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Recommended Books and Resources

There are many good books on quantum mechanics. Here’s a selection that I like:

• Griffiths, Introduction to Quantum Mechanics

An excellent way to ease yourself into quantum mechanics, with uniformly clear expla-

nations. For this course, it covers both approximation methods and scattering.

• Shankar, Principles of Quantum Mechanics

• James Binney and David Skinner, The Physics of Quantum Mechanics

• Weinberg, Lectures on Quantum Mechanics

These are all good books, giving plenty of detail and covering more advanced topics.

Shankar is expansive, Binney and Skinner clear and concise. Weinberg likes his own

notation more than you will like his notation, but it’s worth persevering.

• John Preskill, Course on Quantum Computation

Preskill’s online lecture course has become the default resource for topics on quantum

foundations.

A number of lecture notes are available on the web. Links can be found on the course

webpage: http://www.damtp.cam.ac.uk/user/tong/topicsinqm.html
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0. Introduction

“The true meaning of quantum mechanics can be found in the answers it

gives about the world we inhabit.”

Me, in a previous set of lecture notes.

Our previous courses on quantum mechanics were largely focussed on understanding

the mathematical formalism of the subject. The purpose of this course is to put this

understanding to use.

The applications of quantum mechanics are many and varied, and vast swathes of

modern physics fall under this rubric. Many of these applications naturally fall into

different lectures, such as Solid State Physics or Statistical Physics or, if we include

relativity into the mix, Particle Physics and Quantum Field Theory. In these lectures

we cover a number of topics that didn’t have such a natural home. This means that

we’re left with something of a mishmash of topics.

The first two chapters describe tools that are useful in the study of many different

quantum system: they cover the role of discrete symmetries in quantum mechanics,

and the use of approximation methods to solve quantum systems. Subsequent chapters

are more focussed on specific quantum systems.

We devote a significant amount of time to atomic physics. Current research in atomic

physics is largely devoted to exquisitely precise manipulation of cold atoms, bending

them to our will. Here, our focus is more old-fashioned and we look only at the

foundations of the subject, including the detailed spectrum of the hydrogen atom, and

a few tentative steps towards understanding the structure of many-electron atoms. We

also describe the various responses of atoms to electromagnetic prodding.

We devote one chapter of these notes to revisiting some of the foundational aspects

of quantum mechanics, starting with the important role played by entanglement as a

way to distinguish between a quantum and classical world. We will provide a more

general view of the basic ideas of states and measurements, as well as an introduction

to the quantum mechanics of open systems.

The final topic scattering theory. In the past century, physicists have developed a

foolproof and powerful method to understand everything and anything: you take the

object that you’re interested in and you throw something at it. This technique was

pioneered by Rutherford who used it to understand the structure of the atom. It was

used by Franklin, Crick and Watson to understand the structure of DNA. And, more
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recently, it was used at the LHC to demonstrate the existence of the Higgs boson. In

fact, throwing stuff at other stuff is the single most important experimental method

known to science. It underlies much of what we know about condensed matter physics

and all of what we know about high-energy physics.

In many ways, these lectures are where theoretical physics starts to fracture into

separate sub-disciplines. Yet areas of physics which study systems separated by orders

of magnitude — from the big bang, to stars, to materials, to information, to atoms and

beyond — all rest on a common language and background. These lectures build this

shared base of knowledge.
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1. Discrete Symmetries

In this section, we discuss the implementation of discrete symmetries in quantum me-

chanics. Our symmetries of choice are parity, a spatial reflection, and time reversal.

1.1 Parity

A cartoon picture of parity is to take a state and turn it into its image as seen in a

mirror. This is best viewed as an action on space itself. In three spatial dimensions,

we usually take parity to act as

P : x 7→ −x (1.1)

More generally, in d spatial dimensions the parity operator is a linear map on the d

spatial coordinates such that P ∈ O(d) and det P = −1. This means, in particular,

that the definition (1.1) is good whenever d is odd, but not good when d is even where

it coincides with a rotation. A definition which works in all dimensions is simply

P : x1 7→ −x1 and P : xi 7→ xi for all i ̸= 1, which differs from (1.1) by a spatial

rotation.

Here we will restrict attention to d = 1 and d = 3, where the definition (1.1) is the

standard one. We can use this to tell us how the classical state of a particle changes.

Recall that, classically, the state of a particle is defined by a point (x,p) in phase space.

Since p = mẋ, parity must act as

P : (x,p) 7→ (−x,−p) (1.2)

Here our interest lies in quantum mechanics so we want to introduce a parity operator

which acts on the Hilbert space. We call this operator π. It is natural to define π by

its action on the position basis,

π|x⟩ = |−x⟩ (1.3)

This means that, when acting on wavefunctions,

π : ψ(x) 7→ ψ(−x)

Note that, in contrast to continuous symmetries, there is no one-parameter family of

transformations. You don’t get to act by a little bit of parity: you either do it or

you don’t. Recall that for continuous symmetries, the action on the Hilbert space is

implemented by a unitary operator U while its infinitesimal form U ≈ 1 + iϵT (with ϵ
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small) yields the Hermitian operator T called the “generator”. In contrast, the parity

operator π is both unitary and Hermitian. This follows from

π†π = 1 and π2 = 1 ⇒ π = π† = π−1 (1.4)

Given the action of parity on the classical state (1.2), we should now derive how it acts

on any other states, for example the momentum basis |p⟩. It’s not difficult to check

that (1.3) implies

π|p⟩ = |−p⟩

as we might expect from our classical intuition. This essentially follows because p =

−iℏ∂/∂x in the position representation. Alternatively, you can see it from the form of

the plane waves.

The Action of Parity on Operators

We can also define the parity operator by its action on the operators. From our dis-

cussion above, we have

πxπ† = −x and πpπ† = −p

Using this, together with (1.4), we can deduce the action of parity on the angular

momentum operator L = x× p,

πLπ† = +L (1.5)

We can also ask how parity acts on the spin operator S. Because this is another form

of angular momentum, we take

πSπ† = +S (1.6)

This ensures that the total angular momentum J = L+S also transforms as πJπ† = +J.

In general, an object V which transforms under both rotations and parity in the

same way as x, so that πVπ† = −V, is called a vector. (You may have heard this

name before!) In contrast, an object like angular momentum which rotates like x but

transforms under parity as πVπ = +V is called a pseudo-vector.

Similarly, an object K which is invariant under both rotations and parity, so that

πKπ† = K is called a scalar. However, if it is invariant under rotations but odd under

parity, so πKπ† = −K, is called a pseudo-scalar. An example of a pseudo-scalar in

quantum mechanics is p · S.
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Although we’ve introduced these ideas in the context of quantum mechanics, they

really descend from classical mechanics. There too, x and p are examples of vectors:

they flip sign in a mirror. Meanwhile, L = x×p is a pseudo-vector: it remains pointing

in the same direction in a mirror. In electromagnetism, the electric field E is a vector,

while the magnetic field B is a pseudo-vector,

P : E 7→ −E , P : B 7→ +B

1.1.1 Parity as a Quantum Number

The fact that the parity operator is Hermitian means that it is, technically, an observ-

able. More pertinently, we can find eigenstates of the parity operator

π|ψ⟩ = ηψ|ψ⟩

where ηψ is called the parity of the state |ψ⟩. Using the fact that π2 = 1, we have

π2|ψ⟩ = η2ψ|ψ⟩ = |ψ⟩ ⇒ ηψ = ±1

So the parity of a state can only take two values. States with ηψ = +1 are called parity

even; those with ηψ = −1 parity odd.

The parity eigenstates are particularly useful when parity commutes with the Hamil-

tonian,

πHπ† = H ⇔ [π,H] = 0

In this case, the energy eigenstates can be assigned definite parity. This follows im-

mediately when the energy level is non-degenerate. But even when the energy level is

degenerate, general theorems of linear algebra ensure that we can always pick a basis

within the eigenspace which have definite parity.

An Example: The Harmonic Oscillator

As a simple example, let’s consider the one-dimensional harmonic oscillator. The

Hamiltonian is

H =
1

2m
p2 +

1

2
mω2x2

The simplest way to build the Hilbert space is to introduce raising and lowering oper-

ators a ∼ (x + ip/mω) and a† ∼ (x − ip/mω) (up to a normalisation constant). The

ground state |0⟩ obeys a|0⟩ = 0 while higher states are built by |n⟩ ∼ (a†)n|0⟩ (again,
ignoring a normalisation constant).
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The Hamiltonian is invariant under parity: [π,H] = 0, which means that all energy

eigenstates must have a definite parity. Since the creation operator a† is linear in x and

p, we have

πa†π = −a†

This means that the parity of the state |n+ 1⟩ is

π|n+ 1⟩ = πa†|n⟩ = −a†π|n⟩ ⇒ ηn+1 = −ηn

We learn that the excited states alternate in their parity. To see their absolute value,

we need only determine the parity of the ground state. This is

ψ0(x) = ⟨x|0⟩ ∼ exp

(
−mωx

2

2ℏ

)
Since the ground state doesn’t change under reflection we have η0 = +1 and, in general,

ηn = (−1)n.

Another Example: Three-Dimensional Potentials

In three dimensions, the Hamiltonian takes the form

H = − ℏ2

2m
∇2 + V (x) (1.7)

This is invariant under parity whenever we have a central force, with the potential

depending only on the distance from the origin: V (x) = V (r). In this case, the energy

eigenstates are labelled by the triplet of quantum numbers n, l,m that are familiar from

the hydrogen atom, and the wavefunctions take the form

ψn,l,m(x) = Rn,l(r)Yl,m(θ, ϕ) (1.8)

How do these transform under parity? First note that parity only acts on the spherical

harmonics Yl,m(θ, ϕ). In spherical polar coordinates, parity acts as

P : (r, θ, ϕ) 7→ (r, π − θ, ϕ+ π)

The action of parity of the wavefunctions therefore depends on how the spherical har-

monics transform under this change of coordinates. Up to a normalisation, the spherical

harmonics are given by

Yl,m ∼ eimϕ Pm
l (cos θ)
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where Pm
l (x) are the associated Legendre polynomials. As we will now argue, the

transformation under parity is

P : Yl,m(θ, ϕ) 7→ Yl,m(π − θ, ϕ+ π) = (−1)l Yl,m(θ, ϕ) (1.9)

This means that the wavefunction transforms as

P : ψn,l,m(x) 7→ ψn,l,m(−x) = (−1)l ψn,l,m(x)

Equivalently, written in terms of the state |n, l,m⟩, where ψn,l,m(x) = ⟨x|n, l,m⟩, we
have

π|n, l,m⟩ = (−1)l |n, l,m⟩ (1.10)

It remains to prove the parity of the spherical harmonic (1.9). There’s a trick here.

We start by considering the case l = m where the spherical harmonics are particularly

simple. Up to a normalisation factor, they take the form

Yl,l(θ, ϕ) ∼ eilϕ sinl θ

So in this particular case, we have

P : Yl,l(θ, ϕ) 7→ Yl,l(π − θ, ϕ+ π) = eilϕeilπ sinl(π − θ) = (−1)l Yl,l(θ, ϕ)

confirming (1.9). To complete the result, we show that the parity of a state cannot

depend on the quantum number m. This follows from the transformation of angular

momentum (1.5) which can also be written as [π,L] = 0. But recall that we can

change the quantum number m by acting with the raising and lowering operators

L± = Lx ± iLy. So, for example,

π|n, l, l − 1⟩ = πL−|n, l, l⟩ = L−π|n, l, l⟩ = (−1)lL−|n, l, l⟩ = (−1)l|n, l, l − 1⟩

Repeating this argument shows that (1.10) holds for all m.

Parity and Spin

We can also ask how parity acts on the spin states, |s,ms⟩ of a particle. We know

from (1.6) that the operator S is a pseudo-vector, and so obeys [π,S] = 0. The same

argument that we used above for angular momentum L can be re-run here to tell us

that the parity of the state cannot depend on the quantum numberms. It can, however,

depend on the spin s,

π|s,ms⟩ = ηs|s,ms⟩
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What determines the value of ηs? Well, in the context of quantum mechanics nothing

determines ηs! In most situations we are dealing with a bunch of particles all of the

same spin (e.g. electrons, all of which have s = 1
2
). Whether we choose ηs = +1 or

ηs = −1 has no ultimate bearing on the physics. Given that it is arbitrary, we usually

pick ηs = +1.

There is, however, a caveat to this story. Within the framework of quantum field

theory it does make sense to assign different parity transformations to different particles.

This is equivalent to deciding whether ηs = 1 or ηs = −1 for each particle. We will

discuss this in Section 1.1.2.

What is Parity Good For?

We’ve learned that if we have a Hamiltonian that obeys [π,H] = 0, then we can

assign each energy eigenstate a sign, ±1, corresponding to whether it is even or odd

under parity. But, beyond gaining a rough understanding of what wavefunction in

one-dimension look like, we haven’t yet said why this is a useful thing to do. Here we

advertise some later results that will hinge on this:

• There are situations where one starts with a Hamiltonian that is invariant under

parity and adds a parity-breaking perturbation. The most common situation is

to take an electron with Hamiltonian (1.7) and turn on a constant electric field

E, so the new Hamiltonian reads

H = − ℏ2

2m
∇2 + V (r)− ex · E

This no longer preserves parity. For small electric fields, we can solve this using

perturbation theory. However, this is greatly simplified by the fact that the orig-

inal eigenstates have a parity quantum number. Indeed, in nearly all situations

first-order perturbation theory can be shown to vanish completely. We will de-

scribe this in some detail in Section 4.1 where we look at a hydrogen atom in an

electric field and the resulting Stark effect.

• In atomic physics, electrons sitting in higher states will often drop down to lower

states, emitting a photon as they go. This is the subject of spectroscopy. It was

one of the driving forces behind the original development of quantum mechanics

and will be described in some detail in Section 4.3. But it turns out that an

electron in one level can’t drop down to any of the lower levels: there are selection

rules which say that only certain transitions are allowed. These selection rules

follow from the “conservation of parity”. The final state must have the same

parity as the initial state.
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• It is often useful to organise degenerate energy levels into a basis of parity eigen-

states. If nothing else, it tends to make calculations much more straightforward.

We will see an example of this in Section 6.1.3 where we discuss scattering in one

dimension.

1.1.2 Intrinsic Parity

There is a sense in which every kind particle can be assigned a parity ±1. This is called
intrinsic parity. To understand this, we really need to move beyond the framework of

non-relativistic quantum mechanics and into the framework of quantum field theory

The key idea of quantum field theory is that the particles are ripples of an underlying

field, tied into little bundles of energy by quantum mechanics. Whereas in quantum

mechanics, the number of particles is fixed, in quantum field theory the Hilbert space

(sometimes called a Fock space) contains states with different particle numbers. This

allows us to describe various phenomena where we smash two particles together and

many emerge.

In quantum field theory, every particle is described by some particular state in the

Hilbert space. And, just as we assigned a parity eigenvalue to each state above, it

makes sense to assign a parity eigenvalue to each kind of particle.

To determine the total parity of a configuration of particles in their centre-of-momentum

frame, we multiply the intrinsic parities together with the angular momentum parity.

For example, if two particles A and B have intrinsic parity ηA and ηB and relative

angular momentum L, then the total parity is

η = ηAηB(−1)L

To give some examples: by convention, the most familiar spin-1
2
particles all have even

parity:

electron : ηe = +1

proton : ηp = +1

neutron : ηn = +1

Each of these has an anti-particle. (The anti-electron is called the positron; the others

have the more mundane names anti-proton and anti-neutron). Anti-particles always

have opposite quantum numbers to particles and parity is no exception: they all have

η = −1.
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All other particles are also assigned an intrinsic parity. As long as the underlying

Hamiltonian is invariant under parity, all processes must conserve parity. This is a

useful handle to understand what processes are allowed. It is especially useful when

discussing the strong interactions where the elementary quarks can bind into a bewil-

dering number of other particles – protons and neutrons, but also pions and kaons and

etas and rho mesons and omegas and sigmas and deltas. As you can see, the names are

not particularly imaginative. There are hundreds of these particles. Collectively they

go by the name hadrons.

Often the intrinsic parity of a given hadron can be determined experimentally by

observing a decay process. Knowing that parity is conserved uniquely fixes the parity

of the particle of interest. Other decay processes must then be consistent with this.

An Example: π− d→ nn

The simplest of the hadrons are a set of particles called pions. We now know that each

contains a quark-anti-quark pair. Apart from the proton and neutron, these are the

longest lived of the hadrons.

The pions come in three types: neutral, charge +1 and charge −1 (in units where

the electron has charge −1). They are labelled π0, π+ and π− respectively. The π−

is observed experimentally to decay when it scatters off a deuteron, d, which is stable

bound state of a proton and neutron. (We showed the existence of a such a bound

state in Section 2.1.3 as an application of the variational method.) After scattering

off a deuteron, the end product is two neutrons. We write this process rather like a

chemical reaction

π− d → nn

From this, we can determine the intrinsic parity of the pion. First, we need some facts.

The pion has spin sπ = 0 and the deuteron has spin sd = 1; the constituent proton

and neutron have no orbital angular momentum so the total angular momentum of

the deuteron is also J = 1. Finally, the pion scatters off the deuteron in the s-wave,

meaning that the combined π− d system that we start with has vanishing orbital angular

momentum. From all of this, we know that the total angular momentum of the initial

state is J = 1.

Since angular momentum is conserved, the final nn state must also have J = 1.

Each individual neutron has spin sn = 1
2
. But there are two possibilities to get J = 1:

• The spins could be anti-aligned, so that S = 0. Now the orbital angular momen-

tum must be L = 1.
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• The spins could be aligned, so that the total spin is S = 1. In this case the orbital

angular momentum of the neutrons could be L = 0 or L = 1 or L = 2. Recall

that the total angular momentum J = L + S ranges from |L − S| to L + S and

so for each of L = 0, 1 and 2 it contains the possibility of a J = 1 state.

How do we distinguish between these? It turns out that only one of these possibilities is

consistent with the fermionic nature of the neutrons. Because the end state contains two

identical fermions, the overall wavefunction must be anti-symmetric under exchange.

Let’s first consider the case where the neutron spins are anti-aligned, so that their total

spin is S = 0. The spin wavefunction is

|S = 0⟩ = |↑ ⟩|↓ ⟩ − |↓ ⟩|↑ ⟩√
2

which is anti-symmetric. This means that the spatial wavefunction must be symmetric.

But this requires that the total angular momentum is even: L = 0, 2, . . .. We see that

this is inconsistent with the conservation of angular momentum. We can therefore rule

out the spin S = 0 scenario.

(An aside: the statement that wavefunctions are symmetric under interchange of

particles only if L is even follows from the transformation of the spherical harmon-

ics under parity (1.9). Now the polar coordinates (r, θ, ϕ) parameterise the rela-

tive separation between particles. Interchange of particles is then implemented by

(r, θ, ϕ)→ (r, π − θ, ϕ+ π).)

Let’s now move onto the second option where the total spin of neutrons is S = 1.

Here the spin wavefunctions are symmetric, with the three choices depending on the

quantum number ms = −1, 0,+1,

|S = 1, 1⟩ = |↑ ⟩|↑ ⟩ , |S = 1, 0⟩ = |↑ ⟩|↓ ⟩+ |↓ ⟩|↑ ⟩√
2

, |S = 1,−1⟩ = |↓ ⟩|↓ ⟩

Once again, the total wavefunction must be anti-symmetric, which means that the

spatial part must be anti-symmetric. This, in turn, requires that the orbital angular

momentum of the two neutrons is odd: L = 1, 3, . . .. Looking at the options consistent

with angular momentum conservation, we see that only the L = 1 state is allowed.

Having figured out the angular momentum, we’re now in a position to discuss parity.

The parity of each neutron is ηn = +1. The parity of the proton is also ηp = +1 and

since these two particles have no angular momentum in their deuteron bound state, we

have ηd = ηnηp = +1. Conservation of parity then tells us

ηπηd = (ηn)
2(−1)L ⇒ ηπ = −1
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Parity and the Fundamental Forces

Above, I said that parity is conserved if the underlying Hamiltonian is invariant under

parity. So one can ask: are the fundamental laws of physics, at least as we currently

know them, invariant under parity? The answer is: some of them are. But not all.

In our current understanding of the laws of physics, there are five different ways in

which particles can interact: through gravity, electromagnetism, the weak nuclear force,

the strong nuclear force and, finally, through the Higgs field. The first four of these are

usually referred to as “fundamental forces”, while the Higgs field is kept separate. For

what it’s worth, the Higgs has more in common with three of the forces than gravity

does and one could make an argument that it too should be considered a “force”.

Of these five interactions, four appear to be invariant under parity. The misfit is

the weak interaction. This is not invariant under parity, which means that any process

which occur through the weak interaction — such as beta decay — need not conserve

parity. Violation of parity in experiments was first observed by Chien-Shiung Wu in

1956.

To the best of our knowledge, the Hamiltonians describing the other four interactions

are invariant under parity. In many processes – including the pion decay described

above – the strong force is at play and the weak force plays no role. In these cases,

parity is conserved.

1.2 Time Reversal Invariance

Time reversal holds a rather special position in quantum mechanics. As we will see, it

is not like other symmetries.

The idea of time reversal is simple: take a movie of the system in motion and play

it backwards. If the system is invariant under the symmetry of time reversal, then the

dynamics you see on the screen as the movie runs backwards should also describe a

possible evolution of the system. Mathematically, this means that we should replace

t 7→ −t in our equations and find another solution.

Classical Mechanics

Let’s first look at what this means in the context of classical mechanics. As our first

example, consider the Newtonian equation of motion for a particle of mass m moving

in a potential V ,

mẍ = −∇V (x)
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Such a system is invariant under time reversal: if x(t) is a solution, then so too is

x(−t).

As a second example, consider the same system but with the addition of a friction

term. The equation of motion is now

mẍ = −∇V (x)− γẋ

This system is no longer time invariant. Physically, this should be clear: if you watch a

movie of some guy sliding along in his socks until he comes to rest, it’s pretty obvious if

it’s running forward in time or backwards in time. Mathematically, if x(t) is a solution,

then x(−t) fails to be a solution because the equation of motion includes a term that

is first order in the time derivative.

At a deeper level, the first example above arises from a Hamiltonian while the second

example, involving friction, does not. One might wonder if all Hamiltonian systems are

time reversal invariant. This is not the case. As our final example, consider a particle

of charge q moving in a magnetic field. The equation of motion is

mẍ = qẋ×B (1.11)

Once again, the equation of motion includes a term that is first order in time derivatives,

which means that the time reversed motion is not a solution. This time it occurs because

particles always move with a fixed handedness in the presence of a magnetic field: they

either move clockwise or anti-clockwise in the plane perpendicular to B.

Although the system described by (1.11) is not invariant under time reversal, if you’re

shown a movie of the solution running backwards in time, then it won’t necessarily be

obvious that this is unphysical. This is because the trajectory x(−t) does solve (1.11) if
we also replace the magnetic field B with −B. For this reason, we sometimes say that

the background magnetic field flips sign under time reversal. (Alternatively, we could

choose to keep B unchanged, but flip the sign of the charge: q 7→ −q. The standard

convention, however, is to keep charges unchanged under time reversal.)

We can gather together how various quantities transform under time reversal, which

we’ll denote as T . Obviously T : t 7→ −t. Meanwhile, the standard dynamical variables,

which include position x and momentum p = mẋ, transform as

T : x(t) 7→ x(−t) , T : p(t) 7→ −p(−t) (1.12)

Finally, as we’ve seen, it can also useful to think about time reversal as acting on

background fields. The electric field E and magnetic field B transform as

T : E 7→ E , T : B 7→ −B
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These simple considerations will be useful as we turn to quantum mechanics.

Quantum Mechanics

We’ll now try to implement these same ideas in quantum mechanics. As we will see,

there is something of a subtlety. This is first apparent if we look at the time-dependent

Schrödinger equation,

iℏ
∂ψ

∂t
= Hψ (1.13)

We’ll assume that the Hamiltonian H is invariant under time reversal. (For example,

H = p2/2m + V (x).) One might naively think that the wavefunction should evolve

in a manner compatible with time reversal. However, the Schrödinger equation is first

order in time derivatives and this tells us something which seems to go against this

intuition: if ψ(t) is a solution then ψ(−t) is not, in general, another solution.

To emphasise this, note that the Schrödinger equation is not very different from the

heat equation,

∂ψ

∂t
= κ∇2ψ

This equation clearly isn’t time reversal invariant, a fact which underlies the entire

subject of thermodynamics. The Schrödinger equation (1.13) only differs by a factor

of i. How does that save us? Well, it ensures that if ψ(t) is a solution, then ψ⋆(−t) is
also a solution. This, then, is the action of time reversal on the wavefunction,

T : ψ(t) 7→ ψ⋆(−t) (1.14)

The need to include the complex conjugation is what distinguishes time reversal from

other symmetries that we have met.

How do we fit this into our general scheme to describe the action of symmetries on

operators and states? We’re looking for an operator Θ such that the time reversal maps

any state |ψ⟩ to

T : |ψ⟩ 7→ Θ|ψ⟩

Let’s think about what properties we want from the action of Θ. Classically, the action

of time reversal on the state of a system leaves the positions unchanged, but flips the

sign of all the momenta, as we saw in (1.12). Roughly speaking, we want Θ to do the

same thing to the quantum state. How can we achieve this?
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Let’s first recall how we run a state forwards in time. The solution to (1.13) tells us

that a state |ψ(0)⟩ evolves into a state |ψ(t)⟩ by the usual unitary evolution

|ψ(t)⟩ = e−iHt/ℏ |ψ(0)⟩

Suppose now that we instead take the time reversed state Θ|ψ(0)⟩ and evolve this

forward in time. If the Hamiltonian itself is time reversal invariant, the resulting state

should be the time reversal of taking |ψ(0)⟩ and evolving it backwards in time. (Or,

said another way, it should be the time reversal of |ψ(t)⟩, which is the same thing as

Θ|ψ(−t)⟩.) While that’s a mouthful in words, it’s simple to write in equations: we

want Θ to satisfy

Θ e+iHt/ℏ |ψ(0)⟩ = e−iHt/ℏΘ |ψ(0)⟩

Expanding this out for infinitesimal time t, we get the requirement

ΘiH = −iHΘ (1.15)

Our job is to find a Θ obeying this property.

At this point there’s a right way and a wrong way to proceed. I’ll first describe the

wrong way because it’s the most tempting path to take. It’s natural to manipulate

(1.15) by cancelling the factor of i on both sides to leave us with

ΘH +HΘ = 0 ? (1.16)

Although natural, this is wrong! It’s simple to see why. Suppose that we have an

eigenstate |ψ⟩ obeying H|ψ⟩ = E|ψ⟩. Then (1.16) tells us that HΘ|ψ⟩ = −ΘH|ψ⟩ =
−E|ψ⟩. So every state of energy E must be accompanied by a time-reversed state

of energy −E. But that’s clearly nonsense. We know it’s not true of the harmonic

oscillator.

So what did we do wrong? Well, the incorrect step was seemingly the most innocuous

one: we are not allowed to cancel the factors of i on either side of (1.15). To see why,

we need to step back and look at a little linear algebra.

1.2.1 Time Reversal is an Anti-Unitary Operator

Usually in quantum mechanics we deal with linear operators acting on the Hilbert

space. The linearity means that the action of an operator A on superpositions of states

is

A(α|ψ1⟩+ β|ψ2⟩) = αA|ψ1⟩+ βA|ψ2⟩
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with α, β ∈ C. In contrast, an anti-linear operator B obeys the modified condition

B(α|ψ1⟩+ β|ψ2⟩) = α⋆B|ψ1⟩+ β⋆B|ψ2⟩ (1.17)

This complex conjugation is reminiscent of the transformation of the wavefunction

(1.14) under time reversal. Indeed, we will soon see how they are related.

The strange action (1.17) means that an anti-linear operator B doesn’t even commute

with a constant α ∈ C (which, here, we view as a particular simple operator which

multiplies each state by α). Instead, when B is anti-linear we have

Bα = α⋆B

But this is exactly what we need to resolve the problem that we found above. If we

take Θ to be an anti-linear operator then the factor of i on the left-hand-side of (1.15)

is complex conjugated when we pull it through Θ. This extra minus sign means that

instead of (1.16), we find

[Θ, H] = 0 (1.18)

This looks more familiar. Indeed, we saw earlier that this usually implies we have a

conserved quantity in the game. However, that will turn out not to be the case here:

conserved quantities only arise when linear operators commute with H. Nonetheless,

we will see that there are also some interesting consequences of (1.18) for time-reversal.

We see above that we dodge a bullet if time reversal is enacted by an anti-linear

operator Θ. There is another, more direct, way to see that this has to be the case.

This arises by considering its action on the operators x, and p. In analogy with the

classical action (1.12), we require

ΘxΘ−1 = x , ΘpΘ−1 = −p (1.19)

However, quantum mechanics comes with a further requirement: the commutation re-

lations between these operators should be preserved under time reversal. In particular,

we must have

[xi, pj] = iℏδij ⇒ Θ[xi, pj]Θ
−1 = Θ(iℏδij)Θ−1

We see that the transformations (1.19) are not consistent with the commutation rela-

tions if Θ is a linear operator. But the fact that it is an anti-linear operator saves us:

the factor of i sandwiched between operators on the right-hand side is conjugated and

the equation becomes Θ[xi, pj]Θ
−1 = −iℏδij which is happily consistent with (1.19).

– 16 –



Linear Algebra with Anti-Linear Operators

Time reversal is described by an anti-linear operator Θ. This means that we’re going

to have to spend a little time understanding the properties of these unusual operators.

We know that Θ acts on the Hilbert space H as (1.17). But how does it act on the

dual Hilbert space of bras? Recall that, by definition, each element ⟨ϕ| of the dual

Hilbert space should be thought of as a linear map ⟨ϕ| : H 7→ C. For a linear operator

A, this is sufficient to tell us how to think of A acting on the dual Hilbert space. The

dual state ⟨ϕ|A is defined by

(⟨ϕ|A)|ψ⟩ = ⟨ϕ|(A|ψ⟩) (1.20)

This definition has the consequence that we can just drop the brackets and talk about

⟨ϕ|A|ψ⟩ since it doesn’t matter whether we interpret this as A acting on to the right

or left.

In contrast, things are more fiddly if we’re dealing with an anti-linear operator B.

We would like to define ⟨ϕ|B. The problem is that we want ⟨ϕ|B to lie in the dual

Hilbert space which, by definition, means that it must be a linear operator even if B

is an anti-linear operator. But if we just repeat the definition (1.20) then it’s simple

to check that ⟨ϕ|B inherits anti-linear behaviour from B and so does not lie in the

dual Hilbert space. To remedy this, we modify our definition of ⟨ϕ|B for anti-linear

operators to

(⟨ϕ|B)|ψ⟩ = [⟨ϕ|(B|ψ⟩)]⋆ (1.21)

This means, in particular, that for an anti-linear operator we should never write ⟨ϕ|B|ψ⟩
because we get different answers depending on whether B acts on the ket to the right

or on the bra to the left. This is, admittedly, fiddly. Ultimately the Dirac bra-ket

notation is not so well suited to anti-linear operators.

Our next task is to define the adjoint operators. Recall that for a linear operator A,

the adjoint A† is defined by the requirement

⟨ϕ|A†|ψ⟩ = ⟨ψ|A|ϕ⟩⋆

What do we do for an anti-linear operator B? The correct definition is now

⟨ϕ|(B†|ψ⟩) = [(⟨ψ|B)|ϕ⟩]⋆ = ⟨ψ|(B|ϕ⟩) (1.22)

This ensures that B† is also anti-linear. Finally, we say that an anti-linear operator B

is anti-unitary if it also obeys

B†B = BB† = 1
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Anti-Unitary Operators Conserve Probability

We have already seen that time reversal should be anti-linear. It must also be anti-

unitary. This will ensure that probabilities are conserved under time reversal. To see

this, consider the states |ϕ′⟩ = Θ|ϕ⟩ and |ψ′⟩ = Θ|ψ⟩. Then, using our definitions

above, we have

⟨ϕ′|ψ′⟩ = (⟨ϕ|Θ†)(Θ|ψ⟩) = [⟨ϕ|(Θ†Θ|ψ⟩)]⋆ = ⟨ϕ|ψ⟩⋆

We see that the phase of the amplitude changes under time reversal, but the probability,

which is |⟨ϕ|ψ⟩|2, remains unchanged.

1.2.2 An Example: Spinless Particles

So far, we’ve only described the properties required of the time reversal operator Θ.

Now let’s look at some specific examples. We start with a single particle, governed by

the Hamiltonian

H =
p2

2m
+ V (x)

To describe any operator, it’s sufficient to define how it acts on a basis of states. The

time reversal operator is no different and, for the present example, it’s sensible to choose

the basis of eigenstates |x⟩. Because Θ is anti-linear, it’s important that we pick some

fixed choice of phase for each |x⟩. (The exact choice doesn’t matter; just as long as we

make one.) Then we define the time reversal operator to be

Θ|x⟩ = |x⟩ (1.23)

If Θ were a linear operator, this definition would mean that it must be equal to the

identity. But instead Θ is anti-linear and it’s action on states which differ by a phase

from our choice of basis |x⟩ is non-trivial

Θα|x⟩ = α⋆|x⟩

In this case, the adjoint operator is simple Θ† = Θ. Indeed, it’s simple to see that

Θ2 = 1, as is required by unitarity.

Let’s see what we can derive from this. First, we can expand a general state |ψ⟩ as

|ψ⟩ =
∫
d3x |x⟩⟨x|ψ⟩ =

∫
d3x ψ(x)|x⟩
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where ψ(x) = ⟨x|ψ⟩ is the wavefunction in position variables. Time reversal acts as

Θ|ψ⟩ =
∫
d3xΘψ(x)|x⟩ =

∫
d3x ψ⋆(x)Θ|x⟩ =

∫
d3x ψ⋆(x)|x⟩

We learn that time reversal acts on the wavefunction as complex conjugation: T :

ψ(x) 7→ ψ⋆(x). But this is exactly what we first saw in (1.14) from looking at the

Schrödinger equation. We can also specialise to momentum eigenstates |p⟩. These can
be written as

|p⟩ =
∫
d3x eip·x|x⟩

Acting with time reversal, this becomes

Θ|p⟩ =
∫
d3x Θeip·x|x⟩ =

∫
d3x e−ip·x|x⟩ = |−p⟩

which confirms our intuition that acting with time reversal on a state should leave

positions invariant, but flip the momenta.

Importantly, invariance under time reversal doesn’t lead to any degeneracy of the

spectrum in this system. Instead, it’s not hard to show that one can always pick the

phase of an energy eigenstate such that it is also an eigenstate of Θ. Ultimately, this is

because of the relation Θ2 = 1. (This statement will become clearer in the next section

where we’ll see a system that does exhibit a degeneracy.)

We can tell this same story in terms of operators. These can be expanded in terms

of eigenstates, so we have

x̂ =

∫
d3x x|x⟩⟨x| ⇒ Θx̂Θ =

∫
d3x xΘ|x⟩⟨x|Θ = x̂

and

p̂ =

∫
d3p p|p⟩⟨p| ⇒ Θp̂Θ =

∫
d3p pΘ|p⟩⟨p|Θ = −p̂

where, in each case, we’ve reverted to putting a hat on the operator to avoid confusion.

We see that this reproduces our expectation (1.19).

Before we proceed, it will be useful to discuss one last property that arises when

V (x) = V (|x|) is a central potential. In this case, the orbital angular momentum

L = x × p is also conserved. From (1.19), we know that L should be odd under time

reversal, meaning

ΘLΘ−1 = −L (1.24)
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We can also see how it acts on states. For a central potential, the energy eigenstates

can be written in polar coordinates as

ψnlm(x) = Rnl(r)Ylm(θ, ϕ)

The radial wavefunction Rnl(r) can always be taken to be real. Meanwhile, the spherical

harmonics take the form Ylm(θ, ϕ) = eimϕPm
l (cos θ) with Pm

l an associated Legendre

polynomial. From their definition, we find that these obey

ψ⋆nlm(x) = (−1)mψnl,−m(x) (1.25)

Clearly this is consistent with Θ2 = 1.

1.2.3 Another Example: Spin

Here we describe a second example that is both more subtle and more interesting: it is

a particle carrying spin-1
2
. To highlight the physics, we can forget about the position

degrees of freedom and focus solely on the spin.

Spin provides another contribution to angular momentum. This means that the spin

operator S should be odd under time reversal, just like the orbital angular momentum

(1.24)

ΘSΘ−1 = −S (1.26)

For a spin- 1
2
particle, we have S = ℏ

2
σ with σ the vector of Pauli matrices. The Hilbert

space is just two-dimensional and we take the usual basis of eigenvectors of Sz, chosen

with a specific phase

|+⟩ =

(
1

0

)
and |−⟩ =

(
0

1

)

so that Sz|±⟩ = ±ℏ
2
|±⟩. Our goal is to understand how the operator Θ acts on these

states. We will simply state the correct form and then check that it does indeed

reproduce (1.26). The action of time reversal is

Θ|+⟩ = i|−⟩ , Θ|−⟩ = −i|+⟩ (1.27)

Let’s look at some properties of this. First, consider the action of Θ2,

Θ2|+⟩ = Θ(i|−⟩) = −iΘ|−⟩ = −|+⟩
Θ2|−⟩ = Θ(−i|+⟩) = iΘ|+⟩ = −|−⟩
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We see that

Θ2 = −1 (1.28)

This is in contrast to the action of time reversal for a particle without spin (1.23). We

will see shortly the consequences of Θ2 = −1.

Since there’s a lot of i’s floating around, let’s go slowly and use this as an opportunity

to flesh out other properties of Θ. From (1.21), the action of Θ on the bras is

⟨+|Θ = i⟨−| , ⟨−|Θ = −i⟨+|

Meanwhile, from (1.22), the adjoint operator Θ† is defined as

Θ†|+⟩ = −i|−⟩ , Θ†|−⟩ = i|+⟩

We see that Θ† = −Θ which, given (1.28), ensures that Θ is anti-unitary.

Now we can look at the action of Θ on the various spin operators. Expanding each

in our chosen basis, and using the results above, we find

Sx = |+⟩⟨−|+ |−⟩⟨+| ⇒ ΘSxΘ
† = −Sx

Sz = |+⟩⟨+| − |−⟩⟨−| ⇒ ΘSzΘ
† = −Sz

Sy = −i|+⟩⟨−|+ i|−⟩⟨+| ⇒ ΘSyΘ
† = −Sy

as required.

Time Reversal for General Spin

We can generalise this discussion to a general particle carrying general spin s. (The

formulae below also work for any angular momentum). The Hilbert space now has

dimension 2s+ 1, and is spanned by the eigenstates of Sz

Sz|m⟩ = mℏ|m⟩ m = −s, . . . , s

We again require that the spin operators transform as (1.26) under time reversal. We

can rewrite this requirement as ΘS = −SΘ. When applied to the eigenstates of Sz,

this tells us

SzΘ|m⟩ = −ΘSz|m⟩ = −mℏΘ|m⟩

which is the statement that Θ|m⟩ is an eigenstate of Sz with eigenvalue −mℏ. But the
eigenstates of Sz are non-degenerate, so we must have

Θ|m⟩ = αm|−m⟩

for some choice of phase αm which, as the notation shows, can depend on m.
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There’s a clever trick for figuring out how αm depends on m. Consider the raising

and lowering spin operators S± = Sx ± iSy. The action of time reversal is

ΘS±Θ
† = Θ(Sx ± iSy)Θ† = −Sx ± iSy = −S∓ (1.29)

Now consider the action of S+ on Θ|m⟩,

S+Θ|m⟩ = αmS+|−m⟩ = αmℏ
√
(s+m)(s−m+ 1)|−m+ 1⟩

Alternatively, we can use (1.29) to write

S+Θ|m⟩ = −ΘS−|m⟩ = −ℏ
√
(s+m)(s−m+ 1)Θ|m− 1⟩

= −αm−1ℏ
√

(s+m)(s−m+ 1)|−m+ 1⟩

We learn that

αm = −αm−1

The simplest choice is αm = (−1)m. Because m can be either integer or half-integer,

we will write this as

Θ|m⟩ = i2m|−m⟩

This agrees with our earlier results, (1.25) for orbital angular momentum and (1.27)

for spin-1
2
. For now, the most important lesson to take from this is

Θ2 = 1 integer spin

Θ2 = −1 half-integer spin

This result is quite deep. Ultimately it associated to the fact that spin-half particles

transform in the double cover of the rotation group, so that states pick up a minus sign

when rotated by 2π. As we now show, it has consequence.

1.2.4 Kramers Degeneracy

It is not surprising that acting with time reversal twice brings us back to the same

state. It is, however, surprising that sometimes we can return with a minus sign. As

we have seen, this doesn’t happen for spinless particles, nor for particles with integer

spin: in both of these situations we have Θ2 = 1. However, when dealing with particles

with half-integer spin, we instead have Θ2 = −1.

Time reversal with Θ2 = 1 does not automatically lead to any further degeneracy of

the spectrum. (We will, however, see a special case when we discuss the Stark effect in

Section 4.1 where a degeneracy does arise.) In contrast, when Θ2 = −1, there is always
a degeneracy.
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To see this degeneracy, we argue by contradiction. Suppose that the spectrum is

non-degenerate, so that there is a state such that

Θ|ψ⟩ = α|ψ⟩

for some phase α. Then acting twice, we have

Θ2|ψ⟩ = α⋆Θ|ψ⟩ = |α|2|ψ⟩ = |ψ⟩

This means that a non-degenerate spectrum can only arise when Θ2 = +1.

In contrast, whenever we have a time-reversal system with Θ2 = −1, all energy

eigenstates must come in degenerate pairs. This is known as Kramers degeneracy.

For the simple spin 1
2
system that we described in Section 1.2.3, the degeneracy is

trivial: it is simply the statement that |+⟩ and |−⟩ have the same energy whenever

the Hamiltonian is invariant under time reversal. If we want to split the energy levels,

we need to add a term to the Hamiltonian like H = B · S which breaks time reversal.

(Indeed, this ties in nicely with our classical discussion where we saw that the magnetic

field breaks time reversal, changing as B 7→ −B.)

In more complicated systems, Kramer’s degeneracy can be a very powerful statement.

For example, we know that electrons carry spin 1
2
. The degeneracy ensures that in any

time reversal invariant system which involves an odd number of electrons, all energy

levels are doubly degenerate. This simple statement plays an important role in the

subject of topological insulators in condensed matter physics.

– 23 –



2. Approximation Methods

Physicists have a dirty secret: we’re not very good at solving equations. More precisely,

humans aren’t very good at solving equations. We know this because we have computers

and they’re much better at solving things than we are.

We usually do a good job of hiding this secret when teaching physics. In quantum

physics we start with examples like the harmonic oscillator or the hydrogen atom and

then proudly demonstrate how clever we all are by solving the Schrödinger equation

exactly. But there are very very few examples where we can write down the solution in

closed form. For the vast majority of problems, the answer is something complicated

that isn’t captured by some simple mathematical formula. For these problems we need

to develop different tools.

You already met one of these tools in an earlier course: it’s called perturbation theory

and it’s useful whenever the problem we want to solve is, in some sense, close to one

that we’ve already solved. This works for a surprisingly large number of problems.

Indeed, one of the arts of theoretical physics is making everything look like a coupled

harmonic oscillator so that you can use perturbation theory. But there are also many

problems for which perturbation theory fails dismally and we need to find another

approach. In general, there’s no panacea, no universal solution to all problems in

quantum mechanics. Instead, the best we can hope for is to build a collection of tools.

Then, whenever we’re faced with a new problem we can root around in our toolbox,

hoping to find a method that works. The purpose of this chapter is to stock up your

toolbox.

2.1 The Variational Method

The variational method provides a simple way to place an upper bound on the ground

state energy of any quantum system and is particularly useful when trying to demon-

strate that bound states exist. In some cases, it can also be used to estimate higher

energy levels too.

2.1.1 An Upper Bound on the Ground State

We start with a quantum system with Hamiltonian H. We will assume that H has a

discrete spectrum

H|n⟩ = En|n⟩ n = 0, 1, . . .

with the energy eigenvalues ordered such that En ≤ En+1. The simplest application of

the variational method places an upper bound on the value of the ground state energy

E0.
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Theorem: Consider an arbitrary state |ψ⟩. The expected value of the energy obeys

the inequality

⟨E⟩ = ⟨ψ|H|ψ⟩ ≥ E0

Proof: The proposed claim is, hopefully, intuitive and the proof is straightforward.

We expand |ψ⟩ =
∑

n an|n⟩ with
∑

n |an|2 = 1 to ensure that ⟨ψ|ψ⟩ = 1. Then

⟨E⟩ =
∞∑

n,m=0

a⋆man⟨m|H|n⟩ =
∞∑

n,m=0

a⋆manEnδmn

=
∞∑
n=0

|an|2En = E0

∞∑
n=0

|an|2 +
∞∑
n=0

|an|2(En − E0) ≥ E0

In the case of a non-degenerate ground state, we have equality only if a0 = 1 which

implies an = 0 for all n ̸= 0. □

Now consider a family of states, |ψ(α)⟩, depending on some number of parameters

αi. If we like, we can relax our assumption that the states are normalised and define

E(α) =
⟨ψ(α)|H|ψ(α)⟩
⟨ψ(α)|ψ(α)⟩

This is sometimes called the Rayleigh-Ritz quotient. We still have

E(α) ≥ E0 for all α

The most stringent bound on the ground state energy comes from the minimum value

of E(α) over the range of α. This, of course, obeys

∂E

∂αi

∣∣∣∣
α=α⋆

= 0

giving us the upper bound E0 ≤ E(α⋆). This is the essence of the variational method.

The variational method does not tell us how far above the ground state E(α⋆) lies.

It would be much better if we could also get a lower bound for E0 so that we can

say for sure that ground state energy sits within a particular range. However, for

particles moving in a general potential V (x), the only lower bound that is known is

E0 > minV (x). Since we’re often interested in potentials like V (x) ∼ −1/r, which
have no lower bound this is not particularly useful.

Despite these limitations, when used cleverly by choosing a set of states |ψ(α)⟩
which are likely to be fairly close to the ground state, the variational method can

give remarkably accurate results.
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An Example: A Quartic Potential

Consider a particle moving in one-dimension in a quartic potential. The Hamiltonian,

written in units where everything is set to one, is

H = − d2

dx2
+ x4

Unlike the harmonic oscillator, this problem does not have simple solution. Nonetheless,

it is easy to solve numerically where one finds

E0 ≈ 1.06

Let’s see how close we get with the variational

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

Figure 1:

method. We need to cook up a trial wavefunction

which we think might look something like the true

ground state. The potential is shown on the right

and, on general grounds, the ground state wave-

function should have support where the potential is

smallest; an example is shown in orange. All we need

to do is write down a function which has vaguely this

shape. We will take

ψ(x;α) =
(α
π

)1/4
e−αx

2/2

where the factor in front ensures that this wavefunction is normalised. You can check

that this isn’t an eigenstate of the Hamiltonian. But it does have the expected crude

features of the ground state: e.g. it goes up in the middle and has no nodes. (Indeed,

it’s actually the ground state of the harmonic oscillator). The expected energy is

E(α) =

√
α

π

∫
dx (α− α2x2 + x4)e−αx

2

=
α

2
+

3

4α2

The minimum value occurs at α3
⋆ = 3, giving

E(α⋆) ≈ 1.08

We see that our guess does pretty well, getting within 2% of the true value. You can

try other trial wavefunctions which have the same basic shape and see how they do.
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How Accurate is the Variational Method?

Formally, we can see why a clever application of the variational method will give a

good estimate of the ground state energy. Suppose that the trial wavefunction which

minimizes the energy differs from the true ground state by

|ψ(α⋆)⟩ =
1√

1 + ϵ2
(|0⟩+ ϵ|ϕ⟩)

where |ϕ⟩ is a normalised state, orthogonal to the ground state, ⟨0|ϕ⟩ = 0, and ϵ is

assumed to be small. Then our guess at the energy is

E(α⋆) =
1

1 + ϵ2
[
⟨0|H|0⟩+ ϵ(⟨0|H|ϕ⟩+ ⟨ϕ|H|0⟩) + ϵ2⟨ϕ|H|ϕ⟩

]
Importantly the terms linear in ϵ vanish. This is because ⟨ϕ|H|0⟩ = E0⟨ϕ|0⟩ = 0. We

can then expand the remaining terms as

E(α⋆) = E0 + ϵ2 (⟨ϕ|H|ϕ⟩ − E0) +O(ϵ2)

This means that if the difference from the true ground state is O(ϵ), then the difference

from the ground state energy is O(ϵ2). This is the reason that the variational method

often does quite well.

Nonetheless, one flaw with the variational method is that unless someone tells us

the true answer, we have no way of telling how good our approximation is. Or, in the

language above, we have no way of estimating the size of ϵ. Despite this, we will see

below that there are some useful things we can do with it.

2.1.2 An Example: The Helium Atom

One important application of quantum mechanics is to explain the structure of atoms.

Here we will look at two simple approaches to understand an atom with two electrons.

This atom is helium.

The Hamiltonian for two electrons, each of charge −e, orbiting a nucleus of charge

Ze is

H =
p2
1

2m
− Ze2

4πϵ0

1

r1
+

p2
2

2m
− Ze2

4πϵ0

1

r2
+

e2

4πϵ0

1

|x1 − x2|
(2.1)

For helium, Z = 2 but, for reasons that will become clear, we will leave it arbitrary

and only set it to Z = 2 at the end of the calculation.
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If we ignore the final term, then this Hamiltonian is easy to solve: it simply consists

of two independent copies of the hydrogen atom. The eigenstates would be

Ψ(x1,x2) = ψn1,l1,m1(x1)ψn2,l2,m2(x2)

where ψn,l,m(r) are the usual energy eigenstates of the hydrogen atom. We should

remember that the electrons are fermions so we can’t put them in the same state.

However, electrons also have a spin degree of freedom which we have neglected above.

This means that two electrons can have the same spatial wavefunction as long as one

is spin up and the other spin down.

Ignoring the interaction term between electrons gives the energy

E = −Z2

(
1

n2
1

+
1

n2
2

)
Ry (2.2)

where Ry is the Rydberg constant, given by

Ry =
me4

32π2ϵ20ℏ2
≈ 13.6 eV

Setting Z = 2 and n1 = n2 = 1, this very naive approach suggests that the ground

state of helium has energy E0 = −8Ry ≈ −109 eV . The true ground state of helium

turns out to have energy

E0 ≈ −79.0 eV (2.3)

Our task is to find a method to take into account the final, interaction term between

electrons in (2.1) and so get closer to the true result (2.3) Here we try two alternatives.

Perturbation Theory

Our first approach is to treat the Coulomb energy between two electrons as a pertur-

bation on the original problem. Before proceeding, there is a question that we should

always ask in perturbation theory: what is the small, dimensionless parameter that

ensures that the additional term is smaller than the original terms?

For us, we need a reason to justify why the last term in the Hamiltonian (2.1) is likely

to be smaller than the other two potential terms. All are due to the Coulomb force, so

come with a factor of e2/4πϵ0. But the interactions with the nucleus also come with a

factor of Z. This is absent in the electron-electron interaction. This, then, is what we

hang our hopes on: the perturbative expansion will be an expansion in 1/Z. Of course,

ultimately we will set 1/Z = 1/2 which is not a terribly small number. This might give

us concern that perturbation theory will not be very accurate for this problem.
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We now place each electron in the usual hydrogen ground state ψ1,0,0(x), adapted to

general Z

ψ1,0,0(x) =

√
Z3

πa30
e−Zr/a0 (2.4)

where a0 is the Bohr radius, defined as

a0 =
4πϵ0ℏ2

me2
≈ 5× 10−11 m

To leading order, the shift of the ground state energy is given by the standard result

of first order perturbation theory,

∆E =
e2

4πϵ0

∫
d3x1d

3x2
|ψ1,0,0(x1)|2|ψ1,0,0(x2)|2

|x1 − x2|

We need to compute this integral.

The trick is to pick the right coordinate system.
x

1

r
2

θ2

φ
2

Figure 2:

We will work in spherical polar coordinates for both

particles. However, we will choose the z axis for the

second particle to lie along the direction x1 set by the

first particle. The advantage of this choice is that the

angle θ between the two particles coincides with the

polar angle θ2 for the second particle. In particular, the

separation between the two particles particles can be

written as

|x1 − x2| =
√

(x1 − x2)2 =
√
r21 + r22 − 2r1r2 cos θ2

In these coordinates, it is simple to do the integration over the angular variables for

the first particle, and over ϕ2 for the second. The shift in the energy then becomes

∆E =
8π2e2

4πϵ0

(
Z3

πa30

)2 ∫
dr1 r

2
1e

−2Zr1/a0

∫
dr2 r

2
2e

−2Zr2/a0

×
∫ +1

−1

d(cos θ2)
1√

r21 + r22 − 2r1r2 cos θ2

= −2πe2

ϵ0

(
Z3

πa30

)2 ∫
dr1 r

2
1e

−2Zr1/a0

∫
dr2 r

2
2e

−2Zr2/a0

√
(r1 − r2)2 −

√
(r1 + r2)2

r1r2

= −2πe2

ϵ0

(
Z3

πa30

)2 ∫
dr1 r

2
1e

−2Zr1/a0

∫
dr2 r

2
2e

−2Zr2/a0
|r1 − r2| − |r1 + r2|

r1r2
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Those modulus signs are a little odd, but easily dealt with. Because the integral is

symmetric in r1 and r2, the regime r1 > r2 must give the same result as the regime

r1 < r2. We can then focus on one of these regimes — say r1 > r2 where |r1 − r2| −
|r1 + r2| = −2r2 — and just double our result. We have

∆E =
8πe2

ϵ0

(
Z3

πa30

)2 ∫ ∞

r2

dr1 r1 e
−2Zr1/a0

∫ ∞

0

dr2 r
2
2 e

−2Zr2/a0

=
8πe2

ϵ0

(
Z3

πa30

)2 ∫ ∞

0

dr2 r
2
2

(
a0r2
2Z

+
a20
4Z2

)
e−4Zr2/a0

=
5

8

Ze2

4πϵ0a0
=

5Z

4
Ry

Using first order perturbation, we find that the ground state energy of helium is

E0 ≈ E +∆E =

(
−2Z2 +

5Z

4

)
Ry ≈ −74.8 eV

This is much closer to the correct value of E0 ≈ −79 eV . In fact, given that our

perturbative expansion parameter is 1/Z = 1/2, it’s much better than we might have

anticipated.

The Variational Method

We’ll now try again, this time using the variational method. For our trial wavefunction

we pick Ψ(x1,x2) = ψ(x1)ψ(x2) where

ψ(x;α) =

√
α3

πa30
e−αr/a0 (2.5)

This is almost the same as the hydrogen ground state (2.4) that we worked with above.

The only difference is that we’ve replaced the atomic number Z with a general param-

eter α that we will allow to vary. We can tell immediately that this approach must do

at least as well at estimating the ground state energy because setting α = Z reproduces

the results of first order perturbation theory.

The expectation of the energy using our trial wavefunction is

E(α) =

∫
d3x1d

3x2 ψ
⋆(x1)ψ

⋆(x2)Hψ(x1)ψ(x2)

with H the differential operator given in (2.1). Now we have to evaluate all terms in

the Hamiltonian afresh. However, there is trick we can use. We know that (2.5) is the

ground state of the Hamiltonian

Hα =
p2

2m
− αe2

4πϵ0

1

r
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where we’ve replaced Z by α in the second term. With this observation, we write the

helium Hamiltonian (2.1) as

H = Hα(p1, r1) +Hα(p2, r2) +
e2

4πϵ0

[
(α− Z)

(
1

r1
+

1

r2

)
+

1

|x1 − x2|

]
Written in this way, the expected energy becomes

E(α) = −2α2Ry +
e2

4πϵ0

[
2(α− Z)

∫
d3x
|ψ(x)|2

r
+

∫
d3x1d

3x2
|ψ(x1)|2|ψ(x2)|2

|x1 − x2|

]
Here, the first term comes from the fact that our trial wavefunction is the ground state

of Hα with ground state energy given by (2.2). We still need to compute the integrals

in the second and third term. But both of these are straightforward. The first is∫
d3x
|ψ(x)|2

r
= 4π

α3

πa30

∫
dr re−2αr/a0 =

α

a0

Meanwhile, the final integral is the same as we computed in our perturbative calcula-

tion. It is ∫
d3x1d

3x2
|ψ(x1)|2|ψ(x2)|2

|x1 − x2|
=

5α

8a0

Putting this together, we have

E(α) =

(
−2α2 + 4(α− Z)α +

5

4
α

)
Ry

This is minimized for α⋆ = Z − 5/16. The minimum value of the energy is then

E(α⋆) = −2
(
Z − 5

16

)2

Ry ≈ −77.5 eV (2.6)

We see that this is somewhat closer to the true value of E0 ≈ −79.0 eV .

There’s one last bit of physics hidden in this calculation. The optimum trial wave-

function that we ended up using was that of an electron orbiting a nucleus with charge

(Z − 5/16)e, rather than charge Ze. This has a nice interpretation: the charge of the

nucleus is screened by the presence of the other electron.

2.1.3 Do Bound States Exist?

There is one kind of question where variational methods can give a definitive answer.

This is the question of the existence of bound states.
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Consider a particle moving in a localised potential V (x), such that V (x) → 0 as

x → ∞. A bound state is an energy eigenstate with E < 0. For some potentials,

there exist an infinite number of bound states; the Coulomb potential V = 1/r in

three dimensions is a familiar example. For other potentials there will be only a finite

number. And for some potentials there will be none. How can we tell what properties

a given potential has?

Clearly the variational method can be used to prove the existence of a bound state.

All we need to do is exhibit a trial wavefunction which has E < 0. This then ensures

that the true ground state also has E0 < 0.

An Example: The Hydrogen Anion

A hydrogen anion H− consists of a single proton, with two electrons in its orbit. But

does a bound state of two electrons and a proton exist?

The Hamiltonian for H− is the same as that for helium, (2.1), but now with Z = 1.

This means that we can import all the calculations of the previous section. In particular,

our variational method gives a minimum energy (2.6) which is negative when we set

Z = 1. This tells us that a bound state of two electrons and a proton does indeed exist.

An Example: The Yukawa Potential

The Yukawa potential in three dimensions takes the form

V (r) = −Ae
−λr

r
(2.7)

For A > 0, this is an attractive potential. Note that if we set λ = 0, this coincides with

the Coulomb force. However, for λ ̸= 0 the Yukawa force drops off much more quickly.

The Yukawa potential arises in a number of different places in physics. Here are two

examples:

• In a metal, electric charge is screened. This was described in Section 7.7 of the

lecture notes on Electromagnetism. This causes the Coulomb potential to be

replaced by the Yukawa potential.

• The strong nuclear force between a proton and a neutron is complicated. However,

at suitably large distances it is well approximated by the Yukawa potential, with

r the relative separation of the proton and neutron. Indeed, this is the context in

which Yukawa first suggested his potential. Thus the question of whether (2.7)

admits a bound state is the question of whether a proton and neutron can bind

together.
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A spoiler: the hydrogen atom has stable isotope known as deuterium. Its nu-

cleus, known as the deuteron, consists of a proton and neutron. Thus, experiment

tells us that a bound state must exist. We’d like to understand this theoretically,

if only to be sure that the experiments aren’t wrong!

The Hamiltonian is

H = − ℏ2

2m
∇2 + V (r)

In the context of deuterium, r is the distance between the proton and neutron so m

should really be interpreted as the reduced mass m = mpmn/(mp +mn) ≈ mp/2. We

will work with a familiar trial wavefunction,

ψ(x;α) =

√
α3

π
e−αr

This is the ground state of the hydrogen atom. The factor in front ensures that the

wavefunction is normalised:
∫
d3x |ψ|2 = 1. A short calculation shows that the expected

energy is

E(α) =
ℏ2α2

2m
− 4Aα3

(λ+ 2α)2

It’s easy to check that there is a value of α for which E(α) < 0 whenever

λ <
Am

ℏ2
This guarantees that the Yukawa potential has a bound state when the parameters lie

within this regime. We cannot, however, infer the converse: this method doesn’t tell

us whether there is a bound state when λ > Am/ℏ2.

It turns out that for λ suitably large, bound states do cease to exist. The simple

variational method above gets this qualitative bit of physics right, but it does not do

so well in estimating the bound. Numerical results tell us that there should be a bound

state whenever λ ≲ 2.4Am/ℏ2.

Bound States and The Virial Theorem

There is a connection between these ideas and the virial theorem. Let’s first remind

ourselves what the virial theorem is in this context. Suppose that we have a particle

in d dimensions, moving in the potential

V (x) = Arn (2.8)

This means that the potential scales as V (λx) = λnV (x). We will assume that there

is a normalised ground state with wavefunction ψ0(x).
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The ground state energy is

E0 =

∫
ddx

ℏ2

2m
|∇ψ0(x)|2 + V (x)|ψ0(x)|2 ≡ ⟨T ⟩0 + ⟨V ⟩0

Now consider the trial wavefunction ψ(x) = αd/2ψ0(αx), where the prefactor ensures

that ψ(x) continues to be normalised. From the scaling property of the potential (2.8),

it is simple to show that

E(α) = α2⟨T ⟩0 + α−n⟨V ⟩0

The minimum of E(α) is at

dE

dα
= 2α⟨T ⟩0 − nα−n+1⟨V ⟩0 = 0

But this minimum must sit at α = 1 since, by construction, this is the true ground

state. We learn that for the homogeneous potentials (2.8), we have

2⟨T ⟩0 = n⟨V ⟩0 (2.9)

This is the virial theorem.

Let’s now apply this to our question of bound states. Here are some examples:

• V ∼ −1/r: This is the Coulomb potential. The virial theorem tells us that

E0 = ⟨T ⟩0 + ⟨V ⟩0 = −⟨T ⟩0 < 0. In other words, we proved what we already

know: the Coulomb potential has bound states.

There’s a subtlety here. Nowhere in our argument of the virial theorem did we

state that the potential (2.8) has A < 0. Our conclusion above would seem to

hold for A > 0, yet this is clearly wrong: the repulsive potential V ∼ +1/r has

no bound states. What did we miss? Well, we assumed right at the beginning of

the argument that the ground state ψ0 was normalisable. For repulsive potentials

like V ∼ 1/r this is not true: all states are asymptotically plane waves of the

form eik·x. The virial theorem is not valid for repulsive potentials of this kind.

• V ∼ −1/r3: Now the virial theorem tells us that E0 = 1
3
⟨T ⟩0 > 0. This is

actually a contradiction! In a potential like V ∼ 1/r3, any state with E > 0 is

non-normalisable since it mixes with the asymptotic plane waves. It must be that

this potential has no localised states.
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This result might seem surprising. Any potential V ∼ −rn with n ≤ −3
descends steeply at the origin and you might think that this makes it efficient

at trapping particles there. The trouble is that it is too efficient. The kinetic

energy of the particle is not sufficient to hold it up at some finite distance, and

the particle falls towards the origin. Such potentials have no bound states.

Bound States in One Dimension

There is an exact and rather pretty result V(x)

x

Figure 3: Does a bound state exist?

that holds for particles moving in one-dimension.

Consider a particle moving in a potential V (x)

such that V (x) = 0 for |x| > L. However, when

|x| < L, the potential can do anything you like:

it can be positive or negative, oscillate wildly or

behave very calmly.

Theorem: A bound state exists whenever
∫
dx V (x) < 0. In other words, a bound

state exists whenever the potential is ”mostly attractive”.

Proof: We use the Gaussian variational ansatz

ψ(x;α) =
(α
π

)1/4
e−αx

2/2

Then we find

E(α) =
ℏ2α
4m

+

√
α

π

∫ ∞

−∞
dx V (x)e−αx

2

where the ℏ2α/4m term comes from the kinetic energy. The trick is to look at the

function

E(α)√
α

=
ℏ2
√
α

4m
+

1√
π

∫ ∞

−∞
dx V (x)e−αx

2

This is a continuous function of α. In the limit α→ 0, we have

E(α)√
α
→ 1√

π

∫ ∞

−∞
dx V (x)

If
∫
dx V (x) < 0 then limα→0E(α)/

√
α < 0 and, by continuity, there must be some

small α > 0 for which E(α) < 0. This ensures that a bound state exists. □

Once again, the converse to this statement does not hold. There are potentials with∫
dx V (x) > 0 which do admit bound states.
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You may wonder if we can extend this result to higher dimensions. It turns out that

there is an analogous statement in two dimensions1. However, in three dimensions or

higher there is no such statement. In that case, if the potential is suitably shallow there

are no bound states.

2.1.4 An Upper Bound on Excited States

So far, we’ve focussed only on approximating the energy of the ground state. Can we

also use the variational method to give a bound on the energy of excited states?

This is rather more tricky. We can make progress if we know the ground state |0⟩
exactly. In this case, we construct a trial wavefunction |ψ(α)⟩ that is orthogonal to the

ground state,

⟨ψ(α)|0⟩ = 0 for all α (2.10)

Now we can simply rerun our arguments of Section 2.1.1. The minimum of E(α) =

⟨ψ(α)|H|ψ(α)⟩ provides an upper bound on the energy E1 of the first excited state.

In principle, we could then repeat this argument. Working with a trial wavefunction

that is orthogonal to both |0⟩ and |1⟩ will provide an upper bound on the energy E2 of

the second excited state.

In practice, this approach is not much use. Usually, if we’re working with the varia-

tional method then it’s because we don’t have an exact expression for the ground state,

making it difficult to construct a trial wavefunction obeying (2.10). If all we have is

an approximation to the ground state, this is no good at all in providing a bound for

excited states.

There is, however, one situation where we can make progress: this is if our Hamilto-

nian has some symmetry or, equivalently, some other conserved quantity. If we know

the quantum number of the ground state under this symmetry then we can guarantee

(2.10) by constructing our trial wavefunction to have a different quantum number.

An Example: Parity and the Quartic Potential

For a simple example of this, let’s return to the quartic potential of Section 2.1.1. The

Hamiltonian is

H = − d2

dx2
+ x4

1More details can be found in the paper by Barry Simon, “The bound state of weakly coupled

Schrödinger operators in one and two dimensions”, Ann. Phys. 97, 2 (1976), which you can download

here.
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This Hamiltonian is invariant under parity, mapping x → −x. The true ground state

must be even under parity. We can therefore construct a class of trial wavefunctions

for the first excited state which are odd under parity. An obvious choice is

ψ(x;α) =

(
4α3

π

)1/4

x e−αx
2/2

Churning through some algebra, one finds that the minimum energy using this wave-

function is

E(α⋆) ≈ 3.85

The true value is E1 ≈ 3.80.

2.2 WKB

The WKB approximation is a method for solving the one-dimensional Schrödinger

equation. The approximation is valid in situations where the potential changes slowly

compared to the de Broglie wavelength λ = 2πℏ/p of the particle. The basic idea is that
the wavefunction will be approximately that of a free particle, but with an amplitude

and phase that vary to compensate the changes in the potential.

The method is named after the physicists Wentzel, Kramers and Brillouin. It is

sometimes called the WKBJ approximation, with Harold Jeffreys’ name tagged on

the end to recognise the fact that he discovered before any of the other three. The

main applications of the method are in estimating bound state energies and computing

tunnelling rates.

2.2.1 The Semi-Classical Expansion

Before we jump into the quantum problem, let’s build some classical intuition. Suppose

that a one-dimensional potential V (x) takes the form shown on the left-hand figure

below. A classical particle with energy E will oscillate backwards and forwards, with

momentum given by

p(x) ≡ ℏk(x) ≡
(
2m (E − V (x))

)1/2
(2.11)

Clearly, the particle only exists in the regions where E ≥ V (x). At the points where

E = V (x), it turns around and goes back the other way.
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V(x) , ψ(x)

Figure 4: The classical state. Figure 5: The quantum state.

Now let’s think about a quantum particle. Suppose that the potential varies slowly.

This means that if we zoom into some part of the figure then the potential will be

approximately constant. We may imagine that in this part of the potential, we can

approximate the wavefunction by the plane wave ψ(x) ∼ eip(x)x. However, the wave-

function also spreads beyond the region where the classical particle can reach. Here

E < V (x) and so, taken at face value, (2.11) tells us that p(x) becomes purely imagi-

nary. This means that the ansatz ψ(x) ∼ eip(x)x will lead to an exponentially decaying

tail of the wavefunction (at least if we pick the minus sign correctly). But that’s exactly

what we expect the wavefunction to do in this region.

These ideas form the basis of the WKB approximation. Our goal now is to place

them on a more systematic footing. To this end, consider the one-dimensional time-

independent Schrödinger equation

− ℏ2

2m

d2ψ

dx2
+ V (x)ψ = Eψ

It will prove useful to write this as

d2ψ

dx2
+

2m

ℏ2
(E − V (x))ψ = 0

Motivated by our discussion above, we will look for solutions of the form

ψ(x) = eiW (x)/ℏ

Plugging this ansatz into the Schrödinger equation leaves us with the differential equa-

tion

iℏ
d2W

dx2
−
(
dW

dx

)2

+ p(x)2 = 0 (2.12)

where the classical momentum p(x) defined in (2.11) makes an appearance.
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The plane wave solutions arise whenW (x) = ℏkx, in which case the second derivative

in (2.12) vanishes. Here we’ll look for solutions where this second derivative is merely

small, meaning

ℏ
∣∣∣∣d2Wdx2

∣∣∣∣≪ ∣∣∣∣dWdx
∣∣∣∣2 (2.13)

We refer to this as the semi-classical limit.

Roughly speaking, (2.13) can be thought of as the ℏ→ 0 limit. Indeed, mathemati-

cally, it makes sense to attempt to solve (2.12) using a power series in ℏ. As physicists,
this should makes us squirm a little as ℏ is dimensionful, and so can’t be “small”. But

we’ll first solve the problem and then get a better understanding of when the solution

is valid. For these purposes, we treat p(x) as the background potential which we will

take to be O(ℏ0). We expand our solution as

W (x) = W0(x) + ℏW1(x) + ℏ2W2(x) + . . .

Plugging this ansatz into (2.12) gives[
−W ′

0(x)
2 + p(x)2

]
+ ℏ

[
iW

′′

0 (x)− 2W ′
0(x)W

′
1(x)

]
+O(ℏ2) = 0

We see that we can now hope to solve these equations order by order in ℏ. The first is
straightforward,

W ′
0(x) = ±p(x) ⇒ W0(x) = ±

∫ x

dx′ p(x′)

This is actually something that arises also in classical mechanics: it is the Hamilton-

Jacobi function. More details can be found in Sections 4.7 and 4.8 of the lecture notes

on Classical Dynamics.

At O(ℏ), we have

W ′
1(x) =

i

2

W
′′
0 (x)

W ′
0(x)

=
i

2

p′(x)

p(x)
⇒ W1(x) =

i

2
log p(x) + c

for some constant c. Putting these together gives us the WKB approximation to the

wavefunction,

ψ(x) ≈ A√
p(x)

exp

(
± i
ℏ

∫ x

dx′ p(x′)

)
(2.14)

The probability of finding a particle at x is, of course, |ψ(x)|2 ∼ 1/p(x). This is intu-

itive: the probability of finding a particle in some region point should be proportional

to how long it spends there which, in turn, is inversely proportional to its momentum.

– 39 –

http://www.damtp.cam.ac.uk/user/tong/dynamics.html


Validity of WKB

Before moving on, let’s try to get a better feeling for the validity of the WKB approx-

imation. To leading order, our requirement (2.13) reads

ℏ
∣∣∣∣dpdx

∣∣∣∣≪ |p(x)|2 ⇒ 1

2π

dλ

dx
≪ 1

where λ = 2πℏ/p is the de Broglie wavelength. This is the statement that the de Broglie

wavelength of the particle does not change considerably over distances comparable to

its wavelength.

Alternatively, we can phrase this as a condition on the potential. Using (2.11), we

have

λ(x)

∣∣∣∣dVdx
∣∣∣∣≪ 4π × |p(x)|

2

2m

which roughly says that the change of the potential energy over a de Broglie wavelength

should be much less than the kinetic energy (with the factor of 4π giving an order of

magnitude in leniency.)

The Need for a Matching Condition

Let’s take a slowly varying potential. We want to find a solution to the Schrödinger

equation with some energy E.

The WKB approximation does provides a solution in regions where E ≫ V (x) and,

correspondingly, p(x) is real. This is the case in the middle of the potential, where

the wavefunction oscillates. The WKB approximation also provides a solutions when

E ≪ V (x), where p(x) is imaginary. This is the case to the far left and far right, where

the wavefunction suffers either exponential decay or growth

ψ(x) ≈ A

2m(V (x)− E))1/4
exp

(
±1

ℏ

∫ x

dx′
√

2m(V (x′)− E)
)

The choice of ± is typically fixed by normalisability requirements.

But what happens in the region near E = V (x)? Here the WKB approximation is

never valid and the putative wavefunction (2.14) diverges because p(x) = 0. What to

do?

The point x0 where p(x0) = 0 is the classical turning point. The key idea that

makes the WKB approximation work is matching. This means that we use the WKB

approximation where it is valid. But in the neighbourhood of any turning point we will

instead find a different solution. This will then be matched onto our WKB solution.

– 40 –



So what is the Schrödinger equation that we want to solve in the vicinity of x0? We

expand the potential energy, keeping only the linear term

V (x) ≈ E + C(x− x0) + . . .

The Schrödinger equation is then

− ℏ2

2m

d2ψ

dx2
+ C(x− x0)ψ = 0 (2.15)

We will solve this Schrödinger equation exactly, and then match this solution to the

WKB wavefunction (2.14) to the left and right.

2.2.2 A Linear Potential and the Airy Function

The problem of the Schrödinger equation for a linear potential is interesting in its

own right. For example, this describes a particle in a constant gravitational field

with x the distance above the Earth. (In this case, we would place a hard wall —

corresponding to the surface of the Earth — at x = 0 by requiring that ψ(0) = 0.)

Another example involves quarkonium, a bound state of a heavy quark and anti-quark.

Due to confinement of QCD, these experience a linearly growing potential between

them.

For a linear potential V (x) = Cx, with C constant, the Schrödinger equation is

− ℏ2

2m

d2ψ

dx2
+ Cxψ = Eψ (2.16)

Before proceeding, it’s best rescale our variables to absorb all the factors floating

around. Define the dimensionless position

u =

(
2mC

ℏ2

)1/3

(x− E/C) (2.17)

Then the Schrödinger equation (2.16) becomes

d2ψ

du2
− uψ = 0 (2.18)

This is known as the Airy equation. The solution is the Airy function, ψ(u) = Ai(u),

which is defined by the somewhat strange looking integral

Ai(u) =
1

π

∫ ∞

0

dt cos

(
t3

3
+ ut

)
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Figure 6: The Airy function.

To check this, note that(
d2

du2
− u
)
Ai(u) = − 1

π

∫ ∞

0

dt (t2 + u) cos

(
t3

3
+ ut

)
= − 1

π

∫ ∞

0

dt
d

dt
sin

(
t3

3
+ ut

)
The lower limit of the integral clearly vanishes. The upper limit is more tricky. Heuris-

tically, it vanishes as sin t3 oscillates more and more quickly as t → ∞. More care is

needed to make a rigorous argument.

A plot of the Airy function is shown in Figure 6. It has the nice property that it

oscillates for u < 0, but decays exponentially for u > 0. Indeed, it can be shown that

the asymptotic behaviour is given by

Ai(u) ∼ 1

2

(
1

π
√
u

)1/2

exp

(
−2

3
u3/2

)
u≫ 0 (2.19)

and

Ai(u) ∼
(

1

π
√
−u

)1/2

cos

(
2

3
u
√
−u+ π

4

)
u≪ 0 (2.20)

This kind of behaviour is what we would expect physically. Tracing through our defini-

tions above, the region u < 0 corresponds to E > V (x) and the wavefunction oscillates.

Meanwhile, u > 0 corresponds to E < V (x) and the wavefunction dies quickly.

The Airy equation (2.18) is a second order differential equation and so must have a

second solution. This is known as Bi(u). It has the property that it diverges as x→∞,

so does not qualify as a good wavefunction in our problem.
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An Aside: Quarkonium

Take a quark and anti-quark and separate them. The quarks generate a field which is

associated to the strong nuclear force and is sometimes called the chromoelectric field.

Just like in Maxwell theory, this field gives rise to a force between the two quarks.

Classically the force between two quarks scales as

Figure 7:

V ∼ 1/r, just like the Coulomb force. However, quan-

tum fluctuations of the chromoelectric field dramati-

cally change this behaviour and the chromoelectric field

forms a collimated flux tube linking the quarks. A nu-

merical simulation of this effect is shown on the right2.

The upshot of this is that the potential between two

quarks changes from being V ∼ 1/r to the form

V = Cr (2.21)

This means that, in sharp contrast to other forces, it gets harder and harder to separate

quarks. This behaviour is known as confinement. The coefficient C is referred to as

the string tension.

We won’t explain here why the potential takes the linear form (2.21). (In fact, you

won’t find a simple explanation of that anywhere! It’s closely related to the Clay

millenium prize problem on Yang-Mills theory. A large part of the lecture notes on

Gauge Theory is devoted to an intuitive understanding of how confinement comes

about.) Instead we’ll just look at the spectrum of states that arises when two quarks

experience a linear potential. These states are called quarkonium. The Schrödinger

equation is

− ℏ2

2m

(
1

r2
d

dr

(
r2
dψ

dr

)
− l(l + 1)

r2
ψ(r)

)
+ Crψ(r) = Eψ(r)

There is an interesting story about how this spectrum depends on the angular momen-

tum l but, for now, we look at the l = 0 sector. Defining χ = rψ and the dimensionless

coordinate u = (2mC/ℏ2)1/3(r−E/C) as in (2.17), we see that this once again reduces

to the Airy equation, with solutions given by χ(u) = Ai(u)

So far there is no quantisation of the allowed energy E. This comes from the require-

ment that χ(r = 0) = 0. In other words,

Ai

(
−
(

2m

ℏ2C2

)1/3

E

)
= 0

2This is part of a set of animations of QCD, the theory of the strong force. You can see them at

Derek Leinweber’s webpage. They’re pretty!
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The zeros of the Airy function Ai(y) can be computed numerically. The first few occur

at y = −y⋆, with

y⋆ = 2.34, 4.09, 5.52, 6.79, 7.94, 9.02, . . .

The first few energy levels are then E = (ℏ2C2/2m)1/3y⋆.

An Application: Matching the WKB Solution

For us, the main purpose in introducing the Airy function is to put it to work in the

WKB approximation. The Airy function solves the Schrödinger equation (2.15) in the

vicinity of the turning point x0 where, comparing to (2.16), we see that we should set

x0 = E/C. The asymptotic behaviour (2.19) and (2.20) is exactly what we need to

match onto the WKB solution (2.14).

Let’s see how this works. First consider u ≪ 0, corresponding to x ≪ x0. Here

E > V (x) and we have the oscillatory solution. We want to rewrite this in terms of our

original variables. In this region, V (x) ≈ E + C(x− x0), so we can justifiably replace

|u| =
(
2mC

ℏ2

)1/3

(x0 − x) =
(

2m

ℏ2C2

)1/3

(E − V (x))

where we’ve used our definition of p(x) given in (2.11). In these variables, the asymp-

totic form of the Airy function (2.20) is given by

Ai(x) ∼

(
(2mCℏ)1/3

π
√
2m(E − V (x))

)1/2

cos

(
1

ℏ

∫ x

x0

dx′
√

2m(E − V (x′)) +
π

4

)
(2.22)

This takes the same oscillatory form as the WKB solution (2.14). The two solutions

can be patched together simply by picking an appropriate normalisation factor and

phase for the WKB solution.

Similarly, in the region u≫ 0, the exponentially decaying form of the Airy function

(2.19) can be written as

Ai(x) ∼ 1

2

(
(2mCℏ)1/3

π
√
2m(V (x)− E)|

)1/2

exp

(
−1

ℏ

∫ x

x0

dx′
√

2m((V (x′)− E)
)

(2.23)

This too has the same form as the exponentially decaying WKB solution (2.14).

This, then, is how we piece together solutions. In regions where E > V (x), the

WKB approximation gives oscillating solutions. In regimes where E < V (x), it gives

exponentially decaying solutions. The Airy function interpolates between these two

regimes. The following examples describes this method in practice.
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2.2.3 Bound State Spectrum

As an example of this matching, let’s return to the po-

x
E

V(x)

ba

Figure 8:

tential shown on the right. Our goal is to compute the

spectrum of bound states. We first split the potential

into three regions where the WKB approximation can

be trusted:

Region 1 x≪ a

Region 2 a≪ x≪ b

Region 3 x≫ b

We’ll start in the left-most Region 1. Here the WKB

approximation tells us that the solution dies exponentially as

ψ1(x) ≈
A

2m(V (x)− E))1/4
exp

(
−
∫ a

x

dx′
√

2m(V (x′)− E)
)

As we approach x = a, the potential takes the linear form V (x) ≈ E + V ′(a)(x − a)
and this coincides with the asymptotic form (2.19) of the Airy function Ai(−u). We

then follow this Airy function through to Region 2 where the asymptotic form (2.22)

tells us that we have

ψ2(x) ≈
2A

2m(V (x)− E))1/4
cos

(
1

ℏ

∫ x

a

dx′
√

2m(E − V (x′))− π

4

)
(2.24)

Note the minus sign in the phase shift −π/4. This arises because we’re working with

Ai(−u). The Airy function takes this form close to x = a where V (x) is linear. But, as

we saw above, we can now extend this solution throughout Region 2 where it coincides

with the WKB approximation.

We now repeat this procedure to match Regions 2 an 3. When x ≫ b, the WKB

approximation tells us that the wavefunction is

ψ3(x) ≈
A′

2m(V (x)− E))1/4
exp

(
−
∫ x

b

dx′
√

2m(V (x)− E)
)

Matching to the Airy function across the turning point x = b, we have

ψ2(x) ≈
2A′

2m(V (x)− E))1/4
cos

(
1

ℏ

∫ x

b

dx′
√
2m(E − V (x′)) +

π

4

)
(2.25)

We’re left with two expressions (2.24) and (2.25) for the wavefunction in Region 2.

Clearly these must agree. Equating the two tells us that |A| = |A′|, but they may differ
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by a sign, since this can be compensated by the cos function. Insisting that the two

cos functions agree, up to sign, gives us the condition

1

ℏ

∫ x

a

dx′
√
2m(E − V (x′))− π

4
=

1

ℏ

∫ x

b

dx′
√

2m(E − V (x′)) +
π

4
+ nπ

for some integer n. Rearranging gives∫ b

a

dx′
√

2m(E − V (x′)) =

(
n+

1

2

)
ℏπ (2.26)

To complete this expression, we should recall what we mean by a and b. For a given

energy E, these are the extreme values of the classical trajectory where p(x) = 0. In

other words, we can write a = xmin and b = xmax. If we write our final expression in

terms of the momentum p(x), it takes the simple form∫ xmax

xmin

dx′ p(x′) =

(
n+

1

2

)
ℏπ (2.27)

An Example: The Harmonic Oscillator

To illustrate this, let’s look at an example that we all known and love: the harmonic

oscillator with V (x) = m2ω2x2. The quantisation condition (2.26) becomes∫ xmax

xmin

dx
√

2m(E −m2ω2x2) =
2mE

mω

π

2
=

(
n+

1

2

)
ℏπ ⇒ E =

(
n+

1

2

)
ℏω

This, of course, is the exact spectrum of the harmonic oscillator. I should confess that

this is something of a fluke. In general, we will not get the exact answer. For most

potentials, the accuracy of the answer improves as n increases. This is because the high

n are high energy states. These have large momentum and, hence, small de Broglie

wavelength, which is where the WKB approximation works best.

2.2.4 Bohr-Sommerfeld Quantisation

TheWKB approximation underlies an important piece of history from the pre-Schrödinger

era of quantum mechanics. We can rewrite the quantisation condition (2.27) as∮
dx p(x) =

(
n+

1

2

)
2πℏ

where
∮
means that we take a closed path in phase space which, in this one-dimensional

example, is from xmin to xmax and back again. This gives the extra factor of 2 on the

right-hand side. You may recognise the left-hand-side as the adiabatic invariant from

the Classical Dynamics lectures. This is a sensible object to quantise as it doesn’t

change if we slowly vary the parameters of the system.
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In the old days of quantum mechanics, Bohr and Sommerfeld introduced an ad-hoc

method of quantisation. They suggested that one should impose the condition∮
dx p(x) = 2πnℏ

with n an integer. They didn’t include the factor of 1/2. They made this guess because

it turns out to correctly describe the spectrum of the hydrogen atom. This too is

something of a fluke! But it was an important fluke that laid the groundwork for

the full development of quantum mechanics. The WKB approximation provides an

a-posteriori justification of the Bohr-Sommerfeld quantisation rule, laced with some

irony: they guessed the wrong approximate quantisation rule which, for the system

they were interested in, just happened to give the correct answer!

More generally, “Bohr-Sommerfeld quantisation” means packaging up a 2d-dimensional

phase space of the system into small parcels of volume (2πℏ)d and assigning a quan-

tum state to each. It is, at best, a crude approximation to the correct quantisation

treatment.

2.2.5 Tunnelling out of a Trap

For our final application of the WKB approximation, we look at the problem of tun-

nelling out of a trap. This kind of problem was first introduced by Gammow as a model

for alpa decay.

Consider the potential shown in the figure, with

x

 (x)ψV(x) , 

Figure 9:

functional form

V (x) =

{
−V0 x < R

+α/x x > R

We’ll think of this as a one-dimensional problem; it is

not difficult to generalise to a three dimensions. Here R

is to be thought of as the size of the nucleus, V0 models

the nuclear binding energy while, outside the nucleus,

the particle feels a Coulomb repulsion. If we take the particle to have charge q (for

an alpha particle, this is q = 2e) and the nucleus that remains to have charge Ze, we

should have

α =
Zqe

4πϵ0
(2.28)
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Any state with E < 0 is bound and cannot leave the trap. (These are shown in green

in the figure.) But those with 0 < E < α/R are bound only classically; quantum

mechanics allows them to tunnel through the barrier and escape to infinity. We would

like to calculate the rate at which this happens.

In the region x < R, the wavefunction has the form

ψinside(x) = Aeikx with E =
ℏ2k2

2m

After tunnelling, the particle emerges at distance x = x⋆ defined by E = α/x⋆. For

x > x⋆, the wavefunction again oscillates, with a form given by the WKB approximation

(2.14), However, the amplitude of this wavefunction differs from the value A. The ratio

of these two amplitudes determines the tunnelling rate.

To compute this, we patch the two wavefunctions together using the exponentially

decaying WKB solution in the region R < x < x⋆. This gives

ψ(x⋆) = ψ(R) e−S/ℏ

where the exponent is given by the integral

S =

∫ x⋆

R

dx′
√
2m
(α
x′
− E

)
(2.29)

This integral is particularly simple to compute in the limit R→ 0 where it is given by

S =

√
2m

E
πα =

2πα

ℏv

where, in the second equality, we’ve set the energy of the particle equal to its classical

kinetic energy: E = 1
2
mv2.

The transmission probability T is then given by

T =
|ψ(x⋆)|2

|ψ(R)|2
= e−2S/ℏ (2.30)

This already contains some interesting information. In particular, recalling the defini-

tion of α in (2.28), we see that the larger the charge of the nucleus, the less likely the

decay.
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Usually we discuss the decay of atomic nuclei in terms of lifetimes. We can compute

this by adding some simple (semi)-classical ideas to the above analysis. Inside the trap,

the particle is bouncing backwards and forwards with velocity

v0 =

√
2(E + V0)

m

This means that the particle hits the barrier with frequency ν = v0/R. The decay rate

is then Γ = νe−2S/ℏ and the lifetime is

τ =
R
√
m√

2(E + V0)
e2S/ℏ

We didn’t really treat the dependence on R correctly above. We set R = 0 when

evaluating the exponent in (2.29), but retained it in the pre-factor. A better treatment

does not change the qualitative results.

One Last Thing...

It is not difficult to extend this to a general potential V (x) as
V(x)

x

Figure 10:

shown in the figure. In all cases, the transmission probability

has an exponential fall-off of the form T ∼ e−2S/ℏ where S

is given by

S =

∫ x1

x0

dx′
√

2m(V (x)− E) (2.31)

where the positions x0 and x1 are the classical values where

V (x) = E, so that the integral is performed only over the forbidden region of the

potential.

There is a lovely interpretation of this result that has its heart in the path integral

formulation of quantum mechanics. Consider the a classical system with the potential

−V (x) rather than +V (x). In other words, we turn the potential upside down. The

action for such a system is

S[x(t)] =

∫ t1

t0

dt
1

2
mẋ2 + V (x)

In this auxiliary system, there is a classical solution, xcl(t) which bounces between the

two turning points, so xcl(t0) = x0 and xcl(t1) = x1. It turns out that the exponent

(2.31) is precisely the value of the action evaluated on this solution

S = S[xcl(t)]

This result essentially follows from the discussion of Hamilton-Jacobi theory in the

Classical Dynamics lecture notes.
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2.3 Changing Hamiltonians, Fast and Slow

You learned in the previous course how to set-up perturbation theory when the Hamil-

tonian H(t) changes with time. There are, however, two extreme situations where life

is somewhat easier. This is when the changes to the Hamiltonian are either very fast,

or very slow.

2.3.1 The Sudden Approximation

We start with the fast case. We consider the situation where the system starts with

some Hamiltonian H0, but then very quickly changes to another Hamiltonian H. This

occurs over a small timescale τ .

Of course “very quickly” is relative. We require that the time τ is much smaller than

any characteristic time scale of the original system. These time scales are set by the

energy splitting, so we must have

τ ≪ ℏ
∆E

If these conditions are obeyed, the physics is very intuitive. The system originally sits

in some state |ψ⟩. But the change happens so quickly that the state does not have a

chance to respond. After time τ , the system still sits in the same state |ψ⟩. The only

difference is that the time dynamics is now governed by H rather than H0.

An Example: Tritium

Tritium, 3H, is an isotope of hydrogen whose nucleus contains a single proton and two

neutrons. It is unstable with a half-life of around 12 years. It suffers beta decay to

helium, emitting an electron and anti-neutrino in the process

3H→ 3He+ + e− + ν̄e

The electron is emitted with a fairly wide range of energies, whose mean is E ∼ 5.6 keV .

Since the mass of the electron is mc2 ≈ 511 keV , the electron departs with a speed

given by E = 1
2
mv2 (we could use the relativistic formula E = mγc2 but it doesn’t

affect the answer too much). This is v ≈ 0.15 c. The time taken to leave the atom is

then τ ≈ a0/v ≈ 10−19 s where a0 ≈ 5× 10−11 m is the Bohr radius.

We’ll initially take the electron in the tritium atom to sit in its ground state. The

first excited state has energy difference ∆E = 3
4
E0 ≈ 10 eV , corresponding to a time

scale ℏ/∆E ≈ 6.5 × 10−17 s. We therefore find τ ≪ ℏ/∆E by almost two orders of

magnitude. This justifies our use of the sudden approximation.
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The electron ground state of the tritium atom is the same as that of hydrogen, namely

ψ0 =

√
Z3

πa30
e−Zr/a0 with Z = 1

After the beta decay, the electron remains in this same state, but this is no longer an

energy eigenstate. Indeed, the ground state of helium takes the same functional form,

but with Z = 2. The probability that the electron sits in the ground state of helium is

given by the overlap

P =

∣∣∣∣∫ d3x ψ⋆0(x;Z = 1)ψ0(x;Z = 2)

∣∣∣∣2 = 83

36
≈ 0.7

We see that 70% of the time the electron remains in the ground state. The rest of the

time it sits in some excited state, and subsequently decays down to the ground state.

2.3.2 An Example: Quantum Quench of a Harmonic Oscillator

There are a number of experimental situation where one deliberately make a rapid

change to the Hamiltonian. This forces the system away from equilibrium, with the

goal of opening a window on interesting dynamics. In this situation, the process of the

sudden change of the Hamiltonian is called a quantum quench.

As usual, the harmonic oscillator provides a particularly simple example. Suppose

that we start with the Hamiltonian

H0 =
p2

2m
+

1

2
ω2
0x

2 = ℏω0

(
a†0a0 +

1

2

)
where

a0 =
1√

2mω0

(mω0x+ ip)

Then, on a time scale τ ≪ ℏ/ω0, we change the frequency of the oscillator so that the

Hamiltonian becomes

H =
p2

2m
+

1

2
ω2x2 = ℏω

(
a†a+

1

2

)
Clearly the wavefunctions for energy eigenstates are closely related since the change in

frequency can be compensated by rescaling x. However, here we would like to answer

different questions: if we originally sit in the ground state of H0, which state of H do

we end up in?
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A little bit of algebra shows that we can write the new annihilation operator as

a =
1√
2mω

(mωx+ ip) =
1

2

(√
ω

ω0

+

√
ω0

ω

)
a0 +

1

2

(√
ω

ω0

−
√
ω0

ω

)
a†0

Let’s denote the ground state of H0 by |∅⟩. It obeys a0|∅⟩ = 0. In terms of our new

creation and annihilation operators, this state satisfies (ω + ω0)a|∅⟩ = (ω − ω0)a
†|∅⟩.

Expanded in terms of the eigenstates |n⟩, n = 0, 1, . . . of H, we find that it involves

the whole slew of parity-even excited states

|∅⟩ =
∞∑
n=0

α2n|2n⟩ with α2n+2 =

√
2n+ 1

2n+ 2

(
ω − ω0

ω + ω0

)
α2n

We can also address more detailed questions about the dynamics. Suppose that the

quench takes place at time t = 0. Working in the Heisenberg picture, we know that

⟨∅|x2(0)|∅⟩ = ℏ
2mω0

and ⟨∅|p2(0)|∅⟩ = ℏmω0

2

The position operator now evolves, governed by the new Hamiltonian H,

x(t) = x(0) cos(ωt) +
p(0)

mω
sin(ωt)

With a little bit of algebra we find that, for t2 > t1, the positions are correlated as

⟨∅|x(t2)x(t1)|∅⟩ =
ℏ

2mω

[
e−iω(t2−t1) +

(ω2 − ω2
0) cos(ω(t2 + t1)) + (ω − ω0)

2 cos(ω(t2 − t1))
2ωω0

]
The first term is the evolution of an energy eigenstate; this is what we would get if no

quench took place. The other terms are due to the quench. The surprise is the existence

of the term that depends on (t1 + t2). This is not time translationally invariant, even

though both times are measured after t = 0. This means that the state carries a

memory of the traumatic event that happened during the quench.

2.3.3 The Adiabatic Approximation

We now turn to the opposite limit, when the Hamiltonian changes very slowly. Here

“slow” is again relative to the energy splitting ℏ/∆E, as we will see below.

Consider a Hamiltonian H(λ) which depends on some number of parameters λi. For

simplicity, we will assume that H has a discrete spectrum. We write these states as

H|n(λ)⟩ = En(λ)|n(λ)⟩ (2.32)

Let’s place ourselves in one of these energy eigenstates. Now vary the parameters λi.

The adiabatic theorem states that if λi are changed suitably slowly, then the system

will cling to the energy eigenstate |n(λ(t))⟩ that we started off in.
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To see this, we want to solve the time-dependent Schrödinger equation

iℏ
∂|ψ(t)⟩
∂t

= H|ψ(t)⟩

We expand the solution in a basis of instantaneous energy eigenstates,

|ψ(t)⟩ =
∑
m

am(t) e
iξm(t) |m(λ(t))⟩ (2.33)

Here am(t) are coefficients that we wish to determine, while ξm(t) is the usual energy-

dependent phase factor

ξm(t) = −
1

ℏ

∫ t

0

dt′ Em(t
′)

To proceed, we substitute our ansatz (2.33) into the Schrödinger equation to find∑
m

[
ȧm e

iξm |m(λ)⟩+ am e
iξm

∂

∂λi
|m(λ)⟩λ̇i

]
= 0

where we’ve cancelled the two terms which depend on En. Taking the inner product

with ⟨n(λ)| gives

ȧn = −
∑
m

ame
i(ξm−ξn)⟨n(λ)| ∂

∂λi
|m(λ)⟩ λ̇i

= −ianAi(λ) λ̇i −
∑
m̸=n

ame
i(ξm−ξn)⟨n(λ)| ∂

∂λi
|m(λ)⟩ λ̇i (2.34)

In the second line, we’ve singled out the m = n term and defined

Ai(λ) = −i⟨n|
∂

∂λi
|n⟩ (2.35)

This is called the Berry connection. It plays a very important role in many aspects of

theoretical physics, and we’ll see some examples in Section 2.3.4.

First, we need to deal with the second term in (2.34). We will argue that this is

small. To see this, we return to our original definition (2.32) and differentiate with

respect to λ,

∂H

∂λi
|m⟩+H

∂

∂λi
|m⟩ = ∂Em

∂λi
|m⟩+ Em

∂

∂λi
|m⟩

Now take the inner product with ⟨n| where n ̸= m to find

(Em − En)⟨n|
∂

∂λi
|m⟩ = ⟨n|∂H

∂λi
|m⟩
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This means that the second term in (2.34) is proportional to

⟨n| ∂
∂λi
|m⟩ λ̇i = ⟨n|∂H

∂λi
|m⟩ λ̇i

Em − En
(2.36)

The adiabatic theorem holds when the change of parameters λ̇i is much smaller than

the splitting of energy levels Em − En. In this limit, we can ignore this term. From

(2.34), we’re then left with

ȧn = −ianAiλ̇

This is easily solved to give

an = Cn exp

(
−i
∫ t

0

dt′ Ai(λ(t′)) λ̇i
)

(2.37)

where Cn are constants.

This is the adiabatic theorem. If we start at time t = 0 with am = δmn, so the system

is in a definite energy eigenstate |n⟩, then the system remains in the state |n(λ)⟩ as
we vary λ. This is true as long as ℏλ̇i ≪ ∆E, so that we can drop the term (2.36).

In particular, this means that when we vary the parameters λ, we should be careful

to avoid level crossing, where another state becomes degenerate with the |n(λ)⟩ that
we’re sitting in. In this case, we will have Em = En for some |m⟩ and all bets are off:

when the states separate again, there’s no simple way to tell which linear combinations

of the state we now sit in.

However, level crossings are rare in quantum mechanics. In general, you have to tune

three parameters to specific values in order to get two states to have the same energy.

This follows by thinking about a general Hermitian 2× 2 matrix which can be viewed

as the Hamiltonian for the two states of interest. The general Hermitian 2× 2 matrix

depends on 4 parameters, but its eigenvalues only coincide if it is proportional to the

identity matrix. This means that three of those parameters have to be set to zero.

2.3.4 Berry Phase

There is a surprise hiding in the details of the adiabatic theorem. As we vary the

parameters λ, the phase of the state |n(λ)⟩ changes but there are two contributions,

rather than one. The first is the usual “e−iEt/ℏ” phase that we expect for an energy

eigenstate; this is shown explicitly in our original ansatz (2.33). But there is also a

second contribution to the phase, shown in (2.37).
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To highlight the distinction between these two contributions, suppose that we vary

the parameters λ but, finally we put them back to their starting values. This means

that we trace out a closed path C in the space of parameters. The second contribution

(2.37) can now be written as

eiγ = exp

(
−i
∮
C

dλiAi(λ)
)

(2.38)

In contrast to the energy-dependent phase, this does not depend on the time taken to

make the journey in parameter space. Instead, it depends only on the path we take

through parameter space.

Although the extra contribution (2.38) was correctly included in many calculations

over the decades, its general status was only appreciated by Michael Berry in 1984.

It is known as the Berry phase. It plays an important role in many of the more

subtle applications that are related to topology, such as the quantum Hall effect and

topological insulators.

There is some very pretty geometry underlying the Berry phase. We can start to get

a feel for this by looking a little more closely at the Berry connection (2.35). This is

an example of a kind of object that you’ve seen before: it is like the gauge potential in

electromagnetism! Let’s explore this analogy a little further.

In the relativistic form of electromagnetism, we have a gauge potential Aµ(x) where

µ = 0, 1, 2, 3 and x are coordinates over Minkowski spacetime. There is a redundancy

in the description of the gauge potential: all physics remains invariant under the gauge

transformation

Aµ → A′
µ = Aµ + ∂µω (2.39)

for any function ω(x). In our course on Electromagnetism, we were learned that if we

want to extract the physical information contained in Aµ, we should compute the field

strength

Fµν =
∂Aµ
∂xν
− ∂Aν
∂xµ

This contains the electric and magnetic fields. It is invariant under gauge transforma-

tions.
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Now let’s compare this to the Berry connection Ai(λ). Of course, this no longer

depends on the coordinates of Minkowski space; instead it depends on the parameters

λi. The number of these parameters is arbitrary; let’s suppose that we have d of them.

This means that i = 1, . . . , d. In the language of differential geometry Ai(λ) is said to

be a one-form over the space of parameters, while Aµ(x) is said to be a one-form over

Minkowski space.

There is also a redundancy in the information contained in the Berry connection

Ai(λ). This follows from the arbitrary choice we made in fixing the phase of the

reference states |n(λ)⟩. We could just as happily have chosen a different set of reference

states which differ by a phase. Moreover, we could pick a different phase for every choice

of parameters λ,

|n′(λ)⟩ = eiω(λ) |n(λ)⟩

for any function ω(λ). If we compute the Berry connection arising from this new choice,

we have

A′
i = −i⟨n′| ∂

∂λi
|n′⟩ = Ai +

∂ω

∂λi
(2.40)

This takes the same form as the gauge transformation (2.39).

Following the analogy with electromagnetism, we might expect that the physical

information in the Berry connection can be found in the gauge invariant field strength

which, mathematically, is known as the curvature of the connection,

Fij(λ) =
∂Ai
∂λj
− ∂Aj
∂λi

It’s certainly true that F contains some physical information about our quantum sys-

tem, but it’s not the only gauge invariant quantity of interest. In the present context,

the most natural thing to compute is the Berry phase (2.38). Importantly, this too is

independent of the arbitrariness arising from the gauge transformation (2.40). This is

because
∮
∂iω dλ

i = 0. Indeed, we’ve already seen this same expression in the context

of electromagnetism: it is the Aharonov-Bohm phase that we also met in the lectures

on Solid State Physics.

In fact, it’s possible to write the Berry phase in terms of the field strength using the

higher-dimensional version of Stokes’ theorem

eiγ = exp

(
−i
∮
C

Ai(λ) dλi
)

= exp

(
−i
∫
S

Fij dSij
)

(2.41)

where S is a two-dimensional surface in the parameter space bounded by the path C.
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2.3.5 An Example: A Spin in a Magnetic Field

The standard example of the Berry phase is very simple. It is a spin, with a Hilbert

space consisting of just two states. The spin is placed in a magnetic field B. We met

the Hamiltonian in this system when we discussed particles in a magnetic field in the

lectures on Solid State Physics: it is

H = −B · σ +B

where σ are the triplet of Pauli vectors. We’ve set the magnetic moment of the particle

to unity for convenience, and we’ve also added the constant offset B = |B| to this

Hamiltonian to ensure that the ground state always has vanishing energy. This is so

that the phase e−iEt/ℏ will vanish for the ground state and we can focus on the Berry

phase that we care about.

The Hamiltonian has two eigenvalues: 0 and +2B. We denote the ground state as

|↓ ⟩ and the excited state as |↑ ⟩,

H|↓ ⟩ = 0 and H|↑ ⟩ = 2B|↑ ⟩

Note that these two states are non-degenerate as long as B ̸= 0.

We are going to treat the magnetic field as the parameters, so that λi ≡ Bi in this

example. Be warned: this means that things are about to get confusing because we’ll

be talking about Berry connections Ai and curvatures Fij over the space of magnetic

fields. (As opposed to electromagnetism where we talk about magnetic fields over

actual space).

The specific form of | ↑ ⟩ and | ↓ ⟩ will depend on the orientation of B. To provide

more explicit forms for these states, we write the magnetic field B in spherical polar

coordinates

B =


B sin θ cosϕ

B sin θ sinϕ

B cos θ


with θ ∈ [0, π] and ϕ ∈ [0, 2π) The Hamiltonian then reads

H = −B

(
cos θ − 1 e−iϕ sin θ

e+iϕ sin θ − cos θ − 1

)
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In these coordinates, two normalised eigenstates are given by

|↓ ⟩ =

(
e−iϕ sin θ/2

− cos θ/2

)
and |↑ ⟩ =

(
e−iϕ cos θ/2

sin θ/2

)

These states play the role of our |n(λ)⟩ that we had in our general derivation. Note,

however, that they are not well defined for all values of B. When we have θ = π, the

angular coordinate ϕ is not well defined. This means that | ↓ ⟩ and | ↑ ⟩ don’t have

well defined phases. This kind of behaviour is typical of systems with non-trivial Berry

phase.

We can easily compute the Berry phase arising from these states (staying away from

θ = π to be on the safe side). We have

Aθ = −i⟨↓ |
∂

∂θ
|↓ ⟩ = 0 and Aϕ = −i⟨↓ |

∂

∂ϕ
|↓ ⟩ = − sin2

(
θ

2

)
The resulting Berry curvature in polar coordinates is

Fθϕ =
∂Aϕ
∂θ
− ∂Aθ

∂ϕ
= −1

2
sin θ

This is simpler if we translate it back to cartesian coordinates where the rotational

symmetry is more manifest. It becomes

Fij(B) = −ϵijk
Bk

2|B|3

But this is interesting. It is a magnetic monopole. Except now it’s not a magnetic

monopole of electromagnetism. Instead it is, rather confusingly, a magnetic monopole

in the space of magnetic fields.

Note that the magnetic monopole sits at the point B = 0 where the two energy levels

coincide. Here, the field strength is singular. This is the point where we can no longer

trust the Berry phase computation. Nonetheless, it is the presence of this level crossing

and the resulting singularity which is dominating the physics of the Berry phase.

The magnetic monopole has charge g = −1/2, meaning that the integral of the Berry

curvature over any two-sphere S2 which surrounds the origin is∫
S2

Fij dSij = 4πg = −2π (2.42)
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Figure 11: Integrating over S... Figure 12: ...or over S′.

Using this, we can easily compute the Berry phase for any path C that we choose to

take in the space of magnetic fields B. We only insist that the path C avoids the origin.

Suppose that the surface S, bounded by C, makes a solid angle Ω. Then, using the

form (2.41) of the Berry phase, we have

eiγ = exp

(
−i
∫
S

Fij dSij
)

= exp

(
iΩ

2

)
(2.43)

Note, however, that there is an ambiguity in this computation. We could choose to

form S as shown in the left hand figure. But we could equally well choose the surface

S ′ to go around the back of the sphere, as shown in the right-hand figure. In this case,

the solid angle formed by S ′ is Ω′ = 4π−Ω. Computing the Berry phase using S ′ gives

eiγ
′
= exp

(
−i
∫
S′
Fij dSij

)
= exp

(
−i(4π − Ω)

2

)
= eiγ (2.44)

where the difference in sign in the second equality comes because the surface now has

opposite orientation. So, happily, the two computations agree. Note, however, that

this agreement requires that the charge of the monopole in (2.42) is 2g ∈ Z.

The discussion above is a repeat of Dirac’s argument for the quantisation of magnetic

charge; this can also be found in the lectures on Solid State Physics and the lectures on

Gauge Theory (where you’ll even find the same figures!). Dirac’s quantisation argument

extends to a general Berry curvature Fij with an arbitrary number of parameters: the

integral of the curvature over any closed surface must be quantised in units of 2π,∫
Fij dSij = 2πC (2.45)

The integer C ∈ Z is called the Chern number.

You can read more about extensions of the Berry phase and its applications in the

lectures on the Quantum Hall Effect.
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2.3.6 The Born-Oppenheimer Approximation

“I couldn’t find any mistake - did you really do this alone?”

Oppenheimer to his research supervisor Max Born

The Born-Oppenhemier approximation is an approach to solving quantum mechan-

ical problems in which there is a hierarchy of scales. The standard example is a bunch

of nuclei, each with position Rα mass Mα and charge Zαe, interacting with a bunch of

electrons, each with position ri, mass m and charge −e. The Hamiltonian is

H =
∑
α

ℏ2

2Mα

∇2
α +

∑
i

ℏ2

2m
∇2
i +

e2

4πϵ0

(∑
i,j

1

|ri − rj|
+
∑
α,i

ZαZβ
|Rα −Rβ|

−
∑
i,α

Zα
|ri −Rα|

)

This simple Hamiltonian is believed to describe much of what we see around us in

the world, so much so that some condensed matter physicists will refer to this, only

half-jokingly, as the “theory of everything”. Of course, the information about any

complex system is deeply hidden within this equation, and the art of physics is finding

approximation schemes, or emergent organising principles, to extract this information.

The hierarchy of scales in the Hamiltonian above arises because of the mass difference

between the nuclei and the electrons. Recall that the proton-to-electron mass ratio is

mp/me ≈ 1836. This means that the nuclei are cumbersome and slow, while the

electrons are nimble and quick. Relatedly, the nuclei wavefunctions are much more

localised than the electron wavefunctions. This motivates us to first fix the positions

of the nuclei and look at the electron Hamiltonian, and only later solve for the nuclei

dynamics. This is the essence of the Born-Oppenheimer approximation.

To this end, we write

H = Hnucl +Hel

where

Hnucl = −
∑
α

ℏ2

2Mα

∇2
α +

e2

4πϵ0

∑
α,i

ZαZβ
|Rα −Rβ|

and

Hel = −
∑
i

ℏ2

2m
∇2
i +

e2

4πϵ0

(∑
i,j

1

|ri − rj|
−
∑
i,α

Zα
|ri −Rα|

)

We then solve for the eigenstates of He, where the nuclei positions R are viewed as

parameters which, as in the adiabatic approximation, will subsequently vary slowly.
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The only difference with our previous discussion is that the time evolution of R is

determined by the dynamics of the system, rather than under the control of some

experimenter.

For fixed R, the instantaneous electron wavefunctions are

Hel ϕn(r;R) = ϵn(R)ϕn(r;R)

In what follows, we will assume that the energy levels are non-degenerate. (There is

an interesting generalisation if there is a degeneracy which we will not discuss in these

lectures.) We then make the ansatz for the wavefunction of the full system

Ψ(r,R) =
∑
n

Φn(R)ϕn(r;R)

We’d like to write down an effective Hamiltonian which governs the nuclei wavefunctions

Φn(R). This is straightforward. The wavefunction Ψ obeys

(Hnucl +Hel)Ψ = EΨ

Switching to bra-ket notation for the electron eigenstates, we can write this as∑
n

⟨ϕm|HnuclΦn|ϕn⟩+ ϵm(R)Φm = EΦm (2.46)

Now Hnucl contains the kinetic term ∇2
R, and this acts both on the nuclei wavefunction

Φn, but also on the electron wavefunction ϕn(r;R) where the nuclei positions sit as

parameters. We have

⟨ϕm|∇2
RΦn|ϕn⟩ =

∑
k

(
δmk∇R + ⟨ϕm|∇R|ϕk⟩

)(
δkn∇R + ⟨ϕk|∇R|ϕn⟩

)
Φn

We now argue that, as in Section 2.3.3, the off-diagonal terms are small. The same

analysis as in (2.36) shows that they can be written as∑
k ̸=n

⟨ϕn|∇R|ϕk⟩⟨ϕk|∇R|ϕn⟩ =
∑
k ̸=n

∣∣∣∣⟨ϕn|(∇RHel)|ϕk⟩
ϵn − ϵk

∣∣∣∣2
In the spirit of the adiabatic approximation, these can be neglected as long as the

motion of the nuclei is smaller than the splitting of the electron energy levels. In this

limit, we get a simple effective Hamiltonian for the nuclei (2.46). The Hamiltonian

depends on the state |ϕn⟩ that the electrons sit in, and is given by

Heff
n = −

∑
α

ℏ2

2Mα

(∇α − iAn,α)
2 +

e2

4πϵ0

∑
α,i

ZαZβ
|Rα −Rβ|

+ ϵn(R)
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We see that the electron energy level ϵn(R) acts as an effective potential for the nuclei.

Perhaps more surprisingly, the Berry connection

An,α = −i⟨ϕn|∇Rα|ϕn⟩

also makes an appearance, now acting as an effective magnetic field in which the nuclei

Rα moves.

The idea of the Born-Oppenheimer approximation is that we can first solve for the

fast-moving degrees of freedom, to find an effective action for the slow-moving degrees

of freedom. We sometimes say that we have “integrated out” the electron degrees of

freedom, language which really comes from the path integral formulation of quantum

mechanics. This is a very powerful idea, and one which becomes increasingly important

as we progress in theoretical physics. Indeed, this simple idea underpins the Wilsonian

renormalisation group which we will meet in later courses.

2.3.7 An Example: Molecules

The Born-Oppenheimer approximation plays a key role in chemistry (and, therefore,

in life in general). This is because it provides quantitative insight into the formation of

covalent bonds, in which its energetically preferable for nuclei to stick together because

the gain in energy from sharing an electron beats their mutual Coulomb repulsion.

The simplest example is the formation of the hydrogen molecule H−
2 , consisting of

two protons and a single electron. If we fix the proton separation to R, then the

resulting Hamiltonian for the electrons is

Hel = −
ℏ2

2m
∇2 − e2

4πϵ0

[
1

r
+

1

|r−R|

]
To proceed, we will combine the Born-Oppenheimer approximation with the variational

method that we met in Section 2.1. Our ultimate goal is simply to show that a bound

state exists. For this, the effective potential energy is much more important than the

Berry connection. We will consider two possible ansatze for the electron ground state

ϕ±(r) = A±

(
ψ0(r)± ψ0(r−R)

)
where

ψ0 =

√
1

πa30
e−r/a0

is the ground state wavefunction of hydrogen, which has energy E0 = −e2/8πϵ0a0.
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Figure 13: The potential for Ψ+ Figure 14: The potential for Ψ−

Although ψ0 is normalised, the full wavefunction ϕ± is not. The normalisation condition

gives

A2
± =

1

2

[
1±

∫
d3r ψ0(r)ψ0(r−R)

]−1

This is the first of several, rather tedious integrals that we have in store. They can all be

done using the kind of techniques that we introduced in Section 2.1.2 when discussing

helium. Here I’ll simply state the answers. It turns out that

u(R) =

∫
d3r ψ0(r)ψ0(r−R) =

(
1 +

R

a0
+
R2

3a20

)
e−R/a0

Moreover, we’ll also need

v(R) =

∫
d3r

ψ0(r)ψ0(r−R)

r
=

1

a0

(
1 +

R

a0

)
e−R/a0

w(R) =

∫
d3r

ψ0(r)
2

|r−R|
=

1

R
− 1

R

(
1 +

R

a0

)
e−2R/a0

The expected energy in the state Ψ±(r) can be calculated to be

ϵ±(R) = ⟨ϕ±|Hel|ϕ±⟩ = E0 − 2A2
±

(
w(R)± v(R)

)
This means that the nuclei experience an effective potential energy given by

V eff
± (R) =

e2

4πϵ0R
+ ϵ±(R) =

e2

4πϵ0

(
1

R
− w(R)± v(R)

1± u(R)

)
+ E0

This makes sense: as R→∞, we get Veff → E0, which is the energy of a hydrogen atom.

Above, we have sketched the effective potential V eff
± −E0 for the two wavefunctions ϕ±.

We see that the state ϕ+ gives rise to a minimum below zero. This is indicating the

existence of a molecular bound state. In contrast, there is no such bound state for ϕ−.

This difference is primarily due to the fact that ϕ+ varies more slowly and so costs less

kinetic energy.
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3. Atoms

The periodic table is one of the most iconic images in science. All elements are classified

in groups, ranging from metals on the left that go bang when you drop them in water

through to gases on the right that don’t do very much at all.

However, the periodic table contains plenty of hints that it is not the last word in

science. There are patterns and order that run through it, all hinting at some deeper

underlying structure. That structure, we now know, is quantum mechanics.

The most important pattern is also the most obvious: the elements are ordered,

labelled by an integer, Z. This is the atomic number which counts the number of

protons in the nucleus. The atomic number is the first time that the integers genuinely

play a role in physics. They arise, like most other integers in physics, as the spectrum

of a particular Schrödinger equation. This equation is rather complicated and we

won’t describe it in this course but, for what it’s worth, it involves a Hamiltonian

which describes the interactions of quarks and is known as the theory of quantum

chromodynamics.

While the atomic number is related to the quantum mechanics of quarks, all the

other features of the periodic table arise from the quantum mechanics of the electrons.
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The purpose of this section is to explain some of the crudest features of the table

from first principles. We will answer questions like: what determines the number of

elements in each row? Why are there gaps at the top, and two rows at the bottom

that we can’t fit in elsewhere? What’s special about the sequence of atomic numbers

2, 10, 18, 26, 54, 86, . . . that label the inert gases?

We will also look at more quantitative properties of atoms, in particular their energy

levels, and the ionization energy needed to remove a single electron. In principle, all of

chemistry follows from solving the Schrödinger equation for some number of electrons.

However, solving the Schrödinger equation for many particles is hard and there is a

long path between “in principle” and “in practice”. In this section, we take the first

steps down this path.

3.1 Hydrogen

We’re going to start by looking at a very simple system that consists of a nucleus with

just a single electron. This, of course, is hydrogen.

Now I know what you’re thinking: you already solved the hydrogen atom in your

first course on quantum mechanics. But you didn’t quite do it properly. There are a

number of subtleties that were missed in that first attempt. Here we’re going to explore

these subtleties.

3.1.1 A Review of the Hydrogen Atom

We usually treat the hydrogen atom by considering an electron of charge −e orbiting

a proton of charge +e. With a view to subsequent applications, we will generalise this

slightly: we consider a nucleus of charge Ze, still orbited by a single electron of charge

−e. This means that we are also describing ions such as He+ (for Z = 2) or Li2+ (for

Z = 3). The Hamiltonian is

H = − ℏ2

2m
∇2 − 1

4πϵ0

Ze2

r
(3.1)

The mass m is usually taken to be the electron mass me but since this is a two-body

problem it’s more correct to think of it as the reduced mass. (See, for example, Section

5.1.5 of the lectures on Dynamics and Relatvity.) This means that m = meM/(me +

M) ≈ me −m2
e/M where M is the mass of the nucleus. The resulting m is very close

to the electron mass. For example, for hydrogen where the nucleus is a single proton,

M = mp ≈ 1836me.
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The Schrödinger equation is the eigenvalue problem

Hψ = Enψ

This is the problem that you solved in your first course. The solutions are

ψn,l,m(r, θ, ϕ) = Rn,l(r)Yl,m(θ, ϕ) (3.2)

where Rn,l(r) are the (generalised) Laguerre polynomials and Yl,m(θ, ϕ) are spherical

harmonics. with energy eigenvalues. The states are labelled by three quantum numbers,

n, l and m, which take integer values in the range

n = 1, 2, 3, . . . , l = 0, 1, . . . , n− 1 , m = −l, . . . ,+l

(Don’t confuse the quantum number m with the mass m! Both will appear in formulae

below, but it should be obvious which is which.) Importantly, the energy eigenvalue

only depends on the first of these quantum numbers n,

En = −
(
Ze2

4πϵ0

)2
m

2ℏ2
1

n2
n ∈ Z

where, just in case you weren’t sure, it’s the mass m that appears in this formula. This

is sometimes written as

En = −Z
2Ry

n2

where Ry ≈ 13.6 eV is known as the Rydberg energy; it is the binding energy the

ground state of hydrogen. Alternatively, it is useful to write the energy levels as

En = −(Zα)2mc2

2n2
where α =

e2

4πϵ0ℏc
(3.3)

This may appear slightly odd as we’ve introduced factors of the speed of light c which

subsequently cancel those in α. Writing it this way means that we can immediately

see how the binding energies compare to the rest mass energy mc2 of the electron. The

quantity α is dimensionless and take the value α ≈ 1/137. It is called the fine structure

constant, a name that arises because it was first introduced in the calculations of the

“fine structure” of hydrogen that we will see below. The fine structure constant should

be thought of as the way to characterise the strength of the electromagnetic force.

Some Definitions

This energy spectrum can be seen experimentally as spectral lines. These are due to

excited electrons dropping from one state n to a lower state n′ < n, emitting a photon

of fixed frequency ℏω = En − En′ . When the electron drops down to the ground state

with n′ = 1, the resulting lines are called the Lyman series. When the electron drops

to higher states n′ > 1, the sequences are referred to as Balmer, Paschen and so on.
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Instead of using the angular momentum quantum number l to label the state, they

are sometimes referred to as letters. l = 0, 1, 2, 3 are called s, p, d and f respectively.

The names are old fashioned and come from the observed quality of spectral lines; they

stand for sharp, principal, diffuse and fundamental, but they remain standard when

describing atomic structure.

Degeneracy

The fact that the energy depends only on n and not on the angular momentum quantum

numbers l and m means that each energy eigenvalue is degenerate. For fixed l, there

are 2l + 1 states labelled by m. Which means that for a fixed n, the total number of

states is

Degeneracy =
n−1∑
l=0

2l + 1 = n2

Moreover, each electron also carries a spin degree of freedom. Measured along a given

axis, this spin can either be up (which means ms =
1
2
) or down (ms = −1

2
). Including

this spin, the total degeneracy of states with energy En is

Degeneracy = 2n2

The main reason for revisiting the quantum mechanics of hydrogen is to understand

what becomes of this degeneracy. Before we proceed, it’s worth first thinking about

where this degeneracy comes from. Usually in quantum mechanics, any degeneracy is

related to a conservation law which, in turn, are related to symmetries. The hydrogen

atom is no exception.

The most subtle degeneracy to explain is the fact that the energy does not depend on

l. This follows from the fact that the Hamiltonian (3.1) has a rather special conserved

symmetry known as the Runge-Lenz vector. (We’ve met this in earlier courses in

classical and quantum mechanics.) This follows, ultimately, from a hidden SO(4)

symmetry in the formulation of the hydrogen atom. We therefore expect that any

deviation from (3.1) will lift the degeneracy in l.

Meanwhile, the degeneracy in m follows simply from rotational invariance and the

corresponding conservation of angular momentum L. We don’t, therefore, expect this

to be lifted unless something breaks the underlying rotational symmetry of the problem.
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Finally, the overall factor of 2 comes, of course, from the spin S. The degeneracy

must, therefore, follow from the conservation of spin. Yet there is no such conservation

law; spin is just another form of angular momentum. The only thing that is really

conserved is the total angular momentum J = L + S. We would therefore expect any

addition to the Hamiltonian (3.1) which recognises that only J is conserved to lift this

spin degeneracy.

We’ll now see in detail how this plays out. As we’ll show, there are a number of

different effects which split these energy levels. These effects collectively go by the

name of fine structure and hyperfine structure.

3.1.2 Relativistic Motion

The “fine structure” corrections to the hydrogen spectrum all arise from relativistic

corrections. There are three different relativistic effects that we need to take into

account: we will treat the first here, and the others in Sections 3.1.3 and 3.1.4

You can run into difficulties if you naively try to incorporate special relativity into

quantum mechanics. To do things properly, you need to work in the framework of

Quantum Field Theory and the Dirac equation, both of which are beyond the scope

of this course. However, we’re only going to be interested in situations where the

relativistic effects can be thought of as small corrections to our original result. In

this situation, it’s usually safe to stick with single-particle quantum mechanics and use

perturbation theory. That’s the approach that we’ll take here. Nonetheless, a number

of the results that we’ll derive below can only be rigorously justified by working with

the Dirac equation.

The first, and most straightforward, relativistic shift of the energy levels comes simply

from the fact that the effective velocity of electrons in an atom is a substantial fraction

of the speed of light. Recall that the energy of a relativistic particle is

E =
√

p2c2 +m2c4 ≈ mc2 +
p2

2m
− p4

8m3c2
+ . . .

The constant term mc2 can be neglected and the next term is the usual non-relativistic

kinetic energy which feeds into the Hamiltonian (3.1). Here we’ll treat the third term

as a perturbation of our hydrogen Hamiltonian

∆H = − p4

8m3c2
(3.4)

At first glance, it looks as if we’re going to be dealing with degenerate perturbation

theory. However, this particular perturbation is blind to both angular momentum
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quantum numbers l and m, as well as the spin ms. This follows straightforwardly from

the fact that [∆H,L2] = [∆H,Lz] = 0. If we denote the states (3.2) as |nlm⟩, then it’s

simple to show that

⟨nlm|∆H|nl′m′⟩ = 0 unless l = l′ and m = m′

This means that the energy shifts are

(∆E1)n,l = ⟨∆H⟩n,l

where we’re introduced the notation ⟨∆H⟩n,l = ⟨nlm|∆H|nlm⟩ and we’ve used the

fact that the perturbation preserves SO(3) rotational invariance to anticipate that the

change of energy won’t depend on the quantum number m. We want to compute this

overlap. In fact, it’s simplest to massage it a little bit by writing

∆H = − 1

2mc2
[H − V (r)]2

where V (r) = Ze2/4πϵ0r. This gives us the expression

(∆E1)n,l = −
1

2mc2
[
E2
n − 2En ⟨V (r)⟩n,l + ⟨V (r)2⟩n,l

]
(3.5)

and our new goal is to compute the expectation values ⟨1/r⟩n,l and ⟨1/r2⟩n,l for the

hydrogen atom wavefunctions.

The first of these follows from the virial theorem (see Section 2.1.3) which tells us that

the relative contribution from the kinetic energy and potential energy is 2⟨T ⟩ = −⟨V ⟩,
so that ⟨E⟩ = ⟨T ⟩+ ⟨V ⟩ = 1

2
⟨V ⟩. Then,〈

1

r

〉
n,l

= − 1

Zαℏc
⟨V ⟩n,l = −

1

Zαℏc
2En =

Z

a0

1

n2
(3.6)

where a0 = ℏ/αmc is the Bohr radius, the length scale characteristic of the hydrogen

atom.

Next up is ⟨1/r2⟩. Here there’s a cunning trick. For any quantum system, if we took

the Hamiltonian H and perturbed it to H + λ/r2, then the leading order correction to

the energy levels would be ⟨λ/r2⟩. But, for the hydrogen atom, such a perturbation

can be absorbed into the angular momentum terms,

ℏ2

2m

l(l + 1)

r2
+
λ

r2
=

ℏ2

2m

l′(l′ + 1)

r2
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But this is again of the form of the hydrogen atom Hamiltonian and we can solve

it exactly. The only difference is that l′ is no longer an integer but some function

l′(λ). The exact energy levels of the Hamiltonian with l′ follow from our first course

on quantum mechanics: they are

E(l′) = −mc2(Zα)2 1

2(k + l′ + 1)2

Usually we would define the integer n = k + l + 1 to get the usual spectrum En given

in (3.3). Here, instead, we Taylor expand E(λ) around λ = 0 to get

E(l′) = En + (Zα)2mc2
[

1

(k + l′ + 1)3
dl′

dλ

]∣∣∣∣
λ=0

λ+ . . .

= En +
Z2

a20

2λ

n3(2l + 1)
+ . . .

From this we can read off the expectation value that we wanted: it is the leading

correction to our exact result,〈
1

r2

〉
n,l

=
Z2

a20

2

n3(2l + 1)
(3.7)

The two expectation values (3.6) and (3.7) are what we need to compute the shift of

the energy levels (3.5). We have

(∆E1)n,l = −
(Zα)4mc2

2

(
n

l + 1/2
− 3

4

)
1

n4
(3.8)

As anticipated above, the relativistic effect removes the degeneracy in the quantum

number l.

Notice that the size of the correction is of order (Zα)4. This is smaller than the

original energy (3.3) by a factor of (Zα)2. Although we may not have realised it, (Zα)2

is the dimensionless ratio which we’re relying on to be small so that perturbation theory

is valid. (Or, for higher states, (Zα/n)2).

It’s worth asking why we ended up with a perturbation to the energy which is smaller

by a factor of (Zα)2. Because this was a relativistic correction, we expect it to be of

order v2/c2 where v is the characteristic velocity of the electron. We can understand

this by invoking the virial theorem which, in general, states that the expectation value

of the kinetic energy ⟨T ⟩ is related to the expectation value of the energy V ∼ rn by

2⟨T ⟩ = n⟨V ⟩. For the hydrogen atom, this means that ⟨T ⟩ = 1
2
m⟨v2⟩ = −1

2
⟨V ⟩. Since,

from the ground state energy (3.3), we know that E1 = ⟨T ⟩ + ⟨V ⟩ = mc2(Zα)2/2 we

have ⟨v2⟩ = (Zα)2c2 which confirms that (Zα)2 is indeed the small parameter in the

problem.
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3.1.3 Spin-Orbit Coupling and Thomas Precession

The second shift of the energy levels comes from an interaction between the electron

spin S and its angular momentum L. This is known as the spin-orbit coupling.

The first fact we will need is that spin endows the electron with a magnetic dipole

moment given by

m = −g e

2m
S (3.9)

The coefficient of proportionality is called the gyromagnetic ratio or, sometimes, just

the g-factor. To leading order g = 2 for the electron. This fact follows from the Dirac

equation for the electron. We won’t derive this here and, for now, you will have to take

this fact on face value. A more precise analysis using quantum field theory shows that

g receives small corrections. The current best known value is g = 2.00231930436182 . . .,

but we’ll stick with g = 2 in our analysis below.

The second fact that we need is that the energy of a magnetic moment m in a

magnetic field B is given by

E = −B ·m

This is something we derived in Section 3 of the lectures on Electromagnetism.

The final fact is the Lorentz transformation of the electric field: as electron moving

with velocity v in an electric field E will experience a magnetic field

B =
γ

c2
v × E

This was derived in Section 5 of the lectures on Electromagnetism.

We now apply this to the electron in orbit around the nucleus. The electron expe-

riences a radial electric field given by E = −∇ϕ(r) with ϕ(r) = Ze/4πϵ0r. Putting

everything together, the resulting magnetic field interacts with the spin, giving rise to

a correction to the energy of the electron

∆E = − eγ

mc2
(v ×∇ϕ) · S = − e

(mc)2
∂ϕ

∂r
(p× r̂) · S =

e

(mc)2
1

r

∂ϕ

∂r
L · S

where p = mγv is the momentum and L = r×p is the angular momentum. This is the

promised spin-orbit coupling, in a form which we can promote to an operator. Thus

the spin-orbit correction to the Hamiltonian is

∆HSO =
e

(mc)2
1

r

∂ϕ

∂r
L · S (3.10)

Except. . ..
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Thomas Precession

It turns that the interaction (3.10) is actually incorrect by a factor of 1/2. This is

because of a subtle, relativistic effect known as Thomas precession.

Thomas precession arises because the electron orbiting the nucleus is in a non-inertial

frame. As we will now explain, this means that even if the electron experienced no

magnetic field, its spin would still precess around the orbit.

The basic physics follows from the structure of the Lorentz group. (See Section 7

of the lectures on Dynamics and Relativity.) Consider a Lorentz boost Λ(v) in the

x-direction, followed by a Lorentz boost Λ′(v′) in the y-direction. Some simple matrix

multiplication will convince you that the resulting Lorentz transformation cannot be

written solely as a boost. Instead, it is a boost together with a rotation,

Λ′(v′)Λ(v) = R(θ)Λ′′(v′′)

where Λ′′(v′′) is an appropriate boost while r(θ) is a rotation in the x − y plane.

This rotation is known as the Wigner rotation (or sometimes the Thomas rotation).

Although we will not need this fact below, you can check that cos θ = (γ+γ′)/(γγ′+1)

with γ and γ′ the usual relativistic factors.

Now we’re going to apply this to a classical electron in orbit around the nucleus. At

a fixed moment in time, it is moving with some velocity v relative to the nucleus. At

some moment of time later, v + δv. The net effect of these two boosts is, as above, a

boost together with a rotation.

If the electron were a point particle, the Wigner rota- v

θ

x

y

Figure 15:

tion would have no effect. However, the electron is not a

point particle: it carries a spin degree of freedom S and this

is rotated by the Wigner/Thomas effect. The cumulative

effect of these rotations is that the spin precesses as the

electron orbits the nucleus. We would like to calculate how

much.

The correct way to compute the precession is to integrate up the consecutive, in-

finitesimal Lorentz transformations as the electron orbits the nucleus. Here, instead,

we present a quick and dirty derivation. We approximate the circular orbit of the

electron by an N -sided polygon. Clearly in the lab frame, at the end of each segment

the electron shifts it velocity by an angle θ = 2π/N . However, in the electron’s frame

there is a Lorentz contraction along the direction parallel to the electron’s motion. This
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means that the electron thinks it rotates by the larger angle tan θ′ = x/(γ/y) which,

for N large, is θ′ ≈ 2πγ/N . The upshot it that, by the time the electron has completed

a full orbit, it thinks that it has rotated by an excess angle of

∆θ = 2π(γ − 1) ≈ 2πv2

2c2

where we have expanded the relativistic factor γ = (1− v2/c2)−1/2 ≈ 1 + v2/2c2.

This is all we need to determine the precession rate, ωT . If the particle traverses the

orbit with speed v and period T , then

ωT =
∆θ

T
≈ 2πv2

2c2T
=

av

2c2

where, in the final step, we’ve replaced the period T with the acceleration a = v2/R =

2πv/T .

Our derivation above tells us the angular precession. But what does this mean for a

vector like S? A little thought shows that the component of S that lies perpendicular

to the plane of the orbit remains unchanged, while the component that lies within the

plane precesses with frequency ωT . In other words,

∂S

∂t
= ωT × S with ωT =

v × a

2c2
(3.11)

This is Thomas precession. The effect is purely kinematic, due to the fact that the

electron is not in an inertial frame. It can be thought of as a relativistic analog of the

Coriolis force.

Finally, note that in several places above, we needed the assumption that v/c is

small. Correspondingly, our final result (3.11) is only the leading order answer. The

correct answer turns out to be

ωT =
γ2

γ + 1

v × a

2c2

However, (3.11) will suffice for our purposes.

Thomas Precession and the Spin-Orbit Coupling

Let’s now see how the existence of Thomas precession affects the spin orbit coupling.

Again, we’ll start with some basics. Classically, the energy E = −(e/m)B · S means
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that a spin will experience a torque when placed in a magnetic field. This, in turn, will

cause it to precesss

∂S

∂t
= B× S

However, we’ve seen that Thomas precession (3.11) gives a further contribution to this.

So the correct equation should be

∂S

∂t
= B× S+ ωT × S

The energy functional which gives rise to this is

E =
e

m
B · S+ ωT · S

Working to leading order in v/c, we massage the second term as

ωT · S =
e

2mc2
(v ×∇ϕ) · S = − e

2(mc)2
1

r

∂ϕ

∂r
L · S

where we’ve used Newton’s second law to write ma = e∇ϕ. We see that comes with the

opposite sign and half the magnitude of the original contribution (3.10) to the energy.

Adding the two together gives the final result for the correction to the Hamiltonian due

to the spin-orbit coupling

∆HSO =
e

2(mc)2
1

r

∂ϕ

∂r
L · S (3.12)

with ϕ(r) the electrostatic potential which, for us, is ϕ = Ze/4πϵ0r.

Computing the Spin-Orbit Energy Shift

Before our perturbation, the electron states were labelled by |nlm⟩, together with

the spin ±1/2. The spin-orbit coupling will split the spin and angular momentum l

degeneracy of the spectrum. To anticipate this, we should label these states by the

total angular momentum

J = L+ S

which takes quantum numbers j = l ± 1/2 with l = 0, 1, . . .. (When l = 0, we only

have j = 1/2.) Each state can therefore be labelled by |n, j,mj; l⟩ where |mj| ≤ j and

the additional label l is there to remind us where these states came from.
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We want to compute the eigenvalue of L ·S acting on these states. The simplest way

to do this is to consider J2 = L2 + S2 + 2L · S, which tells us that

L · S |n, j,mj; l⟩ =
ℏ2

2

(
j(j + 1)− l(l + 1)− 3

4

)
|n, j,mj; l⟩

=
ℏ2

2

{
−(l + 1)|n, j,mj; l⟩ j = l − 1

2
(l ̸= 0)

l|n, j,mj; l⟩ j = l + 1
2

(3.13)

As in Section 3.1.2, when computing degenerate perturbation theory with |n, j,mj; l⟩,
the off-diagonal matrix elements vanish. We are left with the shift of the energy eigen-

values given by

(∆E2)n,j;l = ⟨∆HSO⟩n,j;l

where ⟨∆HSO⟩n,j;l = ⟨n, j,mj; l|∆HSO|n, j,mj; l⟩.

With ∆HSO given in (3.10), and ϕ(r) = Ze/4πϵ0r, the shift of energy levels are

(∆E2)n,j;l = −
Ze2ℏ2

4.4πϵ0(mc)2

{
−(l + 1)

l

}〈
1

r3

〉
n,j;l

where, as in (3.13), the upper entry in {·} corresponds to j = l − 1
2
(with l ̸= 0) and

the lower entry corresponds to j = l + 1
2
. Note that when l = 0, we have ∆E2 = 0

because there is no angular momentum for the spin to couple to.

In the previous section, we needed to compute ⟨1/r⟩ and ⟨1/r2⟩. We see that now

we need to compute ⟨1/r3⟩. Once again, there is a cute trick. This time, we introduce

a new “radial momentum” observable

p̃ = −iℏ
(
∂

∂r
+

1

r

)
It’s simple to check that the radial part of the Hamiltonian can be written as

H = − ℏ2

2m

(
1

r2
∂

∂r
r2
∂

∂r

)
+

ℏ2l(l + 1)

2mr2
− Ze2

4πϵ0r

=
p̃2

2m
+

ℏ2l(l + 1)

2mr2
− Ze2

4πϵ0r

A quick computation shows that

[p̃, H] = −iℏ
(
−ℏ2l(l + 1)

mr3
+

Ze2

4πϵ0r2

)
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Clearly this commutator doesn’t vanish. However, when evaluated on an energy eigen-

state, we must have ⟨[p̃, H]⟩n,j,l = 0. From our expression above, this tells us that〈
1

r3

〉
n,j;l

=
Z

a0

1

l(l + 1)

〈
1

r2

〉
n,j;l

=

(
Z

a0

)3
1

l(l + 1
2
)(l + 1)

1

n3
(l ̸= 0)

where we’ve used our earlier result (3.7) and, as before, a0 = ℏ/αmc is the Bohr radius.
Putting this together, and re-writing the resulting expression in terms of j rather than

l, we find that the shift of energy levels due to spin-orbit coupling is

(∆E2)n,j;l =
(Zα)4mc2

4

{
− 1
j+1

1
j

}
1

j + 1
2

1

n3

This is the same order of magnitude as the first fine-structure shift (3.8) which, re-

written in terms of j = l ± 1
2
, becomes

(∆E1)n,l = −
(Zα)4mc2

2

({
1
j+1

1
j

}
− 3

4n

)
1

n3

Combining these results, we get an expression which happily looks the same regardless

of the minus sign in j = l ± 1
2
. It is

(∆E1)n,l + (∆E2)n,j;l =
(Zα)4mc2

2

(
3

4n
− 2

2j + 1

)
1

n3
(3.14)

where we should remember that for l = 0, (∆E2)n,j;l = 0 and we only get the (∆E1)n,l
term.

3.1.4 Zitterbewegung and the Darwin Term

There is one final contribution to the fine structure of the hydrogen atom. This one

is somewhat more subtle than the others and a correct derivation really requires us to

use the Dirac equation. Here we give a rather hand-waving explanation.

One of the main lessons from combining quantum mechanics with special relativity is

that particles are not point-like. A particle of mass m has a size given by the Compton

wavelength,

λ =
ℏ
mc

For the electron, λ ≈ 3×10−11 cm. Roughly speaking, if you look at a distance smaller

than this you will see a swarm of particle and anti-particles and the single particle that

you started with becomes blurred by this surrounding crowd.
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Quantum field theory provides the framework to deal with this. However, within the

framework of quantum mechanics it is something that we have to put in by hand. In

this context, it is sometimes called Zitterbewegung, or “trembling motion”. Suppose

that a particle moves in a potential V (r). Then, if the particle sits at position r0, it

will experience the average of the potential in some region which is smeared a distance

∼ λ around r0. To include this, we Taylor expand the potential

V (r) = V (r0) + ⟨∆r⟩ · ∂V
∂r

+
1

2
⟨∆ri∆rj⟩

∂2V

∂ri∂rj
+ . . .

By rotational symmetry, ⟨∆r⟩ = 0. Meanwhile, we take

⟨∆ri∆rj⟩ =
(
λ

2

)2

δij

I don’t have an argument for the factor of 1/2 on the right-hand-side of this expectation

value. You will have to resort to the Dirac equation to see this. This gives a further

contribution to the Hamiltonian, known as the Darwin term

∆HDarwin =
ℏ2

8m2c2
∇2V (3.15)

For the Coulomb potential, this becomes

∆HDarwin =
Zαℏ3

8m2c
4πδ3(r)

However, all wavefunctions with l > 0 are vanishing at the origin and so unaffected by

the Darwin term. Only those with l = 0, have a correction to their energy given by

(∆E3)n,l = ⟨∆HDarwin⟩n,l =
Zαℏ3π
2m2c

|ψnlm(r = 0)|2

The normalised wavefunction takes the form ψnlm(r) = Rnl(r)Ylm(θ, ϕ). For l = 0, we

have Y00 = 1/
√
4π and the radial wavefunction take the form

Rn,l=0(r) = −

√(
2Z

na0

)3
(n− 1)!

2n(n!)3
e−r/na0 L1

n(2r/na0)

Now we need to dig out some properties of Laguerre polynomials. We will need the

facts that L1
n(x) = dLn(x)/dx and Ln(x) ≈ n! − n!nx + O(x2) so that L1

n(0) = n!n.

The wavefunction at the origin then becomes

|ψn,l=0(0)|2 =
Z3

a30πn
3

(3.16)

From this we get

(∆E3)n,l =
(Zα)4mc2

2

1

n3
δl0 (3.17)
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A Combined Spin-Orbit-Darwin Term

Our derivation of the spin-orbit term (3.12), including Thomas precession, and the

Darwin term (3.15) was somewhat involved and, at times, a little hand-wavy. In fact,

there’s a simple way to combine these two expressions which, ultimately, fits nicely

with the Dirac equation. We claim that the combined expression for the fine structure

can be written as

∆H = ∆HSO +∆HDarwin = − 1

8m2c2
[σ · p, [σ · p, V (r)]] (3.18)

Here σ = (σ1, σ2, σ3) are the three Pauli matrices and are related to the spin operator

by S = 1
2
ℏσ. Note that, other than the usual kinetic energy, the term (3.18) is the only

other term that we can write down that is quadratic in momentum and involves only

the spin matrices S and the potential. The factor of 1/m2c2 is fixed on dimensional

grounds but the overall coefficient of 1/8 is not: you have to do one of the calculations

above to fix this.

Let’s now show that (3.18) does indeed reproduce the combined spin-orbit and Dar-

win couplings as claimed. Expanding, we have

[σ · p, [σ · p, V ]] = p2V − V p2 − 2σ · pV σ · p
= −ℏ2∇2V − 4(∇V × p) · S

where, in going to the second line, we’ve used σiσj = δij + iϵijkσk, together with the

usual operator expressions p = −iℏ∇ and S = 1
2
ℏσ. We recognise the first term as

the Darwin contribution (3.15) (up to an overall constant). For the second term, we

need the fact that V (r) is a central potential, with ∇V = (dV/dr)r̂. A little algebra

shows that this then coincides with the spin-orbit term (3.12), with L = r×p and the

potential energy V related to the electrostatic potential as V = eϕ. Again, we stress

that we need one of our previous arguments to fix the overall coefficient of −1/8 in

(3.18), but this form fixes the relative coefficient between spin-orbit and Darwin.

3.1.5 Finally, Fine-Structure

It’s been quite a long journey. Our fine structure calculations have revealed three

contributions, the first two given by (3.14) and the third by (3.17). Recall that the

spin-orbit coupling in (3.14) gave vanishing contribution when l = 0. Rather curiously,

the Darwin term gives a contribution only when l = 0 which coincides with the formal

answer for the spin-orbit coupling when l = 0, j = 1/2. The upshot of this is that the

answer (3.14) we found before actually holds for all l. In other words, adding all the
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contributions together, (∆E)n,j = (∆E1)n,l + (∆E2)n,j;l + (∆E3)n,l, we have our final

result for the fine structure of the hydrogen atom

(∆E)n,j =
(Zα)4mc2

2

(
3

4n
− 2

2j + 1

)
1

n3

We learn that the energy splitting depends only on j. This didn’t have to be the case.

There is no symmetry that requires states with j = |l ± 1
2
| to have the same energy.

We refer to this as an accidental degeneracy. Meanwhile, the energy of each state is

independent of the remaining angular momentum quantum number m ≤ l. This is not

accidental: it is guaranteed by rotational invariance.

To describe the states of hydrogen, we use the notation n#j where we replace #

with the letter that denotes the orbital angular momentum l. The ground state is then

1s1/2. This is doubly degenerate as there is no angular momentum, so the spin states

are not split by spin-orbit coupling. The first excited states are 2s1/2 (two spin states)

which is degenerate with 2p1/2 (three angular momentum states). Similarly, as we go

up the spectrum we find that the 3p3/2 and 3d3/2 states are degenerate and so on.

The Result from the Dirac Equation

Our fine structure calculations have all treated relativistic effects perturbatively in

v2/c2. As we explained in Section 3.1.2, for the hydrogen atom this is equivalent to an

expansion in 1/(Zα)2. In fact, for this problem there is an exact answer. The derivation

of this requires the Dirac equation and is beyond the scope of this course; instead we

simply state the answer. The energy levels of the relativistic hydrogen atom are given

by

En,j = mc2

1 +

 Zα

n− j − 1
2
+
√

(j + 1
2
)2 − (Zα)2

2 −1/2

(3.19)

Expanding in 1/(Zα) gives

En,j = mc2
(
1− (Zα)2

1

2n2
+ (Zα)4

(
3

4n
− 2

2j + 1

)
1

2n3
+ . . .

)
The first term is, of course, the rest mass of the electron. The second term is the

usual hydrogen binding energy, while the final term is the fine structure corrections

that we’ve laboriously computed above.
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The Lamb Shift

It turns out that the “exact” result (3.19) is not exact at all! In 1947, Willis Lamb

reported the experimental discovery of a splitting between the 2s1/2 and 2p1/2 states.

For this, he won the 1955 Nobel prize. The effect is now referred to as the Lamb shift.

The Lamb shift cannot be understood using the kind of single-particle quantum

mechanics that we’re discussing in this course. It is caused by quantum fluctuations

of the electromagnetic field and needs the full machinery of quantum field theory,

specifically quantum electrodymamics, or QED for short. Historically the experimental

discovery of the Lamb shift was one of the prime motivations that led people to develop

the framework of quantum field theory.

3.1.6 Hyperfine Structure

Both the fine structure corrections and the QED corrections treat the nucleus of the

atom as a point-like object. This means that, although the corrections are complicated,

the problem always has rotational symmetry.

In reality, however, the nucleus has structure. This structure affects the atomic

energy levels, giving rise to what is called hyperfine structure. There are a number of

different effects that fall under this heading.

The most important effects come from the magnetic dipole moment of the nucleus.

Each constituent neutron and proton is a fermion, which means that they have an

internal intrinsic spin 1/2. This is described by the quantum operator I. This, in turn,

gives the nucleus a magnetic dipole moment

mN = gN
Ze

2M
I

This takes the same form as (3.9) for the electron magnetic moment. Here M is the

mass of the nucleus while gN is the nucleus gyromagnetic factor.

The Dirac equation predicts that every fundamental fermion has g = 2 (plus some

small corrections). However, neither the proton nor the neutron are fundamental par-

ticles. At a cartoon level, we say that each is made of three smaller particles called

quarks. The reality is much more complicated! Each proton and neutron is made of

many hundreds of quarks and anti-quarks, constantly popping in an out of existence,

bound together by a swarm of further particles called gluons. It is, in short, a mess.

The cartoon picture of each proton and neutron containing three quarks arises because,

at any given time, each contains three more quarks than anti-quarks.
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The fact that the protons and neutrons are not fundamental first reveals itself in

their anomalously large gyromagnetic factors. These are

gproton ≈ 5.56 and gneutron ≈ −3.83

The minus sign for the neutron means that a neutron spin precesses in the opposite

direction to a proton spin. Moreover, the spins point in opposite directions in their

ground state.

Now we can describe the ways in which the nuclear structure affects the energy levels

of the atom

• Both the electron and the nucleus carry a magnetic moment. But we know from

our first course on Electromagnetism that there is an interaction between nearby

magnetic moments. This will lead to a coupling of the form I · S between the

nucleus and electron spins.

• The orbital motion of the electron also creates a further magnetic field, parallel

to L. This subsequently interacts with the magnetic moment of the nucleus,

resulting in a coupling of the form I · L.

• The nucleus may have an electric quadrupole moment. This means that the

electron no longer experiences a rotationally invariant potential.

For most purposes, the effects due to the nuclear magnetic moment are much larger

than those due to its electric quadrupole moment. Here we restrict attention to s-wave

states of the electron, so that we only have to worry about the first effect above.

To proceed, we first need a result from classical electromagnetism. A magnetic

moment mN placed at the origin will set up a magnetic field

B =
2µ0

3
mNδ

3(0) +
µ0

4πr3
(3(mN · r̂)r̂−mN) (3.20)

The second term is the long-distance magnetic field and was derived in Section 3 of

the Electromagnetism lectures. The first term is the magnetic field inside a current

loop, in the limit where the loop shrinks to zero size, keeping the dipole moment fixed.

(It actually follows from one of the problem sheet questions in the Electromagnetism

course.)
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The electron spin interacts with this nuclear magnetic field through the hyperfine

Hamiltonian

∆H = −m ·B =
e

m
S ·B

For the s-wave, the contribution from the second term in (3.20) vanishes and we only

have to compute the first term. Writing the magnetic moments in terms of the spin,

and using the expression (3.16) for the s-wave wavefunction at the origin, the hyperfine

Hamiltonian becomes

∆H =
2µ0gNZe

2

6Mm
|ψn,l=0(0)|2 S · I

=
4

3

m

M
(Zα)4mc2

1

n3

1

ℏ2
S · I (3.21)

where, in the second line, we’ve used our previous expression (3.16) for the value of the

wavefunction at the origin, |ψn,l=0(0)|2 = Z3/a30πn
3, together with the usual definitions

a0 = ℏ/αmc and α = e2/4πϵ0ℏc

We see that the hyperfine splitting (3.21) has the same parametric form as the

fine structure, with the exception that it is further suppressed by the ratio of masses

m/M . For hydrogen with Z = 1, we should take M = mp, the proton mass, and

m/mp ≈ 1/1836. So we expect this splitting to be three orders of magnitude smaller

than the fine structure splitting.

We can evaluate the eigenvalues of the operator S · I in the same way as we dealt

with the spin orbit coupling in Section 3.1.3. We define the total spin as F = S + I.

For hydrogen, where both the electron and proton have spin 1/2, we have

1

ℏ2
S · I = 1

2ℏ2
(
F2 − S2 − I2

)
=

1

2

(
F (F + 1)− 3

2

)
=

1

2

{
−3

2
F = 0

1
2

F = 1
(3.22)

This gives rise to the splitting between the spin up and spin down states of the electron.

Or, equivalently, between the total spin F = 0 and F = 1 of the atom.

The 21cm Line

The most important application of hyperfine structure is the splitting of the 1s1/2
ground state of hydrogen. As we see from (3.22), the F = 0 spin singlet state has lower

energy than the F = 1 spin state. The energy difference is

∆E1s1/2 =
4α4m2c2

3M
≈ 9.39× 10−25 J
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This is small. But it’s not that small. The temperature of the cosmic microwave

background is T ≈ 2.7K which corresponds to an energy of E = kBT ≈ 3.7×10−23 J >

∆E1s1/2 . This means that the hydrogen that is spread throughout space, even far from

stars and galaxies, will have its F = 1 states excited by the background thermal bath

of the universe.

When an electron drops from the F = 1 state to the F = 0 state, it emits a photon

with energy ∆E1s1/2 . This has frequency ∼ 1400 MHz and wavelength ∼ 21 cm. This

is important. The wavelength is much longer than the size of dust particles which float

around in space, blocking our view. This means that, in contrast to visible light, the

21cm emission line from hydrogen can pass unimpeded through dust. This makes it

invaluable in astronomy and cosmology.

For example, the hydrogen line allowed us to discover that our home, the Milky way,

is a spiral galaxy. In this case, the velocity of the hydrogen gas in the spiral arms could

be detected by the red-shift of the 21cm line. Similarly, the 21cm line has allowed us

to map the distribution of hydrogen around other

Figure 16:

galaxies. It shows that hydrogen sitting in the out-

skirts of the galaxies is rotating much too fast to be

held in place by the gravity from the visible mat-

ter alone. This is one of the key pieces of evidence

for dark matter. An example from the KAT7 tele-

scope, a precursor to the square kilometer array, is

shown on the right. The green contours depict the

hydrogen, as measured by the 21cm line, stretching

far beyond the visible galaxy.

Looking forwards, there is optimism that the 21cm

line will allow us to see the “dark ages” of cosmol-

ogy, the period several hundreds of millions of years

between when the fireball of the Big Bang cooled and the first stars appeared.

Caesium

Caesium has atomic number 55 and. Its nucleus has spin I = 7/2. The mixing with the

outer electron spin results in a hyperfine splitting of the ground state into two states,

one with F = 3 and the other with F = 4. The frequency of the transition between

these is now used as the definition of a time. A second is defined as 9192631770 cycles

of the hyperfine transition frequency of caesium 133.
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3.1.7 Atoms in an Expanding Universe

After getting our hands dirty understanding some subtleties of atomic spectra, let’s

now waste our time doing something silly but fun..

The universe is expanding. We know this because galaxies get farther apart over time.

But what does this expansion of space do to atoms? Is the electron in a hydrogen atom

getting slowly, but inexorably, dragged away from the proton? The answer, as we shall

see, is no. But there is some interesting, if entirely unobservable, physics involved.

First we need a way to capture the expansion of the universe. Ultimately, this is an

effect that should be described using General Relativity. But it turns out that there

is a simple, Newtonian analog that can be used when the expansion is driven by a

cosmological constant Λ which, happily, is the case in our current universe. In this

case, the potential for an electron orbiting a nucleus gets an extra term,

V (r) = −Zαℏc
r
− 1

6
mΛr2 (3.23)

The cosmological constant acts like an inverted harmonic

Figure 17:

oscillator. It means that, for suitable large distances,

particles get pushed apart from each other, which is the

expected effect of an expanding universe. Note that the

additional term is proportional to m, the mass of the

electron. This is a reflection of the equivalence principle,

which says that gravitational forces are proportional to

the mass of the particle. A derivation of the Newtonian

form of the cosmological constant (3.23) can be found in

the lectures on Cosmology.

The form of this potential is shown in the figure although, as we will soon see, this

is not particularly to scale. Notably, there is a turning point. We’ll be careless with

overall constants and just focus on order of magnitudes. The turning point then sits at

r3⋆ ∼ Zα
ℏ
mc

c2

Λ

Besides the dimensionless constant Zα, there are two different length scales in this

expression. The first is the Compton wavelengh of the electron,

ℏ
mc
≈ 10−12 m
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The second is the length scale associated to the expansion of the universe

c2

Λ
≈ (1027 m)2

The turning point in the potential occurs at an appropriate mean of these two scales,

which turns out to be

r⋆ ≈ 1014 m

This is about r⋆ ≈ 0.01 lightyears. It is rather large, at least as far as atoms are

concerned.

Without doing any further calculations, we can see the effect of the expansion of the

universe. Needless to say, for atoms that spread to any distance r ≪ r⋆, the expansion

of the universe doesn’t play any role. That’s deeply unsurprising. And, of course, holds

for all actual atoms. But if we take the calculation above seriously, then electron orbits

that extend to r ∼ r⋆ would be unstable to being ripped apart from by the expansion

of spacetime!

What does this mean for the hydrogen atom? The Bohr radius is a0 ≈ 5× 10−11 m

and the wavefunction for the nth excited state can be shown to be peaked around a

distance ∼ n2a0. All of which suggests that the first n ≈ 1012 excited states still exist,

but after that the electron’s life gets more perilous. (See, I told you that this section

would be slightly silly.)

However, there is another concern. An electron bound state in the potential (3.23)

is always susceptible to tunnelling through the barrier. This would be a quantum

tunnelling effect on cosmological scales and result in the instability of matter. Should

we be worried?

This is the kind of “tunnelling out of a trap” calculation that we did in Section

2.2.5. Following the steps that we took there, we can get an estimate for the lifetime

of hydrogen of the form

τ ∼ τ0 e
2S/ℏ

Here τ0 is the appropriate atomic time scale. As we saw earlier in this section, the

electron in the ground state has average speed ⟨v⟩ = cα. It sits at a Bohr a0 = ℏ/mcα,
from which we can extract a time scale

τ0 =
ℏ

mc2α2
∼ 2× 10−17 s

– 85 –



Roughly speaking, this is the time taken for the electron to make a single orbit (ignoring

factors of 2π.) That leaves us with the exponential factor that comes from tunnelling.

Recall that the all-important factor of S is the action

S =

∫ x1

x0

dr′
√
2m(V (x′)− E)

The potential is given in (3.23). Here we should take E = 1
2
mc2α2, the ground state

energy of hydrogen. The limits of the integral are taken between x0 ≈
√
ℏ/mcα and

x1 ≈
√
c2α2/Λ which is where the integrand vanishes (and I’m being sloppy about

various factors at this stage). This integral is entirely dominated by the upper limit

and, again ignoring various factors, is given by

S ≈ mc2α2

√
Λ

This is the ratio of an atomic scale by a cosmological scale. It’s going to be large.

Indeed, you can check that S/ℏ ≈ 1038. We learn that the expected lifetime of a

hydrogen atom, before it is unceremoniously torn apart by the expansion of the universe,

is roughly

τ ≈ e10
38

τ0

This isn’t something that should keep you awake at night. Indeed, numbers like e10
38

are so ridiculously large that it doesn’t matter what units you measure them in: it’s

more or less the same timescale whether you measure it in Planck units, seconds, or

Hubble times.

3.2 Atomic Structure

In this section, we finally move away from hydrogen and discuss atoms further up the

periodic table. The Hamiltonian for N electrons orbiting a nucleus with atomic number

Z is

H =
N∑
i=1

(
− ℏ2

2m
∇2
i −

Ze2

4πϵ0

1

ri

)
+
∑
i<j

e2

4πϵ0

1

|ri − rj|
(3.24)

For a neutral atom, we take N = Z. However, in what follows it will be useful to keep

N and Z independent. For example, this will allows us to describe ions.
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We can, of course, add to this Hamiltonian relativistic fine structure and hyperfine

structure interactions of the kind we described in the previous section. We won’t do this.

As we will see, the Hamiltonian (3.24) will contain more than enough to keep us busy.

Our goal is to find its energy eigenstates. Further, because electrons are fermions, we

should restrict ourselves to wavefunctions which are anti-symmetric under the exchange

of any two electrons.

It is a simple matter to write down the Schrödinger equation describing a general

atom. It is another thing to solve it! No exact solutions of (3.24) are known for

N ≥ 2. Instead, we will look at a number of different approximation schemes to try

to understand some aspects of atomic structure. We start in this section by making

the drastic assumption that the electrons don’t exert a force on each other. This is

not particularly realistic, but it means that we can neglect the final interaction term

in (3.24). In this case, the Hamiltonian reduces to N copies of

H0 = −
ℏ2

2m
∇2 − Ze2

4πϵ0

1

r

This, of course, is the Hamiltonian for the hydrogen atom, albeit with the proton charge

+e replaced by Ze. And, as reviewed in Section 3.1.1, we know everything about the

solutions with this Hamiltonian.

3.2.1 A Closer Look at the Periodic Table

Ignoring the interaction between electrons gives us an eminently solvable problem. The

only novelty comes from the Pauli exclusion principle which insists that no two electrons

can sit in the same state. The ground state of a multi-electron atom consists of filing

the first Z available single-particle states of the hydrogen atom.

However, as we’ve seen above, there is a large degeneracy of energy levels in the

hydrogen atom. This means that, for general Z, the rule above does not specify a

unique ground state for the atom. Nonetheless, when Z hits certain magic numbers,

there will be a unique ground state. This occurs when there are exactly the right

number of electrons to fill energy levels. Those magic numbers are:

n l Degeneracy N

1 0 2 2

2 0,1 2× (1 + 3) = 8 2 + 8 = 10

3 0,1,2 2× (1 + 3 + 5) = 18 2 + 8 + 18 = 28

4 0,1,2,3 2× (1 + 3 + 5 + 7) = 32 2 + 8 + 18 + 32 = 60
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This simple minded approach suggests that at the magic numbers Z = 2, 10, 28, 60, . . .

the atoms will have a full shell of electrons. If we were to add one more electron it

would have to sit in a higher energy level, so would be less tightly bound. We might,

then, want to predict from our simple minded non-interacting model that atoms with

these special values of Z will be the most chemically stable.

A look at the periodic table shows that

Figure 18:

our prediction is not very impressive! We

learn in school that the most chemically

stable elements are the inert Noble gases

on the far right. We can quantify this by

looking at the ionization energies of atoms

as a function of Z, as shown on the right

which shows that the most stable elements

have Z = 2, 10, 18, 36, 54, 86 and 118.

We see that our non-interacting model

gets the first two numbers right, but after

that it all goes pear shaped. In particular,

we predicted that Z = 28 would be special

but this corresponds to nickel which sits slap in the middle of the transition metals!

Meanwhile, we missed argon, a stable Noble gas with Z = 18. Of course, there’s no

secret about what we did wrong. Our task is to find a way to include the interactions

between electrons to explain why the Noble gases are stable.

Before we return to the Schrödinger equation, we will build some intuition by looking

more closely at the arrangement of electrons that arise in the periodic table. First some

notation. We describe the configuration of electrons by listing the hydrogen orbitals

that are filled, using the notation n#p where # is the letter (s, p, d, f, etc.) denoting

the l quantum number and p is the number of electrons in these states.

The electrons which have the same value of n are said to sit in the same shell.

Electrons that have the same value of n and l are said to sit in the same sub-shell.

Each sub-shell contains 2(l+1) different states. Electrons which sit in fully filled shells

(or sometimes sub-shells) are said to be part of the core electrons. Those which sit in

partially filled shells are said to form the valence electrons. The valence electrons lie

farthest from the nucleus of the atom and are primarily responsible for its chemical

properties.
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There are only two elements with all electrons lying in the n = 1 shell. These are

hydrogen and helium

Z 1 2

Element H He

Electrons 1s1 1s2

Next, the elements with electrons in the first two shells. These are

Z 3 4 5 6 7 8 9 10

Li Be B C N O F Ne

[He]+ 2s1 2s2 2s22p1 2s22p2 2s22p3 2s22p4 2s22p5 2s22p6

where the notation in the bottom line means that each element has the filled n = 1

shell of helium, together with the extra electrons listed. We see that the atoms seem

to be following a reasonable pattern but, already here, there is a question to answer

that does not follow from our non-interacting picture: why do the electrons prefer to

first fill up the 2s states, followed by the 2p states?

The next set of atoms in the periodic table have electrons in the third shell. They

are

Z 11 12 13 14 15 16 17 18

Na Mg Al Si P S Cl Ar

[Ne]+ 3s1 3s2 3s23p1 3s23p2 3s23p3 3s23p4 3s23p6 3s23p6

where now the electrons fill the 2s22p6 states of neon, together with those listed on the

bottom line. Again, we see that the 3s level fills up before the 3p, something which

we will later need to explain. But now we see that it’s sufficient to fill the 3p states to

give a chemically inert element. This suggests that there is a big energy gap between

between 3p and 3d, again something that is not true in the absence of interactions.

In the next row of elements, we see another surprise. We have

Z 19 20 21 22 . . . 30 31 . . . 36

K Ca Sc Ti . . . Zn Ga . . . Kr

[Ar]+ 4s1 4s2 3d14s2 3d24s2 . . . 3d104s2 3d104s24p1 . . . 3d104s24p6

We see that we fill the 4s states before the 3d states. This is now in direct contradiction

to the non-interacting model, which says that 4s states should have greater energy that

3d states.
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There is a simple rule that chemists employ to
1s

2s

3s

5s

4s

6s

7s

2p

3p

4p

5p

6p

7p

3d

4d

5d

6d

4f

5f

Figure 19: Aufbau

explain the observed structure. It is called the auf-

bau principle and was first suggested by Bohr. It says

that you should write all possible n# energy levels in

a table as shown to the right. The order in which the

energy levels are filled is set by the arrows: first 1s,

followed by 2s, 2p, 3s, and then 3p, 4s, 3d, 4p and so

on. This explains the observed filling above. Our task

in these lectures is to explain where the aufbau prin-

ciple comes from, together with a number of further

rules that chemists invoke to explain the elements.

The aufbau principle also explains why the periodic table needs those two extra lines,

drifting afloat at the bottom: after we fill 6s (Cs and Ba) we move to 4f which has

14 states. These are elements Z = 58 to Z = 71. However, rather annoyingly, the

first element in those bottom two lines in La with Z = 57 and this, it turns out, is an

exception to the aufbau principle, with electron configuration [Xe]5d16s2!

In fact, the “aufbau principle” is more an “aufbau rule of thumb”. As we go to higher

values of Z there are an increasing number of anomalies. Some of these are hidden

in the . . . in the last table above. Vanadium with Z = 23 has electron configuration

[Ar]3d34s2, but it is followed by chromium with Z = 24 which has [Ar]3d54s1. We see

that the 4s state became depopulated, with an extra electron sitting in 3d. By the

time we get to manganese at Z = 26, we’re back to [Ar]3d54s2, but the anomaly occurs

again for copper with Z = 29 which has [Ar]3d104s1. Chemistry, it turns out, is a little

bit messy. Who knew?

Even scandium, with Z = 21, hides a failure of the aufbau principle. At first glance,

it would seem to be a poster child for aufbau, with its configuration [Ar]3d14s2. But if

we strip off an electron to get the ion Sc+, we have [Ar]3d14s1. Stripping off a further

electron, Sc++ has [Ar]3d1. Neither of these follow aufbau. These anomalies only get

worse as we get to higher Z. There are about 20 neutral atoms which have anomalous

fillings and many more ions.

We will not be able to explain all these anomalies here. Indeed, even to derive the

aufbau principle we will have to resort to numerical results at some stage. We will,

however, see that multi-electron atoms are complicated! In fact, it is rather surprising

that they can be accurately described using 1-particle states at all. At the very least you

should be convinced that there need not be a simple rule that governs all of chemistry.
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3.2.2 Helium and the Exchange Energy

We’re going to start by looking at the simplest example of a multi-electron atom:

helium. This will start to give some physical intuition for the aufbau principle. It will

also help reveal the role that the spin of the electron plays in the energy of states.

The Ground State of Helium

We’ve already discussed the ground state of Helium in Section 2.1.2 as an example of

the variational method. Let’s first recap the main results of that analysis.

In the ground state, both electrons sit in the 1s state, so that their spatial wavefunc-

tion takes the form

Ψ(r1, r2) = ψ1,0,0(r1)ψ1,0,0(r2) with ψ1,0,0(r) =

√
Z3

πa30
e−Zr/a0 (3.25)

Here a0 = 4πϵ0ℏ2/me2 is the Bohr radius. For helium, we should pick Z = 2.

Since the spatial wavefunction is symmetric under exchange of the particles, we

rely on the spin degrees of freedom to provide the necessary anti-symmetry of the full

wavefunction. The spins must therefore sit in the singlet state

|0, 0⟩ = |↑ ⟩|↓ ⟩ − |↓ ⟩|↑ ⟩√
2

(3.26)

Computing the shift of energy is a simple application of first order perturbation theory.

The interaction Hamiltonian is

Hint =
e2

4πϵ0

1

|r1 − r2|
(3.27)

and, correspondingly, the shift of the ground state energy is given by

∆E =
e2

4πϵ0

∫
d3r1d

3r2
|ψ1,0,0(r1)|2|ψ1,0,0(r2)|2

|r1 − r2|

We showed how to compute this integral in Section 2.1.2 and found ∆E = 5
4
Z Ry.

This then gives a total ground state energy of E0 ≈ −74.8 eV which, given the lack of

control of perturbation theory, is surprisingly close to the true value E0 ≈ −79 eV .
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We also learned in Section 2.1.2 that we can do better using a variational ansatz.

Although we will not employ this technique below, there is a physics lesson that it’s

useful to highlight. In the variational method, we again work with the form of the

wavefunction (3.25), but this time allow the atomic number Z of the nucleus to be

our variational parameter. We found that we can achieve a lower ground state energy,

E0 ≈ −77.5 eV — one which is closer to the true value — if instead of setting Z = 2

in the wavefunction, we take

Z = 2− 5

16

There is some physical intuition behind this result. Each electron sees the charge Z = 2

of the nucleus reduced somewhat by the presence of the other electron. This is called

screening and it is the basic phenomenon which, ultimately, underlies much of the

physics of atomic structure.

Excited States of Helium

Let’s now extend our discussion to the first excited state of helium. From our non-

interacting model, there are two possibilities which, as far as non-interacting electrons

are concerned, are degenerate. These are 1s12s1 and 1s12p1. We would like to under-

stand which of these has lowest energy.

In fact, there is a further splitting of each of these states due to the spin-degrees of

freedom. To understand this splitting, we need to recall the following:

• The Hamiltonian is blind to the spin degrees of freedom. This means that the

wavefunction takes the form of a tensor product of a spatial state with a spin

state.

• Electrons are fermions. This means that the overall wavefunction must be anti-

symmetric under exchange of the two particles.

There are two ways to achieve the anti-symmetry: we either make the spatial wave-

function symmetric and the spin wavefunction anti-symmetric, or vice versa. The two

possibilities for the spatial wavefunction are

Ψab±(r1, r2) =
1√
2
(ψa(r1)ψb(r2)± ψa(r2)ψb(r1))

where we’re using the notation a, b to denote the triplet of quantum numbers of (n, l,m).

For the first excited states, we should take a = (1, 0, 0). Then b = (2, 0, 0) for the 1s12s1

state and b = (2, 1,m) for the triplet of 1s12p1 states, with m = −1, 0, 1
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The symmetric wavefunctions Ψab,+ must be combined with the anti-symmetric spin-

singlet (3.26) which we write as

|ab; s = 0⟩ = Ψab,+(r1, r2)⊗ |0, 0⟩ (3.28)

where |0, 0⟩ is the spin singlet state defined in (3.26). Note that we shouldn’t confuse

the s = 0 spin with the label “s” used to denote the l = 0 atomic orbital. They are

different! Also, I’ve been a bit lax about my notation for wavefunctions: the expression

above should really read |ab; s = 0⟩ = |Ψab,+⟩ ⊗ |0, 0⟩ where the fermionic two-particle

state |Ψ+⟩ has overlap Ψab,+(r1, r2) = ⟨r1, r2|Ψab,+⟩ with the position basis of two-

particle states |r1, r2⟩. This, more precise, notation turns out to be somewhat more

cumbersome for our needs.

Similarly, the anti-symmetric wavefunction must be paired with the symmetric spin

states. There is a triplet of such states, |s = 1;ms⟩,

|1, 1⟩ = |↑ ⟩|↑ ⟩ , |1, 0⟩ = |↑ ⟩|↓ ⟩+ |↓ ⟩|↑ ⟩√
2

, |1,−1⟩ = |↓ ⟩|↓ ⟩ (3.29)

The total wavefunctions are again anti-symmetric,

|ab; s = 1⟩ = Ψab−(r1, r2)⊗ |1,ms⟩ ms = −1, 0, 1 (3.30)

For both Ψab,+ and Ψab,− we take a to be the 1s state and b to be either the 2s or 2p state.

The upshot of this analysis is that there are 4 possible 1s12s1 states: a spin-singlet and

a spin-triplet. There are 12 possible 1s12p1 states: 3 spin-singlets and 9 spin-triplets,

the extra factor of 3 coming from the orbital angular momentum m = −1, 0, 1. Notice
how fast the number of states grows, even for the simplest multi-electron atom! For

the first excited state, we already have 16 options. This fast growth in the dimension

of the Hilbert space is one of the characteristics of quantum mechanics.

Fortunately, we don’t have to do degenerate perturbation theory with 16 × 16 di-

mensional matrices! The matrix elements of the interaction Hamiltonian (3.27) are

already diagonal in the basis |ab; s⟩ that we’ve described above already. This follows

on symmetry grounds. The interaction Hamiltonian preserves rotational invariance, so

the total orbital angular momentum must remain a good quantum number. Further,

it doesn’t mix spin states and ⟨0, 0|1,m⟩ = 0. This means that the states (3.28) and

(3.30) are guaranteed to be energy eigenstates, at least to first order in perturbation

theory.

In summary, we are looking for four energy levels, corresponding to the states

|1s12s1; s⟩ and |1s12p1; s⟩ where s = 0 or 1. The question we would like to ask is:

what is the ordering of these states?

– 93 –



We can make some progress with this question without doing any calculations. The

interaction Hamiltonian (3.27) is a repulsive potential between the electrons. Clearly

the states with lowest energy will be those where the electrons try to stay apart from

each other. But the anti-symmetric wavefunction Ψab− has the property that it vanishes

when r1 = r2 and the electrons sit on top of each other. This strongly suggests that

Ψab− will have lower energy than Ψab+ and, correspondingly, the spin-triplet versions

of a state will have lower energy than the spin-singlets.

We can see this mathematically. The energy splitting is

∆Eab± =
1

4πϵ0

∫
d3r1d

3r2
|Ψab±(r1, r2)|2

|r1 − r2|
= Jab ±Kab

where Jab is given by

Jab =
1

4πϵ0

∫
d3r1d

3r2
1

2

|ψa(r1)ψb(r2)|2 + |ψa(r2)ψb(r1)|2

|r1 − r2|

=
1

4πϵ0

∫
d3r1d

3r2
|ψa(r1)ψb(r2)|2

|r1 − r2|
(3.31)

where the second line follows because the integrand is symmetric under exchange r1 ↔
r2. Meanwhile, we have

Kab =
1

4πϵ0

∫
d3r1d

3r2
1

2

ψ⋆a(r1)ψ
⋆
b (r2)ψa(r2)ψb(r1) + ψ⋆a(r2)ψ

⋆
b (r1)ψa(r1)ψb(r2)

|r1 − r2|

=
1

4πϵ0

∫
d3r1d

3r2
ψ⋆a(r1)ψ

⋆
b (r2)ψa(r2)ψb(r1)

|r1 − r2|
(3.32)

The contribution Jab is called the direct integral; Kab is called the exchange integral or,

sometimes, the exchange energy. Note that it involves an integral over the position of

the particle r1, weighted with both possible states ψa(r1) and ψb(r1) that the electron

can sit in.

Both Jab and Kab are positive definite. This is not obvious for Kab, but is intuitively

true because the integral is dominated by the region r1 ≈ r2 where the numerator is

approximately |ψa(r)|2|ψb(r)|2. Since the shift in energy is ∆Eab± = Jab ±Kab we see

that, as expected, the spin-triplet states with spatial anti-symmetry have lower energy.

We’ve learned that each of the spin-triplet states is lower than its spin-singlet

counterpart. But what of the ordering of 1s12s1 vs 1s12p1? For this, we have to do the

integrals J and K. One finds that the pair of 2s energy levels have lower energy than

the pair of 2p energy levels. This, of course, is the beginning of the aufbau principle:

the 2s levels fill up before the 2p levels. The resulting energy levels are shown in the

diagram.
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Taken literally, our calculation sug-

Unperturbed
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1s2p

J2s

J2p

2K

2K
p

p

1

3

s

s

1

3

2p

2s

Figure 20:

gests that the 2s state has lower energy be-

cause it does a better job at avoiding the

original 1s electron. This is misleading:

it’s more an artefact of our (not particu-

larly good) perturbative approach to the

problem, rather than a way to good de-

scription of the underlying physics. One

could do a better job by introducing vari-

ational wavefunctions, similar to those we

looked at for the ground state. This ap-

proach would highlight the reason why states

of higher l have higher energy. This reason

is screening.

As we’ve seen, excited states of helium sit in both spin-singlets and spin-triplets.

Parity means that transitions between these two states can only occur through the

emission of two photons which makes these transitions much rarer. The lifetime of the

1s2s state turns out to be around 2.2 hours. This is very long on atomic timescales;

indeed, it is the longest lived of all excited states of neutral atoms. It is said to be

meta-stable. Before these transitions were observed, it was thought that there were two

different kinds of helium atoms: those corresponding to spin-singlet states and those

corresponding to spin-triplets. Historically the spin-singlet states were referred to as

parahelium, the spin-triplet states as orthohelium.

The punchline from the story above is that spatially anti-symmetric wavefunctions

are preferred since these come with a negative exchange energy. The fermionic nature

of electrons means that these wavefunctions sit in a spin-triplet states. This fact plays

an important role in many contexts beyond atomic physics. For example, the spins in

solids often have a tendency to align, a phenomenon known as ferromagnetism. This

too can be traced to the exchange integral for the Coulomb repulsion between atoms

preferring the spins to sit in a triplet state. This results in the kind of S1 · S2 spin-

spin interaction that we met in the Statistical Physics course when discussing the Ising

model.

3.2.3 An Instability of (Very) Large Nuclei

The periodic table doesn’t go on for ever. The heaviest, stable element is Bismuth-209

with Z = 83. There are heavier elements with long lifetimes, such as Uranium-238

with Z = 92 which has a half-life of around 4.5 billion years. But as you continue to go
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up in atomic number, the half-lifes become much shorter. The heaviest elements with

Z = 117 and Z = 118 have to be created artificially and have a half-life measured in

milliseconds.

This instability arises because the repulsive Coulomb force between protons defeats

the attractive, but short-ranged, interaction of the strong nuclear force. The full details

are complicated and clearly need an understanding of the strong nuclear force.

However, there is another instability of heavy, charged nuclei that involves only

electromagnetism and is very easy to see. This follows simply from the binding energy

(3.3) of an electron with the nucleus,

E1 = −
(Zα)2mc2

2
where α =

e2

4πϵ0ℏc
≈ 1

137

If this binding energy is sufficiently large, then it’s energetically preferable to produce

an electron-positron pair out of the vacuum. Of course, this costs a significant amount

of energy: it’s Epair = 2mc2, where the factor of two is there because both the electron

and positron must be created. But the electron can then be captured by the nucleus,

saving E1 of energy. (Admittedly, we are assuming that the nucleus has been stripped

of orbiting electrons here so the lowest slot is not already taken.) The end result would

be that the nucleus spits out a positron, collecting a tightly-bound electron. This whole

process is energetically preferable if

E1 + Epair < 0 ⇒ Z >
2

α

The factor of 2, means that this particular instability only kicks in when Z ≈ 280 which

means that it’s not the mechanism that destabilises the heavy elements in the periodic

table.

3.3 Self-Consistent Field Method

As we’ve seen from our attempts to understand helium, a naive application of pertur-

bation theory is not particularly effective. Not only does it become complicated as the

number of possible states grows, but it also fails to capture the key physics of screening.

In this section, we will develop a variational approach to multi-electron atoms where,

as we will see, the concept of screening sits centre stage. The idea is to attempt to reduce

our multi-particle problem to a single-particle problem. But we don’t do this merely

by ignoring the effects of the other particles; instead we will alter our Hamiltonian in

a way that takes these other particles into account. This method is rather similar to

the mean field theory approach that we met in Statistical Physics; in both cases, one

averages over many particles to find an effective theory for a single particle.
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3.3.1 The Hartree Method

We start by considering a variational ansatz for the multi-particle wavefunction. For

now, we will forget that the electrons are fermions. This means that we won’t im-

pose the requirement that the wavefunction is anti-symmetric under the exchange of

particles, nor will we include the spin degrees of freedom. Obviously, this is missing

something important but it will allow us to highlight the underlying physics. We will

fix this oversight in Section 3.3.3 when we discuss the Hartree-Fock method.

We pretend that the electrons are independent and take as our ansatz the product

wavefunction

Ψ(r1, . . . , rN) = ψa1(r1)ψa2(r2) . . . ψaN (rN) (3.33)

Here the labels ai denote various quantum numbers of the one-particle states. We

will ultimately see that the states ψa(r) are eigenstates of a rotationally invariant

Hamiltonian, albeit one which is different from the hydrogen Hamiltonian. This means

that we can label each state by the usual quantum numbers

a = (n, l,m)

Although we haven’t imposed anti-symmetry of the wavefunction, we do get to choose

these quantum numbers for the states. This means that we can, for example, use this

ansatz to look at the 3-particle states that lie in the shell 1s22s1 as an approximation

for the ground state of lithium.

We will view (3.33) as a very general variational ansatz, where we get to pick anything

we like for each ψa(r). We should compare this to the kind of variational ansatz (3.25)

where we allowed only a single parameter Z to vary. For the Hartree ansatz, we have

an infinite number of variational parameters.

The multi-electron Hamiltonian is

H =
N∑
i=1

(
− ℏ2

2m
∇2
i −

Ze2

4πϵ0

1

ri

)
+
∑
i<j

e2

4πϵ0

1

|ri − rj|

Evaluated on our ansatz (3.33), the average energy is

⟨E⟩ =
N∑
i=1

∫
d3r ψ⋆ai(r)

(
− ℏ2

2m
∇2 − Ze2

4πϵ0

1

r

)
ψai(r)

+
e2

4πϵ0

∑
i<j

∫
d3r d3r′

ψ⋆ai(r)ψ
⋆
aj
(r′)ψai(r)ψaj(r

′)

|r− r′|
(3.34)
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The last term is an example of the kind of “direct integral” (3.31) that we met when

discussing helium.

To find the best approximation to the ground state within the product ansatz (3.33),

we minimize ⟨E⟩ over all possible states. However, there’s a catch: the states ψa(r)

must remain normalised. This is easily achieved by introducing Lagrange multipliers.

To this end, consider the functional

F [Ψ] = ⟨E⟩ −
∑
i

ϵi

(∫
d3r |ψai(r)|2 − 1

)

with ϵi the N Lagrange multipliers imposing the normalisation condition.

Because the wavefunction is complex, we can vary its real and imaginary parts in-

dependently. Since we have N independent wavefunctions, this gives rise to 2N real

conditions. It’s not too hard to convince yourself that this is formally equivalent to the

treating ψ(r) and ψ⋆(r) as independent and varying each of them, leaving the other

fixed. Minimizing F [Ψ] then requires us to solve

δF [Ψ]

δψ⋆ai(r)
= 0 and

δF [Ψ]

δψai(r)
= 0

The first of these is N complex conditions, while the second is simply the conjugate of

the first. These N complex conditions are called the Hartree equations,[
− ℏ2

2m
∇2 − Ze2

4πϵ0

1

r
+

e2

4πϵ0

∑
j ̸=i

∫
d3r′

|ψaj(r′)|2

|r− r′|

]
ψai(r) = ϵiψai(r) (3.35)

These equations look tantalisingly similar to the Schrödinger equation. The only dif-

ference — and it is a big difference — is that the effective potential for ψai(r) depends

on the wavefunctions for all the other electrons, through the contribution

Uai(r) =
e2

4πϵ0

∑
j ̸=i

∫
d3r′

|ψaj(r′)|2

|r− r′|
(3.36)

Physically this is clear: the potential Uai(r) is the electrostatic repulsion due to all the

other electrons. Note that each electron experiences a different effective Hamiltonian,

with a different Uai(r). The catch is that each of the ψaj(r) that appears in the potential

U(r) is also determined by one of the Hartree equations.
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The Hartree equations (3.35) are not easy to solve. They are N coupled non-linear

integro-differential equations. We see that there’s a certain circularity needed to get to

the solution: the potentials Uai(r) determine the wavefunctions but are also determined

by the wavefunctions. In this sense, the ultimate solution for Uai(r) is said to be “self-

consistent”.

The usual techniques that we use for the Schrödinger equation do not work for the

Hartree equations. Instead, we usually proceed iteratively. We start by guessing a

form for the potentials Uai(r) which we think is physically realistic. Often this involves

making the further approximation that U(r) is spherically symmetric, so we replace

Uai(r)→ Uai(r) =

∫
dΩ

4π
Uai(r)

Then, with this potential in hand, we solve the Schrödinger equations[
− ℏ2

2m
∇2 − Ze2

4πϵ0

1

r
+ Uai(r)

]
ψai(r) = ϵiψai(r) (3.37)

This can be done numerically. We then substitute the resulting wavefunctions back

into the definition of the potential (3.36) and then play the whole game again. If we

chose a good starting point, this whole process will begin to converge.

Suppose that we’ve done all of this. What is the answer for the ground state energy of

the atom? From (3.35), the Lagrange multipliers ϵi look like the energies of individual

particles. We can write

ϵi =

∫
d3r ψ⋆ai(r)

[
− ℏ2

2m
∇2 − Ze2

4πϵ0

1

r
+

e2

4πϵ0

∑
j ̸=i

∫
d3r′

|ψaj(r′)|2

|r− r′|

]
ψai(r)

Summing these gives an expression that is almost the same as the expected energy

(3.34), except that the sum
∑

i

∑
j ̸=i is twice the sum

∑
i<j. Then, evaluated on the

solutions to the Hartree equations, the energy given by

⟨E⟩ =
∑
i

ϵi −
e2

4πϵ0

∑
j ̸=i

∫
d3r d3r′

|ψaj(r′)|2|ψai(r)|2

|r− r′|

By the usual variational arguments, this gives an upper bound for the ground state

energy.
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An Example: Potassium

We won’t describe in detail the numerical solutions to the Hartree equations (nor to

the more sophisticated Hartree-Fock equations that we will meet shortly). We can,

however, use this approach to offer some hand-waving intuition for one of the more

surprising features of the aufbau principle: why does the 4s state fill up before the 3d

state?

This question first arises in potassium, an alkali metal with electron configuration

1s22s22p63s23p64s1. Why is the last electron in 4s rather than 3d as the non-interacting

picture of electrons would suggest?

In the Hartree approach, we see that the electron experiences an effective potential

with Schrödinger equation (3.37). The key piece of physics that determines U(r) is,

once again, screening. When the electron is far away, the nuclear charge Ze is expected

to be almost entirely screened by the other Z − 1 electrons. In contrast, when the

electron is close to the nucleus, we expect that it feels the full force of the Ze charge.

On these grounds, the total effective potential should be

− Ze2

4πϵ0r
+ U(r) = −Z(r)e

2

4πϵ0r

where Z(r) is some function which interpolates between Z(r) → Z as r → 0 and

Z(r)→ 1 as r →∞.

We should now solve the Schrödinger equation with this potential. All quantum

states are labelled by the usual triplet (n, l,m), but as the potential is no longer simply

1/r the energy levels will depend on both n and l. The basic physics is the same as

we described for the excited states of helium. The l = 0 s-wave states extend to the

origin which causes their energy to be lower. In contrast, the higher l states experience

an angular momentum barrier which keeps them away from the origin and raises their

energy. This explains why 3s fills up before 3p. But this same screening effect also

lowers the 4s states below that of 3d.

3.3.2 The Slater Determinant

The Hartree ansatz (3.33) is not anti-symmetric under the exchange of particles. As

such, it is not a physical wavefunction in the Hilbert space of fermions. We would like

to remedy this.
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Our task is a simple one: given a collection of 1-particle states, how do we construct

a multi-particle wavefunction for fermions that are anti-symmetric under the exchange

of any pair of particles? This general question arises in many contexts beyond the

spectrum of atoms.

We will use the notation |ψi(j)⟩ to mean the particle j occupies the one-particle state

|ψi⟩. Then we can build a suitably anti-symmetrised N -particle wavefunction by using

the Slater determinant,

|Ψ⟩ = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣

|ψ1(1)⟩ |ψ1(2)⟩ . . . |ψ1(N)⟩
|ψ2(1)⟩ |ψ2(2)⟩ . . . |ψ2(N)⟩

...
. . .

|ψN(1)⟩ |ψN(2)⟩ . . . |ψN(N)⟩

∣∣∣∣∣∣∣∣∣∣∣
Expanding out the determinant gives N ! terms that come with plus and minus signs.

The overall factor of 1/
√
N ! ensures that the resulting state is normalised. The plus

and minus signs provide the anti-symmetry that we need for fermions. In fact, we

can see this quickly without expanding out: swapping the first and second particle is

tantamount to swapping the first and second rows of the matrix. But we know that

this changes the determinant by a minus sign. In particular, if two particles sit in the

same state then the rows of the matrix become linearly dependent and the determinant

vanishes. In this way, the Slater determinant enforces the Pauli exclusion principle.

One can build the Slater determinant for any states |ψi⟩ which span anN -dimensional

Hilbert space. It will be convenient to choose the states |ψi⟩ to form an orthogonal

basis.

An Example: Helium

For helium, we take the set of one-particle states to be the hydrogen wavefunctions for

Z = 2, so |ψa⟩ = ψ(n,l,m)(r)⊗|ms⟩ where the spin quantum number ms = ±1
2
is usually

replaced by the notation |1
2
⟩ = |↑ ⟩ and |−1

2
⟩ = |↓ ⟩.

For the ground state we place both particles in the 1s state with different spins. The

corresponding Slater determinant is

1√
2

∣∣∣∣∣ψ1s(r1)⊗ |↑ ⟩ ψ1s(r2)⊗ |↑ ⟩
ψ1s(r1)⊗ |↓ ⟩ ψ1s(r2)⊗ |↓ ⟩

∣∣∣∣∣ = ψ1s(r1)ψ1s(r2)⊗ |0, 0⟩

where |0, 0⟩ is the spin-singlet state (3.26). This is the ground state of helium that we

used previously.
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When particles sit in different hydrogenic states, there are more possibilities for the

Slater determinant. For example, for the 1s12s1 excited state, there are four Slater

determinants. Two of these sit in spin eigenstates

1√
2

∣∣∣∣∣ψ1s(r1)⊗ |↑ ⟩ ψ1s(r2)⊗ |↑ ⟩
ψ2s(r1)⊗ |↑ ⟩ ψ2s(r2)⊗ |↑ ⟩

∣∣∣∣∣ = Ψ−(r1, r2)⊗ |1, 1⟩

1√
2

∣∣∣∣∣ψ1s(r1)⊗ |↓ ⟩ ψ1s(r2)⊗ |↓ ⟩
ψ2s(r1)⊗ |↓ ⟩ ψ2s(r2)⊗ |↓ ⟩

∣∣∣∣∣ = Ψ−(r1, r2)⊗ |1,−1⟩

where Ψ±(r1, r2) =
1√
2
(ψ1s(r1)ψ2s(r2) ± ψ1s(r2)ψ2s(r1)) and |1,m⟩ are the spin-triplet

states (3.29). Meanwhile, the other Slater determinants are

1√
2

∣∣∣∣∣ψ1s(r1)⊗ |↑ ⟩ ψ1s(r2)⊗ |↑ ⟩
ψ2s(r1)⊗ |↓ ⟩ ψ2s(r2)⊗ |↓ ⟩

∣∣∣∣∣ = 1√
2
(Ψ+(r1, r2)⊗ |0, 0⟩+Ψ−(r1, r2)⊗ |1, 0⟩)

1√
2

∣∣∣∣∣ψ1s(r1)⊗ |↓ ⟩ ψ1s(r2)⊗ |↓ ⟩
ψ2s(r1)⊗ |↑ ⟩ ψ2s(r2)⊗ |↑ ⟩

∣∣∣∣∣ = 1√
2
(Ψ+(r1, r2)⊗ |0, 0⟩ −Ψ−(r1, r2)⊗ |1, 0⟩)

We see that the Slater determinants do not necessarily give spin eigenstates.

This is one of the short-comings of the Slater determinant. In general, one can show

that the state |Ψ⟩ can always be guaranteed to be an eigenstate of angular momentum

Lz and spin Sz. But it is not always an eigenstate of L2 and S2.

3.3.3 The Hartree-Fock Method

The Hartree-Fock method is a repeat of the Hartree method, but now with the fully

anti-symmetrised wavefunction

|Ψ⟩ = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣

|ψa1(1)⟩ |ψa1(2)⟩ . . . |ψa1(N)⟩
|ψa2(1)⟩ |ψa2(2)⟩ . . . |ψa2(N)⟩

...
. . .

|ψaN (1)⟩ |ψaN (2)⟩ . . . |ψaN (N)⟩

∣∣∣∣∣∣∣∣∣∣∣
(3.38)

Further, we will take the quantum numbers ai to include both the (n, l,m) information

about the orbital angular momentum state, as well as the spin degrees of freedom of

the electron. (Had we included spin in the original Hartree ansatz, it simply would

have dropped out of the final answer; but now that we have anti-symmetry the spin

wavefunctions are correlated with the spatial wavefunctions.)
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Repeating the Hartree story, we find that the average energy in the state |Ψ⟩ contains
one extra term

⟨E⟩ =
N∑
i=1

∫
d3r ψ⋆ai(r)

(
− ℏ2

2m
∇2 − Ze2

4πϵ0

1

r

)
ψai(r)

+
e2

4πϵ0

∑
i<j

∫
d3r d3r′

ψ⋆ai(r)ψ
⋆
aj
(r′)ψai(r)ψaj(r

′)

|r− r′|

− e2

4πϵ0

∑
i<j

∫
d3r d3r′

ψ⋆ai(r)ψ
⋆
aj
(r′)ψai(r

′)ψaj(r) δmsi,msj

|r− r′|

The last term is an exchange integral of the kind we met when discussing the helium

atom (3.32). The delta function ensures that it only contributes if the ai and aj spin

states coincide.

While the direct integral clearly captures the electrostatic repulsion between elec-

trons, it is somewhat harder to drape comforting classical words around the exchange

term. It is a purely quantum effect arising from the Pauli exclusion principle. Nonethe-

less, we can extract some physics from it, in particular from the fact that the delta

function means that the exchange term lowers the energy only when spins are aligned.

This means that, all else being equal, the spins will wish to align. This is the first of

three Hund’s rules. (The other two describe the preferential order to fill degenerate

states with quantum numbers L and J = L + S; we won’t discuss these second two

rules in these lectures.)

In practice, this does nothing for a filled shell. In this case, half the electrons have spin

up and the other half spin down. However, when we start to fill a shell, the exchange

term means that it’s preferable for all the spins to point in the same direction. This

suggests that half-filled shells should be particularly stable and the next electron to

go in after half-filling should have a noticeably larger energy and so the atom will,

correspondingly, have a smaller ionization energy.

We can see evidence for this by looking again at the ionization data. The ionization

energy does not increase monotonically between Li and Ne: there are two glitches. The

first of these is the jump from beryllium (2s2) to boron (2s22p1) where we jump to

another shell. The other is the jump from nitrogen (1s22s22p3) to oxygen (1s22s22p4).

Nitrogen has a half-filled 2p sub-shell, where all three electrons have spin up to benefit

from the exchange energy. But for oxygen one electron is spin down, and the benefit

from the exchange energy is less. This means that the next electron costs higher

energy and, correspondingly, the ionization energy is smaller. The same behaviour is
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Figure 21: Ionization data again.

seen to disrupt the linear growth between Na and Ar. The two glitches occur between

manganese ([Ne]3s2) and aluminium ([Ne]3s23p1) where we jump to the next shell, and

between phosphorus ([Ne]3s23p3) to sulphur ([Ne]3s23p3) where we cross the half-filled

sub-shell.

The exchange energy also lies behind one of the exceptions to the aufbau principle.

Recall that chromium has electron configuration [Ar]3d54s1 as opposed to the aufbau-

predicted [Ar]3d44s2. The former configuration has lower energy because it allows all

spins to point up and so benefits more from the exchange term.

Minimising the energy ⟨E⟩ gives us N coupled equations[
− ℏ2

2m
∇2 − Ze2

4πϵ0

1

r
+ U(r)

]
ψai(r)−

∫
d3r′ U ex

ai
(r, r′)ψai(r

′) = ϵiψai(r) (3.39)

where U(r) is given by

U(r) =
e2

4πϵ0

N∑
j=1

∫
d3r′

|ψaj(r′)|2

|r− r′|

This differs from the Hartree expression (3.36) because we sum over all states
∑

j rather

than
∑

j ̸=i. This is a simplification because it means that all electrons feel the same

potential. However, it is also puzzling because it would appear to suggest that we need

to include a “self-interaction” between the electrons. But this i = j term is an artefact

of the way we’ve written things: it cancels the corresponding term in the exchange
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integral, which is given by

U ex
ai
(r, r′) =

e2

4πϵ0

N∑
j=1

∫
d3r′

ψ⋆aj(r
′)ψaj(r)

|r− r′|
δmsi,msj

This is sometimes referred to as a non-local potential. This term does depend on

the state ai, but only through the spin dependence. This means that each electron

experiences one of two different exchange potentials, U ex
↑ or U ex

↓ .

The set of equations (3.39) are known as the Hartree-Fock equations. It should come

as no surprise to learn that they are no easier to solve than the Hartree equations.

Indeed, the presence of the exchange term makes even numerical solutions considerably

harder to come by. Nonetheless, this scheme has some success in reproducing the

properties of atoms observed in the periodic table, in particular the aufbau principle.

Limitations of Hartree-Fock

We finish with a warning. Throughout this section, we’ve used the language of one-

particle states to describe atoms. Indeed, the basic idea that we’ve focussed on is

that atoms are made by filling successive shells of states. This is something that is

often taught in high school and, over time, becomes so familiar that we don’t question

it. The Hartree-Fock method panders to this idea because it looks for states within

the anti-symmetrised product ansatz (3.38). However, the vast majority of states in

the Hilbert space are not of the product form and, for complicated atoms, it’s quite

possible, indeed likely, that the true ground state is a superposition of such states. In

this case the very language of filing shells become inappropriate since there’s no way

to say that any electron sits in a given state.
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4. Atoms in Electromagnetic Fields

Our goal in this chapter is to understand how atoms interact with electromagnetic

fields.

There will be several stages to our understanding. We start by looking at atoms

in constant, background electromagnetic fields. Because these fields break various

symmetries of the problem, we expect to see a splitting in the degeneracies of states.

The splitting of the atomic spectrum due to an electric field is called the Stark effect.

The splitting due to a magnetic field is called the Zeeman effect. We deal with each in

turn.

We then move on to look at what happens when we shine light on atoms. Here the

physics is more dramatic: the atom can absorb a photon, causing the electron to jump

from one state to a higher one. Alternatively the electron can decay to lower state,

emitting a photon as it falls. We will begin with a classical treatment of the light but,

ultimately, we will need to treat both light and atoms in a quantum framework.

4.1 The Stark Effect

“Schrödinger applied perturbation theory to the Stark effect. It was my task

to present his perturbation theory to the seminar, which sounded perfectly

straightforward, and I have used perturbation theory ever since. Whether

it is applicable or not.”

Hans Bethe

Consider the hydrogen atom, where the electron also experience a constant, background

electric field. We’ll take the electric field to lie in the z direction, E = E ẑ. The

Hamiltonian is

H = − ℏ2

2m
∇2 − e2

4πϵ0r
+ eEz (4.1)

The total potential energy, V (z) = eEz − e2/4πϵ0r is sketched in the diagram.

The first thing to note is that the potential is unbounded below as z → −∞. This

means that all electron bound states, with wavefunctions localised near the origin, are

now unstable. Any electron can tunnel through the barrier to the left, and then be

accelerated by the electric field to z → −∞. However, we know from our WKB analysis

in Section 2.2.5 that the probability rate for tunnelling is exponentially suppressed by

the height of the barrier (see, for example, (2.30)). This means that the lowest lying

energy levels will have an extremely long lifetime.
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If you want some numbers, the strength of

z

V(z)

Figure 22:

a typical electric field is around E ∼ 10 eV cm−1.

We know that the ground state of hydrogen is

E0 ∼ −13.6 eV and the Bohr radius is a0 ∼
5 × 10−9 cm, which suggests that the typical

electric field inside the atom is around Eatom ∼
109 eV cm−1, which is eight orders of magnitude

greater than the applied electric field. On general

grounds, we expect that the tunnelling probabil-

ity is suppressed by a factor of e−108 . At this

point it doesn’t really matter what our units are,

this is going to be a very small number. The states which are well bound are stable

for a very long time. Only those states very close to threshold are in danger of be-

ing destabilised by the electric field. For this reason, we’ll proceed by ignoring the

instability.

4.1.1 The Linear Stark Effect

We’re going to work in perturbation theory. Before we look at the hydrogen atom, here’s

a general comment about what happens when you perturb by electric fields. Suppose

that we have a non-degenerate energy eigenstate |ψ⟩. Then adding a background,

constant electric field will shift the energy levels by

∆E = ⟨ψ|eE · x|ψ⟩ = −P · E (4.2)

where we have introduced the electric dipole

P = −e⟨ψ|x|ψ⟩ = −e
∫
d3x x |ψ(x)|2 (4.3)

The shift in energies is first order in the electric field and is known as the linear Stark

effect.

For the hydrogen atom, there is an extra complication: the states |n, l,m⟩ are de-

generate. The energy levels

(E0)n = −Ry
n2

with Ry ≈ −13.6 eV have degeneracy n2 (ignoring spin). This means that we will have

to work with degenerate perturbation theory. For the electric field E = E ẑ, we must

compute the matrix elements

⟨n, l′,m′|z|n, l,m⟩
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With a large degeneracy of n2, this looks like it becomes increasingly complicated as

we go up in energy levels. Fortunately, there is a drastic simplification.

The first simplification follows from using the parity operator π. Recall from Section

1.1 that the states of the hydrogen atom transform as (1.10)

π|n, l,m⟩ = (−1)l|n, l,m⟩

from which we have

⟨n, l′,m′|z|n, l,m⟩ = (−1)l+l′⟨n, l′,m′|πzπ|n, l,m⟩
= (−1)l+l′+1 ⟨n, l′,m′|z|n, l,m⟩

This means that the matrix element is non-vanishing only if l+ l′ is odd. From this, we

immediately learn that the unique ground state |n = 1, 0, 0⟩ does not change its energy
at leading order.

We can also use the fact that the perturbation commutes with Lz. This means that

mℏ⟨n, l′,m′|z|n, l,m⟩ = ⟨n, l′,m′|zLz|n, l,m⟩
= ⟨n, l′,m′|Lzz|n, l,m⟩ = m′ℏ⟨n, l′,m′|z|n, l,m⟩

So the perturbation is non-vanishing only if m = m′. (In Section 4.3.3, we’ll see

that electric fields in the x or y direction have non-vanishing matrix elements only if

m′ = m± 1.)

This is enough to determine the corrections to the n = 2 states. The |2, 1,±1⟩ states
remain unaffected at leading order. Meanwhile, the |2, 0, 0⟩ state mixes with the |2, 1, 0⟩
state. The integrals over the hydrogen wavefunctions are straightforward to evaluate

and yield

U = ⟨2, 0, 0|z|2, 1, 0⟩ = −3eEa0

The first corrections to the energy are then given by the eigenvalues of the matrix

3eEa0

(
0 1

1 0

)

We learn that, to first order in perturbation theory, the n = 2 energy eigenstates and

eigenvalues are given by

|2, 1,±1⟩ with E = (E0)n=2 (4.4)
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and

|2,±⟩ = 1√
2
(|2, 0, 0⟩ ± |2, 1, 0⟩) with E = (E0)n=2 ± 3eEa0 (4.5)

From our general discussion above, we learn that the eigenstates |2,±⟩ can be thought

of as having a permanent electric dipole moment (4.3).

For higher energy levels n ≥ 3, we need to look at the different l quantum numbers

more carefully. In Section 4.3.3, we will show that ⟨n, l′,m′|z|n, l,m⟩ is non-vanishing
only if l′ = l ± 1.

4.1.2 The Quadratic Stark Effect

We saw above that the vast majority of states do not receive corrections at first order

in perturbation theory. This is because these states do not have a permanent dipole

moment P, a fact which showed up above as the vanishing of matrix elements due to

parity.

However, at second order in perturbation theory all states will receive corrections.

As we now see, this can be understood as the formation of an induced dipole moment.

Here we focus on the ground state |1, 0, 0⟩. A standard application of second order

perturbation theory tells us that the shift of the ground state energy level is

∆E = e2E2
∞∑
n=2

∑
l,m

|⟨1, 0, 0|z|n, l,m⟩|2

E1 − En
(4.6)

In fact, strictly speaking, we should also include an integral over the continuum states,

as well as the bound states above. However, it turns out that these are negligible.

Moreover, the summand above turns out to scale as 1/n3 for large n, so only the first

few n contribute significantly.

The exact result is not so important for our purposes. More interesting is the para-

metric dependence which follows from (4.6)

∆E = −4πϵ0CE2a30

where C is a number of order 1 that you get from doing the sum. For what it’s worth,

C = 9
4
.
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The polarisation is given by

P = −∇EE (4.7)

where ∇E means “differentiate with respect to the components of the electric field”

and the thing we’re differentiating, which is a non-bold E, is the energy. Note that

for states with a permanent dipole, this definition agrees with the energy (4.2) which

is linear in the electric field. However, for states with an induced dipole, the energy is

typically proportional to E ·E, and the definition (4.7) means that it can be written as

∆E = −1

2
P · E

From our expression above, we see that the ground state of hydrogen has an induced

polarisation of this kind, given by

P = 2C × 4πϵ0a
3
0E (4.8)

We’ve actually seen the result (4.8) before: in the lectures on Electromagnetism we

discussed Maxwell’s equations in matter and started with a simple classical model of

the polarisation of an atom that gave the expression (4.8) with 2C = 1 (see the start

of Section 7.1 of those lectures.). The quantum calculation above, with 2C = 9
2
, is the

right way to do things.

Degeneracies in the Presence of an Electric Field

As we’ve seen above, only degenerate states |n, l′,m′⟩ and |n, l,m⟩ with l = l′ and

m = m′ are affected at leading order in perturbation theory. All states are affected at

second order. When the dust settles, what does the spectrum look like?

On general grounds, we expect that the large degeneracy of the hydrogen atom

is lifted. The addition of an electric field breaks both the hidden SO(4) symmetry

of the hydrogen atom — which was responsible for the degeneracy in l — and the

rotational symmetry which was responsible for the degeneracy in m. We therefore

expect these degeneracies to be lifted and, indeed, this is what we find. We retain the

spin degeneracy, ms = ±1
2
, since the electric field is blind to the spin.

There is, however, one further small degeneracy that remains. This follows from the

existence of two surviving symmetries of the Hamiltonian (4.1). The first is rotations in

the (x, y)-plane, perpendicular to the electric field. This ensures that [H,Lz] = 0 and

energy eigenstates can be labeled by the quantum number m. We’ll call these states

|a;m⟩, where a is a label, not associated to a symmetry, which specifies the state. We

have Lz|a,m⟩ = mℏ|a;m⟩.
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The second symmetry is time-reversal invariance discussed in Section 1.2. The anti-

unitary operator Θ acts on angular momentum as (1.24),

ΘLΘ−1 = −L

This means that Θ|a;m⟩ = |a;−m⟩. Because [Θ, H] = 0, the states |a;m⟩ and |a;−m⟩
must have the same energy. This means that most states are two-fold degenerate. The

exception is the m = 0 states. These can be loners.

4.1.3 A Little Nazi-Physics History

The Stark effect was discovered by Johannes Stark in 1913. For this he was awarded

the 1922 Nobel prize.

Stark was a deeply unpleasant man. He was an early adopter of the Nazi agenda

and a leading light in the Deutsche Physik movement of the early 1930s whose primary

goal was to discredit the Jüdische Physik of Einstein’s relativity. Stark’s motivation

was to win approval from the party and become the Führer of German physics.

Stark’s plans backfired when he tangled with Heisenberg who had the temerity to

explain that, regardless of its origin, relativity was still correct. In retaliation, Stark

branded Heisenberg a “white Jew” and had him investigated by the SS. Things came

to a head when – and I’m not making this up – Heisenberg’s mum called Himmler’s

mum and asked the Nazi party to leave her poor boy alone. Apparently the Nazi’s

realised that they were better off with Heisenberg’s genius than Stark’s bitterness, and

House Stark fell from grace.

4.2 The Zeeman Effect

The last entry in Michael Faraday’s laboratory notebooks describe an experiment in

which he subjected a flame to a strong magnetic field in the hope of finding a shift

in the spectral lines. He found nothing. Some decades later, in 1896, Pieter Zeeman

repeated the experiment, but this time with success. The splitting of atomic energy

levels due to a background magnetic field is now called the Zeeman effect.

The addition of a magnetic field results in two extra terms in the Hamiltonian. The

first arises because the electron is charged and so, as explained in the lectures on Solid

State Physics, the kinetic terms in the Hamiltonian become

H =
1

2m
(p+ eA)2 − 1

4πϵ0

Ze2

r
(4.9)
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where A is the vector potential and the magnetic field is given by B = ∇ × A. We

take the magnetic field to lie in the z-direction: B = Bẑ and work in symmetric gauge

A =
B

2
(−y, x, 0)

We can now expand out the square in (4.9). The cross terms are p · A = A · p =

B(xpy−ypx)/2. Note that, even when viewed as quantum operators, there is no ordering

ambiguity. Moreover, we recognise the combination in brackets as the component of

the angular momentum in the z-direction: Lz = xpy − ypx. We can then write the

Hamiltonian as

H =
1

2m

(
p2 + eB · L+

1

4
e2B2(x2 + y2)

)
− 1

4πϵ0

Ze2

r
(4.10)

Note that the B · L term takes the characteristic form of the energy of a magnetic

dipole moment µ in a magnetic field. Here

µL = − e

2m
L

is the dipole moment that arises from the orbital angular momentum of the electron.

The second term that arises from a magnetic field is the coupling to the spin. We

already saw this in Section 3.1.3

∆H = g
e

2m
B · S

where the g-factor is very close to g ≈ 2. Combining the two terms linear in B gives

the so-called Zeeman Hamiltonian

HZ =
e

2m
B · (L+ 2S) (4.11)

Note that it’s not quite the total angular momentum J = L + S that couples to the

magnetic field. There is an extra factor of g = 2 for the spin. This means that the

appropriate dipole moment is

µtotal = −
e

2m
(L+ 2S) (4.12)

The terms linear in B given in (4.11) are sometimes called the paramagnetic terms;

these are responsible for the phenomenon of Pauli paramagnetism that we met in

the Statistical Physics lectures. The term in (4.10) that is quadratic in B is some-

times called the diamagnetic tem; it is related to Landau diamagnetism that we saw in

Statistical Physics.
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2s 2p

|0,1/2>

|0,−1/2>

|1,1/2>
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|−1,−1/2>

|1,−1/2> |−1,1/2>

Figure 23: Splitting of the 2s and 2p energy levels in a magnetic field. The quantum numbers

|ml,ms⟩ are shown.

In what follows, we will work with magnetic fields that are small enough so that we

can neglect the diamagnetic B2 term. In terms of dimensionless quantities, we require

that eBa20/ℏ ≪ 1 where a0, the Bohr radius, is the characteristic size of the atom. In

practical terms, this means B ≲ 10 T or so.

4.2.1 Strong(ish) Magnetic Fields

We work with the Zeeman Hamiltonian (4.11). It turns out that for the kinds of

magnetic fields we typically create in a lab — say B ≲ 5 T or so — the shift in

energy levels from HZ is smaller than the fine-structure shift of energy levels that we

discussed in Section 3.1. Nonetheless, to gain some intuition for the effect of the Zeeman

Hamiltonian, we will first ignore the fine-structure of the hydrogen atom. We’ll then

include the fine structure and do a more realistic calculation.

We want to solve the Hamiltonian

H = H0 +HZ =
1

2m
p2 − 1

4πϵ0

Ze2

r
+

e

2m
B · (L+ 2S) (4.13)

We start from the standard states of the hydrogen atom, |n, l,ml,ms⟩ where now we

include both orbital angular momentum and spin quantum numbers. The energy of

these states from H0 is E0 = −Ry/n2 and each level has degeneracy 2n2.

Happily, each of the states |n, l,ml,ms⟩ remains an eigenstate of the full Hamiltonian

H. The total energy is therefore E = E0+EZ , where the Zeeman contribution depends

only on the ml and ms quantum numbers

(EZ)ml,ms = ⟨n, l,ml,ms|HZ |n, l,ml,ms⟩ =
eℏ
2m

(ml + 2ms)B (4.14)

This gives our desired splitting. The two 1s states are no longer degenerate. For the

n = 2 states, the splitting is shown in the figure. The 2s states split into two energy

levels, while the six 2p states split into five. Note that the ml = 0 states from 2p are

degenerate with the 2s states.

– 113 –



As we mentioned above, the energy spectrum (4.14) holds only when we can neglect

both the fine-structure of the hydrogen atom and the quadratic B2 terms. This restricts

us to a window of relatively large magnetic fields 5 T ≲ B ≲ 10 T . The result (4.14) is

sometimes called the Paschen-Back effect to distinguish it from the weak field Zeeman

effect that we will study below.

The states |n, l,ml,ms⟩ are eigenstates of the full Hamiltonian (4.13). This means

that we could now consider perturbing these by the fine-structure corrections we met

in Section 3.1 to find additional splitting.

4.2.2 Weak Magnetic Fields

When the magnetic fields are small, we have to face up to the fact that the fine-structure

corrections of Section 3.1 are larger than the Zeeman splitting. In this case, the correct

way to proceed is to start with the fine structure Hamiltonian and then perturb by HZ .

Because of the spin-orbit coupling, the eigenstates of the fine structure Hamiltonian

are not labelled by |n, l,ml,ms⟩. Instead, as we saw in Section 3.1.3, the eigenstates

are

|n, j,mj; l⟩

where j = |l± 1
2
| is the total angular momentum, and the final label l is not a quantum

number, but is there to remind us whether the state arose from j = l+ 1
2
or j = l− 1

2
.

The upshot of our calculations in Sections 3.1.2 - 3.1.4 is that the energies depend only

on n and j and, to leading order, are given by

En,j = (Zα)2mc2
(
− 1

2n2
+ (Zα)2

(
3

4n
− 2

2j + 1

)
1

2n3

)
We now perturb by the Zeeman Hamiltonian HZ given in (4.11) to find, at leading

order, the shifts of the energy levels given by

∆E =
eB

2m
⟨n, j,mj; l|Lz + 2Sz|n, j,mj; l⟩ (4.15)

You might think that we need to work with degenerate perturbation theory here. In-

deed, the existence of degenerate states with energy En,j means that we should allow

for the possibility of different quantum numbers m′
j and l′ on the state ⟨n, j,m′

j; l
′|.

However, since both [L2, HZ ] = 0 and [Jz, HZ ] = 0, the matrix elements vanish unless

l = l′ and mj = m′
j. Fortunately, we again find ourselves in a situation where, despite

a large degneracy, we naturally work in the diagonal basis.
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As we will now see, evaluating (4.15) gives a different result from (4.14). Before

proceeding, it’s worth pausing to ask why we get different results. When the magnetic

field is weak, the physics is dominated by the spin-orbit coupling L · S that we met

in Section 3.1.3. This locks the orbital angular momentum and spin, so that only the

total angular momentum J = L+S sees the magnetic field. Mathematically, this means

that we use the states |n, j,mj; l⟩ to compute the energy shifts in (4.15). In contrast,

when the magnetic field is strong, the orbital angular momentum and spin both couple

to the magnetic field. In a (semi-)classical picture, each would precess independently

around the B axis. Mathematically, this means that we use the states |n, l,ml,ms⟩ to
compute the energy shifts in (4.14).

Let’s now compute (4.15). It’s a little trickier because we want the z-components of

L and S while the states are specified only by the quantum numbers of J. We’ll need

some algebraic gymnastics. First note the identity

iℏS× L = (L · S)S− S(L · S) (4.16)

which follows from the commutators [Si, Sj] = iℏϵijkSk and [Li, Sj] = 0. Further, since

2L · S = J2 − L2 − S2, we have [L · S,J] = 0, which means that we can take the cross

product of (4.16) to find

iℏ (S× L)× J = (L · S)S× J− S× J (L · S)

But, by standard vector identities, we also have

(S× L)× J = L(S · J)− S(L · J)
= J(S · J)− S(J2)

where, in the second line, we have simply used L = J− S. Putting these two together

gives the identity

(L · S)S× J− S× J (L · S) = iℏ
(
J(S · J)− S(J2)

)
(4.17)

Finally, we again use the fact that 2L ·S = J2−L2−S2 to tell us that L ·S is diagonal

in the basis |n, j,mj; l⟩. This means that the expectation value of the left-hand side

of (4.17) vanishes in the states |n, j,mj; l⟩. Obviously the same must be true of the

right-hand side. This gives us the expression

⟨n, j,mj; l|S(J2)|n, j,mj; l⟩ = ⟨n, j,mj; l|J(S · J)|n, j,mj; l⟩
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Using 2(S · J) = J2 + S2 − L2, we then find that

⟨n, j,mj; l|S|n, j,mj; l⟩ =
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
⟨n, j,mj; l|J|n, j,mj; l⟩

This is the result we need. Using L = J − S, the shift in energy levels (4.15) can be

written as

∆E =
eB

2m
⟨n, j,mj; l|Jz + Sz|n, j,mj; l⟩

=
eB

2m

(
mjℏ+ ⟨n, j,mj; l|Sz|n, j,mj; l⟩

)
=
eℏB
2m

mjgJ (4.18)

where gJ is known as the Landé g-factor, and is the ratio of angular momentum quantum

numbers given by

gJ = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)

It is a number which lies between 1 and 2.

We see that our final answer (4.18) for the Zeeman splitting is rather simple. Indeed,

it’s the answer we would expect for a magnetic dipole of the form,

µJ =
egJ
2m

J (4.19)

We see here the effect of the spin-orbit interaction. As explained above, it locks the spin

and angular momentum together into the total angular momentum J. This changes

the dipole moment from (4.12) to this result.

The splitting of atomic energy levels allows us to see magnetic fields from afar. For

example, we know the strength of magnetic fields in sunspots through the Zeeman

splitting of the spectral lines of iron.

As the magnetic field is increased, the Zeeman interaction becomes increasingly com-

petitive with the spin orbit coupling, and we must interpolate between (4.19) and the

Paschen-Back effect (4.12). With no hierarchy of scales, life is more complicated and

we must treat both HZ and the fine-structure Hamiltonian separately. In practice, it

is difficult to reach magnetic fields which dominate the spin-orbit interaction.

However, the discussion above also holds for the hyperfine interaction, whose energy

splitting is comparable with magnetic fields that we can achieve in the lab. In this case,

the total angular momentum is F = J + I with I the spin of the nucleus. Including
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the hyperfine interaction between the electron and nuclear spins, it is not hard to show

that the magnetic moment of the atom becomes

µF =
egF
2m

F

where

gF = gJ
F (F + 1) + j(j + 1)− I(I + 1)

2f(f + 1)

4.2.3 The Discovery of Spin

The suggestion that the electron carries an intrinsic angular momentum – which we

now call spin – was first made by the Dutch physicists Samuel Goudsmit and George

Uhlenbeck in 1925. At the time, both were students of Ehrenfest.

With hindsight, there was plenty of evidence pointing to the existence of spin. As

we’ve seen in these lectures, the electron spin affects the atomic energy levels and

resulting spectral lines in two different ways:

• Spin-Orbit Coupling: This is particularly prominent in sodium, where the exis-

tence of electron spin gives rise to a splitting of the 3p states. The transition

of these states back to the 3s ground state results in the familiar yellow colour

emitted by sodium street lights, and was long known to consist of two distinct

lines rather than one.

• Zeeman Effect: The magnetic field couples to both the orbital angular momentum

and to the electron spin. If the angular momentum is quantised as l ∈ Z, we would

expect to see a splitting into (2l + 1) states, which is always an odd number.

However, it was known that there are atoms – such as hydrogen – where the

splitting results in an even number of states. Historically this was referred to as

the anomalous Zeeman effect, reflecting the fact that no one could make sense

of it. We now know that it arises because the electron spin is quantised as a

half-integer.

On the more theoretical level, in early 1925 Pauli proposed his famous exclusion prin-

ciple for the first time. He employed this to explain the structure of the periodic table,

but it only worked if the electrons had four quantum numbers rather than three —

what we now call n, l, m and ms.
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Despite these many hints, the proposal of Goudsmit and Uhlenbeck was not greeted

with unanimous enthusiasm. Pauli was particularly dismissive. Lorentz, mired in a

classical worldview, argued that if the electron was spinning like the Earth then its

surface would have to be travelling faster than light. Indeed, a few months previously

Kronig had privately considered the possibility of an electron spin, but had been talked

out of it by these great minds.

One key reason for the skepticism lay in the initial difficulty of reconciling the spin-

orbit and Zeeman effects: if you get the Zeeman splitting right, then the fine-structure

splitting is off by a factor of 2. Here is what Goudsmit had to say3

“The next day, I received a letter from Heisenberg and he refers to our

“mutige Note” (courageous note). I did not even know we needed courage

to publish that. I wasn’t courageous at all.... He says: “What have you done

with the factor 2?” Which factor? Not the slightest notion.

Of course, we ought to have made a quantitative calculation of the size of

the splittings...We did not do that because we imagined it would be very

difficult...We didn’t know how to do it, and therefore we had not done it

Luckily we did not know, because if we had done it, then we would have run

into an error by a factor of 2”

This was only resolved a year later when Thomas discovered the relativistic effect that

we now call Thomas precession. As we saw in Section 3.1.3, this changes the magnitude

of the spin-orbit coupling by the necessary factor of 2. It was only with this addition

to the theory that everything fitted and the spin of the electron became generally

accepted.

The intrinsic spin of the electron is one of the most important discoveries in atomic

and particle physics. It was ultimately explained by Dirac as a consequence of special

relativity. For this Dirac was awarded the Nobel prize. For Goudsmit and Uhlenbeck,

there was no such luck. Instead, in 1927, they were awarded their PhDs.

4.3 Shine a Light

In this section we look at what happens if you take an atom and shine a light on it.

We’ll continue to treat the electromagnetic field as classical. Ultimately we’ll see that

this approach has shortcomings and in later sections we’ll consider both the atom and

the light to be quantum.

3You can read the full, charming, speech at http://lorentz.leidenuniv.nl/history/spin/goudsmit.html.
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A monochromatic light wave is described by oscillating electric and magnetic fields,

E = E0 e
i(k·x−ωt) and B =

1

c
(k̂× E0) e

i(k·x−ωt)

with ω2 = c2k2. The wavelength of the light is λ = 2π/k = 2πc/ω. We will require

that:

• The wavelength is much larger than the size of the atom: λ≫ a0. This means that

the electron does not experience a spatial gradient in the electric and magnetic

fields; only a temporal change.

• The wavelength is tuned to be close to the energy transition between two atom

states. For simplicity, we will focus on the ground state and first excited state.

We then require ω ≈ ω0 where ℏω0 = (E2 − E1). This condition will allow us to

restrict our attention to just these two states, ignoring the others.

Note that the second condition is compatible with the first. A typical energy

level of hydrogen corresponds to a wavelength λ ≈ 2πa0/α, so the factor of

α ≈ 1/137 gives us a leeway of couple of orders of magnitude.

Shining a light means that we perturb the atom by both an electric and magnetic

field. We know from Sections 4.1 and 4.2 that the typical energy shift in the linear

Stark effect is ∆E ∼ eEa0 ∼ eEℏ/mcα, while the typical energy shift in the Zeeman

effect is ∆E ∼ eBℏ/2m ∼ eEℏ/2mc. We see that the effects of the electric field are

larger by a factor of 1/α. For this reason, we neglect the oscillating magnetic field in

our discussion and focus only on the electric field.

Because λ ≫ a0, we can treat the electric field a time-dependent, but spatially

uniform. We describe such a field by a potential ϕ = E · x, with A = 0. This means

that the full Hamiltonian is H = H0 +∆H(t), where the time-dependent perturbation

is given by

∆H(t) = eE0 · x cos(ωt)

Our goal is to find the eigenstates of the time-dependent Hamiltonian. This is a straight-

forward exercise.

4.3.1 Rabi Oscillations

By construction, we will only consider two states, |ψ1⟩ and |ψ2⟩, obeying

H0|ψi⟩ = Ei|ψi⟩
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Within the space spanned by these two states, the most general ansatz is

|Ψ(t)⟩ = c1(t)e
−iE1t/ℏ|ψ1⟩+ c2(t)e

−iE2t/ℏ|ψ2⟩

with |c1|2+ |c2|2 = 1. We substitute this into the time-dependent Schrödinger equation,

iℏ
∂|Ψ⟩
∂t

= (H0 +∆H(t))|Ψ⟩

to get

iℏċ1e−iE1t/ℏ|ψ1⟩+ iℏċ2e−iE2t/ℏ|ψ2⟩ = c1e
−iE1t/ℏ∆H|ψ1⟩+ c2e

−iE2t/ℏ∆H|ψ2⟩

Now we take the overlap with ⟨ψ1| and ⟨ψ2| to find two, coupled differential equations

iℏċ1 = c1⟨ψ1|∆H|ψ1⟩+ c2⟨ψ1|∆H|ψ2⟩e−iω0t

iℏċ2 = c1⟨ψ1|∆H|ψ2⟩eiω0t + c2⟨ψ2|∆H|ψ2⟩

where

ℏω0 = E2 − E1

Our next task is to compute the matrix elements ⟨ψi|∆H|ψj⟩. The diagonal matrix

elements are particularly simple

⟨ψi|∆H|ψi⟩ = eE0 · ⟨ψi|x|ψi⟩ cos(ωt) = 0

These vanish because each |ψi⟩ is a parity eigenstate and these are sandwiched between

the parity-odd operator x. This is the same argument that we used in Section 4.1 to

show that the linear Stark effect vanishes for nearly all states.

The off-diagonal matrix elements are non-vanishing as long as |ψ1⟩ has opposite

parity to |ψ2⟩. We define the Rabi frequency Ω as

ℏΩ = eE0 · ⟨ψ1|x|ψ2⟩ (4.20)

Note in particular that the Rabi frequency is proportional to the amplitude of the

electric field. We’re left having to solve the coupled differential equations

iċ1 = Ωcos(ωt) e−iω0tc2

iċ2 = Ωcos(ωt) e+iω0tc1
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In fact, there is one further simplification that we make. We write these as

iċ1 =
Ω

2

(
ei(ω−ω0)t + ei(ω+ω0)t

)
c2

iċ2 =
Ω

2

(
e−i(ω−ω0)t + ei(ω+ω0)t

)
c1 (4.21)

The right-hand side of each of these equations has two oscillatory terms. Recall, how-

ever, that we required our frequency of light to be close to the atomic energy splitting

ω0. This means, in particular, that

|ω − ω0| ≪ ω + ω0

So the second terms in (4.21) oscillate much faster than the first. We are interested

only in the behaviour on long time scales – comparable to |ω−ω0|−1 — over which the

fast oscillations simply average out. For this reason, we neglect the terms proportional

to ei(ω+ω0)t. This is known as the rotating wave approximation, even though it’s not

obvious that it has anything to do with rotating waves! (For what it’s worth, the name

comes from nuclear magnetic resonance where a similar approximation means that you

keep the wave which rotates in the same way as a spin and throw away the wave which

rotates in the opposite direction.)

Invoking the rotating wave approximation, our equations simplify to

iċ1 =
Ω

2
eiδtc2 and iċ2 =

Ω

2
e−iδtc1 (4.22)

where δ = ω − ω0 tells us how much the frequency of light ω differs from the natural

frequency of the atomic energy levels ω0.

Resonance

We start by considering the case δ = 0, so that energy of light coincides with that of

the level splitting. In this case the equations (4.22) are particularly simple: they are

equivalent to the familiar second order differential equation

c̈1 = −
Ω2

4
c1 ⇒ c1 = cos

(
Ωt

2

)
and c2 = −i sin

(
Ωt

2

)
where we picked initial conditions so that we sit in the ground state |Ψ⟩ = |ψ1⟩ at time

t = 0.

We see that something lovely happens. The atom oscillates between the ground

state and the first excited state with frequency Ω. This phenomena is known as Rabi

oscillations or, sometimes, Rabi flopping.
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The probability that the atom sits in the excited state at time t is given by P2(t) =

|c2|2 = sin2(Ωt/2). This means that if we start with the atom in the ground state and

shine a pulse of resonant light for a time T = π/Ω then the atom will definitely be in

the first excited state. This is known as a π-pulse.

Alternatively, we could act with a “π
2
-pulse”, shining resonant light for a time T =

π/2Ω. This leaves the atom in the superposition |Ψ⟩ = (|ψ1⟩ − i|ψ2⟩)/
√
2. This allows

us to experimentally create superpositions of states.

Off-Resonance

When the incident light is detuned from resonance, so δ ̸= 0, the first order equations

(4.22) can be combined into the second order differential equation for c1

d2c1
dt2
− iδ dc1

dt
+

Ω2

4
c1 = 0

⇒

(
d

dt
− iδ

2
+
i
√
Ω2 + δ2

2

)(
d

dt
− iδ

2
− i
√
Ω2 + δ2

2

)
c1 = 0

This has the solution

c1(t) = eiδt/2

[
A cos

(√
Ω2 + δ2

2
t

)
+B sin

(√
Ω2 + δ2

2
t

)]

We’ll again require that all the particles sit in the ground state |ψ1⟩ at time t = 0.

This fixes A = 1 but this time we don’t have B = 0. Instead, we use the first of the

equations (4.22) to determine c2 and require that c2(t = 0) = 0. This gives the solution

c1 = eiδt/2

[
cos

(√
Ω2 + δ2

2
t

)
− iδ√

Ω2 + δ2
sin

(√
Ω2 + δ2

2
t

)]
and

c2 = −ie−iδt/2 Ω√
Ω2 + δ2

sin

(√
Ω2 + δ2

2
t

)

We see that the oscillations now occur at the generalised Rabi frequency
√
Ω2 + δ2.

This means that as we detune away from resonance, the oscillation rate increases. The

probability of sitting in the excited state is now

P2(t) = |c2(t)|2 =
Ω2

Ω2 + δ2
sin2

(√
Ω2 + δ2

2
t

)
(4.23)
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We see that, for δ ̸= 0, this probability never reaches one: we can no longer be certain

that we have excited the atom. However, the Rabi frequency Ω is proportional to the

amplitude of the electric field (4.20). This means that as we increase the intensity of

the electric field, the probability of excitation increases. In contrast, for very weak

electric fields we have δ ≫ Ω and the probability never gets above Ω2/δ2,

P2(t) ≈
Ω2

δ2
sin2

(
δ t

2

)
(4.24)

Electric Dipoles vs Magnetic Dipoles

Our discussion above describes transitions between states that are driven by the oscil-

lating electric field. These are called electric dipole transitions.

However, there are also situations where the oscillating magnetic field dominates the

physics. This occurs, for example, in fine structure and hyperfine structure transitions,

both of which involve flipping a spin degree of freedom. The theory underlying these

transitions is the same as we described above, now with a Rabi frequency given by

ℏΩ = B · ⟨ψ1|µ|ψ2⟩

where µ is the atomic magnetic moment. Such transitions are called magnetic dipole

transitions.

The oscillatory behaviour described above was first observed in hyperfine transitions.

For this Isador Rabi won the 1944 Nobel prize.

4.3.2 Spontaneous Emission

Take an atom in an excited state, place it in a vacuum, and leave it alone. What

happens? If we model the atom using the usual quantum mechanical Hamiltonian for

the electrons orbiting a nucleus, then we get a simple prediction: nothing happens.

Any quantum system when placed in an energy eigenstate will stay there, with only its

phase oscillating as e−iEt/ℏ.

Yet in the real world, something does happen. An atom in an excited state will

decay, dropping down to a lower state and emitting a photon in the process. This is

called spontaneous emission. This is not a process which happens deterministically.

We cannot predict when a given atom will decay. We can only say that, on average,

a given excited state has a lifetime τ . We would like to know how to calculate this

lifetime.
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How can we describe spontaneous emission in quantum mechanics? It is difficult

because we need a framework in which the number of particles changes: before the

decay, we have just the atom; after the decay we have both the atom and the photon.

To model this properly we need to understand how to treat the electromagnetic field

in a manner consistent with quantum mechanics. This is the subject of quantum field

theory. We will make baby steps towards this in Section 4.4.

However, it turns out that there is a clever statistical mechanics argument, originally

due to Einstein, that allows us to compute the lifetime τ of excited states without using

the full framework of quantum field theory. We now describe this argument.

Rate Equations

Consider a large number of atoms. We start with N1 in the ground state and N2 in

the excited state. Each of these excited atoms will spontaneously decay to the ground

state with a rate that we call A21. We model this with the rate equation

dN2

dt
= −A21N2 (4.25)

The solution tells us that the population of excited atoms decays with a characteristic

exponential behaviour, with lifetime τ defined as

N2(t) = N2(0) e
−t/τ with τ =

1

A21

(4.26)

Our ultimate goal is to compute A21. To do this, we will take the unusual step of

making the situation more complicated: we choose to bathe the atoms in light.

The light gives rise to two further processes. First, the ground state atoms absorb

light and are promoted to excited states. This happens at a rate which is proportional

to the intensity of light, ρ(ω). Furthermore, as we saw above, the dominant effect

comes from the light which is resonant with the energy difference of the atomic states,

ω = ω0 ≡
E2 − E1

ℏ

We call the total rate for the ground state to be excited to the excited state ρ(ω0)B12.

(There is a slight subtlety here: the rate actually gets contributions from all frequencies,

but these are absorbed into the definition of B12. We’ll see this in more detail below.)
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The second process is a little counter-intuitive: the excited states can receive extra

encouragement to decay to the ground state from the incident light. This process,

known as stimulated emission. It too is proportional to the intensity of light. We

denote the rate as ρ(ω0)B21. If you’re suspicious about this effect, you can alway view

B21 as an extra parameter which could plausibly vanish. However, we’ll see that one

outcome of the argument is that B21 ̸= 0: the phenomenon of stimulated emission is

necessary on consistency grounds.

The net effect of bathing the atoms in light is that the rate equation (4.25) becomes

dN2

dt
= ρ(ω0)(B12N1 −B21N2)− A21N2

There is a similar equation for the population of ground state atoms

dN1

dt
= −ρ(ω0)(B12N1 −B21N2) + A21N2

The coefficients A21, B21 and B12 are called the Einstein A and B coefficients.

In equilibrium, the populations are unchanging. In this case, the density of light of

frequency ω0 must be given by

ρ(ω0) =
A21N2

B12N1 −B21N2

(4.27)

Throwing in Some Thermodynamics

At this point, we look at the problem from the more microscopic perspective of statis-

tical mechanics. (See the lecture notes on Statistical Physics for the necessary back-

ground.) Before we proceed, we need to specify more information about the atom. We

denote the degeneracy of the ground states, with energy E1, and g1 and the degeneracy

of excited states, with energy E2, as g2.

We now assume that the whole atom/light mix sits in thermal equilibrium at a

temperature T . Then the Boltzmann distribution tells us that the relative population

of atomic states is given by

N2

N1

=
g2e

−E2/kBT

g1e−E1/kBT
=
g2
g1
e−ℏω0/kBT

Furthermore, the energy density of light is given by the Planck distribution,

ρ(ω) =
ℏ
π2c3

ω3

eℏω/kBT − 1
(4.28)
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Combining these formulae with our previous result (4.27), we find the result

ρ(ω0) =
ℏ
π2c3

ω3
0

eℏω0/kBT − 1
=

A21

B12(g1/g2)eℏω0/kBT −B21

We want this equation to hold for any temperature T . This is a strong requirement.

First, it relates the absorption and stimulated emission coefficients

g1B12 = g2B21 (4.29)

We see that, as promised, it is a thermodynamic requirement that stimulated emission

occurs if absorption can occur. More surprisingly, we also get a relationship between

the rates for stimulated emission and spontaneous emission

A21 =
ℏω3

0

π2c3
B21 (4.30)

This is a remarkable result. All information about the temperature of the background

light bath has dropped out. Instead, we are left with a relationship that only depends

on the inherent properties of the atom itself. Furthermore, the probability for an atom

to decay in vacuum is related to the probability for it to decay when bombarded by

light.

Computing the Einstein Coefficients

If we know one of the three Einstein coefficients, then the relations (4.29) and (4.30)

immediately give us the other two. But we have already computed the probability for

an atom to be excited in Section 4.3.1 in the context of Rabi oscillations.

We still need to do a little work to translate between the two results. In the limit of

weak electromagnetic fields, the probability to excite the ground state by shining light

of frequency ω was given in (4.24)

P2(t) =
Ω2

(ω − ω0)2
sin2

(
(ω − ω0)t

2

)
If we take the electric field to be E0 = (0, 0, E), then the (square of the) Rabi frequency

given by (4.20)

Ω2 =
e2E2

ℏ2
|⟨ψ1|z|ψ2⟩|2

In thermal equilibrium we have photons of all frequencies ω, whose energy distribution

is governed by the blackbody formula (4.28). This means that we have electric fields
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E of all frequencies. Recall that the energy density ρ(ω) stored in an electric field is

ϵ0E2/2. Integrating over frequencies, the probability to sit in the excited state is

P2(t) =
2e2

ϵ0ℏ2
|⟨ψ1|z|ψ2⟩|2

∫
dω

ρ(ω)

(ω − ω0)2
sin2

(
(ω − ω0)t

2

)
This integral is dominated by the region near ω = ω0. We therefore replace ρ(ω) by

ρ(ω0) and bring it outside the integral,

P2(t) ≈
2e2

ϵ0ℏ2
ρ(ω0)|⟨ψ1|z|ψ2⟩|2

∫
dω

1

(ω − ω0)2
sin2

(
(ω − ω0)t

2

)
Note that this step ensures that the rate is indeed proportional to ρ(ω0), which was an

assumption in deriving our rate equations above. Finally, to do the integral we write

x = (ω − ω0)t/2 and extend the range from −∞ to ∞,

P2(t) ≈
2e2

ϵ0ℏ2
ρ(ω0)|⟨ψ1|z|ψ2⟩|2

t

2

∫ +∞

−∞
dx

sin2 x

x2

=
e2π

ϵ0ℏ2
ρ(ω0)|⟨ψ1|z|ψ2⟩|2 t

The fact that the probability grows linearly with t is an artefact of the approximation

above. The answer is correct only for small t. The real lesson to take from this is that

the rate Ṗ2(t) is given by

Rate of Absorption = Ṗ2(t) =
e2π

ϵ0ℏ2
ρ(ω0)|⟨ψ1|z|ψ2⟩|2

from which we get the Einstein coefficient

B12 =
e2π

ϵ0ℏ2
|⟨ψ1|z|ψ2⟩|2

Finally, since the light is bombarding the atom from all directions, this is often written

using rotationally invariant matrix elements,

B12 =
e2π

3ϵ0ℏ2
|⟨ψ1|x|ψ2⟩|2 (4.31)

Using the Einstein relations (4.29) and (4.30), we see that the smaller the matrix

element, the longer lived the particle.

4.3.3 Selection Rules

What happens if the matrix element (4.31) vanishes? In this case the excited state does

not decay when subjected to oscillating electric fields: it is stable against electric dipole

transitions. The fact that some transitions are forbidden is referred to as selection rules.

This doesn’t mean that these excited atomic states are fully stable because there can

still be other decay channels as we explain below.
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We have already seen situations where ⟨ψ1|x|ψ2⟩ vanishes when discussing the Stark

effect. Because x is parity odd, the two states must differ in parity. However, there

are more stringent selection rules than those that follow from parity alone. Here we

recapitulate and extend these results.

First, an obvious point. The operator x knows nothing about the spin of the states,

so |ψ1⟩ and |ψ2⟩ must have the same spin. We write this as the requirement

∆s = ∆ms = 0

More powerful selection rules come from looking at the other angular momentum quan-

tum numbers. Neglecting spin, the atomic states |ψ⟩ are labelled by |n, l,m⟩. Using

[Lz, z] = 0, we have

⟨n′, l′,m′|[Lz, z]|n, l,m⟩ = ℏ(m′ −m)⟨n′, l′,m′|z|n, l,m⟩ = 0

This tells us that electric fields which oscillate in the z-direction can only effect a

transition if m = m′, or

∆m = 0 for light polarised in the z direction

However, we also have [Lz, x± iy] = ±ℏ(x± iy) which tells us

⟨n′, l′,m′|[Lz, x± iy]|n, l,m⟩ = ℏ(m′ −m)⟨n′, l′,m′|x± iy|n, l,m⟩
= ±ℏ⟨n′, l′,m′|x± iy|n, l,m⟩

This tells us that electric fields oscillating perpendicular to the z-direction can only

effect a transition when m′ −m = ±1, or

∆m = ±1 for light polarised transverse to the z direction

To determine the allowed transitions between l quantum numbers, we use the identity

[L2, [L2,x]] = 2ℏ2(xL2 + L2x), which gives us

⟨n′, l′,m′|L2, [L2,x]]|n, l,m⟩ = ℏ2(l′(l′ + 1)− l(l + 1))2⟨n′, l′,m′|x|n, l,m⟩
= 2ℏ2(l′(l′ + 1) + l(l + 1))⟨n′, l′,m′|x|n, l,m⟩

Rearranging and factorising, we have

(l + l′)(l + l′ + 2)((l − l′)2 − 1)⟨n′, l′,m′|x|n, l,m⟩ = 0

Since l, l′ > 0, we learn that this matrix element is non-vanishing only if l− l′ = ±1, or

∆l = ±1
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We’ve derived each of these selection rules by pulling a commutation relation identity

out of thin air and then seeing that it happens to give the right answer. This feels a little

like a trick. A much more systematic approach is to invoke the Wigner-Eckart theorem,

which tells us what matrix elements are non-vanishing based on the representation

theory of the rotation group.

An example of an electric dipole transition consistent with these selection rules is the

2p → 1s decay of hydrogen. It is a simple matter to compute this using the formulae

above: one finds a lifetime τ ≈ 10−9 seconds. In contrast, the 2s → 1s transition is

forbidden by the selection rule ∆l = ±1. The decay does eventually happen, but has

to find another route. (It turns out that it primarily emits two photons rather than

one). Correspondingly, the lifetime is much longer, τ ≈ 10−1 seconds.

There’s a cute piece of physics here related to the Stark effect. Recall from Section

4.1 that a constant background electric field causes the 2s state of hydrogen to mix

with the 2p state. (See equation (4.5).) But, when combined with the phenomena of

spontaneous emission, this state immediately becomes more unstable. This means that

we can create a gas of hydrogen atoms in the 2s state, comfortable in the knowledge

that they will last a relatively long time (around a tenth of a second). But when

subjected to a constant electric field, they will immediately decay to the ground state,

releasing a burst of light.

Magnetic Dipole Transitions

The selection rules described above hold for electric dipole transitions. However, if the

matrix elements vanish it does not mean that the excited state of the atom is absolutely

stable. To paraphrase Jeff Goldblum, Nature will find a way. There are other channels

through which the atom can decay. Indeed, we already briefly described the magnetic

dipole transition, in which the relevant matrix element is

⟨ψ1|µ|ψ2⟩

Here the selection rules are different. In particular, µ is related to the angular momen-

tum operator and is parity even. This means that, in contrast to the electric dipole

transition, the matrix element above is non-vanishing only if |ψ1⟩ and |ψ2⟩ have the

same parity. For example, transitions between levels split by fine structure or hyperfine

structure have the same parity and so occur through magnetic dipole effects.

The lifetime of any excited state is determined by the largest matrix element. Some-

times, even the largest matrix element can be very small in which case the atomic state

is long lived. An extreme example occurs for the hyperfine structure of hydrogen, which

gives rise to the 21 cm line: its lifetime is around 10 million years.

– 129 –



4.4 Photons

The relationship (4.29) and (4.30) have allowed us to determine the rate of spontaneous

emission of a photon. But it’s clear the argument relied on the magic of thermodynam-

ics. To go beyond this description, we need a way to incorporate both the quantum

state of the atom and the quantum state of the electromagnetic field. This is the frame-

work of Quantum Field Theory. We will see how to quantise the electromagnetic field

in next year’s Quantum Field Theory lectures. Here we offer a baby version.

4.4.1 The Hilbert Space of Photons

The quantum state of the electromagnetic field is described by how many photons

it contains. Each photon is a particle of light. Its properties are described by two

quantum numbers. The first is the momentum, which is given by p = ℏk. Here k

is the wavevector and its magnitude, k = |k|, is the wavenumber; it is related to the

wavelength by λ = 2π/k and to the frequency by ω(k) = kc. The energy of a photon

is given by the famous formula

E = ℏω (4.32)

Note that, when combined with the definition of momentum, this is simply the rela-

tivistic dispersion relation for a massless particle: E = pc.

The second property of the photon is its polarisation. This is described by a vector

which is orthogonal to k. For each k, we define a two-dimensional basis of polarisation

vectors eλk, with λ = 1, 2, obeying

eλk · k = 0

To specify the state of the electromagnetic field, we need to say how many photons

it contains, together with the information k and eλk for each photon. The states are

therefore labelled by a list of non-negative integers,

|{nkλ}⟩

where nkλ ∈ Z tells us how many photons we have with momentum k and polarisation

λ.

We start with the state with no photons. This is the vacuum state and is denoted

as |0⟩. The key to quantum field theory is to view the particles – in this case, the

photons – as excitations of the underlying field, in much the same way that the states

of the harmonic oscillator arise from exciting the vacuum. For each type of photon, we
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introduce annihilation and creation operators, akλ and a†kλ. These obey the familiar

commutation relations of the harmonic oscillator,

[akλ, a
†
kλ′ ] = δk,k′δλ,λ′

The annihilation operators have the property that akλ|0⟩ = 0. The quantum state of a

single photon with momentum k and polarisation λ is described by a†kλ|0⟩. The general
state of the quantum field is given by

|{nkλ}⟩ =
∏
k,λ

=
(a†kλ)

nkλ

√
nkλ!

|0⟩ (4.33)

This is the same kind of set-up that we saw in the lectures on Solid State Physics when

discussing the quantisation of phonons.

So far we have only described the Hilbert space of the electromagnetic field. It

consists of an infinite number of harmonic oscillators, one for each k and λ. Note that

already here we’re dealing with something unfamiliar from the quantum mechanics

perspective. Usually in quantum mechanics we fix the number of particles and then

look at the Hilbert space. But here our Hilbert space contains states with different

numbers of photons. Such Hilbert spaces are sometimes referred to as Fock spaces.

The final step is to determine that Hamiltonian that governs the evolution of these

states. This too is lifted from the harmonic oscillator: it is

H =
∑
k,λ

(
ℏω(k) a†kλakλ +

1

2

)

Acting on our states (4.33) we have

H|{nkλ}⟩ = E|{nkλ}⟩ with E =
∑
k,λ

nkλ ℏω(k)

which agrees with the formula (4.32), now generalised to a large number of photons.

Above, we have simply stated the Hilbert space and Hamiltonian for the electro-

magnetic field. Of course, ultimately we should derive these results starting from the

Maxwell equations. This will be done in the Quantum Field Theory course.
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4.4.2 Coherent States

Recall from our earlier lectures on the harmonic oscillator that there is a special state

which most closely mimics a classical state. This is the coherent state. In the present

context a coherent state is parameterised by α ∈ C and consists of a sum of photons,

each with the same wavevector and polarisation. We write a ≡ akλ. The coherent state

can then be expressed as

|α⟩ = eαa
†−α⋆a|0⟩ = e−|α|2/2eαa

†|0⟩

where the equality follows from some standard manipulations of creation and annihi-

lation operators. States of this kind are the closest that a quantum state gets to a

classical plane wave. In particular, the classical expectation values of the electric and

magnetic fields can be shown to oscillate back and forth with frequency ω = kc.

The coherent states are eigenstates of the annihilation operator, meaning that they

are unchanged by the removal of a photon. The parameter α determines the mean

number of photons in the state,

⟨n⟩ = ⟨α|a†a|α⟩ = |α|2

Coherent states play a particularly important role in quantum optics. In this context,

they are sometimes referred to as Glauber states. (Roy Glauber was awarded the 2005

Nobel prize for his work on optical coherence.)

Making a Coherent State

The light emitted by a laser is described by a coherent state. I’m not going to try

to explain how a laser works here. (It’s to do with stimulated emission of a bunch of

atoms.) But there is a simple model which explains how coherent states naturally arise:

it is the driven harmonic oscillator,

H = ℏω
(
a†a+

1

2

)
+ ℏ
(
f ⋆(t)a+ f(t)a†

)
Here f(t) is a forcing function which excites the harmonic oscillator. In the context of

electrodynamics, we think of a† as creating photons of frequency ω (and some unspec-

ified polarisation). We will now show that the forcing term creates photons.

We solve the Hamiltonian in the interaction picture, taking H0 = ℏω(a†a+ 1
2
). Recall

that states in the interaction picture are related to those in the Schrödinger picture by

|ψ⟩I = eiH0t/ℏ|ψ⟩S. The interaction picture for the interaction Hamiltonian is

HI = ℏeiH0t/ℏ
(
f ⋆(t)a+ f(t)a†

)
e−iH0t/ℏ = ℏ

(
e−iωtf ⋆(t)a+ eiωtf(t)a†

)
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The states then evolve as |ψ(t)⟩I = UI(t)|ψ(0)⟩I , where the unitary operator UI obeys

iℏ
∂UI
∂t

= HIUI

You can check that the solution is given by

UI(t) = exp
(
α(t)a† − α⋆(t)a+ iφ(t)

)
where α(t) = −i

∫ t
dt′ f(t′)eiωt

′
and φ(t) = 1

2

∫ t
dt′ Im(α̇⋆α). (To check this, you’ll need

to use some commutation relations, in particular [eαa
†
, a]e−αa

†
= −α.)

Now suppose that we drive the oscillator at its natural frequency, so that f(t) =

f0e
−iωt. In this case, α(t) = −if0t and the states in the interaction picture are given

by

|ψ(t)⟩I = e−if0(a
†+a)t|0⟩I = e−(f0t)2/2e−if0a

†t|0⟩I

This is the coherent state |α⟩. Equivalently, if we transform back to the Schrödinger

picture, we have the coherent state

|ψ(t)⟩S = e−iH0t/ℏ|ψ(t)⟩I = e−(f0t)2/2e−if0e
−iωta†t|0⟩

The upshot of this discussion is that adding a forcing term to the harmonic oscillator

drives the ground state to a coherent state. While this doesn’t explain the importance

of coherent states in, say, laser physics, hopefully it at least provides some motivation.

4.4.3 The Jaynes-Cummings Model

Now that we have a description of the quantised electromagnetic field, we would like to

understand how it interacts with atoms. Here we construct a simple, toy model that

captures the physics.

The first simplification is that we consider the atom to have just two states. This is

essentially the same approximation that we made in Section 4.3 when discussing Rabi

oscillations. Here we change notation slightly: we call the ground state of the system

| ↓ ⟩ and the excited state of the system | ↑ ⟩. (These names are adopted from the

notation for spin, but that’s not the meaning here. For example, | ↓ ⟩ may describe the

1s state of hydrogen, and | ↑ ⟩ the 2p state.)
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As in our discussion of Rabi oscillations, we take the energy splitting between the two

states to be ℏω0. This means that, in the absence of any coupling to the electromagnetic

field, our two-state “atom” is simply described by the Hamiltonian

Hatom =
1

2

(
ℏω0 0

0 −ℏω0

)
(4.34)

This atom will interact with photons of frequency ω. We will only include photons

with this frequency and no others. In reality, this is achieved by placing the atom in a

box which can only accommodate photons of wavelength λ = 2πc/ω. For this reason,

the restriction to a single frequency of photon is usually referred to as cavity quantum

electrodynamics.

We will ignore the polarisation of the photon. Following our discussion above, we

introduce the creation operator a†. The Hilbert space of photons is then spanned by

the states |n⟩ = (a†)n/
√
n!|0⟩, with Hamiltonian

Hphoton = ℏω
(
a†a+

1

2

)
(4.35)

We often omit the zero-point energy ℏω/2 since it only contributes a constant.

Combining the two, the Hilbert space is H = Hatom ⊗Hphoton and is spanned by the

states |n; ↑⟩ and |n; ↓⟩, with n ≥ 0. The Hamiltonian includes both (4.34) and (4.35),

but also has an interaction term. We want this interaction term to have the property

that if the excited state | ↑ ⟩ decays to the ground state | ↓ ⟩ then it emits a photon.

Similarly, the ground state | ↓ ⟩ may absorb a photon to become excited to | ↑ ⟩. This
physics is captured by the following Hamiltonian

HJC =
ℏ
2

(
ω0 ga

ga† −ω0

)
+ ℏωa†a

This is the Jaynes-Cummings model. The constant g characterises the coupling between

the atom and the photons.

As we’ll see, the Jaynes-Cummings model captures many of the features that we’ve

seen already, including Rabi oscillations and spontaneous emission. However, you

shouldn’t think of the photons in this model as little wavepackets which, when emit-

ted, disappear off into the cosmos, never to be seen again. Instead, the photons are

momentum eigenstates, spread throughout the cavity in which the atom sits. When

emitted, they hang around. This will be important to understand the physics.
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We now look at the dynamics of the Jaynes-Cummings model. The state |0, ↓⟩ de-
scribes an atom in the ground state with no photons around. This state is an eigenstate

of HJC with energy HJC |0, ↓⟩ = −1
2
ϵ|0, ↓⟩.

However, the state |0, ↑⟩, describing an excited atom in the vacuum is not an eigen-

state. It can evolve into |1, ↓⟩, describing an atom in the ground state with one photon.

More generally, the Hilbert space splits into sectors with the |n− 1, ↑⟩ state mixing

with the |n, ↓⟩ state. Restricted to these two states, the Hamiltonian is a 2× 2 matrix

given by

Hn =

(
n− 1

2

)
ω12 +

1

2
(ω0 − ω)σ3 +

1

2
g
√
nσ1

where σi are the Pauli matrices. The two eigenstates are

|n+⟩ = sin θ|n− 1, ↑⟩ − cos θ|n, ↓⟩
|n−⟩ = cos θ|n− 1, ↑⟩+ sin θ|n, ↓⟩

where

tan(2θ) =
g
√
n

δ
, δ = ω0 − ω (4.36)

δ is the same detuning parameter we used before. When δ = 0, we are on resonance,

with the energy of the photon coinciding with the energy splitting of the atom. In

general, two energy eigenvalues are

E± =

(
n+

1

2

)
ℏω ± 1

2
ℏ
√
g2n+ δ2

Let’s now extract some physics from these solutions.

Rabi Oscillations Revisited

Consider an atom in the ground state, surrounded by a fixed number of photons n.

The initial state is |Ψ(t = 0)⟩ = |n, ↓⟩ = sin θ|n−⟩ − cos θ|n+⟩. The state subsequently

evolves as

|Ψ(t)⟩ =
[
e−iE−t/ℏ sin θ|n−⟩ − e−iE+t/ℏ cos θ|n+⟩

]
From this, we can extract the probability of sitting in the excited state

P↑(t) =
g2n

g2n+ δ2
sin2

(√
g2n+ δ2

2
t

)
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This agrees with our earlier result (4.23) which was derived for an atom sitting in a

classical electric field. Note that the Rabi frequency (4.20) should be equated with

Ω = g
√
n. This makes sense: the coupling g is capturing the matrix element, while the

number of photons n is proportional to the energy stored in the electromagnetic field,

so
√
n is proportional to the amplitude of the electric field.

Death and Resurrection

The Jaynes-Cummings model captures also new physics, not seen when we treat the

electromagnetic field classically. This is simplest to see if we tune the photons to

resonance, setting δ = 0. With this choice, (4.36) tells us that cos θ = sin θ = 1/
√
2.

We again place the atom in its ground state, but this time we do not surround it with

a fixed number of photons. Instead, we place the electromagnetic field in a coherent

state

|Ψ⟩ = e−|α|2/2eαa
†|0, ↓⟩ = e−|λ|2/2

∞∑
n=0

αn√
n!
|n, ↓⟩

We will take the average number of photons in this state to be macroscopically large.

This means |α| ≫ 1. Now the evolution is given by

|Ψ(t)⟩ = e−(|α|2−iωt)/2
∞∑
n=0

(αe−iωt)n√
n!

[
cos

(
g
√
nt

2

)
|n, ↓⟩) + i sin

(
g
√
nt

2

)
|n− 1, ↑⟩

]
The probability to find the atom in its excited state is

P↑(t) = e−|α|2
∞∑
n=0

|α|2n

n!
sin2

(
g
√
nt

2

)
Now there are many oscillatory contributions to the probability, each with a different

frequency. We would expect these to wash each other out, so that there are no coherent

oscillations in the probability. Indeed, we will now see, this is what happens. But there

is also a surprise in store.

To analyse the sum over different frequencies, we first rewrite the probability as

P↑(t) = e−|α|2
∞∑
n=0

|α|2n

n!

(
1

2
− 1

2
cos(g

√
nt)

)
=

1

2
− 1

2
e−|α|2

∞∑
n=0

|α|2n

n!
cos(g

√
nt)

where, in the second equality, we have used the Taylor expansion of the exponential.

The sum is sharply peaked at the value n ≈ |α|2. To see this, we use Stirlings formula

to write

|α|2n

n!
≈ 1√

2πn
en log |α|2−n logn+n
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Figure 24: Rabi Oscillations at short

times...

Figure 25: ...and their decay at longer

times.

The exponent f(n) = 2nα|α|−n log n+n has a maximum at f ′(n) = log |α|2−log n = 0,

or n = |α|2. We then use f ′′(n) = −1/n. Taylor expanding around the maximum, we

have

|α|2n

n!
≈ 1√

2π|α|2
e|α|

2−m2/2|α|2

where m = n − |α|2. With |α|2 sufficiently large, the sum over m effectively ranges

from −∞ to +∞. We have

P↑(t) ≈
1

2
− 1

2

∞∑
m=−∞

1√
2π|α|2

e−m
2/2|α|2 cos

(
gt
√
|α|2 +m

)
(4.37)

Let’s now try to build some intuition for this sum. First note that for very short time

periods, there will be the familiar Rabi oscillations. A single cycle occurs with period

gT |α| = 2π, or

TRabi ≈
2π

g|α|
These oscillations occur at a Rabi frequency determined by the average number of

photons ⟨n⟩ = |α|2. In the first figure, we’ve plotted the function (4.37) for |α| = 20

and times gt ≤ 2. We clearly see the Rabi oscillations at these time scales

There are other features that occur on longer time scales. The exponential sup-

pression means that only the terms up to |m| ≈ |α| will contribute in a significant

way. If, over the range of these terms, we get a change of phase by 2π then we

expect destructive interference among the different oscillations. This occurs when

gT (
√
|α|2 + |α| − |α|) ≈ 2π, or

Tcollapse ≈
4π

g
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Figure 26: Once decayed, they stay de-

cayed...

Figure 27: ...until they don’t!

This tells us that after approximately |α| Rabi oscillations, the probability asymptotes

to P↑ =
1
2
. This is the expected behaviour if the atom is subjected to lots of different

frequencies. This collapse is clearly seen in the first right-hand figure, which plots the

function (4.37) for |α| = 20 and time scales up to gt ≤ 10. Indeed, the left-hand plot

of the next diptych extends the timescale to gt ≈ 50, where we clearly see that the

probability settles to P↑ =
1
2
.

However, there is a surprise in store! At much longer timescales, each term in the

sum picks up the same phase from the cos factor: i.e. cos(gT |α|) = cos(gT
√
|α|2 + 1),

or gT (
√
|α|2 + 1− |α|) = 2π. This occurs when

Trevival ≈
4π|α|
g

On these time scales, the terms in the sum once
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Figure 28:

again add coherently and we can find the particle

in the excited state with an enhanced probabil-

ity. This is called quantum revival and is clearly

seen in the second right-hand plot. Note that

the probability in the revival never reaches one,

nor dips to zero.

Revival is a novel effect that arises from the

quantisation of the electromagnetic field; it has

no classical analog. Note that this effect does

not occur because of any coherence between the individual photon states. Rather, it

occurs because of the discreteness of the electromagnetic field
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Finally, we can ask what the probability looks like on extremely long time scales

t ≫ Trevival. On the right, we continue our plots to gt = 5000. We see a number of

collapses and revivals, until the system becomes noisy and fluctuating at large times.
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5. Quantum Foundations

What is the essence of quantum mechanics? What makes the quantum world truly

different from the classical one? Is it the discrete spectrum of energy levels? Or the

inherent lack of determinism?

The purpose of this chapter is to go back to basics in an attempt to answer this

question. For the most part, we will not be interested in the dynamics of quantum

systems (although Section 5.5 is an exception). Instead, we will look at the framework

of quantum mechanics in an attempt to get a better understanding of what we mean

by a “state”, and what we mean by a “measurement”.

5.1 Entanglement

“I would not call that one but rather the characteristic trace of quantum

mechanics, the one that enforces its entire departure from classical lines of

thought”

Erwin Schrödinger on entanglement

The differences between the classical and quantum worlds are highlighted most em-

phatically when we look at a property called entanglement. This section and, indeed,

much of this chapter will be focussed on building the tools necessary to understand the

surprising features of entangled quantum states.

Entanglement is a property of two or more quantum systems. Here we consider two

systems, with associated Hilbert spaces H1 and H2 respectively. The Hilbert space of

the combined system is then H1 ⊗ H2. A state of this combined system is said to be

entangled if it cannot be written in the form

|Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ (5.1)

For example, suppose we have two particles, each of which can have one of two states.

This is called a qubit. We take a basis of this Hilbert space to be the spin in the

z-direction, with eigenstates spin up |↑ ⟩ or spin down |↓ ⟩. Then the state

|Ψ⟩ = |↑ ⟩ ⊗ |↓ ⟩

is not entangled. In contrast, the state

|Ψ⟩ = 1√
2
(|↑ ⟩ ⊗ |↓ ⟩ − |↓ ⟩ ⊗ |↑ ⟩)
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is entangled. In fact, this is the most famous of all entangled states and is usually

known as an EPR pair, after Einstein, Podolsky and Rosen. Note that this state is

a sum over states of the form (5.1) and cannot be written in a simpler form; this is

what makes it entangled. In what follows, we’ll simplify our notation and drop the ⊗
symbol, so the EPR pair is written as

|EPR⟩ = 1√
2
(|↑ ⟩|↓ ⟩ − |↓ ⟩|↑ ⟩) (5.2)

To illustrate the concept of entanglement, we could just as easily have chosen the states

|Ψ⟩ = 1√
2
(| ↑ ⟩| ↓ ⟩ + | ↓ ⟩| ↑ ⟩) or |Ψ⟩ = 1√

2
(| ↑ ⟩| ↑ ⟩ + | ↓ ⟩| ↓ ⟩). Both of these are also

entangled. However, just because a state is written as a sum of terms of the form (5.1)

does not necessarily mean that it’s entangled. Consider, for example,

|Ψ⟩ = 1√
2
(|↑ ⟩|↓ ⟩+ |↓ ⟩|↓ ⟩)

This can also be written as |Ψ⟩ = |→⟩|↓ ⟩ where |→⟩ = 1√
2
(|↑ ⟩+ |↓ ⟩) and so this state

is not entangled. We’ll provide a way to check whether or not a state is entangled in

Section 5.3.3.

5.1.1 The Einstein, Podolsky, Rosen “Paradox”

In 1935, Einstein, Podolsky and Rosen tried to use the property of entanglement to

argue that quantum mechanics is incomplete. Ultimately, this attempt failed, revealing

instead the jarring differences between quantum mechanics and our classical worldview.

Here is the EPR argument. We prepare two particles in the state (5.2) and subse-

quently separate these particles by a large distance. There is a tradition in this field,

imported from the world of cryptography, to refer to experimenters as Alice and Bob

and it would be churlish of me to deny you this joy. So Alice and Bob sit in distant

locations, each carrying one of the spins of the EPR pair. Let’s say Alice chooses to

measure her spin in the z-direction. There are two options: she either finds spin up |↑ ⟩
or spin down |↓ ⟩ and, according to the rules of quantum mechanics, each of these hap-

pens with probability 50%. Similarly, Bob can measure the spin of the second particle

and also finds spin up or spin down, again with probability 50%.

However, the measurements of Alice and Bob are not uncorrelated. If Alice measures

the first particle to have spin up, then the EPR pair (5.2) collapses to | ↑ ⟩| ↓ ⟩, which
means that Bob must measure the spin of the second particle to have spin down. It

would appear, regardless of how far apart they are, the measurement of Alice determines

the measurement of Bob: whatever Alice sees, Bob always sees the opposite. Viewed
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in the usual framework of quantum mechanics, these correlations arise because of a

“collapse of the wavefunction” which happens instantaneously.

Now, for any theoretical physicist — and for Einstein in particular — the word “in-

stantaneous” should ring alarm bells. It appears to be in conflict with special relativity

and, although we have not yet made any attempt to reconcile quantum mechanics with

special relativity, it would be worrying if they are incompatible on such a fundamental

level.

The first thing to say is that there is no direct conflict with locality, in the sense that

there is no way to use these correlations to transmit information faster than light. Alice

and Bob cannot use their entangled pair to send signals to each other: if Bob measures

spin down then he has no way of knowing whether this happened because he collapsed

the wavefunction, or if it happened because Alice has already made a measurement and

found spin up. Nonetheless, the correlations that arise appear to be non-local and this

might lead to a sense of unease.

There is, of course, a much more mundane explanation for the kinds of correlations

that arise from EPR pairs. Suppose that I take off my shoes and give one each to Alice

and Bob, but only after I’ve sealed them in boxes. I send them off to distant parts of

the Universe where they open the boxes to discover which of my shoes they’ve been

carrying across the cosmos. If Alice is lucky, she finds that she has my left shoe. (It is

a little advertised fact that Alice has only one leg.) Bob, of course, must then have my

right shoe. But there is nothing miraculous or non-local in all of this. The parity of

the shoe was determined from the beginning; any uncertainty Alice and Bob had over

which shoe they were carrying was due only to their ignorance, and my skill at hiding

shoes in boxes.

This brings us to the argument of EPR. The instantaneous collapse of the wavefunc-

tion in quantum mechanics is silly and apparently non-local. It would be much more

sensible if the correlations in the spins could be explained in the same way as the corre-

lations in shoes. But if this is so, then quantum mechanics must be incomplete because

the state (5.2) doesn’t provide a full explanation of the state of the system. Instead,

the outcome of any measurement should be determined by some property of the spins

that is not encoded in the quantum state (5.2), some extra piece of information that

was there from the beginning and says what the result of any measurement will give.

This hypothetical extra piece of information is usually referred to as a hidden variable.

It was advocated by Einstein and friends as a way of restoring some common sense to

the world of quantum mechanics, one that fits more naturally with our ideas of locality.

– 142 –



There’s no reason that we should have access to these hidden variables. They could

be lying beyond our reach, an inaccessible deterministic world which we can never

see. In this picture, our ignorance of these hidden variables is where the probability of

quantum mechanics comes from, and the uncertainties of quantum mechanics are then

no different from the uncertainties that arise in the weather or in the casino. They are

due, entirely, to lack of knowledge. This wonderfully comforting vision of the Universe

is sometimes called local realism. It is, as we will now show, hopelessly naive.

5.1.2 Bell’s Inequality

The hypothetical hidden variables that determine the measurements of spin must be

somewhat more subtle than those that determine the measurement of my shoes. This

is because there’s nothing to stop Alice and Bob measuring the spin in directions other

than the z-axis.

Suppose, for example, that both choose to measure the spin in the x-direction. The

eigenstates for a single spin are

|→⟩ = 1√
2
(|↑ ⟩+ |↓ ⟩) , |←⟩ = 1√

2
(|↑ ⟩ − |↓ ⟩)

with eigenvalues +ℏ/2 and −ℏ/2 respectively. We can write the EPR pair (5.2) as

|EPR⟩ = 1√
2
(|↑ ⟩|↓ ⟩ − |↓ ⟩|↑ ⟩) = 1√

2
(|←⟩|→⟩ − |→⟩|←⟩)

So we again find correlations if the spins are measured along the x-axis: whenever Alice

finds spin +ℏ/2, then Bob finds spin −ℏ/2 and vice-versa. Any hidden variable has to

account for this too. Indeed, the hypothetical hidden variables have to account for the

measurement of the spin along any choice of axis. This will prove to be their downfall.

A Review of Spin

Before we proceed, let’s first review a few facts about how we measure the spin along

different axes. An operator that measures spin along the direction a = (sin θ, 0, cos θ)

is

σ · a =

(
cos θ sin θ

sin θ − cos θ

)

Below we’ll denote this matrix as σ · a = σθ. It has eigenvectors

|θ+⟩ = cos
θ

2
|↑ ⟩+ sin

θ

2
|↓ ⟩ and |θ−⟩ = − sin

θ

2
|↑ ⟩+ cos

θ

2
|↓ ⟩
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From this, we learn that if we prepare a state in, say, | ↓ ⟩, then the probability P (θ±)

of measuring either spin + or spin − along the vector a is

P (θ+) = sin2 θ

2
and P (θ−) = cos2

θ

2

From the form of the eigenstates |θ±⟩, we see that the EPR pair can be written as

|EPR⟩ = 1√
2
(|θ+⟩|θ−⟩ − |θ−⟩|θ+⟩) (5.3)

for any θ. This means that, as long as Alice and Bob both choose to measure the spin

along the same direction a, then their results will always be perfectly anti-correlated:

when one measures spin + the other is guaranteed to measure spin −. This is a special

property of the EPR pair that is not shared by other entangled states. It follows from

some group theory: under addition of angular momentum 1
2
⊗ 1

2
= 0⊕ 1, and the EPR

state is the rotationally invariant singlet.

What’s Wrong with Hidden Variables

Suppose now that Alice measures the spin along the z-axis, and Bob measures the spin

along the a axis. If Alice measures spin | ↑ ⟩, then we know that Bob has spin | ↓ ⟩,
so whether he measures spin + or − is determined by the probabilities above. We’ll

write this as P (σAz , σ
B
θ ) where σ

A denotes the spin measured by Alice and σB the spin

measured by Bob. The four possibilities are

P (σAz = +, σBθ = +) =
1

2
sin2 θ

2
, P (σAz = +, σBθ = −) = 1

2
cos2

θ

2

P (σAz = −, σBθ = +) =
1

2
cos2

θ

2
, P (σAz = −, σBθ = −) = 1

2
sin2 θ

2
(5.4)

Note, in particular, that if θ = 0 so that Alice and Bob measure the spin along the

same axis, then we revert to our previous perfect anti-correlation.

It is not difficult to account for these results in a hidden variables theory. Each of

the particles carries with them two labels sz and sθ which have values +1 or −1 and

determine the result of a spin measurement along the z-axis and a axis respectively.

The perfect anti-correlation means that the value of each spin for Bob’s particle must

be the opposite of Alice’s. We write sBz = −sAz and sBθ = −sAθ . We then only need to

talk about the probability distribution p(sAz , s
A
θ ) for the spins of Alice’s particles. To

reproduce the predictions (5.4), we must take these to be

P (sAz = +, sAθ = −) = 1

2
sin2 θ

2
, P (sAz = +, sAθ = +) =

1

2
cos2

θ

2

P (sAz = −, sAθ = −) = 1

2
cos2

θ

2
, P (sAz = −, sAθ = +) =

1

2
sin2 θ

2
(5.5)
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Mathematically this is straightforward: the probability distributions are, after all, es-

sentially the same as those in (5.4). But physically we’ve done something a little

slippery. We’ve said that whenever Bob measures his spin σθ to be, say, +1 then this

determines the spin of Alice’s particle to be sθ = −1 even though Alice didn’t measure

the spin in the direction a. In this way, we’ve managed to assign labels to Alice’s

particle corresponding to spin in two different directions. But this is against the spirit

of quantum mechanics because these operators for spins in different directions don’t

commute. Indeed, we will now see that the spirit of quantum mechanics will come back

and bite us.

The trouble comes when we throw a third possible measurement into the mix. Sup-

pose that Alice and Bob are given a choice. Each can measure the spin along the z-axis,

along the a = (sin θ, 0, cos θ) axis or along the b = (sinϕ, 0, cosϕ) axis. Now each par-

ticle must be assigned a hidden variable that determines the choice of each of these

measurements. So Alice’s particle comes with sAz , s
A
θ and sAϕ , each of which can take

value ±1. The probabilities of the different choices are governed by some distribution

p(sAz , s
A
θ , s

A
ϕ ). We will now show that no such distribution exists that can reproduce the

results of measurements of the EPR pair.

Let’s assume that such a distribution does exist. This implies certain relations be-

tween the probability distributions P (sAi , s
A
j ). For example, by summing over the vari-

ables which weren’t measured, we find

P (sAθ = +, sAϕ = −) = p(+ +−) + p(−+−)
≤ [p(+ +−) + p(+ + +)] + [p(−+−) + p(−−−)]
= P (sAz = +, sAθ = +) + P (sAz = −, sAϕ = −)

But we know what each of these distributions P (sA, sA) must be: they are given by

(5.5). This then gives the Bell inequality

sin2 θ − ϕ
2
≤ cos2

θ

2
+ cos2

ϕ

2
(5.6)

where the left-hand side follows from the rotational invariance (5.3) of the EPR state.

There’s a problem with the Bell inequality (5.6): it’s simply not true for all values

of θ and ϕ! Suppose, for example, that we take θ = 3π/2 and ϕ = 3π/4. Then

sin2 3π

8
− cos2

3π

8
= − cos

3π

4
=

1√
2
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Meanwhile

cos2
3π

4
=

1

2

Obviously 1/2 < 1/
√
2. These values violate the Bell inequality.

The Bell inequality (5.6) was derived under the assumption that there was some

hidden variable underlying quantum mechanics. Its violation tells us that this is simply

not possible. Of course, physics is an experimental science and we can ask whether or

not the Bell inequalities are violated in Nature. They are. The experiment was first

done in the early 1980s by Aspect and has been repeated many times since, with

different groups trying to finesse the experiments in order to close off increasingly

preposterous loopholes that philosophers claim to have discovered in the argument.

The original EPR argument was an attempt to show that locality, together with com-

mon sense, imply that there should be hidden variables underlying quantum mechanics.

Nature, however, disagrees. Indeed, the Bell inequalities turn the EPR argument com-

pletely on its head. If you want to keep locality, then you’re obliged to give up common

sense which, here, means a view of the world in which particles carry the properties

that are measured. In contrast, if you want to keep common sense, you will have to give

up locality. Such a loophole arises because the derivation of Bell’s inequality assumed

that a measurement on one particle does not affect the probability distribution of the

other. Given that the two particles can be separated by arbitrarily large distances, any

such effect must be superluminal and, hence, non-local. Therefore, the best one can

say is that Bell’s argument forbids local hidden variable theories.

Most physicists cherish locality over common sense. In particular, all of our most

successful laws of physics are written in the language of Quantum Field Theory, which

is the framework that combines quantum mechanics with local dynamics. With locality

sitting firmly at the heart of physics, it is very difficult to see role for any kind of hidden

variables.

It is sometimes said that the correlations inherent in EPR-type pairs are non-local. I

don’t think this is a particularly helpful way to characterise these correlations because,

as we have seen, there is no way to use them to signal faster than light. Nonetheless, it

is true that the correlations that arise in quantum mechanics cannot arise in any local

classical model of reality. But the key lesson to take from this is not that our Universe

is non-local; it is instead that our Universe is non-classical.
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5.1.3 CHSH Inequality

The essence of Bell’s inequality can be distilled to a simpler form, due to Clauser,

Horne, Shimony and Holt.

We stick with the general framework where both Alice and Bob are each sent a two-

state quantum system. Alice can choose to measure one of two quantum observables,

A1 or A2. Similarly, Bob can choose to measure B1 or B2. Each of these observables

has two possible eigenvalues, ai = ±1 and bi = ±1.

We require that

[Ai, Bj] = 0 i, j = 1, 2 (5.7)

This is the statement that Alice and Bob can happily perform their measurements

without interfering with the other. In particular, this is where the assumption of

locality comes in: if Alice and Bob are spacelike separated then (5.7) must hold. In

contrast, we will make no such assumption about [A1, A2] or [B1, B2].

We’re going to look at the expectation value of the observable

C = (A1 + A2)B1 + (A1 − A2)B2 (5.8)

We do this first in a hidden variable theory, and next in the quantum theory. We’ll

see that a hidden variable theory places a stricter range on the allowed values of the

expectation value ⟨C⟩. To see this, we make the seemingly innocuous assumption that

the system possesses well-defined values for ai and bi. In this case, we write

Ch.v. = (a1 + a2)b1 + (a1 − a2)b2 (5.9)

But since ai = ±1, then there are two possibilities

• a1 + a2 = 0 ⇒ a1 − a2 = ±2

• a1 − a2 = 0 ⇒ a1 + a2 = ±2

In either case, Ch.v. = ±2bi for some bi. Since bi can only take values ±1, we have

|⟨bi⟩| ≤ 1, and so

−2 ≤ ⟨Ch.v.⟩ ≤ 2 (5.10)

This is the CHSH inequality. It is entirely analogous to the Bell inequality (5.6).
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What about in quantum theory? Now we don’t admit to a1 and a2 having simul-

taneous meaning, so we’re not allowed to write (5.9). Instead, we have to manipu-

late (5.8) as an operator equation. Because the eigenvalues are ±1, we must have

A2
1 = A2

2 = B2
1 = B2

2 = 1, the identity operator. After a little algebra, we find

C2 = 41− A1A2B1B2 + A2A1B1B2 + A1A2B2B1 − A2A1B2B1

= 41− [A1, A2][B1, B2]

Now |⟨[A1, A2]⟩| ≤ |⟨A1A2⟩| + |⟨A2A1⟩| ≤ 2, since each operator has eigenvalue ±1.
From this we learn that in the quantum theory,

⟨C2⟩ ≤ 8

Since ⟨C2⟩ ≥ ⟨C⟩2, we find that the range of values in quantum mechanics to be

−2
√
2 ≤ ⟨C⟩ ≤ 2

√
2

This is referred to as the Cirel’son bound. Clearly the range of values allowed by

quantum mechanics exceeds that allowed by hidden variables theories (5.10).

It remains for us to exhibit states and operators which violate the CHSH bound. For

this, we can return to our spin model. From (5.4), we know that

⟨EPR|σAz ⊗ σBθ |EPR⟩ = sin2 θ

2
− cos2

θ

2
= − cos θ

This means that if we take the four operators A2, B1, A1 and B2 to be spin operators,

aligned in the (x, y) at successive angles of 45◦. (i.e. A2 has θ = 0, B1 has θ = π
4
, A1

has θ = π
2
and B2 has θ = 3π

4
) then

⟨A1B1⟩ = ⟨A1B1⟩ = ⟨A1B1⟩ = −
1√
2

and ⟨A2B2⟩ = +
1√
2

and we see that

⟨C⟩ = −2
√
2

saturating the Cirel’son bound.

5.1.4 Entanglement Between Three Particles

If we consider the case of three particles rather than two, then there is even sharper

contradiction between the predictions of quantum mechanics and those of hidden vari-

ables theories. As before, we’ll take each particle to carry one of two states, with a

basis given by spins |↑ ⟩ and |↓ ⟩, measured in the z-direction.
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Consider the entangled three-particle state

|GHZ⟩ = 1√
2
(|↑ ⟩|↑ ⟩|↑ ⟩ − |↓ ⟩|↓ ⟩|↓ ⟩)

named after Greenberger, Horne and Zeilinger. These three particles are sent to our

three intrepid scientists, each waiting patiently in far-flung corners of the galaxy. Each

of these scientists makes one of two measurements: they either measure the spin in the

x-direction, or they measure the spin in the y-direction. Obviously, each experiment

gives them the result +1 or −1.

The state |GHZ⟩ will result in correlations between the different measurements.

Suppose, for example, that two of the scientists measure σy and the other measures

σx. For any given spin, we have σx| ↑ ⟩ = | ↓ ⟩ and σx| ↓ ⟩ = | ↑ ⟩ and σy| ↑ ⟩ = i| ↓ ⟩ and
σy|↓ ⟩ = −i|↑ ⟩. It is then simple to check that

σAx ⊗ σBy ⊗ σCy |GHZ⟩ = σAy ⊗ σBx ⊗ σCy |GHZ⟩ = σAy ⊗ σBy ⊗ σCx |GHZ⟩ = +|GHZ⟩

In other words, the product of the scientist’s three measurements always equals +1.

It’s tempting to follow the hidden variables paradigm and assign a spin sx and sy
to each of these three particles. Let’s suppose we do so. Then the result above means

that

sAx s
B
y s

C
y = sAy s

B
x s

C
y = sAy s

B
y s

C
x = +1 (5.11)

But from this knowledge we can make a simple prediction. If we multiply all of these

results together, we get

(sAy s
B
y s

C
y )

2 sAx s
B
x s

C
x = +1 ⇒ sAx s

B
x s

C
x = +1 (5.12)

where the implication follows from the fact that the spin variables can only take val-

ues ±1. The hidden variables tell us that whenever the correlations (5.11) hold, the

correlation (5.12) must also hold.

Let’s now look at what quantum mechanics tells us. Rather happily, |GHZ⟩ happens
to be an eigenstate of σAx ⊗ σBx ⊗ σCx . But we have

σAx ⊗ σBx ⊗ σCx |GHZ⟩ = −|GHZ⟩

In other words, the product of these three measurements must give −1. This is in stark

contradiction to the hidden variables result (5.12). Once again we see that local hidden

variables are incapable of reproducing the results of quantum mechanics.

– 149 –



If Only We Hadn’t Made Counterfactual Arguments...

In both the Bell and GHZ arguments, the mistake in assigning hidden variables can be

traced to our use of counterfactuals. This is the idea that we can say what would have

happened had we made different choices.

Suppose, for example, that Alice chooses to measure σz to be +1 in an EPR state.

Then Bob can be absolutely certain that he will find σz to be −1 should he choose to

measure it. But even that certainty doesn’t give him the right to assign sBz = −1 unless

he actually goes ahead and measures it. This is because he may want to measure spin

along some other axis, σBθ , and assuming that both properties exist will lead us to the

wrong conclusion as we’ve seen above. The punchline is that you don’t get to make

counterfactual arguments based on what would have happened: only arguments based

on what actually did happen.

5.1.5 The Kochen-Specker Theorem

The Kochen-Specker theorem provides yet another way to restrict putative hidden-

variables theories. Here is the statement:

Consider a set of N Hermitian operators Ai acting on H. Typically some of these

operators will commute with each other, while others will not. Any subset of operators

which mutually commute will be called compatible.

In an attempt to build a hidden variables theory, all observables Ai are assigned a

value ai ∈ R. We will require that whenever A, B and C ∈ {Ai} are compatible then

the following properties should hold

• If C = A+B then c = a+ b.

• If C = AB then c = ab.

These seem like sensible requirements. Indeed, in quantum mechanics we know that if

[A,B] = 0 then the expectation values obey the relations above and, moreover, there

are states where we can assign definite values to A, B and therefore to A + B and to

AB. We will not impose any such requirements if [A,B] ̸= 0.

As innocuous as these requirements may seem, the Kochen-Specker theorem states

that in Hilbert spaces H with dimension dim(H) ≥ 3, there are sets of operators {Ai}
for which it is not possible to assign values ai with these properties. Note that this

isn’t a statement about a specific state in the Hilbert space; it’s a stronger statement

that there is no consistent values that can possibly be assigned to operators.
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The issue is that a given operator, say A, can be compatible with many different

operators. So, for example, it may appear in the compatible set (A,B,C) and also in

(A,D,E) and should take the same value a in both. Meanwhile, B may appear in a

different compatible set and so on. The proofs of the Kochen-Specker theorem involve

exhibiting a bunch of operators which cannot be consistently assigned values.

The original proof of the Kocken-Specker theorem is notoriously fiddly, involving a

set of N = 117 different projection operators in a dim(H) = 3 dimensional Hilbert

space4. Simpler versions of the proof with dim(H) = 3 now exist, although we won’t

present them here.

There is, however, a particularly straightforward proof that involves N = 18 opera-

tors in a dim(H) = 4 dimensional Hilbert space. We start by considering the following

18 vectors ψi ∈ C4,

ψ1 = (0, 0, 0, 1) , ψ2 = (0, 0, 1, 0) , ψ3 = (1, 1, 0, 0) , ψ4 = (1,−1, 0, 0)
ψ5 = (0, 1, 0, 0) , ψ6 = (1, 0, 1, 0) , ψ7 = (1, 0,−1, 0) , ψ8 = (1,−1, 1,−1)

ψ9 = (1,−1,−1, 1) , ψ10 = (0, 0, 1, 1) , ψ11 = (1, 1, 1, 1) , ψ12 = (0, 1, 0,−1)
ψ13 = (1, 0, 0, 1) , ψ14 = (1, 0, 0,−1) , ψ15 = (0, 1,−1, 0) , ψ16 = (1, 1,−1, 1)

ψ17 = (1, 1, 1,−1) , ψ18 = (−1, 1, 1, 1)

From each of these, we can build a projection operator

Pi =
|ψi⟩⟨ψi|
⟨ψi|ψi⟩

Since the projector operators can only take eigenvalues 0 or 1, we want to assign a

value pi = 0 or pi = 1 to each projection operator Pi.

Of course, most of these projection operators do not commute with each other.

However, there are subsets of four such operators which mutually commute and sum

to give the identity operator. For example,

P1 + P2 + P3 + P4 = 14

In this case, the requirements of the Kocken-Specker theorem tell us that one of these

operators must have value p = 1 and the other three must have value p = 0.

4More details can be found at https://plato.stanford.edu/entries/kochen-specker/.
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Now comes the twist. We can, in fact, construct nine such subsets of four operators.

These are listed in the columns of the following table:

P1 P1 P8 P8 P2 P9 P16 P16 P17

P2 P5 P9 P11 P5 P11 P17 P18 P18

P3 P6 P3 P7 P13 P14 P4 P6 P13

P4 P7 P10 P12 P14 P15 P10 P12 P15

This table has the nice property that each Pi appears in exactly two different columns.

Now the task is clear: assign values pi = 0, 1 to each Pi such that each column has a

single p = 1 and three p = 0. It is best to sit down and try to do this. And then try

again. By the time you’ve tried for the third time, it should be increasingly clear that

no consistent assignment of values pi is possible. And the reason is clear: because each

projection operator appears twice, if you assign p = 1 to any projection operator, you

will always end up with an even number of values p = 1 in the table. But the goal is

only achieved if you assign one to each of the nine rows so we want an odd number.

Clearly it’s not possible. This is the Kochen-Specker theorem.

5.2 Entanglement is a Resource

In the previous section, we used entangled states to reveal how quantum mechanics

differs from our older, classical framework. In this section, we will view entanglement

somewhat differently. It is a precious commodity that allows us to achieve things that

classical physicists cannot.

5.2.1 The CHSH Game

To illustrate the advantage that entanglement brings, we start by describing a game.

It’s not a particularly fun game. It’s designed purely as a point of principle to show

that entanglement can be useful.

The game is one of cooperation between two players – Alice and Bob of course – who

cannot communicate with each other, but can prepare a strategy beforehand. Alice

and Bob are both given an envelope. Inside each envelope is either a red card or a blue

card. This means that there are four possibilities for their cards: red/red, red/blue,

blue/red or blue/blue.

After seeing their card, Alice and Bob have to decide whether to say “turtles” or to

say “cucumber”. This is, I think you will agree, a silly game. The rules are as follows:

• Alice and Bob win if both cards are red and they said different words.
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• Alice and Bob win if at least one card was blue and they said the same word.

• Otherwise, they lose.

What’s their best strategy? First suppose that Alice and Bob are classical losers and

have no help from quantum mechanics. It’s not hard to convince yourself that their

best strategy is just to say “cucumber” every time, regardless of the colour of their

card. They only lose if both cards turn out to be red. Otherwise they win. This means

that they win 75% of the time.

Suppose, however, that Alice and Bob have spent many decades developing coherent

qubits. This pioneering technology resulted in them being kidnapped by a rival govern-

ment who then, for reasons hard to fathom, subjected them to this stupid game. Can

their discoveries help them get out of a bind? Thankfully, the answer is yes. Although,

arguably, not so much that it’s worth all the trouble.

To do better, Alice and Bob must share a number of EPR pairs, one for each time

that the game is played. Here is their gameplan. Whenever Alice’s card is blue, she

measures A1; whenever it is red she measures A2. Whenever these measurements give

+1 she says “turtles”; whenever it is −1 she says “cucumber”. Bob does something

similar: B1 when blue, B2 when red; “turtles” when +1, “cucumber” when −1.

Suppose that both cards are blue. Then they win if A1 and B1 give the same result

and lose otherwise. In other words, they win if the measurement gives A1B1 = +1 and

lose when A1B1 = −1. This means

P (win)− P (lose) = ⟨A1B1⟩

In contrast, if both cards are red then they lose if A2 and B2 give the same measurement

and win otherwise, so that

P (win)− P (lose) = −⟨A2B2⟩

Since each combination of cards arises with probability p = 1
4
, the total probability is

P (win)− P (lose) = 1

4
⟨A1B1 + A1B2 + A2B1 − A2B2⟩

But we’ve seen this before: it’s precisely the combination of operators (5.8) that arose

in the CHSH proof of the Bell inequality. We can immediately import our answer from

there to learn that

P (win)− P (lose) ≤ 1√
2
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We saw previously that we can find operators which saturate this inequality. Since

P (win) + P (lose) = 1, there’s a choice of measurements Ai and Bi — essentially spin

measurements which differ by 45◦ — which ensures a win rate of

P (win) =
1

2

(
1√
2
+ 1

)
≈ 0.854

This beats our best classical strategy of 75%.

Having the ability to win at this particular game is unlikely to change the world.

Obviously the game was cooked up by starting from the CHSH inequality and working

backwards in an attempt to translate Bell’s inequality into something approximating

a game. But it does reveal an important point: the correlations in entangled states

can be used to do things that wouldn’t otherwise be possible. If we can harness this

ability to perform tasks that we actually care about, then we might genuinely be able

to change the world. This is the subject of quantum information. Here we give a couple

of simple examples that move in this direction.

5.2.2 Dense Coding

For our first application, Alice wants to send Bob some classical information, which

means she wants to tell him “yes” or “no” to a series of questions. This is encoded in

a classical bit as values 0 and 1.

However, Alice is fancy. She has qubits at her disposal and can send these to Bob.

We’d like to know if she can use this quantum technology to aid in sending her classical

information.

First note that Alice doesn’t lose anything by sending qubits rather than classical

bits. (Apart, of course, from the hundreds of millions of dollars in R&D that it took to

get them in the first place.) She could always encode the classical value 0 as | ↑ ⟩ and
1 as | ↓ ⟩ and, provided Bob is told in advance to measure σz, the qubit contains the

same information as a classical bit. But this does seem like a waste of resources.

Is it possible to do better and transmit more than one classical bit in a single qubit?

The answer is no: a single qubit carries the same amount of information as a classical

bit. However, this changes if Alice’s qubit is actually part of an entangled pair that

she shares with Bob. In this case, she can encode two classical bits of information in a

single qubit. This is known as dense coding.
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To achieve this feat, Alice first performs an operation on her spin. We’ll introduce

some new notation for this state that will become useful in the following section: we

call the EPR pair

|EPR⟩ = |χ−⟩ = 1√
2
(|↑ ⟩|↓ ⟩ − |↓ ⟩|↑ ⟩)

Alice then has four options:

• She does nothing. Obviously, the entangled pair remains in the state |χ−⟩.

• Alice acts with σx. This changes the state to −|ϕ−⟩ where

|ϕ−⟩ = 1√
2
(|↑ ⟩|↑ ⟩ − |↓ ⟩|↓ ⟩)

• Alice acts with σy. This changes the state to −i|ϕ+⟩ where

|ϕ+⟩ = 1√
2
(|↑ ⟩|↑ ⟩+ |↓ ⟩|↓ ⟩)

• Alice acts with σz. This changes the state to |χ+⟩.

|χ+⟩ = 1√
2
(|↑ ⟩|↓ ⟩+ |↓ ⟩|↑ ⟩)

The upshot of this procedure is that the entangled pair sits in one of four different

states

|ϕ±⟩ = 1√
2
(|↑ ⟩|↑ ⟩ ± |↓ ⟩|↓ ⟩) or |χ±⟩ = 1√

2
(|↑ ⟩|↓ ⟩ ± |↓ ⟩|↑ ⟩) (5.13)

Alice now sends her qubit to Bob, so Bob has access to the whole entangled state.

Since the four different states are orthogonal, it must be possible to distinguish them

by performing some measurements. Indeed, the measurements Bob needs to make are

σx ⊗ σx and σz ⊗ σz

These two operators commute. This means that, while we don’t get to know the values

of both sx and sz of, say, the first spin, it does make sense to talk about the products

of the spins of the two qubits in both directions. It’s simple to check that the four

possible states above are eigenstates of these two operators

σx ⊗ σx|ϕ±⟩ = ±|ϕ±⟩ and σx ⊗ σx|χ±⟩ = ±|χ±⟩ (5.14)
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σz ⊗ σz|ϕ±⟩ = +|ϕ±⟩ and σz ⊗ σz|χ±⟩ = −|χ±⟩

So, for example, if Bob measures σx ⊗ σx = +1 and σz ⊗ σz = −1, then he knows that

he’s in possession of state |χ+⟩. Bob then knows which of the four operations Alice

performed. In this way she has communicated two classical bits of information through

the exchange of a single qubit.

Admittedly, two qubits were needed for this to fly: one which was exchanged and

one which was in Bob’s possession all along. In fact, in Section 5.3.2, we’ll show that

entanglement between spins can only be created if the two spins were brought together

at some point in the past. So, from this point of view, Alice actually exchanged two

qubits with Bob, the first long ago when they shared the EPR pair, and the second

when the message was sent. Nonetheless, there’s still something surprising about dense

coding. The original EPR pair contained no hint of the message that Alice wanted

to send; indeed, it could have been created long before she knew what that message

was. Nor was there any information in the single qubit that Alice sent to Bob. Anyone

intercepting it along the way would be no wiser. It’s only when this qubit is brought

together with Bob’s that the information becomes accessible.

5.2.3 Quantum Teleportation

Our next application has a sexy sounding name: quantum teleportation. To put it in

context, we first need a result that tells us what we cannot do in quantum mechanics.

The No Cloning Theorem

The no cloning theorem says that it is impossible to copy a state in quantum mechanics.

Here’s the game. Someone gives you a state |ψ⟩, but doesn’t tell you what that state

is. Now, you can determine some property of the state but any measurement that you

make will alter the state. This means that you can’t then go back and ask different

questions about the initial state.

Our inability to know everything about a state is one of the key tenets of quantum

mechanics. But there’s an obvious way around it. Suppose that we could just copy the

initial state many times. Then we could ask different questions on each of the replicas

and, in this way, build up a fuller picture of the original state. The no cloning theorem

forbids this.

– 156 –



To prove the theorem, we really only need to set up the question. We start with a

state |ψ⟩ ∈ HA. Suppose that we prepare a separate system in a blank state |0⟩ ∈ HB.

To create a copy of the initial state, we would like to evolve the system so that

|In(ψ)⟩ = |ψ⟩ ⊗ |0⟩ −→ |Out(ψ)⟩ = |ψ⟩ ⊗ |ψ⟩

But this can’t happen through any Hamiltonian evolution because it is not a unitary

operation. To see this, consider two different states |ψ1⟩ and |ψ2⟩. We have

⟨In(ψ1)|In(ψ2)⟩ = ⟨ψ1|ψ2⟩ while ⟨Out(ψ1)|Out(ψ2)⟩ = ⟨ψ1|ψ2⟩2

We might try to wriggle out of this conclusion by allowing for some other stuff in the

Hilbert space which can change in any way it likes. This means that we now have three

Hilbert spaces and are looking an evolution of the form

|ψ⟩ ⊗ |0⟩ ⊗ |α(0)⟩ −→ |ψ⟩ ⊗ |ψ⟩ ⊗ |α(ψ)⟩

By linearity, if such an evolution exists it must map

(|ϕ⟩+ |ψ⟩)⊗ |0⟩ ⊗ |α(0)⟩ −→ |ϕ⟩ ⊗ |ϕ⟩ ⊗ |α(ϕ)⟩+ |ψ⟩ ⊗ |ψ⟩ ⊗ |α(ψ)⟩ (5.15)

But this isn’t what we wanted! The map is supposed to take

(|ϕ⟩+ |ψ⟩)⊗ |0⟩ ⊗ |α(0)⟩ −→ (|ϕ⟩+ |ψ⟩)⊗ (|ϕ⟩+ |ψ⟩)⊗ |α(ψ + ϕ)⟩
= (|ϕ⟩|ϕ⟩+ |ψ⟩|ϕ⟩+ |ϕ⟩|ψ⟩+ |ψ⟩|ψ⟩)⊗ |α(ψ + ϕ)⟩

where, in the last line, we dropped the ⊗ between the first two Hilbert spaces. The

state that we get (5.15) is not the state that we want. This concludes our proof of the

no cloning theorem.

Back to Teleportation

With the no cloning theorem as background, we can now turn to the idea of quantum

teleportation. Alice is given a qubit in state |ψ⟩. The challenge is to communicate this

state to Bob.

There are two limitations. First, Alice doesn’t get to simply put the qubit in the mail.

That’s no longer the game. Instead, she must describe the qubit to Bob using classical

information: i.e. bits, not qubits. Note that we’re now playing by different rules from

the previous section. In “dense coding” we wanted to send classical information using

qubits. Here we want to send quantum information using classical bits.
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Now this sounds like teleportation must be impossible. As we’ve seen, Alice has no

way of figuring out what state |ψ⟩ she has. If she doesn’t know the state, how on earth

is she going to communicate it to Bob? Well, magically, there is way. For this to work,

Alice and Bob must also share an EPR pair. We will see that they can sacrifice the

entanglement in this EPR pair to allow Bob to reproduce the state |ψ⟩.

First, Alice. She has two qubits: the one we want to transfer, |ψ⟩, together with the

her half of the pair |EPR⟩. She makes the following measurements:

σx ⊗ σx and σz ⊗ σz

where, in each case, the first operator acts on |ψ⟩ and the second on her half of |EPR⟩.

As we saw in the previous section, these are commuting operators, each with eigen-

values ±1. This means that there are four different outcomes to Alice’s experiment

and the state will be projected onto the eigenstates |ϕ±⟩ or |χ±⟩ defined in (5.13). The

different possible outcomes of the measurement were given in (5.14).

Let’s see what becomes of the full state after Alice’s measurements. We write the

unknown qubit |ψ⟩ as

|ψ⟩ = α|↑ ⟩+ β|↓ ⟩ (5.16)

with |α|2 + |β|2 = 1. Then the full state of three qubits – two owned by Alice and one

by Bob – is

|ψ⟩ ⊗ |EPR⟩ = 1√
2

(
α|↑ ⟩|↑ ⟩|↓ ⟩ − α|↑ ⟩|↓ ⟩|↑ ⟩+ β|↓ ⟩|↑ ⟩|↓ ⟩ − β|↓ ⟩|↓ ⟩|↑ ⟩

)
=

1

2

(
α(|ϕ+⟩+ |ϕ−⟩)|↓ ⟩ − α(|χ+⟩+ |χ−⟩)|↑ ⟩

+β(|χ+⟩ − |χ−⟩)|↓ ⟩ − β(|ϕ+⟩ − |ϕ−⟩)|↑ ⟩
)

=
1

2

(
|ϕ+⟩(−β|↑ ⟩+ α|↓ ⟩) + |ϕ−⟩(β|↑ ⟩+ α|↓ ⟩)

+|χ+⟩(−α|↑ ⟩+ β|↓ ⟩)− |χ−⟩(α|↑ ⟩+ β|↓ ⟩)
)

When Alice makes her measurement, the wavefunction collapses onto one of the four

eigenstates |ϕ±⟩ or |χ±⟩. But we see that Bob’s state — the final one in the wavefunction

above — has taken the form of a linear superposition of | ↑ ⟩ and | ↓ ⟩, with the same

coefficients α and β that characterised the initial state |ψ⟩ in (5.16). Now, in most of

these cases, Bob’s state isn’t exactly the same as |ψ⟩, but that’s easily fixed if Bob acts

with a unitary operator. All Alice has to do is tell Bob which of the four states she
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measured and this will be sufficient for Bob to know how he has to act. Let’s look at

each in turn.

• If Alice measures |ϕ+⟩ then Bob should operate on his qubit with σy to get

σy(−β|↑ ⟩+ α|↓ ⟩) = iβ|↓ ⟩+ iα|↑ ⟩ = i|ψ⟩

which, up to a known phase, is Alice’s initial state.

• If Alice measures |ϕ−⟩ then Bob should operate on his qubit with σx,

σx(β|↑ ⟩+ α|↓ ⟩) = β|↓ ⟩+ α|↑ ⟩ = |ψ⟩

• If Alice measures |χ+⟩ then Bob should operate on his qubit with σz,

σx(β|↑ ⟩+ α|↓ ⟩) = β|↓ ⟩+ α|↑ ⟩ = |ψ⟩

• If Alice measures |ϕ+⟩, Bob can put his feet up and do nothing. He already has

−|ψ⟩ sitting in front of him.

We see that if Alice sends Bob two bits of information — enough to specify which of

the four states she measured — then Bob can ensure that he gets state |ψ⟩. Note that
this transfer occurred with neither Alice nor Bob knowing what the state |ψ⟩ actually
is. But Bob can be sure that he has it.

5.2.4 Quantum Key Distribution

If you want to share a secret, it’s best to have a code. Here is an example of an

unbreakable code. Alice and Bob want to send a message consisting of n classical bits,

a string of 0’s and 1’s. To do so securely, they must share, in advance, a private key.

This is a string of classical bits that is the same length as the message. Alice simply

adds the key to the message bitwise (0 + 0 = 1 + 1 = 0 and 0 + 1 = 1 + 0 = 1) before

sending it to Bob who, upon receiving it, subtracts the key to reveal the message. Any

third party eavesdropper – traditionally called Eve – who intercepts the transmission

is none the wiser.

The weakness of this approach is that, to be totally secure, Alice and Bob, should

use a different key for each message that they want to send. If they fail to do this then

Eve can use some knowledge about the underlying message (e.g. it’s actually written in

German and contains information about U-boat movements in the Atlantic) to detect

correlations in the transmissions and, ultimately, crack the code. This means that Alice

and Bob must have a large supply of private keys and be sure that Eve does not have

access to them. This is where quantum mechanics can be useful.
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BB84

BB84 is a quantum protocol for generating a secure private key. It’s named after its

inventors, Bennett and Brassard, who suggested this approach in 1984.

The idea is remarkably simple. Alice takes a series of qubits. For each, she chooses

to measure the spin either in the z-direction, or in the x-direction. This leaves her with

a qubit in one of four possible states: | ↑ ⟩, | ↓ ⟩, |→⟩ or |←⟩. Alice then sends this

qubit to Bob. He has no idea which measurement Alice made, so he makes a random

decision to measure the spin in either the z-direction or the x-direction. About half

the time he will make the same measurement as Alice, the other half he will make a

different measurement.

Having performed these experiments, Alice and Bob then announce publicly which

spin measurements they made. Whenever they measured the spin in different direc-

tions, they simply discard their results. Whenever they measured the spin in the same

direction, the measurements must agree. This becomes their private key.

The whole purpose of generating a private key

Figure 29:

is that it must be private. For example, the keys

for the enigma machine — as shown in the picture

— were sent out monthly. If you were lucky enough

to capture this book, you could break the codes for

the next month. How can Alice and Bob be certain

that their key hasn’t been intercepted by Eve?

This is where the laws of quantum physics come

to the rescue. First, the no-cloning theorem ensures

that Eve has no way of copying the qubit if she

intercepts it. Nor does she have any way of determining its state. Even if she knows

the game that Alice and Bob are playing, the best that she can do is to measure the

spin in either the z-direction or the x-direction, before sending it on to Bob. Half the

time, she will make the same measurement as Alice and leave the state unchanged. But

the other half, she will change the state and so change the possible results that Bob

finds in his measurements. To guard against this possibility, Alice and Bob can simply

choose to publicly announce a subset of the results of their correlated measurements.

If they don’t perfectly agree, then they know that someone has tampered with the

transmission.
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The BB84 protocol doesn’t make any use of quantum entanglement. There is, how-

ever, a minor variation where entanglement plays a role. In this scenario, Alice prepares

a succession of entangled pairs in, say, the state

|ϕ+⟩ = 1√
2
(|↑ ⟩|↑ ⟩+ |↓ ⟩|↓ ⟩)

She then sends the second spin to Bob. When the two of them both have their spins,

they can follow the BB84 rules to generate the key. The slight advantage of this

approach is that Alice doesn’t have to record her measurements before sending them

to Bob. This protects her from the possibility that someone breaks into her lab and

takes sneaky photographs of her measurement results. Of course, one might wonder if

the extra resources involved in generating coherent entangled states might not be put

to better use in, for example, buying a decent safe.

The moral behind quantum key distribution is clear: quantum information is more

secure than classical information because no one, whether friend or enemy, can be sure

what quantum state they’ve been given.

5.3 Density Matrices

In Section 5.1, we’ve made a big deal out the fact that quantum correlations cannot

be captured by classical probability distributions. In the classical world, uncertainty

is due to ignorance: the more you know, the better your predictions. In the quantum

world, the uncertainty is inherent and can’t be eliminated by gaining more knowledge.

There are situations in the quantum world where we have to deal with both kinds

of uncertainties. There are at least two contexts in which this arises. One possibility

is ignorance: we simply don’t know for sure what quantum state our system lies in.

Another possibility is that we have many quantum states — an ensemble — and they

don’t all lie in the same state, but rather in a mixture of different states. In either

context, we use the same mathematical formalism.

Suppose that we don’t know which of the states |ψi⟩ describes our system. These

states need not be orthogonal – just different. To parameterise our ignorance, we assign

classical probabilities pi to each of these states. The expectation value of any operator

A is given by

⟨A⟩ =
∑
i

pi⟨ψi|A|ψi⟩ (5.17)

This expression includes both classical uncertainty (in the pi) and quantum uncertainty

(in the ⟨ψi|A|ψi⟩).
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Such a state is described by an operator known as the density matrix.

ρ =
∑
i

pi|ψi⟩⟨ψi| (5.18)

Clearly, this is a sum of projections onto the spaces spanned by |ψi⟩, weighted with

the probabilities pi. The expectation value (5.17) of any operator can now be written

simply as

⟨A⟩ = Tr(ρA)

where the trace is over all states in the Hilbert space.

Pure States vs Mixed States

Previously, we thought that the state of a quantum system is described by a normalised

vector in the Hilbert space. The density matrix is a generalisation of this idea to

incorporate classical probabilities. If we’re back in the previous situation, where we

know for sure that the system is described by a specific state |ψ⟩, then the density

matrix is simply the projection operator

ρ = |ψ⟩⟨ψ|

In this case, we say that we have a pure state. If the density matrix cannot be written

in this form then we say that we have a mixed state. Note that a pure state has the

property that

ρ2 = ρ

Regardless of whether a state is pure or mixed, the density matrix encodes all our

information about the state and allows us to compute the expected outcome of any

measurement. Note that the density matrix does not contain information about the

phases of the states |ψi⟩ since these have no bearing on any physical measurement.

Properties of the Density Matrix

The density matrix (5.18) has the following properties

• It is self-adjoint: ρ = ρ†

• It has unit trace: Trρ = 1. This property is equivalent to the normalisation of a

probability distribution, so that
∑

i pi = 1.
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• It is positive: ⟨ϕ|ρ|ϕ⟩ ≥ 0 for all |ϕ⟩ ∈ H. This property, which strictly speaking

should be called “non-negative”, is equivalent to the requirement that pi ≥ 0. As

shorthand, we sometimes write the positivity requirement simply as ρ ≥ 0.

Furthermore, any operator ρ which satisfies these three properties can be viewed as a

density matrix for a quantum system. To see this, we can look at the eigenvectors of

ρ, given by

ρ|ϕn⟩ = pn|ϕn⟩

where, here, pn is simply the corresponding eigenvalue. Because ρ = ρ†, we know that

pn ∈ R. The second two properties above then tell us that
∑

n pn = 1 and pn ≥ 0.

This is all we need to interpret pn as a probability distribution. We can then write ρ

as

ρ =
∑
n

pn|ϕn⟩⟨ϕn| (5.19)

This way of writing the density matrix is a special case of (5.18). It’s special because

the |ϕn⟩ are eigenvectors of a Hermitian matrix and, hence, orthogonal. In contrast, the

vector |ψi⟩ in (5.18) are not necessarily orthonormal. However, although the expression

(5.19) is special, there’s nothing special about ρ itself: any density matrix can be written

in this form. We’ll come back to this idea below when we discuss specific examples.

An Example: Statistical Mechanics

There are many places in physics where it pays to think of probability distributions

over ensembles of states. One prominent example is what happens for systems at finite

temperature T . This is the subject of Statistical Mechanics.

Recall that the Boltzmann distribution tells us that the probability pn that we sit in

an energy eigenstate |n⟩ is given by

pn =
e−βEn

Z
where β =

1

kBT
and Z =

∑
n

e−βEn

where kB is the Boltzmann constant. It is straightforward to construct an density

matrix corresponding to this ensemble. It is given by

ρ =
e−βH

Z
(5.20)

where H is the Hamiltonian. Similarly, the partition function is given by

Z = Tr e−βH

It is then straightforward to reformulate much of statistical mechanics in this language.

For example, the average energy of a system is ⟨E⟩ = Tr(ρH).
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In these lectures, we won’t necessarily be interested in the kind of macroscopic sys-

tems that arise in statistical physics. Instead, we’ll build some rather different intuition

for the meaning of the density matrix.

Time Evolution

Recall that in the Schrödinger picture, any state evolves as

|ψ(t)⟩ = U(t)|ψ(0)⟩ with U(t) = e−iHt/ℏ

From this we learn that the density matrix evolves as

ρ(t) = U(t)ρ(0)U †(t)

Differentiating with respect to t gives us a differential equation governing time evolu-

tion,

∂ρ

∂t
= − i

ℏ
[H, ρ] (5.21)

This is the Liouville equation. Or, more accurately, it is the quantum version of the

Liouville equation which we met in the Classical Dynamics lectures where it governs

the evolution of probability distributions on phase space.

Note that any density operator which depends only on the Hamiltonian H is inde-

pendent of time. The Boltzmann distribution (5.20) is the prime example.

5.3.1 The Bloch Sphere

As an example, let’s return to our favourite two-state system. If we measure spin along

the z-axis, then the two eigenstates are |↑ ⟩ and |↓ ⟩.

Suppose that we know for sure that we’re in state |↑ ⟩. Then, obviously,

ρ = |↑ ⟩⟨↑|

If however, there’s probability p = 1
2
that we’re in state | ↑ ⟩ and, correspondingly,

probability 1− p = 1
2
that we’re in state |↓ ⟩, then

ρ =
1

2
|↑ ⟩⟨↑|+ 1

2
|↓ ⟩⟨↓| = 1

2
1 (5.22)

This is the state of maximum ignorance, something we will quantify below in Section

5.3.3. In particular, the average value for the spin along any axis always vanishes:

⟨σ⟩ = Tr(ρσ) = 0.
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Let’s now consider other spin states. Consider the spin measured along the x-axis.

Suppose that there’s probability p = 1
2
that we’re in state |→⟩ and probability 1−p = 1

2

that we’re in state |←⟩, then

ρ =
1

2

[
|→⟩⟨→|+ |←⟩⟨←|

]
=

1

2
1 (5.23)

Once again, we find a state of maximum ignorance. This highlights an important fact:

given a density matrix ρ, there is no unique way to decompose in the form (5.18).

As a final example, there is nothing to stop us taking an ensemble of non-orthogonal

states. So we could be in state | ↑ ⟩ with probability p = 1
2
and in state |→⟩ with

probability p = 1
2
. The resulting density matrix is

ρ =
1

2
|↑ ⟩⟨↑|+ 1

2
|→⟩⟨→|

=
1

2
|↑ ⟩⟨↑|+ 1

4
(|↑ ⟩+ |↓ ⟩)(⟨↑|+ ⟨↓|)

=
1

4
1+

1

2
|↑ ⟩⟨↑|+ 1

4
|↑ ⟩⟨↓|+ 1

4
|↓ ⟩⟨↑|

We haven’t written this density matrix in the form (5.19), although its not difficult to

do so. Nonetheless, it’s simple to check that it obeys the three conditions above. We

find ⟨σ1⟩ = ⟨σ3⟩ = 1/2 and ⟨σ2⟩ = 0.

Let’s now look at the most general density matrix for a two-state system. The most

general Hermitian 2× 2 matrix can be expanded in terms of 1 and the Pauli matrices

σi. Since Tr1 = 2 and Trσi = 0, the requirement that Trρ = 1 means that we can write

ρ =
1

2
(1+ a · σ) (5.24)

for some 3-vector a. All that’s left is to require that this matrix has positive eigenvalues.

The sum of the two eigenvalues is given by Trρ = 1, so at least one of them must be

positive. The product of the eigenvalues is given by det ρ. It’s simple to compute

det ρ =
1

4
(1− a · a)

The two eigenvalues are both non-negative if det ρ ≥ 0. We learn that (5.24) defines a

density matrix for a two-state system if

|a| ≤ 1

This is the interior of a 3-sphere which should be called the Bloch Ball. Unfortunately

the names are a little mixed-up and this interior is sometimes referred to as the Bloch
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Sphere. The interior of the ball, with |a| < 1, describes mixed states. The surface of

the ball with |a| = 1 — which should really be called the Bloch Sphere — describes

pure states.

For both mixed and pure states, the direction a is referred to as the polarisation of

the spin. For a ̸= 0, there will be a preference for the measurements of spin in the

direction a · σ. In contrast, when a = 0, the state is said to be unpolarised. We met

two examples of this above.

The Ambiguity of Preparation

There are typically many different interpretations of a density matrix. We’ve seen

an example above, where two different probability distributions over states (5.22) and

(5.23) both give rise to the same density matrix. It’s sometimes said that these density

matrices are prepared differently, but describe the same state.

More generally, suppose that the system is described by density matrix ρ1 with some

probability λ and density matrix ρ2 with some probability (1 − λ). The expectation

value of any operator is determined by the density matrix

ρ(λ) = λρ1 + (1− λ)ρ2

Indeed, nearly all density operators can be expressed as the sum of other density

operators in an infinite number of different ways.

There is an exception to this. If the density matrix ρ actually describes a pure state

then it cannot be expressed as the sum of two other states.

5.3.2 Entanglement Revisited

The density matrix has a close connection to the ideas of entanglement that we met in

earlier sections. Suppose that our Hilbert space decomposes into two subspaces,

H = HA ⊗HB

This is sometimes referred to as a bipartite decomposition of the Hilbert space. It really

means that HA and HB describe two different physical systems. In what follows, it will

be useful to think of these systems as far separated, so that they don’t interact with

each other. Nonetheless, as we’ve seen in Section 5.1, quantum states can be entangled

between these two systems, giving rise to correlations between measurements.
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Let’s consider things from Alice’s perspective. She only has access to the system

described by HA. This means that she gets to perform measurements associated to

operators of the form

O = A⊗ 1

If the state of the full system is described by the density matrix ρAB, then measurements

Alice makes will have expectation value

⟨A⟩ = TrHA
TrHB

(
(A⊗ 1)ρAB

)
≡ TrHA

(AρA)

where we’ve defined

ρA = TrHB
ρAB

This is called the reduced density matrix. It is related to the full density matrix by taking

the partial trace over the Hilbert space HB. We see that, from Alice’s perspective, the

part of the system that she has access to is described by the density matrix ρA.

Suppose that the full system ρAB lies in a pure state. This means that it takes the

form

|Ψ⟩ =
∑
i,j

αij|ϕi⟩ ⊗ |ϕ̃j⟩ (5.25)

where we’ve introduced a basis |ϕi⟩ for HA and |ϕ̃j⟩ for HB. (These two Hilbert spaces

need not have the same dimension.). Note that, in general, this is an example of an

entangled state.

The density matrix for the full system is

ρAB = |Ψ⟩⟨Ψ| =
∑
i,j,k,l

αijα
⋆
kl |ϕi⟩ ⊗ |ϕ̃j⟩⟨ϕk| ⊗ ⟨ϕ̃l|

Taking the partial trace then gives the reduced density matrix

ρA =
∑
ik

βik|ϕi⟩⟨ϕk| with βik =
∑
j

αijα
⋆
kj

But this is the density matrix for a mixed state. This means that even if the full system

is in a pure state, as far Alice is concerned it effectively lies in a mixed state. This

illustrates how the probabilities pi can arise from our lack of knowledge of other parts

of the system. However, the presence of entanglement in the original state means that

even ignorance about physics in far flung places forces us to deal with a mixed state.
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In fact, this approach allows us define entanglement between two subsystems, some-

thing that we avoided doing in the previous sections. The state |Ψ⟩ is said to be

entangled only if the reduced density matrix ρA = TrHB
|Ψ⟩⟨Ψ| describes a mixed state.

Otherwise |Ψ⟩ is said to be separable. We will quantify the amount of entanglement in

a system in Section 5.3.3 using the concept of entropy.

EPR Pairs Revisisted

Let’s return to our favourite example of entanglement between two qubits. The EPR

state is

|EPR⟩ = 1√
2
(|↑↓⟩ − |↓↑⟩)

where, in an attempt to stop us going boggle-eyed in later equations, we’re using

notation such that |↑ ⟩|↑ ⟩ ≡ |↑↑⟩. The associated density matrix is

ρEPR =
1

2

(
|↑↓⟩⟨↑↓|+ |↓↑⟩⟨↓↑| − |↑↓⟩⟨↓↑| − |↓↑⟩⟨↑↓|

)
(5.26)

We now take the trace over Bob’s spin to get the reduced density matrix for Alice,

ρA = TrHB
ρEPR =

1

2

(
|↑ ⟩⟨↑|+ |↓ ⟩⟨↓|

)
=

1

2
1 (5.27)

Everything that Alice can measure on her own is captured in ρA, which is the state of

maximum ignorance. We see that although the total density matrix knows about the

correlations, there’s no way that Alice can know about this on her own.

To illustrate this, suppose that Bob performs a measurement on his spin. This

projects the EPR pair into state |↑↓⟩ with probability p = 1
2
and into state |↓↑⟩ with

probability p = 1
2
. Bob, of course, knows which of these states the system has collapsed

to. However, if we don’t know the outcome of this measurement then we should describe

the system in terms of the mixed state

ρmixed =
1

2
|↑↓⟩⟨↑↓|+ 1

2
|↓↑⟩⟨↓↑|

This differs from the EPR density matrix (5.26). However, if we take the trace over

Bob’s degrees of freedom then we find that Alice’s reduced density matrix ρA is once

again given by (5.27). This is the statement that nothing changes for Alice when

Bob performs a measurement. We can also repeat this exercise when Bob performs

a measurement in a different spin direction. Once again, we find that ρA is given by

(5.27). All of this is telling us something that we already knew: we cannot use the

non-local correlations inherent in quantum states to transmit information in a non-local

fashion.
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Schmidt Decomposition

Consider a pure state |Ψ⟩ in H = HA ⊗ HB. Given a set of basis |ϕi⟩ and |ϕ̃j⟩, we
can always decompose the state in the form (5.25). Moreover, it turns out that there

is a preferred choice of basis states. The resulting expression is known as the Schmidt

decomposition.

First, let’s define a canonical basis for HA. As we’ve seen above, we can take the

partial trace over HB to derive the reduced density matrix ρA. We’ll choose |ϕi⟩ to be

the eigenvectors of ρA, as in (5.19). We can then write

ρA =
∑
i

pi|ϕi⟩⟨ϕi| (5.28)

Our next task is to construct a suitable basis for HB. We could, of course, choose

the basis of ρB and, in fact, ultimately this is what we’ll end up doing. But in order

to illustrate a rather nice property of this decomposition, we’ll get there in a slightly

roundabout way. Given a decomposition of the form (5.25), we define the vectors

|χi⟩ =
∑
i

αij|ϕ̃j⟩ ∈ HB

Note that nothing guarantees that the vectors |χi⟩ are normalised, and nothing guar-

antees that they are orthogonal. For now, their only purpose is to allow us to write the

state (5.25) as

|Ψ⟩ =
∑
j

|ϕi⟩ ⊗ |χi⟩

Now let’s compute ρA from this state. We have

ρA =
∑
i,j

TrHB
|ϕi⟩ ⊗ |χi⟩⟨ϕj| ⊗ ⟨χj| =

∑
i,j

⟨χi|χj⟩ |ϕi⟩⟨ϕj|

But we know that this reduced density matrix takes the form (5.28). This means that

the overlap of the |χi⟩ vectors must be

⟨χi|χj⟩ = piδij

We learn that these vectors aren’t normalised but, perhaps surprisingly, they are or-

thogonal. It’s then straightforward to define a basis of vectors by

|χ̃i⟩ =
1
√
pi
|χi⟩
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Only those vectors with pi ̸= 0 actually appear so we don’t have to worry about dividing

by zero here. The upshot of this is that we can write any pure bipartite state in the

canonical decomposition

|Ψ⟩ =
∑
i

√
pi |ϕi⟩ ⊗ |χ̃i⟩ (5.29)

This is the Schmidt decomposition. Note that there is a nice symmetry between the

reduced density matrices ρA and ρB. They are, respectively,

ρA =
∑
i

pi|ϕi⟩⟨ϕi| , ρB =
∑
i

pi|χ̃i⟩⟨χ̃i|

We see that the basis |χ̃i⟩ are the eigenvectors of ρB, even though this wasn’t how we

initially constructed them. Further, the probabilities pi are eigenvalues of both ρA and

ρB. In particular if, say, dimHB > dimHA then there must be some states in HA that

do not appear in the Schmidt decomposition (5.29).

If the probabilities pi are distinct then the Schmidt decomposition is unique. In

contrast, if ρA has degenerate eigenvalues then there is some ambiguity in the Schmidt

decomposition, as we get to decide which of the degenerate eigenvectors in HA pairs

with their counterpart in HB.

The Schmidt rank R is the number of non-zero eigenvalues pi in the decomposition

(5.29). If R = 1 then the state takes the form

|Ψ⟩ = |ϕ⟩ ⊗ |χ̃⟩

and is separable. If R > 1, the state is entangled.

Finally, let’s go back to Alice and Bob. Each gets to act on their subsystem by

transforming the state they have to any other. This means that, between them, they

get to act with unitary operators on H = HA ⊗HB of the form

U = UA ⊗ UB

However, the state |Ψ⟩ and the state U |Ψ⟩ have the same Schmidt rank. This is

important. It tells us that we cannot change the amount of entanglement by local

operators which act only on part of the Hilbert space. To create entanglement, we

need to act with operators which rotate HA into HB. In other words, there has to be

some interaction between the two parts of the subsystem. Entanglement can only be

created by bringing the two subsystems together.
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Purification

There is a simple corollary to our discussion above. For any density matrix ρ describ-

ing a state in a Hilbert space HA, one can always find a pure state |Ψ⟩ in a larger

Hilbert space H = HA ⊗HB such that ρ = TrHB
|Ψ⟩⟨Ψ|. This process is referred to as

purification of the state.

Everything that we need to show this is in our derivation above. We write the density

matrix in the orthonormal basis (5.28). We then introduce the enlarged Hilbert space

HB whose dimension is that same as the number of non-zero pi in (5.28). The Schmidt

decomposition (5.29) then provides an example of a purification of ρ.

5.3.3 Entropy

Given a classical probability distribution {pi}, the entropy is defined by

S = −
∑
i

pi log pi (5.30)

where log is the natural logarithm. In information theory, this is called the Shannon

entropy. In physics, this quantity is usually multiplied by the Boltzmann constant kB
and is called the Gibbs entropy. It plays an important role in the lectures on Statistical

Physics.

The entropy is a measure of the uncertainty encoded in the probability distribution.

For example, if there’s no uncertainty because, say p1 = 1 while all other pi = 0, then

we have S = 0. In contrast, if there are N possibilities the entropy is maximised when

we have no idea which is most likely, meaning that pi = 1/N for each. In this case

S = logN .

For a quantum state described by a density matrix ρ, we defined the entropy to be

S(ρ) = −Tr ρ log ρ (5.31)

This is the von Neumann entropy (because entropy really needs more names attached

to it). If we’re dealing with a reduced density matrix, that came from taking a partial

trace of a pure state of a larger system, then S is referred to as the entanglement

entropy. In all cases, we’re simply going to call it the entropy.

When the density matrix is expanded in an orthonormal basis,

ρ =
∑
i

pi|ϕi⟩⟨ϕi|

then the definition (5.31) coincides with the earlier definition (5.30).
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A pure state has pi = 1 for some |ϕi⟩, and so has vanishing entropy. But S ̸= 0 for

any mixed state.

The entropy has a number of properties, some of which are easier to prove than

others. First the properties that are straightforward to show:

• Positivity: S(ρ) ≥ 0.

• Minimum: S(ρ) = 0 if and only if ρ is a pure state.

• Maximum: If the probabilities are non-vanishing on an N dimensional Hilbert

space HN , then the entropy takes its maximum value S = logN when ρ = 1
N
1

on HN .

• Concavity: If
∑
λi = 1, then

S(
∑
i

λiρi) ≥
∑
i

λiS(ρi)

This tells us that if we are more ignorant about the make-up of our state, then

the entropy increases.

The entropy obeys a number of further properties. Two which are particularly impor-

tant are:

• Subadditivity: If H = HA ⊗HB then

S(ρAB) ≤ S(ρA) + S(ρB) (5.32)

with equality only if the two systems are uncorrelated, so that ρAB = ρA ⊗ ρB.
Subadditivity tells us that the entropy of the whole is less than the sum of its

parts. This result fairly straightforward to prove, although we won’t do so here.

• Strong Subadditivity: If H = HA ⊗HB ⊗HC then

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC)

This result is famously tricky to prove. It’s perhaps best thought of by thinking

of AB and BC as two systems which overlap on B. Then strong subadditivity

says that the total entropy of the two parts is not less than the total entropy

together with the entropy of their overlap.
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5.4 Measurement

The act of measurement is one of the more mysterious aspects of quantum mechanics.

It is here that we appear to abandon unitary evolution in favour of the abrupt collapse

of the wavefunction, and it is here that we must embrace the indeterministic nature

of the quantum world. In this section, we’ll take a closer look at what we mean by

measurement.

5.4.1 Projective Measurements

We start by recalling what we learned in previous courses. An observable in quantum

mechanics is a Hermitian operator O. We can decompose this in a spectral representa-

tion, meaning we write

O =
∑
m

λmPm (5.33)

where λm are the eigenvalues of O and Pm are the projectors onto the corresponding

eigenspaces. The projection operators obey Pm = P †
m. The eigenspaces are necessarily

orthogonal, meaning

PmPn = Pmδmn (5.34)

Moreover, the eigenvectors span the entire Hilbert space, so we also have∑
m

Pm = 1 (5.35)

Given a state |ψ⟩, the result of a measurement in quantum mechanics is dictated by

two further axioms. The first says that a measurement of the operator O returns the

result λm with probability

p(m) = ⟨ψ|Pm|ψ⟩ (5.36)

This is the Born rule.

The second axiom states that, after the measurement, the system no longer sits in

the state |ψ⟩. Instead, the act of measurement has disturbed the state, leaving it in

the new state

|ψ⟩ 7→ Pm|ψ⟩√
p(m)

(5.37)

where the
√
p(m) in the denominator is there to ensure that the resulting state is

correctly normalised. The non-unitary evolution captured by (5.37) is the infamous

collapse of the wavefunction.
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There are a couple of simple generalisations of the above formalism. First, suppose

that we start with a mixed state, described by a density matrix ρ. Then the Born rule

(5.36) and collapse (5.37) are replaced by

p(m) = Tr(ρPm) and ρ 7→ PmρPm
p(m)

(5.38)

Note, in particular, that the resulting density matrix still has unit trace, as it must to

describe a state.

As an alternative scenario, suppose that we don’t know the outcome of the measure-

ment. In this case, the collapse of the wavefunction turns an initial state |ψ⟩ into a

mixed state, described by the density matrix

|ψ⟩ 7→
∑
m

p(m)
Pm|ψ⟩⟨ψ|Pm

p(m)
=
∑
m

Pm|ψ⟩⟨ψ|Pm (5.39)

If we don’t gain any knowledge after our quantum system interacts with the measuring

apparatus, this is the correct description of the resulting state.

We can rephrase this discussion without making reference to the original operator

O. We say that a measurement consists of presenting a quantum state with a complete

set of orthogonal projectors {Pm}. These obey (5.34) and (5.35). We ask the system

“Which of these are you described by?” and the system responds by picking one. This

is referred to as a projective measurement.

In this way of stating things, the projection operators take centre stage. The answer

to a projective measurement is sufficient to tell us the value of any physical observable

O whose spectral decomposition (5.33) is in terms of the projection operators {Pm}
which we measured. In this way, the answer to a projective measurement can only

furnish us with information about commuting observables, since these have spectral

representations in terms of the same set of projection operators.

Gleason’s Theorem

Where does the Born rule come from? Usually in quantum mechanics, it is simply

proffered as a postulate, one that agrees with experiment. Nonetheless, it is the rule

that underlies the non-deterministic nature of quantum mechanics and given this is

such a departure from classical mechanics, it seems worth exploring in more detail.
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There have been many attempts to derive the Born rule from something simpler,

none of them very convincing. But there is a mathematical theorem which gives some

comfort. This is Gleason’s theorem, which we state here without proof. The theorem

says that for any Hilbert space H of dimension dimH ≥ 3, the only consistent way of

assigning probabilities p(m) to all projection operators Pm acting on H is through the

map

p(m) = Tr(ρPm)

for some self-adjoint, positive operator ρ with unit trace. Gleason’s theorem doesn’t

tell us why we’re obliged to introduce probabilities associated to projection operators.

But it does tell us that if we want to go down that path then the only possible way to

proceed is to introduce a density matrix ρ and invoke the Born rule.

5.4.2 Generalised Measurements

There are circumstances where it is useful to go beyond the framework of projective

measurements. Obviously, we’re not going to violate any tenets of quantum mechanics,

and we won’t be able to determine the values of observables that don’t commute.

Nonetheless, focussing only on projection operators can be too restrictive.

A generalised measurement consists of presenting a quantum state with a compete set

of Hermitian, positive operators {Em} and asking: “Which of these are you described

by?”. As before, the system will respond by picking one.

We will require that the operators Em satisfy the following three properties:

• Hermitian: Em = E†
m

• Complete:
∑

mEm = 1

• Positive: ⟨ψ|Em|ψ⟩ ≥ 0 for all states |ψ⟩.

These are all true for projection operators {Pm} and the projective measurements

described above are a special case. But the requirements here are weaker. In particular,

in contrast to projective measurements, the number of Em in the set can be larger than

the dimension of the Hilbert space. A set of operators {Em} obeying these three

conditions is called a positive operator-valued measure, or POVM for short.

– 175 –



Given a quantum state |ψ⟩, we will define the probability of finding the answer Em
to our generalised measurement to be

p(m) = ⟨ψ|Em|ψ⟩

Alternatively, if we are given a density matrix ρ, the probability of finding the answer

Em is

p(m) = Tr (ρEm) (5.40)

At the moment we will take the above rules as a definition, a generalisation of the

usual Born rule. Note, however, that the completeness and positivity requirements

above ensure that p(m) define a good probability distribution. Shortly we will see how

this follows from the more familiar projective measurements.

An Example: State Determination

Before we place generalised measurements in a more familiar setting, let’s first see how

they may be useful. Suppose that someone hands you a qubit and tells you that it’s

either |↑ ⟩ or it’s |→⟩ = (|↑ ⟩+ |↓ ⟩)/
√
2. How can you find out which state you’ve been

given?

The standard rules of quantum mechanics ensure that there’s no way to distinguish

two non-orthogonal states with absolute certainty. Nonetheless, we can see how well

we can do. Let’s start with projective measurements. We can consider the set

P1 = |↑ ⟩⟨↑| , P2 = |↓ ⟩⟨↓|

If the result of the measurement is P1 then we can’t say anything. If, however, the

result of the measurement is P2 then we must have been handed the state |→⟩ because
the other state obeys P2| ↑ ⟩ = 0 and so has vanishing probability of giving the answer

P2. This means that if we’re handed a succession of states | ↑ ⟩ and |→⟩, each with

equal probability, then we can use projective measurements to correctly identify which

one we have 25% of the time.

Generalised measurements allow us to do better. Consider now the set of operators

E1 = λ|1⟩⟨1| and E2 = λ|−⟩⟨−| and E3 = 1− E1 − E2 (5.41)

with λ ∈ (0, 1). Clearly these operators are Hermitian and complete. But for what

values of λ are they positive?
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The only operator of concern is E3. A quick calculation shows that ⟨ψ|E3|ψ⟩ > 0

provided that λ ≤ 2/3.

Now let’s see how well this generalised measurement does in differentiating between

the state |0⟩ and the state |+⟩. If we’re given state |0⟩, then this measurement returns

E2 with probability p(E2) = λ/2, and E3 the other times. Meanwhile, if we’re given the

state |+⟩, this measurement returns E1 with probability p(E1) = λ/2 and E3 the other

times. This means that if the result of the measurement is E1, then we must have been

handed the state |+⟩, while if the result of the measurement is E2 then we must have

been handed the state |0⟩. Finally, if the result is E3 then we’ve got no way of knowing

which state we were given. The upshot is that if we’re handed a succession of states

|0⟩ and |+⟩, each with equal probability, then we can use generalised measurements to

correctly identify which one we have with probability λ/2. And for 1/2 < λ ≤ 2/3 this

does better than the projective measurement above.

Generalised Measurements are Projective Measurements in Disguise

The generalised measurements are not quite as novel as they first appear. They can

always be realised as projective measurements in disguise, where the disguise in question

involves some hidden, larger Hilbert space.

Let’s first consider our POVM (5.41). Suppose that when we were handed the states

| ↑ ⟩ and |→⟩, they were actually the first in a pair of qubits, whose full states were

given by

|Ψ1⟩ = |↑ ⟩ ⊗ |↑ ⟩ and |Ψ2⟩ = |→⟩ ⊗ |↓ ⟩ (5.42)

Now these states are orthogonal to each other and, therefore, distinguishable.

We will suppose that the density matrix in the full Hilbert space is separable, meaning

ρ = ρ1⊗ρ2. Someone – say, Alice – who has access to both spins can perform projective

measurements in the full four-dimensional Hilbert space, with the resulting probabilities

p(m) = TrH1TrH2(ρPm)

What about Bob, who has access only to the first spin? Written in terms of operators

acting on the first qubit, we have

p(m) = TrH1(ρ1Em) where Em = TrH2(ρ2Pm) (5.43)

Here the operators Em form a POVM on H1, the Hilbert space of the first qubit. Both

positivity and completeness follow from the properties of the density matrix ρ2 and the
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projection operators Pm. For example, completeness comes from∑
m

Em = TrH2(ρ2
∑
m

Pm) = TrH2(12 ⊗ ρ2) = 12

We learn that the formalism of generalised measurements allows Bob to reproduce any

information that pertains only to the first spin. This is sensible because the original

density matrix ρ = ρ1 ⊗ ρ2 was separable, which means that there will be no hidden

correlations between the two spins that Alice has access to, but Bob does not.

There are different ways to arrive at the particular POVM (5.41). For example, we

could consider the situation where we have maximal ignorance about the second spin,

so ρ2 =
1
2
12. Then we can then consider the projectors

P1 = |Ψ1⟩⟨Ψ1| , P2 = |Ψ2⟩⟨Ψ2| , P3 = 14 − P1 − P2

In this case, the POVM defined by (5.43) coincides with (5.41).

It should be clear that the construction leading to the POVM (5.43) holds more

generally than our two-state system. A projective measurement in any Hilbert space

H1 ⊗H2 reduces to a POVM when taken on separable density matrices. In fact that

converse is also true: any POVM can be realised by projection operators acting on a

larger Hilbert space. This follows from a fairly simple result in linear algebra known as

Naimark’s dilatation theorem (sometimes transliterated from the Russian as Neumark’s

theorem.)

5.4.3 The Fate of the State

The projective measurements that we met in Section 5.4.1 have two ingredients. The

first is the probability that a given result occurs; the second is the fate of the state

after the measurement

p(m) = Tr(ρPm) and ρ 7→ PmρPm
p(m)

(5.44)

For our generalised measurements, we have explained how the probabilities are replaced

by p(m) = Tr(ρEm). But what happens to the state after the measurement?

We could try to take inspiration from thinking about generalised measurements in

terms of projection operators in an enlarged Hilbert space. We know that

ρ = ρ1 ⊗ ρ2 7→
PmρPm
p(m)

⇒ ρ1 7→ TrH2

PmρPm
p(m)

But there’s no simple way of writing this in terms of the elements of the POVM

Em = TrH2(ρ2Pm). And this is for good reason: the POVM does not include enough

information to tell us the fate of the state.
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Instead, we have to define a “square-root” of Em. This is an operator Mm such that

M †
mMm = Em (5.45)

The Mm need not be Hermitian. Furthermore, these operators are not uniquely de-

termined by (5.45): any unitary transformation Mm → UMm still obeys (5.45). The

completeness of the POVM means that they obey∑
m

M †
mMm = 1

The choice of Mm is the extra information we need to specify the state after a

generalised measurement. If we perform a generalised measurement and find the answer

Em, then the state becomes

ρ 7→ MmρM
†
m

p(m)
(5.46)

This new density matrix is Hermitian and has unit trace, as it must.

A full generalised measurement – one in which both the probabilities and the end

state are known – is specified by the set of operators {Mm}, such that Em = M †
mMm

form a POVM. The generalised measurement reduces to the projective measurement

of Section 5.4.1 only when Mm are orthogonal projection operators.

Finally, note that if we make a measurement, but don’t know the result, then the

resulting density matrix is not given by (5.46), but instead by

ρ 7→
∑
m

MmρM
†
m (5.47)

This generalises our result (5.39) for projective measurements.

Repeated Measurements

The special class of projective measurements enjoys some nice properties that are not

shared by their generalised counterparts. Perhaps the most prominent is what happens

upon repeated measurements.

For projective measurements, if we get a result Pm the first time round, then any

subsequent measurement is guaranteed to give the same result. This result is familiar

from our earlier courses on quantum mechanics: if you measure the spin of a particle

to be up then, as long as the particle is left alone, its spin will continue to be up next

time round.
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This property doesn’t hold for generalised measurements. Returning to our POVM

(5.41), a measurement of E1 in the first round does not preclude a measurement of E2

or E1 the next time round.

An Example: Detecting a Photon

The idea of generalised measurement is useful even when our POVM consists of pro-

jection operators. A standard example is the detection of a photon. Before the mea-

surement takes place, either the photon exists |1⟩ or it doesn’t |0⟩.

A projective measurement (5.44) would tell us that if we detect a photon, then

it’s there to detect again on our next measurement. But that’s not what happens.

Typically when we detect a photon, the photon doesn’t live to tell the tale. Instead, it

is destroyed in the process. This means that whether a photon is seen or not, the end

result is always the same: no photon |0⟩. In terms of our new generalised measurements,

this can be simply described by the operators

M1 = |0⟩⟨0| and M2 = |0⟩⟨1|

which corresponds to the POVM

E1 =M †
1M1 = |0⟩⟨0| and E2 =M †

2M2 = |1⟩⟨1|

In this case, the POVM consists of projection operators. But the collapse of the

wavefunction (5.46) differs from the usual projective measurement. Regardless of the

outcome of the initial experiment, if you now try to repeat it the photon will not be

there.

5.5 Open Systems

In this section we will again consider situations where the full Hilbert space decomposes

into two parts: H = HS ⊗HE. However, we will no longer think of these subspaces as

the far-separated homes of Alice and Bob. Instead, HS will denote the system that we

want to study, and HE will denote the surrounding environment.

Here the environment is typically a vast Hilbert space which we have no way of

understanding completely. In this sense, it plays a similar role to the thermal baths

that we introduce in statistical physics. When performing an experiment on a quantum

system, much of the challenge is trying to shield it from the environment. However, in

many cases this is not possible and there will be coupling between HS and HE. We

then say that HS is an open system. The purpose of this section is to understand how

such open quantum systems behave.
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5.5.1 Quantum Maps

We will assume that the combined system+environment is described by a pure state

|Ψ⟩. We’ve seen in Section 5.3.2 that, after tracing over HE, the system we care about

is typically described by a reduced density matrix

ρ = TrHE
|Ψ⟩⟨Ψ|

We would like to understand how this density matrix evolves.

The state |Ψ⟩ evolves by a unitary operator U(t) acting on the full Hilbert space H.
The story that we are about to tell only works if, at time t = 0, the two systems lie in

a separable state,

|Ψ0⟩ = |ψ⟩ ⊗ |χ⟩ (5.48)

This means that the original density matrix ρ0 = |ψ⟩⟨ψ| describes a pure state on HS.

We now look at how this density matrix evolves. We have

ρ(t) = TrHE
U(t)|Ψ0⟩⟨Ψ0|U †(t) =

∑
m

⟨m|U(t)|Ψ0⟩⟨Ψ0|U †(t)|m⟩

with |m⟩ a complete basis for HE. This encourages us to define a set of operators on

HS, given by

Mm(t) = ⟨m|U(t)|χ⟩ = TrHE

(
U(t)|χ⟩⟨m|

)
(5.49)

The unitarity of U(t) translates into a completeness condition on the operators Mm(t),∑
m

M †
m(t)Mm(t) =

∑
m

⟨χ|U †(t)|m⟩⟨m|U(t)|χ⟩ = 1

We see that the original density matrix on HS evolves as

ρ(t) =
∑
m

Mm(t) ρ0M
†
m(t) (5.50)

In general, this will describe the evolution from a pure state to a mixed state. This

evolution is not, in general, reversible.

A quick comment: this evolution takes the same general form as the measurement

process (5.47), at least if we don’t gain any knowledge about the result of the measure-

ment. This is not coincidence. A measuring apparatus is a macroscopic system that

becomes entangled with the quantum state. In this sense, it plays a similar role to the

environment in the discussion above.
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In contrast, if we read off the result of a measurement, then the resulting state is

described by (5.46); this does not take the form (5.50).

Kraus Representation Theorem

Above, we have derived the evolution (5.50) in a rather simple example. However, it

turns out that this form has more general applicability. Consider a density operator

HS which evolves by the map

ρ 7→ L[ρ]

Such a map is sometimes called a superoperator (because it maps operators to operators,

rather than states to states). We will require some special properties of our map, most

of which are inherited from the properties of the density matrices listed in Section 5.3

• Linearity: L[aρ1 + bρ2] = aL[ρ1] + bL[ρ2].

• Hermiticity Preserving: ρ = ρ† ⇒ L[ρ] = L[ρ]†.

• Trace Preserving: TrL[ρ] = Tr ρ.

• Complete Positivity. This one requires some explanation. It is natural to insist

that the map is positive, so that L[ρ] ≥ 0 whenever ρ ≥ 0. However, this is

not sufficient. Instead, we require the stronger statement that the map L ⊗ 1E
is positive on any extension of the Hilbert space HS to HS ⊗ HE. This is the

statement of complete positivity. It ensures that the map L⊗1E will take a valid

density matrix on the composite system to another density matrix.

A superoperator obeying these conditions is called a trace preserving, completely pos-

itive (TPCP) map, with the first two conditions taken for granted. In the quantum

information community, this map is referred to as a quantum channel.

The Kraus representation theorem (which we do not prove here) states that any

quantum map, obeying the four conditions above, can be written as

L[ρ] =
∑
m

MmρM
†
m with

∑
m

M †
mMm = 1 (5.51)

In this framework, the Mm are called Kraus operators. They are not unique. The

number of Kraus operators in the quantum map does not exceed dim(HS)
2.

You might wonder why the collapse of the wavefunction (5.46) fails to take the Kraus

form (5.51). It is because the map is not linear: the probability p(m) which normalises

the resulting density matrix itself depends on ρ through (5.40).
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5.5.2 Decoherence

In this section, we explore some simple examples of quantum maps. We’ll use these toy

models to highlight some important and general features that emerge when quantum

systems interact with an environment.

Phase-Damping

We will take the quantum system HS to be our trusty qubit. Meanwhile, we will model

the environment HE by a three-state system, spanned by |0⟩, |1⟩ and |2⟩. Consider the
following unitary evolution

U |↑ ⟩ ⊗ |0⟩ = |↑ ⟩ ⊗ (
√

1− p |0⟩+√p |1⟩)
U |↓ ⟩ ⊗ |0⟩ = |↓ ⟩ ⊗ (

√
1− p |0⟩+√p |2⟩) (5.52)

This means that our qubit interacts with the environment with probability p, changing

the initial state |0⟩ into either |1⟩ or |2⟩ depending on the state of the qubit. Note,

however, that the state of the qubit is unchanged by this interaction. So this model

describes a system in which the energies needed to change the qubit are substantially

larger than those needed to change the environment.

If you want a specific picture in mind, you could think of the qubit as a simplified

model for a heavy dust particle which, in this case, can only sit in one of two positions

|↑ ⟩ or |↓ ⟩. The environment could be a background bath of photons which scatter off

this dust particle with probability p.

The Kraus operators for this quantum map are easily calculated. Using (5.49), they

are given by

M0 = ⟨0|U |0⟩ =
√

1− p1
M1 = ⟨1|U |0⟩ = √p |↑ ⟩⟨↑| (5.53)

M2 = ⟨2|U |0⟩ = √p |↓ ⟩⟨↓|

which can be checked to obey the required completeness condition
∑

mM
†
mMm = 1.

The state of the qubit, described by a density matrix ρ, then evolves as

ρ 7→ L[ρ] =
∑
m

M †
mρMm = (1− p) ρ+ p|0⟩⟨0|ρ|0⟩⟨0|+ p|1⟩⟨1|ρ|1⟩⟨1|

= (1− 1

2
p)ρ+

1

2
pσ3ρσ3
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We can see the essence of this quantum map if we write the density matrix in terms of

components

ρ =

(
ρ00 ρ01

ρ10 ρ11

)
7→

(
ρ00 (1− p)ρ01

(1− p)ρ10 ρ11

)

We learn that the off-diagonal components are suppressed by the evolution. It is

these off-diagonal elements which encode possible superpositions of | ↑ ⟩ and | ↓ ⟩. The

interactions with the environment — or, more precisely, the resulting entanglement

with the environment — means that these off-diagonal elements are reduced under

time evolution. This process is known as decoherence; it is the evolution of a pure state

into a mixed state through interactions with the environment.

We can get a better sense of this if we look at successive maps. This is a little subtle

because it’s not obvious when we can apply successive Kraus operators (5.53). We

will discuss this in more detail in Section 5.5.3, but for now we simply look at what

happens.

We define the probability of scattering per unit time to be Γ. Then, in time δt, we

have p = Γδt ≪ 1. After a total time t = Nδt, the off-diagonal terms in the density

matrix are suppressed by

(1− p)N = (1− Γt/N)N ≈ e−Γt (5.54)

Suppose that we initially prepare our qubit in a state

|ψ⟩ = α|↑ ⟩+ β|↓ ⟩ |α|2 + |β|2 = 1

Then after time t, the density matrix becomes

ρ(t) =

(
|α|2 αβ⋆ e−Γt

α⋆βe−Γt |β|2

)

We see that these off-diagonal components decay exponentially quickly, with the system

ultimately settling down into a mixed state. The choice of preferred basis |↑ ⟩, |↓ ⟩ can
be traced to the form of the original interaction (5.52)

To flesh this out a little, let’s return to our interpretation of this model in terms of

a heavy dust particle which can sit in one of two positions, | ↑ ⟩ = |x+⟩ or | ↓ ⟩ = |x−⟩.
We may, of course, choose to place this particle in a superposition

|ψ⟩ = α|x+⟩+ β|x−⟩
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and hope to measure this superposition in some way. This, of course, is what happens

in the double-slit experiment. However, decoherence makes this difficult. Indeed, if

the particle takes time t≫ Γ−1 to traverse the double slit experiment then all the hint

of the superposition will be washed out. Furthermore, Γ−1 is typically a very short

timescale; it is the rate at which a single photon scatters off the particle. This can be

much much shorter than the rate at which the classical properties of the particle – say

its energy – are affected by the photons.

There is one final important lesson to take away from this model. It explains why

the decoherence occurs in the position basis |x±⟩ rather than say, (|x+⟩ ± |x−⟩)/
√
2.

This is because the interactions (5.52) are local.

The locality of interactions is one of the key features of all physical laws; indeed, it

underlies the idea of quantum field theory. Combined with decoherence, this explains

why we only see our favourite pets in the state |alive⟩ or |dead⟩. Interactions with the

environment mean that it is overwhelmingly unlikely to observe Schrödinger’s cat in

the state |Ψ⟩ = (|alive⟩ ± |dead⟩)/
√
2.

Amplitude Damping

Our second example will not give us further insight into decoherence, but instead

provides a simple model for the decay of an excited atom. (A more detailed look at the

dynamics underling this can be found in Section 4.4.3.) Consider a two-state atomic

system. If the atom is in the ground state | ↑ ⟩ then nothing happens, but if atom is

in the excited state | ↓ ⟩ then it decays with probability p emitting a photon in the

process, so that the environment changes from |0⟩ to |1⟩. This is captured by the

unitary evolution

U |↑ ⟩ ⊗ |0⟩ = |↑ ⟩ ⊗ |0⟩
U |↓ ⟩ ⊗ |0⟩ =

√
1− p |↓ ⟩ ⊗ |0⟩+√p |↑ ⟩ ⊗ |1⟩)

The resulting Kraus operators are

M0 = ⟨0|U |0⟩ = |↑⟩⟨↑|+
√

1− p|↓ ⟩⟨ ↓ | , M1 = ⟨1|U |0⟩ =
√
p |↑ ⟩⟨ ↓ |

This time the quantum map is given by

ρ =

(
ρ00 ρ01

ρ10 ρ11

)
7→

(
ρ00 + pρ11

√
1− p ρ01

√
1− p ρ10 (1− p)ρ11

)
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If, as previously, we can think about performing this map successive time, with the

probability for decay p related to the lifetime Γ−1 of the excited state through (5.54)

then we find the time-dependent density matrix given by

ρ(t) =

(
ρ00 + (1− e−Γt)ρ11 e−Γt/2ρ01

e−Γt/2ρ10 e−Γtρ11

)

Interestingly, as t→∞, the system ends up in the pure state |↑ ⟩, regardless of whatever
superposition or mixed state it started in. On the one hand this is not surprising: it

is simply the statement that if we wait long enough the atom will surely have decayed.

Nonetheless, it does provide a simple example in which quantum maps can take a mixed

state to a pure state.

5.5.3 The Lindblad Equation

Usually in physics, the most powerful way to describe the evolution of a system is

through a differential equation. For a closed quantum system in a pure state, the

relevant equation is the Schrödinger equation. For a closed quantum system in a mixed

state, it is the Liouville equation (5.21)

ℏ
∂ρ

∂t
= −i[H, ρ]

where the density matrix ρ is an operator on HS. Here we would like to derive the

analogous equation for an open quantum system, where HS is also coupled to an envi-

ronment HE.

It is not at all clear that such an equation will exist. Knowledge of the density

matrix ρ on HS at some time will not, in general, be sufficient to tell you how the

density matrix will behave in the future. The problem is not just that the environment

can affect our system — that, after all is what we’re trying to model. The problem is

more one of memory.

As time progresses, the system changes the environment. Our concern is that these

changes accumulate, so that the environment starts to affect the system in different

ways. In this sense, the environment can act as a memory, where the state of the

system in the future depends not only on the present state, but on its entire history.

These kind of situations are complicated.

We’ve already seen a hint of this in our earlier work. Recall that when we first

looked at quantum maps, we assumed that the initial state (5.48) was separable, with

no correlations between HS and HE. Had we included these correlations, we would not
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have found such a simple, linear quantum map. Yet, such correlations inevitably build

with time, meaning that we should be careful about performing successive quantum

maps. This is a manifestation of the memory of the environment.

To make progress, we will restrict ourselves to situations where this memory does

not last. We will consider the environment to be vast, similar to the heat reservoirs

that we use in statistical mechanics. We assume that correlations between the system

and the environment are lost over a certain time scale. We will denote this time scale

by τ , and seek an equation which dictates the dynamics of ρ on timescales t≫ τ .

Our starting point is the quantum map (5.50),

ρ(t+ δt) =
∑
m

Mm(t+ δt) ρ(t)M †
m(t+ δt) (5.55)

We will take δt to be small, as if we were dealing with usual calculus of infinitesimals.

But we should bear in mind that really we want δt≫ τ . For this equation to hold, we

must have one Kraus operator — say M0 — to take the form M0 = 1 + O(δt). The

remaining operators should be Mm ∼ O(
√
δt). We write

M0 = 1+
1

ℏ
(K − iH)δt , Mm =

1√
ℏ
Lm
√
δt m = 1, 2, . . .

where both H and K are chosen to be Hermitian matrices. These Kraus operators

must obey the completeness relation (5.51),∑
m=0

M †
mMm = 1 ⇒ 2K +

∑
m=1

L†
mLm = O(δt2)

We therefore write

K = −1

2

∑
m=1

L†
mLm

Plugging these expressions into the quantum map (5.55), and keeping only terms of

order δt, we get our final result

ℏ
∂ρ

∂t
= −i[H, ρ] +

∑
m=1

[
LmρL

†
m −

1

2
L†
mLmρ−

1

2
ρL†

mLm

]
This is the Lindblad equation. It should be thought of as a quantum version of the

Fokker-Planck equation that is described in the lectures in Kinetic Theory. We see that

the evolution is governed not just by the Hamiltonian H, but also by further Lindblad

operators Lm which capture the interaction with the environment. The presence of the

final two terms ensures that d(Tr ρ)/dt = 0, as it should for a density matrix.

– 187 –

http://www.damtp.cam.ac.uk/user/tong/kinetic.html


The Increase of Entropy

Something particularly nice happens when the Lindblad operators are Hermitian, so

Lm = L†
m. In this case, the entropy increases. The von Neumann entropy is defined as

(5.31)

S(ρ) = −Tr ρ log ρ

Its change in time is given by

dS

dt
= −Tr

(
∂ρ

∂t
(1 + log ρ)

)
= −Tr

(
∂ρ

∂t
log ρ

)
Inserting the Lindblad equation, we see that the first term vanishes, courtesy of the

fact that [ρ, log ρ] = 0. We’re left with

ℏ
dS

dt
= −

∑
m

Tr [(LmρLm − LmLmρ) log ρ]

To proceed, we decompose the density matrix ρ in terms of its eigenvectors

ρ =
∑
i

pi|ϕi⟩⟨ϕi|

and take the trace by summing over the complete basis |ϕi⟩. We have

ℏ
dS

dt
= −

∑
m

∑
i

⟨ϕi|(LmρLm − LmLmρ)|ϕi⟩ log pi

= −
∑
m

∑
i,j

⟨ϕi|Lm|ϕj⟩⟨ϕj|Lm|ϕi⟩(pj − pi) log pi

= −1

2

∑
m

∑
i,j

|⟨ϕi|Lm|ϕj⟩|2(pj − pi)(log pi − log pj)

where, in going to the final line, we took advantage of the anti-symmetric properties of

the middle line under the exchange of i and j. However, the expression (x− y)(log x−
log y) is positive for all values of x and y. (This same fact was needed in the proof of

the H-theorem which is the classical analog of the result we’re deriving here.) We learn

that

ℏ
dS

dt
≥ 0
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6. Scattering Theory

The basic idea behind scattering theory is simple: there’s an object that you want to

understand. So you throw something at it. By analysing how that something bounces

off, you can glean information about the object itself.

A very familiar example of scattering theory is called “looking at things”. In this

section we’re going to explore what happens when you look at things by throwing a

quantum particle at an object.

6.1 Scattering in One Dimension

We start by considering a quantum particle moving along a line. The maths here will

be simple, but the physics is sufficiently interesting to exhibit many of the key ideas.

The object that we want to understand is some poten-

x

V(x)

Figure 30:

tial V (x). Importantly, the potential is localised to some

region of space which means that V (x) → 0 as x → ±∞.

An example is shown to the right. We will need the po-

tential to fall off suitably fast in what follows although,

for now, we won’t be careful about what this means. A

quantum particle moving along the line is governed by the

Schrödinger equation,

− ℏ2

2m

d2ψ

dx2
+ V (x)ψ = Eψ (6.1)

Solutions to this equation are energy eigenstates. They evolve in time as ψ(x, t) =

e−iEt/ℏψ(x). For any potential, there are essentially two different kinds of states that

we’re interested in.

• Bound States are states that are localised in some region of space. The wavefunc-

tions are normalisable and have profiles that drop off exponentially far from the

potential

ψ(x) ∼ e−λ|x| as |x| → ∞

Because the potential vanishes in the asymptotic region, the Schrödinger equation

(6.1) relates the asymptotic fall-off to the energy of the state,

E = −ℏ2λ2

2m
(6.2)

In particular, bound states have E < 0. Indeed, it is this property which ensures

that the particle is trapped within the potential and cannot escape to infinity.

– 189 –



Bound states are rather special. In the absence of a potential, a solution which

decays exponentially to the left will grow exponentially to the far right. But, for

the state to be normalisable, the potential has to turn this behaviour around,

so the wavefunction decreases at both x → −∞ and x → +∞. This will only

happen for specific values of λ. Ultimately, this is why the spectrum of bound

states is discrete, like in the hydrogen atom. It’s where the name “quantum”

comes from.

• Scattering States are not localised in space and, relatedly, the wavefunctions are

not normalisable. Instead, asymptotically, far from the potential, scattering states

take the form of plane waves. In one dimension, there are two possibilities

Right moving: ψ ∼ eikx

Left moving: ψ ∼ e−ikx

where k > 0. To see why these are left or right moving, we need to put the

time dependence back in. The wavefunctions then take the form e±ikx−iEt/ℏ. The

peaks and troughs of the wave move to the right with the plus sign, and to the left

with the minus sign. Solving the Schrödinger equation in the asymptotic region

with V = 0 gives the energy

E =
ℏ2k2

2m

Scattering states have E > 0. Note that, in contrast, to bound states, nothing

special has to happen to find scattering solutions. We expect to find solutions for

any choice of k.

This simple classification of solutions already tells us

x

V(x)

Figure 31:

something interesting. Suppose, for example, that the po-

tential looks something like the one shown in the figure.

You might think that we could find a localised solution

that is trapped between the two peaks, with E > 0. But

this can’t happen because if the wavefunction is to be nor-

malisable, it must have E < 0. The physical reason, of

course, is quantum tunnelling which allows the would-be bound state to escape to

infinity. We will learn more about this situation in Section 6.1.5.

6.1.1 Reflection and Transmission Amplitudes

Suppose that we stand a long way from the potential and throw particles in. What

comes out? This is answered by solving the Schrödinger equation for the scattering
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states. Because we have a second order differential equation, we expect that there

are two independent solutions for each value of k. We can think of these solutions

physically as what you get if you throw the particle in from the left or in from the

right. Let’s deal with each in turn.

Scattering from the Left

We throw the particle in from the left. When it hits the potential, one of two things

can happen: it can bounce back, or it can pass straight through. Of course, this being

quantum mechanics, it can quite happily do both at the same time. Mathematically,

this means that we are looking for a solution which asymptotically takes the form

ψR(x) ∼

{
eikx + re−ikx x→ −∞
teikx x→ +∞

(6.3)

We’ve labelled this state ψR because the ingoing wave is right-moving. This can be seen

in the first term eikx which represents the particle we’re throwing in from x→ −∞. The

second term re−ikx represents the particle that is reflected back to x→ −∞ after hitting

the potential. The coefficient r ∈ C is called the reflection amplitude. Finally, the term

teikx at x→ +∞ represents the particle passing through the potential. The coefficient

t ∈ C is called the transmission amplitude. (Note: in this formula t is a complex

number that we have to determine; it is not time!) There is no term e−ikx at x→ +∞
because we’re not throwing in any particles from that direction. Mathematically, we

have chosen the solution in which this term vanishes.

Before we proceed, it’s worth flagging up a conceptual point. Scattering is clearly

a dynamical process: the particle goes in, and then comes out again. Yet there’s no

explicit time dependence in our ansatz (6.3); instead, we have a solution formed of

plane waves, spread throughout all of space. It’s best to think of these plane waves as

describing a beam of particles, with the ansatz (6.3) giving us the steady-state solution

in the presence of the potential.

The probability for reflection R and transmission T are given by the usual quantum

mechanics rule:

R = |r|2 and T = |t|2

In general, both R and T will be functions of the wavenumber k. This is what we would

like to calculate for a given potential and we will see an example shortly. But, before

we do this, there are some observations that we can make using general statements

about quantum mechanics.
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Given a solution ψ(x) to the Schrödinger equation, we can construct a conserved

probability current

J(x) = −i ℏ
2m

(
ψ⋆
dψ

dx
− ψdψ

⋆

dx

)
which obeys dJ/dx = 0. This means that J(x) is constant. (Mathematically, this is

the statement that the Wronskian is constant for the two solutions to the Schrödinger

equation). For our scattering solution ψR, with asymptotic form (6.3), the probability

current as x→ −∞ is given by

J(x) =
ℏk
2m

[ (
e−ikx + r⋆e+ikx

) (
eikx − re−ikx

)
+
(
eikx + re−ikx

) (
e−ikx − r⋆e+ikx

) ]
=

ℏk
m

(
1− |r|2

)
as x→ −∞

Meanwhile, as x→ +∞, we have

J(x) =
ℏk
m
|t|2 as x→ +∞

Equating the two gives

1− |r|2 = |t|2 ⇒ R + T = 1 (6.4)

This should make us happy as it means that probabilities do what probabilities are

supposed to do. The particle can only get reflected or transmitted and the sum of the

probabilities to do these things equals one.

Scattering from the Right

This time, we throw the particle in from the right. Once again, it can bounce back off

the potential or pass straight through. Mathematically, we’re now looking for solutions

which take the asymptotic form

ψL(x) ∼

{
t′e−ikx x→ −∞
e−ikx + r′e+ikx x→ +∞

(6.5)

where we’ve now labelled this state ψL because the ingoing wave, at x → +∞, is

left-moving. We’ve called the reflection and transmission amplitudes r′ and t′.
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There is a simple relation between the two solutions ψR in (6.3) and ψL in (6.5).

This follows because the potential V (x) in (6.1) is a real function, so if ψR is a solution

then so is ψ⋆R. And, by linearity, so is ψ⋆R − r⋆ψR which is given by

ψ⋆R(x)− r⋆ψR(x) ∼

{
(1− |r|2)e−ikx x→ −∞
t⋆e−ikx − r⋆teikx x→ +∞

This takes the same functional form as (6.5) except we need to divide through by t⋆ to

make the normalisations agree. (Recall that scattering states aren’t normalised anyway

so we’re quite at liberty to do this.) Using 1 − |r|2 = |t|2, this tells us that there is a

solution of the form (6.5) with

t′ = t and r′ = −r
⋆t

t⋆
(6.6)

Notice that the transition amplitudes are always the same, but the reflection amplitudes

can differ by a phase. Nonetheless, this is enough to ensure that the reflection probabil-

ities are the same whether we throw the particle from the left or right: R = |r|2 = |r′|2.

An Example: A Pothole in the Road

Let’s compute r and t for a simple potential, given by V(x)

a/2

−V

x

0

−a/2

Figure 32:

V (x) =

{
−V0 −a/2 < x < a/2

0 otherwise

with V0 > 0. This looks like a pothole in the middle of an,

otherwise, flat potential.

Outside the potential, we have the usual plane waves ψ ∼ e±ikx. In the middle of

the potential, the solutions to the Schrödinger equation (6.1) take the form

ψ(x) = Aeiqx +Be−iqx x ∈ [−a/2, a/2] (6.7)

where

q2 =
2mV0
ℏ2

+ k2

To compute the reflection and transmission amplitudes, r, r′ and t, we need to patch

the solution (6.7) with either (6.3) or (6.5) at the edges of the potential.
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Let’s start by scattering from the left, with the solution (6.3) outside the potential.

Continuity of the wavefunction at x = ±a/2 tells us that

e−ika/2 + reika/2 = Ae−iqa/2 +Beiqa/2 and teika/2 = Aeiqa/2 +Be−iqa/2

Meanwhile, matching the derivatives of ψ at x = ±a/2 gives

k

q

(
e−ika/2 − reika/2

)
= Ae−iqa/2 −Beiqa/2 and

kt

q
eika/2 = Aeiqa/2 −Be−iqa/2

These are four equations with four unknowns: A, B, r and t. One way to proceed is

to add and subtract the two equations on the right, and then do the same for the two

equations on the left. This allows us to eliminate A and B

A = t

(
1 +

k

q

)
ei(k−q)a/2 =

(
1 +

k

q

)
e−i(k−q)a/2 + r

(
1− k

q

)
ei(k+q)a/2

B = t

(
1− k

q

)
ei(k+q)a/2 =

(
1− k

q

)
e−i(k+q)a/2 + r

(
1 +

k

q

)
ei(k−q)a/2

We’ve still got some algebraic work ahead of us. It’s grungy but straightforward. Solv-

ing these two remaining equations gives us the reflection and transmission coefficients

that we want. They are

r =
(k2 − q2) sin(qa)e−ika

(q2 + k2) sin(qa) + 2iqk cos(qa)

t =
2iqke−ika

(q2 + k2) sin(qa) + 2iqk cos(qa)
(6.8)

Even for this simple potential, the amplitudes are far from trivial. Indeed, they contain

a lot of information. Perhaps the simplest lesson we can extract comes from looking at

the limit k → 0, where r → −1 and t → 0. This means that if you throw the particle

very softly (k → 0), then it won’t make it through the potential; it’s guaranteed to

bounce back.

Conversely, in the limit k → ∞, we have r = 0. (Recall that q2 = k2 + 2mV0/ℏ2 so

we also have q →∞ in this limit.) By conservation of probability, we must then have

|t| = 1 and the particle is guaranteed to pass through. This is what you might expect;

if you throw the particle hard enough, it barely notices that the potential is there.

There are also very specific values of the incoming momenta for which r = 0 and the

particle is assured of passage through the potential. This occurs when qa = nπ with

n ∈ Z for which r = 0. Notice that you have to fine tune the incoming momenta so

that it depends on the details of the potential which, in this example, means V0 and a.
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We can repeat the calculation above for scattering from the right. In fact, for our

pothole potential, the result is exactly the same and we have r = r′. This arises because

V (x) = V (−x) so it’s no surprise that scattering from the left and right are the same.

We’ll revisit this in Section 6.1.3.

6.1.2 Introducing the S-Matrix

The S-matrix is a convenient way of packaging the information about reflection and

transmission coefficients. It is useful both because it highlights new features of the

problem, and because it generalises to scattering in higher dimensions.

We will start by writing the above solutions in slightly different notation. We have

two ingoing asymptotic wavefunctions, one from the left and one from the right

Ingoing


right-moving: IR(x) = e+ikx x→ −∞

left-moving: IL(x) = e−ikx x→ +∞

Similarly, there are two outgoing asymptotic wavefunctions,

Outgoing


right-moving: OR(x) = e+ikx x→ +∞

left-moving: OL(x) = e−ikx x→ −∞

The two asymptotic solutions (6.3) and (6.5) can then be written as(
ψR

ψL

)
=

(
IR
IL

)
+ S

(
OR
OL

)
(6.9)

where

S =

(
t r

r′ t′

)
(6.10)

This is the S-matrix. As we’ve seen, for any given problem the entries of the matrix

are rather complicated functions of k.
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The S-matrix has many nice properties, some of which we will describe in these

lectures. One of the simplest and most important is that S is unitary. To see this note

that

SS† =

(
|t|2 + |r|2 tr′⋆ + rt′⋆

t⋆r′ + t′r⋆ |t′|2 + |r′|2

)

Unitarity then follows from the conservation of probability. The off-diagonal elements

vanish by virtue of the relations t′ = t and r′ = −r⋆t/t⋆ that we found in (6.6). Mean-

while, the diagonal elements are equal to one by (6.4) and so SS† = 1. The equivalence

between conservation of probability and unitarity of the S-matrix is important, and will

generalise to higher dimensions. Indeed, in quantum mechanics the word “unitarity”

is often used synonymously with “conservation of probability”.

One further property follows from the fact that the wavefunctions ψR(x) and ψL(x)

do not change under complex conjugation if we simultaneously flip k → −k. In other

words ψ(x; k) = ψ⋆(x;−k). This means that the S-matrix obeys

S⋆(k) = S(−k)

There are a number of other, more hidden properties of the S-matrix that we will

uncover below.

6.1.3 A Parity Basis for Scattering

As we’ve seen above, for symmetric potentials, with V (x) = V (−x), scattering from

the left and right is the same. Let’s first make this statement more formal.

We introduce the parity operator P which acts on functions f(x) as

P : f(x)→ f(−x)

For symmetric potentials, we have [P,H] = 0 which means that eigenstates of the

Hamiltonian can be chosen so that they are also eigenstates of P . The parity operator

is Hermitian, P † = P , so its eigenvalues λ are real. But we also have P 2f(x) = f(x),

which means that the eigenvalues must obey λ2 = 1. Clearly there are only two

possibilities: λ = +1 and λ = −1, This means that eigenstates of the Hamiltonian can

be chosen to be either even functions (λ = +1) or odd functions (λ = −1).
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Above we worked with scattering eigenstates ψR and ψL. These are neither odd nor

even. Instead, for a symmetric potential, they are related by ψL(x) = ψR(−x). This is
the reason that symmetric potentials have r = r′. If we want to work with the parity

eigenstates, we take

ψ+(x) = ψR(x) + ψL(x) = ψR(x) + ψR(−x)
ψ−(x) = −ψR(x) + ψL(x) = −ψR(x) + ψR(−x)

which obey Pψ±(x) = ±ψ±(x).

Often, working with parity eigenstates makes the algebra a little easier. This is

particularly true if our problem has a parity-invariant potential, V (x) = V (−x).

The Pothole Example Revisited

Let’s see how the use of parity eigenstates can make our calculations simpler. We’ll

redo the scattering calculation in the pothole, but now we’ll take the asymptotic states

to be ψ+ and ψ−. Physically, you can think of this experiment as throwing in particles

from both the left and right at the same time, with appropriate choices of signs.

We start with the even parity wavefunction ψ+. We want to patch this onto a solution

in the middle, but this too must have even parity. This mean that the solution in the

pothole takes the form

ψ+(x) = A(eiqx + e−iqx) x ∈ [−a/2, a/2]

which now has only one unknown coefficient, A. As previously, q2 = k2+2mV0/ℏ2. We

still need to make sure that both the wavefunction and its derivative are continuous at

x = ±a/2. But, because we’re working with even functions, we only need to look at

one of these points. At x = a/2 we get

e−ika/2 + (r + t)eika/2 = A(eiqa/2 + e−iqa/2)(
−e−ika/2 + (r + t)eika/2

)
=
q

k
A(eiqa/2 − e−iqa/2)

Notice that only the combination (r + t) appears. We have two equations with two

unknowns. If we divide the two equations and rearrange, we get

r + t = −e−ika q tan(qa/2)− ik
q tan(qa/2) + ik

(6.11)

which is all a lot easier than the messy manipulations we had to do when working with

ψL and ψR. Of course, we’ve only got an expression for (r + t). But we can play the
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same game for the odd parity eigenstates to get a corresponding expression for (r− t).
Now, the solution in the pothole takes the form

ψ−(x) = B(eiqx − e−iqx) x ∈ [−a/2, a/2]

Requiring continuity of the wavefunction and its derivative at x = a/2 we get

e−ika/2 + (r − t)eika/2 = B(eiqa/2 − e−iqa/2)(
−e−ika/2 + (r − t)eika/2

)
=
q

k
B(eiqa/2 + e−iqa/2)

Once again, dividing we find

r − t = e−ika
q + ik tan(qa/2)

q − ik tan(qa/2)
(6.12)

It’s not immediately obvious that the expressions (6.11) and (6.12) are the same as

those for r and t that we derived previously. But a little bit of algebra should convince

you that they agree.

[A helping hand: this little bit of algebra is extremely fiddly if you don’t go about it in

the right way! Here’s a reasonably streamlined approach. First define the denominator

of (6.8) as D(k) = (q2 + k2) sin(qa) + 2iqk cos(qa). Using the double-angle formula

from trigonometry, we can write this as D(k) = 2 cos2(qa/2)(q tan(qa/2) + ik)(q −
ik tan(qa/2)). We can then add the two expressions in (6.8), and use the double-angle

formula again, to get r+ t = 2e−ika cos2(qa/2)(q tan(qa/2)− ik)(ik tan(qa/2)−q)/D(k)

This coincides with our formula (6.11). Similar games give us the formula (6.12).]

The S-Matrix in the Parity Basis

We can also think about the S-matrix using our new basis of states. The asymptotic

ingoing modes are even and odd functions, given at |x| → ∞ by

Ingoing


parity-even: I+(x) = e−ik|x|

parity-odd: I−(x) = sign(x) e−ik|x|

The two asymptotic outgoing modes are

Outgoing


parity-even: O+(x) = e+ik|x|

parity-odd: O−(x) = −sign(x) e+ik|x|
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These are related to our earlier modes by a simple change of basis,(
I+
I−

)
=M

(
IR
IL

)
and

(
O+

O−

)
=M

(
OR
OL

)
with M =

(
1 1

−1 1

)

We can define an S-matrix with respect to this parity basis. In analogy with (6.9), we

write asymptotic solutions as(
ψ+

ψ−

)
=

(
I+
I−

)
+ SP

(
O+

O−

)
(6.13)

where we use the notation SP to denote the S-matrix with respect to the parity basis.

We write

SP =

(
S++ S+−

S−+ S−−

)

This is related to our earlier S-matrix by a change of basis. We have

SP =MSM−1 =

(
t+ (r + r′)/2 (r − r′)/2
(r′ − r)/2 t− (r + r′)/2

)

As you may expect, this basis is particularly useful if the underlying potential is sym-

metric, so V (x) = V (−x). In this case we have r = r′ and the S-matrix becomes

diagonal. The diagonal components are simply

S++ = t+ r and S−− = t− r

In fact, because Sp is unitary, each of these components must be a phase. This follows

because r and t are not independent. First, they obey |r|2 + |t|2 = 1. Moreover, when

r′ = r, the relation (6.6) becomes

rt⋆ + r⋆t = 0 ⇒ Re(rt⋆) = 0

This is enough to ensure that both S++ and S−− are indeed phases. We write them as

S++ = e2iδ+(k) and S−− = e2iδ−(k)

We learn that for scattering off a symmetric potential, all the information is encoded

in two momentum-dependent phase shifts, δ±(k) which tell us how the phases of the

outgoing waves O± are changed with respect to the ingoing waves I±.
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6.1.4 Bound States

So far we’ve focussed only on the scattering states of the problem. We now look at

the bound states, which have energy E < 0 and are localised near inside the potential.

Here, something rather magical happens. It turns out that the information about these

bound states can be extracted from the S-matrix, which we constructed purely from

knowledge of the scattering states.

To find the bound states, we need to do something clever. We take our scattering

solutions, which depend on momentum k ∈ R, and extend them to the complex mo-

mentum plane. This means that we analytically continue out solutions so that they

depend on k ∈ C.

First note that the solutions with k ∈ C still obey our original Schrödinger equation

(6.1) since, at no point in any of our derivation did we assume that k ∈ R. The only

difficulty comes when we look at how the wavefunctions behave asymptotically. In

particular, any putative solution will, in general, diverge exponentially as x → +∞
or x → −∞, rendering the wavefunction non-normalisable. However, as we will now

show, there are certain solutions that survive.

For simplicity, let’s assume that we have a symmetric potential V (x) = V (−x).
As we’ve seen above, this means that there’s no mixing between the parity-even and

parity-odd wavefunctions. We start by looking at the parity-even states. The general

solution takes the form

ψ+(x) = I+(x) + S++O+(x) =

{
e+ikx + S++e

−ikx x→ −∞
e−ikx + S++e

+ikx x→ +∞

Suppose that we make k pure imaginary and write

k = iλ

with λ > 0. Then we get

ψ+(x) =

{
e−λx + S++e

+λx x→ −∞
e+λx + S++e

−λx x→ +∞
(6.14)

Both terms proportional to S++ decay asymptotically, but the other terms diverge.

This is bad. However, there’s a get-out. For any fixed k (whether real or complex),

S++ is simply a number. That means that we’re quite at liberty to divide by it. Indeed,
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the wavefunction above isn’t normalised anyway, so dividing by a constant isn’t going

to change anything. We get

ψ+(x) =

{
S−1
++ e

−λx + e+λx x→ −∞
S−1
++ e

+λx + e−λx x→ +∞
(6.15)

Now we can see the loop-hole. The wavefunction above is normalisable whenever we

can find a λ > 0 such that

S++(k)→∞ as k → iλ

This, then, is the magic of the S-matrix. Poles in the complex momentum plane that

lie on the positive imaginary axis (i.e. k = iλ with λ > 0) correspond to bound states.

This information also tells us the energy of the bound state since, as we saw in (6.2),

it is given by

E = −ℏ2λ2

2m

We could also have set k = −iλ, with λ > 0. In this case, it is the terms proportional

to S++ in (6.14) which diverge and the wavefunction is normalisable only if S++(k =

−iλ) = 0. However, since S++ is a phase, this is guaranteed to be true whenever

S++(k = iλ) has a pole, and simply gives us back the solution above.

Finally, note that exactly the same arguments hold for parity-odd wavefunctions.

There is a bound state whenever S−−(k) has a pole at k = iλ with λ > 0.

An Example: Stuck in the Pothole

We can illustrate this with our favourite example of the square well, of depth −V0 and
width a. We already computed the S-matrix in (6.11) and (6.12). We have,

S++(k) = r + t = −e−ika q tan(qa/2)− ik
q tan(qa/2) + ik

where q2 = 2mV0/ℏ2 + k2. Setting k = iλ, we see that this has a pole when

λ = q tan
(qa
2

)
with λ2 + q2 =

2mV0
ℏ2

These are the usual equations that you have to solve when finding parity-even bound

states in a square well. The form of the solutions is simplest to see if we plot these

equations, as shown in the left-hand of Figure 33. There is always at least one bound

state, with more appearing as the well gets deeper.

– 201 –



q

λ λ

q

Figure 33: Bound state of even parity always exist, since the two equations shown on the

left always have a solution with λ, q > 0. Bound states of odd parity, shown on the right,

exist if the potential is deep enough.

Similarly, if we look at the parity-odd wavefunctions, we have

S−−(k) = t− r = e−ika
q + ik tan(qa/2)

q − ik tan(qa/2)

which has a pole at k = iλ when

q = −λ tan
(qa
2

)
with λ2 + q2 =

2mV0
ℏ2

(6.16)

This too reproduces the equations that we found in earlier courses in quantum mechan-

ics when searching for bound states in a square well. Now there is no guarantee that a

bound state exists; this only happens if the potential is deep enough.

6.1.5 Resonances

We might wonder if there’s any other information hidden in the analytic structure of

the S-matrix. In this section, we will see that there is, although its interpretation is a

little more subtle.

First, the physics. Let’s think back again to the

x

V(x)

Figure 34:

example shown on the right. On the one hand, we know

that there can be no bound states in such a trap because

they will have E > 0. Any particle that we place in the

trap will ultimately tunnel out. On the other hand, if the

walls of the trap are very large then we might expect that

the particle stays there for a long time before it eventually

escapes. In this situation, we talk of a resonance. These are also referred to as unstable

or metastable states. Our goal is to show how such resonances are encoded in the

S-matrix.
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Now, the maths. We’ll restrict attention to parity-even functions. Suppose that the

S-matrix S++ has a pole that lies on the complex momentum plane at position

k = k0 − iγ

We’d like to interpret this pole. First note that the energy is also imaginary

E =
ℏ2k2

2m
≡ E0 − i

Γ

2
(6.17)

with E0 = ℏ2(k20 − γ2)/2m and Γ = 2ℏ2γk0/m. An imaginary energy may sound

strange, but it has a very natural interpretation. Recall that the time dependence of

the wavefunction is given by

e−iEt/ℏ = e−iE0t/ℏ e−Γt/2ℏ (6.18)

This is the first clue that we need. We see that, for γ > 0, the overall form of the

wavefunction decays exponentially with time. This is the characteristic behaviour of

unstable states. A wavefunction that is initially supported inside the trap will be very

small there at time much larger than τ = 1/Γ. Here τ is called the half-life of the state,

while Γ is usually referred to as the width of the state. (We’ll see why in Section 6.2).

Where does the particle go? Including the time dependence (6.18), the same argu-

ment that led us to (6.15) now tells us that when S++ → ∞, the solution takes the

asymptotic form

ψ+(x, t) =

{
e−iE0t/ℏ e−ik0x e−γx−Γt/2ℏ x→ −∞
e−iE0t/ℏ e+ik0x e+γx−Γt/2ℏ x→ +∞

(6.19)

The first two exponential factors oscillate. But the final factor varies as

e±γ(x∓vt) where v =
Γ

2ℏγ
=

ℏk0
m

This has the interpretation of a particle moving with momentum ℏk0. This, of course,
is the particle which has escaped the trap.

Note that for fixed time t, these wavefunctions are not normalisable: they diverge at

both x → ±∞. This shouldn’t concern us, because, although our wavefunctions are

eigenstates of the Hamiltonian, they are not interpreted as stationary states. Indeed,

it had to be the case. An unstable state has complex energy, but standard theorems

in linear algebra tell us that a Hermitian operator like the Hamiltonian must have real

eigenvalues. We have managed to evade this theorem only because these wavefunctions

are non-normalisable and so do not, strictly speaking, live in the Hilbert space.
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There’s a lesson buried in all of this. If we were to take the standard axioms of

quantum mechanics, we would simply throw away wavefunctions of the form (6.19)

on the grounds that they do not lie in the Hilbert space and so are unphysical. But

this would be a mistake: the wavefunctions do contain interesting physics, albeit of a

slightly different variety than we are used to. Sometimes it’s worth pushing our physical

theories beyond our comfort zone to see what is lurking there.

The upshot of this discussion is that poles of the S-matrix in the lower-half complex

plane correspond to resonances. It is often useful to write S++ as a function of energy

rather than momentum. (They are related by (6.17)). Since S++ is a phase, close to a

resonance it necessarily takes the form

S++ =
E − E0 − iΓ/2
E − E0 + iΓ/2

The fact that the S-matrix is a phase means that any pole in the complex energy plane

necessarily comes with a zero at the conjugate point.

An Example: A Pair of Delta-Functions

A pair of delta functions provide a simple and tractable example to illustrate the idea

of resonances. The potential is given by

V (x) = V0

[
δ(x− 1) + δ(x+ 1)

]
Recall that the effect of the delta-functions is simply to change the boundary condi-

tions at x = ±1 when solving the Schrödinger equation. All wavefunctions should be

continuous at x = ±1, but their derivatives are discontinuous. For example, at x = +1,

solutions obey

lim
ϵ→0

[
ψ′(1 + ϵ)− ψ′(1− ϵ)

]
= U0ψ(1) with U0 =

2mV0
ℏ2

Working in the parity basis makes life simpler, not least because you only need to

consider the matching at one of the delta-functions, with the other then guaranteed.

The computation of the S-matrix is a problem on the exercise sheet. You will find

S++ = e−2ik

[
(2k − iU0)e

ik − iU0e
−ik

(2k + iU0)e−ik + iU0eik

]
Note that the denominator is the complex conjugate of the numerator, ensuring that

S++ is a phase, as expected. The poles of this S-matrix are given by solutions to the

equation

e2ik = −
(
1− 2ik

U0

)
(6.20)
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To understand the physics behind this, let’s first look at the situation where U0 →∞,

so that the weight of the delta-functions gets infinitely large. Then the poles sit at

e2ik = −1 ⇒ k = kn =

(
n+

1

2

)
π

These correspond to bound states trapped between V
0 V

0

+1−1

Figure 35:

the two wavefunctions. For example, the n = 0 state is

shown in the figure. Note that they’re rather unusual

because the poles sit on the real k-axis, rather than the

imaginary k-axis. Correspondingly, these bound states

have E > 0. This strange behaviour is only allowed be-

cause we have an infinitely large potential which forbids

particles on one side of the barrier to cross to the other.

As a side remark, we note that this same impenetrable behaviour is seen in scattering.

When U0 →∞, the S-matrix becomes S++ → −e2ik. This tells us that a particle coming

from outside is completely reflected off the infinitely large barrier. The minus sign is

the standard phase change after reflection. The factor of e2ik is because the waves are

forbidden from travelling through the region between the delta functions, which has

width x = 2. As a result, the phase is shifted by eikx from what it would be if the

barriers were removed.

Let’s now look at what happens when U0 is large, but finite? We’ll focus on the

lowest energy bound state with n = 0. We can expand (6.20) in 1/U0. (This too is left

as a problem on the exercise sheet.) We find

k =
π

2
+ α− iγ

with

α ≈ − π

2U0

+
π

2U2
0

+O
(

1

U3
0

)
and γ ≈ π2

4U2
0

+O
(

1

U3
0

)
Note, in particular, that γ > 0, so the pole moves off the real axis and into the lower

half-plane. This pole now has all the properties that we described at the beginning

of this section. It describes a state, trapped between the two delta-functions, which

decays with half-life

τ =
ℏ
Γ
=

4mU2
0

ℏπ3

(
1 +O

(
1

U0

))
This is the resonance.
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6.2 Scattering in Three Dimensions

Our real interest in scattering is for particles moving in three spatial dimensions, with

Hamiltonian

H =
p2

2m
+ V (r)

Recall that there are two distinct interpretations for such a Hamiltonian

• We could think of this as the motion of a single particle, moving in a fixed back-

ground potential V (r). This would be appropriate, for example, in Rutherford’s

famous experiment where we fire an alpha particle at a gold nucleus.

• Alternatively, We could think of this as the relative motion of two particles,

separated by distance r, interacting through the force F = −∇V (r). We could

take V (r) to be the Coulomb force, to describe the scattering of electrons, or the

Yukawa force to describe the scattering of neutrons.

In this section, we will use language appropriate to the first interpretation, but every-

thing we say holds equally well in the second. Throughout this section, we will work

with rotationally invariant (i.e. central) potentials, so that V (r) = V (|r|).

6.2.1 The Cross-Section

Our first goal is to decide what we want to calculate. The simple reflection and trans-

mission coefficients of the one-dimensional problem are no longer appropriate. We need

to replace them by something a little more complicated. We start by thinking of the

classical situation.

Classical Scattering

Suppose that we throw in a single particle with ki-

b

θ

Figure 36:

netic energy E. Its initial trajectory is characterised

by the impact parameter b, defined as the closest the

particle would get to the scattering centre at r = 0

if there were no potential. The particle emerges with

scattering angle θ, which is the angle between the

asymptotic incoming and outgoing trajectories, as

shown in the figure. By solving the classical equa-

tions of motion, we can compute θ(b;E) or, equivalently, b(θ;E).

– 206 –



dσ

dΩ

b
b+db

φ

z

θ

−dθ θ

Figure 37: What becomes of an infinitesimal cross-sectional area after scattering.

Now consider a uniform beam of particles, each with kinetic energy E. We want to

understand what becomes of this beam. Consider the cross-sectional area, denoted dσ

in Figure 37. We write this as

dσ = b dϕ db

The particles within dσ will evolve to the lie in a cone of solid angle dΩ, given by

dΩ = sin θ dϕ dθ

where, for central potentials, the infinitesimal angles dϕ are the same in both these

formulae. The differential cross-section is defined to be

dσ

dΩ
=

b

sin θ

∣∣∣∣dbdθ
∣∣∣∣

The left-hand side should really be |dσ/dΩ|, but we’ll usually drop the modulus. The

differential cross-section is a function of incoming momentum k, together with the

outgoing angle θ.

More colloquially, the differential cross-section can be thought of as

dσ

dΩ
dΩ =

Number of particles scattered into dΩ per unit time

Number of incident particles per area dσ per unit time

We write this in terms of flux, defined to be the number of particles per unit area per

unit time. In this language, the differential cross-section is

dσ

dΩ
=

Scattered flux

Incident flux
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We can also define the total cross-section

σT =

∫
dΩ

dσ

dΩ

Both the differential cross-section and the total cross-section have units of area. The

usual unit used in particle physics, nuclear physics and atomic physics is the barn, with

1 barn = 10−28 m2. The total cross-section is a crude characterisation of the scattering

power of the potential. Roughly speaking, it can be thought of as the total area of the

incoming beam that is scattered. The differential cross-section contains more detailed

information.

An Example: The Hard Sphere

Suppose that our particle bounces off a hard sphere,

b

θα

α

α

Figure 38:

described by the potential V (r) =∞ for r ≤ R. By star-

ing at the geometry shown in the figure, you can convince

yourself that b = R sinα and θ = π − 2α. So in this case

b = R sin

(
π

2
− θ

2

)
= R cos

θ

2

If b > R, clearly there is no scattering. The differential

cross-section is

dσ

dΩ
=
R2 cos(θ/2) sin(θ/2)

2 sin θ
=
R2

4

Rather unusually, in this case dσ/dΩ is independent of both θ and E. The total cross-

section is

σT =

∫ 2π

0

dϕ

∫ +1

−1

d(cos θ)
dσ

dΩ
= πR2 (6.21)

which, happily, coincides with the geometrical cross-section of the sphere.

This result reinforces the interpretation of the total cross-section that we mentioned

above; it is the area of the beam that is scattered. In general, the area of the beam

that is scattered will depend on the energy E of the incoming particles.

Another Example: Rutherford Scattering

Rutherford scattering is the name given to scattering off a repulsive Coulomb potential

of the form

V (r) =
A

r
with A > 0
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where, for two particles of charge q1 and q2, we have A = q1q2/4πϵ0. We studied

Rutherford scattering in the lectures on Dynamics and Relativity. We found5

2bE = A cot
θ

2

This gives the differential cross-section,

dσ

dΩ
=

b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ = ( A

4E

)2
1

sin4(θ/2)
(6.22)

This scattering amplitude played an important role in the history of physics. Ruther-

ford, together with Geiger and Marsden, fired alpha particles (a helium nucleus) at

gold foil. They discovered that the alpha particles could be deflected by a large angle,

with the cross-section given by (6.22). Rutherford realised that this meant the positive

charge of the atom was concentrated in a tiny, nucleus.

There is, however, a puzzle here. Rutherford did his experiment long before the

discovery of quantum mechanics. While his data agreed with the classical result (6.22),

there is no reason to believe that this classical result carries over to a full quantum

treatment. We’ll see how this pans out later in this section.

There’s a surprise when we try to calculate the total cross-section σT . We find that

it’s infinite! This is because the Coulomb force is long range. The potential decays to

V (r)→ 0 as r →∞, but it drops off very slowly. This will mean that we will have to

be careful when applying our formalism to the Coulomb force.

6.2.2 The Scattering Amplitude

The language of cross-sections is also very natural when we look at scattering in quan-

tum mechanics. As in Section 6.1, we set up the scattering problem as a solution to

the time-independent Schrödinger equation, which now reads[
− ℏ2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r) (6.23)

We will send in a plane wave with energy E which we choose to propagate along the

z-direction. This is just

ψincident(r) = eikz

5See equation (4.20) of the Dynamics and Relativity lecture notes, where we denoted the scattering

angle by ϕ instead of θ.
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where E = ℏ2k2/2m. However, after scattering off the po-

Figure 39:

tential, the wave doesn’t only bounce back in the z direction.

Instead, it spreads out spherically, albeit with a phase and

amplitude which can vary around the sphere. It’s hard to take

photographs of quantum wavefunctions, but the water waves

shown on the right give a good analogy for what’s going on.

Asymptotically, as r →∞, this scattered wave takes the form

ψscattered(r) = f(θ, ϕ)
eikr

r
(6.24)

The 1/r fall-off follows from solving the free Schrödinger equation; we’ll see this ex-

plicitly below. However, there is a simple intuition for this behaviour which follows

from thinking of |ψ|2 as a probability, spreading over a sphere which grows as r2 as

r →∞. The 1/r fall-off ensures that this probability is conserved. Our final ansatz for

the asymptotic wavefunction is then

ψ(r) = ψincident(r) + ψscattered(r) (6.25)

The function f(θ, ϕ) is called the scattering amplitude. For the central potentials con-

sidered here it is independent of ϕ, so f = f(θ). It is the 3d generalisation of the

reflection and transmission coefficients that we met in the previous section. Our goal

is to calculate it.

The scattering amplitude is very closely related to the differential cross-section. To

see this, we can look at the probability current

J = −i ℏ
2m

(
ψ⋆∇ψ − (∇ψ⋆)ψ

)
which obeys ∇ · J = 0. For the incident wave, we have

Jincident =
ℏk
m

ẑ

This is interpreted as a beam of particles with velocity v = ℏk/m travelling in the

z-direction. Meanwhile, for the scattered wave we use the fact that

∇ψscattered =
ikf(θ)eikr

r
r̂+O

(
1

r2

)
to find

Jscattered =
ℏk
m

1

r2
|f(θ)|2 r̂+O

(
1

r3

)
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This means that, as r →∞, the flux of outgoing particles crossing an area dA subtended

by the solid angle dΩ

Jscattered · r̂ dA =
ℏk
m
|f(θ)|2 dΩ

The differential cross-section is defined to be the ratio of the scattered flux through dΩ,

divided by the incident flux. In other words, it is

dσ

dΩ
=

ℏk|f(θ)|2/m
ℏk/m

= |f(θ)|2

This is rather nice. It means that if we can compute the scattering amplitude f(θ), it

immediately tells us the differential cross-section. The total cross-section is defined, as

before, as

σT =

∫
dΩ |f(θ)|2

6.2.3 Partial Waves

To make progress, we need to start to look in a more detail at the solutions to the

Schrödinger equation (6.23). Because we’ve decided to work with rotationally invariant

potentials, it makes sense to label our wavefunctions by their angular momentum, l.

Let’s quickly review what this looks like.

A general wavefunction ψ(r, θ, ϕ) can be expanded in terms of spherical harmonics.

In this section, however, we only need to deal with wavefunctions of the form ψ(r, θ),

which are independent of ϕ. Such functions have an expansion in terms of partial waves

ψ(r, θ) =
∑
l=0

Rl(r)Pl(cos θ)

Here the Pl(cos θ) are Legendre polynomials. They appear by virtue of being eigenstates

of the angular momentum operator L2,

L2 Pl(cos θ) = ℏ2l(l + 1)Pl(cos θ)

In more concrete terms, this is the statement that the Legendre polynomials Pl(w)

obey the differential equation

d

dw
(1− w2)

dPl
dw

+ l(l + 1)Pl(w) = 0
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Meanwhile, the original Schrödinger equation (6.23) becomes an ordinary differential

equation for the radial functions Rl,(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
− U(r) + k2

)
Rl(r) = 0 (6.26)

where we’ve used the expression for the energy, E = ℏ2k2/2m, and rescaled the potential

U(r) =
2m

ℏ2
V (r)

Spherical Waves when U(r) = 0

We will assume that our potential drops off sufficiently quickly so that asymptotically

our waves obey (6.26) with U(r) = 0. (We will be more precise about how fast U(r)

must fall off later.) We can write the equation obeyed by Rl as(
d2

dr2
− l(l + 1)

r2
+ k2

)
(rRl(r)) = 0 (6.27)

There are two s-wave solutions with l = 0, given by

R0(r) =
e±ikr

r
(6.28)

These are ingoing (minus sign) and outgoing (plus sign) spherical waves.

The solutions for l ̸= 0 are more known as spherical Bessel functions and are described

below.

Plane Waves when U(r) = 0

Of course, when U = 0, the plane wave

ψincident(r) = eikz = eikr cos θ

is also a solution to the Schrödinger equation. Although it feels rather unnatural, it

must be possible to expand these solutions in terms of the spherical waves. To do this,

it is convenient to briefly introduce the coordinate ρ = kr. We write the plane wave

solution as

ψincident(ρ, θ) = eiρ cos θ =
∑
l

(2l + 1)ul(ρ)Pl(cos θ) (6.29)

where the factor of (2l+1) is for convenience and the function ul(ρ) are what we want

to determine. The Legendre polynomials have a nice orthogonality property,∫ +1

−1

dw Pl(w)Pm(w) =
2

2l + 1
δlm (6.30)

– 212 –



We can use this to write

ul(ρ) =
1

2

∫ +1

−1

dw eiρwPl(w) (6.31)

Our interest is only in the behaviour of the plane wave as ρ→∞. To extract this, we

start by integrating by parts

ul(ρ) =
1

2

[
eiρwPl(w)

iρ

]+1

−1

− 1

2iρ

∫ +1

−1

dw eiρw
dPl
dw

The Legendre polynomials obey Pl(1) = 1 and Pl(−1) = (−1)l. We then find

ul(ρ) =
1

2iρ

[
eiρ − (−1)le−iρ

]
+O

(
1

ρ2

)
(6.32)

where a further integration by parts will convince you that the remaining terms do

indeed drop off as 1/ρ2. This is the result we need. As r →∞, the incident plane wave

can be written as

ψincident =
∞∑
l=0

2l + 1

2ik

[
eikr

r
− (−1)l e

−ikr

r

]
Pl(cos θ) (6.33)

We learn that the ingoing plane wave decomposes into an outgoing spherical wave (the

first term) together with an ingoing spherical wave (the second term).

Phase Shifts

It’s been quite a long build up, but we now know what we want to calculate, and how

to do it! To recapitulate, we’d like to calculate the scattering amplitude f(θ) by finding

solutions of the asymptotic form

ψ(r) = eikz + f(θ)
eikr

r
as r →∞

We still have a couple more definitions to make. First, we expand the scattering

amplitude in partial waves as

f(θ) =
∞∑
l=0

2l + 1

k
fl Pl(cos θ) (6.34)

The normalisation coefficients of 1/k and (2l+1) mean that the coefficients fl sit nicely

with the expansion (6.33) of the plane wave in terms of spherical waves. We can then

write the asymptotic form of the wavefunction as a sum of ingoing and outgoing waves

ψ(r) ∼
∞∑
l=0

2l + 1

2ik

[
(−1)l+1 e

−ikr

r
+ (1 + 2ifl)

eikr

r

]
Pl(cos θ) (6.35)

where the first term is ingoing, and the second term is outgoing. For a given potential

V (r), we would like to compute the coefficients fl which, in general, are functions of k.
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Note that the problem has decomposed into decoupled angular momentum sectors,

labelled by l = 0, 1, . . .. This is because we’re working with a rotationally symmetric

potential, which scatters an incoming wave, but does not change its angular momentum.

Moreover, for each l, our ansatz consists of an ingoing wave, together with an outgoing

wave. This is entirely analogous to our 1d solutions (6.9) when we first introduced

the S-matrix. We identify the coefficients of the outgoing terms as the elements of the

S-matrix. For rotationally invariant potentials, the 3d S-matrix S is diagonal in the

angular momentum basis, with elements given by

Sl = 1 + 2ifl with l = 0, 1, 2, . . .

Now unitarity of the S-matrix — which is equivalent to conservation of particle number

— requires that these diagonal elements are a pure phase. We write

Sl = e2iδl ⇒ fl =
1

2i
(e2iδl − 1) = eiδl sin δl

where δl are the phase shifts. Comparing back to (6.34), we see that the phase shifts

and scattering amplitude are related by

f(θ) =
1

2ik

∞∑
l=0

(2l + 1)
(
e2iδl − 1

)
Pl(cos θ)

The picture that we have is entirely analogous to the 1d situation. A wave comes in,

and a wave goes out. Conservation of probability ensures that the amplitudes of these

waves are the same. All information about scattering is encoded in the phase shifts

δl(k) between the ingoing and outgoing waves.

6.2.4 The Optical Theorem

The differential cross-section is dσ/dΩ = |f(θ)|2. Using the partial wave decomposition

(6.34), we have

dσ

dΩ
=

1

k2

∑
l,l′

(2l + 1)(2l′ + 1)flf
⋆
l′Pl(cos θ)Pl′(cos θ)

In computing the total cross-section σT , we can use the orthogonality of Legendre

polynomials (6.30) to write

σT = 2π

∫ +1

−1

d(cos θ)
dσ

dΩ
=

4π

k2

∑
l

(2l + 1)|fl|2 =
4π

k2

∑
l

(2l + 1) sin2 δl (6.36)
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We can compare this to our expansion (6.34). Using the fact that P (1) = 1, we have

f(0) =
∑
l

2l + 1

k
eiδl sin δl

This tells us that the total cross-section is given by

σT =
4π

k
Imf(0)

This is known as the optical theorem.

Here’s some words that will hopefully build some intuition for the optical theorem.

The potential causes scattering from the forward direction (θ = 0) to other directions.

Because total probability is conserved, clearly the amount of particles going in the

forward direction must decrease. However, this decrease in the forward direction must

be equal to the total increase in other directions – and this is what the total cross-

section σT measures. Finally, the amount of decrease in forward scattering is due to

interference between the incoming wave and outgoing waves, and so is proportional to

f(0).

Unitarity Bounds

If we think of the total cross-section as built from the cross-sections for each partial

wave then, from (6.36), we have

σT =
∞∑
l=0

σl with σl =
4π

k2
(2l + 1) sin2 δl (6.37)

Clearly each contribution is bounded as σl ≤ 4π(2l+1)/k2, with the maximum arising

when the phase shift is given by δl = ±π/2. This is called the unitarity bound.

There’s a straightforward, semi-classical way to understand these unitarity bounds. If

we send in a particle with momentum ℏk and impact parameter b, then it has angular

momentum L = ℏkb. This angular momentum is quantised. Roughly speaking, we

might expect that the particle has angular momentum ℏl, with l ∈ Z, when the impact

parameter lies in the window

l

k
≤ b ≤ l + 1

k
(6.38)

If the particle gets scattered with 100% probability when it lies in this ring, then the

cross-section is equal to the area of the ring. This is

(l + 1)2π

k2
− l2π

k2
=

(2l + 1)π

k2
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This is almost the unitarity bound (6.37). It differs by a factor 4. As we will now see,

that same factor of 4 difference often arises between simple classical arguments and a

full quantum treatment of scattering processes.

6.2.5 An Example: A Hard Sphere and Spherical Bessel Functions

After all this formalism, let’s finally do an example. Our scattering region will be a

hard sphere of radius a, with potential

V (r) =

{
∞ r < a

0 r > a

Since the wavefunction vanishes inside the sphere and is continuous, this potential is

equivalent to imposing the boundary condition ψ(a) = 0.

For r > a, the wavefunction can be decomposed in partial waves

ψ(r, θ) =
∑
l=0

Rl(r)Pl(cos θ)

where the radial wavefunction obeys the free Schrödinger equation(
d2

dρ2
− l(l + 1)

ρ2
+ 1

)
(ρRl(ρ)) = 0 (6.39)

where we’re again using the coordinate ρ = kr. Solutions Rl(ρ) to this equation

are known as spherical Bessel functions and are denoted jl(ρ) and nl(ρ). They are

important enough that we take some time to describe their properties.

An Aside: Spherical Bessel Functions

The solutions to (6.39) are given by spherical Bessel functions, Rl(ρ) = jl(ρ) and

Rl(ρ) = nl(ρ), and can be written as6

jl(ρ) = (−ρ)l
(
1

ρ

d

dρ

)l
sin ρ

ρ
and nl(ρ) = −(−ρ)l

(
1

ρ

d

dρ

)l
cos ρ

ρ

Note that j0(ρ) = sin ρ/ρ and n0(ρ) = − cos ρ/ρ, so the solutions (6.28) for free spherical

waves can be written as R0(ρ) = n0(ρ)± in0(ρ).

6Proofs of this statement, together with the asymptotic expansions given below, can be found in

the handout http://www.damtp.cam.ac.uk/user/tong/aqm/bessel.pdf.
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In what follows, it will be useful to have the asymptotic form of jl and nl. They are

given by

jl(ρ)→
sin(ρ− 1

2
lπ)

ρ
and nl(ρ)→ −

cos(ρ− 1
2
lπ)

ρ
as ρ→∞ (6.40)

We see that at large r, the spherical Bessel functions look more or less the same for all

l, differing only by a phase. In particular, the combinations jl± inl look essentially the

same as the l = 0 spherical waves that we met in (6.28). However, the spherical Bessel

functions differ as we come in towards the origin. In particular, close to ρ = 0 we have

jl(ρ)→
ρl

(2l + 1)!!
and nl(ρ)→ −(2l − 1)!! ρ−(l+1) as ρ→ 0 (6.41)

where (2l + 1)!! = 1 · 3 · 5 · · · · (2l + 1) is the product of all odd numbers up to 2l + 1.

Note that jl(ρ) is regular near the origin, while nl diverges.

Before we proceed, it’s worth seeing how we write the plane wave eikz in terms of

spherical Bessel functions. We wrote the partial wave expansion (6.29) in terms of

functions ul(ρ), whose asymptotic expansion was given in (6.32). This can be rewritten

as

ul(ρ) → il
sin(ρ− 1

2
lπ)

ρ
as ρ→∞

which tells us that we can identify the functions ul(ρ) as

ul(ρ) = iljl(ρ)

Back to the Hard Sphere

Returning to our hard sphere, the general solution for r ≥ a can be written in the form,

Rl(r) = Al

[
cosαl jl(ρ)− sinαl nl(ρ)

]
(6.42)

where, as before, ρ = kr. Here Al and αl are two integration constants which we will

fix by the boundary condition. Because the Schrödinger equation is linear, nothing

fixes the overall coefficient Al. In contrast, the integration constant αl will be fixed

by the boundary conditions at r = a. Moreover, this integration constant turns out

to be precisely the phase shift δl that we want to compute. To see this, we use the

asymptotic form of the spherical Bessel functions (6.40) to find

Rl(r) ∼
1

ρ

[
cosαl sin(ρ−

1

2
lπ) + sinαl cos(ρ−

1

2
lπ)

]
=

1

ρ
sin(ρ− 1

2
lπ + αl)
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We can compare this to the expected asymptotic form (6.35) of the wavefunction

Rl(r) ∼
[
(−1)l+1 e

−iρ

ρ
+ e2iδl

eiρ

ρ

]
=
eiδleiπl/2

ρ

[
− e−i(ρ+δl−πl/2) + ei(ρ+δl−πl/2)

]
to see that, as a function of ρ = kr, the two expressions agree provided

αl = δl

In other words, if we can figure out the integration constant αl then we’ve found our

sought-after phase shift.

The boundary condition imposed by the hard sphere is simply Rl(a) = 0. This tells

us that

cos δl jl(ka) = sin δl nl(ka) ⇒ tan δl =
jl(ka)

nl(ka)

This is the final result for this system. Now let’s try to extract some physics from it.

First note that for the l = 0 s-wave, the phase shift is given by exactly by

δ0 = −ka

For small momenta, ka≪ 1, we can extract the behaviour of the higher l phase shifts

from ρ→ 0 behaviour of the spherical Bessel functions (6.41). We have

δl ≈ −
(ka)2l+1

(2l + 1)!! (2l − 1)!!

We see that for low momentum the phase shifts decrease as l increases. This is to

be expected: the higher l modes have to penetrate the repulsive angular momentum

∼ ℏl(l+1)/r2. Classically, this would prohibit the low-momentum modes from reaching

the sphere. Quantum mechanically, only the exponential tails of these modes reach

r = a which is why their scattering is suppressed.

For low momentum ka ≪ 1, we now have all the information we need to compute

the total cross-section. The sum (6.36) is dominated by the l = 0 s-wave, and given by

σT = 4πa2
(
1 +O

(
(ka)4

) )
This is a factor of 4 bigger than the classical, geometric result (6.21)

– 218 –



It’s also possible to extract analytic results for the phase shifts at high momentum

ka ≫ 1. For this we need further properties of the spherical Bessel functions. Here

we simply state the results. The phase shifts δl vary between 0 and 2π for l ≲ ka.

However, when l > ka, the phase shifts quickly drop to zero. The intuition behind this

follows from the semi-classical analysis (6.38) which tells us that for l≫ ka, the impact

parameter is b ≫ a. This makes it unsurprising that no scattering takes place in this

regime. It turns out that as ka→∞, the total cross-section becomes σT → 2πa2.

The Scattering Length

The low-momentum behaviour δl ∼ (ka)2l+1 that we saw is common to all scattering

potentials. It means that low-energy scattering is always dominated by the s-wave

whose phase shift scales as

δ0 ∼ −kas +O(k3) (6.43)

The coefficients as is called the scattering length. As we have seen, for the hard sphere

as = a, the radius of the sphere. At low energies, the total cross-section is always given

by

σT ≈ σ0 ∼ 4πa2s

The scattering length is a useful way to characterise the low-energy behaviour of a

potential. As we will see in examples below, as can be positive or negative and can, at

times, diverge.

6.2.6 Bound States

In this section we describe the effects of bound states on scattering. Such states only

occur for attractive potentials, so we again take a sphere of radius a, but this time with

potential

V (r) =

{
−V0 r < a

0 r > a
(6.44)

It will be useful to define the following notation

U(r) =
2mV (r)

ℏ2
and γ2 =

2mV0
ℏ2

(6.45)

We’ll start by focussing on the l = 0 s-wave. Outside the sphere, the wavefunction

satisfies the usual free Schrödinger equation (6.27)(
d2

dr2
+ k2

)
(rψ) = 0 r > a
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with general solution

ψ(r) =
A sin(kr + δ0)

r
r > a (6.46)

The same argument that we made when discussing the hard sphere shows that the

integration constant δ0 is the phase shift that we want to calculate. We do so by

matching the solution to the wavefunction inside the sphere, which satisfies(
d2

dr2
+ k2 + γ2

)
(rψ) = 0 r < a

The requirement that the wavefunction is regular at the origin r = 0 picks the solution

inside the sphere to be

ψ(r) =
B sin(

√
k2 + γ2r)

r
r < a (6.47)

The solutions (6.46) and (6.47) must be patched at r = a by requiring that both

ψ(a) and ψ′(a) are continuous. We get the answer quickest if we combine these two

and insist that ψ′/ψ is continuous at r = a, since this condition does not depend on

the uninteresting integration constants A and B. A quick calculation shows that it is

satisfied when

tan(ka+ δ0)

ka
=

tan(
√
k2 + γ2a)√

k2 + γ2a
(6.48)

For very high momentum scattering, k2 ≫ γ2, we have δ0 → 0. This is to be expected:

the energy of the particle is so large that it doesn’t much care for the small, puny

potential and there is no scattering.

Bound States and the Scattering Length

Things are more interesting at low energies, k2 ≪ γ2 and ka≪ 1. We have

tan(ka+ δ0)

ka
≈ tan(γa)

γa
⇒ tan(ka) + tan(δ0)

1− tan(ka) tan(δ0)
≈ k

γ
tan(γa)

Rearranging, we get

tan δ0 = ka

(
tan(γa)

γa
− 1

)
+O(k3) (6.49)

If the phase shift δ0 is small, then we can write tan δ0 ≈ δ0 and, from (6.43), read off

the scattering length

as = a− tan(γa)

γ
(6.50)
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Note that, for this approximation to hold, we need kas ≪ 1, but the scattering length as
exhibits somewhat surprising behaviour. For small γ, the scattering length is negative.

This can be thought of as due to the attractive nature of the potential, which pulls the

particle into the scattering region rather than repelling it. However, as γ is increased,

the scattering length diverges to −∞, before reappearing at +∞. It continues this

pattern, oscillating between +∞ and −∞. Our task is to understand why this striking

behaviour is happening.

Before we proceed, note that all the calculations above also hold for repulsive poten-

tials with V0 < 0. In this case γ, defined in (6.45) is pure imaginary and the scattering

length (6.50) becomes

as = a− tanh(|γ|a)
|γ|

(V0 < 0)

Now the scattering length is always positive. It increases monotonically from as = 0

when γ = 0, corresponding to no scattering, through to as = a when |γ| → ∞, which

is our previous result for the hard-sphere. We see that whatever is causing the strange

oscillations in (6.50) does not occur for the repulsive potential.

The key to the divergent behaviour of the scattering length lies in the bound states

of the theory. It’s a simple matter to construct l = 0 bound states. We solve the

Schrödinger equation with the form

rψ(r) =

{
A sin(

√
γ2 − λ2r) r < a

Be−λr r > a

The two solutions have the same energy E = −ℏ2λ2/2m. Matching the logarithmic

derivatives across r = a gives

tan(
√
γ2 − λ2a) = −

√
γ2 − λ2
λ

(6.51)

This structure of the solutions is similar to what we saw in Section 6.1.4. Indeed, if

we write q2 = γ2− λ2, then these equations take the same form as (6.16) that describe

odd-parity states in one-dimension. In particular, this means that if the potential is

too shallow then no bound states exist. As γ gets larger, and the potential gets deeper,

bound states start to appear. They first arise when λ = 0 and tan(γa) =∞, so that

γ = γ⋆ =

(
n+

1

2

)
π

a
with n = 0, 1, . . .
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This coincides with the values for which the scattering length (6.50) diverges. For γ

slightly less than γ⋆, the bound state has not yet appeared and the scattering length

is very large and negative. For γ slightly greater than γ⋆, the new state exists and is

weakly bound, and the scattering length is large and positive. Meanwhile, when γ = γ⋆,

then there is a bound state which has energy E = 0. Such bound states are said to be

“at threshold”.

The incoming wave has energy slightly above E = 0 and mixes strongly with the

bound state – or almost bound state – with energy a little below E = 0. This is what

gives rise to the divergence in the cross-section. Specifically, when there is a bound

state exactly at threshold, tan δ0 → ∞ and so the phase shift is δ0 = (n + 1
2
)π. (Note

that at this point, we can no longer write δ0 ≈ −kas because as this is valid only for

kas ≪ 1, but as is diverging.) The s-wave cross-section saturates the unitarity bound

(6.37)

σ0 =
4π

k2

To understand why the formation of bound states gives rise to a divergent scattering

length, we can look at the analytic structure of the S-matrix at finite k. We know from

(6.48) that the phase shift is given by

tan(ka+ δ0) =
k√

k2 + γ2
tan(

√
k2 + γ2a) ≡ f(k)

Rearranging, we get the s-wave component of the S-matrix

S0(k) = e2iδ0 = e−2ika 1 + if(k)

1− if(k)
The S-matrix has a pole at f(k) = −i, or for values of k such that

tan(
√
k2 + γ2a) =

√
k2 + γ2

ik
(6.52)

This has no solutions for real k. However, it does have solutions along the positive

imaginary k axis. If we set k = iλ, the equation (6.52) coincides with the condition for

bound states (6.51).

Close to the pole, the S-matrix takes the form

S0(k) = e2iδ0 =
iλ+ k

iλ− k
When the bound state approaches threshold, λ is small and this form is valid in the

region k = 0. For k ≪ λ, we can expand in k/λ to find δ0 ≈ −k/λ, which tells us that

we should indeed expect to see a divergent scattering length as = 1/λ.
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Figure 40: The cross-section for neutron scattering off U-235.

When neutrons scatter off large nuclei at low-energies they are very close to forming

a threshold bound state. The total cross-section for neutron scattering off uranium 235

is shown in the figure7. You can see the large enhancement of the cross-section. This

is partly due to the bound state, although it is complicated by the presence of a large

number of resonances whose effects we’ll discuss in the next section.

6.2.7 Resonances

We already met the idea of resonances in Section 6.1.5. These are unstable bound

states, which appear as poles of the S-matrix in the lower-half complex plane. Here we

see how these resonances affect scattering in 3d.

It’s not hard to construct examples which exhibit resonances. Indeed, the attractive,

spherical potential (6.44) which has bound states also exhibits resonances. These don’t

occur for s-waves, but only for higher l, where the effective potential includes an effec-

tive, repulsive angular momentum barrier. The algebra is not conceptually any more

difficult than what we did above, but in practice rapidly becomes a blur of spherical

Bessel functions.

Alternatively, we could look at the somewhat simpler example of a delta-function

cage of the form V (r) = V0δ(r − a), which is the obvious 3d generalisation of the

example we looked at in Section 6.1.5 and has s-wave resonances.

Rather than getting bogged down in any of these details, here we focus on the features

that are common to all these examples. In each case, the S-matrix has a pole. Thinking

in terms of energy E = ℏ2k2/2m, these poles occur at

E = E0 −
iΓ

2

7The data is taken from the Los Alamos on-line nuclear information tour.
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Figure 41: Distribution with Γ2 = 2... Figure 42: ...and with Γ2 = 15

This is the same result (6.17) that we saw in our 1d example. Close to the pole, the

S-matrix — which, by unitarity, is simply a phase — must take the form

S(E) = e2iδ(E) = e2iθ(E)E − E0 − iΓ/2
E − E0 + iΓ/2

(6.53)

Here e2iθ(E) is the so-called continuum contribution; it is due to the usual, run-of-the-

mill phase shift that arises from scattering off the potential. Here our interest is in

the contributions that come specifically from the resonance, so we’ll set θ = 0. From

(6.53), we have

cos 2δ =
(E − E0)

2 − Γ2/4

(E − E0)2 + Γ2/4
⇒ sin2 δ =

Γ2

4(E − E0)2 + Γ2

From this we can read off the contribution to the total cross-section using (6.36). If

the pole occurs for a partial wave with angular momentum l, we have

σT ≈
4π

k2
(2l + 1)

Γ2

4(E − E0)2 + Γ2

This distribution is plotted in the figure, with E0 = 4 and Γ2 = 2 and 15. ( Remember

that there is an extra factor of E sitting in the k2 in the formula above). It is called the

Breit-Wigner distribution, or sometimes the Lorentzian distribution (although, strictly

speaking, neither of these has the extra factor of 1/k2). It exhibits a clear peak at

E = E0, whose width is given by Γ/2. Comparing to our discussion in Section 6.1.5,

we see that the lifetime of the resonance can be read off from the width of the peak:

the narrower the peak, the longer lived the resonance.

The Breit-Wigner distribution is something of an iconic image in particle physics

because this is the way that we discover new particles. To explain this fully would

require us to move to the framework of quantum field theory, but we can get a sense

– 224 –



Figure 43: The cross-section for the Z-

boson.

Figure 44: And for the Higgs boson.

for what’s going on from what we’ve seen above. The key fact is that most particles

in Nature are not stable. The exceptions are the electron, the proton, neutrinos and

photons. All other decay with some lifetime τ . When we collide known particles —

typically electrons or protons — we can create new particles which, since they are

unstable, show up as resonances. The energy E0 corresponds to the mass of the new

particle through E0 = mc2, while the lifetime is seen in the width, τ = 1/Γ.

Two examples are shown in the figures. The left-hand figure shows the cross-section,

now measured in pico-barns = 10−40 m2, for high-energy electron-positron scattering.

We see a large resonance peak which sits at a centre of mass energy E0 ≈ 91 GeV

with width Γ ≈ 2.5 GeV . Since we’re measuring the width in unit of energy, we need

a factor of ℏ to convert to the lifetime

τ =
ℏ
Γ

Using ℏ ≈ 6.6× 10−16 eV , we find the lifetime of the Z-boson to be τ ≈ 3× 10−25 s.

The right-hand figure shows the 2012 data from the discovery of the Higgs boson,

with mass E0 ≈ 125 GeV . I should confess that the experiment doesn’t have the

resolution to show the Breit-Wigner shape in this case. The best that can be extracted

from this plot is a bound on the width of Γ < 17 MeV or so, while the true width is

predicted by theory to be Γ ∼ 4 MeV .

6.3 The Lippmann-Schwinger Equation

So far, we’ve developed the machinery necessary to compute cross-sections, but our

examples have been rather artificial. The interactions between particles do not look
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like spherical potential wells or shells of delta-functions. Instead, they are smooth po-

tentials V (r), such as the Coulomb or Yukawa potentials. We would like to understand

scattering in these more realistic settings.

In principle, this is straightforward: you simply need to solve the relevant Schrödinger

equation, impose regularity at the origin, and then read off the appropriate phase shifts

asymptotically. In practice, the solution to the Schrödinger equation is rarely known

analytically. (A counterexample to this is the Coulomb potential which will be discussed

in Section 6.4.) In this section, we present a different approach to scattering that makes

use of Green’s functions. This provides a platform to develop a perturbative approach

to understanding scattering for potentials that we actually care about. Moreover, these

Green’s functions methods also have applications in other areas of physics.

Our starting point is the Schrödinger equation[
− ℏ2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r) (6.54)

We’ll briefly use a more formal description of this equation, in order to write the

Lippmann-Schwinger equation in its most general form. We’ll then revert back to the

form (6.54) which, for the purposes of these lectures, is all we really care about. With

this in mind, we write the Schrödinger equation as

(H0 + V )|ψ⟩ = E|ψ⟩

The idea here is that we’ve split the Hamiltonian up into a piece that is simple to

solve – in this case H0 = −ℏ2∇2/2m – and a more complicated piece, V . Trivially

re-arranging this equation gives

(E −H0)|ψ⟩ = V |ψ⟩ (6.55)

We can then formally re-arrange this equation once more to become

|ψ⟩ = |ϕ⟩+ 1

E −H0

V |ψ⟩ (6.56)

Here |ϕ⟩ is a zero mode which obeys H0|ϕ⟩ = E|ϕ⟩. If (6.56) is multiplied by E −H0

then the state |ϕ⟩ is annihilated and we get back to (6.55). However, the inverse

quantum operator (E − H0)
−1 is somewhat subtle and, as we will see below, there is

very often an ambiguity in its definition. This ambiguity is resolved by writing this

inverse operator as (E − H0 + iϵ)−1, and subsequently taking the limit ϵ → 0+. We

then write

|ψ⟩ = |ϕ⟩+ 1

E −H0 + iϵ
V |ψ⟩ (6.57)

– 226 –



This is the Lippmann-Schwinger equation. It is not really a solution to the Schrödinger

equation (6.54) since |ψ⟩ appears on both sides. It is more a rewriting of the Schrödinger

equation, but one which gives us a new way to move forward.

The Green’s Function

Let’s now write down the Lippmann-Schwinger equation for our Schrödinger equation

(6.54). We want the inverse operator (E − H0)
−1. But this is precisely what we call

the Green’s function G0. It obeys(
E +

ℏ2

2m
∇2

)
G0(E; r, r

′) = δ(r− r′)

The formulae will be somewhat simpler if we scale out the factor ℏ2/2m. We write

E =
ℏ2k2

2m

so that (
∇2 + k2

)
G0(k; r, r

′) =
2m

ℏ2
δ(r− r′) (6.58)

We can solve for this Green’s function using the Fourier transform. First, we note that

translational invariance ensures that G0(k; r, r
′) = G0(k; r − r′). Then we define the

Fourier transform

G̃0(k;q) =

∫
d3x e−iq·xG0(k;x) ⇒ G0(k;x) =

∫
d3q

(2π)3
eiq·x G̃0(k;q)

Plugging this into our formula (6.58), we have

(−q2 + k2)G̃(k;q) =
2m

ℏ2
⇒ G̃0(k;q) = −

2m

ℏ2
1

q2 − k2

So it’s simple to get the Green’s function in momentum space. Now we must invert it.

We have

G0(k;x) = −
2m

ℏ2

∫
d3q

(2π)3
eiq·x

q2 − k2

Here we run into the ambiguity that we promised above. When we do the integral

over q, we run into a singularity whenever q2 = k2. To define the integral, when we

integrate over q = |q|, we should define a contour in the complex q plane which skips

around the pole. We do this through the so-called “iϵ prescription” which, as the name

suggests, replaces the integral with

G+
0 (k;x) = −

2m

ℏ2

∫
d3q

(2π)3
eiq·x

q2 − k2 − iϵ
Where we subsequently take ϵ→ 0+. This shifts the pole slightly off the real q axis.
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The simplest way to do this integral is to go to polar coordinates for the q variable.

We have

G+
0 (k;x) = −

2m

ℏ2
1

(2π)3

∫ 2π

0

dϕ

∫ +1

−1

d(cos θ)

∫ ∞

0

dq
q2 eiqx cos θ

q2 − k2 − iϵ

= −2m

ℏ2
1

(2π)2

∫ ∞

0

dq
q

ix

eiqx − e−iqx

q2 − k2 − iϵ

= −2m

ℏ2
1

(2π)2
1

ix

∫ ∞

−∞
dq

qeiqx

(q − k − iϵ)(q + k + iϵ)

where we’re allowed to factorise the denominator in

k+iε

q

ε−k−i

Figure 45:

this way, with k > 0, only because we’re ultimately

taking ϵ → 0+. We can now complete the derivation

by contour integral. Since x > 0, we can complete the

contour in the upper half-plane, picking up the residue

from the pole at q = k+iϵ. This gives our final answer,

G+
0 (k; r− r′) = −2m

ℏ2
1

4π

e+ik|r−r′|

|r− r′|
(6.59)

Note that had we chosen to add +iϵ rather than −iϵ to the denominator, we would

find the alternative Green’s function G−
0 (k;x) ∼ e−ikx/4πx. We will justify the choice

of G+
0 below.

Our Lippmann-Schwinger Equation

To finally write down the Lippmann-Schwinger equation, we need to determine the

state |ϕ⟩ which is annihilated by E − H0. But, for us, this is simply the plane wave

solution

ϕ(r) = eik·r

We can now write the formal Lippmann-Schwinger equation (6.57) in more concrete

form. It becomes

ψ(k; r) = eik·r − 2m

ℏ2

∫
d3r′

e+ik|r−r′|

4π|r− r′|
V (r′)ψ(k; r′) (6.60)

It is simple to check that acting on this equation with the operator (∇2 + k2) indeed

brings us back to the original Schrödinger equation (6.54). The Lippmann-Schwinger

equation is an integral equation, a reformulation of the more familiar Schrödinger dif-

ferential equation. It is not solution to the Schrödinger equation because we still have

to figure out what ψ is. We’ll offer a strategy for doing this in Section 6.3.1.
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The equation (6.60) has a very natural interpretation. The first term is simply the

ingoing wave with momentum ℏk. The second term is the scattered wave. Note that

the factor eik|r−r′| tells us that this wave is moving outwards from the point r′. Had we

instead chosen the Green’s function G−
0 , we would have found a wave moving inwards

from infinity of the form e−ik|r−r′|. This is unphysical. This is the reason that we pick

the −iϵ prescription rather than +iϵ.

To make contact with our earlier discussion of scattering, we look at the asymptotic

form of this outgoing wave at r → ∞. For this to work, we’ll assume that V (r′) has

support only in some finite region. We can then take the limit r ≫ r′ and expand

|r− r′| =
√
r2 − 2r · r′ + r′ 2 ≈ r − r · r′

r

With V (r′) localised within some region, it makes sense to perform this expansion inside

the integral. In this approximation the Green’s function (6.59) can be written as

G+
0 (k; r− r′) ≈ −2m

ℏ2
1

4π

e+ikr

r
e−ikr̂·r

′

and the Lippmann-Schwinger equation then becomes

ψ(k; r) ∼ eik·r − 2m

ℏ2
1

4π

[∫
d3r′ e−ikr̂·r

′
V (r′)ψ(k; r′)

]
eikr

r

Although we derived this by assuming that V (r) has compact support, we can actually

be a little more relaxed about this. The same result holds if we require that V (r′)→ 0

suitably quickly as r′ →∞. Any potential which falls off exponentially, or as a power-

law V (r) ∼ 1/rn with n ≥ 2, can be treated in this way. Note, however, that this

excludes the Coulomb potential. We will deal with this separately in Section 6.4.

If we set the ingoing wave to be along the z-axis, k = kẑ, then this takes the

asymptotic form (6.25) that we discussed previously

ψ(r) ∼ eikz + f(θ, ϕ)
eikr

r
(6.61)

The upshot of this analysis is that we identify the scattering amplitude as

f(θ, ϕ) = −2m

ℏ2
1

4π

∫
d3r′ e−ikr̂·r

′
V (r′)ψ(k; r′)

where θ and ϕ are the usual polar angles such that r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ).

This gives a simple way to compute the scattering amplitude, but only if we already

know the form of the wavefunction ψ(r′) in the scattering region where V (r′) ̸= 0. Our

next task is to figure out how to compute ψ(r′).
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An Equation for Bound States

Above we’ve focussed on scattering states with energy E = ℏ2k2/2m > 0. However,

it is not difficult to repeat everything for bound states with energy E = −ℏ2λ2/2m.

Indeed, in this case there is no ambiguity in the definition of the Green’s function. We

find that bound states must obey the integral equation

ψ(r) =
2m

ℏ2

∫
d3r′

e−λ|r−r′|

4π|r− r′|
V (r′)ψ(r′)

We won’t attempt to solve this equation; instead our interest will focus on the Lippmann-

Schwinger equation for scattering states (6.60).

6.3.1 The Born Approximation

In this section we describe a perturbative solution to the Lippmann-Schwinger equation,

ψ(k; r) = eik·r +

∫
d3r′ G+

0 (k; r− r′)V (r′)ψ(k; r′) (6.62)

This solution is known as the Born series.

We write ψ as a series expansion

ψ(r) =
∞∑
n=0

ϕn(r) (6.63)

where we take the leading term to be the plane wave

ϕ0(r) = eik·r

This series solves (6.62) if the ϕn obey the recursion relation

ϕn+1(r) =

∫
d3r′ G+

0 (k; r− r′)V (r′)ϕn(r
′)

We will not be very precise here about the convergent properties of this series. Roughly

speaking, things will work nicely if the potential V is small, so each successive term is

smaller than those preceding it.

The Born approximation consists of taking just the leading order term ϕ1 in this

expansion. (Strictly speaking this is the first Born approximation; the nth Born ap-

proximation consists of truncating the series at the nth term.) This is

ψ(r) = eik·r − 2m

ℏ2
1

4π

[∫
d3r′ eiq·r

′
V (r′)

]
eikr

r
(6.64)
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where

q = k− kr̂

can be thought of as the momentum transferred from the incoming wave to the outgoing

wave. With this in mind, it’s traditional to define the momentum of the outgoing wave

to be

k′ = kr̂

so that q = k− k′. Comparing the Born approximation (6.64) to the asymptotic form

(6.61), we see that the scattering amplitude is simply the Fourier transform of the

potential,

f(θ, ϕ) ≈ f0(θ, ϕ) = −
2m

ℏ2
1

4π

[∫
d3r′ eiq·r

′
V (r′)

]
≡ − m

2πℏ2
Ṽ (q)

Note that the scattering amplitude is a function of θ and ϕ,

k’

θ

φk

Figure 46:

but these variables are somewhat hidden on the notation of the

right-hand side. They’re sitting in the definition of q, with

k · k′ = k2 cos θ, and the variable ϕ determining the relative

orientation as shown in the figure. As we’ve seen before, for a

central potential V (r) = V (r), the resulting scattering ampli-

tude will be independent of ϕ. Because the angular variables

are somewhat disguised, the scattering amplitude is sometimes

written as f(k,k′) instead of f(θ, ϕ). Indeed, we’ll adopt this notation in Section 6.5.

Finally, the cross-section in the Born approximation is simply

dσ

dΩ
≈ |f0|2 =

( m

2πℏ2
)2
|Ṽ (q)|2 (6.65)

There’s some physics in this simple formula. Suppose that your potential has some

short-distance structure on scales ∼ L. Then the Fourier transform Ṽ (q) is only sensi-

tive to this when the momentum transfer is of order q ∼ 1/L. This is a manifestation

of the uncertainty principle: if you want to probe short distance physics, you need high

momentum transfer.

6.3.2 The Yukawa Potential and the Coulomb Potential

At long distances, the strong nuclear force between, say, a proton and a neutron is well

modelled by the Yukawa potential

V (r) =
Ae−µr

r
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Figure 47: The cross-section for the

Yukawa potential...

Figure 48: ...and for the Coulomb poten-

tial.

where 1/µ is said to be the range of the force. We can compute the Fourier transform

using the same kind of contour methods that we used in the previous section. We have

Ṽ (q) =
4πA

q2 + µ2

Writing this in terms of the scattering angle θ, we recall that q = k− k′ with k′ = kr̂,

so that

q2 = 2k2 − 2k · k′ = 2k2(1− cos θ) = 4k2 sin2(θ/2)

If we translate from momentum k to energy E = ℏ2k2/2m, then from (6.65), we have

the leading order contribution to the cross-section for the Yukawa potential given by

dσ

dΩ
=

(
2Am

ℏ2µ2 + 8mE sin2(θ/2)

)2

(6.66)

This is shown in the left-hand figure (for values A = m = ℏµ = 1 and E = 1/4).

An Attempt at Rutherford Scattering

It’s tempting to look at what happens when µ→ 0, so that the Yukawa force becomes

the Coulomb force. For example, for electron-electron or proton-proton scattering, the

strength of the Coulomb force is A = e2/4πϵ0. In this case, the cross-section (6.66)

becomes,

dσ

dΩ
=

(
A

4E

)2
1

sin4(θ/2)
(6.67)

This is shown in the right-hand figure (with the same values). Note that there is an

enhancement of the cross-section at all scattering angles, but a divergence at forward

scattering.
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Rather remarkably, the quantum result (6.67) agrees with the classical cross-section

that we found in (6.22)! This is a surprise and is special to the Coulomb potential.

Rutherford was certainly a great scientist but, like many other great scientists before

him, he had his fair share of luck.

In fact, Rutherford’s luck ran deeper than you might think. It turns out that the

Born approximation is valid for the Yukawa potential in certain regimes, but is never

valid for the Coulomb potential! The difficulty stems from the long range nature of

the Coulomb force which means that the plane wave solutions ϕ0 ∼ eik·r are never

really good approximations to the asymptotic states. We will describe the correct

treatment of the Coulomb potential in Section 6.4 where we will see that, although our

approximation wasn’t valid, the result (6.67) is correct after all.

6.3.3 The Born Expansion

One can continue the Born expansion to higher orders. In compressed notation, the

solution (6.63) takes the form

ψ = ϕ0 +

∫
G+

0 V ϕ0 +

∫ ∫
G+

0 V G
+
0 V ϕ0 +

∫ ∫ ∫
G+

0 V G
+
0 V G

+
0 V ϕ0 + . . .

This has a natural interpretation. The first term describes the incident plane wave

which doesn’t scatter at all. The second term describes the wave scattering once of

the potential, before propagating by G+
0 to the asymptotic regime. The third term

describes the wave scattering off the potential, propagating some distance by G+
0 and

then scattering for a second time before leaving the region with the potential. In

general, the term with n copies of V should be thought of as the wave scattering n

times from the potential region.

There’s a useful diagrammatic way to write the resulting scattering amplitude. It is

given by

f(k,k′) =
kk’

k’−k

+
k’ q k

k’−q q−k

+
k’ kqq’

+ . . .

Each diagram is shorthand for an integral. Every black dot describes an insertion

p = Ũ(p)
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while each line describes an insertion of

q
=

−1
q2 − k2 − iϵ

Meanwhile, for each internal line we include the integral

− 1

4π

∫
d3q

(2π)3

Although we’re dealing with wave scattering, it’s tempting to think of the lines as

describing the trajectory of a particle. Indeed, this diagrammatic picture is a precursor

to Feynman diagrams that occur in quantum field theory, where there’s a much closer

connection to the underlying particles.

6.4 Rutherford Scattering

“How can a fellow sit down at a table and calculate something that would

take me – me – six months to measure in a laboratory?”

Ernest Rutherford

Historically, some of the most important scattering problems in particle physics

involved the Coulomb potential. This is the problem of Rutherford scattering. Yet,

as we mentioned above, none of the techniques that we’ve mentioned so far are valid

for the Coulomb potential. This is mitigated somewhat by the fact that we get the

right answer whether we work classically (6.22) or using the Born approximation (6.67).

Nonetheless, this is a little unsatisfactory. After all, how do we know that this is the

right answer!

Here we show how to do Rutherford scattering properly. We want to solve the

Schrödinger equation (
− ℏ2

2m
∇2 +

A

r

)
ψ(r) = Eψ(r)

where A > 0 for repulsive interactions and A < 0 for attractive interactions. It will

prove useful to rewrite this as(
∇2 + k2 − 2γk

r

)
ψ(r) = 0 (6.68)

where, as usual, E = ℏ2k2/2m while γ = mA/ℏ2k is a dimensional parameter which

characterises the strength of the Coulomb force.
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The Asymptotic Form of the Wavefunction

Let’s start by understanding what the wavefunctions look like asymptotically. Repeat-

ing the analysis of Section 6.2.3, the radial wavefunction Rl(r) satisfies(
d2

dr2
+

2

r

d

dr
+ k2 − l(l + 1)

r2
− 2γk

r

)
Rl(r) = 0

Already here we can see what the issue is. At large distances, r →∞, the Coulomb force

is more important than the angular momentum barrier. We saw in previous sections

that when γ = 0, the asymptotic form of the wavefunction is given by Rl(r) = e±ikr/r

regardless of the value of l. However, when γ ̸= 0 we have to revisit this conclusion.

With the previous solution in mind, we will look for solutions which asymptotically

take the form

Rl(r) ∼
e±ikr+g(r)

r

for some function g(r). Inserting this ansatz, we find that g(r) must satisfy

d2g

dr2
+

(
dg

dr

)2

± 2ik
dg

dr
=

2γk

r

But, for now, we care only about the asymptotic expression where the left-hand side is

dominated by the last term. We then have

±idg
dr

=
γ

r
as r →∞

which is solved, up to some constant, by g = ∓iγ log(kr). Clearly this diverges as

r →∞ and so should be included in the asymptotic form. We learn that asymptotically

the radial wavefunctions take the form

Rl(r) ∼
e±i(kr−γ log(kr))

r

This extra logarithm in the phase of the wavefunction means that the whole framework

we described previously needs adjusting.

Note that this same analysis tells us that our previous formalism for scattering works

fine for any potential V (r) ∼ 1/rn with n ≥ 2. It is just the long-range Coulomb

potential that needs special treatment.
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6.4.1 The Scattering Amplitude

To compute the amplitude for Rutherford scattering, we don’t need any new conceptual

ideas. But we do need to invoke some technical results about special functions. This

is because the solution to the Schrödinger equation (6.68) can be written as

ψ(r) = eik·re−πγ/2Γ(1 + iγ) 1F1

(
− iγ; 1; i(kr − k · r)

)
where 1F1

(
a; b;w

)
is the confluent hypergeometric function, defined by the series ex-

pansion

1F1

(
a; b;w

)
= 1 +

a

b
w +

a(a+ 1)

b(b+ 1)

w2

2!
+
a(a+ 1)(a+ 2)

b(b+ 1)(b+ 2)

w3

3!
+ . . .

We won’t prove that this is a solution to the Schrödinger equation. Moreover, the only

fact we’ll need about the hypergeometric function is its expansion for large |w|. For

our solution, this is an expansion in 1/(kr− k · r) and so is valid at large distance, but

not along the direction of the incident beam k. If we take k = kẑ, we have

ψ(r) ∼ eikz+iγ log(k(r−z)) − γ

k(r − z)
Γ(1 + iγ)

Γ(1− iγ)
eikr−iγ log(k(r−z)) + . . .

where the + . . . are corrections to both terms which are suppressed by 1/k(r− z). This
is now very similar to our usual asymptotic form (6.61), but with the corrected phases.

The first term describes the ingoing wave, the second term the scattered outgoing wave.

We can therefore write

ψ(r) ∼ eikz+iγ log(k(r−z)) + f(θ)
eikz−iγ log(k(r−z))

r

where the scattering amplitude is given by

f(θ) = −γ
k

Γ(1 + iγ)

Γ(1− iγ)
r

r − z
= − γ

2k

Γ(1 + iγ)

Γ(1− iγ)
1

sin2(θ/2)
(6.69)

We learn that the cross-section is

dσ

dΩ
= |f(θ)|2 =

(
mA

2ℏ2k2

)2
1

sin4(θ/2)

This is the same result as we saw using the invalid Born approximation (6.67) and the

same result that we saw from a classical analysis (6.22). This shouldn’t give you the

wrong idea. In most situations if you use the wrong method you will get the wrong

answer! The Coulomb potential is an exception.
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Recovering the Hydrogen Atom

There’s a rather nice exercise we can do with the scattering amplitude (6.69). When

γ < 0, the Coulomb potential is attractive and has bound states. Moreover, these

bound states are simply those of the hydrogen atom that we met in our first course on

quantum mechanics. From our earlier analysis, we should be able to recover this from

the poles in the scattering amplitude.

These arise from the gamma function Γ(z) which has no zeros, but has poles at

z = 0,−1,−2, . . .. The scattering amplitude therefore has poles when

1 + iγ = −(n− 1) ⇒ k = −i mA
ℏ2

1

n
with n = 1, 2, 3, . . .

For an attractive potential with A < 0, these poles lie along the positive imaginary

k-axis, as they should. We see that they correspond to bound states with energy

En =
ℏ2k2

2m
= −mA

2

2ℏ2
1

n2

This, of course, is the familiar spectrum of the hydrogen atom.

6.5 Scattering Off a Lattice

Finally, we come to an important question: how do we know that solids are made of

lattices? The answer, of course, is scattering. Firing a beam of particles — whether

neutrons, electrons or photons in the X-ray spectrum — at the solid reveals a char-

acteristic diffraction pattern. Our goal here is to understand this within the general

context of scattering theory.

Our starting point is the standard asymptotic expression describing a wave scattering

off a central potential, localised around the origin,

ψ(r) ∼ eik·r + f(k;k′)
eikr

r
(6.70)

Here we’re using the notation, introduced in earlier sections, of the scattered momentum

k′ = kr̂

The idea here is that if you sit far away in the direction r̂, you will effectively see a wave

with momentum k′. We therefore write f(k,k′) to mean the same thing as f(k; θ, ϕ).
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Suppose now that the wave scatters off a potential which is localised at some other

position, r = R. Then the equation (6.70) becomes

ψ(r) ∼ eik·(r−R) + f(k,k′)
eik|r−R|

|r−R|

For r →∞, we can expand

|r−R| =
√
r2 +R2 − 2r ·R ≈ r

√
1− 2r ·R/r2 ≈ r − r̂ ·R

We then have

ψ(r) ∼ e−ik·R
[
eik·r + f(k,k′)e−i(k

′−k)·R eikr

r

]
(6.71)

The overall factor is unimportant, since our interest lies in the phase shift between

the incident wave and the scattered wave. We see that we get an effective scattering

amplitude

fR(k; r̂) = f(k,k′) eiq·R

where we have defined the transferred momentum

q = k− k′

Now let’s turn to a lattice of points Λ. Ignoring multiple scatterings, the amplitude is

simply the sum of the amplitudes from each lattice point

fΛ(k,k
′) = f(k,k′)

∑
R∈Λ

eiq·R (6.72)

The sum ∆(q) =
∑

R∈Λ e
iq·R has the nice property that it vanishes unless q lies in the

reciprocal lattice Λ⋆. This is simple to see: since we have an infinite lattice it must be

true that, for any vector R0 ∈ Λ,

∆(q) ≡
∑
R∈Λ

eiq·R =
∑
R∈Λ

eiq·(R−R0) = e−iq·R0∆(q)

This means that either e−iq·R0 = 1 or ∆(q) = 0. The former result is equivalent to the

statement that q ∈ Λ⋆. More generally,∑
R∈Λ

eiq·R ≡ ∆(q) = V ⋆
∑
Q∈Λ⋆

δ(q−Q) (6.73)

where V ⋆ is the volume of the unit cell of Λ⋆. We see that ∆(q) is very strongly

(formally, infinitely) peaked on the reciprocal lattice. (We met this same sum when

discussing lattices in Lectures on Solid State Physics.)
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The upshot of this discussion is a lovely result: there is scattering from a lattice if

and only if

k− k′ ∈ Λ⋆ (6.74)

This is known as the Laue condition. If the scattered momentum does not satisfy

this condition, then the interference between all the different scattering sites results

in a vanishing wave. Only when the Laue condition is obeyed is this interference

constructive.

k

k’q

O

Figure 49: The Ewald sphere. Figure 50: Salt.

Alternatively, the Laue condition can be viewed as momentum conservation, with

the intuition that the lattice can only absorb momentum in Λ⋆.

Solutions to the Laue condition are not generic. If you take a lattice with a fixed

orientation and fire a beam with fixed k, chances are that there are no solutions to

(6.74). To see this, consider the reciprocal lattice as shown in the left-hand panel of

the figure. From the tip of k draw a sphere of radius k. This is sometimes known as

the Ewald sphere and its surface gives the possible transferred momenta q = k − k′.

There is scattering only if this surface passes through a point on the reciprocal lattice.

To get scattering, we must therefore either find a way to vary the incoming momen-

tum k, or find a way to vary the orientation of the lattice. But when this is achieved,

the outgoing photons k′ = kr̂ sit only at very specific positions. In this way, we get to

literally take a photograph of the reciprocal lattice! The resulting diffraction pattern

for salt (NaCl) which has a cubic lattice structure is shown in the right-hand panel.

The four-fold symmetry of the reciprocal lattice is clearly visible.

6.5.1 The Bragg Condition

There is an equivalent phrasing of the Laue condition in real space. Suppose that the

momentum vectors obey

k− k′ = Q ∈ Λ⋆
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Since Q is a lattice vector, so too is nQ for all n ∈ Z. Suppose that Q is minimal, so

that nQ is not a lattice a vector for any n < 1. Defining the angle θ by k ·k′ = k2 cos θ,

we can take the square of the equation above to get

2k2(1− cos θ) = 4k2 sin2(θ/2) = Q2 ⇒ 2k sin(θ/2) = Q

Figure 51: A quasi-crystal. Figure 52: DNA, Photograph 51.

We can massage this further. The vector Q ∈ Λ⋆ defines a set of parallel planes in Λ.

Known as Bragg planes, these are labelled by an integer n and defined by those a ∈ Λ

which obey a ·Q = 2πn. The distance between successive planes is

d =
2π

Q

Furthermore, the wavevector k corresponds to a wavelength λ = 2π/k. We learn that

the Laue condition can be written as the requirement that

d x

θ/2 θ/2

Figure 53:

λ = 2d sin(θ/2)

Repeating this argument for vectors nQ with n ∈ Z, we

get

nλ = 2d sin(θ/2)

This is the Bragg condition. It has a simple interpretation. For n = 1, we assume

that the wave scatters off two consecutive planes of the lattice, as shown figure. The

wave which hits the lower plane travels an extra distance of 2x = 2d sin(θ/2). The

Bragg condition requires this extra distance to coincide with the wavelength of light.

In other words, it is the statement that waves reflecting off consecutive planes interfere

constructively.
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The Bragg condition gives us licence to think about scattering of light off planes in

the lattice, rather than individual lattice sites. Moreover, it tells us that the wavelength

of light should be comparable to the atomic separation in the crystal. This means x-

rays. The technique of x-ray crystallography was pioneered by Max von Laue, who

won the 1914 Nobel prize. The Bragg law was developed by William Bragg, a fellow of

Trinity and director of the Cavendish. He shared the 1915 Nobel prize in physics with

his father, also William Bragg, for their development of crystallographic techniques.

X-ray crystallography remains the most important technique to determine the struc-

ture of materials. Two examples of historical interest are shown in the figures. The

picture on the left is something of an enigma since it has five-fold symmetry. Yet

there are no Bravais lattices with this symmetry! The diffraction pictures is revealing

a quasi-crystal, an ordered but non-periodic crystal. The image on the right was taken

by Rosalind Franklin and is known as “photograph 51”. It provided a major, and

somewhat controversial, hint to Crick and Watson in their discovery of the structure

of DNA.

6.5.2 The Structure Factor

Many crystals are described by a repeating ground of atoms, which each group sits on

an underlying Bravais lattice Λ. The atoms in the group are displaced from the vertex

of the Bravais lattice by a vector di. We saw several examples of this in the Lectures

on Solid State Physics. In such a situation, the scattering amplitude (6.72) is replaced

by

flattice(k,k
′) = ∆(q)S(q)

where

S(q) =
∑
i

fi(k,k
′)eiq·di

We have allowed for the possibility that each atom in the basis has a different scattering

amplitude fi(k,k
′). The function S(q) is called the geometric structure factor.

An Example: BCC Lattice

As an example, consider the BCC lattice viewed as a simple cubic lattice of size a,

with two basis vectors sitting at d1 = 0 and d2 = a
2
(1, 1, 1). If we take the atoms on

the points d1 and d2 to be identical, then the associated scattering amplitudes are also

equal: f1 = f2 = f .
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Figure 54: A BCC lattice as cubic lattice

+ basis.

Figure 55: The reciprocal as a cubic lat-

tice minus a basis.

We know that the scattering amplitude is non-vanishing only if the transferred mo-

mentum q lies on the reciprocal lattice, meaning

q =
2π

a
(n1, n2, n3) ni ∈ Z

This then gives the structure factor

S(q) = f
(
eiq·d1 + eiq·d2

)
= f

(
1 + eiπ

∑
i ni
)
=

{
2

∑
ni even

0
∑
ni odd

We see that not all points in the reciprocal lattice Λ⋆ contribute. If we draw the

reciprocal, simple cubic lattice and delete the odd points, as shown in the right-hand

figure, we find ourselves left with a FCC lattice. (Admittedly, the perspective in the

figure isn’t great.) But this is exactly what we expect since it is the reciprocal of the

BCC lattice.

Another Example: Diamond

A diamond lattice consists of two, interlaced FCC lattices with basis vectors d1 = 0

and d2 = a
4
(1, 1, 1). An FCC lattice has reciprocal lattice vectors b1 = 2π

a
(−1, 1, 1),

b2 =
2π
a
(1,−1, 1) and b3 =

2π
a
(1, 1,−1). For q =

∑
i nibi, the structure factor is

S(q) = f
(
1 + ei(π/2)

∑
i ni
)
=


2

∑
ni = 0 mod 4

1 + i
∑
ni = 1 mod 4

0
∑
ni = 2 mod 4

1− i
∑
ni = 3 mod 4

6.5.3 The Debye-Waller Factor

So far, we’ve treated the lattice as a fixed, unmoving object. But this is not realistic:

the underlying atoms can move. We would like to know what effect this has on the

scattering off a lattice.
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Let’s return to our result (6.72) for the scattering amplitude off a Bravais lattice Λ,

fΛ(k,k
′) = f(k,k′)

∑
n

eiq·Rn

where f(k,k′) is the amplitude for scattering from each site, q = k− k′, and Rn ∈ Λ.

Since the atoms can move, the position Rn are no longer fixed. We should replace

Rn → Rn + un(t)

where un describes the deviation of the lattice from equilibrium. In general, this de-

viation could arise from either thermal effects or quantum effects. In keeping with

the theme of these lectures, we will restrict to the latter. But this is conceptually

interesting: it means that the scattering amplitude includes the factor

∆̃(q) =
∑
n

eiq·Rn eiq·un

which is now a quantum operator. This is telling us something important. When a

particle – whether photon or neutron – scatters off the lattice, it can now excite a

phonon mode. The scattering amplitude is a quantum operator because it includes all

possible end-states of the lattice.

This opens up a whole slew of new physics. We could, for example, now start to

compute inelastic scattering, in which the particle deposits some energy in the lattice.

Here, however, we will content ourselves with elastic scattering, which means that the

the lattice sits in its ground state |0⟩ both before and after the scattering. For this, we

need to compute

∆̃(q) =
∑
n

eiq·Rn ⟨0|eiq·un(t)|0⟩ (6.75)

To proceed, we need to import some results from our discussion of phonons in the

Lectures on Solid State Physics. For simplicity, let’s consider a simple cubic lattice so

that the matrix element above factorises into terms in the x, y and z direction. For

each of these, we can use the formalism of one-dimensional lattice, in which we write

the Fourier expansion of the displacement as

un(t) = X0(t) +

√
ℏ

2mωlN

∑
l ̸=0

[
al e

−i(ωlt−klna) + a†l e
i(ωlt−klna)

]
(6.76)

where ωl is the natural frequency at which the lth atom oscillates.
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The normalisation
√

ℏ/2mωlN is for later convenience. Note the presence of ℏ: this
reflects the fact that the advertised convenience only becomes apparent in the quantum

theory. This means that we treat the displacement un as a quantum operator. Corre-

spondingly, we must also treat X0, al and a
†
l as quantum operators. The normalisation

factor ensures that the usual position-momentum commutation relations for un and u̇n
translate into simple commutation relations for al and a

†
l ,

[al, a
†
l′ ] = δl,l′ and [al, al′ ] = [a†l , a

†
l′ ] = 0

These are the familiar creation and annihilation operators of the harmonic oscillator.

The interpretation is that a†l creates a phonon of momentum kl and frequency ωl(k).

More details of this can be found in the phonon section of the Lectures on Solid State

Physics.

Now we are in a position to compute (6.75). The matrix element ⟨0|eiq·un|0⟩ is
independent of time and is also translationally invariant. This means that we can

evaluate it at t = 0 and at the lattice site n = 0. For a one-dimensional lattice with N

sites, the expansion (6.76) gives

u0 =
∑
k ̸=0

√
ℏ

2mNω(k)

(
a(k) + a†(k)

)
≡ A+ A†

The operators A and A† then obey

[A,A†] =
∑
k ̸=0

ℏ
2mNω(k)

Our goal now is to compute ⟨0|eiq(A+A†)|0⟩. For this we use the BCH formula,

eiq(A+A
†) = eiqA

†
eiqA e

1
2
q2[A†,A]

But the ground state of the lattice is defined to obey al|0⟩ = 0 for all l. This means

that eiqA|0⟩ = |0⟩. We end up with the result

⟨0|eiq·u0 |0⟩ = e−W (q) where W (q) =
∑
k

ℏq2

4mNω(k)

This is called the Debye-Waller factor. We see that the scattering amplitude becomes

fΛ(k,k
′) = e−W (q) f(k,k′)∆(q)

Note that, perhaps surprisingly, the atomic vibrations do not broaden the Bragg peaks

away from q ∈ Λ⋆. Instead, they only diminish their intensity.
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