3 2s22p4 2s22p5 2s22p6

where the notation in the bottom line means that each element has the filled n = 1

shell of helium, together with the extra electrons listed. We see that the atoms seem

to be following a reasonable pattern but, already here, there is a question to answer

that does not follow from our non-interacting picture: why do the electrons prefer to

first fill up the 2s states, followed by the 2p states?

The next set of atoms in the periodic table have electrons in the third shell. They

are

Z 11 12 13 14 15 16 17 18

Na Mg Al Si P S Cl Ar

[Ne]+ 3s1 3s2 3s23p1 3s23p2 3s23p3 3s23p4 3s23p6 3s23p6

where now the electrons fill the 2s22p6 states of neon, together with those listed on the

bottom line. Again, we see that the 3s level fills up before the 3p, something which

we will later need to explain. But now we see that it’s su�cient to fill the 3p states to

give a chemically inert element. This suggests that there is a big energy gap between

between 3p and 3d, again something that is not true in the absence of interactions.

In the next row of elements, we see another surprise. We have

Z 19 20 21 22 . . . 30 31 . . . 36

K Ca Sc Ti . . . Zn Ga . . . Kr

[Ar]+ 4s1 4s2 3d14s2 3d24s2 . . . 3d104s2 3d104s24p1 . . . 3d104s24p6

We see that we fill the 4s states before the 3d states. This is now in direct contradiction

to the non-interacting model, which says that 4s states should have greater energy that

3d states.
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There is a simple rule that chemists employ to
1s

2s

3s

5s

4s

6s

7s

2p

3p

4p

5p

6p

7p

3d

4d

5d

6d

4f

5f

Figure 19: Aufbau

explain the observed structure. It is called the auf-

bau principle and was first suggested by Bohr. It says

that you should write all possible n# energy levels in

a table as shown to the right. The order in which the

energy levels are filled is set by the arrows: first 1s,

followed by 2s, 2p, 3s, and then 3p, 4s, 3d, 4p and so

on. This explains the observed filling above. Our task

in these lectures is to explain where the aufbau prin-

ciple comes from, together with a number of further

rules that chemists invoke to explain the elements.

The aufbau principle also explains why the periodic table needs those two extra lines,

drifting afloat at the bottom: after we fill 6s (Cs and Ba) we move to 4f which has

14 states. These are elements Z = 58 to Z = 71. However, rather annoyingly, the

first element in those bottom two lines in La with Z = 57 and this, it turns out, is an

exception to the aufbau principle, with electron configuration [Xe]5d16s2!

In fact, the “aufbau principle” is more an “aufbau rule of thumb”. As we go to higher

values of Z there are an increasing number of anomalies. Some of these are hidden

in the . . . in the last table above. Vanadium with Z = 23 has electron configuration

[Ar]3d34s2, but it is followed by chromium with Z = 24 which has [Ar]3d54s1. We see

that the 4s state became depopulated, with an extra electron sitting in 3d. By the

time we get to manganese at Z = 26, we’re back to [Ar]3d54s2, but the anomaly occurs

again for copper with Z = 29 which has [Ar]3d104s1. Chemistry, it turns out, is a little

bit messy. Who knew?

Even scandium, with Z = 21, hides a failure of the aufbau principle. At first glance,

it would seem to be a poster child for aufbau, with its configuration [Ar]3d14s2. But if

we strip o↵ an electron to get the ion Sc+, we have [Ar]3d14s1. Stripping o↵ a further

electron, Sc++ has [Ar]3d1. Neither of these follow aufbau. These anomalies only get

worse as we get to higher Z. There are about 20 neutral atoms which have anomalous

fillings and many more ions.

We will not be able to explain all these anomalies here. Indeed, even to derive the

aufbau principle we will have to resort to numerical results at some stage. We will,

however, see that multi-electron atoms are complicated! In fact, it is rather surprising

that they can be accurately described using 1-particle states at all. At the very least you

should be convinced that there need not be a simple rule that governs all of chemistry.
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3.2.2 Helium and the Exchange Energy

We’re going to start by looking at the simplest example of a multi-electron atom:

helium. This will start to give some physical intuition for the aufbau principle. It will

also help reveal the role that the spin of the electron plays in the energy of states.

The Ground State of Helium

We’ve already discussed the ground state of Helium in Section 2.1.2 as an example of

the variational method. Let’s first recap the main results of that analysis.

In the ground state, both electrons sit in the 1s state, so that their spatial wavefunc-

tion takes the form

 (r1, r2) =  1,0,0(r1) 1,0,0(r2) with  1,0,0(r) =

s
Z3

⇡a3
0

e�Zr/a0 (3.25)

Here a0 = 4⇡✏0~2/me2 is the Bohr radius. For helium, we should pick Z = 2.

Since the spatial wavefunction is symmetric under exchange of the particles, we

rely on the spin degrees of freedom to provide the necessary anti-symmetry of the full

wavefunction. The spins must therefore sit in the singlet state

|0, 0i = |" i|# i � |# i|" ip
2

(3.26)

Computing the shift of energy is a simple application of first order perturbation theory.

The interaction Hamiltonian is

Hint =
e2

4⇡✏0

1

|r1 � r2|
(3.27)

and, correspondingly, the shift of the ground state energy is given by

�E =
e2

4⇡✏0

Z
d3r1d

3r2
| 1,0,0(r1)|2| 1,0,0(r2)|2

|r1 � r2|

We showed how to compute this integral in Section 2.1.2 and found �E = 5

4
Z Ry.

This then gives a total ground state energy of E0 ⇡ �74.8 eV which, given the lack of

control of perturbation theory, is surprisingly close to the true value E0 ⇡ �79 eV .
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We also learned in Section 2.1.2 that we can do better using a variational ansatz.

Although we will not employ this technique below, there is a physics lesson that it’s

useful to highlight. In the variational method, we again work with the form of the

wavefunction (3.25), but this time allow the atomic number Z of the nucleus to be

our variational parameter. We found that we can achieve a lower ground state energy,

E0 ⇡ �77.5 eV — one which is closer to the true value — if instead of setting Z = 2

in the wavefunction, we take

Z = 2� 5

16

There is some physical intuition behind this result. Each electron sees the charge Z = 2

of the nucleus reduced somewhat by the presence of the other electron. This is called

screening and it is the basic phenomenon which, ultimately, underlies much of the

physics of atomic structure.

Excited States of Helium

Let’s now extend our discussion to the first excited state of helium. From our non-

interacting model, there are two possibilities which, as far as non-interacting electrons

are concerned, are degenerate. These are 1s12s1 and 1s12p1. We would like to under-

stand which of these has lowest energy.

In fact, there is a further splitting of each of these states due to the spin-degrees of

freedom. To understand this splitting, we need to recall the following:

• The Hamiltonian is blind to the spin degrees of freedom. This means that the

wavefunction takes the form of a tensor product of a spatial state with a spin

state.

• Electrons are fermions. This means that the overall wavefunction must be anti-

symmetric under exchange of the two particles.

There are two ways to achieve the anti-symmetry: we either make the spatial wave-

function symmetric and the spin wavefunction anti-symmetric, or vice versa. The two

possibilities for the spatial wavefunction are

 ab±(r1, r2) =
1p
2
( a(r1) b(r2)±  a(r2) b(r1))

where we’re using the notation a, b to denote the triplet of quantum numbers of (n, l,m).

For the first excited states, we should take a = (1, 0, 0). Then b = (2, 0, 0) for the 1s12s1

state and b = (2, 1,m) for the triplet of 1s12p1 states, with m = �1, 0, 1
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The symmetric wavefunctions  ab,+ must be combined with the anti-symmetric spin-

singlet (3.26) which we write as

|ab; s = 0i =  ab,+(r1, r2)⌦ |0, 0i (3.28)

where |0, 0i is the spin singlet state defined in (3.26). Note that we shouldn’t confuse

the s = 0 spin with the label “s” used to denote the l = 0 atomic orbital. They are

di↵erent! Also, I’ve been a bit lax about my notation for wavefunctions: the expression

above should really read |ab; s = 0i = | ab,+i ⌦ |0, 0i where the fermionic two-particle

state | +i has overlap  ab,+(r1, r2) = hr1, r2| ab,+i with the position basis of two-

particle states |r1, r2i. This, more precise, notation turns out to be somewhat more

cumbersome for our needs.

Similarly, the anti-symmetric wavefunction must be paired with the symmetric spin

states. There is a triplet of such states, |s = 1;msi,

|1, 1i = |" i|" i , |1, 0i = |" i|# i+ |# i|" ip
2

, |1,�1i = |# i|# i (3.29)

The total wavefunctions are again anti-symmetric,

|ab; s = 1i =  ab�(r1, r2)⌦ |1,msi ms = �1, 0, 1 (3.30)

For both ab,+ and ab,� we take a to be the 1s state and b to be either the 2s or 2p state.

The upshot of this analysis is that there are 4 possible 1s12s1 states: a spin-singlet and

a spin-triplet. There are 12 possible 1s12p1 states: 3 spin-singlets and 9 spin-triplets,

the extra factor of 3 coming from the orbital angular momentum m = �1, 0, 1. Notice

how fast the number of states grows, even for the simplest multi-electron atom! For

the first excited state, we already have 16 options. This fast growth in the dimension

of the Hilbert space is one of the characteristics of quantum mechanics.

Fortunately, we don’t have to do degenerate perturbation theory with 16 ⇥ 16 di-

mensional matrices! The matrix elements of the interaction Hamiltonian (3.27) are

already diagonal in the basis |ab; si that we’ve described above already. This follows

on symmetry grounds. The interaction Hamiltonian preserves rotational invariance, so

the total orbital angular momentum must remain a good quantum number. Further,

it doesn’t mix spin states and h0, 0|1,mi = 0. This means that the states (3.28) and

(3.30) are guaranteed to be energy eigenstates, at least to first order in perturbation

theory.

In summary, we are looking for four energy levels, corresponding to the states

|1s12s1; si and |1s12p1; si where s = 0 or 1. The question we would like to ask is:

what is the ordering of these states?
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We can make some progress with this question without doing any calculations. The

interaction Hamiltonian (3.27) is a repulsive potential between the electrons. Clearly

the states with lowest energy will be those where the electrons try to stay apart from

each other. But the anti-symmetric wavefunction  ab� has the property that it vanishes

when r1 = r2 and the electrons sit on top of each other. This strongly suggests that

 ab� will have lower energy than  ab+ and, correspondingly, the spin-triplet versions

of a state will have lower energy than the spin-singlets.

We can see this mathematically. The energy splitting is

�Eab± =
1

4⇡✏0

Z
d3r1d

3r2
| ab±(r1, r2)|2

|r1 � r2|
= Jab ±Kab

where Jab is given by

Jab =
1

4⇡✏0

Z
d3r1d

3r2
1

2

| a(r1) b(r2)|2 + | a(r2) b(r1)|2
|r1 � r2|

=
1

4⇡✏0

Z
d3r1d

3r2
| a(r1) b(r2)|2

|r1 � r2|
(3.31)

where the second line follows because the integrand is symmetric under exchange r1 $
r2. Meanwhile, we have

Kab =
1

4⇡✏0

Z
d3r1d

3r2
1

2

 ?
a(r1) 

?
b (r2) a(r2) b(r1) +  ?

a(r2) 
?
b (r1) a(r1) b(r2)

|r1 � r2|

=
1

4⇡✏0

Z
d3r1d

3r2
 ?
a(r1) 

?
b (r2) a(r2) b(r1)

|r1 � r2|
(3.32)

The contribution Jab is called the direct integral; Kab is called the exchange integral or,

sometimes, the exchange energy. Note that it involves an integral over the position of

the particle r1, weighted with both possible states  a(r1) and  b(r1) that the electron

can sit in.

Both Jab and Kab are positive definite. This is not obvious for Kab, but is intuitively

true because the integral is dominated by the region r1 ⇡ r2 where the numerator is

approximately | a(r)|2| b(r)|2. Since the shift in energy is �Eab± = Jab ±Kab we see

that, as expected, the spin-triplet states with spatial anti-symmetry have lower energy.

We’ve learned that each of the spin-triplet states is lower than its spin-singlet

counterpart. But what of the ordering of 1s12s1 vs 1s12p1? For this, we have to do the

integrals J and K. One finds that the pair of 2s energy levels have lower energy than

the pair of 2p energy levels. This, of course, is the beginning of the aufbau principle:

the 2s levels fill up before the 2p levels. The resulting energy levels are shown in the

diagram.
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Taken literally, our calculation sug-

Unperturbed

1s2s

1s2p

J2s

J2p

2K

2K
p

p

1

3

s

s

1

3

2p

2s

Figure 20:

gests that the 2s state has lower energy be-

cause it does a better job at avoiding the

original 1s electron. This is misleading:

it’s more an artefact of our (not particu-

larly good) perturbative approach to the

problem, rather than a way to good de-

scription of the underlying physics. One

could do a better job by introducing vari-

ational wavefunctions, similar to those we

looked at for the ground state. This ap-

proach would highlight the reason why states

of higher l have higher energy. This reason

is screening.

As we’ve seen, excited states of helium sit in both spin-singlets and spin-triplets.

Parity means that transitions between these two states can only occur through the

emission of two photons which makes these transitions much rarer. The lifetime of the

1s2s state turns out to be around 2.2 hours. This is very long on atomic timescales;

indeed, it is the longest lived of all excited states of neutral atoms. It is said to be

meta-stable. Before these transitions were observed, it was thought that there were two

di↵erent kinds of helium atoms: those corresponding to spin-singlet states and those

corresponding to spin-triplets. Historically the spin-singlet states were referred to as

parahelium, the spin-triplet states as orthohelium.

The punchline from the story above is that spatially anti-symmetric wavefunctions

are preferred since these come with a negative exchange energy. The fermionic nature

of electrons means that these wavefunctions sit in a spin-triplet states. This fact plays

an important role in many contexts beyond atomic physics. For example, the spins in

solids often have a tendency to align, a phenomenon known as ferromagnetism. This

too can be traced to the exchange integral for the Coulomb repulsion between atoms

preferring the spins to sit in a triplet state. This results in the kind of S1 · S2 spin-

spin interaction that we met in the Statistical Physics course when discussing the Ising

model.

3.2.3 An Instability of (Very) Large Nuclei

The periodic table doesn’t go on for ever. The heaviest, stable element is Bismuth-209

with Z = 83. There are heavier elements with long lifetimes, such as Uranium-238

with Z = 92 which has a half-life of around 4.5 billion years. But as you continue to go
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up in atomic number, the half-lifes become much shorter. The heaviest elements with

Z = 117 and Z = 118 have to be created artificially and have a half-life measured in

milliseconds.

This instability arises because the repulsive Coulomb force between protons defeats

the attractive, but short-ranged, interaction of the strong nuclear force. The full details

are complicated and clearly need an understanding of the strong nuclear force.

However, there is another instability of heavy, charged nuclei that involves only

electromagnetism and is very easy to see. This follows simply from the binding energy

(3.3) of an electron with the nucleus,

E1 = �(Z↵)2mc2

2
where ↵ =

e2

4⇡✏0~c
⇡ 1

137

If this binding energy is su�ciently large, then it’s energetically preferable to produce

an electron-positron pair out of the vacuum. Of course, this costs a significant amount

of energy: it’s Epair = 2mc2, where the factor of two is there because both the electron

and positron must be created. But the electron can then be captured by the nucleus,

saving E1 of energy. (Admittedly, we are assuming that the nucleus has been stripped

of orbiting electrons here so the lowest slot is not already taken.) The end result would

be that the nucleus spits out a positron, collecting a tightly-bound electron. This whole

process is energetically preferable if

E1 + Epair < 0 ) Z >
2

↵
The factor of 2, means that this particular instability only kicks in when Z ⇡ 280 which

means that it’s not the mechanism that destabilises the heavy elements in the periodic

table.

3.3 Self-Consistent Field Method

As we’ve seen from our attempts to understand helium, a naive application of pertur-

bation theory is not particularly e↵ective. Not only does it become complicated as the

number of possible states grows, but it also fails to capture the key physics of screening.

In this section, we will develop a variational approach to multi-electron atoms where,

as we will see, the concept of screening sits centre stage. The idea is to attempt to reduce

our multi-particle problem to a single-particle problem. But we don’t do this merely

by ignoring the e↵ects of the other particles; instead we will alter our Hamiltonian in

a way that takes these other particles into account. This method is rather similar to

the mean field theory approach that we met in Statistical Physics; in both cases, one

averages over many particles to find an e↵ective theory for a single particle.
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3.3.1 The Hartree Method

We start by considering a variational ansatz for the multi-particle wavefunction. For

now, we will forget that the electrons are fermions. This means that we won’t im-

pose the requirement that the wavefunction is anti-symmetric under the exchange of

particles, nor will we include the spin degrees of freedom. Obviously, this is missing

something important but it will allow us to highlight the underlying physics. We will

fix this oversight in Section 3.3.3 when we discuss the Hartree-Fock method.

We pretend that the electrons are independent and take as our ansatz the product

wavefunction

 (r1, . . . , rN) =  a1(r1) a2(r2) . . . aN (rN) (3.33)

Here the labels ai denote various quantum numbers of the one-particle states. We

will ultimately see that the states  a(r) are eigenstates of a rotationally invariant

Hamiltonian, albeit one which is di↵erent from the hydrogen Hamiltonian. This means

that we can label each state by the usual quantum numbers

a = (n, l,m)

Although we haven’t imposed anti-symmetry of the wavefunction, we do get to choose

these quantum numbers for the states. This means that we can, for example, use this

ansatz to look at the 3-particle states that lie in the shell 1s22s1 as an approximation

for the ground state of lithium.

We will view (3.33) as a very general variational ansatz, where we get to pick anything

we like for each  a(r). We should compare this to the kind of variational ansatz (3.25)

where we allowed only a single parameter Z to vary. For the Hartree ansatz, we have

an infinite number of variational parameters.

The multi-electron Hamiltonian is

H =
NX

i=1

✓
� ~2
2m

r2

i �
Ze2

4⇡✏0

1

ri

◆
+
X

i<j

e2

4⇡✏0

1

|ri � rj|

Evaluated on our ansatz (3.33), the average energy is

hEi =
NX

i=1

Z
d3r  ?

ai(r)

✓
� ~2
2m

r2 � Ze2

4⇡✏0

1

r

◆
 ai(r)

+
e2

4⇡✏0

X

i<j

Z
d3r d3r0

 ?
ai(r) 

?
aj(r

0) ai(r) aj(r
0)

|r� r0| (3.34)
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The last term is an example of the kind of “direct integral” (3.31) that we met when

discussing helium.

To find the best approximation to the ground state within the product ansatz (3.33),

we minimize hEi over all possible states. However, there’s a catch: the states  a(r)

must remain normalised. This is easily achieved by introducing Lagrange multipliers.

To this end, consider the functional

F [ ] = hEi �
X

i

✏i

✓Z
d3r | ai(r)|2 � 1

◆

with ✏i the N Lagrange multipliers imposing the normalisation condition.

Because the wavefunction is complex, we can vary its real and imaginary parts in-

dependently. Since we have N independent wavefunctions, this gives rise to 2N real

conditions. It’s not too hard to convince yourself that this is formally equivalent to the

treating  (r) and  ?(r) as independent and varying each of them, leaving the other

fixed. Minimizing F [ ] then requires us to solve

�F [ ]

� ?
ai(r)

= 0 and
�F [ ]

� ai(r)
= 0

The first of these is N complex conditions, while the second is simply the conjugate of

the first. These N complex conditions are called the Hartree equations,

"
� ~2
2m

r2 � Ze2

4⇡✏0

1

r
+

e2

4⇡✏0

X

j 6=i

Z
d3r0

| aj(r
0)|2

|r� r0|

#
 ai(r) = ✏i ai(r) (3.35)

These equations look tantalisingly similar to the Schrödinger equation. The only dif-

ference — and it is a big di↵erence — is that the e↵ective potential for  ai(r) depends

on the wavefunctions for all the other electrons, through the contribution

Uai(r) =
e2

4⇡✏0

X

j 6=i

Z
d3r0

| aj(r
0)|2

|r� r0| (3.36)

Physically this is clear: the potential Uai(r) is the electrostatic repulsion due to all the

other electrons. Note that each electron experiences a di↵erent e↵ective Hamiltonian,

with a di↵erent Uai(r). The catch is that each of the  aj(r) that appears in the potential

U(r) is also determined by one of the Hartree equations.
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The Hartree equations (3.35) are not easy to solve. They are N coupled non-linear

integro-di↵erential equations. We see that there’s a certain circularity needed to get to

the solution: the potentials Uai(r) determine the wavefunctions but are also determined

by the wavefunctions. In this sense, the ultimate solution for Uai(r) is said to be “self-

consistent”.

The usual techniques that we use for the Schrödinger equation do not work for the

Hartree equations. Instead, we usually proceed iteratively. We start by guessing a

form for the potentials Uai(r) which we think is physically realistic. Often this involves

making the further approximation that U(r) is spherically symmetric, so we replace

Uai(r) ! Uai(r) =

Z
d⌦

4⇡
Uai(r)

Then, with this potential in hand, we solve the Schrödinger equations


� ~2
2m

r2 � Ze2

4⇡✏0

1

r
+ Uai(r)

�
 ai(r) = ✏i ai(r) (3.37)

This can be done numerically. We then substitute the resulting wavefunctions back

into the definition of the potential (3.36) and then play the whole game again. If we

chose a good starting point, this whole process will begin to converge.

Suppose that we’ve done all of this. What is the answer for the ground state energy of

the atom? From (3.35), the Lagrange multipliers ✏i look like the energies of individual

particles. We can write

✏i =

Z
d3r  ?

ai(r)

"
� ~2
2m

r2 � Ze2

4⇡✏0

1

r
+

e2

4⇡✏0

X

j 6=i

Z
d3r0

| aj(r
0)|2

|r� r0|

#
 ai(r)

Summing these gives an expression that is almost the same as the expected energy

(3.34), except that the sum
P

i

P
j 6=i is twice the sum

P
i<j. Then, evaluated on the

solutions to the Hartree equations, the energy given by

hEi =
X

i

✏i �
e2

4⇡✏0

X

j 6=i

Z
d3r d3r0

| aj(r
0)|2| ai(r)|2

|r� r0|

By the usual variational arguments, this gives an upper bound for the ground state

energy.
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An Example: Potassium

We won’t describe in detail the numerical solutions to the Hartree equations (nor to

the more sophisticated Hartree-Fock equations that we will meet shortly). We can,

however, use this approach to o↵er some hand-waving intuition for one of the more

surprising features of the aufbau principle: why does the 4s state fill up before the 3d

state?

This question first arises in potassium, an alkali metal with electron configuration

1s22s22p63s23p64s1. Why is the last electron in 4s rather than 3d as the non-interacting

picture of electrons would suggest?

In the Hartree approach, we see that the electron experiences an e↵ective potential

with Schrödinger equation (3.37). The key piece of physics that determines U(r) is,

once again, screening. When the electron is far away, the nuclear charge Ze is expected

to be almost entirely screened by the other Z � 1 electrons. In contrast, when the

electron is close to the nucleus, we expect that it feels the full force of the Ze charge.

On these grounds, the total e↵ective potential should be

� Ze2

4⇡✏0r
+ U(r) = �Z(r)e2

4⇡✏0r

where Z(r) is some function which interpolates between Z(r) ! Z as r ! 0 and

Z(r) ! 1 as r ! 1.

We should now solve the Schrödinger equation with this potential. All quantum

states are labelled by the usual triplet (n, l,m), but as the potential is no longer simply

1/r the energy levels will depend on both n and l. The basic physics is the same as

we described for the excited states of helium. The l = 0 s-wave states extend to the

origin which causes their energy to be lower. In contrast, the higher l states experience

an angular momentum barrier which keeps them away from the origin and raises their

energy. This explains why 3s fills up before 3p. But this same screening e↵ect also

lowers the 4s states below that of 3d.

3.3.2 The Slater Determinant

The Hartree ansatz (3.33) is not anti-symmetric under the exchange of particles. As

such, it is not a physical wavefunction in the Hilbert space of fermions. We would like

to remedy this.
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Our task is a simple one: given a collection of 1-particle states, how do we construct

a multi-particle wavefunction for fermions that are anti-symmetric under the exchange

of any pair of particles? This general question arises in many contexts beyond the

spectrum of atoms.

We will use the notation | i(j)i to mean the particle j occupies the one-particle state

| ii. Then we can build a suitably anti-symmetrised N -particle wavefunction by using

the Slater determinant,

| i = 1p
N !

�����������

| 1(1)i | 1(2)i . . . | 1(N)i
| 2(1)i | 2(2)i . . . | 2(N)i

...
. . .

| N(1)i | N(2)i . . . | N(N)i

�����������

Expanding out the determinant gives N ! terms that come with plus and minus signs.

The overall factor of 1/
p
N ! ensures that the resulting state is normalised. The plus

and minus signs provide the anti-symmetry that we need for fermions. In fact, we

can see this quickly without expanding out: swapping the first and second particle is

tantamount to swapping the first and second rows of the matrix. But we know that

this changes the determinant by a minus sign. In particular, if two particles sit in the

same state then the rows of the matrix become linearly dependent and the determinant

vanishes. In this way, the Slater determinant enforces the Pauli exclusion principle.

One can build the Slater determinant for any states | ii which span anN -dimensional

Hilbert space. It will be convenient to choose the states | ii to form an orthogonal

basis.

An Example: Helium

For helium, we take the set of one-particle states to be the hydrogen wavefunctions for

Z = 2, so | ai =  (n,l,m)(r)⌦ |msi where the spin quantum number ms = ±1

2
is usually

replaced by the notation |1
2
i = |" i and |�1

2
i = |# i.

For the ground state we place both particles in the 1s state with di↵erent spins. The

corresponding Slater determinant is

1p
2

�����
 1s(r1)⌦ |" i  1s(r2)⌦ |" i
 1s(r1)⌦ |# i  1s(r2)⌦ |# i

����� =  1s(r1) 1s(r2)⌦ |0, 0i

where |0, 0i is the spin-singlet state (3.26). This is the ground state of helium that we

used previously.
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When particles sit in di↵erent hydrogenic states, there are more possibilities for the

Slater determinant. For example, for the 1s12s1 excited state, there are four Slater

determinants. Two of these sit in spin eigenstates

1p
2

�����
 1s(r1)⌦ |" i  1s(r2)⌦ |" i
 2s(r1)⌦ |" i  2s(r2)⌦ |" i

����� =  �(r1, r2)⌦ |1, 1i

1p
2

�����
 1s(r1)⌦ |# i  1s(r2)⌦ |# i
 2s(r1)⌦ |# i  2s(r2)⌦ |# i

����� =  �(r1, r2)⌦ |1,�1i

where  ±(r1, r2) =
1
p
2
( 1s(r1) 2s(r2) ±  1s(r2) 2s(r1)) and |1,mi are the spin-triplet

states (3.29). Meanwhile, the other Slater determinants are

1p
2

�����
 1s(r1)⌦ |" i  1s(r2)⌦ |" i
 2s(r1)⌦ |# i  2s(r2)⌦ |# i

����� =
1p
2
( +(r1, r2)⌦ |0, 0i+ �(r1, r2)⌦ |1, 0i)

1p
2

�����
 1s(r1)⌦ |# i  1s(r2)⌦ |# i
 2s(r1)⌦ |" i  2s(r2)⌦ |" i

����� =
1p
2
( +(r1, r2)⌦ |0, 0i � �(r1, r2)⌦ |1, 0i)

We see that the Slater determinants do not necessarily give spin eigenstates.

This is one of the short-comings of the Slater determinant. In general, one can show

that the state | i can always be guaranteed to be an eigenstate of angular momentum

Lz and spin Sz. But it is not always an eigenstate of L2 and S2.

3.3.3 The Hartree-Fock Method

The Hartree-Fock method is a repeat of the Hartree method, but now with the fully

anti-symmetrised wavefunction

| i = 1p
N !

�����������

| a1(1)i | a1(2)i . . . | a1(N)i
| a2(1)i | a2(2)i . . . | a2(N)i

...
. . .

| aN (1)i | aN (2)i . . . | aN (N)i

�����������

(3.38)

Further, we will take the quantum numbers ai to include both the (n, l,m) information

about the orbital angular momentum state, as well as the spin degrees of freedom of

the electron. (Had we included spin in the original Hartree ansatz, it simply would

have dropped out of the final answer; but now that we have anti-symmetry the spin

wavefunctions are correlated with the spatial wavefunctions.)
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Repeating the Hartree story, we find that the average energy in the state | i contains
one extra term

hEi =
NX

i=1

Z
d3r  ?

ai(r)

✓
� ~2
2m

r2 � Ze2

4⇡✏0

1

r

◆
 ai(r)

+
e2

4⇡✏0

X

i<j

Z
d3r d3r0

 ?
ai(r) 

?
aj(r

0) ai(r) aj(r
0)

|r� r0|

� e2

4⇡✏0

X

i<j

Z
d3r d3r0

 ?
ai(r) 

?
aj(r

0) ai(r
0) aj(r) �msi,msj

|r� r0|

The last term is an exchange integral of the kind we met when discussing the helium

atom (3.32). The delta function ensures that it only contributes if the ai and aj spin

states coincide.

While the direct integral clearly captures the electrostatic repulsion between elec-

trons, it is somewhat harder to drape comforting classical words around the exchange

term. It is a purely quantum e↵ect arising from the Pauli exclusion principle. Nonethe-

less, we can extract some physics from it, in particular from the fact that the delta

function means that the exchange term lowers the energy only when spins are aligned.

This means that, all else being equal, the spins will wish to align. This is the first of

three Hund’s rules. (The other two describe the preferential order to fill degenerate

states with quantum numbers L and J = L + S; we won’t discuss these second two

rules in these lectures.)

In practice, this does nothing for a filled shell. In this case, half the electrons have spin

up and the other half spin down. However, when we start to fill a shell, the exchange

term means that it’s preferable for all the spins to point in the same direction. This

suggests that half-filled shells should be particularly stable and the next electron to

go in after half-filling should have a noticeably larger energy and so the atom will,

correspondingly, have a smaller ionization energy.

We can see evidence for this by looking again at the ionization data. The ionization

energy does not increase monotonically between Li and Ne: there are two glitches. The

first of these is the jump from beryllium (2s2) to boron (2s22p1) where we jump to

another shell. The other is the jump from nitrogen (1s22s22p3) to oxygen (1s22s22p4).

Nitrogen has a half-filled 2p sub-shell, where all three electrons have spin up to benefit

from the exchange energy. But for oxygen one electron is spin down, and the benefit

from the exchange energy is less. This means that the next electron costs higher

energy and, correspondingly, the ionization energy is smaller. The same behaviour is
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Figure 21: Ionization data again.

seen to disrupt the linear growth between Na and Ar. The two glitches occur between

manganese ([Ne]3s2) and aluminium ([Ne]3s23p1) where we jump to the next shell, and

between phosphorus ([Ne]3s23p3) to sulphur ([Ne]3s23p3) where we cross the half-filled

sub-shell.

The exchange energy also lies behind one of the exceptions to the aufbau principle.

Recall that chromium has electron configuration [Ar]3d54s1 as opposed to the aufbau-

predicted [Ar]3d44s2. The former configuration has lower energy because it allows all

spins to point up and so benefits more from the exchange term.

Minimising the energy hEi gives us N coupled equations


� ~2
2m

r2 � Ze2

4⇡✏0

1

r
+ U(r)

�
 ai(r)�

Z
d3r0 U ex

ai (r, r
0) ai(r

0) = ✏i ai(r) (3.39)

where U(r) is given by

U(r) =
e2

4⇡✏0

NX

j=1

Z
d3r0

| aj(r
0)|2

|r� r0|

This di↵ers from the Hartree expression (3.36) because we sum over all states
P

j rather

than
P

j 6=i. This is a simplification because it means that all electrons feel the same

potential. However, it is also puzzling because it would appear to suggest that we need

to include a “self-interaction” between the electrons. But this i = j term is an artefact

of the way we’ve written things: it cancels the corresponding term in the exchange
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integral, which is given by

U ex

ai (r, r
0) =

e2

4⇡✏0

NX

j=1

Z
d3r0

 ?
aj(r

0) aj(r)

|r� r0| �msi,msj

This is sometimes referred to as a non-local potential. This term does depend on

the state ai, but only through the spin dependence. This means that each electron

experiences one of two di↵erent exchange potentials, U ex

"
or U ex

#
.

The set of equations (3.39) are known as the Hartree-Fock equations. It should come

as no surprise to learn that they are no easier to solve than the Hartree equations.

Indeed, the presence of the exchange term makes even numerical solutions considerably

harder to come by. Nonetheless, this scheme has some success in reproducing the

properties of atoms observed in the periodic table, in particular the aufbau principle.

Limitations of Hartree-Fock

We finish with a warning. Throughout this section, we’ve used the language of one-

particle states to describe atoms. Indeed, the basic idea that we’ve focussed on is

that atoms are made by filling successive shells of states. This is something that is

often taught in high school and, over time, becomes so familiar that we don’t question

it. The Hartree-Fock method panders to this idea because it looks for states within

the anti-symmetrised product ansatz (3.38). However, the vast majority of states in

the Hilbert space are not of the product form and, for complicated atoms, it’s quite

possible, indeed likely, that the true ground state is a superposition of such states. In

this case the very language of filing shells become inappropriate since there’s no way

to say that any electron sits in a given state.
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