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Recommended Books and Resources

Cosmology textbooks sit in one of two camps. The introductory books do a good job

of describing the expanding universe, but tend to be less detailed on the hot Big Bang

and structure formation. Meanwhile, advanced books which cover these topics assume

prior exposure to both general relativity and statistical mechanics. This course sits

somewhere between the two.

The first two books below cover the material at an elementary level; the last three

are more advanced.

• Barbara Ryden, Introduction to Cosmology

A clearly written book that presents an excellent, gentle introduction to the expanding

universe, with subsequent chapters on thermal history and structure formation .

• Andrew Liddle An Introduction to Modern Cosmology

Another gentle introduction, and one that is especially good when describing expanding

spacetimes. However, it becomes more descriptive, and less quantitative, as the subject

progresses.

• Scott Dodelson Modern Cosmology

• Daniel Baumann Cosmology

Both of these are fantastic books: clear, detailed and comprehensive. I have a slight

preference for Daniel’s book, although in part this is because I’m proud of the blurb

that I wrote on the back cover.

• Steven Weinberg Cosmology

Weinberg is one of the smarter Nobel prize winners in physics. Here he offers a scholarly

account of the subject, devoid of pretty pictures and diagrams, and with a dogged

refusal to draw graphs, yet full of clarity and insight.

A number of further lecture notes are available on the web. Links can be found on

the course webpage: http://www.damtp.cam.ac.uk/user/tong/cosmo.html
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0. Introduction

All civilisations have an origin myth. We are the first to get it right.

Our origin myth goes by the name of the Big Bang theory. It is a wonderfully

evocative name, but one that seeds confusion from the off. The Big Bang theory

does not say that the universe started with a bang. In fact, the Big Bang theory has

nothing at all to say about the birth of the universe. There is a very simple answer to

the question “how did the universe begin?” which is “we don’t know”.

Instead our origin myth is more modest in scope. It tells us only what the universe

was like when it was very much younger. Our story starts from a simple observation:

the universe is expanding. This means, of course, that in earlier times everything was

closer together. We take this observation and push it to the extreme. As objects are

forced closer together, they get hotter. The Big Bang theory postulates that there

was a time, in the distant past, when the Universe was so hot that matter, atoms and

even nuclei melted and all of space was filled with a fireball. The Big Bang theory is

a collection of ideas, calculations and predictions that explain what happened in this

fireball, and how it subsequently evolved into the universe we see around us today.

The word “theory” in the Big Bang theory might suggest an element of doubt. This

is misleading. The Big Bang theory is a theory in the same way that evolution is a

theory. In other words, it happened. We know that the universe was filled with a

fireball for a very simple reason: we’ve seen it. In fact, not only have we seen it, we

have taken a photograph of it. Of course, this being science we don’t like to brag about

these things, so rather than jumping up and down and shouting “we’ve taken a fucking

photograph of the fucking Big Bang”, we instead wrap it up in dull technical words.

We call it the cosmic microwave background radiation. We may, as a community, have

underplayed our hand a little here. The photograph is shown in Figure 1 and contains

a wealth of information about what the universe was like when it was much younger.

As we inch further back towards the “t = 0” moment, known colloquially but inac-

curately as “the Big Bang”, the universe gets hotter and energies involved get higher.

One of the goals of cosmology is to push back in time as far as possible to get closer to

that mysterious “t = 0” moment. Progress here has been nothing short of astonishing.

As we will learn, we have a very good idea of what was happening a minute or so after

the Big Bang, with detailed calculations of the way different elements are forged in

the early universe in perfect agreeement with observations. As we go back further, the

observational evidence is harder to come by, but our theories of particle physics give

us a reasonable level of confidence back to t = 10−12 seconds after the Big Bang. As
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Figure 1: This is a photograph of the Big Bang.

we will see, there are also good reasons to think that, at still earlier times, there was a

period of very rapid expansion in the universe known as inflation.

It feels strange to talk with any level of seriousness about the universe when it was a

few minutes old, let alone at time t < 10−12 seconds. Nonetheless, there are a number

of clues surviving in the universe to tell us about these early times, all of which can be

explained with impressive accuracy by applying some simple and well tested physical

ideas to this most extreme of environments.

The purpose of these lectures is to tell the story above in some detail, to describe

13.8 billion years of history, starting when the Universe was just a fraction of a second

old, and extending to the present day.
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1. The Expanding Universe

Our goal in this section is an ambitious one: we wish to construct, and then solve, the

equations that govern the evolution of the entire universe.

When describing any system in physics, the trick is to focus on the right degrees of

freedom. A good choice of variables captures the essence of the problem, while ignoring

any irrelevant details. The universe is no different. To motivate our choice, we make

the following assumption: the universe is a dull and featureless place. To inject some

gravity into this proposal, we elevate it to an important sounding principle:

The Cosmological Principle: On the largest scales, the universe is
spatially homogeneous and isotropic.

Here, homogeneity is the property that the universe looks identical at every point in

space, while isotropy is the property that it looks the same in every direction. Note that

the cosmological principle refers only to space. The universe is neither homogenous nor

isotropic in time, a fact which underpins this entire course.

Why make this assumption? The primary reason is one of expediency: the universe

is, in reality, a complicated place with interesting things happening in it. But these

things are discussed in other courses and we will be best served by ignoring them. By

averaging over such trifling details, we are left with a description of the universe on the

very largest scales, where things are simple.

This averaging ignores little things, like my daily routine, and it is hard to imagine

that these have much cosmological significance. However, it also ignores bigger things,

like the distribution of galaxies in the universe, that one might think are relevant. Our

plan is to proceed with the assumption of simplicity and later, in Section 3, see how

we can start to add in some of the details.

The cosmological principle sounds eminently reasonable. Since Copernicus we have

known that, while we live in a very special place, we are not at the centre of everything.

The cosmological principle allows us to retain our sense of importance by asserting: “if

we’re not at the centre, then surely no one else is either”. You should, however, be

suspicious of any grand-sounding principle. Physics is an empirical science and in recent

decades we have developed technologies to the point where the cosmological principle

can be tested. Fortunately, it stands up pretty well. There are two main pieces of

evidence:
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Figure 2: The distribution of galaxies in a wedge in the sky, as measured by the 2dF redshift

survey. The distribution looks increasingly smooth on larger scales.

• The cosmic microwave background radiation (CMB) is the afterglow of the Big

Bang, an almost uniform sea of photons which fills all of space and provides a

snapshot of the universe from almost 14 billion years ago. This is important and

will be discussed in more detail in Section 2.2. The temperature of the CMB is1

TCMB ≈ 2.73 K

However, it’s not quite uniform. There are small fluctuations in temperature with

a characteristic scale

δT

TCMB

∼ 10−5

These fluctuations are depicted in the famous photograph shown in Figure 1,

taken by the Planck satellite. The fact that the temperature fluctuations are so

small is telling us that the early universe was extremely smooth.

• A number of redshift surveys have provided a 3d map of hundreds of thousands of

galaxies, stretching out to distances of around 2× 109 light years. The evidence

suggests that, while clumpy on small scales, the distribution of galaxies is roughly

homogeneous on distances greater than ∼ 3× 108 lightyears. An example of such

a galaxy survey is shown in Figure 2.

1The most accurate determination gives TCMB = 2.72548 ± 0.00057 K; See D.J. Fixsen, “The

Temperature of the Cosmic Microwave Background”, arXiv:0911.1955.
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A Sense of Scale

Before we proceed, this is a good time to pause and try to gain some sense of per-

spective about the universe. First, let’s introduce some units. The standard SI units

are hopelessly inappropriate for use in cosmology. The metre, for example, is officially

defined to be roughly the size of things in my house. Thinking slightly bigger, the aver-

age distance from the Earth to the Sun, also known as one Astronomical Unit (symbol

AU), is

1 AU ≈ 1.5× 1011 m

To measure distances of objects that lie beyond our solar sys-

1’’

1 AU

1 parsec

Figure 3: Not to scale.

tem, it’s useful to introduce further, farther units. A familiar

choice is the lightyear (symbol ly), given by

1 ly ≈ 9.5× 1015 m

However, a more commonly used unit among astronomers is

the parsec (symbol pc), which is based on the observed parallax

motion of stars as the Earth orbits the Sun. A parsec is defined

as the distance at which a star will exhibit one arcsecond of

parallax, which means it wobbles by 1/3600th of a degree in

the sky over the course of a year.

1 pc ≈ 3.26 ly

This provides a good unit of measurement to nearby stars. Our closest neighbour,

Proxima Centauri, sits at a distance of 1.3 pc. The distance to the centre of our galaxy,

the Milky Way, is around 8 × 103 pc, or 8 kpc. Our galaxy is home to around 100

billion stars (give or take) and is approximately 30 kpc across.

There are a large number of neighbouring dwarf galaxies, some of which are actu-

ally closer to us than the centre of the Milky Way. But the nearest spiral galaxy is

Andromeda, which is approximatey 1 Megaparsec (symbol Mpc) or one million parsecs

away. The megaparsec is one of the units of choice for cosmologists.

Galaxies are not the largest objects in the universe. They, in turn, gather into clusters

and then superclusters and various other filamentary structures. There also appear to

be enormous voids in the universe, and it seems plausible that there are more big things

to find. Currently, the largest such structures appear to be a few 100 Mpc or so across.
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Figure 4: Hubble ultra-deep field shows around 10,000 galaxies.

All of this is to say that we have to look at very large scales before the universe

appears to obey the cosmological principle, but it does finally get there. As we will see

later in this course, there is a limit to how big we can go. The size of the observable

universe is around

3000 Mpc ≈ 1026 m

and there seems to be no way to peer beyond this. The observable universe contains,

we think, around 100 billion galaxies, each of them with around 100 billion stars. It

is difficult to build intuition for numbers this big, and distances this vast. Some help

comes from the Hubble ultra-deep field, shown in Figure 4, which covers a couple of

arcminutes of sky, roughly the same as a the tip of a pencil held out at arms length.

The image shows around 10,000 galaxies, some no more than a single pixel, but each

containing around 100 billion suns, each of which is likely to play host to a solar system

of planets.

For more intuition about the size of the universe, we turn to the classics

“When you’re thinking big, think bigger than the biggest thing ever and

then some. Much bigger than that in fact, really amazingly immense, a

totally stunning size, real ’wow, that’s big’ time. It’s just so big that by

comparison, bigness itself looks really titchy. Gigantic multiplied by colossal

multiplied by staggeringly huge is the sort of concept we’re trying to get

across here.”

Douglas Adams
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1.1 The Geometry of Spacetime

The cosmological principle motivates us to treat the universe as a boring, featureless

object. Given this, it’s not obvious what property of the universe we have left to focus

on. The answer is to be found in geometry.

1.1.1 Homogeneous and Isotropic Spaces

The fact that space (and time) can deviate from the seemingly flat geometry of our

everyday experience is the essence of the theory general relativity. Fortunately, we

will need very little of the full theory for this course. This is, in large part, due to

the cosmological principle which allows us to focus on spatial geometries which are

homogeneous and isotropic. There are three such geometries:

• Flat Space: The simplest homogeneous and isotropic three-dimensional space

is flat space, also known as Euclidean space. We will denote it by R3.

We describe the geometry of any space in terms of a metric. This gives us a

prescription for measuring the distance between two points on the space. More

precisely, we will specify the metric in terms of the line element ds which tells us

the infinitesimal distance between two nearby points. For flat space, this is the

familiar Euclidean metric

ds2 = dx2 + dy2 + dz2 (1.1)

We’ll also work in a number of other coordinates systems, such as spherical polar

coordinates

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ (1.2)

with r ∈ [0,∞), θ ∈ [0, π] and ϕ ∈ [0, 2π). To compute the metric in these

coordinates, we relate small changes in (r, θ, ϕ) to small changes in (x, y, z) by

the Leibniz rule, giving

dx = dr sin θ cosϕ+ r cos θ cosϕ dθ − r sin θ sinϕ dϕ

dy = dr sin θ sinϕ+ r cos θ sinϕ dθ + r sin θ cosϕ dϕ

dz = dr cos θ − r sin θ dθ

Substituting these expressions into the flat metric (1.1) gives us the flat metric

in polar coordinates

ds2 = dr2 + r2(dθ2 + sin2 θ dϕ2) (1.3)
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• Positive Curvature The next homogeneous and isotropic space is also fairly

intuitive: we can take a three-dimensional sphere S3, constructed as an embedding

in four-dimensional Euclidean space R4

x2 + y2 + z2 + w2 = R2

with R the radius of the sphere. The sphere has uniform positive curvature. On

such a space, parallel lines will eventually meet.

We again have different choices of coordinates. One option is to retain the 3d

spherical polars (1.2) and eliminate w using w2 = R2− r2. A point on the sphere

S3 is then labelled by a “radial” coordinate r, with range r ∈ [0, R], and the two

angular coordinates θ ∈ [0, π] and ϕ ∈ [0, 2π). We can compute the metric on S3

by noting

w2 = R2 − r2 ⇒ dw = − r dr√
R2 − r2

The metric on the sphere is then inherited from the flat metric in R4. We sub-

stitute the expression above into the flat metric ds2 = dx2 + dy2 + dz2 + dw2 to

find the metric on S3,

ds2 =
R2

R2 − r2
dr2 + r2(dθ2 + sin2 θ dϕ2) (1.4)

Strictly speaking, this set of coordinates only covers half the S3, the hemisphere

with w ≥ 0.

Arguably a more natural set of coordinates are provided by the 4d general-

isation of the spherical polar coordinates (1.2). These are defined by writing

r = R sinχ, so

x = R sinχ sin θ cosϕ , y = R sinχ sin θ sinϕ

z = R sinχ cos θ , w = R cosχ (1.5)

Now a point on S3 is determined by three angular coordinates, χ, θ ∈ [0, π] and

ϕ ∈ [0, 2π). The metric becomes

ds2 = R2
[
dχ2 + sin2 χ(dθ2 + sin2 θ dϕ2)

]
(1.6)

Although we introduced the 3d sphere S3 by embedding it R4, the higher dimen-

sional space is a crutch that we no longer need. Worse, it is a crutch that can

– 8 –



be quite misleading. Both mathematically, and physically, the sphere S3 makes

sense on its own without any reference to a space in which it’s embedded. In par-

ticular, should we discover that the spatial geometry of our universe is S3, this

does not imply the physical existence of some ethereal R4 in which the universe

is floating.

• Negative Curvature Our final homogeneous and isotropic space is perhaps the

least familiar. It is a hyperboloidH3, which can again be defined as an embedding

in R4, this time with

x2 + y2 + z2 − w2 = −R2 (1.7)

This is a space of uniform negative curvature. Parallel lines diverge on a space

with negative curvature.

Once again, the metric is inherited from the embedding in R4, but this time

with signature (+++−), so ds2 = dx2+dy2+dz2−dw2 as befits the embedding

(1.7). Using the 3d coordinates (r, θ, ϕ), we have w2 = r2 +R2. The metric is

ds2 =
R2

R2 + r2
dr2 + r2(dθ2 + sin2 θ dϕ2) (1.8)

Alternatively, we can write r = R sinhχ, in which case the metric becomes

ds2 = R2
[
dχ2 + sinh2 χ(dθ2 + sin2 θ dϕ2)

]
(1.9)

It is often useful to write these metrics in a unified form. In the (r, θ, ϕ) coordinates,

we can write the general metric (1.3), (1.4) and (1.8) as

ds2 =
dr2

1− kr2/R2
+ r2(dθ2 + sin2 θ dϕ2) with k =


+1 Spherical

0 Euclidean

−1 Hyperbolic

(1.10)

Throughout these lectures, we will use k = −1, 0,+1 to denote the three possible spatial

geometries. Alternatively, in the coordinates (χ, θ, ϕ), the metrics (1.3), (1.6) and (1.9)

can be written in a unified way as

ds2 = R2
[
dχ2 + S2

k(χ)(dθ
2 + sin2 θ dϕ2)

]
with Sk(χ) =


sinχ k = +1

χ k = 0

sinhχ k = −1

(1.11)

where now χ is a dimensionless coordinate. (In flat space, we have to introduce an

arbitrary, fiducial scale R to write the metric in this form.)

– 9 –



Global Topology

We have identified three possible spatial geometries consistent with the cosmological

principle. Of these, S3 is a compact space, meaning that it has finite volume (which is

2π2R3). In contrast, both R3 and H3 are non-compact, with infinite volume.

In fact, it is straightforward to construct compact spaces for the k = 0 and k =

−1 cases. We simply need to impose periodicity conditions on the coordinates. For

example, in the k = 0 case we could identify the points xi = xi + Ri, i =, 1, 2, 3 with

some fixed Ri. This results in the torus T3.

Spaces constructed this way are homogenous, but no longer isotropic. For example,

on the torus there are special directions that bring you back to where you started

on the shortest path. This means that such spaces violate the cosmological principle.

More importantly, there is no observational evidence that they do, in fact, describe our

universe so we will not discuss them in what follows.

1.1.2 The FRW Metric

Our universe is not three-dimensional. It is four-dimensional, with time as the forth

coordinate. In special relativity, we consider the flat four-dimensional spacetime known

as Minkowski space, with metric2

ds2 = −c2 dt2 + dx2

with c the speed of light. This metric has the property that the distance between two

points in spacetime is invariant under Lorentz transformations; it is the same for all

inertial observers.

The Minkowski metric is appropriate for describing physics in some small region of

space and time, like the experiments performed here on Earth. But, on cosmological

scales, the Minkowski metric needs replacing so that it captures the fact that the

universe is expanding. This is straightforward. We replace the flat spatial metric dx2

with one of the three homogeneous and isotropic metrics that we met in the previous

section and write

ds2 = −c2 dt2 + a2(t)

[
1

1− kr2/R2
dr2 + r2(dθ2 + sin2 θ dϕ2)

]
(1.12)

This is the Friedmann-Robertson-Walker, or FRWmetric. The role of the dimensionless

scale factor a(t) is, as we shall see, to change distances over time.

2An introduction to special relativity can be found in Section 7 of the lectures on Dynamics and

Relativity. There we used the metric with opposite signature ds2 = +c2 dt2 − dx2.
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Figure 5: The expansion of the universe. The physical distance between fixed co-moving

coordinates increases with time.

There is a redundancy in the description of the metric. If we rescale coordinates as

a → λa, r → r/λ and R → R/λ then the metric remains unchanged. We use this to

set the scale factor evaluated at the present time t0 to unity,

a0 = a(t0) = 1

where the subscript 0 will always denote the value of a quantity evaluated today.

Consider a galaxy sitting at some fixed point point (r, θ, ϕ). We refer to the coor-

dinates (r, θ, ϕ) (or, equivalently, (χ, θ, ϕ)) on the 3d space as co-moving coordinates.

They are analogous to the Lagrangian coordinates used in fluid mechanics. The physical

(or proper) distance between the point (r, θ, ϕ) and the origin is then

dphys = a(t)

∫ r

0

1√
1− kr′ 2/R2

dr′ = a(t)Rχ (1.13)

However, there is nothing special about the origin, and the same scaling with a(t) is

seen for the distance between any two points. If we choose a function a(t) with ȧ > 0,

then the distance between any two points is increasing. This is the statement that

the universe is expanding: two galaxies, at fixed co-moving co-ordinates, will be swept

apart as spacetime stretches.

Importantly, the universe isn’t expanding “into” anything. Instead, the geometry

of spacetime, as described by the metric (1.12), is getting bigger, without reference to

anything which sits outside. Similarly, a metric with ȧ < 0 describes a contracting

universe. In Section 1.2, we will introduce the tools needed to calculate a(t). But first,

we look at some general features of expanding, or contracting universes.

The FRW metric is not invariant under Lorentz transformation. This means that

the universe picks out a preferred rest frame, described by co-moving coordinates. We
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can still shift this rest frame by translations (in flat space) or rotations, but not by

Lorentz boosts. Consider a galaxy which, in co-moving coordinates, traces a trajectory

x(t). Then, in physical coordinates, the position is

xphys(t) = a(t)x(t) (1.14)

The physical velocity is then

vphys(t) =
dxphys

dt
=
da

dt
x+ a

dx

dt
= Hxphys + vpec (1.15)

There are two terms. The first, which is due entirely to the expansion of the universe

is written in terms of the Hubble parameter,

H(t) =
ȧ

a

The second term, vpec, is referred to as the peculiar velocity and is describes the in-

herent motion of the galaxy relative to the cosmological frame, typically due to the

gravitational attraction of other nearby galaxies.

Our own peculiar velocity is vpec ≈ 400 km s−1 which is pretty much typical for a

galaxy. Meanwhile, the present day value of the Hubble parameter is

H0 ≈ 70 km s−1Mpc−1

This is, rather misleadingly, referred to as the Hubble constant. Clearly there is nothing

constant about it. Although, in fairness, it is pretty much the same today as it was

yesterday. It is also common to see the notation

H0 = 100h km s−1Mpc−1 (1.16)

and then to describe the value of the Hubble constant in terms of the dimensionless

number h ≈ 0.7. In this course, we’ll simply use the notation H0.

The Hubble parameter has dimensions of time−1, but is written in the rather unusual

units km s−1Mpc−1. This is telling us that a galaxy 1 Mpc away will be seen to be

retreating at a speed of 70 km s−1 due to the expansion of space. For nearby galaxies,

this tends to be smaller than their peculiar velocity. However, as we look further away,

the expansion term will dominate. The numbers above suggest that this will happen

at distances around 400/70 ≈ 5 Mpc.
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Figure 6: Hubble’s original data, from

1929, with a rather optimistic straight line

drawn through it.

Figure 7: Data from 1996, looking out to

much further distances.

If we ignore the peculiar velocities, and further assume that we can approximate the

Hubble parameter H(t) as the constant H0, then the velocity law (1.15) becomes a

linear relation between velocity and distance

vphys = H0 xphys (1.17)

This linear relationship is referred to as Hubble’s law; some data is shown in the figures3.

At yet further distances, we would expect the time dependence of H(t) to reveal itself.

We will discuss this in Section 1.4.

There is no obstacle in (1.17) to velocities that exceed the speed of light, |vphys| > c.

This may make you nervous. However, there is no contradiction with relativity and,

indeed, the entire framework that we have discussed above sits, without change, in the

full theory of general relativity. The statement that “nothing can travel faster than

the speed of light” is better thought of as “nothing beats light in a race”. Given two

objects at the same point, their relative velocity is always less than c. However, the

velocity vphys is measuring the relative velocity of two objects at very distant points

and, in an expanding spacetime, there is no such restriction.

1.1.3 Redshift

All our observational information about the universe comes to us through light waves

and, more recently, gravitational waves. To correctly interpret what we’re seeing, we

need to understand how such waves travel in an expanding spacetime.

3Both of these plots are taken from Ned Wright’s cosmology tutorial.
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In a spacetime metric, light travels along null paths with ds = 0. In the FRW metric

(1.12), light travelling in the radial direction (i.e. with fixed θ and ϕ) will follow a path,

c dt = ±a(t) dr√
1− kr2/R2

(1.18)

If we place ourselves at the origin, the minus sign describes light moving towards us.

Aliens on a distant planet, tuning in for the latest Buster Keaton movie, should use

the plus sign.

Suppose that a distant galaxy sits stationary in co-moving coordinate r1 and emits

light at time t1. We observe this signal at r = 0, at time t0, determined by solving the

integral equation

c

∫ t0

t1

dt

a(t)
=

∫ r1

0

dr√
1− kr2/R2

If the galaxy emits a second signal at time t1 + δt1, this is observed at t0 + δt0, with

c

∫ t0+δt0

t1+δt1

dt

a(t)
=

∫ r1

0

dr√
1− kr2/R2

The right-hand side of both of these equations is the same because it is written in

co-moving coordinates. We therefore have∫ t0+δt0

t1+δt1

dt

a(t)
−
∫ t0

t1

dt

a(t)
= 0 ⇒ δt1

a(t1)
=

δt0
a(t0)

= δt0 (1.19)

where, in the last equality, we’ve used the fact that we observe the signal today, where

a(t0) = 1. We see that the expansion of the universe means that the time difference

between the two emitted signals differs from the time difference between the two ob-

served signals. This has an important implication when applied to the wave nature of

light. Two successive wave crests are separated by a time

δt1 =
λ1
c

with λ1 the wavelength of the emitted light. Similarly, the time interval between two

observed wave crests is

δt0 =
λ0
c
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The result (1.19) tells us that the wavelength of the observed light differs from that of

the emitted light,

λ0 =
a(t0)

a(t1)
λ1 =

λ1
a(t1)

(1.20)

This is intuitive: the light is stretched by the expansion of space as it travels through

it so that the observed wavelength is longer than the emitted wavelength. This effect

is known as cosmological redshift. It shares some similarity with the Doppler effect,

in which the wavelength of light or sound from moving sources is shifted. However,

the analogy is not precise: the Doppler effect depends only on the relative velocity of

the source and emitter, while the cosmological redshift is independent of ȧ, instead

depending on the overall expansion of space over the light’s journey time.

The redshift parameter z is defined as the fractional increase in the observed wave-

length,

z =
λ0 − λ1
λ1

=
1− a(t1)

a(t1)
⇒ 1 + z =

1

a(t1)
(1.21)

As this course progresses, we will often refer to times in the past in terms of the redshift

z. Today we sit at z = 0. When z = 1, the universe was half the current size. When

z = 2, the universe was one third the current size.

The redshift is something that we can directly measure. Light from far galaxies come

with a fingerprint, the spectral absorption lines that reveal the molecular and atomic

makeup of the stars within. By comparing the frequencies of those lines to those on

Earth, it is a simple matter to extract z. As an aside, by comparing the relative

positions of spectral lines, one can also confirm that atomic physics in far flung places

works the same as on Earth, with no detected changes in the laws of physics or the

fundamental constants of nature.

1.1.4 The Big Bang and Cosmological Horizons

We will find that all our cosmological models predict a time in the past, tBB < t0,

where the scale factor vanishes, a(tBB) = 0. This point is colloquially referred to as

the Big Bang. The Big Bang is not a point in space, but is a point in time. It happens

everywhere in space.

We can get an estimate for the age of the Universe by Taylor expanding a(t) about

the present day, and truncating at linear order. Recalling that a(t0) = 1, we have

a(t) ≈ 1 +H0(t− t0) (1.22)
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This rather naive expansion suggests that the Big Bang occurs at

t0 − tBB = H−1
0 ≈ 4.4× 1017 s ≈ 1.4× 1010 years (1.23)

This result of 14 billion years is surprisingly close to the currently accepted value of

around 13.8 billion years. However, there is a large dose of luck in this agreement, since

the linear approximation (1.22) is not very good when extrapolated over the full age of

the universe. We’ll revisit this in Section 1.4.

Strictly speaking, we should not trust our equations at the point a(tBB) = 0. The

metric (1.12) is singular here, and any matter in the universe will be squeezed to infinite

density. In such a regime, our simple minded classical equations are not to be trusted,

and should be replaced by a quantum theory of matter and gravity. Despite much work,

it remains an open problem to understand the origin of the universe at a(tBB) = 0.

Did time begin here? Was there a previous phase of a contracting universe? Did the

universe emerge from some earlier, non-geometric form? We simply don’t know.

Understanding the Big Bang is one of the ultimate goals of cosmology. In the mean-

time, the game is to push as far back in time as we can, using the classical (and

semi-classical) theory of gravity that we trust. We will be able to reach scales a ≪ 1,

even if we can’t get all the way to a = 0, and follow the subsequent evolution of the

universe from the initial hot, dense state to the world we see today. This set of ideas,

is often referred to as the Big Bang theory, even though it tells us nothing about the

initial “Big Bang” itself.

The Size of the Observable Universe

The existence of a special time, tBB, means that there is a limit as to how far we can

peer into the past. In co-moving coordinates, the greatest distance rmax that we can see

is the distance that light has travelled since the Big Bang. From (1.18), this is given

by

c

∫ t

tBB

dt′

a(t′)
=

∫ rmax(t)

0

dr√
1− kr2/R2

The corresponding physical distance is

dH(t) = a(t)

∫ rmax(t)

0

dr√
1− kr2/R2

= c a(t)

∫ t

0

dt′

a(t′)
(1.24)

This is the size of the observable universe. Note that this size is not simply c(t −
tBB), which is the naive distance that light has travelled since the Big Bang. Indeed,

mathematically it could be that the integral on the left-hand side of (1.24) does not

converge at tBB, in which case the maximum distance rmax would be infinite.
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The distance dH is sometimes referred to as the particle horizon. The name mimics

the event horizon of black holes. Nothing inside the event horizon of a black hole

can influence the world outside. Similarly, nothing outside the particle horizon can

influence us today.

The Event Horizon

“It does seem rather odd that two or more observers, even such as sat on

the same school bench in the remote past, should in future, when they

have followed different paths in life, experience different worlds, so that

eventually certain parts of the experienced world of one of them should

remain by principle inaccessible to the other and vice versa.”

Erwin Schrödinger, 1956

The particle horizon tells us that there are parts of the universe that we cannot

presently see. One might expect that, as time progresses, more and more of spacetime

comes into view. In fact, this need not be the case.

One option is that the universe begins collapsing in the future, and there is a second

time tBC > t0 where a(tBC) = 0. This is referred to as the Big Crunch. In this case,

there is a limit on how far we can communicate before the universe comes to an end,

given by

c

∫ tBC

t

dt′

a(t′)
=

∫ rmax(t)

0

dr√
1− kr2/R2

Perhaps more surprisingly, even if the universe continues to expand and the FRWmetric

holds for t → ∞, then there could still be a maximum distance that we can influence.

The relevant equation is now

c

∫ ∞

t

dt′

a(t′)
=

∫ rmax(t)

0

dr√
1− kr2/R2

(1.25)

The maximum co-moving distance rmax is finite provided that the left-hand side con-

verges. For example, this happens if we have a(t) ∼ eHt as t→ ∞. As we will see later

in the course, this seems to be the most likely fate of our universe. As Schrödinger de-

scribed, it is quite possible that two friends who once played together as children could

move apart from each other, only to find that they’ve travelled too far and can never

return as they are inexorably swept further apart by the expansion of the universe. It’s

not a bad metaphor for life.
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Figure 8: The particle horizon defines the size of your observable universe.

In this context, the distance rmax(t) is called the (co-moving) cosmological event

horizon. Once again, there is the analogy with the black hole. Regions beyond the cos-

mological horizon are beyond our reach; if we choose to sit still, we will never see them

and never communicate with them. However, there are also important distinctions. In

contrast to the event horizon of a black hole, the concept of cosmological event horizon

depends on the choice of observer.

Conformal Time

The properties of horizons are perhaps best illustrated by introducing a different time

coordinate,

τ =

∫ t dt′

a(t′)
(1.26)

This is known as conformal time. If we also work with the χ spatial coordinate (1.11)

then the FRW metric takes the simple form

ds2 = a2(τ)
[
−c2dτ 2 +R2dχ2 +R2Sk(χ)

2(dθ2 + sin2 dϕ2)
]

with all time dependence sitting as on overall factor outside. This has a rather nice

consequence because if we draw events in the (cτ, Rχ) plane then light-rays, which

travel with ds2 = 0, correspond to 45◦ lines, just like in Minkowski space. This helps

visualise the causal structure of an expanding universe.

Suppose that we sit at some conformal time τ . A signal can be emitted no earlier

than τBB where the Big Bang singularity occurs. This then puts a restriction on how

far we can see in space, defined to be the particle horizon

Rχph = c(τ − τBB)

This is shown in Figure 8.
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Figure 9: The cosmological event horizon defines the events you can hope to influence.

Looking forward, the issue comes because the end of the universe, at t → ∞, corre-

sponds to a finite conformal time τend. This means that nothing we can do will be seen

beyond a maximum distance which defines the cosmological event horizon,

Rχeh = τend − τ

This is shown in Figure 9.

It turns out that conformal time is also a useful change of variable when solving the

equations of cosmology. We’ll see an example in Section 1.3.2.

1.1.5 Measuring Distance

These lectures are unapologetically theoretical. Nonetheless, we should ask how we

know certain facts about the universe. One of the most important challenges facing

observational astronomers and cosmologists is the need to accurately determine the

distance to various objects in the universe. This is crucial if we are to reconstruct the

history of the expansion of the universe a(t).

Furthermore, there is even an ambiguity in what we mean by “distance”. So far, we

have defined the co-moving distance Rχ and, in (1.13), the physical distance dphys(t) =

a(t)Rχ. The latter is, as the name suggests, more physical, but it does not equate

directly to something we can measure. Instead, dphys(t) is the distance between two

events which took place at some fixed time t, but to measure this distance, we would

need to pause the expansion of the universe while we wheel out a tape measure, typically

one which stretches over several megaparsecs. This, it turns out, is impractical.
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Figure 10: This cow is small. Figure 11: This cow is far away.

For these reasons, we need a more useful definition of distance and how to measure

it. A useful measure of distance should involve what we actually see, and what we see

is light that has travelled across the universe, sometimes for a long long time.

For objects that are reasonably close, we can use parallax, the slight wobble of a

stars position caused by the Earth orbiting the Sun. The current state of the art is the

Gaia satellite which can measure the parallax of sufficiently bright star to an accuracy

of 2 × 10−5 arc seconds, corresponding to distances of 1/10th of a megaparsec. While

impressive this is, to quote the classics, peanuts to space. We therefore need to turn

to more indirect methods.

The Luminosity Distance

One way to measure distance is to use the brightness of the object. Obviously, the

further away an object is, the less bright it appears in the sky. The problem with this

approach is that it’s difficult to be sure if an object is genuinely far away, or intrinsically

dim. It is entirely analogous to the famous problem with cows: how do we tell if they

are small, or merely far away?

To resolve this degeneracy, cosmologists turn to standard candles. These are objects

whose intrinsic brightness can be determined by other means. There are a number of

candidates for standard candles, but some of the most important are:

• Cepheids are bright stars which pulsate with a period ranging from a few days to

a month. This periodicity is thought to vary linearly with the intrinsic brightness

of the star. These were the standard candles originally used by Hubble.

• A type Ia supernova arises when a white dwarf accretes too much matter from

an orbiting companion star, pushing it over the Chandrasekhar limit (the point

at which a star collapses). Such events are rare — typically a few a century in

a galaxy the size of the Milky Way — but with a brightness that is comparable
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to all the stars in the host galaxy. The universal nature of the Chandrasekhar

limit means that there is considerable uniformity in these supernovae. What little

variation there is can be accounted for by studying the “light curve”, meaning

how fast the supernova dims after the original burst. These supernovae were first

developed as standard candles in the 1990s and resulted in the discovery of the

acceleration of the universe.

• The more recent discovery of gravitational waves opens up the possibility for

a standard siren. The gravitational waveform can be used to accurately deter-

mine the distance. When these waves arise from the collision of a neutron star

and black hole (sometimes called a kilanova), the event can also be seen in the

electromagnetic spectrum, allowing identification of the host galaxy.

Given a standard candle, we can be fairly sure that we know the intrinsic luminosity

L of an object, defined as the energy emitted per unit time. We would like to determine

the apparent luminosity l, defined by the energy per unit time per unit area, seen by a

distant observer. In flat space, this is straightforward: at a distance d, the energy has

spread out over a sphere S2 of area 4πd2, giving us

l =
L

4πd2
in flat space (1.27)

The question we would like to ask is: how does this generalise in an FRW universe?

To answer this, it’s best to work in the coordinates (1.11), so the FRW metric reads

ds2 = −c2dt2 +R2
[
dχ2 + S2

k(χ)(dθ
2 + sin2 θ dϕ2)

]
with

Sk(χ) =


sinχ k = +1

χ k = 0

sinhχ k = −1

There are now three things that we need to take into account. The first is that a sphere

S2 with radius χ now has area 4πR2Sk(χ)
2, which agrees with our previous result in

flat space, but differs when k ̸= 0. Secondly, the photons are redshifted after their

long journey. If they are emitted with frequency ν1 then, from (1.20), they arrive with

frequency

ν0 =
2πc

λ0
=

ν1
1 + z
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This lower arrival rate decreases the observed flux. Finally, the observed energy E0 of

each photon is reduced compared to the emitted energy E1,

E0 = ℏν0 =
E1

1 + z

The upshot is that, in an expanding universe, the observed flux from a source with

intrinsic luminosity L sitting at co-moving distance χ is

l =
L

4πR2Sk(χ)2(1 + z)2

Comparing to (1.27) motivates us to define the luminosity distance

dL(χ) = RSk(χ)(1 + z) (1.28)

For a standard candle, where L is known, the luminosity distance dL is something that

can be measured. From this, and the redshift, we can infer the co-moving distance

RSk(χ). In flat space, this is simply Rχ = r.

Extracting H0

Finally, we can use this machinery to determine the Hubble constant H0. We first

Taylor expand the scale factor a(t) about the present day. Setting a0 = 1, we have

a(t) = 1 +H0(t− t0)−
1

2
q0H

2
0 (t− t0)

2 + . . . (1.29)

Here we’ve introduced the second order term, with dimensionless parameter q0. This

is known as the deceleration parameter, and should be thought of as the present day

value of the function

q(t) = − äa
ȧ2

= − ä

aH2

The name is rather unfortunate because, as we will learn in Section 1.4, the expansion

of our universe is actually accelerating, with ä > 0! In our universe, the deceleration

parameter is negative: q0 ≈ −0.5.

First, we integrate the path of a light-ray (1.18) to get an expression for the co-moving

distance χ in terms of the “look-back time” (t0 − t1)

Rχ = c

∫ t0

t1

dt

a(t)
= c

∫ t0

t1

[
1−H0(t− t0) + . . .

]
dt

= c(t0 − t1)
[
1 +

1

2
H0(t0 − t1) + . . .

]
(1.30)
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Next, we get an expression for the look-back time t0 − t1 in terms of the redshift z.

From (1.21), light emitted at some time t1 suffers a redshift 1 + z = 1/a(t). Inverting

the Taylor expansion (1.29), we have

z =
1

a(t1)
− 1 ≈ H0(t0 − t1) +

1

2
(2 + q0)H

2
0 (t0 − t1)

2 + . . .

We now invert this to give the “look-back time” t0 − t1 as a Taylor expansion in the

redshift z. (As an aside: you could do the inversion by solving the quadratic formula,

and subsequently Taylor expanding the square-root. But when inverting a power series,

it’s more straightforward to write an ansatz H0(t0 − t1) = A1z + A2z
2 + . . ., which we

substitute this into the right-hand side and match terms.) We find

H0(t0 − t1) = z − 1

2
(2 + q0)z

2 + . . . (1.31)

Combining (1.30) and (1.31) gives

H0Rχ

c
= z − 1

2
(1 + q0)z

2 + . . .

We can now substitute this into our expression for the luminosity distance (1.28). Life

is easiest in flat space, where RSk(χ) = Rχ and we find

dL =
c

H0

(
z +

1

2
(1− q0)z

2 + . . .

)
This expression is valid only for z ≪ 1. By plotting the observed dL vs z, and fitting

to this functional form, we can extract H0 and q0.

1.2 The Dynamics of Spacetime

We have learned that, on the largest distance scales, the universe is described by the

FRW metric

ds2 = −c2 dt2 + a2(t)

[
1

1− kr2/R2
dr2 + r2(dθ2 + sin2 dϕ2)

]
with the history of the expansion (or contraction) of the universe captured by the

function a(t). Our goal now is to calculate this function.

A good maxim for general relativity is: spacetime tells matter how to move, matter

tells space how to curve. We saw an example of the first statement in the previous

section, with galaxies swept apart by the expansion of spacetime. The second part of

the statement tells us that, in turn, the function a(t) is determined by the matter, or

more precisely the energy density, in the universe. Here we will first describe the kind

of substances that fill the universe and then, in Section 1.2.3 turn to their effect on the

expansion.
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1.2.1 Perfect Fluids

The cosmological principle guides us to model the contents of the universe as a ho-

mogeneous and isotropic fluid. The lumpy, clumpy nature of galaxies that we naively

observe is simply a consequence of our small perspective. Viewed from afar, we should

think of these galaxies as like atoms in a cosmological fluid. Moreover, as we will learn,

the observable galaxies are far from the most dominant energy source in the universe.

We treat all such sources as homogeneous and isotropic perfect fluids. This means

that they are characterised by two quantities: the energy density ρ(t) and the pressure

P (t). (If you’ve taken a course in fluid mechanics, you will be more used to thinking

of ρ(t) as the mass density. In the cosmological, or relativistic context, this becomes

the total energy density.)

The Equation of State

For any fluid, there is a relation between the energy and pressure, P = P (ρ), known as

the equation of state.

We will need the equation of state for two, different kinds of fluids. Both of these flu-

ids contain constituent “atoms” of massm which obey the relativistic energy-momentum

relation

E2 = p2c2 +m2c4 (1.32)

The two fluids come from considering this equation in two different regimes:

• Non-Relativistic Limit: pc ≪ mc2. Here the energy is dominated by the mass,

E ≈ mc2, and the velocity of the atoms is v ≈ p/m.

• Relativistic Limit: pc ≫ mc2. Now the energy is dominated by the momentum,

E ≈ pc, and the velocity of the atoms approaches the speed of light |v| ≈ c.

Suppose that there are N such atoms in a volume V . In general, these atoms will not

have a fixed momentum and energy, but instead the number density n(p) will be some

distribution. Because the fluid is isotropic, this distribution can depend only on the

magnitude of momentum p = |p|. It is normalised by

N

V
=

∫ ∞

0

dp n(p)

The pressure of a gas is defined to be force per unit area. For our purposes, a better

definition is the flux of momentum across a surface of unit area. This is equivalent
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to the earlier definition because, if the surface is a solid wall, the momentum must be

reflected by the wall resulting in a force. However, the “flux” definition can be used

anywhere in the fluid, not just at the boundary where there’s a wall. Because the fluid

is isotropic, we are free to choose this area to be the (x, y)-plane. Then, we have

P =

∫ ∞

0

dp vzpzn(p)

(If this is unfamiliar, an elementary derivation of this formula is given later in Section

2.1.2.) Because v and p are parallel, we can write

v · p = vp = vxpx + vypy + vzpz = 3vzpz

where the final equality is ensured by isotropy. This then gives us

P =
1

3

∫ ∞

0

dp vp n(p) (1.33)

Now we can relate this to the energy density in the two cases. First, the non-relativistic

gas. In this case, p ≈ mv so we have

Pnon−rel ≈
1

3

∫ ∞

0

dp mv2n(p) =
1

3

N

V
m⟨v2⟩ (1.34)

where ⟨v2⟩ is the average square-velocity in the gas.

For cosmological purposes, our interest is in the total energy (1.32) and this is dom-

inated by the contribution from the mass E ≈ mc2 + . . .. If we relate the pressure of a

non-relativistic gas to this total energy E, we have

Pnon−rel =
NE

3V

⟨v2⟩
c2

Since ⟨v2⟩/c2 ≪ 1, we say that the pressure of a non-relativistic gas is simply

Pnon−rel ≈ 0

Note that this is the same pressure that keeps balloons afloat and your eardrums

healthy: it’s not really vanishing. But it is negligible when it comes to its effect on the

expansion of the universe. (We will, in fact, revisit this in Section 2 where we’ll see

that the pressure does give rise to important phenomena in the early universe.)

Cosmologists refer to a non-relativistic gas as dust, a name designed to reflect the

fact that it just hangs around and is boring. Examples of dust include galaxies, dark

matter, and hydrogen atoms floating around and not doing much. We will also refer to

dust simply as matter.
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We can repeat this for a gas of relativistic particles with v ≈ c and E ≈ pc. Now the

formula for the pressure (1.33) becomes

Prel ≈
1

3

∫ ∞

0

dp vp n(p) ≈ 1

3

∫ ∞

0

dp E n(p) =
N⟨E⟩
3V

with ⟨E⟩ the average energy of a particle. The energy density is ρ = N⟨E⟩/V , so the

relativistic gas obeys the equation of state

Prel =
1

3
ρ

Cosmologists refer to such a relativistic gas as radiation. Examples of radiation include

the gas of photons known as the cosmic microwave background, gravitational waves,

and neutrinos.

Most of the equations of state we meet in cosmology have the simple form

P = wρ (1.35)

for some constant w. As we have seen, dust has w = 0 and radiation has w = 1/3. We

will meet other, more exotic fluids as the course progresses.

There is an important restriction on the equation of state. The speed of sound cs in

a fluid is given by

c2s = c2
dP

dρ

We will derive this formula in Section 3.1.1, but for now we simply quote it. It’s

important that the speed of sound is less than the speed of light. (Remember: nothing

can beat light in a race.) This means that to be consistent with relativity, we must have

w ≤ 1. In fact, the more exotic substances we will meet will have w < 0, suggesting

an imaginary sound speed. What this is really telling us is that substances with w < 0

do not support propagating sound waves, with perturbations decaying exponentially in

time.

An Aside: The Equation of State and Temperature

In many other areas of physics, the equation of state is usually written in terms of the

temperature T of a fluid. For example, the ideal gas equation relates the pressure P

and volume V as

PV = NkBT (1.36)
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where N is the number of particles and kB the Boltzmann constant. (You may have

seen this written in chemist’s notation NkB = nR where n is the number of moles and

R the gas constant. Our way is better.) The equations of state that we’re interested

in can be viewed in this way if we relate T/V to the energy density.

For example, starting from our expression, in (1.34) we derived an expression for the

pressure of a non-relativistic gas: Pnon−rel ≈ Nm⟨v2⟩/3V . This coincides with the ideal

gas law if we relate the temperature to the average kinetic energy of an atom in the

gas through

1

2
m⟨v2⟩ = 3

2
kBT (1.37)

We will revisit this in Section 2.1 and gain a better understanding of this result and

the role played by temperature.

1.2.2 The Continuity Equation

As the universe expands, we expect the energy density (of any sensible fluid) to dilute.

The way this happens is dictated by the conservation of energy, also known as the

continuity equation.

A proper discussion of the continuity equation requires the machinery of general rel-

ativity. This is one of a number of places were we will revert to some simple Newtonian

thinking to derive the correct equation. Such derivations are not entirely convincing,

not least because it’s unclear why they would be valid when applied to the entire uni-

verse. Nonetheless, they will give the correct answer. A more rigorous approach can

be found in the lectures on General Relativity.

Consider a gas trapped in a box of volume V . The

Pressure, P
dx

Area, A

Figure 12:

gas exerts pressure on the sides of the box. If the box

increases in size, as shown in the figure, then the change

of volume is dV = Area × dx. The work done by the gas

is Force × dx = (PA)dx = P dV , and this reduces the

internal energy of the gas. We have

dE = −P dV

This is a simple form of the first law of thermodynamics, valid for reversible or adiabatic

processes. It is far from obvious that we can view the universe as a box filled with gas

and naively apply this formula. Nonetheless, it happily turns out that the final result
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agrees with the more rigorous GR approach so we will push ahead, and invoke the time

dependent version of the first law,

dE

dt
= −P dV

dt
(1.38)

Now consider a small region of fluid, in co-moving volume V0. The physical volume is

V (t) = a3(t)V0 ⇒ dV

dt
= 3a2ȧV0

Meanwhile, the energy in this volume is

E = ρa3V0 ⇒ dE

dt
= ρ̇a3V0 + 3ρa2ȧV0

The first law (1.38) then becomes

ρ̇+ 3H (ρ+ P ) = 0 (1.39)

This slightly unfamiliar equation is the expression of energy conservation in a cosmo-

logical setting.

Before we proceed, a warning: energy is a famously slippery concept in general

relativity, and we will meet things later which, taken naively, would seem to violate

energy conservation. For example, in Section 1.3.3, we will meet a fluid with equation

of state ρ = −P . For such a fluid, ρ̇ = 0 which means that the energy density

remains constant even as the universe expands. Such is the way of the world and we

need to get used to it. If this makes you nervous, recall that the usual derivation of

energy conservation, via Noether’s theorem, holds only in time independent settings.

So perhaps it’s not so surprising that energy conservation takes a somewhat different

form in an expanding universe.

If we specify an equation of state P = wρ, as in (1.35), then we can integrate the

continuity equation (1.39) to determine how the energy density depends on the scale

factor. We have

ρ̇

ρ
= −3(1 + w)

ȧ

a
⇒ log(ρ/ρ0) = −3(1 + w) log a

⇒ ρ(t) = ρ0a
−3(1+w) (1.40)

with ρ0 = ρ(t0) and we’ve used the fact that a(t0) = 1.
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We can look at how this behaves in simple examples. For dust (also known as matter),

we have w = 0 and so

ρm ∼ 1

a3

This makes sense. As the universe expands, the volume increases as a3, and so the

energy density decreases as 1/a3.

For radiation, we instead find

ρr ∼
1

a4
(1.41)

This also makes sense. The energy density is diluted as 1/a3 but, on top of this, there

is also a redshift effect which shifts the frequency, and hence the energy, by a further

power of 1/a.

The fact that the energy densities of dust and radiation scale differently plays a

crucial role in our cosmological history. As we shall see in Section 1.4, our current

universe has much greater energy density in dust than in radiation. However, this

wasn’t always the case. There was a time in far past when the converse was true, with

the radiation subsequently diluting away faster. We’ll see other contributions to the

energy density of the universe that have yet different behaviour.

1.2.3 The Friedmann Equation

“Friedmann more than once said that his task was to indicate the possible

solutions of Einstein’s equations, and that the physicists could do what they

wished with these solutions”

Vladimir Fock, on his friend Alexander Friedmann

Finally we come to the main part of the story: we would like to describe how the

perfect fluids which fill all of space affect the expansion of the universe. We start by

giving the answer. The dynamics of the scale factor is dictated by the energy density

ρ(t) through the Friedmann equation

H2 ≡
(
ȧ

a

)2

=
8πG

3c2
ρ− kc2

R2a2
(1.42)

Here R is some fixed scale, as in the FRW metric (1.12), k = −1, 0,+1 determines the

curvature of space, and G is Newton’s gravitational constant

G ≈ 6.67× 10−11 m3 kg−1 s−2
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The Friedmann equation is arguably the most important equation in all of cosmology.

Taken together with the continuity equation (1.39) and the equation of state (1.35),

they provide a closed system which can be solved to determine the history and fate of

the universe itself.

At this point, I have a confession to make. The only honest derivation of the Fried-

mann equation is in the framework of General Relativity Here we can only present a

dishonest derivation, using Newtonian ideas. In an attempt to alleviate the shame, I

will at least be open about where the arguments are at their weakest.

First, we work in flat space, with k = 0. This, of course, is the natural habitat for

Newtonian gravity. Nonetheless, we will see the possibility of a curvature term −k/a2
in the Friedmann equation, re-emerging at the end of our derivation.

Our discussions so far prompt us to consider an infinite universe, filled with a constant

matter density. That, it turns out, is rather subtle in a Newtonian setting. Instead, we

consider a ball of uniform density of size L, expanding outwards away from the origin,

and subsequently pretend that we can take L→ ∞.

Consider a particle (or element of fluid) of mass m at some position x with r =

|x| ≪ L. It will experience the force of gravity in the form of Newton’s inverse-square

law. But a rather special property of this law states that, for a spherically symmetric

distribution of masses, the gravitational force at some point x depends only on the

masses at distances smaller than r and, moreover, acts as if all the mass is concentrated

at the origin.

This statement is simplest to prove if we formulate the gravitational force law as a

kind of Gauss’ law,

Fgrav = −m∇Φ where ∇2Φ =
4πG

c2
ρ

with Φ the gravitational potential. The (perhaps) unfamiliar factor of c2 in the final

equation arises because, for us, ρ is the energy density, rather than mass density. We

then integrate both sides over a ball V of radius x, centred at the origin. Using the kind

of symmetry arguments that we used extensively in the lectures on Electromagnetism,

we have ∫
S

∇Φ · dS =

∫
V

4πG

c2
ρ dV ⇒ ∇Φ(r) =

GM(r)

r2
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where M(r) = 4πρr3/3c2 is the mass contained inside the ball of radius r. This means

that the acceleration of the particle at x is given by

mr̈ = −GmM(r)

r2

We multiply by ṙ and integrate. As the ball expands with ṙ ̸= 0, the total mass

contained with a ball of radius r(t) does not change, so Ṁ = 0. We then get

1

2
ṙ2 − GM(r)

r
= E (1.43)

where we recognise E as the energy (per unit mass) of the particle. Finally, we describe

the position x of the particle in a way that chimes with our previous cosmological

discussion, introducing a scale factor a(t)

x(t) = a(t)x0

Substituting this into (1.43) and rearranging gives(
ȧ

a

)2

=
8πG

3c2
ρ− C

a2
(1.44)

where C = −2E/|x0|2 is a constant. This is remarkably close to the Friedmann equa-

tion (1.42). The only remaining issue is why we should identify the constant C with

the curvature kc2/R2. There is no good argument here and, indeed, we shouldn’t ex-

pect one given that the whole Newtonian derivation took place in a flat space. It is,

unfortunately, simply something that you have to suck up.

There is, however, an analogy which makes the identification C ∼ k marginally more

palatable. Recall that a particle has reached escape velocity if its total energy E > 0.

Conversely, if E < 0, the particle comes crashing back down. For us, the case of E < 0

means C > 0 which, in turn, corresponds to positive curvature. We will see in Section

1.3.2 that a universe with positive curvature will, under many circumstances, ultimately

suffer a big crunch. In contrast, a negatively curved space k < 0 will keep expanding

forever.

Clearly the derivation above is far from rigorous. There are at least two aspects that

should give us pause. First, when we assumed Ṁ = 0, we were implicitly restricting

ourselves to non-relativistic matter with ρ ∼ 1/a3. It turns out that in general relativity,

the Friedmann equation also holds for any other scaling (1.40) of ρ.
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However, the part of the above story that should make you feel most queasy is

replacing an infinitely expanding universe, with an expanding ball of finite size L. This

introduces an origin into the story, and gives a very misleading impression of what the

expansion of the universe means. In particular, if we dial the clock back to a(t) = 0

in this scenario, then all matter sits at the origin. This is one of the most popular

misconceptions about the Big Bang and it is deeply unfortunate that it is reinforced by

the derivation above. Nonetheless, the arguments that lead to (1.44) do provide some

physical insight into the meaning of the various terms that can be hard to extract from

the more formal derivation using general relativity. So let us wash the distaste from

our mouths, and proceed with understanding the universe.

1.3 Cosmological Solutions

We now have a closed set of equations that describe the evolution of the universe.

These are the Friedmann equation,

H2 ≡
(
ȧ

a

)2

=
8πG

3c2
ρ− kc2

R2a2
(1.45)

the continuity equation,

ρ̇+ 3H (ρ+ P ) = 0

and the equation of state

P = wρ

In this section, we will solve them. Our initial interest will be on a number of designer

universes whose solutions are particularly simple. Then, in Section 1.4, we describe the

solutions of relevance to our universe.

1.3.1 Simple Solutions

To solve the Friedmann equation, we first need to decide what fluids live in our universe.

In general, there will be several different fluids. If they share the same equation of state

(e.g. dark matter and visible matter) then we can, for cosmological purposes, just treat

them as one. However, if the universe contains fluids with different equations of state,

we must include them all. In this case, we write

ρ =
∑
w

ρw
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As we have seen in (1.40), each component scales independently as

ρw =
ρw,0

a3(1+w)
(1.46)

where ρw,0 = ρw(t0). Substituting this into the Friedmann equation then leaves us with

a tricky-looking non-linear differential equation for a.

Life is considerably simpler if we restrict attention to a flat k = 0 universe with just

a single fluid component. In this case, using (1.46), we have(
ȧ

a

)2

=
D2

a3(1+w)
(1.47)

where D2 = 8πGρw,0/3c
2 is a constant. The solution is

a(t) =

(
t

t0

)2/(3+3w)

(1.48)

The various constants have been massaged into t0 = (3
2
(1 +w)D)−1 so that we recover

our convention a0 = a(t0) = 1. There is also an integration constant which we have set

to zero. This corresponds to picking the time of the Big Bang, defined by a(tBB) = 0

to be tBB = 0. With this choice, t0 is identified with the age of the universe.

Let’s look at this solution in a number of important cases

• Dust (w = 0): For a flat universe filled with dust-like matter (i.e. galaxies, or

cold dark matter), we have

a(t) =

(
t

t0

)2/3

(1.49)

This is known as the Einstein-de Sitter universe (not to be confused with either

the Einstein universe or the de Sitter universe, both of which we shall meet in

Section 1.3.3). The exponent 2/3 is the same 2/3 that appears in Kepler’s third

law: the radius R of a planet’s orbit is related to its period by R ∼ T 2/3. Both

follow by simple dimensional analysis in Newtonian gravity.

The Hubble constant is

H0 =
2

3

1

t0

If we lived in such a place, then a measurement ofH0 would immediately tell us the

age of the universe t0 =
2
3
H−1

0 . Using the observed value ofH0 ≈ 70 km s−1Mpc−1

gives

t0 ≈ 9× 109 years (1.50)

– 33 –



The extra factor of 2/3 brings us down from the earlier estimate of 14 billion

years in (1.23) to 9 billion years. This is problematic since there are stars in the

universe that appear to be older than this.

Finally note that in the Einstein-de Sitter universe the matter density scales as

ρ(t) =
c2

6πG

1

t2
(1.51)

In particular, there is a direct relationship between the age of the universe and

the present day matter density. We’ll revisit this relationship later.

• Radiation (w = 1/3): For a flat universe filled with radiation (e.g. light), we have

a(t) =

(
t

t0

)1/2

Once again, there is a direct relation between the Hubble constant and the age

of the universe, now given by t0 =
1
2
H−1

0 . In a radiation dominated universe, the

energy density scales as

ρ(t) =
3c2

32πG

1

t2

• Curvature (w = −1/3): We can also apply the calculation above to a universe

with curvature a term, which is devoid of any matter. Indeed, the curvature term

in (1.45) acts just like a fluid (1.46) with w = −1/3. In the absence of any further

fluid contributions, the Friedmann equation only has solutions for a negatively

curved universe, with k = −1. In this case,

a(t) =
t

t0

This is known as the Milne universe.

A Comment on Multi-Component Solutions

If the universe has more than one type of fluid (or a fluid and some curvature) then it is

more tricky to write down analytic solutions to the Friedmann equations. Nonetheless,

we can build intuition for these solutions using our results above, together with the

observation that different fluids dilute away at different rates. For example, we have

seen that

ρm ∼ 1

a3
and ρr ∼

1

a4
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This means means that, in a universe with both dust and radiation (like the one we call

home) there will be a period in the past, when a is suitably small, when we necessarily

have ρr ≫ ρm. As a increases there will be a time when the energy density of the two

are roughly comparable, before we go over to another era with ρm ≫ ρr. In this way,

the history of the universe is divided into different epochs. When one form of energy

density dominates over the other, the expansion of the universe is well-approximated

by the single-component solutions we met above .

The Big Bang Revisited: A Baby Singularity Theorem

All of the solutions we met above have a Big Bang, where a = 0. It is natural to ask: is

this a generic feature of the Friedmann equation with arbitrary matter and curvature?

Within the larger framework of general relativity, there are a number of important

theorems which state that, under certain circumstances, singularities in the metric

necessarily arise. The original theorems, due to Penrose (for black holes) and Hawking

(for the Big Bang), are tour-de-force pieces of mathematical physics. You can learn

about them next year. Here we present a simple Mickey mouse version of the singularity

theorem for the Friedmann equation.

We start with the Friedmann equation, written as

ȧ2 =
8πG

3c2
ρa2 − kc2

R2

Differentiating both sides with respect to time gives

2äȧ =
8πG

3c2
(
ρ̇a2 + 2ρȧa

)
=

8πG

3c2
(−3ȧa(ρ+ P ) + 2ρȧa)

where, in the second equality, we have used the continuity equation ρ̇+3H(ρ+P ) = 0

Rearranging gives the acceleration equation

ä

a
= −4πG

3c2
(ρ+ 3P ) (1.52)

This is also known as the Raychaudhuri equation and will be useful in a number of

places in this course. (It is a special case of the real Raychaudhuri equation, which has

application beyond cosmology.) Using this result, we can prove the following:

Claim: If matter obeys the strong energy condition

ρ+ 3P ≥ 0 (1.53)

then there was a singularity at a finite time tBB in the past where a(tBB) = 0. Fur-

thermore, t0 − tBB ≤ H−1
0 .
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Proof: The strong energy condition immediately tells us that ä/a ≤ 0. This is the

statement that the universe is decelerating, meaning that it must have been expanding

faster in the past.

Suppose first that ä = 0. In this case we must have

t0
tBB

a(t)

t

H
−1
0

Figure 13:

a(t) = H0t + const. (We have used the fact that H0 = ȧ0
since a0 = 1). This is the dotted line shown in the figure.

If this is the case, the Big Bang occurs at t0 − tBB = H−1
0 .

But the strong energy condition ensures that ä ≤ 0, so the

dotted line in the figure provides an upper bound on the

scale factor. In such a universe, the Big Bang must occur

at t0 − tBB ≤ H−1
0 . □

The proof above is so simple because we have restricted

attention to the homogeneous and isotropic FRW universe.

Hawking’s singularity theorem (proven in his PhD thesis) shows the necessity of a

singularity even in the absence of such assumptions.

The strong energy condition is obeyed by all conventional matter, including dust and

radiation. However, it’s not hard to find substances which violate it, and we shall meet

examples as we go along. When the strong energy condition is violated, we have an

accelerating universe with ä > 0. In this case, the single component solutions (1.48)

still have a Big Bang singularity. However, the argument above cannot rule out the

possibility of more complicated solutions which avoid this.

The Future Revisited: Cosmological Event Horizons

Recall from section 1.1.4 the idea of an event horizon: for certain universes, it may

be that our friends in distant galaxies get swept away from us by the expansion of

space and are lost to us forever. At a time t, the furthest distance with which we can

communicate, rmax is governed by the equation (1.25)

c

∫ ∞

t

dt′

a(t′)
=

∫ rmax(t)

0

dr√
1− kr2/R2

If the integral on the left converges then rmax is finite and there is a cosmological

horizon.

When does this happen? If the late time universe is dominated by a single component

with expansion given by a ∼ t2/(3+3w) as in (1.48) then∫
dt

a(t)
∼
∫

dt

t2/(3+3w)
∼ t(3w+1)/(3w+3)
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For w ≥ −1/3, the integral diverges and there is no event horizon. (In the limiting

case of w = −1/3, the integral is replaced by log t.) For −1 ≤ w < −1/3, the integral

converges and there is a horizon.

Fluids with w < −1/3 are precisely those which violate the strong energy condi-

tion (1.53). We learn that cosmological event horizons arise whenever the late time

expansion of the universe is accelerating, rather than decelerating.

1.3.2 Curvature and the Fate of the Universe

Let’s look again at a flat universe, with k = 0. The Friedmann equation (1.45) tells us

that for such a universe to exist, something rather special has to happen, because the

energy density of the universe today ρ0 has to be precisely correlated with the Hubble

constant

H2
0 =

8πG

3c2
ρ0

We saw such behaviour in our earlier solutions. For example, this led us to the result

(1.51) which relates the energy density of an Einstein-de Sitter universe to the current

age of the universe.

In principle, this gives a straightforward way to test whether the universe is flat.

First, you measure the expansion rate as seen in H0. Then you add up all the energy

in the universe and see if they match. In practice, this isn’t possible because, as we

shall see, much of the energy in the universe is invisible.

What happens if we have a universe with some small curvature and, say, a large

amount of conventional matter with w = 0? We can think of the curvature term in

the Friedmann equation as simply another contribution to the energy density, ρk, one

which dilutes away more slowly that the matter contribution,

ρm ∼ 1

a3
and ρk ∼

1

a2

This tells us that, regardless of their initial values, if we wait long enough then the

curvature of space will eventually come to dominate the dynamics.

If we start with ρm > ρk, then there will be a moment when the two are equal,

meaning

8πG

3c2
ρm =

|k|c2

R2a2
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For a negatively curved universe, with k = −1, the Friedmann equation (1.45) gives

ȧ > 0. However, for a positively curved universe, with k = +1, we find ȧ = 0 at the

moment of equality. In other words, the universe stops expanding. In fact, as we now

see, such a positively curved universe subsequently contracts until it hits a big crunch.

Perhaps surprisingly, it is possible to find an exact solution to the Friedmann equation

with both matter and curvature. To do this, it is useful to work in conformal time (1.26),

defined by

τ(t) =

∫ t

0

dt′

a(t′)
⇒ dτ

dt
=

1

a
(1.54)

We further define the dimensionless time coordinate τ̃ = cτ/R. (In flat space, with

k = 0, just pick a choice for R; it will drop out in what follows.) Finally, we define

h =
a′

a
with a′ =

da

dτ̃

In these variables, one can check that the Friedmann equation (1.45) becomes

h2 + k =
8πGR2

3c4
ρa2 (1.55)

Rather than solve this in conjunction with the continuity equation, it turns out to be

more straightforward to look at the acceleration equation (1.52). A little algebra shows

that, for matter with P = 0, the acceleration equation becomes

h′ = −4πGR2

3c4
ρa2 ⇒ 2h′ + h2 + k = 0 (1.56)

where, to get the second equation, we have simply used (1.55). Happily this latter

equation is independent of ρ and we can go ahead and solve it. The solutions are:

h(τ̃) =


cot(τ̃ /2) k = +1

2/τ̃ k = 0

coth(τ̃ /2) k = −1

We can then solve h = a′/a to derive an expression for the scale factor a(τ̃) as a function

of τ̃ ,

a(τ̃) = A×


sin2(τ̃ /2) k = +1

τ̃ 2 k = 0

sinh2(τ̃ /2) k = −1

(1.57)
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a(t)

t
k=+1

k=0

k=−1

Figure 14: The FRW scale factor for a matter dominated universe with curvature.

with A an integration constant. We see that, as advertised, the positively curved

k = 1 universe eventually re-collapses, with the Big Crunch occurring at conformal

time τ = 2πR/c. In contrast, the negatively curved k = −1 universe expands for ever.

The flat space k = 0 separates these two behaviours.

Finally, we can use the solution for the scale factor to determine how conformal time

(1.54) scales with our original time coordinate t,

t =
RA

2c
×


τ̃ − sin τ̃ k = +1

2
3
τ̃ 3 k = 0

sinh τ̃ − τ̃ k = −1

(1.58)

In the k = 0 case, this reproduces our previous result (1.49) for the expansion of the

Einstein-de Sitter universe. The resulting scale factors a(t) are sketched in Figure 14.

There are a couple of lessons to take from this calculation. The first is that a flat

universe is dynamically unstable, rather like a pencil balancing on its tip. Any small

initial curvature will grow and dominate the late time behaviour.

The second lesson comes with an important caveat. The result above suggests that

a measurement of curvature of the space will tell us the ultimate fate of the universe.

If we find k = 1, then we are doomed to suffer a Big Crunch. On the other hand,

a curvature of k = −1 or k = 0 means that universe expands for ever, becoming

increasingly desolate and lonely. However, this conclusion relies on the assumption

that the dominant energy in the universe is matter. In fact, it’s not hard to show that

the conclusion is unaltered provided that all energies in the universe dilute away faster
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than the curvature. However, as we will now see, there are more exotic fluids at play

in the universe for which the conclusion does not hold.

1.3.3 The Cosmological Constant

The final entry in the dictionary of cosmological fluids is both the most strange and, in

some ways, the most natural. A cosmological constant is a fluid with equation of state

w = −1. The associated energy density is denoted ρΛ and obeys

ρΛ = −P

First the strange. The continuity equation (1.39) tells us that such an energy density

remains constant over time: ρΛ ∼ a0. Naively, that would seem to violate the conser-

vation of energy. However, as stressed previously, energy is a rather slippery concept in

an expanding universe and the only thing that we have to worry about is the continuity

equation (1.39) which is happily obeyed. So this is something we will just have to live

with. For now, note that any universe with ρΛ ̸= 0 will ultimately become dominated

by the cosmological constant, as all other energy sources dilute away.

Now the natural. The cosmological constant is something that you’ve seen before.

Recall that whenever you write down the energy of a system, any overall constant

shift of the energy is unimportant and does not affect the physics. For example, in

classical mechanics if we have a potential V (x), then the force is F = −∇V which

cares nothing about the constant term in V . Similarly, in quantum mechanics we work

with the Hamiltonian H, and adding an overall constant is irrelevant for the physics.

However, when we get to general relativity, it becomes time to pay the piper. In the

context of general relativity, all energy gravitates, including the constant energy that

we previously neglected. And the way this constant manifests itself is as a cosmological

constant. For this reason, the cosmological constant is also referred to as vacuum

energy.

Strictly speaking, ρΛ is the vacuum energy density, while the cosmological constant

Λ is defined as

ρΛ =
Λc2

8πG

so Λ has dimensions of (time)−2. (Usually, by the time people get to describing the

cosmological constant, they have long set c = 1, so other definitions may differ by

hidden factors of c.) Here we will treat the terms “cosmological constant” and “vacuum
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energy” as synonymous. In the presence of a cosmological constant and other matter,

the Friedmann equation becomes

H2 =
8πG

3c2
ρ+

Λ

3
− kc2

R2a2
(1.59)

We will shortly solve this in various cases. Before we do, we pause to ask a slightly

oblique question. How does the cosmological constant appear in our Newtonian analysis

of Section 1.2.3? To see this, we indulge in a little bit of answer analysis and work

backwards. You can check that the steps that previously took us from Newton’s law

of motion (1.43) to the Friedmann equation (1.44), now require that we start with

Newton’s law in the form

1

2
ṙ2 − GM(r)

r
− 1

6
Λr2 = E (1.60)

In other words, the cosmological constant acts like a harmonic oscillator, with potential

V (r) = −1
6
Λr2. For Λ > 0 this is a an inverted harmonic oscillator and our (admittedly

slightly dodgy) Newtonian analysis suggests that particles will race off to r → ∞.

Meanwhile, for Λ < 0 we have a standard harmonic oscillator, which suggests that

particles will be trapped. We’ll now see that, suitably interpreted, this is not a bad

way to think about the cosmological constant.

de Sitter Space

First, consider a universe with positive cosmological constant Λ > 0. If we empty it

of all other matter, so that ρ = 0, then we can solve the Friedmann equation for any

choice of curvature k = −1, 0,+1 to give

a(t) =


A cosh

(√
Λ/3 t

)
k = +1

exp
(√

Λ/3 t
)

k = 0

A sinh
(√

Λ/3 t
)

k = −1

where A2 = 3c2/ΛR2 for the k = ±1 solutions, and for all solutions we’ve made a choice

of an integration constant. At large time, all of these solutions exhibit exponential

behaviour, independent of the spatial curvature. In fact, it turns out (although we

won’t show it here) that each of these solutions describes the same spacetime, but with

different coordinates that slice spacetime into space+time in different ways. (This is

described in the lectures on General Relativity.) This spacetime is known as de Sitter

space.
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The k = +1 solution most accurately represents the geometry of de Sitter space

because it uses coordinates which cover the whole spacetime. It shows a contracting

phase when t < 0, followed by a phase of accelerating expansion when t > 0. The phase

of exponential expansion is what was captured in our naive Newtonian perspective

which suggested that particles “race off to infinity”. Crucially, there is no Big Bang

because there’s no point in time when a = 0. In contrast, the k = 0 and k = −1

coordinates give a slightly misleading view of the space, because they suggest a Big Bang

when t = −∞ and t = 0 respectively. You need to work harder to show that actually

this is an artefact of the choice of coordinates (a so-called “coordinate singularity”)

rather than anything physical. These kind of issues will be addressed in next term’s

course on general relativity.

To better understand this spacetime and, in particular, the existence of cosmological

horizons, it is best to work with k = +1 and conformal time, τ ∈ (−π/2,+π/2), given
by

cos
(√

Λ/3τ
)
=
[
cosh

(√
Λ/3t

)]−1

You can check that dτ/dt = 1/ cosh(
√

Λ/3 t), which, up to an overall unimportant

scale, is the definition of conformal time (1.26). In these coordinates, the metric for de

Sitter space becomes

ds2 =
1

cos2(
√

Λ/3τ)

[
−c2dτ 2 +R2dχ2 +R2 sin2 χ(dθ2 + sin2 θ dϕ2)

]
where we’re using the polar coordinates (1.6) on the spa-

τ=−π/2

τ=+π/2

χ=0 χ=π

Figure 15:

tial S3. We now consider a fixed θ and ϕ and draw the

remaining 2d spacetime in the (cτ, χ) plane where τ ∈
(−π/2, π/2) and χ ∈ [0, π]. The left-hand edge of the dia-

gram can be viewed as the north pole of S3, χ = 0, while

the right-hand edge of the diagram is the south pole χ = π.

The purpose of this diagram is not to exhibit distances be-

tween points, because these are distorted by the 1/ cos2 τ

factor in front of the metric. Instead, the diagram shows

only the causal structure, with 45◦ lines denoting light

rays.

Consider an observer sitting at the north pole. She has a particle horizon and an

event horizon. Even if she waits forever, as shown in the figure, there will be part of

the spacetime that she never sees.
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Anti-de Sitter Space

We could also look at solutions with Λ < 0, again devoid of any matter so ρ = 0. A

glance at the Friedmann equation (1.59) shows that such solutions can only exist when

k = −1. In this case, the scale factor is given by

a(t) = A sin
(√

−Λ/3 t
)

This is known as anti-de Sitter space. It has, as far as we can tell, no role to play in

cosmology. However it has become rather important as a testing ground for ideas in

quantum gravity and holography. In many ways, anti-de Sitter space acts like a gravi-

tational box, trapping particles inside. This was suggested by the Newtonian, harmonic

potential picture and will be explored more in the lectures on General Relativty. We

will not discuss anti-de Sitter space further in these lectures.

Matter + Cosmological Constant

For a flat k = 0 universe, we can find a solution for a positive cosmological constant

Λ > 0, with matter ρm ∼ 1/a3. We write the Friedmann equation as(
ȧ

a

)2

=
8πG

3c2

(
ρΛ +

ρ0
a3

)
This has the solution

a(t) =

(
ρ0
ρΛ

)1/3

sinh2/3

(√
3Λt

2

)
(1.61)

There are a number of comments to make about this. First note that, in contrast to de

Sitter space, the Big Bang has unavoidably reappeared in this solution at t = 0 where

a(t = 0) = 0. This, it turns out, is generic: any universe more complicated than de

Sitter (like ours) has a Big Bang singularity.

The present day time t0 is defined, as always, by a(t0) = 1. There is also another

interesting time, teq, where we have matter-vacuum energy equality, so that ρΛ = ρ0/a
3.

This occurs when

sinh

(√
3Λteq
2

)
= 1 (1.62)

At late times, the solution (1.61) coincides with the de Sitter expansion a(t) ∼ e
√

Λ/3t,

telling us that the cosmological constant is dominating as expected. Meanwhile, at

early times we have a ∼ t2/3 and we reproduce the characteristic expansion of the

Einstein-de Sitter universe (1.49).
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An Historical Curiosity: The Einstein Static Universe

The cosmological constant was first introduced by Einstein in 1917 in an attempt to

construct a static cosmology. This was over a decade before Hubble’s discovery of the

expanding universe.

The acceleration equation (1.52)

ä

a
= −4πG

3c2
(ρ+ 3P ) (1.63)

tells us that a static universe is only possible if ρ = −3P . Obviously this is not possible

if we have only matter ρm with Pm = 0 or only a cosmological constant ρΛ = −PΛ.

But in a universe with both, we can have

ρ = ρm + ρΛ = −3P = 3ρΛ ⇒ ρm = 2ρΛ

The Friedmann equation (1.59) is then

H2 =
8πG

3c2
(ρm + ρΛ)−

kc2

R2a2

and the right-hand side vanishes if we take a positively curved universe, k = +1, with

radius

(Ra)2 =
c4

8πGρΛ
=
c2

Λ
(1.64)

This is the Einstein static universe. It is unstable. If a is a little smaller than the

critical value (1.64) then ρm ∼ a−3 is a little larger and the acceleration equation (1.63)

says that a will decrease further. Similarly, if a is larger than the critical value it will

increase further.

1.3.4 How We Found Our Place in the Universe

In 1543, Copernicus argued that we do not sit at the centre of the universe. It took

many centuries for us to understand where we do, in fact, sit.

Thomas Wright was perhaps the first to appreciate the true vastness of space. In

1750, he published “An original theory or new hypothesis of the universe”, suggesting

that the Milky Way, the band of stars that stretches across the sky, is in fact a “flat

layer of stars” in which we are embedded, looking out. He further suggested that cloudy

spots in the night sky, known as nebulae, are other galaxies, “too remote for even our

telescopes to reach”.
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Wright was driven by poetry and art as much

Figure 16: The wonderful imagina-

tion of Thomas Wright

as astronomy and science and his book is illus-

trated by glorious pictures. His flights of fantasy

led him to guesstimate that there are 3, 888, 000

stars in the Milky Way, and 60 million planets.

We now know, of course, that Wright’s imagina-

tion did not stretch far enough: he underestimated

the number of stars in our galaxy by 7 orders of

magnitude.

Wright’s suggestion that spiral nebulae are far

flung galaxies, similar to our own Milky Way, was

not met with widespread agreement. As late as

1920, many astronomers held that these nebulae were part of the Milky Way itself.

Their argument was simple: if these were individual galaxies, or “island universes” as

Kant referred to them, then they would lie at distances too vast to be credible.

The dawning realisation that our universe does indeed spread over such mind bog-

gling distances came only with the discovery of redshifts. The American astronomer

Vesto Slipher was the first to measure redshifts in 1912. He found spiral nebulae with

both blueshifts and redshifts, some moving at speeds which are much too fast to be

gravitationally bound to the Milky Way. Yet Slipher did not appreciate the full signif-

icance of his observations.

A number of other astronomers improved on Slipher’s result, but the lion’s share of

the credit ended up falling into the lap of Edwin Hubble. His data, first shown in 1925,

convinced everyone that the nebulae do indeed lie far outside our galaxy at distances of

hundreds of kiloparsecs. Subsequently, in 1929 he revealed further data and laid claim

to the law v = Hx that bears his name. For this, he is often said to have discovered

the expanding universe. Yet strangely Hubble refused to accept this interpretation of

his data, claiming as late as 1936 that “expanding models are definitely inconsistent

with the observations that have been made”.

It fell to theorists to put the pieces together. A framework in which to discuss the

entire cosmos came only with the development of general relativity in 1915. Einstein

himself was the first to apply relativity to the universe as a whole. In 1917, driven by a

philosophical urge for an unchanging universe, he introduced the cosmological constant

to apply a repulsive pressure which would counteract the gravitational attraction of
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matter, resulting in the static spacetime that we met in (1.64). After Einstein’s death,

the physicist Gammow gave birth to the famous “biggest blunder” legend, stating

“Einstein remarked to me many years ago that the cosmic repulsion idea

was the biggest blunder he had made in his entire life.”

Many other physicists soon followed Einstein. First out of the blocks was the dutch

astronomer Willem de Sitter who, in 1917, published the solution that now bears his

name, describing a spacetime with positive cosmological constant and no matter. de

Sitter originally wrote the solution in strange coordinates, which made him think that

his spacetime was static rather than expanding. He was then surprised to discover that

signals between distant observers are redshifted. Both Slipher and Hubble referred to

their redshift observations as the “de Sitter effect”.

In St Petersburg, an applied mathematician-cum-meteorologist called Alexander

Friedmann was also looking for solutions to the equations of general relativity. He

derived his eponymous equation in 1922 and found a number of solutions, including

universes which contracted and others which expanded indefinitely. Remarkably, at

the end of his paper he pulls an estimate for the energy density of the universe out

of thin air, gets it more or less right, and comes up with an age of the universe of 10

billion years. Sadly his work was quickly forgotten and three years later Friedmann

died. From eating a pear. (No, really.)

The first person to understand the big picture was a Belgian, Catholic priest called

Georges Lemâıtre. In 1927 he independently reproduced much of Friedmann’s work,

finding a number of further solutions. He derived Hubble’s law (two years before

Hubble’s observations), extracting the first derivation of H0 in the process and was,

moreover, the first to connect the redshifts predicted by an expanding universe with

those observed by Slipher and Hubble. For this reason, many books refer to the FRW

metric as the FLRWmetric. Although clearly aware of the significance of his discoveries,

he chose to publish them in French in “Annales de la Société Scientifique de Bruxelles”,

a journal which was rather far down the reading list of most physicists. His work only

became publicised in 1931 when a translation was published in the Monthly Notices

of the Royal Astronomical Society, by which time much of the credit had been bagged

by Hubble. Lemâıtre, however, was not done. Later that same year he proposed what

he called the “hypothesis of the primeval atom”, these days better known as the Big

Bang theory. He was also the first to realise that the cosmological constant should be

identified with vacuum energy.
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We have not yet met R and W. The first is Howard Robertson who, in 1929, de-

scribed the three homogeneous and isotropic spaces. This work was extended in 1935

by Roberston and, independently, by Arthur Walker, who proved these are the only

possibilities.

Despite all of these developments, there was one particularly simple solution that had

fallen through the cracks. It fell to Einstein and de Sitter to fill this gap. In 1932, when

both were visitors at Caltech, they collaborated on a short, 2 page paper in which they

described an expanding FRW universe with only matter. The result is the Einstein-de

Sitter universe that we met in (1.49). Apparently neither thought very highly of the

paper. Eddington reported a conversation with Einstein, who shrugged off this result

with

“I did not think the paper very important myself, but de Sitter was keen

on it.”

On hearing this, de Sitter wrote to Eddington to put the record straight,

“You will have seen the paper by Einstein and myself. I do not myself

consider the result of much importance, but Einstein seemed to think it

was.”

This short, unimportant paper, unloved by both authors, set the basic framework for

cosmology for the next 60 years, until the cosmological constant was discovered in the

late 1990s. As we will see in the next section, it provides an accurate description of the

expansion of the universe for around 10 billion years of its history.

1.4 Our Universe

The time has now come to address the energy content and geometry of our own universe.

We have come across a number of different entities that can contribute to the energy

density of a universe. The three that we will need are

• Conventional matter, with ρm ∼ a−3

• Radiation, with ρr ∼ a−4

• A cosmological constant, with ρΛ constant.

We will see that these appear in our universe in somewhat surprising proportions.
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Critical Density

Recall from Section 1.3.2 that in a flat universe the total energy density today must

sum to match the Hubble constant. This is referred to as the critical energy density,

ρcrit,0 =
3c2

8πG
H2

0 (1.65)

We use this to define dimensionless density parameters for each fluid component,

Ωw =
ρw,0

ρcrit,0

We have not included a subscript 0 on the density parameters but, as the definition

shows, they refer to the fraction of energy observed today. Cosmologists usually specify

the energy density in our Universe in terms of these dimensionless numbers Ωw.

By design, the dimensionless density parameters sum to∑
w=m,r,Λ

Ωw = 1 +
kc2

R2H2
0

In particular, if we are to live in a flat universe then we must have
∑

w Ωw = 1. Any

excess energy density, with
∑

w Ωw > 1 means that we necessarily live in a positively

curved universe with k = +1. Any deficit in the energy, with
∑

w Ωw < 1 gives rise to

a negatively curved, k = −1 universe.

It is sometimes useful to place the curvature term on a similar footing to the other

energy densities. We define the energy density in curvature to be

ρk = − 3kc4

8πGR2a2

and the corresponding density parameter as

Ωk =
ρk,0
ρcrit,0

= − kc2

R2H2
0

(1.66)

With these definitions, together with the scaling ρw = ρw,0 a
−3(1+w), the Friedmann

equation

H2 =
8πG

3c2

∑
w=m,r,Λ

ρw − kc2

R2a2

can be rewritten in terms of the density parameters as(
H

H0

)2

=
Ωr

a4
+

Ωm

a3
+

Ωk

a2
+ ΩΛ (1.67)

One of the tasks of observational cosmology is to measure the various parameters in

this equation.
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1.4.1 The Energy Budget Today

After many decades of work, we have been able to measure the energy content of our

universe fairly accurately. The two dominant components are

ΩΛ = 0.69 and Ωm = 0.31 (1.68)

The cosmological constant, which we now know comprises almost 70% of the energy of

our universe, was discovered in 1998. There are now two independent pieces of evidence.

The first comes from direct measurement of Type Ia supernovae at large redshifts. (We

saw the importance of supernovae in Section 1.1.5.) Similar data from 2003 is shown

in Figure 174. The 2011 Nobel prize was awarded to Perlmutter, Schmidt and Riess

for this discovery.

The second piece of evidence is slightly more indirect, although arguably cleaner. The

fluctuations in the cosmic microwave background (CMB) contain a wealth of informa-

tion about the early universe. In combination with information from the distribution

of galaxies in the universe, this provides separate confirmation of the results (1.68), as

shown in Figure 18. (The label BAO in this figure refers “baryon acoustic oscillations”;

we will briefly discuss these in Section 3.2.4.)

All other contributions to the current energy budget are orders of magnitude smaller.

For example, the amount of energy in photons (denoted as γ) is

Ωγ ≈ 5× 10−5 (1.69)

Moreover, as the universe expanded and particles lost energy and slowed, they can

transition from relativistic speeds, where they count as “radiation”, to speeds much

less than c where they count as “matter”. This happened fairly recently to neutrinos,

which contribute Ων ≈ 3.4× 10−5.

Finally, there is no evidence for any curvature in our universe. The bound is

|Ωk| < 0.01

This collection of numbers, Ωm, ΩΛ, Ωr and Ωk sometimes goes by the name of the

ΛCDM model, with Λ denoting the cosmological constant and CDM denoting cold

dark matter, a subject we’ll discuss more in Section 1.4.3.

4This data is taken from R. Knopp et al., “New Constraints on Ωm, ΩΛ, and w from an Independent

Set of Eleven High-Redshift Supernovae Observed with HST”, Astrophys.J.598:102 (2003).
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Fig. 6.— Upper panel: Averaged Hubble diagram with a linear redshift scale
for all supernovae from our low-extinction subsample. Here supernovae within
∆z < 0.01 of each other have been combined using a weighted average in order
to more clearly show the quality and behavior of the dataset. (Note that these
averaged points are for display only, and have not been used for any quantitative
analyses.) The solid curve overlaid on the data represents our best-fit flat-universe
model, (ΩM, ΩΛ) = (0.25, 0.75) (Fit 3 of Table 8). Two other cosmological mod-
els are shown for comparison: (ΩM, ΩΛ) = (0.25, 0) and (ΩM, ΩΛ) = (1, 0). Lower
panel: Residuals of the averaged data relative to an empty universe, illustrating the
strength with which dark energy has been detected. Also shown are the suite of
models from the upper panel, including a solid curve for our best-fit flat-universe
model. 23

Figure 17: The redshift of a number of supernovae plotted against measured brightness.

Various theoretical curves are shown for comparison.

The lack of any suggestion of curvature strongly suggests that we are living in a

universe with k = 0. Given that the curvature of the universe is a dynamical variable

and, as we have seen in Section 1.3.2, the choice of a flat universe is unstable, this

is rather shocking. We will offer a putative explanation for the observed flatness in

Section 1.5.

Energy and Time Scales

To convert the dimensionless ratios above into physical energy densities and time scales,

we need an accurate measurement of the Hubble constant. Here there is some minor

controversy. A direct measurement from Type IA supernovae gives5

H0 = 74.0 (±1.4) km s−1Mpc−1

5The latest supernova data can be found in Riess et al., arXiv:1903.07603. Meanwhile, the final

Planck results, extracting cosmological parameters from the CMB, can be found at arXiv:1807.06209.
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Figure 18: CMB, BAO and Supernovae results combined.

Meanwhile, analysis of the cosmic microwave background measured by the Planck satel-

lite puts the value at

H0 = 67.4 (±0.5) km s−1Mpc−1

The error bars suggest a 3σ discrepancy between the two measurements. Most of

the community suspect that there is some systematic issue in one of the measurements,

possibly in our understanding of cepheid luminosity which is used as a calibration for the

supernovae results. However, it remains a possibility that there is something important

and fundamental hiding in this mismatch. Here we use H0 ≈ 70 km s−1Mpc−1. If we

translate this into a time scale, we get

1

H0

= 4.3× 1018 s = 1.4× 1011 years (1.70)

From a knowledge of the Hubble constant, and with k = 0, the expression (1.65) tells

us that the total energy density of the universe is equal to the critical density,

ρcrit,0 =
3c2H2

0

8πG
= 8.5 × 10−10 kgm−1s−2 (1.71)

A different method of calibrating supernovae distances has recently found the result H0 =

69.8(±1.7) km s−1Mpc−1, in much closer agreement with the CMB data; see arXiv:1907.05922.
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The corresponding mass density is

ρcrit,0
c2

=
3H2

0

8πG
≈ 10−26 kgm−3 (1.72)

This is about one galaxy per cubic Mpc. Or, in more down to earth terms, one hydrogen

atom per cubic metre. (Or, if you like, 10−68 galaxies per cubic metre!) The actual

matter in the universe is, of course, fractionally less at ρm,0 = Ωmρcrit,0.

With the universe dominated by ρΛ and ρm, the solution (1.61), given by

a(t) =

(
ρ0
ρΛ

)1/3

sinh2/3

(√
3Λt

2

)

offers a good description of the expansion for much of this history. Recall that, in such

a solution, the Big Bang takes place at t = 0 while the present day is defined by

sinh2

(√
3Λt0
2

)
=
ρΛ
ρ0

Inverting this gives the age

t0 =
c√

6πGρΛ
sinh−1

(√
ρΛ
ρ0

)
=

2

3
√
ΩΛH0

sinh−1

(√
ΩΛ

Ω0

)

The various factors almost cancel out, leaving us with an age which is very close to the

naive estimate (1.23)

t0 ≈ 0.96× 1

H0

≈ 1.4× 1010 years

We can also calculate the age at which the vacuum energy was equal to the energy in

matter (1.62). We get

teq =
2

3
√
ΩΛH0

sinh−1(1) ≈ 0.7× 1

H0

≈ 0.98× 1010 years

or about 4 billion years ago. To put this in perspective, the Earth is around 4.5

billion years old, and life started to evolve (at least) 3.5 billion years ago. In the grand

scheme of things, equality between matter energy density and the cosmological constant

occurred very recently.
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Throughout these lectures, we will often use redshift z, rather than years, to refer to

the time at which some event happened. Recall the the redshift is defined as (1.21)

1 + z =
1

a

This means that at redshift z,the universe was 1/(1+z)th its present size. This has the

advantage that it’s very easy to compute certain numbers in terms of z. For example,

the equality of the cosmological constant and matter occurred when ρm = ρΛ which,

in terms of todays fractional energy density ,means that Ωm/a
3 = ΩΛ. Plugging in the

numbers gives z = 0.3.

Matter-Radiation Equality

Today, radiation is an almost negligible part of the total energy density. However, this

wasn’t always the case. Because ρr ∼ 1/a4, as we go backwards in time the energy

density in radiation grows much faster than matter, with ρ ∼ 1/a3, or the cosmological

constant. We can ask: when do we have matter-radiation equality? In terms of redshift

this requires

Ωm

a3
=

Ωr

a4

Here there is a small subtlety because neutrinos transition from relativistic to non-

relativistic during this period. If we include the present day neutrino density as radia-

tion, then we have Ωr ≈ 8.4× 10−5, which gives matter-radiation equality at z ≈ 3700.

A more accurate assessment gives

zeq ≈ 3400 (1.73)

We can translate this into years. The universe was matter dominated for most of

the time since z = 3400, with the cosmological constant becoming important only

(relatively) recently. If we work with a(t) = (t/t0)
2/3 as befits a matter-dominated

universe, then we can trace back the evolution from the present day to get a rough

estimate for the time of matter-radiation equality to be

teq =
t0

(1 + zeq)3/2
≈ 70, 000 years

A more accurate calculation gives

teq ≈ 50, 000 years

Prior to this, the universe was radiation dominated.

– 53 –



ρ(t)/ρ
crit,0

log( )

1

matter

radiation

cosmological constant

10

0

10
−4

10
−3

10
−1

10
−2

5

a(t)

Figure 19: The evolution of the energy densities in our universe.

A plot of the evolution of the three kinds of energy is shown in Figure 19.

1.4.2 Dark Energy

For a number of observational cosmologists, who had long been wrestling with the

difficulty of reconciling the early age (1.50) of a matter dominated universe with the

lifetime of stars, the discovery of the cosmological constant came as a welcome relief.

However, for the more theoretical minded physicists, it was something of a bombshell.

In the comfortable world of classical physics, there is no mystery to the cosmological

constant. It is, as we have seen, simply the constant energy term that we previously

neglected. However, our fundamental theories of physics are quantum. And here there

is a problem, because they provide a way to estimate the size of the cosmological

constant Λ.

Even before we put in any numbers, it’s obvious that it’s going to be a challenge to

predict Λ from any underlying, quantum theory. That’s simply because of the order of

magnitudes. Recall that Λ has dimensions of (time)−2 and is given approximately by

Λ ∼ H2
0 . As we saw in (1.70), this time scale is measured in billions of years,

Λ ≈ 1

(1011 years)2

That’s a rather long time in anyone’s book. But it’s an especially long time from

the perspective of fundamental particles, where time scales are typically measured in

fractions of a second. Before we put in any numbers at all, it’s clear that if we try
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to derive the cosmological constant using, say, the Standard Model of particle physics

then we’re never going to get the right answer! You’re surely going to get a much larger

cosmological constant associated to a microscopic timescale.

Having convinced ourselves that no calculation of this kind can possibly work, let’s

go ahead and do it anyway, just to see how badly we fail. The story is usually told in

terms of the relevant energy scales, rather than time scales. Taking the critical energy

density to be (1.71), the observed vacuum energy density is ρΛ ≈ 6 × 10−10 Jm−3.

However, a more natural unit of energy is not the joule, but the electron volt, with

1 J ≈ 6.2× 1018 eV. In these units,

ρΛ = 3.7× 109 eVm−3

Perhaps more surprisingly, our preferred unit of inverse length is also the electron

volt! To convert from one to the other, we use the fundamental constants of nature,

ℏc ≈ 2.0× 10−7 eVm. Putting this together, gives

ℏ3c3ρΛ ≈ (10−3 eV)4

Usually, this is written in natural units, with ℏ = c = 1, so that

ρΛ ≈ (10−3 eV)4

What are our expectations for the vacuum energy? Our fundamental laws of physics

are written in framework called quantum field theory. All quantum field theories have

a term, analogous to the +1
2
ℏω ground state energy of the harmonic oscillator, which

contributes to the vacuum energy of the universe. However, in contrast to the harmonic

oscillator, in quantum field theory the ground state energy gets contributions from all

possible frequencies. Taken at face value, this integral over frequencies would appear

to diverge.

To make sense of this divergence, we need to embrace a little humility. Our theories

have not been tested to arbitrarily high energy scales, and surely break down at some

point. The best we can say at present is that the theories make sense up to the scales

tested at the LHC, which operates at energies

MLHC ∼ 1 TeV = 1012 eV

With this conservative estimate for the validity of our theories, the most “natural”

value for the vacuum energy arising from quantum field theory

ρQFT = (1012 eV)4 = 1060ρΛ
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This is not particularly close to the observed value. It is, moreover, a ridiculous num-

ber that makes no sense in the cosmological context. Such a universe would not be

conducive to forming nuclei or atoms, let alone galaxies and life. The huge discrep-

ancy between the expected value of ρQFT and the observed value of ρΛ is known as the

cosmological constant problem.

Physicists with masochistic tendencies will try to make the situation look even worse.

There is some minimal, circumstantial evidence that the framework of quantum field

theory holds up to the Planck scale Mpl =
√

ℏc/8πG which corresponds to the energy

Mplc
2 ≈ 1019 GeV. In this case, we would get ρQFT = 10122ρΛ. I’m not sure this way

of stating things is particularly helpful.

The value of ρQFT is not a precise prediction of quantum field theory, but rather a

ballpark figure for the natural energy scale of the theory. We are always free to just

add a further arbitrary constant to the energy of the theory. In that case, there are

two contributions

ρΛ = ρQFT + ρconstant

Apparently, the two contributions on the right must add up to give the observed value

of ρΛ. We call this fine-tuning. As presented above, it looks fairly absurd: two numbers

of order 1060 (or higher) have to coincide in the first 60 digits, but differ in the 61st,

leaving behind a number of order 1.

It is quite possible that there is some missing principle that we’ve failed to grasp that

makes fine tuning less silly than it first appears. The task of finding such a mechanism

is made considerably harder when we realise that there have been a number of times

in the history of the universe when ρQFT abruptly changed while, presumably, ρconstant
did not. This occurs at a phase transition. For example, the QCD phase transition,

where quarks which were once free became trapped in protons and neutrons, took place

in the early universe. At this moment, there was a change ∆ρQFT ∼ (100 MeV)4. Still

earlier, the electroweak phase transition, where the Higgs boson kicks in and gives mass

to fundamental particles, should have resulted in a change of ∆ρQFT ∼ (100 GeV)4.

In other words, any putative cancellation mechanism must conspire to give a tiny

cosmological constant ρΛ at the end of the life of the universe, not at the beginning.

Given these difficulties, most physicists in the 20th century buried their heads in the

sand and assumed that there must be some deep principle that sets the cosmological

constant to zero. No such principle was found. In the 21st century, we have a much

harder job. We would like a deep principle that sets the late-time cosmological constant

to ρΛ ∼ (10−3 eV)4. Needless to say, we haven’t found that either.

– 56 –



If this wasn’t bad enough, there is yet another issue that we should confront. The

value of the current vacuum energy is remarkably close to the energy in matter. Why?

As illustrated in Figure 19, these energy densities scale very differently and we would

naively expect that they differ by orders of magnitude. Why are Ωm and ΩΛ so very

close today? This is known as the coincidence problem. We have no good explanation.

The A-Word

As we saw above, a naive application of quantum field theory suggests a ludicrous value

for the cosmological constant, one that results in an expansion so fast that not even

atoms have a chance to form from their underlying constituents. Given this, we could

ask the following question: what is the maximum value of the cosmological constant

that still allows complex structures to evolve? For example, what is the maximum

allowed value of Λ that allows galaxies to form?

It turns out that the upper bound on Λ depends on the strength of the initial seeds

from which the galaxies grew. At very early times, there are small variations δρ in the

otherwise homogeneous universe. As we will discuss in more detail in Section 3, in our

universe these seeds have size δρ/ρ ∼ 10−5. Let us fix this initial condition, and then

ask again: how big can the cosmological constant be?

We will present this calculation in Section 3.3.4. The answer is quite striking: the

scale of the vacuum energy is pretty much the maximum it could be. If ρΛ were bigger

by an order of magnitude or so, then no galaxies would form, presumably making it

rather more difficult for life to find a comfortable foothold in the universe.

What to make of this observation? One possibility is to shrug and move on. Another

is to weave an elaborate story. Suppose that our observable universe is part of a much

larger structure, a “multiverse” in which different domains exhibit different values of

the fundamental parameters, or perhaps even different laws of physics. In this way, the

cosmological constant is not a fundamental parameter which we may hope to predict,

but rather an environmental parameter, no different from, say, the distance between

the Earth and the Sun. We should not be shocked by its seemingly small value because,

were it any higher, we wouldn’t be around to comment on it. Such reasoning goes by

the name of the anthropic principle.

The anthropic explanation for the cosmological constant may be correct. But, in the

absence of any testable predictions, discussions of this idea rapidly descend into a haze

of sophomoric tedium. Trust me: there are better things to do with your life. (Like

find a proper explanation.)

– 57 –



A Rebranding: Dark Energy

Given our manifest befuddlement about all things Λ, it is prudent to wonder if ρΛ is

actually a cosmological constant at all. Perhaps it is some other form of fluid, with

an equation of state w ≈ −1, rather than precisely w = −1. More interesting, it may

be a fluid whose equation of state evolves over time. (We will meet behaviour like

this in Section 1.5.) I stress that there are no compelling theoretical reasons to believe

that this is the case, and nor does it alleviate the need to explain why ρQFT does not

gravitate. Nonetheless, this is clearly an area where we are totally at sea and we should

be open to such possibilities. For these reasons, the mysterious 70% of the energy in

the universe is often referred to as dark energy.

1.4.3 Dark Matter

Our embarrassing ignorance of the universe we call home is further illustrated if we

delve a little deeper into the Ωm = 0.31 energy in matter. Of this, the amount that we

understand is

ΩB ≈ 0.05 (1.74)

This is the energy in matter made from atoms in the periodic table. The B in ΩB

stands for “baryons”, which are protons and neutrons. This is appropriate because the

mass in electrons is negligible in comparison.

The remaining matter energy is in the form of cold dark matter,

ΩCDM ≈ 0.26

This is stuff that we have not (yet?) created here on Earth. The “cold” refers to the

fact that it is non-relativistic today and, moreover, has been so for some time.

We know very little about this dark matter. We do not know if it is a single species

of particle, or many. We do not know if it consists of several decoupled sectors, or just

one. Given the wonderful complexity that lurks in ΩB, it seems reasonable to assume

that there is still rather a lot to learn about ΩCDM .

Here we simply describe some of the evidence for the existence of dark matter. To do

this, we need to construct methods to determine the mass of the large objects, such as

galaxies or clusters of galaxies. These are small enough for us to ignore the expansion

of the universe so, for the rest of this section, we will work in flat space.
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Figure 20: The rotation curve of galaxy M33. Image taken from Wikipedia.

Galaxy Rotation Curves

At the galactic scale, rotation curves provide a clean way to measure mass. This method

was pioneered by Vera Rubin and her collaborator Kent Ford in the 1960s and 70s.

For a quick and dirty sketch of the idea, we will assume spherical symmetry. A

quick glance at a typical spiral galaxy shows this is a poor approximation, at least

for the visible matter, but it will suffice to get the basic idea across. The centrifugal

acceleration of a star, orbiting at distance r from the galactic centre, must be provided

by the gravitational force,

v2

r
=
GM(r)

r2

where M(r) is the mass enclosed inside a sphere of radius r. We learn that we expect

the rotational speed to vary as

v(r) =

√
GM(r)

r

Far from the bulk of the galaxy, we would expect thatM(r) is constant, so the velocity

drops off as v ∼
√
1/r. This is not what is observed. The rotation speeds can be

measured from the edge of the galaxy by studying interstellar gas, in particular the

21cm line of hydrogen. (The origin of this line was discussed in the Atomic Physics

section of the Lectures on Topics in Quantum Mechanics..) One finds that the rotation

remains more or less constant very far from what appears to be the edge of the galaxy.

This suggests that the mass continues to grow as M(r) ∼ r far from the observable

galaxy. This is known as the dark matter halo.
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The Virial Theorem and Galaxy Clusters

The virial theorem offers a clever method of weighing a collection of objects that are

far away.

Virial Theorem: A collection of N particles, with masses mi and positions xi,

interact through a gravitational potential

V =
∑
i<j

Vij =
∑
i<j

− Gmimj

|xi − xj|
(1.75)

We will assume that the system is gravitationally bound, and that the positions xi and

velocities ẋi are bounded for all time. We will further assume that the time average of

the kinetic energy T and potential energy V are well defined. Then

T = −1

2
V

where the bar denotes time average (a quantity we will define more precisely below).

Proof: We start by defining something akin to the moment of inertia,

I =
1

2

∑
i

mixi · xi ⇒ İ =
∑
i

pi · xi (1.76)

with pi the momentum of the ith particle. The quantity İ is known as the virial. Note

that, in contrast to the potential V , both I and İ depend on our choice of origin. The

correct choice is to pick this origin to be the centre of mass. The time derivative of the

virial is

Ï =
∑
i

ṗi · xi +
∑
i

pi · ẋi =
∑
i

Fi · xi + 2T

where, in the second equality, we have used the definition of kinetic energy T and

Newton’s force law Fi = ṗi. The force Fi on the ith particle is determined by the

potential Vij by

Fi = −
∑
j ̸=i

∇iVij ⇒
∑
i

Fi · xi = −
∑
i<j

∇iVij · xi −
∑
j<i

∇iVij · xi

= −
∑
i<j

∇iVij · xi −
∑
i<j

∇jVji · xj

= −
∑
i<j

∇iVij · (xi − xj)

– 60 –



where, in the second step, we simply swapped the dummy indices i and j and, in the

third step, we used Vij = Vji and ∇iVij = −∇jVij. But now we can use the explicit

form of the potential (1.75) to find

−
∑
i<j

∇iVij · (xi − xj) =
∑
i<j

Vij = V

We learn that the time variation of the virial is

Ï = V + 2T

At this point we take the time average, defined by

X = lim
t→∞

1

t

∫ t

0

X(t′) dt′

The time average of all these quantities is assumed to be well-defined. But,

dİ

dt
= lim

t→∞

İ(t)− İ(0)

t
= 0

Note that the last step follows only if the virial (1.76) is measured relative to the centre

of mass, otherwise the positions xi will have a drift linear in time. We’re left with the

promised virial theorem V + 2T = 0. □

As an aside: the virial theorem also holds in other contexts. For example, a proof

using the variational method can be found in the Lectures on Topics in Quantum

Mechanics.

The virial theorem can be used to estimate

Figure 21: Coma cluster.

the mass of any collection of objects that satisfy

the assumptions of the theorem. Roughly speaking,

this holds when the objects have reached something

akin to thermodynamic equilibrium. In 1933, Zwicky

used this technique to estimate the mass of the Coma

cluster, shown in the figure, a conglomerate of a few

thousand galaxies.

We will make a few simplifying assumptions. First

we will assume that there are N galaxies, all of the

same mass m. (We can do better, but this will serve

our purposes.) Second, we will assume that the system is “self-averaging”, which

– 61 –

http://www.damtp.cam.ac.uk/user/tong/topicsinqm.html
http://www.damtp.cam.ac.uk/user/tong/topicsinqm.html


means that the average over many galaxies is a proxy for averaging over time so that,

for example,

T̄ ≈ ⟨T ⟩ = 1

2N

N∑
i=1

mv2i

This has the advantage that we don’t need to wait several billion years to perform the

time average. The virial theorem then reads

2⟨T ⟩ = m⟨v2⟩ ≈ ⟨V ⟩ ≈ 1

2
Gm2N

〈1
r

〉
where ⟨1/r⟩ is the average inverse distance between galaxies and, in the last step, we

have replaced N − 1 with N . This then gives an expression for the total mass of the

galaxy cluster,

Nm ≈ 2⟨v2⟩
G⟨1/r⟩

(1.77)

The right-hand-side contains quantities that we can measure, giving us an estimate for

the mass of the cluster. (Strictly speaking, we can measure vredshift, the velocity in the

line of sight. If we further assume spherical symmetry, we have ⟨v2⟩ = 3⟨v2redshift⟩.)

There is a much simpler way to compute the mass in each galaxy: simply count the

number of stars. In practice, this is done by measuring the luminosity. This provides

two very different ways to determine the mass and we can compare the two. One

typically finds that the virial mass is greater than the luminosity mass by a factor of

a couple of hundred. The difference is made up by what Zwicky referred to as Dunkle

Materie, or dark matter.

(An aside: Zwicky was viewed by his peers as a genius and a bit of a prick. He

referred to his enemies as “spherical bastards” because, no matter what direction you

looked at them, they were still bastards.)

Other Evidence

There are a number of other pieces of evidence, all of which consistently point to the

existence of dark matter. The mathematics underlying these requires more than just

Newtonian dynamics so, for now, we will replace the maths with some pretty pictures.

• Gravitational Lensing: A classic prediction of general relativity is that light bends

as it passes heavy objects. Furthermore, the image gets distorted, a phenomenon

known as gravitational lensing. Sometimes this happens in a spectacular fashion,
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Figure 22: Abell S1063 cluster. Figure 23: The bullet cluster.

as shown in the picture on the left, where the image of a background galaxy

is distorted into the blue arcs by the cluster in the foreground. Even small

distortions of this kind allow us accurately determine the mass of the cluster in

the foreground. You will not be surprised to hear that the mass greatly exceeds

that seen in visible matter.

The bullet cluster, shown in the right-hand figure, provides a particularly dra-

matic example of gravitational lensing. This picture shows two sub-clusters of

galaxies which are thought to have previously collided. There are three types of

matter shown in the picture: stars which you can see, hot gas which is observed in

x-rays and is shown in pink, and the distribution of mass detected through grav-

itational lensing shown in blue. The stars sit cleanly in two distinct sub-clusters

because individual galaxies have little chance of collision. In contrast, most of

the baryonic matter sits in clouds of hot gas which interact fairly strongly as the

clusters collide, slowing the gas and leaving it displaced from the stars as shown

in the figure. But most of the matter, as detected through gravitational lensing,

is dark and this, like the galaxies, has glided past each other seemingly unaffected

by the collision. The interpretation is that dark matter interacts weakly, both

with itself and with baryonic matter.

• BBN: The observations described above show clearly that on the scale of both

galaxies and clusters of galaxies there is more matter than can be detected by

electromagnetic radiation. This alone is not sufficient to tell us that dark matter

must be composed of some new unknown particle. For example, it could be in

the form of failed stars (“jupiters”). There is, however, compelling evidence that

this is not the case, and dark matter is something more exotic.
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Figure 24: The relative abundance of light elements forged in the early universe, as a

function of the overall baryon density.

The primary evidence comes from Big Bang nucleosynthesis (BBN), an impres-

sively accurate theory of how the light elements were forged in the early universe.

It turns out that the relative abundance of different elements depends on the

total amount of baryon matter. In particular, the relative abundance of deu-

terium changes rapidly with baryon density. This is shown6 in Figure 24, with

the horizontal turquiose bar fixed by observations of relative abundance. (The

black boxes show the relative abundance of each element, with error bars, and

the corresponding constraint on the baryon density.) This tells us that the total

amount of baryonic matter is just a few percent of the total energy density. We

will describe some aspects of BBN in Section 2.5.3.

• Structure formation: The CMB tells us that the very early universe was close

to homogeneous and isotropic, with fluctuations in the energy of the order of

6This figure is taken from Burles, Nollett and Turner, Big-Bang Nucleosynthesis: Linking Inner

Space and Outer Space”, astro-ph/99033.
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δρ/ρ ∼ 10−5. Yet today, these tiny fluctuations have grown into the clusters,

galaxies and stars that we see around us. How did this happen?

It turns out that there this can not be achieved by baryonic matter alone. In the

fireball of the Big Bang, baryonic matter is coupled to photons and these provide

a pressure which suppresses gravitational collapse. This collapse can only proceed

after the fireball cools and photons decouple, an event which takes place around

300,000 years after the Big Bang. This does not leave enough time to form the

universe we have today. Dark matter, however, has no such constraints. It de-

couples from the photons much earlier, and so its density perturbations can start

to grow, forming gravitational wells into which visible matter can subsequently

fall. We will tell this story in Section 3.

• CMB: As we mentioned above, baryonic matter and dark matter behave differ-

ently in the early universe. Dark matter is free to undergo gravitational collapse,

while baryonic matter is prevented from doing so by the pressure of the photons.

These differences leave their mark on the fireball, and this shows up in the fluc-

tuations etched in the microwave background. This too will be briefly described

in Section 3.

1.5 Inflation

We have learned that our universe is a strange and unusual place. The cosmological

story that emerged above has a number of issues that we would like to address. Some

of these – most notably those related to dark matter and dark energy – have yet to be

understood. But there are two puzzles that do have a compelling solution, known as

cosmological inflation. The purpose of this section is to first describe the puzzles, and

then describe the solution.

1.5.1 The Flatness and Horizon Problems

The first puzzle is one we’ve met before: our universe shows no sign of spatial curvature.

We can’t say for sure that it’s exactly flat but observations bound the curvature to be

|Ωk| < 0.01. A universe with no curvature is a fixed point of the dynamics, but it is an

unstable fixed point, and any small amount of curvature present in the early universe

should have grown over time. At heart, this is because the curvature term in the

Friedmann equation scales as 1/a2 while both matter and radiation dilute much faster,

as 1/a3 and 1/a4 respectively.

Let’s put some numbers on this. We will care only about order of magnitudes. We

ignore the cosmological constant on the grounds that it has been irrelevant for much of
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the universe’s history. As we saw in Section 1.4.1, for most of the past 14 billion years

the universe was matter dominated. In this case,

ρk(t)

ρm(t)
=
ρk,0
ρm,0

a ⇒ Ωk(t) =
Ωk,0

Ωm,0

Ωm(t)

1 + z

where, for once, we have defined time-dependent density parameters Ωw(t) and, corre-

spondingly, added the subscript Ωm,0 to specify the fractional density today. This for-

mula holds all the way back to matter-radiation equality at t = teq where Ωm(teq) ≈ 1/2

(the other half made up by radiation) and z ≈ 3000. Using the present day value of

Ωk,0/Ωm,0 ≲ 10−2, we must have

|Ωk(teq)| ≤ 10−6

At earlier times, the universe is radiation dominated. Now the relevant formula is

ρk(t)

ρr(t)
=
ρk,eq
ρr,eq

a2

a2eq
⇒ Ωk(t) =

Ωk(teq)

Ωr(teq)

(1 + zeq)
2

(1 + z)2
Ωr(t)

We can look, for example, at the flatness of the universe during Big Bang nucleosyn-

thesis, a period which we understand pretty well. As we will review in Section 2, this

took place at z ≈ 4× 108. Here, the curvature must be

|Ωk(tBBN)| ≤ 10−16

We have good reason to trust our theories even further back to the electroweak phase

transition at z ≈ 1015. Here, the curvature must be

|Ωk(tEW)| ≤ 10−30

These are small numbers. Why should the early universe be flat to such precision?

This is known as the flatness problem.

The second puzzle is even more concerning. As we have mentioned previously, and

will see in more detail in Section 2, the universe is filled with radiation known as the

cosmic microwave background (CMB). This dates back to 300,000 years after the Big

Bang when the universe cooled sufficiently for light to propagate.

The CMB is almost perfectly uniform and isotropic. No matter which direction we

look, it has the same temperature of 2.725 K. However, according to the standard

cosmology that we have developed, these different parts of the sky sat outside each

others particle horizons at the time the CMB was formed. This concept is simplest to

see in conformal time, as shown in Figure 25.

– 66 –



Us

CMB formed

Big Bang

C
o

n
fo

rm
al

 t
im

e
H2d

Figure 25: The horizon problem: different regions of the CMB are causally disconnected at

the time it was formed.

We can put some numbers on this. For a purely matter-dominated universe, with

a(t) = (t/t0)
2/3, the particle horizon (1.24) at time t is defined by

dH(t) = c a(t)

∫ t

0

dt′

a(t′)
= 3ct

We use H(t) = 2/3t = H0/a(t)
3/2 to write this as

dH(z) =
2cH−1

0

(1 + z(t))3/2
(1.78)

We will see in Section 2.3 that the CMB is formed when z ≈ 1100. We would like to

know how large the particle horizon (1.78) looks in the sky today. In the intervening

time, the distance scale dH(z) has been stretched by the expansion of the universe to

(1+ z)dH(z). Meanwhile, this should be compared to the particle horizon today which

is dH(t0) = 2cH−1
0 . From this, we learn that the distance dH(z) today subtends an

angle on the sky given by

θ ≈ (1 + z)dH(z)

dH(t0)
≈ 1√

1100
≈ 0.03 rad ⇒ θ ≈ 1.7◦

Assuming the standard cosmology described so far, patches of the sky separated by

more than ∼ 1.7◦ had no causal contact at the time the CMB was formed. We would

naively expect to see significant variations in temperature over the sky on this scale, but

instead we see the same temperature everywhere we look. It is very hard to envisage

how different parts of the universe could have reached thermal equilibrium without ever

being in causal contact. This is known as the horizon problem.
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Ultimately, the two problems above are both concerned with the initial conditions in

the universe. We should be honest and admit that we’re not really sure what the rules of

the game are here. If you’re inclined to believe in a creator, you might find it plausible

that she simply stipulated that the universe was absolutely flat, with constant energy

density everywhere in space at some initial time t = ϵ. It’s not the kind of explanation

that scientists usually find compelling, but you might think it has a better chance to

convince in this context.

However, there is a more nuanced version of the horizon problem which makes the

issue significantly more acute, and renders the “God did it” explanation significantly

less plausible. Somewhat ironically, this difficulty arises when we appreciate that the

CMB is not completely uniform after all. It contains tiny, but important anisotropies.

There are small fluctuations in temperature at about 1 part in 105. Furthermore, there

are also patterns in the polarisation of the of the light in the CMB. And, importantly,

the polarisation and temperature patterns are correlated. These correlations – which

go by the uninspiring name of “TE correlations” – are the kind of thing that arises

through simple dynamical processes in the early universe, such as photons scattering

off electrons. But observations reveal that there are correlations over patches of the

sky that are as large as 5◦.

These detailed correlations make it more difficult to appeal to a creator without

sounding like a young Earth creationist, arguing that the fossil record was planted to

deceive us. Instead, the observations are clearly telling us that there were dynamical

processes taking place in the early universe but, according to our standard FRW cos-

mology, these include dynamical processes that somehow connect points that were not

in causal contact. This should make us very queasy. If we want to preserve some of

our most cherished ideas in physics – such as locality and causality – it is clear that

we need to do something that changes the causal structure of the early universe, giving

time for different parts of space to communicate with each other.

1.5.2 A Solution: An Accelerating Phase

There is a simple and elegant solution to both these problems. We postulate that the

very early universe underwent a period of accelerated expansion referred to as inflation.

Here “very early” refers to a time before the electroweak phase transition, although we

cannot currently date it more accurately than this. An accelerating phase means

a(t) ∼ tn with n > 1 (1.79)

Alternatively, we could have a de Sitter-type phase with a(t) ∼ eHinf t with constant

Hinf . This is exactly the kind of accelerating phase that we are now entering due to
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the cosmological constant. However, while the present dark energy is ρΛ ∼ (10−3 eV)4,

the dark energy needed for inflation is substantially larger, with ρinflation ≥ (103 GeV)4

and, in most models, closer to (1015 GeV)4.

Let’s see why such an inflationary phase would solve our problems. First, the horizon

problem. The particle horizon is defined as (1.24),

dH(t) = c a(t)

∫ t

0

dt′

a(t′)

It is finite only if the integral converges. This was the case for a purely matter (or

radiation) dominated universe, as we saw in (1.78). But, for a(t) ∼ tn we have∫ t

0

dt′

a(t′)
∼
∫ t

0

dt′

t′n
→ ∞ if n > 1

This means that an early accelerating phase buys us (conformal) time and allows far

flung regions of the early universe to be in causal contact.

An inflationary phase also naturally solves the flatness problem. An inflationary

phase of the form (1.79) must be driven by some background energy density that scales

as

ρinf ∼
1

a2/n

which, for n > 1, clearly dilutes away more slowly than the curvature ρk ∼ 1/a2. This

means that, with a sufficiently long period of inflation, the spatial curvature can be

driven as small as we like. Although we have phrased this in terms of energy densities,

there is a nice geometrical intuition that underlies this: if you take any smooth, curved

manifold and enlarge it, then any small region looks increasingly flat.

This putative solution to the flatness problem also highlights the pitfalls. In the

inflationary phase, the curvature ρk will be driven to zero but so too will the energy

in matter ρm and radiation ρr. Moreover, we’ll be left with a universe dominated by

the inflationary energy density ρinf . To avoid this, the mechanism that drives inflation

must be more dynamic than the passive fluids that we have considered so far. We need

a fluid that provides an energy density ρinf for a suitably long time, allowing us to

solve our problems, but then subsequently turns itself off! Or, even better, a fluid that

subsequently converts its energy density into radiation. Optimistic as this may seem,

we will see that there is a simple model that does indeed have this behaviour.
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How Much Inflation Do We Need?

We will focus on the horizon problem. For simplicity, we will assume that the early

universe undergoes an exponential expansion with a(t) ∼ eHinf t. Suppose that inflation

lasts for some time T . If, prior to the onset of inflation, the physical horizon had size dI
then, by the end of inflation, this region of space has been blown up to dF = eHinfTdI .

We quantify the amount of inflation by N = HinfT which we call the number of e-folds.

Subsequently, scales that were originally at dI grow at a more leisurely rate as the

universe expands. If the end of inflation occurred at redshift zinf , then

dnow = eN(1 + zinf)dI

We will see that zinf is (very!) large, and we lose nothing by writing 1 + zinf ≈ zinf .

The whole point of inflation is to ensure that this length scale dnow is much larger than

what we can see in the sky. This is true, provided

dnow ≫ cH−1
0 ⇒ eN >

c

H0dI

1

zinf

Clearly, to determine the amount of inflation we need to specify both when inflation

ended, zinf , and the size of the horizon prior to inflation, dI . We don’t know either

of these, so we have to make some guesses. A natural scale for the initial horizon is

dI = cH−1
inf , which gives

eN >
Hinf

H0

1

zinf

Post-inflation, the expansion of the universe is first dominated by radiation with H ∼
1/a2, and then by matter with H ∼ 1/a3/2. Even though the majority of the time

is in the matter-dominated era, the vast majority of the expansion takes place in

the radiation dominated era when energy densities were much higher. So we write

Hinf/H0 ∼ (1 + zinf)
2. We then have

eN >

(
Hinf

H0

)1/2

= zinf

It remains to specify Hinf or, equivalently, zinf .

We don’t currently know Hinf . (We will briefly mention a way in which this can be

measured in future experiments in Section 3.5.) However, as we will learn in Section 2,

we understand the early universe very well back to redshifts of z ∼ 108−109. Moreover,

we’re fairly confident that we know what’s going on back to redshifts of z ∼ 1015 since
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this is where we can trust the particle physics of the Standard Model. The general

expectation is that inflation took place at a time before this, or

zinf > 1015 ⇒ N > 35

Recall that H0 ≈ 10−18 s−1, so if inflation took place at z ≈ 1015 then the Hubble scale

during inflation was Hinf = 1012 s−1. In this case, inflation lasted a mere T ∼ 10−11 s.

These are roughly the time scales of processes that happen in modern particle colliders.

Many models posit that inflation took place much earlier than this, at an epoch where

the early universe is getting close to Planckian energy scales. A common suggestion is

zinf ∼ 1027 ⇒ N > 62

in which case Hinf ∼ 1036 s−1 and T ∼ 10−35 s. This is an extraordinarily short time

scale, and corresponds to energies way beyond anything we have observed in our puny

experiments on Earth.

Most textbooks will quote around 60 e-foldings as necessary. For now, the take-away

message is that, while there are compelling reasons to believe that inflation happened,

there is still much we don’t know about the process including the scale Hinf at which

it occurred.

1.5.3 The Inflaton Field

Our theories of fundamental physics are written in terms of fields. These are objects

which vary in space and time. The examples you’ve met so far are the electric and

magnetic fields E(x, t) and B(x, t).

The simplest (and, so far, the only!) way to implement a transient, inflationary

phase in the early universe is to posit the existence of a new field, usually referred to as

the inflaton, ϕ(x, t). This is a “scalar field”, meaning that it doesn’t have any internal

degrees of freedom. (In contrast, the electric and magnetic fields are both vectors.)

The dynamics of this scalar field are best described using an action principle. In

particle mechanics, the action is an integral over time. But for fields, the action is

an integral over space and time. We’ll first describe this action in flat space, and

subsequently generalise it to the expanding FRW universe.
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In Minkowski spacetime, the action takes the form

S =

∫
d3x dt

[
1

2
ϕ̇2 − c2

2
∇ϕ · ∇ϕ− V (ϕ)

]
(1.80)

Here V (ϕ) is a potential. Different potentials describe different physical theories. We

do not yet know the form of the inflationary potential, but it turns out that many do

the basic job. (More detailed observations do put constraints on the form the potential

can take as we will see in Section 3.5.) Later, when we come to solve the equations of

motion, we will work with the simplest possible potential

V (ϕ) =
1

2
m2ϕ2 (1.81)

The action (1.80) is then the field theory version of the harmonic oscillator. In the

language of quantum field theory, m is called the mass of the field. (It is indeed the

mass of a particles that arise when the field is quantised.)

The equations of motion for ϕ follow from the principle of least action. If we vary

ϕ→ ϕ+ δϕ, then the action changes as

δS =

∫
d3x dt

[
ϕ̇ δϕ̇− c2∇ϕ · ∇δϕ− ∂V

∂ϕ
δϕ

]
=

∫
d3x dt

[
−ϕ̈+ c2∇2ϕ− ∂V

∂ϕ

]
δϕ

where, in the second line, we have integrated by parts and discarded the boundary

terms. Insisting that δS = 0 for all variations δϕ gives the equation of motion

ϕ̈− c2∇2ϕ+
∂V

∂ϕ
= 0

This is known as the Klein-Gordon equation. It has the important property that it is

Lorentz covariant.

We want to generalise the action (1.80) to describe a scalar field in a homogenous and

isotropic FRW universe. For simplicity, we restrict to the case of a k = 0 flat universe.

This is a little bit unsatisfactory since we’re invoking inflation in part to explain the

flatness of space. However, it will allow us to keep the mathematics simple, without

the need to understand the full structure of fields in curved spacetime. Hopefully, by

the end you will have enough intuition for how scalar fields behave to understand that

they will, indeed, do the promised job of driving the universe to become spatially flat.

– 72 –



In flat space, the FRW metric is simply

ds2 = −c2dt2 + a2(t) dx2

The scale factor a(t) changes the spatial distances. This results in two changes to the

action (1.80): one in the integration over space, and the other in the spatial derivatives.

We now have

S =

∫
d3x dt a3(t)

[
1

2
ϕ̇2 − c2

2a2(t)
∇ϕ · ∇ϕ− V (ϕ)

]
(1.82)

Before we compute the equation of motion for ϕ, we first make a simplification: because

we’re only interested in spatially homogeneous solutions we may as well look at fields

which are constant in space, so ∇ϕ = 0 and ϕ(x, t) = ϕ(t). We then have

S =

∫
d3x dt a3(t)

[
1

2
ϕ̇2 − V (ϕ)

]
(1.83)

Varying the action now gives

δS =

∫
d3x dt a3(t)

[
ϕ̇ δϕ̇− ∂V

∂ϕ
δϕ

]
=

∫
d3x dt

[
− d

dt

(
a3ϕ̇
)
− a3

∂V

∂ϕ

]
δϕ

Insisting that δS = 0 for all δϕ again gives the equation of motion, but now there is an

extra term because, after integration by parts, the time derivative also hits the scale

factor a(t). The equation of motion in an expanding universe is therefore

ϕ̈+ 3Hϕ̇+
∂V

∂ϕ
= 0 (1.84)

In the analogy with the harmonic oscillator, the extra term 3Hϕ̇ looks like a friction

term. It is sometimes referred to as Hubble friction or Hubble drag.

We also need to understand the energy density ρinf ≡ ρρ associated to the inflaton

field ϕ since this will determine the evolution of a(t) through the Friedmann equation.

There is a canonical way to compute this (through the stress-energy tensor) but the

answer turns out to be what you would naively guess given the action (1.83), namely

ρϕ =
1

2
ϕ̇2 + V (ϕ) (1.85)

The resulting Friedmann equation is then

H2 =
8πG

3c2

(
1

2
ϕ̇2 + V (ϕ)

)
(1.86)
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We will shortly solve the coupled equations (1.84) and (1.86). First we can ask: what

kind of fluid is the inflaton field? To answer this, we need to determine the pressure.

This follows straightforwardly by looking at

ρ̇ϕ =

(
ϕ̈+

∂V

∂ϕ

)
ϕ̇ = −3Hϕ̇2

Comparing to the continuity equation (1.39), ρ̇ + 3H (ρ+ P ) = 0, we see that the

pressure must be

Pϕ =
1

2
ϕ̇2 − V (ϕ) (1.87)

Clearly, this doesn’t fit into our usual classification of fluids with P = wρ for some

constant w. Instead, we have something more dynamical and interesting on our hands.

V(  )φ

φ

start
here

Figure 26: The inflationary scalar rolling down the potential V (ϕ).

Slow Roll Solutions

We want to solve the coupled equations (1.84) and (1.86). In particular, we’re looking

for solutions which involve an inflationary phase. Taking the time derivative of (1.86),

we have

2H

(
ä

a
−H2

)
=

8πG

3c2

(
ϕ̈+

∂V

∂ϕ

)
ϕ̇ = −8πG

c2
Hϕ̇2

where, in the second equality, we have used (1.84). Rearranging gives

ä

a
= −8πG

3c2

(
ϕ̇2 − V (ϕ)

)
which we recognise as the Raychaudhuri equation (1.52). We see that we get an infla-

tionary phase only when the potential energy dominates the kinetic energy, V (ϕ) > ϕ̇2.

Indeed, in the limit that V (ϕ) ≫ ϕ̇2, the relationship between the energy (1.85) and

pressure (1.87) becomes Pϕ ≈ −ρϕ, which mimics dark energy.
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Now we can get some idea for the set-up. We start with a scalar field sitting high

on some potential, as shown in Figure 26 with ϕ̇ small. This will give rise to inflation.

As the scalar rolls down the potential, it will pick up kinetic energy and we will exit

the inflationary phase. The presence of the Hubble friction term in (1.84) means that

the scalar can ultimately come to rest, rather than eternally oscillating backwards and

forwards.

Let’s put some equations on these words. We assume that V (ϕ) ≫ 1
2
ϕ̇2, a requirement

that is sometimes called the slow-roll condition. The Friedmann equation (1.86) then

becomes

H2 ≈ 8πG

3c2
V (ϕ) (1.88)

Furthermore, if inflation is to last a suitably long time, it’s important that the scalar

does not rapidly gain speed. This can be achieved if the Hubble friction term dominates

in equation (1.84), so that ϕ̈ ≪ Hϕ̇. In the context of the harmonic oscillator, this is

the over-damped regime. The equation of motion is then

3Hϕ̇ ≈ −∂V
∂ϕ

(1.89)

These are now straightforward to solve. For concreteness, we work with the quadratic

potential V = 1
2
m2ϕ2. Then the solutions to (1.88) and (1.89) are

H = αϕ and ϕ̇ = −m
2

3α
with α2 =

4πGm2

3c2

Integrating the second equation gives

ϕ(t) = ϕ0 −
m2

3α
t

where we have taken the scalar field to start at some initial value ϕ0 at t = 0. We can

now easily integrate the H = αϕ equation to get an expression for the scale factor,

a(t) = a(0) exp

[
2πG

c2
(ϕ2

0 − ϕ(t)2)

]
(1.90)

This is a quasi-de Sitter phase of almost exponential expansion.

This solution remains valid provided that the condition V (ϕ) ≫ ϕ̇2 is obeyed. The

space will cease to inflate when V (ϕ) ≈ ϕ̇2, which occurs when ϕ2(tend) ≈ 2m2/(3α)2.

By this time, the universe will have expanded by a factor of

a(tend)

a(0)
≈ exp

[
2πGϕ2

0

c2
− 1

3

]
We see that, by starting the scalar field higher up the potential, we can generate an

exponentially large expansion.
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1.5.4 Further Topics

There is much more to say about the physics of inflation. Here we briefly discuss a few

important topics, some of which are fairly well understood, and some of which remain

mysterious or problematic.

Reheating

By the end of inflation, the universe is left flat but devoid of any matter or radiation. For

this to be a realistic mechanism, we must find a way to transfer energy from the inflaton

field into more traditional forms of matter. This turns out to be fairly straightforward,

although we are a long way from a detailed understanding of the process. Roughly

speaking, if the inflaton field is coupled to other fields in nature, then these will be

excited as the inflaton oscillates around the minimum of its potential. This process is

known as reheating. Afterwards, the standard hot Big Bang cosmology can start.

Dark Energy or Cosmological Constant?

Inflation is a period of dynamically driven, temporary, cosmic acceleration in the very

early universe. Yet, as we have seen, the universe is presently entering a second stage

of comic acceleration. How do we know that this too isn’t driven by some underlying

dynamics and will, again, turn out to be temporary? The answer is: we don’t. It is

not difficult to cook up a mathematical model in which the cosmological constant is

set to zero by hand and the current acceleration is driven using some scalar field. Such

models go by the unhelpful name of quintessence.

Quintessence models are poorly motivated and do nothing to solve the fine-tuning

problems of the cosmological constant. In fact, they are worse. First, we have to set

the genuine cosmological constant to zero (and we have no reason to do so) and then

we have to introduce a new scalar field which, to give the observed acceleration, must

have an astonishingly small mass of order m ∼ 10−33 eV .

Such models look arbitrary and absurd. And yet, given our manifest ignorance about

the cosmological constant, it is perhaps best to keep a mildly open mind. The smoking

gun would be to measure an equation of state P = wρ for the present day dark energy

which differs from w = −1.

Initial Conditions

For the idea of inflation to fly, we must start with the scalar field sitting at some point

high up the potential. It is natural to ask: how did it get there?
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One possibility is that the initial value of the scalar field varies in space. The regions

where the scalar are biggest then inflate the most, and all traces of the other regions are

washed away beyond the horizon. These kind of ideas raise some thorny issues about

the nature of probabilities in an inflationary universe (or multiverse) and are poorly

understood. Needless to say, it seems very difficult to test such ideas experimentally.

A More Microscopic Underpinning?

Usually when we introduce a scalar field in physics, it is an approximation to something

deeper going on underneath. For example, there is a simple theory of superconductivity,

due to Landau and Ginsburg, which invokes a scalar field coupled to the electromagnetic

field. This theory makes little attempt to justify the existence of the scalar field.

Only later was a more microscopic theory of superconductivity developed — so-called

BCS theory — in which the scalar field emerges from bound pairs of electrons. Many

further examples, in which scalar fields are invoked to describe everything from water

to magnets, can be found in the lectures on Statistical Field Theory.

This raises a question: is the scalar field description of inflation an approximation to

something deeper going on underneath? We don’t know the answer to this.

Quantum Fluctuations

Although inflation was first introduced to solve the flatness and horizon problems, its

greatest triumph lies elsewhere. As the scalar field rolls down the potential, it suffers

small quantum fluctuations. These fluctuations are swept up in the expansion of the

universe and stretched across the sky where, it is thought, they provide the seeds for the

subsequent formation of structure in the universe. These fluctuations are responsible

for the hot and cold spots in the CMB which, in turn, determine where matter clumps

and galaxies form. In Section 3.5 we will look more closely at this bold idea.
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2. The Hot Universe

As we wind the clock back towards the Big Bang, the energy density in the universe

increases. As this happens, particles interact more and more frequently, and the state

of the universe is well approximated by a hot fluid in equilibrium. This is sometimes

referred to as the primeval fireball of the Big Bang. The purpose of this section is to

introduce a few basic properties of this fireball.

It is worth sketching the big picture. First we play the movie in reverse. As we go

back in time, the Universe becomes hotter and hotter and things fall apart. Running

the movie forward, the Universe cools and various objects form.

For example, there is an important event, roughly 300,000 years after the Big Bang,

when atoms form for the first time. Prior to this, the temperature was higher than the

13.6 eV binding energy of hydrogen, and the electrons were stripped from the protons.

This moment in time is known as recombination and will be described in Section 2.3.

(Obviously a better name would simply be “combination” since the electrons and pro-

tons combined for the first time, but we don’t get to decide these things). This is a

key moment in the history of the universe. Prior to this time, space was filled with a

charged plasma through which light is unable to propagate. But when the electrons and

protons form to make (mostly) neutral hydrogen, the universe becomes transparent.

The cosmic microwave background, which will be discussed in Section 2.2, dates from

this time.

At yet earlier times, the universe was so hot that nuclei fail to cling together and they

fall apart into their constituent protons and neutrons. This process – which, running

forwards in time is known as nucleosynthesis – happens around 3 minutes after the Big

Bang and is understood in exquisite detail. We will describe some of the basic reactions

in Section 2.5.3.

As we continue to trace the clock further back, the universe is heated to extraordi-

nary temperatures, corresponding to the energies probed in particle accelerators and

beyond. Taking knowledge from particle physics, even here we have a good idea of what

happens. At some point, known as the QCD phase transition, protons and neutrons

melt, dissolving into a soup of their constituents known as the quark-gluon plasma.

Earlier still, at the electroweak phase transition, the condensate of the Higgs boson

melts. Beyond this, we have little clear knowledge but there are still other events that

we know must occur. The purpose of this chapter is the tell this story.
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2.1 Some Statistical Mechanics

Our first task is to build a language that allows us to describe stuff that is hot. We

will cherry pick a few key results that we need. A much fuller discussion of the subject

can be found in the lectures on Statistical Physics and the lectures on Kinetic Theory.

Ideas such as heat and temperature are not part of the fundamental laws of physics.

There is no such thing, for example, as the temperature of a single electron. Instead,

these are examples of emergent phenomena, concepts which arise only when a suffi-

ciently large number of particles are thrown together. In domestic situations, where

we usually apply these ideas, large means N ∼ 1023 particles. As we will see, in the

cosmological setting N can be substantially larger.

When dealing with such a large number of particles, we need to shift our point of view.

The kinds of things that we usually discuss in classical physics, such as the position

and momentum of each individual particle, no longer hold any interest. Instead, we

want to know coarse-grained properties of the system. For example, we might like to

know the probability that a particle chosen at random has a momentum p. In what

follows, we call this probability distribution f(p; t).

Equilibrium

In general, the distribution f(p, t) will be very complicated. But patience brings re-

wards. If we wait a suitably long time, the individual particles will collide with each

other, transferring energy and momentum among themselves until, eventually, any

knowledge about the initial conditions is effectively lost. The resulting state is known

as equilibrium and is described by a time-independent probability distribution f(p). In

equilibrium, the constituent particles are flying around in random directions. But, if

you focus only on the coarse-grained probability distribution, everything appears calm.

Equilibrium states are characterised by a number of macroscopic quantities. These

will be dealt with in detail in the Statistical Physics course, but here we summarise

some key facts.

The most important characteristic of an equilibrium state is temperature. This is

related to the average energy of the state in a way that we will make precise below.

The reason that temperature plays such an important role is due to the following

property: suppose that we have two different systems, each individually in equilibrium,

one at temperature T1 and the other at temperature T2. We then bring the two systems

together and allow them to exchange energy. If T1 = T2, then the two systems remain

unaffected by this, and the combined system is in equilibrium. In contrast, if T1 ̸=
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T2, then a net energy will flow from the hotter system to the colder system, and

the combined system will eventually settle down to a new equilibrium state at some

intermediate temperature. Two systems which have the same temperature are said to

be in thermal equilibrium.

Other kinds of equilibria are also possible. One that we will meet later in this section

arises when two systems are able to exchange particles. Often we will be interested in

this when one type of particle can transmute into another. In this case, we characterise

the system by another quantity known as the chemical potential. (The name comes

from chemical reactions although, in this course, will be more interested in processes in

atomic or particle physics.) The chemical potential has the property that if two systems

have the same value then, when brought together, there will not be a net transfer of

particles from one system to the other. In this case, the systems are said to be in

chemical equilibrium.

2.1.1 The Boltzmann Distribution

For now we will focus on states in thermal equilibrium. The thermal properties of a

state are closely related to its energy which, in turn, is related to the momentum of

the constituent particles. This means that understanding thermal equilibrium is akin

to understanding the momentum distribution f(p) of particles. We will see a number

of examples of this in what follows.

A microscopic understanding of thermal equilibrium was first provided by Boltz-

mann. It turns out that the result is somewhat easier to state in the language of

quantum mechanics, although it also applies to the classical world. Consider a system

with discrete energy eigenstates |n⟩, each with energy En. In thermal equilibrium at

temperature T , the probability that the system sits in the state |n⟩ is given by the

Boltzmann distribution,

p(n) =
e−En/kBT

Z
(2.1)

Here kB is the Boltzmann constant, defined to be

kB ≈ 1.381× 10−23 JK−1

This fundamental constant provides a translation between temperatures and energies.

Meanwhile Z is simply a normalisation constant designed to ensure that∑
n

p(n) = 1 ⇒ Z =
∑
n

e−En/kBT
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This normalisation factor Z has its own name: it is called the partition function and it

plays a starring role in most treatments of statistical mechanics. For our purposes, it

will suffice to keep Z firmly in the background.

It is possible to derive the Boltzmann distribution from more elementary principles.

(Such a derivation can be found in the lectures on Statistical Physics.) Here, we will

simply take the distribution (2.1) to be the definition of both thermal equilibrium and

the temperature.

The Boltzmann distribution gives us some simple intuition for the meaning of thermal

equilibrium. We see that the any state with En ≪ kBT has a more or less equal chance

of being occupied, while any state with En ≫ kBT has a vanishingly small chance of

being occupied. In this way kBT sets the characteristic energy scale of the system.

We’ll see many variations of the Boltzmann distribution in what follows. It gets

tedious to keep writing 1/kBT . For this reason we define

β =
1

kBT

We will be careless in what follows and also refer to β as “temperature”: obviously it is

actually (proportional to) the inverse temperature. The Boltzmann distribution then

reads

p(n) =
e−βEn

Z

Above, we mentioned the key property of temperature: it determines whether two

systems sit in thermal equilibrium. We should check that this is indeed obeyed by the

Boltzmann distribution. Suppose that we have two systems, A and B, both at the

same temperature β, but with different microscopic constituents, meaning that their

energy levels differ. If we bring the two systems together, we expect that the combined

system also sits in a Boltzmann distribution at temperature β. Happily, this is indeed

the case. To see this note that we have independent probability distributions for A and

B, so the combined probability distribution is given by

p(n,m) =
e−βEA

n

ZA

e−βEB
m

ZB

=
e−β(EA

n +EB
m)

ZAZB

But this is again of the Boltzmann form. The denominator ZAZB can be written as

ZAZB =

(∑
n

e−βEA
n

)(∑
m

e−βEB
m

)
=
∑
n,m

e−βEA
n e−βEB

m =
∑
n,m

e−β(EA
n +EB

m)
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where we recognise this final expression as ZA+B, the partition function of the combined

system A+B. This had to be the case to ensure that the joint probability distribution

p(n,m) is correctly normalised.

It’s worth re-iterating what we have learned. You might think that if we combined

two systems, separately in equilibrium, then there would be no energy transfer from

one to the other if the average energies coincide, i.e. ⟨EA⟩ = ⟨EB⟩, with

⟨E⟩ = 1

Z

∑
n

Ene
−βEn

However, this is not the right criterion. As we have seen above, the average energies of

the two systems can be very different. It is the temperatures that must coincide.

2.1.2 The Ideal Gas

As our first application of the Boltzmann distribution, consider a gas of non-relativistic

particles, each of mass m. We will assume that there are no interactions between these

particles, so the energy of each is given by

E =
1

2
mv2 (2.2)

Before we proceed, I should mention a subtlety. We’ve turned off interactions in order

to make our life simpler. Yet, from our earlier discussion, it should be clear that

interactions are crucial if we are ever going to reach equilibrium, since this requires

a large number of collisions to share energy and momentum between particles! This

is one of many annoying and fiddly issues that plague the fundamentals of statistical

mechanics. We will argue this subtlety away by pretending that the interactions are

strong enough to drive the system to equilibrium, but small enough to ignore when

describing equilibrium. Obviously this is unsatisfactory. We can do better, but it is

more work. (See, for example, the discussion of the interacting gas in the lectures

on Statistical Physics or the derivation of the approach to equilibrium in the lectures

on Kinetic Theory.) We will also see this issue rear its head in a physical context in

Section 2.3.4 when we discuss the phenomenon of decoupling in the early universe.

We consider a gas of particles. We’ll assume that each particle is independent of the

others, and focus on the state of a just single particle, specified by the momentum p or,

equivalently, the velocity v = p/m. If the momentum is continuous (or finely spaced)

we should talk about the probability that the velocity lies in some some volume d3v

centred around v. We denote the probability distribution as f(v) d3v. The Boltzmann
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Figure 27: The distribution of the speeds of various molecules at T = 25 C. (Image taken

from Wikipedia.)

distribution (2.1) tells us that this is

f(v) d3v =
e−βmv2/2

Z
d3v (2.3)

where Z is a normalisation factor that we will determine shortly.

Our real interest lies in the speed v = |v|. The corresponding speed distribution

f(v) dv = f(v) d3v is

f(v)dv =
4πv2

Z
e−βmv2/2 dv (2.4)

Note that we have an extra factor of 4πv2 when considering the probability distribution

over speeds v, as opposed to velocities v. This reflects the fact that there’s “more ways”

to have a high velocity than a low velocity: the factor of 4πv2 is the area of the sphere

swept out by a velocity vector v.

We require that ∫ ∞

0

dv f(v) = 1 ⇒ Z =

(
2πkBT

m

)3/2

Finally, we find the probability that the particle has speed between v and v+ dv to be

f(v) dv = 4πv2
(

m

2πkBT

)3/2

e−mv2/2kBT dv (2.5)

This is known as the Maxwell-Boltzmann distribution. It tells us the distribution of the

speeds of gas molecules in this room.
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Pressure and the Equation of State

We can use the Maxwell-Boltzmann distribution to compute the pressure of a gas. The

pressure arises from the constant bombardment by the underlying atoms and can be

calculated with some basic physics. Consider a wall of area A that lies in the (y, z)-

plane. Let n denote the density of particles (i.e. n = N/V where N is the number of

particles and V the volume). In some short time interval ∆t, the following happens:

• A particle with velocity v will hit the wall if it lies within a distance ∆L = |vx|∆t
of the wall and if it’s travelling towards the wall, rather than away. The number

of such particles with velocity centred around v is

1

2
nA|vx|∆t d3v

with a factor of 1/2 picking out only those particles that travel in the right

direction.

• After each such collision, the momentum of the particle changes from px to −px,
with py and pz left unchanged. As before, this holds only for the initial px > 0.

We therefore write the impulse imparted by each particle as 2|px|.

• This impulse is equated with Fx∆t where Fx is the force on the wall. The force

arising from particles with velocity in the region d3v about v is

Fx∆t =

(
1

2
nA|vx|∆t d3v

)
× 2|px| ⇒ Fx = nAvxpx d

3v

where we dropped the modulus signs on the grounds that the sign of the momen-

tum px is the same as the sign of the velocity vx.

• The pressure on the wall is the force per unit area, P = Fx/A. We learn that the

pressure from those particles with velocity in the region of v is

P = nvxpx d
3v

At this stage we invoke isotropy of the gas, which means that v · p = vxpx +

vypy + vzpz = 3vxpx. We therefore have

P =
n

3
v · p d3v (2.6)

The last stage is to integrate over all velocities, weighted with the probability distri-

bution. In the final form (2.6), the pressure is related to the speed v rather than the

– 84 –



(component of the) velocity vx. This means that we can use the Maxwell-Boltzmann

distribution over speeds (2.5) and write

P =
1

3

∫
dv nv · p f(v) (2.7)

This coincides with our earlier result (1.33) (albeit using slightly different notation for

the probability distributions).

The expression (2.7) holds for both relativistic and non-relativistic systems, a fact

that we will make use of later. For now, we care only for the non-relativistic case with

p = mv. Here we have

P =
4πn

3

(
m

2πkBT

)3/2 ∫
dv mv4 e−mv2/2kBT

The integral is straightforward: it is given by∫ ∞

0

dx x4e−ax2

=
3

8

√
π

a5

Using this, we find a familiar friend

P = nkBT

This is the equation of state for an ideal gas.

We can also calculate the average kinetic energy. If the gas contains N particles, the

total energy is

⟨E⟩ = N

2
m⟨v2⟩ = N

∫ ∞

0

dv
1

2
mv2f(v) =

3

2
NkBT (2.8)

This confirms the result (1.37) that we met when we first introduced non-relativistic

fluids.

2.2 The Cosmic Microwave Background

The universe is bathed in a sea of thermal radiation, known as the cosmic microwave

background, or the CMB. This was the first piece of evidence for the hot Big Bang –

the idea that the early universe was filled with a fireball – and remains one of the most

compelling. In this section, we describe some of the basic properties of this radiation.

2.2.1 Blackbody Radiation

To start, we want to derive the properties of a thermal gas of photons. Such a gas in

known, unhelpfully, as blackbody radiation.
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The state of a single photon is specified by its momentum p = ℏk, with k the

wavevector. The energy of the photon is given by

E = pc = ℏω

where ω = ck is the (angular) frequency of the photon.

Blackbody radiation comes with a new conceptual ingredient, because the number

of photons is not a conserved quantity. This means that when considering the possible

states of the gas, we should include states with an arbitrary number of photons. We

do this by stating how many photons N(p) sit in the state p.

In thermal equilibrium, we will not have a definite number of photons N(p), but

rather some probability distribution over the number of photons, Focussing on a fixed

state p = ℏk, the average number of particles is dictated by the Boltzmann distribution

⟨N(p)⟩ = 1

Z

∞∑
n=0

ne−βnℏω with Z =
∞∑
n=0

e−βnℏω

We can easily do both of these sums. Defining x = e−βℏω, the partition function is

given by

Z =
∞∑
n=0

xn =
1

1− x

Meanwhile the numerator of ⟨N(p)⟩ takes the form

∞∑
n=0

nxn = x
∞∑
n=0

nxn−1 = x
dZ

dx
=

x

(1− x)2

We learn that the average number of particles with momentum p is

⟨N(p)⟩ = 1

eβℏω − 1
(2.9)

For kBT ≪ ℏω, the number of photons is exponentially small. In contrast, when

kBT ≫ ℏω, the number of photons grows linearly as ⟨N(p)⟩ ≈ kBT/ℏω.

Density of States

Our next task is to determine the average number of photons ⟨N(ω)⟩ with given energy

ℏω. To do this, we must count the number of states p which have energy ℏω.
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It’s easier to count objects that are discrete rather than continuous. For this reason,

we’ll put our system in a square box with sides of length L. At the end of the calculation,

we can happily send L→ ∞. In such a box, the wavevector is quantised: it takes values

ki =
2πqi
L

qi ∈ Z

This is true for both a classical wave or a quantum particle; in both cases, an integer

number of wavelengths must fit in the box.

Different states are labelled by the integers qi. When counting, or summing over such

states, we should therefore sum over the qi. However, for very large boxes, so that L

is much bigger than any other length scale in the game, we can approximate this sum

by an integral, ∑
q

≈ L3

(2π)3

∫
d3k =

4πV

(2π)3

∫ ∞

0

dk k2 (2.10)

where V = L3 is the volume of the box. The formula above counts all states. But

the final form has a simple interpretation: the number of states with the magnitude

of the wavevector between k and k + dk is 4πV k2/(2π)3. Note that the 4πk2 term is

reminiscent of the 4πv2 term that appeared in the Maxwell-Boltzmann distribution;

both have the same origin.

We would like to compute the number of states with frequency between ω and ω+dω.

For this, we simply use

ω = ck ⇒ 4πV

(2π)3

∫
dk k2 =

4πV

(2πc)3

∫
dω ω2

This tells us that the number of states with frequency between ω and ω + dω is

4πV ω2/(2πc)3.

There is one final fact that we need. Photons come with two polarisation states.

This means that the total number of states is twice the number above. We can now

combine this with our earlier result (2.9). In thermal equilibrium, the average number

of photons with frequency between ω and ω + dω is

⟨N(ω)⟩ dω = 2× 4πV

(2πc)3
ω2

eβℏω − 1
dω

We usually write this in terms of the number density n = N/V . Moreover, we will be

a little lazy and drop the expectation value ⟨n⟩ signs. The distribution of photons in a
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Figure 28: The distribution of colours at various temperatures.

thermal bath is then written as

n(ω) =
1

π2c3
ω2

eβℏω − 1
(2.11)

This is the Planck blackbody distribution. For a fixed temperature, β = 1/kBT , the dis-

tribution tells us how many photons of a given frequency – and hence, of a given colour

– are present. The distribution peaks in visible light for temperatures around 6000 K,

which is the temperature of the surface of the Sun. (Presumably the Sun evolved to

be at exactly the right temperature so that our eyes can see it. Or something.)

The Equation of State

We now have all the information that we need to compute the equation of state. First

the energy density. This is straightforward: we just need to integrate

ρ =

∫ ∞

0

dω ℏωn(ω) (2.12)

Next the pressure. We can import our previous formula (2.7), now with v · p = ℏck =

ℏω. But this gives precisely the same integral as the energy density; it differs only by

the overall factor of 1/3,

P =
1

3
ρ

This, of course, is the relativistic equation of state that we used when describing the

expanding universe.
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Finally, we can actually do the integral (2.12). In fact, there’s a couple of quantities

of interest. The energy density is

ρ =
ℏ
π2c3

∫ ∞

0

dω
ω3

eβℏω − 1
=

(kBT )
4

π2ℏ3c3

∫ ∞

0

dy
y3

ey − 1

Meanwhile, the total number density is

n =

∫ ∞

0

dω n(ω) =
1

π2c3

∫ ∞

0

dω
ω2

eβℏω − 1
=

(kBT )
3

π2ℏ3c3

∫ ∞

0

dy
y2

ey − 1

Both of these integrals take a similar form. Here we just quote the general result

without proof:

In =

∫ ∞

0

dy
yn

ey − 1
= Γ(n+ 1)ζ(n+ 1) (2.13)

The Gamma function is the analytic continuation of the factorial function to the real

numbers; when evaluated on the integers it gives Γ(n + 1) = n!. Meanwhile, the

Riemann zeta function is defined, for Re(s) > 1, as ζ(s) =
∑

q=1 q
−s. It turns out that

ζ(4) = π4/90, giving us I3 = π4/15. In contrast, there is no such simple expression for

ζ(3) ≈ 1.20. It is sometimes referred to as Apéry’s constant. A derivation of (2.13) can

be found in Section 3.5.3 of the lectures on Statistical Physics.

We learn that the energy density is

ρ =
π2

15ℏ3c3
(kBT )

4 (2.14)

Meanwhile, the total number density is

n =
2ζ(3)

π2ℏ3c3
(kBT )

3 (2.15)

Notice, in particular, that the number density of photons varies with the temperature.

This will be important in what follows.

2.2.2 The CMB Today

The universe today is filled with a sea of photons, the cosmic microwave background.

This is the afterglow of the fireball that filled the universe in its earliest moments. The

frequency spectrum of the photons is a perfect fit to the blackbody spectrum, with at

a temperature

TCMB = 2.726 ± 0.0006 K (2.16)
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Figure 29: The blackbody spectrum of the CMB, measured in 1990 by the FIRAS detector

on the COBE satellite. The error bars have been enlarged by a factor of 400 just to help you

see them.

This spectrum is shown in Figure 29. There are small, local deviations in this temper-

ature at the level of

∆T

TCMB

∼ 10−5

These fluctuations will be discussed further in Section 3.4.

From the temperature (2.16), we can determine the energy density and number

density in photons. From (2.14), the energy density is given by

ργ ≈ 4.3× 10−14 kgm−1s−2

We can compare this to the critical energy density (1.71), ρcrit,0 = 8.5×10−10 kgm−1s−2

to find

Ωγ =
ργ
ρcrit,0

≈ 5× 10−5

This is the value (1.69) that we quoted previously. There are, of course, further photons

in starlight, but they are dwarfed in both energy and number by the CMB.

From (2.15), the number density of CMB photons is

nγ = 4× 108 m−3 = 400 cm−3

– 90 –



We can compare this to the number of baryons (i.e. protons and neutrons). The density

of baryons is (1.74) ΩB ≈ 0.05, so the total mass in baryons is

ρB ≈ ΩBρcrit,0 ≈ 4× 10−11 kgm−1s−2

The mass of the proton and neutron are roughly the same, at mp ≈ 1.7 × 10−27 kg.

This places the number density of baryons as

nB =
ρB
mpc2

≈ 0.3 m−3

We see that there are many more photons in the universe than baryons: the ratio is

η ≡ nB

nγ

≈ 10−9 (2.17)

This is one of the fundamental numbers in cosmology. As we will see, this ratio has been

pretty much constant since the first second or so after the Big Bang and plays a crucial

role in both nucleosynthesis (the formation of heavier nuclei) and in recombination (the

formation of atoms). We do not, currently, have a good theoretical understanding of

where this number fundamentally comes from: it is something that we can only derive

from observation.

The CMB is a Relic

There is an important twist to the story above. We have computed the expected

distribution of photons in thermal equilibrium, and found that it matches perfectly

with the spectrum of the cosmic microwave background. The twist is that the CMB is

not in equilibrium!

Recall that equilibrium is a property that arises when particles are constantly in-

teracting. Yet the CMB photons have barely spoken to anyone for the past 13 billion

years. The occasional photon may bump into a planet, or an infra-red detector fitted

to a satellite, but most just wend their merry way through the universe, uninterrupted.

How then did the CMB photons come to form a perfect equilibrium spectrum? The

answer is that this dates from a time when the photons were interacting frequently

with matter. Fluids like this, that have long since fallen out of thermal equilibrium,

but nonetheless retain their thermal character, are called relics.

There are a couple of questions that we would like to address. The first is: when

were the photons last interacting and, hence, last genuinely in equilibrium? This is

called the time of last scattering, tlast and we will compute it in Section 2.3 below. The

second question is: what happened to the distribution of photons subsequently?

– 91 –



We start by answering the second of these questions. Once the photons no longer

interact, they are essentially free particles. As the universe expands, each photon is

redshifted as explained in Section 1.1.3. This means that the wavelength is stretched

and, correspondingly, the frequency is decreased as the universe expands.

λ(t) = λlast
a(t)

a(tlast)
⇒ ω(t) = ωlast

a(tlast)

a(t)
(2.18)

At the same time, the number of photons is diluted by a factor of
(
a(tlast)/a(t)

)3
as the

universe expands. Putting these two effects together, an initial blackbody distribution

(2.11) will, if left alone, evolve as

n(ωlast;Tlast, t)dωlast =
1

π2c3

(
a(tlast)

a(t)

)3
ω2
last

eβℏωlast − 1
dωlast

The 1/a3 dilution factor is absorbed into the frequency in the ω2 and dω terms. But not

in the exponent. However, the resulting distribution can be put back into blackbody

form if we think of the temperature as time dependent

n(ω;T, t)dω =
1

π2c3
ω(t)2

eβ(t)ℏω(t) − 1
dω(t)

where the β(t) = 1/kBT (t), with the time varying temperature

T (t) = Tlast
a(tlast)

a(t)
(2.19)

We see that, left alone, a blackbody distribution will keep the same overall form, but

with the temperature scaling as T ∼ 1/a.

This means that, if we can figure out the temperature Tlast when the photons were last

in equilibrium, then we can immediately determine the redshift at which this occurred

1 + zlast = a(tlast)
−1. We’ll compute both of these in Section 2.3.

2.2.3 The Discovery of the CMB

In 1964, two radio astronomers, Arno Penzias and Robert Wilson, got a new toy. The

microwave horn antenna was originally used by their employers, the Bell telephone

company, for satellite communication. Now Penzias and Wilson hoped to do some

science with it, measuring the radio noise emitted in the direction away from the plane

of the galaxy.
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Figure 30: The Holmdel radio antenna at Bell Telephone Laboratories.

To their surprise, they found a background noise which did not depend on the direc-

tion in which they pointed their antenna. Nor did it depend on the time of day or the

time of a year. Taken seriously, this suggested that the noise was a message from the

wider universe.

There was, however, an alternative, more mundane explanation. Maybe the noise

was coming from the antenna itself, some undiscovered systematic effect that they had

failed be take into account. Indeed, they soon found a putative source of the noise: a

pair of pigeons had taken roost and deposited what Penzias called “a white dielectric

material” over much of the antenna. They removed this material (and shot the pigeons),

but the noise remained. What Penzias and Wilson had on their hands was not pigeon

shit, but one of the great discoveries of the twentieth century: the afterglow of the Big

Bang itself, with a temperature that they measured to lie between 2.5 K and 4.5 K. In

1965 they published their result with the attention-grabbing title: “A Measurement of

Excess Antenna Temperature at 4080 Mc/s”.

Penzias and Wilson were not unaware of the significance of their finding. In the

year since they first found the noise, they had done what good scientists should al-

ways do: they talked to their friends. They were soon put in touch with the group

in nearby Princeton where Jim Peebles, a theoretical cosmologist, had recently pre-

dicted a background radiation with a temperature of a few degrees, based on the idea

of nucleosynthesis in the very early universe (an idea we will describe in Section 2.5.3).

Meanwhile, three experimental colleagues, Dicke, Roll and Wilkinson had cobbled to-

gether a small antenna in the hope of searching for this radiation. These four scientists
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wrote a companion paper, outlining the importance of the discovery. In 1978, Penzias

and Wilson were awarded the Nobel prize. It took another 39 years before Peebles

gained the same recognition.

In fact there had been earlier predictions of the CMB. In the 1940s, Gammow to-

gether with Alpher and Herman suggested that the early universe began only with

neutrons and, through somewhat dodgy calculations, concluded that there should be a

background radiation at 5 K. Later other scientists, including Zel’dovich in the Soviet

Union, and Hoyle and Taylor in England, used nucleosynthesis to predict the existence

of the CMB at a few degrees. Yet none of these results were taken sufficiently seriously

to search for the signal before Penzias and Wilson made their serendipitous discovery.

Detecting the CMB was just the beginning of the story. The radiation is not, it

turns out, perfectly uniform but contains small anisotropies. These contain precious

information about the make-up of the universe when it was much younger. A number

of theorists, including Harrison, Zel’dovich, and Peebles and Yu, predicted that these

anisotropies could be observed at a level of 10−4 to 10−5. These were finally detected

by the NASA COBE satellite in the early 1990s. Since then a number of ground based

telescopes, including BOOMERanG and MAXIMA, and a two full sky maps from the

satellites WMAP and Planck, have mapped out the CMB in exquisite detail. We will

describe these anisotropies in Section 3.

2.3 Recombination

We’ve learned that the CMB is a relic, with its perfect blackbody spectrum a remnant

of an earlier, more intense time in the universe, when the photons were in equilibrium

with matter. We would like to gain a better understanding of this time.

Photons interact with electric charge. Nowadays, the vast majority of matter in the

universe is in the form of neutral atoms, and photons interact only with the charged

constituents of the atoms. Such interactions are relatively weak. However, there was a

time in the early universe when the temperature was so great that electrons and protons

could no longer bind into neutral atoms. Instead, the universe was filled with a plasma.

In this era, the matter and photons interacted strongly and were in equilibrium.

The CMB that we see today dates from this time. Or, more precisely, from the time

when electrons and protons first bound themselves into neutral hydrogen, emitting a

photon in the process

e− + p+ ↔ H + γ (2.20)

– 94 –



The moment at which this occurs is called recombination. As the arrows illustrate, this

process can happen in both directions.

Interactions like (2.20) involve one particle type transmuting into a different type.

This means that the number of, say, hydrogen atoms is not fixed but fluctuating. We

need to introduce a new concept that allows us to deal with such situations. This

concept is the chemical potential.

2.3.1 The Chemical Potential

The chemical potential offers a slight generalisation of the Boltzmann distribution which

is useful in situations where the number of particles in a system is not fixed. It was,

as the name suggests, originally introduced to describe chemical reactions but we will

re-purpose it to describe atomic reactions like (2.20) (and, later, nuclear reactions).

Although our ultimate goal is to describe atomic reactions, we can first introduce the

chemical potential in a more mundane setting. Suppose that we have a fixed number

of atoms N in a box of size V . If we focus attention on some large, fixed sub-volume

V ′ ⊂ V , then we would expect the gas in V ′ to share the same macroscopic properties,

such as temperature and pressure, as the whole gas in V . But particles can happily

fly in and out of V ′ and the total number in this region is not fixed. Instead, there is

some probability distribution which has the property that the average number density

coincides with N/V .

In this situation, it’s clear that we should consider states of all possible particle

number in V ′. There is a possibility, albeit a very small one, that V ′ contains no

particles at all. There is also a small possibility that it contains all the particles.

If we work in the language of quantum mechanics, each state |n⟩ in the system can be

assigned both an energy En and a particle number Nn. Correspondingly, equilibrium

states are characterised by two macroscopic properties: the temperature T and the

chemical potential µ. These are defined through the generalised Boltzmann distribution

p(n) =
e−β(En−µNn)

Z
(2.21)

where Z =
∑

n e
−β(En−µNn) is again the appropriate normalisation factor. In the lan-

guage of statistical mechanics, this is referred to as the grand canonical ensemble.

Clearly, the distribution has the same exponential form as the Boltzmann distribu-

tion. This is important. We learned in Section 2.1.1 that two isolated systems which

sit at the same temperature will remain in thermal equilibrium when brought together,
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meaning that there will be no transfer of energy from one system to the other. Exactly

the same argument tells us that if two isolated systems have the same chemical poten-

tial then, when brought together, there will be no net flux of particles from one system

to the other. In this case, we say that the systems are in chemical equilibrium.

Notice that the requirement for equilibrium is not that the number densities of the

systems are equal: it is the chemical potentials that must be equal. This is entirely

analogous to the statement that it is temperature, rather than energy density, that

determines whether systems are in thermal equilibrium.

We’ll see examples of how to wield the chemical below, but before we do it’s worth

mentioning a few issues.

• In general, we can introduce a different chemical potential for every conserved

quantity in the system. This is because conserved quantities commute with the

Hamiltonian, and so it makes sense to label microscopic states by both the energy

and a further quantum number. One familiar example is electric charge Q. Here,

the corresponding chemical potential is voltage.

This leads to an almost-contradictory pair of statements. First, we can only

introduce a chemical potential for any conserved quantity. Second, the purpose

of the chemical potential is to allow this conserved quantity to fluctuate! If you’re

confused about this, then think back to the volume V ′ ⊂ V , or to the meaning of

voltage in electromagnetism, both of which give examples where these statements

hold.

• The story above is very similar to our derivation of the Planck blackbody dis-

tribution for photons. There too we labeled states by both energy and particle

number, but we didn’t introduce a chemical potential. What’s different now?

This is actually a rather subtle issue. Ultimately it is related to the fact that

we ignore interactions while simultaneously pretending that they are crucial to

reach equilibrium. As soon as we take these interactions into account, the number

of photons is not conserved so we can’t label states by both energy and photon

number. This is what prohibits us from introducing a chemical potential for

photons. In contrast, we can introduce a chemical potential in situations where

particle number (or some other quantity) is conserved even in the presence of

interactions.

2.3.2 Non-Relativistic Gases Revisited

For our first application of the chemical potential, we’re going to re-derive the ideal

gas equation. At first sight, this will appear to be only a more complicated derivation
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of something we’ve seen already. The pay-off will come only in Section 2.3.3 where we

will understand recombination and the atomic reaction (2.20).

We consider non-relativistic particles, with energy

Ep =
p2

2m

As with our calculation of photons, we now consider states that have arbitrary numbers

of particles. We choose to specify these states by stating how many particles np have

momentum p. For each choice of momentum, the number of particles7 can be np =

0, 1, 2, . . .. The generalised Boltzmann distribution (2.21) then tells us that the average

number of particles with momentum p is

⟨N(p)⟩ = 1

Zp

∞∑
np=0

npe
−β(npEp−µnp)

where the normalisation factor (or, in fancy language, the grand canonical partition

function) is given by the geometric series

Zp =
∞∑
n=0

e−βnp(Ep−µ) =
eβ(Ep−µ)

eβ(Ep−µ) − 1

This is exactly the same calculation as we saw for photons in Section 2.2.1, but with

the additional minor complication of a chemical potential. Note that computing Zp

allows us to immediately determine the expected number of particles since we can write

⟨N(p)⟩ = 1

β

∂

∂µ
logZp =

1

eβ(Ep−µ) − 1
(2.22)

This is known as the Bose-Einstein distribution and will be discussed further in Section

2.4.

To compute the average total number of particles, we simply need to integrate over

all momenta p. We must include the density of states, but this is identical to the

calculation we did for photons, with the result (2.10). The total average number of

particles is then

N =
V

(2πℏ)3

∫
d3p N(p)

7Actually, there is a subtlety here: I am implicitly assuming that the particles are bosons. We’ll

look at this more closely in Section 2.4.
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where we’ve been a little lazy and dropped the ⟨·⟩ brackets on N(p). We usually write

this in terms of the particle density n = N/V ,

n =
1

(2πℏ)3

∫
d3p N(p) =

4π

(2πℏ)3

∫ ∞

0

dp
p2

e−βµeβp2/2m − 1
(2.23)

where, in the second equality, we have chosen to integrate using spherical polar coor-

dinates, picking up a factor of 4π from the angular integrals and a factor of p2 in the

Jacobian for our troubles. We have also used the explicit expression Ep = p2/2m for

the energy in the distribution.

At this stage, we have an annoying looking integral to do. To proceed, let’s pick

a value of the chemical potential µ such that e−βµ ≫ 1. (We’ll see what this means

physically below.) We can then drop the −1 in the denominator and approximate the

integral as

n ≈ 4π

(2πℏ)3
eβµ
∫ ∞

0

dp p2 e−βp2/2m =

(
mkBT

2πℏ2

)3/2

eβµ (2.24)

Let’s try to interpret this. Read naively, it seems to tell us that the number density

of particles depends on the temperature. But that’s certainly not what happens for

the gas in this room, where ρ and P depend on temperature but the number density

n = N/V is fixed. We can achieve this by taking the chemical potential µ to also

depend on temperature. Specifically, we wish to describe a gas with fixed n , then we

simply invert the equation above to get an expression for the chemical potential

eβµ =

(
2πℏ2

mkBT

)3/2

n (2.25)

Before we proceed, we can use this result to understand what the condition e−βµ ≫ 1,

that we used to do the integral, is forcing upon us. Comparing to the expression above,

it says that the number density is bounded above by

n≪
(
mkBT

2πℏ2

)3/2

This is sensible. It’s telling us that the ideal gas can’t be too dense. In particular,

the average distance between particles should be much larger than the length scale

set by λ =
√
2πℏ2/mkBT . This is the average de Broglie wavelength of particles at

temperature T . If n is increased so that the separation between particles is comparable

to λ then quantum effects kick in and we have to return to our original integral (2.23)

and make a different approximation to do the integral and understand the physics.

(This path will lead to the beautiful phenomenon of Bose-Einstein condensation, but

it is a subject for a different course.)
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We can now calculate the energy density and pressure. Once again, taking the limit

e−βµ ≫ 1, the energy density is given by

ρ =
1

(2πℏ)3

∫
d3p EpN(p)

≈ 4π

(2πℏ)3
eβµ
∫ ∞

0

dp
p4

2m
e−βp2/2m =

3

2
nkBT

This is a result that we have met before (2.8). Meanwhile, we can use our expression

(2.7) to compute the pressure,

P =
1

(2πℏ)3

∫
d3p

v · p
3

N(p)

=
4π

(2πℏ)3
eβµ̂
∫ ∞

0

dp
p4

3m
e−βp2/2m = nkBT

Again, this recovers the familiar ideal gas equation.

So far, the chemical potential has not bought us anything new. We have simply

recovered old results in a slightly more convoluted framework in which the number of

particles can fluctuate. But, as we will now see, this is exactly what we need to deal

with atomic reactions.

2.3.3 The Saha Equation

We would like to consider a gas of electrons and protons in equilibrium at some tem-

perature. They have the possibility to combine and form hydrogen, which we will think

of as an atomic reaction, akin to the chemical reactions that we met in school. It is

e− + p+ ↔ H + γ

The question we would like to ask is: what proportion of the particles are hydrogen,

and what proportion are electron-proton pairs?

To simplify life, we will assume that the hydrogen atom forms in its ground state,

with a binding energy

Ebind ≈ 13.6 eV

In fact, this turn out to be a bad assumption! We explain why at the end of this section.

Naively, we would expect hydrogen to ionize when we reach temperatures of kBT ≈
Ebind. It’s certainly true that for temperature kBT ≫ Ebind, the electrons can no longer

cling on to the protons, and any hydrogen atom is surely ripped apart. However, it will

ultimately turn out that hydrogen only forms at temperatures significantly lower than

Ebind.
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We’ll treat each of the massive particles – the electron, proton and hydrogen atom

– in a similar way to the non-relativistic gas that we met in Section 2.3.2. There will,

however, be two differences. First, we include the rest mass energy of the atoms, so

each particle has energy

Ep = mc2 +
p2

2m

This will be useful as we can think of the binding energy Ebind as the mass difference

(me +mp −mH)c
2 = Ebind ≈ 13.6 eV (2.26)

Secondly, each of our particles comes with a number g of internal states. The electron

and proton each have ge = gp = 2 corresponding to the two spin states, referred to

as “spin up” and “spin down”. (These are analogous to the two polarisation states of

the photon that we included when discussing blackbody radiation.) For hydrogen, we

have gH = 4; the electron and proton spin can either be anti-aligned, to give a spin 0

particle, or aligned to give 3 different spin 1 states.

With these two amendments, our expression for the number density (2.24) of the

different species of particles is given by

ni = gi

(
mikBT

2πℏ2

)3/2

e−β(mic
2−µi) (2.27)

Note that the rest mass energy mc2 in the energy can be absorbed by a constant shift

of the chemical potential.

Now we can use the chemical potential for something new. We require that these

particles are in chemical equilibrium. This means that there is no rapid change from

e− + p+ pairs into hydrogen, or vice versa: the numbers of electrons, protons and

hydrogen are balanced. This is ensured if the chemical potentials are related by

µe + µp = µH (2.28)

This follows from our original discussion of what it means to be in chemical equilibrium.

Recall that if two isolated systems have the same chemical potential then, when brought

together, there will be no net flux of particles from one system to the other. This mimics

the statement about thermal equilibrium, where if two isolated systems have the same

temperature then, when brought together, there will be no net flux of energy from one

to the other.
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There is no chemical potential for photons because they’re not conserved. In partic-

ular, in addition to the reaction e− + p+ ↔ H + γ there can also be reactions in which

the binding results in two photons, e− + p+ ↔ H + γ + γ, which is ultimately why it

makes no sense to talk about a chemical potential for photons. (Some authors write

this, misleadingly, as µγ = 0.)

We can use the condition for chemical equilibrium (2.28) to eliminate the chemical

potentials in (2.27) to find

nH

nenp

=
gH
gegp

(
mH

memp

2πℏ2

kBT

)3/2

e−β(mH−me−mp)c2 (2.29)

In the pre-factor, it makes sense to approximate mH ≈ mp. However, in the exponent,

the difference between these masses is crucial; it is the binding energy of hydrogen

(2.26). Finally, we use the observed fact that the universe is electrically neutral, so

ne = np

We then have

nH

n2
e

=

(
2πℏ2

mekBT

)3/2

eβEbind (2.30)

This is the Saha equation.

Our goal is to understand the fraction of electron-proton pairs that have combined

into hydrogen. To this end, we define the ionisation fraction

Xe =
ne

nB

≈ ne

np + nH

where, in the second equality, we’re ignoring neutrons and higher elements. (We’ll see

in Section 2.5.3 that this is a fairly good approximation.) Since ne = np, if Xe = 1

it means that all the electrons are free. If Xe = 0.1, it means that only 10% of the

electrons are free, the remainder bound inside hydrogen.

Using ne = np, we have 1−Xe = nH/nB and so

1−Xe

X2
e

=
nH

n2
e

nB

The Saha equation gives us an expression for nH/n
2
e. But to translate this into the frac-

tion Xe, we also need to know the number of baryons. This we take from observation.

First, we convert the number of baryons into the number of photons, using (2.17),

η =
nB

nγ

≈ 10−9
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Here we need to use the fact that η ≈ 10−9 has remained constant since recombination.

Next, we use the fact that photons sit at the same temperature as the electrons, protons

and hydrogen because they are all in equilibrium. This means that we can then use

our earlier expression (2.15) for the number of photons

nγ =
2ζ(3)

π2ℏ3c3
(kBT )

3

Combining these gives our final answer

1−Xe

X2
e

= η
2ζ(3)

π2

(
2πkBT

mec2

)3/2

eβEbind (2.31)

Suppose that we look at temperature kBT ∼ Ebind, which is when we might naively

have thought recombination takes place. We see that there are two very small numbers

in the game: the factor of η ∼ 10−9 and kBT/mec
2, where the electron mass is mec

2 ≈
0.5 MeV = 5× 105 eV. These ensure that at kBT ∼ Ebind, the ionisation fraction Xe is

very close to unity. In other words, nearly all the electrons remain free and unbound.

In large part this is of the enormous number of photons, which mean that whenever a

proton and electron bind, one can still find sufficient high energy photons in the tail of

the blackbody distribution to knock them apart.

Recombination only takes place when the eβEbind factor is sufficient to compensate

both the η and kBT/mec
2 factors. Clearly recombination isn’t a one-off process; it

happens continuously as the temperature varies. As a benchmark, we’ll calculate the

temperature when Xe = 0.1, so 90% of the electrons are sitting happily in their hydro-

gen homes. From (2.31), we learn that this occurs when βEbind ≈ 45, or

kBTrec ≈ 0.3 eV ⇒ Trec ≈ 3600 K

This corresponds to a redshift of

1 + zrec =
Trec
T0

≈ 1300

This is significantly later than matter-radiation equality which, as we saw in (1.73),

occurs at zeq ≈ 3400. This means that, during recombination, the universe is matter

dominated, with a(t) ∼ (t/t0)
2/3. We can therefore date the time of recombination to,

trec ≈
t0

(1 + zrec)3/2
≈ 300, 000 years

After recombination, the constituents of the universe have been mostly neutral atoms.

Roughly speaking this means that the universe is transparent and photons can propa-

gate freely. We will look more closely at this statement a little more closely below.
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Mea Culpa

The full story is significantly more complicated than the one told above. As we have

seen, at the time of recombination the temperature is much lower than the 13.6 eV

binding energy of the 1s state of hydrogen. This means that whenever a 1s state forms,

it emits a photon which has significantly higher energy that the photons in thermal

bath. The most likely outcome is that this high energy photon hits a different hydrogen

atom, splitting it into its constituent proton and electron, resulting in no net change

in the number of atoms! Instead, recombination must proceed through a rather more

tortuous route.

The hydrogen atom doesn’t just have a ground state: there are a whole tower of

excited states. These can form without emitting a high energy photon and, indeed, at

these low temperatures the thermal bath of photons is in equilibrium with the tower

of excited states of hydrogen. There are then two, rather inefficient processes, which

populate the 1s state. The 2s state decays down to 1s by emitting two photons (to

preserve angular momentum), neither of which have enough energy to re-ionize other

atoms. Alternatively, the 2p state can decay to 1s, emitting a photon whose energy is

barely enough to excite another hydrogen atom out of the ground state. If this photon

experiences redshift, then it can no longer do the job and we increase the number of

atoms in the ground state. More details can be found in the book by Weinberg. These

issues do not greatly change the values of Trec and zrec that we computed above.

2.3.4 Freeze Out and Last Scattering

Photons interact with electric charge. After electrons and protons combine to form

neutral hydrogen, the photons scatter much less frequently and the universe becomes

transparent. After this time, the photons are essentially decoupled.

Similar scenarios play out a number of times in the early universe: particles, which

once interacted frequently, stop talking to their neighbours and subsequently evolve

without care for what’s going on around them. This process is common enough that it

is worth exploring in a little detail. As we will see, at heart it hinges on what it means

for particle to be in “equilibrium”.

Strictly speaking, an expanding universe is a time dependent background in which

the concept of equilibrium does not apply. In most situations, such a comment would

be rightly dismissed as the height of pedantry. The expansion of the universe does not,

for example, stop me applying the laws of thermodynamics to my morning cup of tea.

However, in the very early universe this can become an issue.
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For a system to be in equilibrium, the constituent particles must frequently interact,

exchanging energy and momentum. For any species of particle (or pair of species)

we can define the interaction rate Γ. A particle will, on average, interact with another

particle in a time tint = 1/Γ. It makes sense to talk about equilibrium provided that the

universe hasn’t significantly changed in the time tint. The expansion of the universe is

governed by the Hubble parameter, so we can sensibly talk about equilibrium provided

Γ ≫ H

In contrast, if Γ ≪ H then by the time particles interact the universe has undergone

significant expansion. In this case, thermal equilibrium cannot be maintained.

For many processes, both the interaction rate and temperature scale with time, but

in different ways. The result is that particles retain equilibrium at early times, but

decouple from the thermal bath at late time. This decoupling occurs when Γ ≈ H and

is known as freeze out.

We now apply these ideas to photons, where freeze out also goes by the name of last

scattering. In the early universe, the photons are scattered primarily by the electrons

(because they are much lighter than the protons) in a process known as Thomson

scattering

e+ γ → e+ γ

The scattering is elastic, meaning that the energy, and therefore the frequency, of the

photon is unchanged in the process. For Thomson scattering, the interaction rate is

given by

Γ = neσT c

where σT is the cross-section, a quantity which characterises the strength of the scat-

tering. We computed the cross-section for Thomson scattering in the lectures on

Electromagnetism (see Section 6.3.1 of these lectures) where we showed it was given by

σT =
µ2
0e

4

6πm2
ec

2
≈ 6× 10−30 m2

Note the dependence on the electron mass me; the corresponding cross-section for

scattering off protons is more than a million times smaller.
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Last scattering occurs at the temperature Tlast such that Γ(Tlast) ≈ H(tlast). We

can express the interaction rate by replacing the number density of electrons with the

number density of photons,

Γ(Tlast) = nBXe(Tlast)σT c = ησT
2ζ(3)

π2ℏ3c2
(kBTlast)

3Xe(Tlast) (2.32)

Meanwhile, we can trace back the current value of the Hubble constant, through the

matter dominated era, to last scattering. Meanwhile, to compute H(Tlast), we use the

formula (1.67) (
H

H0

)2

=
Ωr

a4
+

Ωm

a3
+

Ωk

a2
+ ΩΛ

Evaluated at recombination, radiation, curvature and the cosmological constant are all

irrelevant, and this formula becomes(
H

H0

)2

≈ Ωm

a3

Using the fact that temperature scales as T ∼ 1/a, we then have

H(Tlast) = H0

√
Ωm

(
Tlast
T0

)3/2

Equating this with (2.32) gives

Xe(Tlast)(kBTlast)
3/2 =

π2ℏ3c2

2ζ(3)

H0

√
Ωm

ησT (kBT0)3/2

Using (2.31) to solve for Xe(Tlast) (which is a little fiddly) we find that photons stop

interacting with matter only when

Xe(Tlast) ≈ 0.01

We learn that the vast majority of electrons must be housed in neutral hydrogen,

with only 1% of the original electrons remaining free, before light can happily travel

unimpeded. This corresponds to a temperature

kBTlast ≈ 0.27 eV ⇒ Tlast ≈ 3100 K

and, correspondingly, a time somewhat after recombination,

zlast =
Tlast
T0

≈ 1100 ⇒ tlast =
t0

(1 + zlast)3/2
≈ 350, 000 years

After this time, the universe becomes transparent. The cosmic microwave background

is a snapshot of the universe from this time.
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2.4 Bosons and Fermions

To better understand the physics of the Big Bang, there is one last topic from statistical

physics that we will need to understand. This follows from a simple statement: quantum

particles are indistinguishable. It’s not just that the particles look the same: there is a

very real sense in which there is no way to tell them apart.

Consider a state with two identical particles. Now swap the positions of the particles.

This doesn’t give us a new state: it is exactly the same state as before (at least up to a

minus sign). This subtle effect plays a key role in thermal systems where we’re taking

averages over different states. The possibility of a minus sign is important, and means

that quantum particles come in two different types, called bosons and fermions.

Consider a state with two identical particles. These particles are called bosons if the

wavefunction is symmetric under exchange of the particles.

ψ(x1,x2) = ψ(x2,x1)

The particles are fermions if the wavefunction is anti-symmetric

ψ(x1,x2) = −ψ(x2,x1)

Importantly, if you try to put two fermions on top of each other then the wavefunction

vanishes: ψ(x,x) = 0. This is a reflection of the Pauli exclusion principle which states

that two or more fermions cannot sit in the same state. For both bosons and fermions,

if you do the exchange twice then you get back to the original state.

There is a deep theorem – known as the spin-statistics theorem – which states that

the type of particle is determined by its spin (an intrinsic angular momentum carried

by elementary particles). Particles that have integer spin are bosons; particles that

have half-integer spin are fermions.

Examples of spin 1/2 particles, all of which are fermions, include the electron, the

various quarks, and neutrinos. Furthermore, protons and neutrons (which, roughly

speaking, consist of three quarks) also have spin 1/2 and so are fermions.

The most familiar example of a boson is the photon. It has spin 1. Other spin

1 particles include the W and Z-bosons (responsible for the weak nuclear force) and

gluons (responsible for the strong nuclear force). The only elementary spin 0 particle

is the Higgs boson. Finally, the graviton has spin 2 and is also a boson.
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While this exhausts the elementary particles, the ideas that we develop here also

apply to composite objects like atoms. These too are either bosons or fermions. Since

the number of electrons is always equal to the number of protons, it is left to the

neutrons to determine the nature of the atom: an odd number of neutrons and it’s a

fermion; an even number and it’s a boson.

2.4.1 Bose-Einstein and Fermi-Dirac Distributions

The generalised Boltzmann distribution (2.21) specifies the probability that we sit in a

state |n⟩ with some fixed energy En and particle number Nn.

In what follows, we will restrict attention to non-interacting particles. In this case,

there is a simple way to construct the full set of states |n⟩ starting from the single-

particle Hilbert space. The state of a single particle is specified by its momentum

p = ℏk. (There may also be some extra, discrete internal degrees of freedom like

polarisation or spin; we’ll account for these later.) We’ll denote this single particle

state as |p⟩. For a relativistic particle, the energy is

Ep =
√
m2c4 + p2c2 (2.33)

To specify the full multi-particle state |n⟩, we need to say how many particles np occupy

the state |p⟩. The possible values of np depend on whether the underlying particle is

a boson or fermion:

Bosons : np = 0, 1, 2, . . .

Fermions : np = 0, 1

In our previous discussions of blackbody radiation in Section 2.2.1 and the non-relativistic

gas in Section 2.3.2, we did the counting appropriate for bosons. This is fine for black-

body radiation, since photons are bosons, but was an implicit assumption in the case

of a non-relativistic gas.

The other alternative is a fermion. For these particles, the Pauli exclusion principle

says that a given single-particle state |p⟩ is either empty or occupied. But you can’t

put more than one fermion there. This is entirely analogous to the way the periodic

table is constructed in chemistry, by filling successive shells, except now the states are

in momentum space. (A better analogy is the way a band is filled in solid state physics

as described in the lectures on Quantum Mechanics.) For bosonic particles, there is no

such restriction: you can pile up as many as you like.

Now we can compute some quantities, like the average particle number and average

energy. We deal with bosons and fermions in turn
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For bosons, the calculation is exactly the same as we saw in Section 2.3.2. For a

given momentum p, the average number of photons is

⟨N(p)⟩ = 1

Zp

∞∑
np=0

npe
−β(npEp−µnp) =

1

β

∂

∂µ
logZp

where the normalisation factor is given by the geometric series

Zp =
∞∑
n=0

e−βnp(Ep−µ) =
eβ(Ep−µ)

eβ(Ep−µ) − 1

As in the previous section, we will be a little lazy and drop the expectation value, so

⟨N(p)⟩ ≡ N(p). Then we have

N(p) =
1

eβ(Ep−µ) − 1
(2.34)

This is known as the Bose-Einstein distribution.

For fermions, the calculation is easier still. We can have only np = 0 or 1 particles

in a given state |p⟩ so the average occupation number is

N(p) =
1

Zp

∑
np=0,1

npe
−β(npEp−µnp) with Zp =

∑
np=0,1

e−β(npEp−µnp)

Again, keeping the ⟨·⟩ expectation value signs implicit, we have

N(p) =
1

eβ(Ep−µ) + 1
(2.35)

This is the Fermi-Dirac distribution.

For both bosons and fermions, the calculation of the density of states (2.10) proceeds

as before, so that if we integrate over all possible momenta, it should be weighted by

V

(2πℏ)3

∫
d3p

with the pre-factor telling us how quantum states are in a small region d3p.

If we include the degeneracy factor g, which tells us the number of internal states of

the particle, the number density n = N/V is given by

n =
g

(2πℏ)3

∫
d3p N(p) (2.36)
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Similarly, the energy density is

ρ =
g

(2πℏ)3

∫
d3p EpN(p) (2.37)

and the pressure (2.7) is

P =
g

(2πℏ)3

∫
d3p

v · p
3

N(p) (2.38)

We’ll now apply these in various examples.

The Non-Relativistic Gas Yet Again

In Section 2.3.2, we computed various quantities of a non-relativistic gas, so that the

energy of each particle is

Ep =
p2

2m

When we evaluated various quantities using the chemical potential approach, we im-

plicitly assumed that the constituent atoms of the gas were bosons so, for example, our

expression for the expression for the number density (2.23),

nboson =
g

(2πℏ)3

∫
d3p N(p) =

4πg

(2πℏ)3

∫ ∞

0

dp
p2

e−βµeβp2/2m − 1

If, instead, we have a gas comprising of fermions then we should replace this expression

with

nfermion =
g

(2πℏ)3

∫
d3p N(p) =

4πg

(2πℏ)3

∫ ∞

0

dp
p2

e−βµeβp2/2m + 1

We can then ask: how does the physics change?

If we focus on the high temperature regime of non-relativistic gases, the answer to

this question is: very little! This is because we evaluate these integrals using the

approximation e−βµ ≫ 1, and we can immediately drop the ±1 in the denominator.

This means that both bosons and fermions give rise to the same ideal gas equation.

We do start to see small differences in the behaviour of the gases if we expand the

integrals to the next order in eβµ. We see much larger differences if we instead study

the integrals in a very low-temperature limit. These stories are told in the lectures on

Statistical Physics but they hold little cosmological interest.
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Instead, the difference between bosons and fermions in cosmology is really only im-

portant when we turn to very high temperatures, where the gas becomes relativistic.

2.4.2 Ultra-Relativistic Gases

As we will see in the next section, as we go further back in time, the universe gets hot.

Really hot. For any particle, there will be a time such that

kBT ≫ 2mc2

In this regime, particle-anti-particle pairs can be created in the fireball. When this

happens, both the mass and the chemical potential are negligible. We say that the

particles are ultra-relativistic, with their energy given approximately as

Ep ≈ pc

just as for a massless particle. We can use our techniques to study the behaviour of

gases in this regime.

We start with ultra-relativistic bosons. We work with vanishing chemical potential,

µ = 0. (This will ensure that we have equal numbers of particles an anti-particles. The

presence of a chemical potential results in a preference for one over the other, and will

be explored in Examples Sheet 3.) The integral (2.36) for the number density gives

nboson =
4πg

(2πℏ)3

∫
dp

p2

eβpc − 1
=

gI2
2π2ℏ3c3

(kBT )
3

while the energy density is

ρboson =
4πg

(2πℏ)3

∫
dp

p3c

eβpc − 1
=

gI3
2π2ℏ3c3

(kBT )
4

where we’ve used the definition (2.13) of the integral

In =

∫ ∞

0

dy
yn

ey − 1
= Γ(n+ 1)ζ(n+ 1)

In both cases, the integrals coincide with those that we met for blackbody radiation

Meanwhile, for fermions we have

nfermion =
4πg

(2πℏ)3

∫
dp

p2

eβpc + 1
=

gJ2
2π2ℏ3c3

(kBT )
3
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and

ρfermion =
4πg

(2πℏ)3

∫
dp

p3c

eβpc + 1
=

gJ3
2π2ℏ3c3

(kBT )
4

where, this time, we get the integral

Jn =

∫ ∞

0

dy
yn

ey + 1
=

∫ ∞

0

dy

[
yn

ey − 1
− 2yn

e2y − 1

]
=

(
1− 1

2n

)
In

The upshot of these calculations is that the number density is

n =
gζ(3)

π2ℏ3c3
(kBT )

3 ×

{
1 for bosons
3
4
for fermions

and the energy density is

ρ =
gπ2

30 ℏ3c3
(kBT )

4 ×

{
1 for bosons
7
8
for fermions

The differences are just small numerical factors but, as we will see, these become

important in cosmology.

Ultimately, we will be interested in gases that contain many different species of

particles. In this case, it is conventional to define the effective number of relativistic

species in thermal equilibrium as

g⋆(T ) =
∑
bosons

gi +
7

8

∑
fermions

gi (2.39)

As the temperature drops below a particle’s mass threshold, kBT < mic
2, this particle

is removed from the sum. In this way, the number of relativistic species is both time

and temperature dependent. The energy density from all relativistic species is then

written as

ρ = g⋆
π2

30 ℏ3c3
(kBT )

4 (2.40)

To calculate g⋆ in different epochs, we need to know the matter content of the Standard

Model and, eventually, the identity of dark matter. We’ll make a start on this in the

next section.
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2.5 The Hot Big Bang

We have seen that for the first 300,000 years or so, the universe was filled with a fireball

in which photons were in thermal equilibrium with matter. We would like to understand

what happens to this fireball as we dial the clock back further. This collection of ideas

goes by the name of the hot Big Bang theory.

2.5.1 Temperature vs Time

It turns out, unsurprisingly, that the fireball is hotter at earlier times. This is simplest

to describe if we go back to when the universe is radiation dominated, at z > 3400 or

t < 50, 000 years. Here, the energy density scales as (1.41),

ρ ∼ 1

a4

We can compare this to the thermal energy density of photons, given by (2.14)

ρ =
π2

15ℏ3c3
(kBT )

4

To see that the temperature scales inversely with the scale factor

T ∼ 1

a
(2.41)

This is the same temperature scaling that we saw for the CMB after recombination

(2.19). Indeed, the underlying arguments are also the same: the energy of each photon

is blue-shifted as we go back in time, while their number density increases, resulting in

the ρ ∼ 1/a4 behaviour. The difference is that now the photons are in equilibrium. If

they are disturbed in some way, they will return to their equilibrium state. In contrast,

if the photons are disturbed after recombination they will retain a memory of this.

What happens during the time 1100 < z < 3400, before recombination but when

matter was the dominant energy component? First consider a universe with only non-

relativistic matter, with number density n. The energy density is

ρm = nmc2 +
1

2
nmv2

The first term drives the expansion of the universe and is independent of temperature.

The second term, which we completely ignored in Section 1 on the grounds that it

is negligible, depends on temperature. This was computed in (2.8) and is given by
1
2
nmv2 = 3

2
nkBT .
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As the universe expands, the velocity of non-relativistic particles is red-shifted as

v ∼ 1/a. (This is hopefully intuitive, but we have not actually demonstrated this

previously. We will derive this redshift in Section 3.1.3.) This means that, in a universe

with only non-relativistic matter, we would have

T ∼ 1

a2

So what happens when we have both matter and radiation? We would expect that

the temperature scaling sits somewhere between T ∼ 1/a and T ∼ 1/a2. In fact, it is

entirely dominated by the radiation contribution. This can be traced to the fact that

there are many more photons that baryons; η = nB/nγ ≈ 10−9. A comparable ratio is

expected to hold for dark matter. This means that the photons, rather than matter,

dictate the heat capacity of the thermal bath. The upshot is that the temperature

scales as T ∼ 1/a throughout the period of the fireball. Moreover, as we saw in Section

2.2, the temperature of the photons continues to scale as T ∼ 1/a even after they

decouple.

Doing a Better Job

The formula T ∼ 1/a gives us an approximate scaling. But we can do better.

We start with the continuity equation (1.39) for relativistic matter, with P = ρ/3, is

ρ̇ = −3H(ρ+ P ) = −4Hρ (2.42)

But for ultra-relativistic gases, we know that the energy density is given by (2.40),

ρ = g⋆
π2

30 ℏ3c3
(kBT )

4 (2.43)

where g⋆ is the effective number of relativistic degrees of freedom (2.39). Differentiating

this with respect to time, and assuming that g⋆ is constant, we have

ρ̇ =
4Ṫ

T
ρ ⇒ Ṫ = −HT

where the second expression comes from (2.42). This is just re-deriving the fact that

T ∼ 1/a. However, now we have use the Friedmann equation to determine the Hubble

parameter in the radiation dominated universe,

H2 =
8πG

3c2
ρ = A(kBT )

4 with A =
8π3G

90 ℏ3c5
g⋆
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This leaves us with a straightforward differential equation for the temperature,

kBṪ = −
√
A(kBT )

3 ⇒ t =
1

2
√
A

1

(kBT )2
+ constant (2.44)

We choose to set the integration constant to zero. This means that the temperature

diverges as we approach the Big Bang singularity at t = 0. All times will be measured

from this singularity.

To turn this into something physical, we need to make sense of the morass of fun-

damental constants in A. The presence of Newton’s constant is associated with a very

high energy scale known as the Planck mass with the corresponding Planck energy,

Mplc
2 =

√
ℏc5
8πG

≈ 2.4× 1021 MeV

Meanwhile, the value of Planck’s constant is

ℏ ≈ 6.6× 10−16 eV s = 6.6× 10−22 MeV s

These combine to give

ℏMplc
2 ≈ 1.6 MeV2 s

Putting these numbers into (2.44) gives is an expression that tells us the temperature

T at a given time t, (
t

1 second

)
≈ 2.4

g
1/2
⋆

(
1MeV

kBT

)2

(2.45)

Ignoring the constants of order 1, we say that the universe was at a temperature of

kBT = 1MeV approximately 1 second after the Big Bang.

As an aside: most textbooks derive the relationship (2.45) by assuming conservation

of entropy (which, it turns out, ensures that g⋆T
3a3 is constant). The derivation given

above is entirely equivalent to this.

To finish, we need to get a handle on the effective number of relativistic degrees of

freedom g⋆. In the very early universe many particles were relativistic and g⋆ is bigger.

As the universe cools, it goes through a number of stages where g⋆ drops discontinuously

as the heavier particle become non-relativistic.
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For example, when temperatures are around kBT ∼ 106 eV ≡ 1 MeV, the relativistic

species are the photon (with gγ = 2), three neutrinos and their anti-neutrinos (each

with gν = 1) and the electron and positron (each with ge = 2). The effective number

of relativistic species is then

g⋆ = 2 +
7

8
(3× 1 + 3× 1 + 2 + 2) = 10.75 (2.46)

As we go back in time, more and more species contribute. By the time we get to

kBT ∼ 100 GeV, all the particles of the Standard Model are relativistic and contribute

g⋆ = 106.75.

In contrast, as we move forward in time, g⋆ decreases. Considering only the masses

of Standard Model particles, one might naively think that, as electrons and positrons

annihilate and become non-relativistic, we’re left only with photons, neutrinos and

anti-neutrinos. This would give

g⋆ = 2 +
7

8
(3 + 3) = 7.25

Unfortunately, at this point one of many subtleties arises. It turns out that the neutri-

nos are very weakly interacting and have already decoupled from thermal equilibrium

by the time electrons and protons annihilate. When the annihilation finally happens,

the bath of photons is heated while the neutrinos are unaffected. We can still use

the formula (2.43), but we need an amended definition of g⋆ to include the fact that

neutrinos and electrons are both relativistic, but sitting at different temperatures. For

now, I will simply give the answer:

g⋆ ≈ 3.4 (2.47)

I will very briefly explain where this comes from in Section 2.5.4.

A Longish Aside on Neutrinos

Why do neutrinos only contribute 1 degree of freedom to (2.46) while the electron has

2? After all, they are both spin-1
2
particles. To explain this, we need to get a little

dirty with some particle physics.

First, for many decades we thought that neutrinos are massless. In this case, the

right characterisation is not spin, but something called helicity. Massless particles

necessarily travel at the speed of light; their spin is aligned with their direction of

travel. If the spin points in the same direction as the momentum, then it is said to be

right-handed; if it points in the opposite direction then it is said to be left-handed. It
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is a fact that we’ve only ever observed neutrinos with left-handed helicity and it was

long believed that the right-handed neutrinos simply do not exist. Similarly, we’ve only

observed anti-neutrinos with right-handed helicity; there appear to be no left-handed

anti-neutrinos. If this were true, we would indeed get the g = 1 count that we saw

above.

However, we now know that neutrinos do, in fact, have a very small mass. Here

is where things get a little complicated. Roughly speaking, there are two different

kinds of masses that neutrinos could have: they are called the Majorana mass and the

Dirac mass. Unfortunatey, we don’t yet know which of these masses (or combination

of masses) the neutrino actually has, although we very much hope to find out in the

near future.

The Majorana mass is the simplest to understand. In this scenario, the neutrino is

its own anti-particle. If the neutrino has a Majorana mass then what we think of as

the right-handed anti-neutrino is really the same thing as the right-handed neutrino.

In this case, the counting goes through in the same way, but we drape different words

around the numbers: instead of getting 1 + 1 from each neutrino + anti-neutrino,

we instead get 2 spin states for each neutrino, and no separate contribution from the

anti-neutrino.

Alternatively, the neutrino may have a Dirac mass. In this case, it looks much more

similar to the electron, and the correct counting is 2 spin states for each neutrino, and

another 2 for each anti-neutrino. Here is where things get interesting because, as we

will explain in Section 2.5.3, we know from Big Bang nucleosynthesis that the count

(2.46) of g⋆ = 10.75 was correct a few minutes after the Big Bang. For this reason,

it must be the case that 2 of the 4 degrees of freedom interact very weakly with the

thermal bath, and drop out of equilibrium in the very early universe. Their energy

must then be diluted relative to everything else, so that it’s negligible by the time we

get to nucleosynthesis. (For example, there are various phase transitions in the early

universe that could dump significant amounts of energy into half of the neutrino degrees

of freedom, leaving the other half unaffected.)
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2.5.2 The Thermal History of our Universe

The essence of the hot Big Bang theory is simply to take the temperature scaling

T ∼ 1/a and push it as far back as we can, telling the story of what happens along the

way.

As we go further back in time, more matter joins the fray. For some species of

particles, this is because the interaction rate is sufficiently large at early times that

it couples to the thermal bath. For example, there was a time when both neutrinos

and (we think) dark matter were in equilibrium with the thermal bath, before both

underwent freeze out.

For other species of particle, the temperatures are so great (roughly kBT ≈ 2mc2)

that particle-anti-particle pairs can emerge from the vacuum. For example, for the first

six seconds after the Big Bang, both electrons and positrons filled the fireball in almost

equal numbers.

The goal of the Big Bang theory is to combine knowledge of particle physics with our

understanding of thermal physics to paint an accurate picture for what happened at

various stages of the fireball. A summary of some of the key events in the early history

of the universe is given in the following table. In the remainder of this section, we will

tell some of these stories.

What When (t) When (z) When (T )

Inflation 10−36 s ? 1028 ? ?

Baryogenesis ? ? ?

Electroweak phase transition 10−12 s 1015 1022 K

QCD phase transition 10−6 s 1012 1016 K

Dark Matter Freeze-Out ? ? ?

Neutrino Decoupling 1 second 6× 109 1010 K

e−e+ Annihilation 6 second 2× 109 5× 109 K

Nucleosynthesis 3 minutes 4× 108 109 K

Matter-Radiation Equality 50,000 years 3400 8700 K

Recombination ∼ 300, 000 years 1300 3600 K

Last Scattering 350,000 years 1100 3100 K

Matter-Λ Equality 1010 years 0.4 3.8 K

Today 1.4× 1010 years 0 2.7 K
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2.5.3 Nucleosynthesis

One of the best understood processes in the Big Bang fireball is the formation of

deuterium, helium and heavier nuclei from the thermal bath of protons and neutrons.

This is known as Big Bang nucleosynthesis. It is a wonderfully delicate calculation, that

involves input from many different parts of physics. The agreement with observation

could fail in a myriad of ways, yet the end result agrees perfectly with the observed

abundance of light elements. This is one of the great triumphs of the Big Bang theory.

Full calculations of nucleosynthesis are challenging. Here we simply offer a crude

sketch of the formation of deuterium and helium nuclei.

Neutrons and Protons

Our story starts at early times, t≪ 1 second, when the temperature reached kBT ≫ 1

MeV. The mass of the electron is

mec
2 ≈ 0.5 MeV

so at this time the thermal bath contains many relativistic electron-positron pairs.

These are in equilibrium with photons and neutrinos, both of which are relativistic,

together with non-relativistic protons and neutrons. Equilibrium is maintained through

interactions mediated by the weak nuclear force

n+ νe ↔ p+ e− , n+ e+ ↔ p+ ν̄e

These reactions arise from the same kind of process as beta decay, n→ p+ e− + ν̄e.

The chemical potentials for electrons and neutrinos are vanishingly small. Chemical

equilibrium then requires µn = µp, and the ratio of neutron to proton densities can be

calculated using the equation (2.24) for a non-relativistic gas,

nn

np

=

(
mn

mp

)3/2

e−β(mn−mp)c2

The proton and neutron have a very small mass difference,

mnc
2 ≈ 939.6 Mev

mpc
2 ≈ 938.3 MeV
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This mass difference can be neglected in the prefactor, but is crucial in the exponent.

This gives the ratio of protons to neutrons while equilibrium is maintained

nn

np

≈ e−β∆mc2 with ∆mc2 ≈ 1.3 MeV

For kBT ≫ ∆mc2, there are more or less equal numbers of protons and neutrons. But

as the temperature falls, so too does the number of neutrons.

However, the exponential decay in neutron number does not continue indefinitely. At

some point, the weak interaction rate will drop to Γ ∼ H, at which point the neutrons

freeze out, and their number then remains constant. (Actually, this last point isn’t

quite true as we will see below but let’s run with it for now!)

The interaction rate can be written as Γ = nσv. where σ is the cross-section. At this

point, I need to pull some facts about the weak force out of the hat. The cross-section

varies as temperature as σv ∼ GFT
2 with GF ≈ 1.2 × 10−5 GeV−2 a constant that

characterises the strength of the weak force. Meanwhile, the number density scales as

n ∼ T 3. This means that Γ ∼ T 5.

The Hubble parameter scales as H ∼ 1/a2 ∼ T 2 in the radiation dominated epoch.

So we do indeed expect to find Γ ≫ H at early times and Γ ≪ H at later times. It

turns out that neutrons decouple at the temperature

kBTdec ≈ 0.8 MeV

Putting this into (2.45), and using g⋆ ≈ 3.4, we find that neutrons decouple around

tdec ≈ 2 seconds

after the Big Bang.

At freeze out, we are then left with a neutron-to-proton ratio of

nn

np

≈ exp

(
−1.3

0.8

)
≈ 1

5

In fact, this isn’t the end of the story. Left alone, neutrons are unstable to beta decay

with a half life of a little over 10 minutes. This means that, after freeze out, the number

density of neutrons decays as

nn(t) ≈
1

5
np(tdec)e

−t/τn (2.48)

where τn ≈ 880 second. If we want to do something with those neutrons (like use them

to form heavier nuclei) then we need to hurry up: the clock is ticking.
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Deuterium

Ultimately, we want to make elements heavier than hydrogen. But these heavier nuclei

contain more than two nucleons. For example, the lightest is 3He which contains two

protons and a neutron. But the chance of three particles colliding at the same time to

form such a nuclei is way too small. Instead, we must take baby steps, building up by

colliding two particles at a time.

The first such step is, it turns out, the most difficult. This is the step to deuterium,

or heavy hydrogen, consisting of a bound state of a proton and neutron that forms

through the reaction

p+ n ↔ D + γ

The binding energy is

Ebind = mn +mp −mD ≈ 2.2 MeV

Both the proton and neutron have spin 1/2, and so have gn = gp = 2. In deuterium,

the spins are aligned to form a spin 1 particle, with gD = 3. The fraction of deuterium

is then determined by the Saha equation (2.29), using the same arguments that we saw

in recombination

nD

nnnp

=
3

4

(
mD

mnmp

2πℏ2

kBT

)3/2

eβEbind

Approximating mn ≈ mp ≈ 1
2
mD in the pre-factor, the ratio of deuterium to protons

can be written as

nD

np

≈ 3

4
nn

(
4πℏ2

mp kBT

)3/2

eβEbind

We calculated the time-dependent neutron density nn in (2.48). We will need this

time-dependent expression soon, but for now it’s sufficient to get a ballpark figure and,

in this vein, we will simply approximate the number of neutrons as

nn ≈ np ≈ η nγ

The baryon-to-photon ratio has not had the opportunity to significantly change between

nucleosynthesis and the present day, so we have η ≈ 10−9. (The last time it changed

was when electrons and positrons annihilated, with e− + e+ → γ + γ.) Using the

expression nγ ≈ (kBT/c)
3 from (2.15) for the number of photons, we then have

nD

np

≈ η

(
kBT

mpc2

)3/2

eβEbind (2.49)
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We see that we only get an appreciable number of deuterium atoms when the tem-

perature drops to a suitably small value. This delay in deuterium formation is mostly

due to the large number of photons as seen in the factor η. These same photons are

responsible for the delay in hydrogen formation 300,000 years later: in both cases, any

putative bound state is quickly broken apart as it is bombarded by high-energy photons

at the tail end of the blackbody distribution.

Solving (2.49), we find that nD/np ∼ 1 only when βEbind ≈ 35, or

kBT ≲ 0.06 MeV

Importantly, this is after the neutrinos have decoupled. Using (2.45), again with g⋆ ≈
3.4, we find that deuterium begins to form at

t ≈ 360 seconds

This is around six minutes after the Big Bang. Fortunately (for all of us), six minutes

is not yet the 10.5 minutes that it takes neutrons to decay. But it’s getting tight. Had

the details been different so that, say, it took 12 minutes rather than 6 for deuterium

to form, then we would not be around today to tell the tale. Building a universe is, it

turns out, a delicate business.

Helium and Heavier Nuclei

Heavier nuclei have significantly larger binding energies. For example, the binding

energy for 3He is 7.7 MeV, while for 4He it is 28 MeV. In perfect thermal equilibrium,

these would be present in much larger abundancies. However, the densities are too

low, and time too short, for these nuclei to form in reactions involving three of more

nucleons coming together. Instead, they can only form in any significant levels after

deuterium has formed. And, as we saw above, this takes some time. This is known as

the deuterium bottleneck.

Once deuterium is present, however, there is no obstacle to forming helium. This

happens almost instantaneously through

D + p ↔ 3He + γ , 3He+D ↔ 4He + p

Because the binding energy is so much higher, all remaining neutrons rapidly bind into
4He nuclei. At this point, we use the time-dependent form for the neutron density

(2.48) which tells us that the number of remaining neutrons at this time is

nn

np

=
1

5
e−360/880 ≈ 0.13
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Figure 31: The abundance of light nuclei in the early universe.

Since each 4He atom contains two neutrons, the ratio of helium to hydrogen is given

by

nHe

nH

=
nn/2

np − nn

≈ 0.07

A helium atom is four times heavier than a hydrogen atom, which means that roughly

25% of the baryonic mass sits in helium, with the rest in hydrogen. This is close to the

observed abundance.

Only trace amounts of heavier elements are created during Big Bang nucleosynthesis.

For each proton, approximately 10−5 deuterium nuclei and 10−5 3He nuclei survive.

Astrophysical calculations show that this a million times greater than the amount that

can be created in stars. There are even smaller amounts of 7Li and 7Be, all in good

agreement with observation.

The time dependence of the abundance of various elements is shown8 in Figure 31.

You can see the red neutron curve start to drop off as the neutrons decay, and the

abundance of the other elements rising as finally the deuterium bottleneck is overcome.

8This figure is taken from Burles, Nollett and Turner, Big-Bang Nucleosynthesis: Linking Inner

Space and Outer Space”, astro-ph/99033.
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Figure 32: The elements, according to cosmologists.

Any heavier elements arise only much later in the evolution of the universe when they

are forged in stars. Because of this, cosmologists have developed their own version of the

periodic table, shown in the Figure 32. It is, in many ways, a significant improvement

over the one adopted by atomic and condensed matter physicists.

Dependence on Cosmological Parameters

The agreement between the calculated and observed abundancies provides strong sup-

port for the seemingly outlandish idea that we know what we’re talking about when

the universe was only a few minutes old. The results depend in detail on a number of

specific facts from both particle physics and nuclear physics.

One input into the calculation is particularly striking. The time at which deuterium

finally forms is determined by the equation (2.45) which, in turn, depends on the num-

ber of relativistic species g⋆. If there are more relativistic species in thermal equilibrium

with the heat bath then the deuterium bottleneck is overcome sooner, resulting in a

larger fraction of helium. Yet, the contribution from the light Standard Model degrees

of freedom (i.e. the photon and neutrinos) gives excellent agreement with observation.

This puts strong constraints on the role of dark matter in the early universe. Given its

current prominence, we might naively have thought that the relativistic energy density

in the early universe would receive a significant contribution from dark matter. The

success of Big Bang nucleosynthesis tells us that this is not the case. Either there are

no light particles in the dark sector (so the dark sector is dark even if you live there)

or hot dark particles fell out of equilibrium long before nucleosynthesis took place and

so sit at a much lower temperature when the all action is happening.
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2.5.4 Further Topics

There are many more stories to tell about the early universe. These lie beyond the

scope of this course, but here is a taster. Going back in time, we have...

Electron-Positron Annihilation

Prior to nucleosynthesis, the fireball included both electrons and positrons. At around

kBT ∼ 1 MeV these annihilate, injecting energy into the thermal bath of photons and

slightly raising their temperature.

We can give an estimate for this. Prior to annihilation, the photons and electron-

positron pairs were in equilibrium, giving

g⋆ = 2 +
7

8
(2 + 2) =

11

2

Afterwards, there are only photons with

g⋆ = 2

So far, we haven’t looked closely at what happens when g⋆ changes. This is because we

need an important concept that we haven’t yet introduced: entropy. This is discussed

in detail in the lectures on Statistical Physics where we show that the entropy of an

ultra-relativistic gas is proportional to g⋆T
3a3.

The annihilation of electron-positron pairs is an adiabatic process, which means that

entropy is conserved. Since g⋆ decreases by a factor of 11/4, this means that T 3a3

increases by 11/4. Or

Tafter =

(
11

4

)1/3

Tbefore

There is one last twist to the story. The electrons and positrons do not all annihilate.

There must be a very slight excess of electrons that are left over at the end. This, of

course, is the stuff we’re made of.

Before annihilation, the number of electron-positron pairs was the same order of

magnitude as the number of photons, and these have persisted to the present day.

Meanwhile, electric neutrality of the universe ensures that the number of left over

electrons is comparable to the number of baryons currently in the universe. This

means that the slight excess of electrons in the early universe must be roughly equal to

the famous ratio η ∼ 10−9 of baryons to photons in the present day. In other words, in

the early universe there was one extra electron for every billion electron-positron pairs.

Understanding the origin of this imbalance is the goal of baryogenesis and is briefly

described below.
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Neutrino Decoupling

Neutrinos are very weakly interacting. They decouple from the thermal bath at tem-

peratures of T ∼ 1 MeV. Neutrinos have masses mνc
2 between an meV and an eV

(the exact masses are not well known) so they are very relativistic when they decouple.

Like the photons after recombination, neutrinos preserve their relativistic distribution

even after they decouple.

However, in contrast to the photons, neutrinos do not get the energy boost from

electron-positron annihilation. This means that their temperature after this event lags

behind the photon temperature, with

Tν =

(
4

11

)1/3

Tγ

This relation persists to the present day. It is expected that there is a cosmic neutrino

background filling the universe, with a temperature T ≈ (4/11)1/3 TCMB ≈ 1.9 K. This

has not yet been observed although there is an experiment, currently in the design

phase, which aims to detect it.

When we have relativistic species that sit at different temperatures, we need to revisit

our formula for the effective number of degrees of freedom g⋆. We can continue to write

the total energy density as

ρ = g⋆
π2

30 ℏ3c3
(kBT )

4

if we now define g⋆ to be the sum over all relativistic species, whether or not they are

in equilibrium,

g⋆(T ) =
∑
bosons

gi

(
Ti
T

)4

+
7

8

∑
fermions

gi

(
Ti
T

)4

where Ti is the temperature of each species. In particular, after e−e+ annihilation,

when nucleosynthesis occurs, the relativistic species are photons and electrons with

g⋆ = 2 +
7

8

[
2× 3×

(
4

11

)4
]
≈ 3.4

This is the value quoted in (2.47) and used when discussing nucleosynthesis.
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QCD Phase Transition

At a temperature of kBT ≈ 150 MeV, protons and neutrons melt. They disassociate

into a soup of quarks and gluons, known as the quark-gluon plasma. This state of

matter has been created at particle accelerators here on Earth, freeing the quarks from

their nucleon prison for the first time in 13.8 billion years.

Electroweak Phase Transition

In the Standard Model, fundamental particles such as the electron and quarks get their

mass from the Higgs mechanism. Above kBT ≈ 100 GeV, this mechanism ceases to

work. At this point all particles in the Standard Model are massless and in thermal

equilibrium.

Dark Matter Freeze Out

Clearly there are many things we don’t know about dark matter. We don’t, for example,

know if it has any interactions with the stuff we’re made of. We can, however, make

some assumptions and see where it leads us.

One of the most popular candidates for dark matter is a stable, massive particle that

interacts only weakly with itself and with the Standard Model. These are known as

weakly interacting massive particles, or WIMPs. Nearly all theories that go beyond

the Standard Model predict such objects.

If the particle interacts even weakly with the Standard Model then there will be a

time when dark matter is in equilibrium with the thermal bath. As the temperature

lowers, the dark matter will freeze out. With very little input — just the mass and

cross-section of the dark matter — we can then compute the expected abundance of

dark matter seen today.

Here something nice happens. If we take the mass to be around MX ∼ 100 GeV,

which is the energies probed by the LHC, and the cross-section to be σv ∼ GF , which is

the strength of the weak nuclear force, then we do indeed find the observed abundance

of dark matter. With an overblown rhetorical flourish, this coincidence is known as the

WIMP miracle. It was one of the reasons for optimism that it might be possible to

create dark matter at the LHC. Needless to say, this was not borne out. Furthermore,

a slew of impressive experiments, designed to directly detect passing dark matter, have

so-far, offered only null results. While WIMPs remain a possible candidate for dark

matter, there is no compelling observation beyond the coincidence above to suggest

they are intimately tied to the weak force at the 100 GeV scale.
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Baryogenesis

The universe contains lots of matter but very little anti-matter. How did this asym-

metry come to be?

One possibility is that it is an initial condition on the universe. Another is that the

universe started with equal amounts of matter and anti-matter, but somehow a small

dynamical shift took place that preferred one over the other. This latter process is

known as baryogenesis.

We don’t have an established theory of baryogenesis; whatever caused it must lie

beyond the Standard Model. Nonetheless, there are criteria, known as the Sakharov

conditions that must be obeyed for baryogenesis to occur:

• The first criterion is the most obvious: baryon number cannot be a conserved

quantity. Here “baryon number” refers to baryons minus anti-baryons. In a

symmetric universe, this starts off as zero. We want it to end up non-zero.

In the Standard Model, baryon number is conserved. (In fact, strictly speaking

B − L is conserved where B is baryon number and L is lepton number, but this

is a story for another day.) But it is straightforward to cook up interactions at

higher energy scales which violate baryon number.

• There is a symmetry known as CP which, roughly speaking, says that particles

and anti-particles behave the same. This too must be violated for baryogenesis

to occur, since particles should be favoured over anti-particles.

In fact, CP is violated in the Standard Model. It’s not clear if this is sufficient, or

if further CP violation is needed in the interaction beyond the Standard Model.

• The final criterion is the least obvious: the early universe must deviate from

thermal equilibrium. This is needed so that the interactions in one direction

differ from the interactions running in reverse.

A deviation from thermal equilibrium occurs when the universe undergoes a first

order phase transition. (You can read more about phase transitions in the lec-

tures on Statistical Physics and Statistical Field Theory.) The electroweak phase

transition appears to be a fairly smooth crossover, which is not violent enough

to do the job. For baryogenesis to occur, we most likely need a different phase

transition early in the universe.

There are many models of baryogenesis, but currently no smoking gun experiment

or observation to determine which, if any, is correct.

– 127 –

http://www.damtp.cam.ac.uk/user/tong/statphys.html
http://www.damtp.cam.ac.uk/user/tong/sft.html


3. Structure Formation

Until now, we have discussed a universe which is perfectly homogeneous and isotropic.

But that is not the universe we live in. Instead, our universe contains interesting objects

which clump together, bound by the gravitational force, from planets and stars, to

galaxies and clusters of galaxies. We would like to understand how these objects form.

The stakes become somewhat higher when we realise that the early universe was very

much smoother than the one we live in today. Of course, there were no galaxies and

planets, or even atoms, in the early fireball. But nor were there significant variations in

the energy density. This can be clearly seen in the CMB, which has an almost uniform

temperature T but exhibits tiny fluctuations on the scale

δT

T
≈ 10−5

We can compare this to the world we see around us today. As we learned in Section

1.4, the average energy density in the universe ρcrit,0, corresponds to about 1 hydrogen

atom per cubic metre. But this hides the fact that most of this matter is contained

in gravitationally bound objects. A measure analogous to δT/T can be found by

comparing the typical energy density contained in a galaxy to the average ρcrit,0: this

turns out to be
ρgalaxy
ρcrit

≈ 106

We see that the universe, like many of us, has become significantly more lumpy as it

aged. The primary purpose of this section is to understand how this occurred: how

did the small fluctuations seen in the CMB grow, ultimately resulting in the wondrous

array clusters and galaxies that we see in the night sky. This process is known as

structure formation.

There is also a second, more ambitious, purpose to this section, which is to trace the

perturbations backwards in time. Ultimately, we would like to understand where the

small fluctuations δT/T seen in the CMB came from. Since these fluctuations grow

to give rise to all the structure in the universe, this is really a rephrasing of one of

the biggest questions of them all: where did we come from? We will see that when

we evolve the fluctuations backwards in time, they take a very simple form, providing

crucial information about what the universe looked like in its very earliest moments.

Ultimately, in Section 3.5, we will offer an answer to this big question. We will argue

that all the structure in the universe, including us, owes its existence to fluctuations of

quantum fields, fluctuations that took place in the first few fractions of a second after

the Big Bang.
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3.1 Density Perturbations

In this section, we will assume that there are some small perturbations in the energy

density of the universe. We will not (yet) ask where these perturbations came from.

Instead, we will be interested in their fate. In particular, under what circumstances do

they grow, and when do they fade away?

We start by considering non-relativistic matter. As we have seen, in our universe this

is primarily dark matter. We know very little about the interactions of dark matter,

but there is a wonderful universality in physics which tells us that, on suitably large

distances, any substance can be described by the equations of fluid mechanics. This,

then, will be our tool of choice: fluid mechanics applied on cosmological scales.

Our goal is to start with a homogeneous and isotropic fluid, and then see what

happens when it is perturbed. First we need to specify our variables which, in contrast

to earlier sections, now depend on both space and time. The standard variables of fluid

mechanics are

• number density n(x, t). More precisely, we will be interested in the mass density.

For now, we will consider a fluid made of a single type of particle of massm, so the

mass density is simply mn(x, t). For a non-relativistic fluid, the mass dominates

the energy density which is given by ρ(x, t) = mn(x, t)c2.

• Pressure P (x, t). As discussed in Section 1.2.1, non-relativistic fluids have P ≪ ρ.

• Velocity u(x, t).

Next, we need the relevant equations of fluid mechanics. These depend on the context.

Ultimately, we want to understand fluids which gravitate in an expanding universe.

However, we’re going to build up slowly and introduce one ingredient at a time.

3.1.1 Sound Waves

First, we’re going to consider fluids that don’t experience gravity and live in a static

spacetime. These fluids are described by three equations. The first is the continuity

equation which captures the conservation of particles

∂n

∂t
+∇ · (nu) = 0 (3.1)

This tells us that the particle density in some region can only change if it flows away,

with the change due to its velocity u.
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The second is the Euler equation, which can be viewed as Newton’s “F=ma” for a

continuous system,

mn

(
∂

∂t
+ u · ∇

)
u = −∇P (3.2)

The left-hand side is interpreted as mass × acceleration, while the pressure −∇P on

the right-hand side provides the force.

The last of our equations is the equation of state which, for now, we leave general as

P = P (n, T ) (3.3)

For much of this section, we will use ideal gas equation, P = nkBT , which is the

appropriate equation of state for a non-relativistic fluid. In time, we will also apply

these ideas to other fluids.

The simplest solution to these equations describes a static fluid with u = 0 and

constant density and pressure

n = n̄ and P = P̄

This is a homogeneous and isotropic fluid. We take this to be our background and look

at small perturbations. We take u to be small, and write

n(x, t) = n̄+ δn(x, t) and P (x, t) = P̄ + δP (x, t)

The equations (3.1) and (3.2) are linearised to give

∂(δn)

∂t
= −∇ · (n̄u) and mn̄

∂u

∂t
= −∇δP

We can combine these to find,

∂2(δn)

∂t2
= −n̄∇ · ∂u

∂t
=

1

m
∇2δP

At this point, we need to invoke the equation of state, relating P to n. It will be useful

to give a new name to the quantity ∂P/∂n: we write it as

∂P

∂n
= mc2s (3.4)

We can then relate δP = mc2sδn to find that the density perturbations obey(
∂2

∂t2
− c2s∇2

)
δn = 0 (3.5)
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This is the wave equation. As its name suggests, its solutions are waves of the form

δn(x, t) = A(k) cos (ωt− k · x) +B(k) sin (ωt− k · x) (3.6)

We call these sound waves. The key property of the solution is the wavevector k which

determines the direction of travel of the wave and the wavelength λ = 2π/|k|. The

frequency ω of the wave is given by

ω = cs|k|

The proportionality constant cs, defined in (3.4), has the interpretation of the speed

of sound. (We’ll compute examples below.) Finally, A(k) and B(k) are two, arbitrary

integration constants. Because the wave equation is linear, we can add together as

many solutions of the form (3.6) as we like, with different integration constants A(k)

and B(k). In this way, we can build up wavepackets with different profiles.

In what follows, we will often write the solution (3.6) in complex form,

δn = C(k) exp (i(ωt− k · x))

for some complex C. This is standard, albeit inaccurate notation. Obviously the

number density δn should be real. But because the wave equation is linear, we can

always just take the real part of the right-hand-side to get a solution. This form of the

solution is more useful simply because it’s quicker to write exponentials rather than

cos and sin.

Speed of Sound of a Non-Relativistic Fluid

Throughout Section 1, we treated the equation of state of a non-relativistic fluid as

P = 0. What this really means is that P ≪ ρ, where ρ is the energy density, mostly

due to the rest mass of the fluid.

The equation for the sound speed (3.4) can alternatively be written in terms of the

energy density ρ = mnc2, as

∂P

∂ρ
=
c2s
c2

(3.7)

Using P = 0 suggests that cs = 0 for a non-relativistic fluid. But what this is really

telling is simply that

cs ≪ c (3.8)

This makes sense. The sound speed is related to the speed of the constituent particles

in the fluid. In a non-relativistic fluid, this is necessarily much less than the speed of

light.
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In fact, we can do better and compute the sound speed as a function of temperature

(which, itself, is related to the speed of the constituent particles). For the ideal gas,

the equation of state is

P = nkBT

It’s tempting to simply differentiate ∂P/∂n, with T fixed, to determine the speed of

sound. But that’s a little too hasty: as P and n vary, it is quite possibly that T varies

as well.

To understand how this works, we need a little physical input. The energy of the

ideal gas with some fixed total number of atoms N = nV is (2.8)

E =
3

2
NkBT

If the volume changes, then the energy should change by the work done

dE = −P dV ⇒ 3

2
NkB dT = −P dV

⇒ 3

2

dT

T
= −dV

V

where, in the second line, we’ve used the equation of state. Integrating this expression

tells us that T 3/2V is constant. Alternatively, using n = N/V , we learn that Tn−2/3 is

constant. Such changes are referred to as adiabatic. (Underlying this is the statement

that entropy is conserved for adiabatic changes; you can learn more about this in the

lectures on Statistical Physics.) This means that

∂T

∂n

∣∣∣∣
adiabatic

=
2

3

T

n

The speed of sound (3.4) should be computed under the assumption of such an adiabatic

change. We then have

∂P

∂n

∣∣∣∣
adiabatic

=
5

3
kBT

From this, we compute the speed of sound in an ideal gas to be

cs =

√
5kBT

3m
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Before we proceed, I will briefly mention another, more rigorous, approach to get this

result. We could treat T (x, t) as a new dynamical field with its own equation of motion.

This equation of motion turns out to be(
∂

∂t
+ u · ∇

)
T +

2T

3
∇ · u = 0

A full derivation of this needs the Boltzmann equation, and can be found in the lectures

on Kinetic Theory. It’s straightforward to check that this equation combines with the

continuity equation (3.1) to ensure that Tn−2/3 is indeed constant along flow lines.

Sound Speed of a Relativistic Fluid

So far, our discussion of fluid dynamics was focussed on non-relativistic fluids. However,

it should come as no surprise to learn that we will also be interested in relativistic fluids

in the context of cosmology.

Much of the discussion above goes through for general fluids if the equations are

phrased in terms of the energy density ρ instead of the number density n. In particular,

the sound speed can be computed using (3.7). For a relativistic fluid, with P = ρ/3,

we have

c2s =
1

3
c2 (3.9)

This time we see that the speed of sound is tied to the speed of light. Again, this is to

be expected: in a relativistic fluid, any constituent particles are flying around at close

to the speed of light. The difference in the speed of sound between a non-relativistic

fluid (3.8) and a relativistic fluid (3.9) will prove to be one of the important ingredients

in the story of structure formation.

3.1.2 Jeans Instability

Our next step is to add in the effects of gravity. For now we will keep ourselves in a

static spacetime. The continuity equation (3.1) remains unchanged. However, the Euler

equation (3.2) picks up an extra term on the right-hand-side due to the gravitational

field Φ experienced by the fluid,

mn

(
∂

∂t
+ u · ∇

)
u = −∇P −mn∇Φ (3.10)

This gravitational field is determined by the matter in the fluid in the usual manner

∇2Φ = 4πGmn (3.11)
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We want to consider a homogeneous solution as before, with constant n = n̄ and P = P̄

and ∇Φ = 0. There’s a small problem with this as a starting point: it doesn’t obey the

Poisson equation (3.11)! This is a famously fiddly aspect of the following derivation,

one that stems from the fact that there is no infinite, static self-gravitating fluid. For

now, we simply bury our head in the sand and ignore this issue, an approach which is

sometimes known as the Jeans’ swindle. But, for once, this approach will be rewarded:

in the next section, we will consider perturbations in an expanding universe where this

issue is resolved.

We now perturb the constant background. We require that the perturbed gravita-

tional potential Φ + δΦ obeys

∇2δΦ = 4πGmδn

The same linearisation that we saw previously now shows that the wave equation (3.5)

is deformed to (
∂2

∂t2
− c2s∇2 − 4πGmn̄

)
δn = 0

This is again solved by the ansatz

δn = C(k) exp (i(ωt− k · x))

but now with the frequency and wavevector related by

ω2 = c2sk
2 − 4πGmn̄

= c2s(k
2 − k2J)

Equations of this type, which relate the frequency to the wavenumber, are referred to

as dispersion relations. In the second line we have defined the Jeans wavenumber kJ ,

kJ =

√
4πGmn̄

c2s

The qualitative properties of the solution now depend on the wavenumber k. For

small wavelengths, or large wavenumbers k > kJ , the solutions oscillate as before.

These are sound waves. However, when the wavelengths are large, k < kJ then the

gravitational background becomes important. Here the frequency is imaginary, which

has the interpretation that perturbations δn ∼ eiωt grow or decay exponentially. For

k ≪ kJ we have

δn ∼ e±t/τ with τ ≈
√

1

4πGmn̄
(3.12)
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We learn that long wavelength perturbations no longer oscillate as sound waves. In-

stead, any perturbation that has a size larger than the Jeans length,

λJ =
2π

kJ
= cs

√
π

Gmn̄
(3.13)

will typically grow exponentially quickly due to the effect of gravity. This is known as

the Jeans’ instability.

The derivation above also gives us a clue to the physical mechanism for the Jeans

instability. It comes from attempting to balance the pressure and gravitational terms

in the Euler equation (3.10). Consider an over-dense spherical region of radius R. In

the absence of any pressure, this region would collapse with a time-scale τ given in

(3.12). In a fluid, this collapse is opposed by the pressure. But the build-up of pressure

is not instantaneous; it takes time given roughly by

tpressure ∼
R

cs

When R is small, tpressure < τ and the build-up of pressure stops the collapse and we

get oscillating motion that we interpret as sound waves. In contrast, if R is large we

have τ < tpressure, there is no time for the pressure to build. In this case, the system

suffers the Jeans instability and is susceptible to gravitational collapse.

3.1.3 Density Perturbations in an Expanding Space

Finally, we want to consider something more cosmological: the growth of density pertur-

bations, interacting with gravity, in an expanding space with scale factor a(t). Through-

out we will work with flat space. (This means “k = 0” in the notation of Section 1.

However, in this Section we use k to denote the wavenumber of perturbations.)

We need to revisit our equations once more. Consider a particle tracing out a tra-

jectory x(t) in co-moving coordinates. The physical coordinates r(t) (called xphys in

(1.14)) is given by

r(t) = a(t)x(t)

The physical velocity of a particle is

u = ṙ = Hr+ v (3.14)

with v = aẋ. In what follows, we will need to jump between physical and co-moving

coordinates. The spatial derivatives are related simply by

∇r =
1

a
∇x (3.15)
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The temporal derivatives are a little more subtle since they differ depending on whether

we keep r(t) fixed or x(t) fixed. In particular

∂

∂t

∣∣∣∣
r

=
∂

∂t

∣∣∣∣
x

+
∂x

∂t

∣∣∣∣
r

· ∇x

=
∂

∂t

∣∣∣∣
x

+
∂(a−1r)

∂t

∣∣∣∣
r

· ∇x

=
∂

∂t

∣∣∣∣
x

−Hx · ∇x (3.16)

Now we come to the equations describing the fluid. The equations that we dealt with

previously should be viewed as given in terms of physical coordinates r. However, it

will turn out that subsequent calculations are somewhat easier if done in co-moving

coordinates. We just have to translate from one to the other.

The Continuity Equation Revisited

The continuity equation (3.1) should be viewed in physical coordinates and so, in our

new notation, reads

∂n

∂t

∣∣∣∣
r

= −∇r · (nu)

Changing to co-moving coordinates, it then becomes(
∂

∂t

∣∣∣∣
x

−Hx · ∇x

)
n = −1

a
∇x · (nu)

In what follows, we drop the subscript x on everything; ∇ will always mean ∇x and ∂
∂t

will always mean ∂
∂t

∣∣
x
.

We can make contact with the story of Section 1. Following (3.14), we write the

velocity of the fluid as

u(x, t) = Hax(t) + v(x, t) (3.17)

and the continuity equation becomes

∂n

∂t
+ 3Hn+

1

a
∇ · (nv) = 0 (3.18)

where we’ve used ∇ · x = 3. This form makes it clear that if we restrict to solutions

in which v = 0, so the velocity of the fluid simply follows the expansion of spacetime,
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then we recover our earlier continuity equation (1.39), specialised to the case of non-

relativistic matter,

∂n

∂t
= −3Hn

(Recall that the energy density is given by ρ = mn̄c2.) This has the familiar solution

n(t) ∼ 1

a3
(3.19)

which simply tells us that the number density dilutes as the universe expands.

Now we perturb the fluid,

n(x, t) = n̄(t) + δn(x, t)

= n̄(t)
[
1 + δ(x, t)

]
where n̄(t) is a spatially homogeneous density evolving as (3.19) and, in the second

line, we’ve defined

δ =
δn

n̄
=
δρ

ρ̄

The perturbation δ is referred to as the density contrast.

Let’s now see what conditions the continuity equation (3.18) imposes on these per-

turbations. It reads

∂

∂t
(n̄δ) + 3Hn̄δ = −1

a
∇ · [n̄(1 + δ)v]

= − n̄
a
∇ · v +O(vδ)

We drop the second term on the grounds that is non-linear in the small quantities δ

and v. Using the fact that the background density n̄ evolves as (3.19), this equation

reduces to the simple requirement

δ̇ = −1

a
∇ · v (3.20)

This is the first of our perturbed equations.
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The Euler and Poisson Equations Revisited

Next up we need to deal with the Euler equation (3.10) and Poisson equation (3.11).

The Euler equation as written in (3.10) should again be viewed in physical coordinates,

mn

(
∂

∂t

∣∣∣∣
r

+ u · ∇r

)
u = −∇rP −mn∇rΦ

After substituting in (3.17), (3.15) and (3.16), this becomes

mna

(
∂

∂t
+

v

a
· ∇
)
u = −∇P −mn∇Φ (3.21)

where, as previously, the lack of any subscript on the derivatives means that they are

taken holding x fixed. A similar, but simpler, story also holds for the Poisson equation.

In physical coordinates, this is

∇2
rΦ = 4πGmn

In co-moving coordinates, it becomes

∇2Φ = 4πGmna2 (3.22)

The background u = Hax, with v = 0, solves the Euler equation provided that we

take ∇P̄ = 0 and Φ = Φ̄ such that

∇Φ̄ = −äax ⇒ ∇2Φ̄ = −3äa (3.23)

This is now perfectly compatible with the Poisson equation; indeed, the two combine

to give

ä

a
= −4πG

3
mn̄

But this is precisely the acceleration equation (1.52) that we met previously. Note that

we didn’t assume the Friedmann equation anywhere in this derivation. Nonetheless, we

find the acceleration equation (which, recall, is the time derivative of the Friedmann

equation) emerging as a consistency condition on our analysis! This isn’t as miraculous

as it may first appear. Our derivation of the Friedmann equation in Section 1.2.3

involved only Newtonian gravity, which is the same physics we have invoked here.

However, in one particular sense, the current derivation using fluids is a considerable

improvement on the derivation in Section 1.2.3, because we didn’t have to make the

misleading assumption that there is an origin of the universe from which all matter

is expanding. Instead, the fluid treatment allows us to understand the expansion of a

genuinely homogeneous and infinite universe.
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For our immediate purposes, the thing that should make us most happy is that we no

longer have to worry about the Jeans’ swindle; our spatially homogeneous background

satisfies the equations of motion as it should. At heart, the Jeans’ swindle was telling

us that a spatially homogeneous fluid is inconsistent in Newtonian gravity. But it

is perfectly consistent if we allow for an expanding universe, with the gravitational

potential Φ̄ for a homogeneous fluid driving the expansion of space, just as we learned

in Section 1.

Next, we perturb around the background. We write P = P̄ + δP and Φ = Φ̄ + δΦ

and, as before, u = Hax+ v. The linearised Euler equation reads

mn̄a (v̇ +Hv) = −∇δP −mn̄∇δΦ (3.24)

where we’ve used the fact that (v · ∇)x = v. If we drop the pressure and gravitational

perturbation on the right-hand side, this equation tells us that v̇ = −Hv, so the

peculiar velocities redshift as v ∼ 1/a. This can be viewed as a consequence of Hubble

friction, which slows the peculiar velocities as the universe expands.

Finally, the linearised Poisson equation is

∇2δΦ = 4πGmn̄a2δ (3.25)

Now we combine our three linearised equations (3.20), (3.24) and (3.25). Take the time

derivative of (3.20) to get

δ̈ =
H

a
∇ · v − 1

a
∇ · v̇ = −Hδ̇ − 1

a
∇ · v̇

Take the gradient of (3.24) to get

mn̄a
(
∇ · v̇ −Haδ̇

)
= −∇2δP −mn̄∇2δΦ

= −mn̄
(
c2s∇2δ + 4πGmn̄a2δ

)
where in the second line we’ve used δP = mc2sδn = mc2sn̄δ and the Poisson equation

(3.25). We now combine these two results to get a single equation telling us how the

density perturbation δ evolves in an expanding spacetime

δ̈ + 2Hδ̇ − c2s

(
1

a2
∇2 + k2J

)
δ = 0 (3.26)

where kJ is the physical Jeans wavenumber given, as before, by k2J = 4πGmn̄/c2s.
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The most important addition from the expanding spac time is the friction-like term

2Hδ̇. This is referred to as Hubble friction or Hubble drag. (We saw an analogous term

when discussing inflation in Section 1.5.)

To solve (3.26), it is simplest to find by working in Fourier space. We define

δ(k, t) =

∫
d3x eik·x δ(x, t)

where we are adopting the annoying but standard convention that the function δ(x)

and its Fourier transform δ(k) are distinguished only by their argument. Since x is the

co-moving coordinate, k is the co-moving wavevector.

The advantage of working in Fourier space is that the equation (3.26) decomposes

into a separate equation for each value of k,

δ̈(k, t) + 2Hδ̇(k, t) + c2s

(
k2

a2
− k2J

)
δ(k, t) = 0 (3.27)

The slightly unusual factor of a in the final term arises because k is the co-moving

wavenumber and so k/a is the physical wavenumber, but kJ refers to the physical

Jeans wavenumber. Our challenge now is to solve this equation.

3.1.4 The Growth of Perturbations

Solutions to (3.27) have different behaviour depending on whether the perturbations

have small or large wavelength compared to the Jeans’ wavelength λJ = 2π/kJ .

Small wavelength modes have k/a≫ kJ . Here, the equation (3.27) is essentially that

of a damped harmonic oscillator, with the expanding universe providing the friction

term 2Hδ̇. The solutions are oscillating sound-waves with the Hubble friction leading

to an ever-decreasing amplitude.

If structure is to ultimately form in the universe, we need to find solutions that grow

over time. These are supplied by the long-wavelength modes, with k/a < kJ , which

suffer from the Jeans’ instability. However, as we shall now see, the details of the Jeans’

instability are altered in an expanding universe.

In what follows, we will see that there are two length scales at play for the growing

modes. One is the Jeans’ length scale λJ = 2π/kJ ,

λJ = cs

√
π

Gmn̄
= csc

√
π

Gρ̄
(3.28)
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Only modes with λ > λJ will grow. The other relevant physical length scale is set by

the expansion of the universe,

dH ≈ cH−1 = c2
√

3

8πGρ̄
(3.29)

This is called the apparent horizon. In the standard FRW cosmology (with ordinary

matter or radiation) the apparent horizon coincides with the particle horizon, defined in

(1.24). In such a situation, it would make little sense to talk about perturbations with

wavelength λ > dH . This is because the Fourier mode of a perturbation is a coherent

wave and causality would appear to prohibit the formation of such perturbations on

distances greater than dH since there has been no time for light, or anything else, to

cross this distance since the Big Bang.

This, however, is exactly the problem that is resolved by a period of inflation in the

very early universe. The whole point of inflation is to stretch the particle horizon so that

it sits way outside the apparent horizon. Indeed, we will see that perturbation modes

with wavelengths λ > dH play an important role in the story of structure formation in

our universe, strongly implying that a period of inflation is needed. In what follows,

we will refer to the apparent horizon (3.29) simply as the “horizon”.

Matter Perturbations in a Matter Dominated Universe

For non-relativistic fluids, the Jeans’ length (3.28) always sits well within the horizon

(3.29),

cs ≪ c ⇒ λJ ≪ cH−1

This means that the perturbations which suffer the Jeans’ instability include both

sub-horizon and super-horizon wavelengths.

As the wavelength of the mode is sufficiently long, so k/a ≪ kJ , then we can ap-

proximate (3.27) as

δ̈(k) + 2Hδ̇(k)− 4πGρ̄

c2
δ(k) = 0 (3.30)

Here we’ve left the t argument in δ(k, t) implicit, but kept the k argument because it

tells us that the mode is in Fourier space rather than real space.
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In a matter dominated universe, a ∼ t2/3 so H = 2/3t. The third term is also related

to the Hubble parameter through Friedmann equation H2 = 8πGρ̄/3c2. We then have

δ̈(k) +
4

3t
δ̇(k)− 2

3t2
δ(k) = 0

Substituting in the power-law ansatz δ(k, t) ∼ tn, we find two solutions, one decaying

and one growing

δ(k, t) ∼

{
t2/3 ∼ a

t−1 ∼ a−3/2
(3.31)

We see that the expansion of the universe slows down the rate at which objects undergo

gravitational collapse, with the Hubble damping turning the exponential growth of the

Jeans instability (3.12) into a power-law, one that scales linearly with the size of the

universe.

Radiation Perturbations in a Radiation Dominated Universe

Although we have derived the perturbation equation (3.27) for non-relativistic fluids,

it is not too difficult to modify them in a plausible way to give us an understanding of

the perturbations in other fluid components. Here we will be interested in radiation,

but things are clearer if we work with the general equation of state

P = wρ

and only later restrict to w = 1/3.

We will work with the energy density ρ(x, t), rather than the number density n(x, t);

for a non-relativistic fluid, they are related by ρ = mnc2. We need to go through each

of our original equations – continuity, Euler, and Poisson – and ask how they change

for a general fluid. We will motivate each of these changes, but not derive them.

First, the continuity equation (3.18): this gets replaced by

∂ρ

∂t
+ 3(1 + w)Hρ+

1

a
(1 + w)∇ · (ρv) = 0

The equation of state parameter w appears twice. The first of these is unsurprising,

since it guarantees that this equation reduces to our previous continuity equation (1.39)

when v = 0. We won’t derive the presence of the (1 + w) factor in the final term, but

it arises in a similar way to the first.
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The Euler equation (3.21) remains unchanged. Somewhat more subtle is the rela-

tivistic generalisation of the gravitational potential. In general relativity, both energy

density and pressure gravitate. It turns out that the Poisson equation (3.22) should be

replaced by

∇2Φ =
4πG

c2
(1 + 3w)ρa2 (3.32)

There is, in fact, a clue in the discussion above that strongly hints at this form. Recall

that we avoided the Jeans’ swindle in an expanding spacetime by relating the grav-

itational potential to the acceleration in (3.23). The Poisson equation then became

equivalent to the acceleration equation (1.52) which, in general, reads

ä

a
= −4πG

3c2
(1 + 3w)ρ

We see the same distinctive factor of (1 + 3w) appearing here.

Repeating the same steps as previously, the perturbation equation (3.27) is replaced

by

δ̈(k) + 2Hδ̇(k) + c2s(1 + w)

(
k2

a2
− (1 + 3w)k2J

)
δ(k) = 0 (3.33)

with kJ = 2π/λJ is the physical wavenumber, defined as in (3.28). It differs from the

non-relativistic Jeans length only by the expression for the speed of sound cs.

Let’s now restrict to radiation with w = 1/3. We know from (3.9) that the speed of

sound for a relativistic fluid is

c2s =
1

3
c2

This means that there is no parametric separation between the Jeans length (3.28) and

the horizon (3.29). Instead, we have λJ ≈ cH−1. Any perturbation that lies inside the

horizon does not grow. Instead, the pressure of the radiation causes the perturbation

to oscillate as a sound wave.

Outside the horizon it’s a different story. In a radiation dominated universe, a ∼ t1/2

so H = 1/2t. For wavenumbers k/a≪ kJ , the equation (3.33) governing perturbations

becomes

δ̈r(k) +
1

t
δ̇r(k)−

1

t2
δr(k) = 0
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Once again, substituting in the power-law ansatz δ(k, t) ∼ tn, we find two solutions,

one decaying and one growing

δr(k, t) ∼

{
t ∼ a2

t−1 ∼ a−2
(3.34)

We learn that perturbations in the density of radiation grow outside the horizon. In-

deed, they grow faster than the linear growth (3.31) seen in the matter dominated

era.

Matter Perturbations in a Radiation Dominated Universe

We could also ask about density perturbations of matter in a radiation dominated

universe. As we’ve seen, the Jeans length for matter is well within the horizon (because

cs ≪ c). In a universe with multiple energy components ρi, matter perturbations δm
with k/a≪ kJ are described by a modified version of (3.30),

δ̈m(k) + 2Hδ̇m(k)−
4πG

c2

∑
i

ρ̄iδi(k) = 0 (3.35)

This final term can be traced to the gravitational potential δΦ, which receives contri-

butions from all energy sources. However, on sub-horizon scales, we have seen that

the radiation perturbation does not grow, so we can set δr(k) ≈ 0. Meanwhile, in the

radiation dominated phase ρ̄r ≫ ρ̄m and so we can also ignore the ρ̄mδm(k) which will

be sub-dominant to the Hδ̇m(k) term. Using H = 1/2t, we have

δ̈m(k) +
1

t
δ̇m(k) ≈ 0 ⇒ δm(k, t) ∼

{
log t ∼ log a

constant
(3.36)

We learn that, during the radiation dominated era, the matter perturbations inside the

horizon grow only logarithmically. This slow growth occurs because the expansion of

the universe is faster in the radiation dominated phase than in the matter dominated

phase. A logarithmic increase is rather pathetic and it means that significant growth

in sub-horizon scale perturbations gets going when we hit the matter dominated era at

z ≈ 3400

In contrast, the matter perturbations with wavelength larger than the horizon obey

the same equation as the radiation perturbations in the radiation dominated era. (The

term ρ̄rδr in (3.35) cannot now be neglected.) This means that those modes outside

the horizon grow as δ ∼ a2 as seen in (3.34).
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The Cosmological Constant

We can also ask how matter perturbations grow in a universe dominated by a cosmo-

logical constant. We again use the perturbation equation (3.35). It is not possible to

have perturbations δΛ. (This is what the “constant” in cosmological constant means!)

Once again, ρ̄m is negligible, so we have

δ̈m + 2Hδ̇m ≈ 0

where, from Section 1.3.3, H =
√

Λ/3. The solutions are now

δm ∼

{
constant

e−2Ht ∼ a−2

We learn that in a universe dominated by a cosmological constant, there is no growth

of perturbations. In other words, dark energy kills any opportunity to form galaxies.

We will revisit this in Section 3.3.4.

3.1.5 Validity of the Newtonian Approximation

Everything we’ve done in this section relies on the perturbation equation (3.27), which

was derived for non-relativistic matter using Newtonian gravity. However, as we

stressed in Section 1.2, a proper description of expanding spacetime requires general

relativity. So should we trust the Newtonian approximation?

We should be able to trust our equations on small length scales, for the simple reason

that general relativity reduces to Newtonian gravity in this regime. However, when we

get to perturbations whose length is comparable to the horizon dH , we should be more

nervous, since it seems plausible that the perturbations feel the curvature of spacetime

in a way that our Newtonian approximation misses.

The only way to know if the Newtonian perturbation equation (3.27) is valid is to

roll up our sleeves and perform the correct, general relativistic perturbation theory.

This is a somewhat painful exercise that you will be given the opportunity to embrace

in next year’s Part III cosmology course. There you will learn that the question “is our

equation (3.27) valid?” has a short answer and a long answer.

The short answer is: yes.
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The long answer is substantially more subtle. It turns out that the matter perturba-

tion in general relativity is not diffeomorphism invariant, which means that the answer

you get depends on the coordinates you use. This is bad. Indeed, one of the main philo-

sophical lessons of general relativity is that the coordinates you use should not matter

one iota. Moreover, this issue is particularly problematic for super-horizon perturba-

tions with λ≫ dH , and an important part of the relativistic approach is to understand

the right, diffeomorphism invariant quantity to focus on. For most choices of coordi-

nates (so called “gauges”) it turns out that the Poisson equation (3.25) is not valid on

super-horizon scales. There is, however, a choice of coordinates – conformal Newtonian

gauge – where the Poisson equation holds even on super-horizon scales and this is the

one we are implicitly choosing9. All of this is to say that you can trust the physics

that we’ve derived here but you should be careful when comparing to analogous results

derived in a general relativistic setting where the answers may look different because,

although the symbols are the same, they refer to subtly different objects.

3.1.6 The Transfer Function

There are a number of different questions that we could try to answer now. We posed

one such question in the introduction to this section: can we compute the overall growth

of the density perturbations to explain how we got from δT/T ∼ 10−5 in the CMB to

the world we see around us. This, it turns out, requires some more discussion which

we postpone to Section 3.3.2. Instead, we will ask about the relative growth of density

perturbations of different wavenumber k.

We are interested in the perturbations of the matter, since this is what we’re ul-

timately made of. If the density perturbations remain sufficiently small, so that the

linearised analysis developed above holds then the linear analysis of this section re-

mains valid which, in particular, means that each δ(k) evolves independently, as seen

in, for example, (3.27). The evolution of a perturbation of a given wavevector k from

an initial time ti to the present can be distilled into a transfer function T (k), defined

as

δ(k, t0) = T (k) δ(k, ti) (3.37)

The initial time ti is usually taken to be early, typically just after the end of inflation.

Key to understanding the physics is the question of when perturbations enter the

horizon. Recall that, in physical coordinates, the apparent horizon is dH ≈ c/H as in

9More details can be found in the paper by Chisari and Zaldarriaga, “Connection between Newto-

nian simulations and general relativity, arXiv:1101.3555.
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(3.29). It is simplest, however, to work in co-moving coordinates, where the apparent

horizon is

χH =
c

aH

In the radiation dominated era, a ∼ t1/2 and so H ∼ 1/a2. In the matter dominated

era, a ∼ t2/3 and so H ∼ 1/a3/2. In both cases, the co-moving horizon increases over

time

χH ∼

{
a radiation domination

a1/2 matter domination
(3.38)

The intuition behind this is that, as the universe expands, there is more that one can

see and, correspondingly, the co-moving horizon grows.

The co-moving wavevector k remains unchanged over time. (This is the main ad-

vantage of working with the co-moving wavevector in the previous section. In contrast,

the physical wavevector is kphys = k/a shrinks over time as the physical wavelength

λphys = 2π/kphys = 2πa/k is stretched by the expansion of the universe.) This means

that, for each k, there will be a time when the corresponding perturbation enters the

horizon. It matters whether the time of entry occurs during the radiation or matter

dominated eras.

At the time of matter-radiation equality (which occurred around z = 3400), modes

with wavenumber keq have just entered the horizon, where

keq =
2π

c
(aH)eq

Modes larger than this (i.e. with k < keq) enter the horizon in the matter dominated

era. Modes smaller than this (i.e. with k > keq) enter the horizon during the radiation

dominated era. Let’s look at each of these in turn.

First the long wavelength modes with k < keq. These were outside the horizon during

the radiation era where δ grew as a2, as seen in (3.34). As the universe entered the

matter dominated era, the growth slows to δ ∼ a, as seen in (3.31). This means that,

starting from an initial time ti, they evolve to their present day value

δ(k, t0) =

(
aeq
ai

)2
a0
aeq

δ(k, ti) for k < keq (3.39)

We learn that each mode grows by an amount independent of k.
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Things are more interesting for the short wavelength modes with k > keq which enter

the horizon during the radiation era. Before entering the horizon, such modes grow as

δ ∼ a2 as in (3.34). However, when they enter the horizon, their growth slows to the

logarithmic growth seen in (3.36). For our purposes, this is effectively constant. The

growth only resumes when the universe enters the matter dominated era. This means

that

δ(k, t0) =

(
aenter
ai

)2
a0
aeq

δ(k, ti)

=

(
aenter
aeq

)2

×

[(
aeq
ai

)2
a0
aeq

]
δ(k, ti) for k > keq (3.40)

The factor in square brackets is the same, constant amount (3.39) that the long wave-

length modes grew by. However, the amplitude is suppressed by the factor of a2enter/a
2
eq,

reflecting the fact that growth stalled during the radiation dominated era. For a given

mode k, the scale factor at horizon entry is given by

k =
2π

c
(aH)enter

Using a ∼ t1/2 in the radiation era, we have H = 1/2t ∼ 1/a2 so a given scale k enters

the horizon at k ∼ (aH)enter ∼ 1/aenter. We can then write (aenter/aeq)
2 = k2eq/k

2.

Finally, all of this can be packaged into the transfer function (3.37). Assuming

that the perturbations remain sufficiently small, so the linearised analysis is valid, the

transfer function can be found in (3.39) and (3.40). It scales with the wavenumber as

T (k) ∼

{
1 k < keq

k−2 k > keq
(3.41)

We will make use of this shortly.

3.2 The Power Spectrum

It should be obvious that we’re not going to understand the density perturbations in

the early universe to enough accuracy to predict the location of, say, my mum’s house.

Or even the location of the Milky Way galaxy. Instead, if we want to make progress

then we must lower our ambitions. We will need to develop a statistical understanding

of the distribution of galaxies in the universe.
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To this end, we consider various averages of the density contrast,

δ(x, t) =
δρ(x, t)

ρ̄(t)

By construction, the spatial average of δ itself at a given time vanishes,

⟨δ(x, t)⟩ = 0

The first non-trivial information lies in the correlation function, defined by the spatial

average

ξ(|x− y|, t) = ⟨δ(x, t) δ(y, t)⟩ (3.42)

Our old friend, the cosmological principle, is implicit in the left-hand side where we

have assumed that the universe is statistically homogeneous and isotropic, so that the

function ξ(x,y, t) depends only on |x− y|. The correlation function ξ(r, t) tells us the

likelihood that, at time t, two galaxies are separated by a distance r.

Further statistical information about δ(x) can be distilled into higher correlation

functions, such as ⟨δδδ⟩ However, in what follows we will limit ourselves to understand-

ing the correlation function ξ(r, t).

In Section 3.1, we learned that the evolution of the density perturbations is best

described in momentum space,

δ(k, t) =

∫
d3x eik·x δ(x, t) (3.43)

The correlation function in momentum space is given by

⟨δ(k, t) δ(k′, t)⟩ =
∫
d3x d3y eik·x+ik′·y ⟨δ(x, t) δ(y, t)⟩

=

∫
d3x d3y eik·x+ik′·y ξ(r, t)

=

∫
d3r d3y eik·r+i(k+k′)·y ξ(r, t)

= (2π)3 δ3D(k+ k′)

∫
d3r eik·r ξ(r, t) (3.44)

where, in the second line, we’ve defined r = x−y. The Dirac delta-function δ3D(k+k′)

reflects the underlying (statistical) translation invariance. (Note that I’ve added a
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subscript D on the Dirac delta δ3D(k) to distinguish it from the density contrast δ(k, t)!)

The remaining function is called the power spectrum,

P (k, t) =

∫
d3r eik·r ξ(r, t)

This is the three-dimensional Fourier transform of the correlation function. If we work

in spherical polar coordinates, chosen so that k · r = kr cos θ, then we have

P (k, t) =

∫ 2π

0

dϕ

∫ +1

−1

d(cos θ)

∫ ∞

0

dr r2eikr cos θξ(r, t)

= 2π

∫ ∞

0

dr
r2

ikr

[
eikr − e−ikr

]
ξ(r, t)

=
4π

k

∫ ∞

0

dr r sin(kr) ξ(r, t) (3.45)

The spatial correlation function ξ(r) can be measured by averaging over many galaxies

in the sky. (We’ll say more about this in Section 3.2.5.) Meanwhile, the power spectrum

P (k) is the most natural theoretical object to consider. The formula above relates the

two.

3.2.1 Adiabatic, Gaussian Perturbations

To describe the structure of galaxies in our universe, we introduce a probability distri-

bution for δ(k). The idea is that averages computed from the distribution will coincide

with the spatial average which leads to ξ(r) and, relatedly, P (k).

There are two basic questions that we need to address:

• What is the initial probability distribution?

• How did this probability distribution subsequently evolve?

If we understand both of these well enough, we should be able to compare our results

to the distribution of galaxies observed in the sky. We start by describing the initial

probability distribution. We then see how it evolves in Section 3.2.3.

It may seem daunting to guess the form of the initial perturbations. However, the

universe is kind to us and the observational evidence suggests that these perturbations

take the simplest form possible. (We will offer an explanation for this in Section 3.5.)
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First, the perturbations of each fluid component are correlated. In particular, the

perturbation in any non-relativistic matter, such as baryons and cold dark matter, is

the same: δB = δCDM . Furthermore, perturbations in matter and perturbations in

radiation are related by

δm =
3

4
δr (3.46)

Perturbations of this kind are called adiabatic.

It may seem like a minor miracle that the perturbations in all fluids are correlated

in this way. What’s really happening is that there is an initial perturbation in the

gravitational potential (or, in the language of general relativity, in the metric) which,

in turn, imprints itself on each of the fluids in the same way.

Logically, we could also have initial perturbations of the form δρm = −δρr. These

are referred to as isocurvature perturbations because the net perturbation δρ = δρm +

δρr = 0 gives no change to the local curvature of spacetime. There is no hint of these

isocurvature perturbations in our universe.

Since we have adiabatic perturbations, we need only specify a probability distribution

for a single component, which we take to be δ ≡ δm. We take this distribution to be a

simple Gaussian

Prob
[
δ(k)

]
=

1√
2πP (k)

exp

(
− δ(k)2

2P (k)

)
(3.47)

This expression holds for each k independently. This means that there is no correlation

between perturbations with different wavelengths. This is an assumption, and one that

can be tested since it means that, at least initially, all higher point correlation functions

are determined purely in terms of the one-point and two-point functions. For example,

⟨δδδ⟩ = 0.

Note that the power spectrum P (k) arises in this distribution in the guise of the

variance. This ensures that the two-point function is indeed given by

⟨δ(k, ti) δ(k′, ti)⟩ = (2π)3 δ3D(k+ k′)P (k) (3.48)

It remains only to specify the form of the power spectrum P (k) for these initial per-

turbations. These are usually taken to have the power-law form

P (k) = Akn (3.49)

for constants A and n. The exponent n is called the spectral index.
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A power-law P ∼ kn gives rise to a real space correlation function ξ(r) ∼ 1/rn+3.

(Actually, one must work a little harder to make sense of the inverse Fourier transform

(3.45) at high k, or small r.) The choice n = 0 is what we would get if we sprinkle

points at random in space; it is sometimes referred to as white noise. (We’ll build more

intuition for this in Section 3.2.2 below.) Meanwhile, any n < −3 means that ξ(r) → ∞
as r → ∞, so the universe gets more inhomogeneous at large scales, in contradiction to

the cosmological principle. We’d like to ask: what choice of spectral index n describes

our universe?

The Harrison-Zel’dovich Spectrum

A particularly special choice for the initial power spectrum is

n = 1

This is known as the Harrison-Zel’dovich power spectrum (named after Harrison,

Zel’dovich, and Peebles and Yu). It is special for two reasons. First, and most im-

portantly, it turns out to be almost (but not quite!) the initial spectrum of density

perturbations in our universe. Second, it also has a special mathematical property.

To explain this mathematical property, we need some new definitions. We start

by some simple dimensional analysis. The original perturbation δ(x) = δρ/ρ was

dimensionless, so after a Fourier transform (3.43) the perturbation δ(k) has dimension

[length]3. The delta-function δ3D(k) also has dimension [k]−3 = [length]3 which means

that the power spectrum P (k) also has dimension [length]3. It is often useful to define

the dimensionless power spectrum

∆(k) =
4πk3 P (k)

(2π)3
(3.50)

The factors of 2 and π are conventional. Because ∆(k) is dimensionless, it makes sense

to say that, for example, ∆(k) is a constant. Unfortunately, as you can see, this does

not give rise to the Harrison-Zel’dovich spectrum.

However, we can also look at fluctuations in other quantities. In particular, rather

than talk about perturbations in the density ρ, we could instead talk about perturba-

tions in the gravitational potential: Φ(x) = Φ̄(x) + δΦ(x). The two are related by the

Poisson equation (3.32)

∇2δΦ =
4πG

c2
(1 + 3w)ρ̄a2δ ⇒ −k2δΦ(k) = 4πG

c2
(1 + 3w)ρ̄a2δ(k) (3.51)
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We can then construct the power spectrum of gravitational perturbations

⟨δΦ(k) δΦ(k′)⟩ = (2π)3 δ3D(k+ k′)PΦ(k) (3.52)

and the corresponding dimensionless gravitational power spectrum

∆Φ =
4πk3 PΦ(k)

(2π)3

The Poisson equation (3.51) tells us that there’s a simple relationship between PΦ(k)

and P (k), namely

PΦ(k) ∝ k−4P (k) (3.53)

where the proportionality factor hides the various constants arising from the Poisson

equation. We can write this as

P (k) ∝ k4PΦ(k) ∝ k∆Φ

We see that the Harrison-Zel’dovich spectrum arises if the initial gravitational pertur-

bations are independent of the wavelength, in the sense that ∆Φ = constant. Such

fluctuations are said to be scale invariant. We will see that such scale invariant pertur-

bations in the gravitational potential are a good description of our universe, and hold

an important clue to what was happening at the very earliest times. We will see what

this clue is telling us in Section 3.5. First, however, it will be useful to pause to build

some intuition for these different probability distributions.

3.2.2 Building Intuition For Gaussian Distributions

The discussion above can be bafflingly formal when you first meet it. At this stage,

it’s useful to build some intuition for what the different power spectra look like and, in

particular, why PΦ ∼ 1/k3 corresponds to a scale invariant distribution.

To visualise what’s going on, we’ll ultimately show some pictures of distributions in

d = 2 spatial dimensions. But, for now, let’s keep the spatial dimension d arbitrary.

We’ll focus on the probability distribution of some scalar field Φ(x) which, in the cos-

mological context, you should think of as the gravitational perturbation δΦ. However,

for the purposes of our discussion, Φ(x) could be any scalar field. The Fourier transform

is

Φ(k) =

∫
ddx eik·xΦ(x)
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Figure 33: The white noise distribution in d = 2 dimensions with n = 4.

and we will ask that this takes values drawn from a Gaussian probability distribution

of the form (3.52),

⟨Φ(k)Φ(k′)⟩ = (2π)d δd(k+ k′)PΦ(k)

where δd(k+k′) is the usual d-dimensional delta function. The question that we’d like

to ask is: what does such a distribution mean for Φ(x) and, in particular, how does the

choice of power spectrum PΦ(k) affect it?

In position space, the two-point correlation function is given by the Fourier transform

of the power spectrum,

⟨Φ(x)Φ(y)⟩ =
∫

ddk

(2π)d

∫
ddk′

(2π)d
e−ik·x−ik′·y⟨Φ(k)Φ(k′)⟩

=

∫
ddk

(2π)d
e−ik·(x−y)PΦ(k) (3.54)

We’ll now look at what this means for a power spectrum of the form

PΦ(k) = kn−4 (3.55)

for various choices of integer n. (The exponent here is chosen to match our previous

conventions.)

Obviously, in cosmology we’re interested in d = 3 spatial dimensions. However, below

we’ll plot distributions in d = 2 dimensions. The key physics is the same but, as we’ll
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Figure 34: The distribution in d = 2 dimensions with n = 3, corresponding to PΦ ∼ 1/k (on

the left) and n = 2, corresponding to PΦ ∼ 1/k2 (on the right). The latter is scale invariant

in two dimensions.

see, occurs for different values of n. We start with constant power spectrum, or n = 4

in the convention of (3.55). Here we have

n = 4 ⇒ ⟨Φ(x)Φ(y)⟩ ∼ δd(x− y)

This means that there’s no correlation between the value of Φ at different points. A

typical configuration of Φ(x) is shown10 in Figure 33. A distribution like this, with no

correlation between neighbouring points, is known as white noise. (There’s a perennial

confusion here: white noise for Φ and white noise for the density perturbation occur

for different values of n because the two distributions are related by a power of k4.)

Now we look at what happens as we decrease n. For n = 3, corresponding to

PΦ(k) ∼ k−1, the correlation between neighbouring points becomes stronger. A typical

distribution is shown on the left in Figure 34. We see that if the field takes a particular

value at some point x, there is now an increased likelihood that it takes similar values

at neighbouring points.

This likelihood increases further as we lower n. The distribution for n = 2 is shown

on the right in Figure 34. This distribution is rather special since it gives PΦ(k) ∼ 1/k2

10All the images of distributions were created using Garrett Goon’s publicly available mathematica

script. Operationally, this starts with the white noise of Figure 33, Fourier transforms to momentum

space, multiplies the resulting distribution by P (k), and then Fourier transforms back. A clear and

detailed account of this can be found on Garrett’s webpage https://garrettgoon.com/gaussian-fields/.
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Figure 35: The distribution in two dimensions with n = 1 corresponding to PΦ(k) = 1/k3

(on the left) and n = 0 corresponding to PΦ(k) = 1/k4 (on the right).

and, in d spatial dimensions, the distribution 1/kd is scale invariant. This means that

the correlation between any two points is independent of the distance between those

points! To see this, we simply need to rescale the correlation function (3.54) to find

⟨Φ(λx)Φ(λy)⟩ =
∫

ddk

(2π)d
e−iλk·(x−y)

kd
= ⟨Φ(x)Φ(y)⟩

where the final equality holds by redefining k′ = λk to remove λ from the exponent,

and then noting that the factors of λ cancel between the measure factor ddk and the

1/kd in the power spectrum.

We can decrease n still further, to find configurations in which the spatial correlation

increases. Examples for n = 1 and n = 0 are shown in Figure 35.

3.2.3 The Power Spectrum Today

The Gaussian distribution (3.47) holds at some initial time ti, which we take to be a

very early time, typically just after inflation. As we have seen, the subsequent evolution

of the density perturbations is described by the transfer function

δ(k, t0) = T (k) δ(k, ti)

We computed this for non-relativistic matter in (3.41); it is

T (k) ∼ constant×

{
1 k < keq

k−2 k > keq
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Planck Collaboration: The cosmological legacy of Planck

Fig. 19. The (linear theory) matter power spectrum (at z = 0) inferred from di↵erent cosmological probes. The broad agreement
of the model (black line) with such a disparate compilation of data, spanning 14 Gyr in time and three decades in scale is an
impressive testament to the explanatory power of ⇤CDM. Earlier versions of similar plots can be found in, for example, White et al.
(1994), Scott et al. (1995), Tegmark & Zaldarriaga (2002), and Tegmark et al. (2004). A comparison with those papers shows that
the evolution of the field in the last two decades has been dramatic, with ⇤CDM continuing to provide a good fit on these scales.

Palanque-Delabrouille et al. (2015); the latter was obtained by
di↵erentiating the corresponding 1D power spectrum using the
method of Chartrand (2011). The measurements of Ly↵ are at
higher redshift (2 < z < 3) than galaxy clustering and probe
smaller scales, but are more model-dependent.

Intermediate in redshift between the galaxy clustering and
Ly↵ forest data are cosmic shear measurements and redshift-
space distortions (Hamilton 1998; Weinberg et al. 2013). Here
we plot the results from the The Dark Energy Survey Y1 mea-
surements (Troxel et al. 2017) which are currently the most con-
straining cosmic shear measurements. They show good agree-
ment with the matter power spectrum inferred from ⇤CDM
constrained to Planck. These points depend upon the nonlin-
ear matter power spectrum, and we have used the method of
Tegmark & Zaldarriaga (2002) based on the fitting function of
Peacock & Dodds (1996) to deconvolve the nonlinear e↵ects,
which yields constraints sensitive to larger scales than would
it would otherwise appear. The nuisance parameters have been
fixed for the purposes of this plot. (More detail of the calcula-
tions involved in producing Fig. 19 can be found in Chabanier et
al. in prep.). Bearing in mind all of these caveats the good agree-

ment across more than three decades in wavenumber in Fig. 19
is quite remarkable.

Figure 20 shows the rate23 of growth, f�8, determined from
redshift-space distortions over the range 0 < z < 1.6, compared
to the predictions of ⇤CDM fit to Planck. Though the current
constraints from redshift surveys have limited statistical power,
the agreement is quite good over the entire redshift range. In par-
ticular, there is little evidence that the amplitude of fluctuations
in the late Universe determined from these measurements is sys-
tematically lower than predicted.

We shall discuss in Sect. 6 cross-correlations of CMB lens-
ing with other tracers and the distance scale inferred from baryon
acoustic oscillations (BAO). In general there is very good agree-
ment between the predictions of the ⇤CDM model and the mea-
surements. If there is new physics beyond base ⇤CDM, then
its signatures are very weak on large scales and at early times,
where the calculations are best understood.

23Conventionally one defines f as the logarithmic growth rate of the
density perturbation �, i.e., f = d ln �/d ln a. Multiplying this by the
normalization, �8, converts it to a growth rate per ln a.

28

Figure 36: The observed matter power spectrum.

In general, each fluid component will have a separate transfer function, so that the

adiabatic form of the initial perturbations (3.46) gets ruined as the universe evolves.

Provided that this linear analysis is valid, the distribution of fluctuations remains

Gaussian, and only the power spectrum P (k) changes. From the relation P ∼ ⟨δδ⟩, we
have

P (k; t0) = T 2(k)P (k; ti)

As the density perturbations get large, linear perturbation theory breaks down and the

evolution becomes non-linear. In this situation, perturbations with different wavevector

k start to interact and the simple Gaussian distribution no longer holds. If we want to

get a good handle on the late time universe, filled with galaxies and clusters, we must

ultimately understand this non-linear behaviour. We’ll start to explore this in Section

3.3 but, for now, we will content ourselves with the simple linear evolution.

If we start with the power-law spectrum P ∼ kn, then it subsequently evolves to

P (k) ∼

{
kn k < keq

kn−4 k > keq
(3.56)

with the turnover near ak ≈ akeq ∼ 0.01 Mpc−1. A more careful analysis shows that

the turnover at k = keq happens rather gradually.
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We can now compare these expectations with the observed matter power spectrum.

Data taken from a number of different sources, is shown11 in Figure 36. At very large

scales (small k) the data is taken from the CMB; we will discuss this further in Section

3.4. Longer wavelength structures are seen through various methods of measuring of

structure in the universe today. One finds that the data fits very well with the initial

Harrison-Zel’dovich power-law spectrum n = 1. More accurate observations reveal,

a slight deviation from the perfect Harrison-Zel’dovich spectrum. Both large scale

structure12, and CMB measurements (which are discussed briefly in the next section)

give

n ≈ 0.97

The fact that perturbations in the early universe are almost, but not quite, described by

the Harrison-Zel’dovich spectrum is an important clue for what was happening in the

very early universe. A precise scale invariant Harrison-Zel’dovich spectrum is telling

us that there must have been some symmetry in the early universe; the deviation is

telling us that there was some dynamics taking place which breaks this symmetry. We

will describe this more in Section 3.5.

3.2.4 Baryonic Acoustic Oscillations

There is a time in the early universe, bounded by redshifts

1100 ≲ z ≲ 3400

when the expansion was dominated by matter, but hydrogen had not yet formed. As

we saw in Section 2, in this epoch protons, electrons and photons were in thermal

equilibrium. In such a photon-baryon fluid, the speed of sound is determined by the

photons rather than the matter, so cs ≈ c/
√
3. This means that the effective Jeans

length for baryonic matter is much greater than the corresponding length for dark

matter.

The consequence is that dark matter and baryonic matter behave differently in this

epoch. Density perturbations in dark matter, which long ago decoupled from the

photons, start to grow as δ ∼ a as in (3.31). Meanwhile, density perturbations in

11This plot is taken from the Planck 2018 results, “Overview and the cosmological legacy of Planck,

arXiv:1807.06205.
12For example, the paper The one-dimensional Ly-alpha forest power spectrum from BOSS by N.

Palanque-Delabrouille et. al. arXiv:1306.5896 finds n = 0.97 ± 0.02. Meanwhile, the Planck collabo-

ration, in arXiv:1807.06211, quotes ns = 0.9649± 0.0042.
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Figure 37: Baryonic acoustic oscillations seen in the distribution of galaxies.

baryonic matter are supported by the pressure from the photons and, at least on sub-

horizon scale, oscillate. The resulting sound waves in the baryon-photon fluid are known

as baryonic acoustic oscillations.

There are two important consequences of this. The immediate consequence is that

dark matter has a head start in structure formation, with density perturbations starting

to grow at z ≈ 3400. By the time the baryons decouple at z = 1100, there are already

well-established gravitational wells which act as seeds, expediting the formation of the

baryonic structures that we call galaxies.

The second consequence is more subtle. At recombination, the photons stream away

from the sound waves they have helped create. But the baryons are frozen in place,

a remnant of this earlier time. The sound waves contain regions in which the baryons

are more compressed, and regions in which they are more rarified, with the wavelength

determined by the horizon at decoupling,

dH ∼ cH−1
0

(1 + z)3/2
≈ 0.1 Mpc

using cH−1
0 ≈ 4× 103 Mpc and z ≈ 1100. In the subsequent evolution of the universe,

these waves were stretched by a factor of z ≈ 1100, leaving a faint imprint on the clus-

tering of matter seen today, where there is an excess in galaxies separated by a distance
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∼ 150 Mpc. The effects of these baryonic acoustic oscillations in the distribution of

galaxies was first observed in 2005; the correlation function is shown in Figure 3713.

3.2.5 Window Functions and Mass Distribution

In this section, we’ve understood some of the mathematical properties of δ(x, t). But,

so far, we’ve not actually discussed how one might go about measuring such an object.

And, as we now explain, there is a small subtlety.

Recall that δ(x) is a density contrast. But a density is, of course, energy per unit

volume. Mathematically, there is no difficulty in defining the density at a point x. But

how do we construct δ(x) from observations? In particular, what volume do we divide

by?!

At heart, this comes back to our initial discussion of the cosmological principle. If

we observe many galaxies, each localised at some point Xi, then the universe looks far

from homogeneous. The same is true for any fluid if we look closely enough. But our

interest is in a more coarse-grained description.

To this end, we introduce a window function which we denote as W (x;R). The

purpose of this function is to provide a way to turn the observed density δ(x) into

something that is smooth, and varies on length scales ∼ R. We construct the smoothed

density contrast as

δ(x;R) =

∫
d3x′ W (x− x′;R) δ(x′) (3.57)

In Fourier space, we have

δ(k;R) =

∫
d3x eik·x δ(x)

=

∫
d3x d3x′ eik·xW (x− x′;R) δ(x′)

=

∫
d3x d3x′ eik·(x−x′)W (x− x′;R) eik·x

′
δ(x′)

=

∫
d3y d3x′ eik·yW (y;R) eik·x

′
δ(x′)

= W̃ (k;R) δ(k)

This is the statement that a convolution integral, like (3.57), in real space becomes a

product in Fourier space.
13This data is taken from D. J. Eisenstein et al. [SDSS Collaboration], “Detection of the Baryon

Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies,” Astrophys.

J. 633, 560 (2005), astro-ph/0501171.
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There is no canonical choice of window function. But there are sensible choices.

These include:

• The Spherical Top Hat. This is a sharp cut-off in real space, given by

W (x;R) =
1

V
×

{
1 |x| ≤ R

0 |x| > R
with V =

4π

3
R3

In Fourier space, this becomes

W̃ (k;R) =
3

(kR)3

[
sin kR− kR cos kR

]
(3.58)

Note that the Fourier transform W̃ (k;R) = W̃ (kR); this will be true of all our

window functions.

• The Gaussian: This provides a smooth cut-off in both position and momentum

space,

W (x;R) =
1

(2π)3/2R3
exp

(
−r2

2R2

)
which, in Fourier space, retains its Gaussian form

W̃ (kR) = exp

(
−k

2R2

2

)

• The Sharp k Filter: This is a sharp cut-off in momentum space

W̃ (kR) =

{
1 kR ≤ 1

0 kR > 1
(3.59)

It looks more complicated in real space,

W (x;R) =
1

2π2r3

[
sin(r/R)− r

R
cos(r/R)

]
In contrast to the other two, this has window function has the property that it

diverges logarithmically when integrated over all of space.

Note that, in each case, W̃ (kR = 0) = 1. Different window functions may be better

suited to different measurements or calculations. We now provide an example.
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The Mass Distribution

We now use the window function technology to address a simple question: what is the

distribution of masses contained within a sphere of radius R?

For each of the window functions, we can define the average mass M(R) inside a

sphere of radius R. You might think that we could integrate the mass density multiplied

by the window function over all space but this is problematic for the sharp k cut-off

because it diverges. Instead we note that the window function has dimension 1/Volume

and define

M̄(R) =
ρ̄

W (0;R)c2
=
γV ρ̄

c2
(3.60)

where V = 4πR3/3 is the usual volume inside a sphere and ρ̄(x) is the average energy

density in the universe. Here γ is a constant that differs for each of the three window

functions,

γ =


1 Top Hat

3
√
π/2 Gaussian

9π/2 k Filter

(You need to Taylor expand the sharp k filter to see that it is indeed finite at r = 0.)

Next, we want to look at deviations from the average. The smoothed mass distribu-

tion is related to the smoothed density contrast by

M(x;R) = M̄(R)(1 + δ(x;R))

So we can also interpret the smoothed density contrast as

δ(x;R) =
δM(x;R)

M̄(R)

where δM(x;R) =M(x;R)− M̄(R). The variance in the mass distribution is then

σ2(M) = ⟨δ2(x;R)⟩

This depends on both the choice of window function and, more importantly, on the

scale R at which we do the smoothing. Using our definition (3.57), this is

σ2(M) =

∫
d3x′ d3x′′ W (x− x′;R)W (x− x′′;R) ⟨δ(x′)δ(x′′)⟩ (3.61)
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We introduced the two-point correlation function in (3.42),

ξ(r) = ⟨δ(x+ r) δ(x)⟩ =
∫

d3k

(2π)3
e−ik·r P (k)

where, following Section 3.2, we’ve written this in terms of the power spectrum P (k).

We then have

σ2(M) =

∫
d3k

(2π)3

∫
d3x′ d3x′′W (x− x′;R)W (x− x′′;R) e−ik·(x′−x′′) P (k)

But the integrations over spatial coordinates now conspire to turn the window functions

into their Fourier transform. We’re left with

σ2(M) =

∫
d3k

(2π)3
W̃ 2(kR)P (k) =

1

2π2

∫
dk k2 W̃ 2(kR)P (k)

Note that, as we smooth on smaller scales, so kR → 0, we have W̃ (kR) → 1 and,

correspondingly, σ2(R) → σ2. This is what we would wish for a variance σ2(R) which

is smoothed on scales R.

Now recall the power spectrum from (3.56),

P (k) ∼

{
kn k < keq

kn−4 k > keq

where observations of galaxy distributions give n ≈ 0.97. At this point, it is simplest to

use the sharp k-filter window function (3.59). At the largest scales, where P (k) ∼ kn,

we then have

σ2(M) ∼
∫ 1/R

0

dk k2+n ∼ 1

R3+n
∼ 1

M (n+3)/3

where, in the final scaling, we’ve used (3.60). If we have n < −3, we would have

increasingly large mass fluctuations on large scales. This would violate our initial

assumption of the cosmological principle. Fortunately, we don’t live in such a universe.

Meanwhile, on shorter scales we have P (k) ∼ kn−4. Here we have

σ2(M) ∼
∫ 1/R

0

dk kn−2 ∼ 1

Rn−1
∼ 1

M (n−1)/3

For n = 1, this becomes logarithmic scaling.
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What Cosmologists Measure

As a final aside: observational cosmologists quote the fundamental parameter

σ2
8 :=

1

2π2

∫
dk k2 W̃ 2(kR)P (k) (3.62)

Here P (k) is the evolved linear power spectrum that we described in Section 3.2. Mean-

while, the window function W̃ (kR) is taken to be the top hat (3.58), evaluated at the

scale R = 8h−1 Mpc where galactic clusters are particularly rich. (Here h ≈ 0.7 charac-

terises the Hubble parameter, as defined in (1.16).) Until now, we’ve mostly focussed on

the k-dependence of P (k). The variable σ8 characterises its overall magnitude. Larger

values of σ8 imply more fluctuations, and so structure formation started earlier. For

what it’s worth, the current measured value is σ8 ≈ 0.8.

3.3 Nonlinear Perturbations

So far, we have relied on perturbation theory to describe the growth of density fluc-

tuations, working with the linearised equations. But this is only tenable when the

fluctuations are small. As they grow to size δρ ≈ ρ̄, or δ ≈ 1, perturbation theory

breaks down. At this point, we must solve the full coupled equations in an expanding

FRW universe. This is difficult.

There are a number of ways to proceed. At some point, we simply have to resort to

difficult and challenging numerical simulations. However, there is a rather simple toy

model which captures some of the relevant physics.

3.3.1 Spherical Collapse

For convenience, we will work with an the Einstein-de Sitter universe, filled only with

dust, so Ωm = 1. This means that the average density is equal to the critical density,

ρ̄(t) = ρcrit(t).

At some time ti, when the average density is ρ̄i, we create a density perturbation.

To do this, consider a spherical region of radius Ri, centred about some point which

we take to be the origin. Take the matter within this region and compress it into a

smaller spherical region of radius ri < Ri, with constant density

ρi = ρ̄i(1 + δi)

We will initially take δi to be small but, in contrast to previous sections, we won’t

assume that it remains small for all time. Instead, we will follow its evolution as it

grows.
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Between ri and Ri, there is then a gap with no matter. The mass contained in the

spherical region r < ri is

Mic
2 =

4π

3
R3

i ρ̄i =
4π

3
r3i ρi =

4π

3
r3i ρ̄i(1 + δi)

Furthermore, the total mass in the perturbation remains constant at Mi, even as all

the other variables, ρ̄, δ and the edge of the over-dense region r evolve in time.

We would like to understand how this density perturbation evolves. To do this, we

can revert to the simple Newtonian argument that we used in Section 1.2.3 when first

deriving the Friedmann equation. Recall that, for a spherically symmetric distribution

of masses, the gravitational potential at some point r depends only on the mass con-

tained inside r and does not depend at all on the mass outside. Consider a particle

at some radius r, either inside or outside the over-dense region. The conservation of

energy for this particle reads

1

2
ṙ2 − GM(r)

r
= E (3.63)

where M(r) is the mass contained within the radius r and is constant: by mass con-

servation M(r) doesn’t change as r evolves. Meanwhile E is also a constant (and is

identified with energy divided by the mass of a single particle).

We can now apply this formula to particles both inside and outside the over-dense

region. First we look at the particles outside, with r(ti) ≥ Ri. For these particles, the

mass M(r) is the same as it was before we perturbed the distribution, so they carry

on as before. But our starting point was an Einstein-de Sitter universe with critical

energy density, which corresponds to E = 0. Integrating (3.63) gives

r(t) =

(
9GM(r)

2

)1/3

t2/3 if r(ti) > Ri (3.64)

with M(r) constant. This is the usual expansion of a flat, matter dominated universe.

The average energy density is

ρ̄(t) =
M(r)c2

(4π/3)r3(t)
=

c2

6πG

1

t2
(3.65)

which reproduces the usual time evolution of the critical energy density (1.51).

In contrast, inside the over-dense region (i.e when r(ti) ≤ ri), we have E < 0.

This means that the over-dense region acts like a universe with positive curvature (i.e.

k = +1). The inner sphere will then behave like the closed universe we met in Section

1.3.2: it first continues to expand, before slowing and subsequently collapsing back in

on itself.
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We presented the solution for a closed universe in parametric form in (1.57) and

(1.58); you can check that the following expressions satisfy (3.63)

r(τ̃) = A (1− cos τ̃) (3.66)

t(τ̃) = B (τ̃ − sin τ̃)

where the constants are

A =
GM

2|E|
and B =

GM

(2|E|)3/2
⇒ A3 = GMB2 (3.67)

We can apply the solution (3.66) to the edge of the over-dense region, i.e. the point

with r(ti) = ri. We see that the spatial extent of the perturbation continues to grow

for some time, swept along by the expansion of the universe. At early times τ̃ ≪ 1, we

can linearise the solution to find

r(τ̃) ≈ 1

2
Aτ̃ 2 and t(τ̃) ≈ 1

6
Bτ̃ 3 ⇒ r(t) ≈ A

2

(
6

B

)2/3

t2/3 (3.68)

Thus, initially, the growth of the over-dense region has the same time dependence as

the region outside the shell (3.64).

However, the excess mass in the over-dense region causes the expansion to slow.

From (3.66), we see that the expansion halts and then starts to collapse again at time

τ̃turn = π. This is the turn-around time.

Taken at face value, the solution (3.66) then collapses back to a point at the time

τ̃col = 2π. We will discuss what really happens here in Section 3.3.2.

The Density in Spherical Collapse

From the solution (3.66), it is straightforward to figure out how the density evolves.

At a given time, the density of the over-dense region is

ρ(τ̃) =
Mic

2

(4π/3)r3
=

3Mic
2

4πA3

1

(1− cos τ̃)3

Meanwhile, the critical density evolves as (3.65)

ρ̄(τ̃) =
c2

6πG

1

t2
=

c2

6πGB2

1

(τ̃ − sin τ̃)2

The density contrast δ = δρ/ρ̄ can be computed from the ratio of the two,

(1 + δ) =
ρ

ρ̄
=

9

2

(τ̃ − sin τ̃)2

(1− cos τ̃)3
(3.69)

where we’ve used the fact that A3 = GMB2.
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Again, we can see what happens at early times. We Taylor expand each of the

terms, but this time we need to go to second order: τ̃ − sin τ ≈ 1
3!
τ̃ 3 − 1

5!
τ̃ 5 and

1− cos τ̃ ≈ 1
2
τ̃ 2 − 1

4!
τ̃ 4. This gives

1 + δlin(τ̃) ≈
(1− 1

20
τ̃ 2)2

(1− 1
12
τ̃ 2)3

≈ 1 +
3

20
τ̃ 2 (3.70)

But, from (3.68), we can write this as

δlin(t) =
3

20

(
6

B

)2/3

t2/3 (3.71)

Happily, this coincides with the t2/3 time dependence that we found in (3.31) when

discussing linear perturbation theory.

When we reach turn-around, at τ̃ = π, the density is

δ(τ̃turn) =
9π2

16
− 1 ≈ 4.55

For what follows, it will prove useful to ask the following, slightly artificial question:

what would the density contrast be at turn-around if we were to extrapolate the linear

solution? From (3.66), we have tturn = Bπ, so we can write the linear solution (3.71)

as

δlin(t) =
3

20
(6π)2/3

(
t

tturn

)2/3

⇒ δlin(tturn) =
3

20
(6π)2/3 ≈ 1.06

Meanwhile, when the perturbation has completely collapsed at τ̃col = 2π, the true

density is

δ(τ̃col) = ∞

and we’ll see how to interpret this shortly. We can again ask the artificial question:

what would the density contrast be at collapse if we were to extrapolate the linear

solution. This time, from (3.66), we have tcol = 2Bπ = 2tturn, so

δlin(tcol) =
3

20
(12π)2/3 ≈ 1.69

A simplistic interpretation of this result is as follows: if we work within linear pertur-

bation theory, and the density contrast reaches δlin ≈ 1.69, then we should interpret

this as a complete collapse.
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3.3.2 Virialisation and Dark Matter Halos

As we have seen, the simple spherical collapse model predicts that an initial over-density

will ultimately collapse down to a point with infinite density. The interpretation of such

a singularity is a black hole.

Yet our universe is not dominated by black holes. This is because the assumption

of spherical collapse is not particularly realistic, and while this is not too much of a

problem for much of the discussion, it becomes important as the end point nears. Here,

the random motion of the matter, together with interactions, means that the matter

will ultimately settle down into an equilibrium configuration with the kinetic energy

balanced by the potential energy. The end result is a dark matter halo, an extended

region of dark matter in which galaxies are embedded.

This process in which equilibrium is reached is known, rather wonderfully, as violent

relaxation. Or, less evocatively, as virialisation. This latter name reflects the fact that

by the time the system has settled down, it obeys the virial theorem, with the average

kinetic energy T related to the average potential energy V by

T̄ = −1

2
V̄

We proved this theorem in Section 1.4.3.

Let’s now apply this to our collapse model. Our original formula (3.63) is conveniently

written in terms of the kinetic energy T = 1
2
ṙ2 and the potential energy V = −GM/r.

We can start by considering the turn-around point, where the kinetic energy vanishes,

T = 0, and

Vturn = −GM
rturn

The total energy E = T + V is conserved. This means that after virialisation, when

T = −1
2
V , we must have

Tvir + Vvir =
1

2
Vvir = Vturn ⇒

{
rvir =

1
2
rturn

ρvir = 8ρturn

Our real interest is in the density contrast, 1+ δvir = ρvir/ρ̄vir. We take the virialisation

time to coincide with the collapse time, tvir = tcol = 2tturn. Since the universe scales

as a ∼ t2/3, the critical energy has diluted by a factor of 4 between turn-around and

virialisation, so ρ̄vir = ρ̄turn/4. Putting this together, we have

δvir =
ρvir
ρ̄vir

− 1 = 32
ρturn
ρ̄turn

− 1
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But from (3.69), using τturn = π, we have ρturn/ρ̄turn = 9π2/16. The upshot is that the

density contrast in a dark matter halo is expected to be

δvir = 18π2 − 1 ≈ 177

Once again referring to our linear model, we learn that whenever δlin ≳ 1.69, we may

expect to form a dark matter halo whose density ρ is roughly 200 times greater than

the background density ρ̄.

3.3.3 Why the Universe Wouldn’t be Home Without Dark Matter

We can try to put together some of the statements that we have seen so far to get a

sense for when structures form.

The right way to do this is to use the window function that we introduced in Section

3.2.5, to define spatial variations smoothed on different scales R. The spatial variations

are computed by integrating the power spectrum against the window function, as in

(3.61). We can then trace the evolution of these spatial perturbations to see how they

evolve.

Here, instead, we’re going to do a quick and dirty calculation to get some sense of the

time scale. Indeed, taken at face value, there seems to be a problem. The CMB tells

us that δT/T ∼ 10−5 at redshift z ≈ 1000. Yet we know that, in the matter dominated

era, perturbations grow linearly with scale (3.31). This would naively suggest that,

even today, we have only δ ∼ 10−2 which, given our discussion above, is not enough for

structures to form. What’s going on?

In large part, this issue arises because we need to do a better job of defining the

spatial variations. But there is also some important physics buried in this simple

observation which we mentioned briefly before, but is worth highlighting. The CMB

figure of δT/T ∼ 10−5 is telling us about the fluctuations in radiation and, through

this, fluctuations in baryonic matter at recombination. This is not sufficient for galaxies

to form. To get the universe we see today, it’s necessary to have dark matter. Between

z ≈ 3000 and z ≈ 1000, when the universe was matter dominated, perturbations in dark

matter were growing while the baryon-photon fluid was sloshing back and forth. This

can be further enhanced by the logarithmic growth (3.36) of dark matter perturbations

during the radiation dominated era.

Even accounting for dark matter, it’s not obvious, using our results above, that there

is enough time for structures to form. Fortunately, there are a bunch of scrappy factors

floating around which get us close to the right ballpark. For example, the fluctuations
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in matter density are related to those in temperature by δm ≈ 3× δT/T . (We will see

this in (3.73).) Furthermore, we should focus on the peaks of the fluctuations rather

than the average: these come in around δT/T ≈ 6 × 10−5. The Sachs-Wolfe effect

(which we will describe in Section 3.4 provides another small boost. All told, these

factors conspire to give δm ≈ 10−3 at z ≈ 1000. This tells us that we expect dark

matter halos to form at redshift z ≈ 1 which is roughly right.

However, an important take-home message is that the existence of dark matter,

which is decoupled from the photon fluid and so starts to grow as soon as the universe

is matter dominated, is crucial for structure to form on a viable time scale.

3.3.4 The Cosmological Constant Revisited

We can repeat the argument above in the presence of a cosmological constant. We

saw in (1.60) that the cosmological constant changes the equation (3.63), describing

the radial motion of a particle, to include a term that looks like an inverted harmonic

oscillator

1

2
ṙ2 − GM(r)

r
− 1

6
Λr2 = E (3.72)

Let’s now play our earlier game. We start with a universe comprising of both matter

and a cosmological constant with critical density, so that E = 0.

Now we create an over-density by squeezing the sphere at r = Ri to a smaller radius,

r = ri. Particles with r(ti) < ri have negative energy E < 0. If, as previously, this

over-dense region is to turn around and subsequently collapse then there must be a

time when ṙ = 0 and r(t) solves the cubic equation

1

6
Λr3(t)− |E|r(t) +GM = 0

with M the constant mass contained in the over-dense region. We want to know if this

equation has a solution with r(t) > 0?

To answer this, first note that the cubic has stationary points at r = ±
√
2|E|/Λ.

The cubic only has a root with r > 0 if the positive stationary point lies below the real

axis, or

1

6
Λ

(
2|E|
Λ

)3/2

− |E|
(
2|E|
Λ

)1/2

+GM < 0 ⇒ Λ1/2 <
(2|E|)3/2

3GM

We write this upper bound on Λ as

Λ1/2 <
1

3B
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where B = GM/(2|E|)3/2 was defined previously in (3.67). We need to relate this

constant B to the initial density perturbation. For this, note that if we make the

density perturbation at early times, then the cosmological constant is negligible and

the universe evolves as if it is matter dominated. In this case, we can use our earlier

result (3.71)

δ(t) =
3

20

(
6

B

)2/3

t2/3

Using this to eliminate B, and evaluating the various constants, we have an upper

bound on Λ

Λ1/2 ≲ 0.1
δ3/2

t

Note that δ3/2/t is the combination which, in linear perturbation theory, stays constant

in the matter dominated era as seen in (3.31). We see that if we want gravitational

collapse to occur and galaxies to form (which, let’s face it, would be nice) then there

is an upper bound on the cosmological constant Λ, which depends on the strength of

the initial perturbations.

What is this bound for our universe? It’s a bit tricky to get an accurate statement

using the information that we have gathered so far in this course, but we can get a

ball-park figure. We argued in Section 3.3.3 that it is sensible to take δm ∼ 10−3 at

z ≈ 1000, which is roughly the time of last scattering tlast ≈ 350, 000 years ≈ 1013 s.

This gives an upper bound on the cosmological constant of

Λ ≲ 10−37 s−2

and a corresponding bound on the vacuum energy of

ρΛ =
Λc2

8πG
=
M2

plc
4Λ

ℏc3
≈ (1047Λ) eVm−3s2 ≲ 1010 eVm−3

This is only a factor of 10 higher than the observed value of ρΛ ≈ 109 eVm−3! Although

the calculation above involved quite a lot of hand-waving and order-of-magnitude esti-

mates, the conclusion is the right one14: if the cosmological constant were much larger

than we observe today, then galaxies would not have formed. We are, it appears, living

on the edge.

14A better version of this calculation models the size of density perturbations using the σ8 variable

defined in (3.62), and takes into account the non-vanishing radiation contribution to the energy density

in the early universe. Some of this discussion can be found in the original paper byWeinberg “Anthropic

Bound on the Cosmological Constant” in Physical Review Letters vol 59 (1987).
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3.4 The Cosmic Microwave Background

The cosmic microwave background (CMB) provides the snapshot of the early universe.

In section 2.2, we described the how the CMB is an almost perfect blackbody. At

temperature T ≈ 2.73 K. However, there are small fluctuations in the CMB, with

magnitude

δT

T
≈ 10−5

We already mentioned this at the very start of these lectures as evidence that the early

universe was homogeneous and isotropic. As we now explain, these temperature fluctu-

ations contain a near-perfect imprint of the anisotropies at the time of recombination.

Moreover, we can trace the fate of these perturbations back in time to get another

handle on the primordial power spectrum.

In Section 3.2.1, we stated that the perturbations in the early universe were adiabatic,

meaning that perturbations in all fluids are proportional. In particular, the density

perturbations in matter and radiation are related by

δr =
4

3
δm

It is more convenient to express this in terms of the temperature of the CMB. From

our discussion of blackbody radiation, we know that ρr ∼ T 4, so

δr =
δρr
ρr

= 4
δT

T
⇒ δT

T
=

1

3
δm (3.73)

We might, therefore expect that temperature fluctuations of the CMB contain a direct

imprint of the matter fluctuations in the early universe. In fact, there is a subtlety

which means that this is not quite true.

3.4.1 Gravitational Red-Shift

The new physics is gravitational redshift. This is an effect that arises from general

relativity. Here we just give a heuristic sketch of the basic idea.

As a warm-up, first consider throwing a particle from the Earth upwards into space.

We know that it must lose kinetic energy to escape the Earth’s gravitational potential

Φ = −GM/R.
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What happens if we do the same for light? Clearly light can’t slow down, but it

does lose energy. This manifests itself in a reduction in the frequency of the light, or a

stretching of the wavelength. In other words, the light is redshifted. In the Newtonian

limit, this redshift is

δλ

λ
= −Φ

c2
(3.74)

Now consider a spatially varying gravitational potential δΦ(x) of the kind that perme-

ates the early universe. To reach us, the photons from any point in space x will have

to climb out of the gravitational potential and will be redshifted. This, in turn, shifts

the temperature of the CMB. A straightforward generalisation of (3.74) suggests

δT (n̂)

T
=
δΦ(xlast)

c2

where xlast = |xlast|n̂ sits on the surface of last scattering, where the CMB was formed.

In fact, this too misses an important piece of physics. The slight increase in δΦ results

in a slight change in the local expansion rate of the universe which, since the CMB forms

in the matter dominated era, scales as a(t) ∼ t2/3. This is known as the Sachs-Wolfe

effect. It turns out that this gives an extra contribution of −2
3
Φ/c2. This means that

the temperature fluctuation in the CMB is related to the gravitational perturbation by

δT (n̂)

T
=
δΦ(xlast)

3c2
(3.75)

We learn that there are two, competing contributions to the temperature fluctuations in

the CMB: the initial adiabatic perturbation (3.73) and the gravitational perturbation

leading to the redshift (3.75). The question is: which is bigger?

The two contributions are not independent. They are related by the Poisson equation

(3.51),

δΦ(k) = −4πG

c2k2
ρ̄a2δm(k) (3.76)

We see that the redshift contribution dominates for large wavelengths (k small) while

the adiabatic contribution dominates for small wavelengths (k large). The cross-over

happens at the critical value of k

k2crit ∼
4πG

c4
ρ̄a2 ⇒ kcrit ∼

aH

c

But we recognise this as the size of the co-moving horizon. This means that modes

that are were outside the horizon at last scattering will be dominated by the redshift

and the Sachs-Wolfe effect; those which were inside the horizon at last scattering will

exhibit the matter power spectrum.

– 173 –



Figure 38: The CMB in its natural setting.

3.4.2 The CMB Power Spectrum

We don’t have a three-dimensional map of the microwave background. Instead, the

famous picture of the CMB lives on a sphere which surrounds us, as shown in the

figure. This is clear in (3.75), where the temperature fluctuations depends only on the

direction n̂.

We introduce spherical polar coordinates, and label the direction n̂ by the usual an-

gles θ and ϕ. We then expand the temperature fluctuation in spherical polar coordinates

as

δT (n̂)

T
=

∞∑
l=0

l∑
m=−l

al,m Yl,m(θ, ϕ)

Here Yl,m(θ, ϕ) are spherical harmonics, given by

Yl,m(θ, ϕ) = Nl,me
imϕPm

l (cos θ)

with Pm
l (cos θ) the associated Legendre polynomial and Nl,m an appropriate normali-

sation. Shortly, we will need Nl,0 = (2l + 1)/4π.

The measured coefficients al,m the temperature anisotropies at different angular sep-

aration. Small l corresponds to large angles on the sky. We will now relate these to

the primordial power spectrum P (k).

As in the previous section, we are interested in correlations in the temperature fluc-

tuations. The temperature two-point correlation function boils down to understanding

the spatial average of

⟨al,m a⋆l′,m′⟩ = Cl δl,l′δm,m′
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where statistical rotational invariance ensures that the average depends only on the

angular momentum label l, and not on m. The coefficients Cl are called multipole

moments.

The temperature correlation function can be written in terms of Cl. We pick spherical

polar coordinates such that n̂ · n̂′ = cos θ. Using θ and ϕ. Using P 0
l (1) = 1 and

Pm
l (1) = 0 for m ̸= 0, we then have

⟨δT (n̂)δT (n̂′)⟩
T 2

=
∑
l,m

∑
l′m′

⟨al,mal′m′⟩ Yl,0(θ, ϕ)

=
∑
l

2l + 1

4π
Cl Pl(cos θ)

We would like to relate these coefficients Cl to the power spectrum. We will focus

on large scales, with small l, where, as discussed above, we expect the temperature

fluctuations to be dominated by the Sachs-Wolfe effect (3.75). In practice, this holds

for l ≲ 50.

It is a straightforward, if somewhat fiddly, exercise to write Cl in terms of the grav-

itational power spectrum (3.52).

⟨δΦ(k) δΦ(k′)⟩ = (2π)3 δ3D(k+ k′)PΦ(k)

We do not give all the details here. (See, for example, the book by Weinberg.) Af-

ter decomposing the Fourier mode δΦ(k) in spherical harmonics, one finds that the

coefficients of the two-point function can be written as

Cl =
16πT 2

9

∫
dk k2PΦ(k)j

2
l (kr)

with jl(kr) a spherical Bessel function. The primordial gravitational power spectrum

takes the form (3.53)

PΦ(k) ∼ kn−4

which differs by a power of k−4 compared to the matter power spectrum, a fact which

follows from the relation (3.76). For the Harrison-Zel’dovich spectrum, n = 1, one then

finds

Cl ∼
1

l(l + 1)

It remains to compare this to the observed CMB power spectrum.
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Figure 39: The CMB power spectrum measured by Planck. The combination l(l + 1)Cl is

plotted on the vertical axis.

3.4.3 A Very Brief Introduction to CMB Physics

There has been an enormous effort, over many decades, to accurately measure the

fluctuation coefficients Cl. The results from the Planck satellite are shown in Figure

39, with the combination l(l + 1)Cl plotted on the vertical axis; the red dots are data,

shown with error bars, while the green line is the best theoretical fit.

The power spectrum exhibits a distinctive pattern of peaks and troughs. These

are again a remnant of the acoustic oscillations in the early universe. A quantitative

understanding of how these arise is somewhat beyond what this course. (You can learn

more next year in Part III.) Here we give just a taster:

• At low l, the temperature fluctuations have the advertised scale δT/T ≈ 10−5.

Here the plot is roughly constant. This confirms that the CMB is close to the

Harrison-Zel’dovich spectrum, with Cl ∼ 1/l(l + 1), as expected. In fact, a

detailed analysis gives

n ≈ 0.97

in good agreement with the measurements from galaxy distributions.

• The first peak sits at l ≈ 200 and sets the characteristic angular scales of fluctu-

ations that one can see by eye in the CMB maps. At this point, the fluctuations

have risen to δT/T ≈ 6× 10−5.
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This peak arises from an acoustic wave that had time to undergo just a single

compression before decoupling. This is the same physics that led to the baryon

acoustic peak shown in Figure 37. The angular size in the sky is determined both

by the horizon at decoupling (usually referred to as the sound horizon) and the

subsequent expansion history of the universe. In particular, its angular value is

very sensitive to the curvature of the universe. The location of this first peak is

our best evidence that the universe is very close to flat (or k = 0 in the language

of Section 1.)

Given the observed fact that the matter and radiation in the universe sits well

below the critical value, the position of the first peak also provides corroborating

evidence for dark energy.

• The second and third peaks contain information about the amount of baryonic

and dark matter in the early universe. This is because the amplitudes of successive

oscillations depends on both the baryon-to-photon ratio in the plasma, and the

gravitational potentials created by dark matter.

• The microwave background doesn’t just contain information from the tempera-

ture anisotropies. One can also extract information from the polarisation of the

photons. These are two kinds of polarisation pattern, known as E-modes and

B-modes.

The E-mode polarisation has been measured and is found to be correlated with the

temperature anisotropies. Interestingly, these correlations (really anti-correlations)

extend down below l < 200. This is important because modes of this size were

outside the horizon at the time the CMB was formed. Such correlations could

only arise if there was some causal interaction between the modes, pointing clearly

to the need for a period of inflation in the very early universe.

B-modes in the CMB have been found but, somewhat disappointingly, arise be-

cause of contamination due to interstellar dust. A discovery of primordial B-

modes would be extremely exciting since they are thought to be generated by

gravitational waves, created by quantum effects at play during in inflation. The

observation of primordial B-modes imprinted in the CMB would provide our first

experimental window into quantum gravity!

• For very low l ≲ 10, there are both large error bars and poor agreement with the

theoretical expectations. The large error bars arise because we only have one sky

to observe and only a handful of independent observables, with −l ≤ m ≤ l. This
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issue is known as cosmic variance. It makes it difficult to know if the disagreement

with theory is telling us something deep, or is just random chance.

3.5 Inflation Revisited

“With the new cosmology the universe must have started off in some very

simple way. What, then, becomes of the initial conditions required by

dynamical theory? Plainly there cannot be any, or they must be trivial. We

are left in a situation which would be untenable with the old mechanics. If

the universe were simply the motion which follow from a given scheme of

equations of motion with trivial initial conditions, it could not contain the

complexity we observe. Quantum mechanics provides an escape from the

difficulty. It enables us to ascribe the complexity to the quantum jumps,

lying outside the scheme of equations of motion.”

A very prescient Paul Dirac, in 1939

Until now, we have only focussed only on the evolution of some initial density per-

turbations that were mysteriously laid down in the very early universe. The obvious

question is: where did these perturbations come from in the first place?

There is an astonishing answer to this question. The density perturbations are quan-

tum fluctuations from the very first moment after the Big Bang, fluctuations which

were caught in the act and subsequently stretched to cosmological scales by the rapid

expansion of the universe during inflation, where they laid the seeds for the formation

of galaxies and other structures that we see around us.

This idea that the origin of the largest objects in the universe can be traced back

to quantum fluctuations taking place at the very earliest times is nothing short of

awe-inspiring. Yet, as we will see, the process of inflation generates perturbations on

a super-horizon scale. These perturbations are adiabatic, Gaussian and with a power

spectrum P (k) ∼ kn with n ≈ 1. In other words, the perturbations are exactly of the

form required to describe our universe.

3.5.1 Superhorizon Perturbations

Before we get to the nitty gritty, let’s first understand why inflation provides a very

natural environment in which to create perturbations which, subsequently, have wave-

length greater than the apparent horizon. During inflation, the universe undergoes an

accelerated expansion (1.90) which, for simplicity, we approximate as an exponential

de Sitter phase,

a(t) = a(0) exp (Hinft)
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Figure 40: The density perturbations are created during inflation and exit the co-moving

horizon, shown in red. Then they wait. Later, during the hot Big Bang phase of radiation

or matter domination, the co-moving horizon expands and the density perturbations re-enter

where we see them today.

The key observation is that, in an accelerating phase of this type, the co-moving horizon

is shrinking,

χH =
c

aHinf

(3.77)

Focussing on the co-moving horizon (rather than the physical horizon) gives us a

view of inflation in which we zoom into some small patch of space, which subsequently

becomes our entire universe.

Any perturbation created during inflation with co-moving wavevector k will rapidly

move outside the horizon, where they linger until the expansion of the universe slows

to a more sedentary pace, after which the co-moving horizon expands, as in (3.38), and

the perturbations created during inflation can now re-enter. This is shown in Figure

40. In this way, inflation can naturally generate superhorizon perturbations that seem

to be needed to explain the universe we see around us. This picture also makes it

clear that the longer wavelength perturbations must have been created earlier in the

universe’s past.

3.5.2 Classical Inflationary Perturbations

It remains for us to explain how these density perturbations arose in the first place. A

full discussion requires both quantum field theory and general relativity. Here we give

the essence of the idea.
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Recall that inflation requires the introduction of a new degree of freedom, the inflaton

scalar field with action (1.82),

S =

∫
d3x dt a3(t)

[
1

2
ϕ̇2 − c2

2a2(t)
∇ϕ · ∇ϕ− V (ϕ)

]
The scalar field ϕ rolls from some initial starting point, high up on the potential, and

in doing so, drives inflation. In this process, ϕ also undergoes quantum fluctuations;

these will be the seeds for density perturbations.

We start by looking at a stripped down version of this story. We will take the

potential V (ϕ) = constant, which is the same thing as a cosmological constant. This

ensures that the universe sits in a de Sitter phase with a(t) ∼ eHinf t. We then look at

the dynamics of ϕ in this background. The classical equation of motion is

d2ϕ

dt2
+ 3Hinf

dϕ

dt
− c2

a2
∇2ϕ = 0 (3.78)

Ultimately, we want to treat ϕ(x, t) as a quantum variable. To do this, we will massage

the equation of motion in various ways until it looks like something more familiar.

First, we decompose the spatial variation of ϕ(x, t) in Fourier modes,

ϕ(x, t) =

∫
d3k

(2π)3
e−ik·x ϕk(t)

The reality of ϕ(x, t) means that we must have ϕ⋆
k = ϕ−k. The equation of motion

(3.78) then becomes decoupled equations for each ϕk,

d2ϕk

dt2
+ 3Hinf

dϕk

dt
+
c2k2

a2
ϕk = 0 (3.79)

This equation takes the form of a damped harmonic oscillator, with some time de-

pendence hiding in the 1/a2 part of the final term. A time dependent frequency is

something we can deal with in quantum mechanics, but friction is not. For this rea-

son, we want to make a further change of variables that gets rid of the damping term

proportional to ϕ̇k. To achieve this, we work in conformal time (1.26)

τ =

∫ t dt′

a(t′)
= − 1

aHinf

Note that, for a de Sitter universe, conformal time sits in the range τ ∈ (−∞, 0) so

τ → 0− is the far future. We then have

d2ϕ

dt2
=

1

a2
d2ϕ

dτ 2
− H

a

dϕ

dτ
and

dϕ

dt
=

1

a

dϕ

dτ
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and the equation of motion (3.79) becomes an equation for ϕk(τ),

d2ϕk

dτ 2
− 2

τ

dϕk

dτ
+ c2k2ϕk = 0

This doesn’t seem to have done much good, simply changing the coefficient of the

damping term. But things start looking rosier if we define

ϕ̃k = − 1

Hinfτ
ϕk (3.80)

Using ȧ = Hinfa, the equation becomes

d2ϕ̃k

dτ 2
+

(
c2k2 − 2

τ 2

)
ϕ̃k = 0 (3.81)

This is the final form that we want. Each ϕ̃k obeys the equation of a harmonic oscillator,

with a frequency

ω2
k = c2k2 − 2

τ 2
(3.82)

that depends on both k and on conformal time τ . In the far past, τ → −∞, the

time-dependent 1/τ 2 term is negligible. However, as we move forward in time, ω2 first

goes to zero and then becomes negative, corresponding to a harmonic oscillator with

an upside-down potential. The co-moving horizon (3.77) is χH = c/aHinf = −cτ . This
means that, for a given perturbation k, the wavelength λ = 2π/k exits the horizon at

more or less the time that the frequency of the associated harmonic oscillator is ω2
k = 0.

It is not too difficult to write down a solution to the time-dependent harmonic os-

cillator (3.81). It is a second order differential equation, so we expect two linearly

independent solutions. You can check that the general form is given by

ϕ̃k = αe−ickτ

(
1− i

ckτ

)
+ βe+ickτ

(
1 +

i

ckτ

)
(3.83)

where α and β are integration constants. In the far past, ckτ → −∞, these modes

oscillate just like a normal harmonic oscillator. But as inflation proceeds, and ckτ →
0−, the oscillations stop. Expanding out the e±ickτ in this limit, we find that the modes

grow as ϕ̃k ≈ (β − α)/ckτ . If we then translate back to the original field ϕk using

(3.80), we find that the Fourier modes obey

ϕk = −αHinf

ck
e−ickτ (ckτ − i)− βHinf

ck
e+ickτ (ckτ + i)

These modes now oscillate wildly at the beginning of inflation, ckτ → −∞, but settle

down to become constant after the mode has exited the horizon and ckτ → 0−.
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3.5.3 The Quantum Harmonic Oscillator

Our ultimate goal is to understand the quantum fluctuations of the inflaton field ϕ(x, t).

At first glance, this sounds like a daunting problem. But the analysis above shows the

way forward, because each (rescaled) Fourier mode ϕ̃k obeys the equation for a simple

harmonic oscillator (3.81). And we know how to quantise the harmonic oscillator. The

only subtlety is that the frequency ωk is time dependent. But this too is a problem

that we can address purely within quantum mechanics.

A Review of the Harmonic Oscillator

Let’s first review the solution to the familiar harmonic oscillator in which the frequency

ω does not vary with time. The Hamiltonian is

Ĥ =
1

2
p̂2 +

1

2
ω2q̂2

where we’ve set the usual massm = 1. The position and momentum obey the canonical

commutation relation

[q̂, p̂] = iℏ

The slick way to solve this is to introduce annihilation and creation operators. These

are defined by

â =

√
ω

2ℏ
q̂ + i

√
1

2ℏω
p̂ and â† =

√
ω

2ℏ
q̂ − i

√
1

2ℏω
p̂

and the inverse is

q̂ =

√
ℏ
2ω

(â+ â†) and p̂ = −i
√

ℏω
2
(â− â†) (3.84)

You can check that these obey the commutation relations

[â, â†] = 1

When written in terms of annihilation and creation operators, the Hamiltonian takes

the simple form

Ĥ =
1

2
ℏω(ââ† + â†â) = ℏω

(
â†â+

1

2

)
Now it is straightforward to build the energy eigenstates of the system. The ground

state is written as |0⟩ and obeys

â|0⟩ = 0

– 182 –



Excited states then constructed by acting with â†, giving

|n⟩ = 1√
n!
â†n|0⟩ ⇒ Ĥ|n⟩ = ℏω

(
n+

1

2

)
|n⟩

In what follows, we will be particularly interested in the variance in the ground state

|0⟩. First, recall that the expectation value of q̂ vanishes in the ground state (or, indeed,

in any energy eigenstate),

⟨0|q̂|0⟩ =
√

ℏ
2ω

⟨0|(â+ â†)|0⟩ = 0

where we use the property of the ground state â|0⟩ = 0 or, equivalently, ⟨0|â† = 0.

However, the variance is non-vanishing, and given by

⟨0|q̂2|0⟩ = ℏ
2ω

⟨0|(â+ â†)2|0⟩ = ℏ
2ω

⟨0|â†â|0⟩ = ℏ
2ω

We write this as

⟨q̂2⟩ = ℏ
2ω

(3.85)

These will be the fluctuations which we will apply to the inflaton field. But first we

need to see the effects of a time dependent frequency.

A Review of the Heisenberg Picture

There are two ways to think about time evolution in quantum mechanics. In the

first, known as the Schrödinger picture, the states evolve in time while the operators

are fixed. In the second, known as the Heisenberg picture, the states are fixed while

the operators evolve in time. Both give the same answers for any physical observable

(i.e. expectation functions) but one approach may be more convenient for any given

problem. It will turn out that the Heisenberg picture is best suited for cosmological

purposes, so we pause to review it here.

The Schrödinger picture is perhaps the most intuitive. Here the evolution of states

is determined by the time-dependent Schrödinger equation

iℏ
d|ψ⟩
dt

= Ĥ|ψ⟩

Alternatively, we can introduce a unitary evolution operator U(t) which dictates how

the states evolve,

|ψ(t)⟩ = Û(t)|ψ(0)⟩

– 183 –



The Schrödinger equation tells us that this operator must obey

iℏ
dÛ

dt
= ĤÛ (3.86)

If Ĥ is time-independent then this is solved by Û = exp
(
−iĤt/ℏ

)
. However, if Ĥ is

time-dependent (as it will be for us) we must be more careful.

In the Heisenberg picture, this time dependence is moved onto the operators. We

consider the state to be fixed, while operators evolve as

Ô(t) = U †(t) Ô Û(t)

From (3.86), we find that these time-dependent operators obey

dÔ
dt

=
i

ℏ
[Ĥ, Ô] (3.87)

We can look at how this works for the harmonic oscillator with a fixed frequency ω. The

creation and annihilation operators â and â† have a particularly simple time evolution,

[Ĥ, â] = −ℏωâ ⇒ â(t) = e−iω(t−t0) â(t0)

[Ĥ, â†] = +ℏωâ† ⇒ â(t) = e+iω(t−t0) â†(t0)

We can then simply substitute this into (3.84) to see how q̂(t) and p̂(t) evolve in time.

We have

q̂(t) =

√
ℏ
2ω

(
e−iω(t−t0) â(t0) + e+iω(t−t−0) â†(t0)

)
p̂(t) = −i

√
ℏω
2

(
e−iω(t−t0) â(t0)− e+iω(t−t−0) â†(t0)

)
(3.88)

Note that these obey the operator equation of motion (3.87), with

dq̂

dt
=
i

ℏ
[Ĥ, q̂] = p̂ and

dp̂

dt
=
i

ℏ
[Ĥ, p̂] = −ω2q̂

The Time-Dependent Harmonic Oscillator

For our cosmological application, we need to understand the physics of a harmonic

oscillator with a time-dependent frequency,

Ĥ(t) =
1

2
p̂2 +

1

2
ω2(t)q̂2

Our real interest is in the specific time-dependence (3.82) but, for now, we will keep

ω(t) arbitrary.
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A time-dependent Hamiltonian opens up different kinds of questions. We could, for

example, pick some fixed moment in time t0 at which we diagonalise the Hamiltonian.

We do this by introducing the usual annihilation and creation operators, and place the

system in the instantaneous ground state

â(t0)|0⟩ = 0

Now the system subsequently evolves. But, with a time-dependent Hamiltonian it will

no longer sit in the ground state (in the Schrödinger picture). This is related to the

fact that energy is no longer conserved when the Hamiltonian is time-dependent. We

want to understand how the variance (3.85) evolves in this situation.

We will work in the Heisenberg picture. In analogy with (3.88), we expand the

position operator in terms of â(t0) and â
†(t0), with some time-dependent coefficients

q̂(t) = v(t) â(t0) + v⋆(t) â†(t0) (3.89)

The momentum is then

p̂(t) =
dq̂

dt
= v̇(t) â(t0) + v̇⋆(t) â†(t0)

Taking a second time derivative, we have

dp̂

dt
= v̈(t) â(t0) + v̈⋆(t) â†(t0) = −ω2(t)q̂(t)

where the second equality comes from the operator equation of motion (3.87). Com-

paring coefficients of â(t0) and â†(t0), we see that the coefficient v(t) must obey the

original equation of motion

v̈ + ω2(t)v = 0 (3.90)

Meanwhile, we can normalise v(t) by insisting that [q̂(t), p̂(t)] = iℏ and [â(t0), â
†(t0)] =

1. These are compatible provided

vv̇⋆ − v⋆v̇ = iℏ (3.91)

When ω is constant, this agrees with what we saw before: we had v =
√

ℏ/2ωe−iω(t−t0),

which is a solution to the harmonic oscillator (3.90), with the normalisation fixed by

(3.91).
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Finally, we can answer the main question: if we place the time-dependent harmonic

oscillator in the ground state |0⟩ at some time t0, how does the variance of q̂(t) subse-

quently evolve? Using (3.89), we have

⟨q̂2(t)⟩ = |v(t)|2 (3.92)

This is the result we need to evaluate the size of quantum fluctuations during inflation.

3.5.4 Quantum Inflationary Perturbations

We can now import the quantum mechanical story above directly to the inflaton field.

Recall that each (rescaled) Fourier mode of the inflaton acts like a harmonic oscillator

with a time-dependent frequency,

d2ϕ̃k

dτ 2
+ ω2

k(τ)ϕ̃k = 0 with ω2
k(τ) = c2k2 − 2

τ 2

We treat each Fourier component as an independent quantum operator which, piling

hat on hat, we write as ˆ̃ϕk. This is analogous to q̂ in the harmonic oscillator that we

described above. Following (3.89), we write

ˆ̃ϕk(τ) = vk(τ) âk(τ0) + v⋆k(τ) âk
†(τ0) (3.93)

where, as we’ve seen, v(τ) must obey the original harmonic oscillator equation (3.90),

together with the normalisation condition (3.91) (with v̇ = dv/dτ in these equations).

First, we must decide when we’re going to place the system in its ground state. The

only sensible option is to do this right at the beginning of inflation, with τ0 → −∞. At

this point, the frequency is simply ω2
k = c2k2 and we get the normal harmonic oscillator.

In the context of inflation, this choice is referred to as the Bunch-Davies vacuum. As

we will see, this simple choice for the initial conditions at the very beginning of the

universe is the one that ultimately agrees with what we see around us today.

Next, we must determine the coefficient vk(τ). We know that the general solution to

(3.90) is (3.83)

vk(τ) = αe−ickτ

(
1− i

ckτ

)
+ βe+ickτ

(
1 +

i

ckτ

)
We need only to fix the integration constants α and β. We set β = 0 to ensure that,

as τ → −∞, the operator expansion (3.93) agrees with that of the normal harmonic

oscillator. The normalisation of α is then fixed by (3.91)

vkv̇
⋆
k − v⋆kv̇k = 2α2ick = iℏ ⇒ α2 =

ℏ
2ck
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Now we’re home and dry. The time-dependent coefficient in the expansion of the

Fourier mode ˆ̃ϕk is

vk(τ) =

√
ℏ
2ck

e−ickτ

(
1− i

ckτ

)

So the quantum fluctuations in the field ϕ̃k can be read off from (3.92),

⟨ ˆ̃ϕk
ˆ̃ϕ†
k⟩ =

ℏ
2ck

(
1 +

1

c2k2τ 2

)

where we have to take ϕ̂ϕ̂† because, in contrast to q̂, the Fourier mode ϕ̂k is complex.

Our interest is in the original field ϕk = −Hinfτ ϕ̃k. (This rescaling was introduced back

in (3.80).) The fluctuations of this field are given by

⟨ϕ̂kϕ̂
†
k⟩ =

ℏH2
inf

2ck

(
1

c2k2
+ τ 2

)
At early times, the fluctuations are large. However, at late times, ckτ → 0−, the

fluctuations become constant in time. The cross-over happens at ckτ ≈ 1, which

is when the fluctuations exit the horizon. At later times, the k dependence of the

fluctuations is given by

lim
ckτ→0−

⟨ϕ̂kϕ̂
†
k⟩ =

ℏH2
inf

2c3k3
(3.94)

This is the famous inflationary power spectrum. It takes the Harrison-Zel’dovich “scale

invariant” form, a statement which, as we explained in Section 3.2.1, is manifest only

when written in terms of the power spectrum introduced in (3.50),

∆ϕ(k) =
4πk3 ⟨ϕ̂kϕ̂

†
k⟩

(2π)3
=

ℏH2
inf

4π2c3

This is indeed independent of k. These fluctuations remain frozen outside the horizon,

until they subsequently re-enter during the radiation dominated era or, for very long

wavelength, matter dominated era.

The fact that the power spectrum ∆(k) does not depend on the wavelength can be

traced to an underlying, scale invariance symmetry of de Sitter space.

– 187 –



A Rolling Inflation

The calculation above holds for a scalar field ϕ with V (ϕ) = constant. This, of course,

is not the realistic situation for inflation, but it’s a good approximation when the scalar

field rolls down a rather flat potential. In this case, the shorter wavelength modes (larger

k) which exit the horizon later will have a slightly smaller H and, correspondingly,

slightly smaller fluctuations. This means that the power spectrum is almost, but not

quite, scale invariant.

We will not present this longer calculation here; we quote only the answer which we

write as

∆ϕ(k) ∼ knS−1

Here scalar spectral index ns is close to 1. It turns out that, to leading order,

nS = 1− 2ϵ (3.95)

where ϵ is a dimensionless number known as a slow-roll parameter. It is one of two

such parameters which are commonly used to characterise the shape of the inflaton

potential,

ϵ =
M2

pl

2

(
V ′

V

)2

and η =M2
pl

V ′′

V

with the Planck mass given by M2
pl = ℏc/8πG.

The Gravitational Power Spectrum

To compare to observations, we must turn the fluctuations of the inflaton field ϕ into

fluctuations in the energy density or, as explained in (3.2.1), the gravitational potential

Φ. As with many details, a full treatment needs a relativistic analysis. It turns out

that the inflationary perturbations imprint themselves directly as fluctuations of the

gravitational potential,

∆ϕ(k) 7→ ∆Φ(k)

But this is exactly what we need! The almost scale-invariant power spectrum of the

inflaton gives rise to the almost scale-invariant power spectrum needed to explain the

structure of galaxies in our universe. Moreover, the observed spectral index n ≈ 0.97

can be used to infer something about the dynamics of the inflaton in the early universe.
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There are many remarkable things about the inflationary origin of density pertur-

bations. Here is another: the fluctuations that we computed in (3.94) are quantum.

They measure the spread in the wavefunction. Yet these must turn into classical prob-

abilities which, subsequently, correspond to the random distribution of galaxies in the

universe. This is, at heart, no different from the quantum measurement problem in any

other setting, now writ large across the sky. But one may worry that, in the absence

of any observers, the problem is more acute. Closer analysis suggests that the modes

decohere, and evolve from quantum to classical, as they exit the horizon.

3.5.5 Things We Haven’t (Yet?) Seen

There is much more to tell about inflation, both things that work and things that don’t.

Here, as a taster, is a brief description of two putative features of inflation which might,

with some luck, be detected in the future.

Gravitational Waves

It’s not just the inflaton that suffers quantum fluctuations during inflation. There are

also quantum fluctuations of spacetime itself.

It’s a common misconception that we don’t understand quantum gravity. There

is, of course, some truth to this: there are lots of things that we don’t understand

about quantum gravity, such as what happens inside the singularity of a black hole.

But provided that the curvature of spacetime is not too large, we can do trustworthy

quantum gravity calculations, and inflation provides just such an opportunity.

These quantum gravity fluctuations leave an imprint on spacetime and, subsequently,

on the CMB. This can be traced back to the fact that the graviton is a particle with

spin 2. Correspondingly, these fluctuations have a distinctive swirly pattern, known as

B-mode polarisation.

We have not yet observed such B-modes in the CMB, although it’s not for the want

of trying. Finding them would be a very big deal: not only would it be our first

observational evidence of quantum gravity, but they would tell us directly the scale

at which inflation occurs, meaning that we can determine Hinf , or equivalently, the

magnitude of the potential V (ϕ). (In contrast, the density perturbations that we have

observed depend on both V (ϕ) and the slow-roll parameter ϵ as we can see in (3.95).)

The power spectrum of tensor modes is denoted ∆T (with T for tensor). It also pre-

dicted to take (almost) Harrison-Zel’dovich form, but with a slightly different spectral

index from the scalar modes. Cosmologists place limits on the strength of these tensor
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perturbations relative to the scalar modes ∆ϕ formed by the inflaton. The ratio is

defined to be

r =
∆T

∆ϕ

Currently, the lack of observation only allows us to place an upper limit of r ≤ 0.07,

although it’s possible to relax this if we allow some flexibility with other parameters.

Roughly speaking, if inflation is driven by physics close to the Planck scale or GUT

scale then we have a hope of detecting r ̸= 0. If, however, the scale of inflation is closer

to the TeV scale (the current limit of our knowledge in particle physics) then it seems

unlikely we will find tensor modes in our lifetime.

Non-Gaussianity

We saw in Section 3.2.1 that the observed spectrum of density perturbations is well

described by a Gaussian probability distribution. This too is a success of inflation: one

can show that in slow-roll inflation three point functions ⟨ϕ̂k1ϕ̂k2ϕ̂k3⟩ are suppressed by

the slow-roll parameters ϵ2 and η2.

Nonetheless, this hasn’t stopped people hoping. The discovery of non-Gaussian pri-

mordial density fluctuations would provide us with a wealth of precious information

about the detailed dynamics of the inflation in the early universe. While the two-point

function tells us just two numbers — nS and the overall scale of the power spectrum

— the three-point correlator ⟨ϕ̂k1ϕ̂k2ϕ̂k3⟩ ∼ fNL δ
3
D(k1 + k2 + k3) is a function of every

triangle you can draw on the (Fourier transformed) sky. For this reason, there has been

a big push to try to detect a primordial non-Gaussian signal in the CMB or large scale

structure. Alas, so far, to no avail. Meanwhile, ever optimistic theorists have proposed

more creative versions of inflation which give rise to non-Gaussianity at a detectable

level15. Sadly, there is little evidence that these theorists are going to be validated any

time soon.

15See, for example, M. Alishahiha, E. Silverstein and D. Tong, “DBI in the sky”, Phys. Rev. D 70,

123505 (2004) [hep-th/0404084].
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