Concepts in Theoretical Physics

University of Cambridge Part IA Mathematical Tripos

Dr Natalia Berloff and Dr David Tong

N.G.Berloff, D.Tong @damtp.cam.ac.uk

This course will provide an overview of theoretical physics with each lecture focusing on the essential elements of a different topic. Presentations for the lectures and suggestions for further reading can be found on the course website:

http://www.damtp.cam.ac.uk/user/tong/concepts.html

Schedule

• April 23: Principle of Least Action, David Tong

The principle of least action; Unification of physics; Feynman's sum over histories.

• April 28: Fluid Dynamics, Natalia Berloff

Continuum model. Conservation of mass and the Euler's equation. Incompressible potential flow. Vortex motion. Turbulence.

• April 30: Electromagnetism, Natalia Berloff

Fundamental problem of electromagnetic theory. Electric and magnetic fields. Maxwell's Equations. Gauss's Law. Ampere's Law. Faraday's Law of induction. Electromagnetic waves.

• May 5: Quantum Mechanics, David Tong

The meaning of the wavefunction; GHZ correlations (a.k.a. experiments that defy logic)

• May 7: Particle Physics, David Tong

Either: Description of the particle zoo, Symmetries, Group theory.

Or: What's going on with the LHC?

• May 12: General Relativity, David Tong

Idea of curved spacetime; Derivation of the Schwarzschild solution for black holes.

• May 14: Chaos and Integrability, Natalia Berloff

Chaos in deterministic equations. Lorenz attractor. Damped driven pendulum. Poincare section. Self-similar motion and scaling laws. Fractals. Cellular automaton: Game of Life. Integrability. Solitons of Korteweg-de Vries equation.

• May 19: Cosmology, David Tong

Some interesting subset of: What's the universe made of and how do we know? What happened at the big bang? Friedmann equations, Cosmic microwave background, String theory.