
Preprint typeset in JHEP style - HYPER VERSION Michaelmas Term, 2019

Cosmology
University of Cambridge Part II Mathematical Tripos

David Tong

Department of Applied Mathematics and Theoretical Physics,

Centre for Mathematical Sciences,

Wilberforce Road,

Cambridge, CB3 OBA, UK

http://www.damtp.cam.ac.uk/user/tong/cosmo.html

d.tong@damtp.cam.ac.uk

– 1 –



Recommended Books and Resources

Cosmology textbooks sit in one of two camps. The introductory books do a good job

of describing the expanding universe, but tend to be less detailed on the hot Big Bang

and structure formation. Meanwhile, advanced books which cover these topics assume

prior exposure to both general relativity and statistical mechanics. This course sits

somewhere between the two.

The first two books below cover the material at an elementary level; the last three

are more advanced.

• Barbara Ryden, Introduction to Cosmology

A clearly written book that presents an excellent, gentle introduction to the expanding

universe, with subsequent chapters on thermal history and structure formation .

• Andrew Liddle An Introduction to Modern Cosmology

Another gentle introduction, and one that is especially good when describing expanding

spacetimes. However, it becomes more descriptive, and less quantitative, as the subject

progresses.

• Scott Dodelson Modern Cosmology

• Daniel Baumann Cosmology

Both of these are fantastic books: clear, detailed and comprehensive. I have a slight

preference for Daniel’s book, although in part this is because I’m proud of the blurb

that I wrote on the back cover.

• Steven Weinberg Cosmology

Weinberg is one of the smarter Nobel prize winners in physics. Here he o↵ers a scholarly

account of the subject, devoid of pretty pictures and diagrams, and with a dogged

refusal to draw graphs, yet full of clarity and insight.

A number of further lecture notes are available on the web. Links can be found on

the course webpage: http://www.damtp.cam.ac.uk/user/tong/cosmo.html
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0. Introduction

All civilisations have an origin myth. We are the first to get it right.

Our origin myth goes by the name of the Big Bang theory. It is a wonderfully

evocative name, but one that seeds confusion from the o↵. The Big Bang theory

does not say that the universe started with a bang. In fact, the Big Bang theory has

nothing at all to say about the birth of the universe. There is a very simple answer to

the question “how did the universe begin?” which is “we don’t know”.

Instead our origin myth is more modest in scope. It tells us only what the universe

was like when it was very much younger. Our story starts from a simple observation:

the universe is expanding. This means, of course, that in earlier times everything was

closer together. We take this observation and push it to the extreme. As objects are

forced closer together, they get hotter. The Big Bang theory postulates that there

was a time, in the distant past, when the Universe was so hot that matter, atoms and

even nuclei melted and all of space was filled with a fireball. The Big Bang theory is

a collection of ideas, calculations and predictions that explain what happened in this

fireball, and how it subsequently evolved into the universe we see around us today.

The word “theory” in the Big Bang theory might suggest an element of doubt. This

is misleading. The Big Bang theory is a theory in the same way that evolution is a

theory. In other words, it happened. We know that the universe was filled with a

fireball for a very simple reason: we’ve seen it. In fact, not only have we seen it, we

have taken a photograph of it. Of course, this being science we don’t like to brag about

these things, so rather than jumping up and down and shouting “we’ve taken a fucking

photograph of the fucking Big Bang”, we instead wrap it up in dull technical words.

We call it the cosmic microwave background radiation. We may, as a community, have

underplayed our hand a little here. The photograph is shown in Figure 1 and contains

a wealth of information about what the universe was like when it was much younger.

As we inch further back towards the “t = 0” moment, known colloquially but inac-

curately as “the Big Bang”, the universe gets hotter and energies involved get higher.

One of the goals of cosmology is to push back in time as far as possible to get closer to

that mysterious “t = 0” moment. Progress here has been nothing short of astonishing.

As we will learn, we have a very good idea of what was happening a minute or so after

the Big Bang, with detailed calculations of the way di↵erent elements are forged in

the early universe in perfect agreeement with observations. As we go back further, the

observational evidence is harder to come by, but our theories of particle physics give

us a reasonable level of confidence back to t = 10�12 seconds after the Big Bang. As
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Figure 1: This is a photograph of the Big Bang.

we will see, there are also good reasons to think that, at still earlier times, there was a

period of very rapid expansion in the universe known as inflation.

It feels strange to talk with any level of seriousness about the universe when it was a

few minutes old, let alone at time t < 10�12 seconds. Nonetheless, there are a number

of clues surviving in the universe to tell us about these early times, all of which can be

explained with impressive accuracy by applying some simple and well tested physical

ideas to this most extreme of environments.

The purpose of these lectures is to tell the story above in some detail, to describe

13.8 billion years of history, starting when the Universe was just a fraction of a second

old, and extending to the present day.
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1. The Expanding Universe

Our goal in this section is an ambitious one: we wish to construct, and then solve, the

equations that govern the evolution of the entire universe.

When describing any system in physics, the trick is to focus on the right degrees of

freedom. A good choice of variables captures the essence of the problem, while ignoring

any irrelevant details. The universe is no di↵erent. To motivate our choice, we make

the following assumption: the universe is a dull and featureless place. To inject some

gravity into this proposal, we elevate it to an important sounding principle:

The Cosmological Principle: On the largest scales, the universe is
spatially homogeneous and isotropic.

Here, homogeneity is the property that the universe looks identical at every point in

space, while isotropy is the property that it looks the same in every direction. Note that

the cosmological principle refers only to space. The universe is neither homogenous nor

isotropic in time, a fact which underpins this entire course.

Why make this assumption? The primary reason is one of expediency: the universe

is, in reality, a complicated place with interesting things happening in it. But these

things are discussed in other courses and we will be best served by ignoring them. By

averaging over such trifling details, we are left with a description of the universe on the

very largest scales, where things are simple.

This averaging ignores little things, like my daily routine, and it is hard to imagine

that these have much cosmological significance. However, it also ignores bigger things,

like the distribution of galaxies in the universe, that one might think are relevant. Our

plan is to proceed with the assumption of simplicity and later, in Section 3, see how

we can start to add in some of the details.

The cosmological principle sounds eminently reasonable. Since Copernicus we have

known that, while we live in a very special place, we are not at the centre of everything.

The cosmological principle allows us to retain our sense of importance by asserting: “if

we’re not at the centre, then surely no one else is either”. You should, however, be

suspicious of any grand-sounding principle. Physics is an empirical science and in recent

decades we have developed technologies to the point where the cosmological principle

can be tested. Fortunately, it stands up pretty well. There are two main pieces of

evidence:
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Figure 2: The distribution of galaxies in a wedge in the sky, as measured by the 2dF redshift

survey. The distribution looks increasingly smooth on larger scales.

• The cosmic microwave background radiation (CMB) is the afterglow of the Big

Bang, an almost uniform sea of photons which fills all of space and provides a

snapshot of the universe from almost 14 billion years ago. This is important and

will be discussed in more detail in Section 2.2. The temperature of the CMB is1

TCMB ⇡ 2.73 K

However, it’s not quite uniform. There are small fluctuations in temperature with

a characteristic scale

�T

TCMB

⇠ 10�5

These fluctuations are depicted in the famous photograph shown in Figure 1,

taken by the Planck satellite. The fact that the temperature fluctuations are so

small is telling us that the early universe was extremely smooth.

• A number of redshift surveys have provided a 3d map of hundreds of thousands of

galaxies, stretching out to distances of around 2⇥ 109 light years. The evidence

suggests that, while clumpy on small scales, the distribution of galaxies is roughly

homogeneous on distances greater than ⇠ 3⇥ 108 lightyears. An example of such

a galaxy survey is shown in Figure 2.

1The most accurate determination gives TCMB = 2.72548 ± 0.00057 K; See D.J. Fixsen, “The
Temperature of the Cosmic Microwave Background”, arXiv:0911.1955.
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A Sense of Scale

Before we proceed, this is a good time to pause and try to gain some sense of per-

spective about the universe. First, let’s introduce some units. The standard SI units

are hopelessly inappropriate for use in cosmology. The metre, for example, is o�cially

defined to be roughly the size of things in my house. Thinking slightly bigger, the aver-

age distance from the Earth to the Sun, also known as one Astronomical Unit (symbol

AU), is

1 AU ⇡ 1.5⇥ 1011 m

To measure distances of objects that lie beyond our solar sys-

1’’

1 AU

1 parsec

Figure 3: Not to scale.

tem, it’s useful to introduce further, farther units. A familiar

choice is the lightyear (symbol ly), given by

1 ly ⇡ 9.5⇥ 1015 m

However, a more commonly used unit among astronomers is

the parsec (symbol pc), which is based on the observed parallax

motion of stars as the Earth orbits the Sun. A parsec is defined

as the distance at which a star will exhibit one arcsecond of

parallax, which means it wobbles by 1/3600th of a degree in

the sky over the course of a year.

1 pc ⇡ 3.26 ly

This provides a good unit of measurement to nearby stars. Our closest neighbour,

Proxima Centauri, sits at a distance of 1.3 pc. The distance to the centre of our galaxy,

the Milky Way, is around 8 ⇥ 103 pc, or 8 kpc. Our galaxy is home to around 100

billion stars (give or take) and is approximately 30 kpc across.

There are a large number of neighbouring dwarf galaxies, some of which are actu-

ally closer to us than the centre of the Milky Way. But the nearest spiral galaxy is

Andromeda, which is approximatey 1 Megaparsec (symbol Mpc) or one million parsecs

away. The megaparsec is one of the units of choice for cosmologists.

Galaxies are not the largest objects in the universe. They, in turn, gather into clusters

and then superclusters and various other filamentary structures. There also appear to

be enormous voids in the universe, and it seems plausible that there are more big things

to find. Currently, the largest such structures appear to be a few 100 Mpc or so across.
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Figure 4: Hubble ultra-deep field shows around 10,000 galaxies.

All of this is to say that we have to look at very large scales before the universe

appears to obey the cosmological principle, but it does finally get there. As we will see

later in this course, there is a limit to how big we can go. The size of the observable

universe is around

3000 Mpc ⇡ 1026 m

and there seems to be no way to peer beyond this. The observable universe contains,

we think, around 100 billion galaxies, each of them with around 100 billion stars. It

is di�cult to build intuition for numbers this big, and distances this vast. Some help

comes from the Hubble ultra-deep field, shown in Figure 4, which covers a couple of

arcminutes of sky, roughly the same as a the tip of a pencil held out at arms length.

The image shows around 10,000 galaxies, some no more than a single pixel, but each

containing around 100 billion suns, each of which is likely to play host to a solar system

of planets.

For more intuition about the size of the universe, we turn to the classics

“When you’re thinking big, think bigger than the biggest thing ever and

then some. Much bigger than that in fact, really amazingly immense, a

totally stunning size, real ’wow, that’s big’ time. It’s just so big that by

comparison, bigness itself looks really titchy. Gigantic multiplied by colossal

multiplied by staggeringly huge is the sort of concept we’re trying to get

across here.”

Douglas Adams

– 6 –



1.1 The Geometry of Spacetime

The cosmological principle motivates us to treat the universe as a boring, featureless

object. Given this, it’s not obvious what property of the universe we have left to focus

on. The answer is to be found in geometry.

1.1.1 Homogeneous and Isotropic Spaces

The fact that space (and time) can deviate from the seemingly flat geometry of our

everyday experience is the essence of the theory general relativity. Fortunately, we

will need very little of the full theory for this course. This is, in large part, due to

the cosmological principle which allows us to focus on spatial geometries which are

homogeneous and isotropic. There are three such geometries:

• Flat Space: The simplest homogeneous and isotropic three-dimensional space

is flat space, also known as Euclidean space. We will denote it by R3.

We describe the geometry of any space in terms of a metric. This gives us a

prescription for measuring the distance between two points on the space. More

precisely, we will specify the metric in terms of the line element ds which tells us

the infinitesimal distance between two nearby points. For flat space, this is the

familiar Euclidean metric

ds
2 = dx

2 + dy
2 + dz

2 (1.1)

We’ll also work in a number of other coordinates systems, such as spherical polar

coordinates

x = r sin ✓ cos� , y = r sin ✓ sin� , z = r cos ✓ (1.2)

with r 2 [0,1), ✓ 2 [0, ⇡] and � 2 [0, 2⇡). To compute the metric in these

coordinates, we relate small changes in (r, ✓,�) to small changes in (x, y, z) by

the Leibniz rule, giving

dx = dr sin ✓ cos�+ r cos ✓ cos� d✓ � r sin ✓ sin� d�

dy = dr sin ✓ sin�+ r cos ✓ sin� d✓ + r sin ✓ cos� d�

dz = dr cos ✓ � r sin ✓ d✓

Substituting these expressions into the flat metric (1.1) gives us the flat metric

in polar coordinates

ds
2 = dr

2 + r
2(d✓2 + sin2

✓ d�
2) (1.3)
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• Positive Curvature The next homogeneous and isotropic space is also fairly

intuitive: we can take a three-dimensional sphere S3, constructed as an embedding

in four-dimensional Euclidean space R4

x
2 + y

2 + z
2 + w

2 = R
2

with R the radius of the sphere. The sphere has uniform positive curvature. On

such a space, parallel lines will eventually meet.

We again have di↵erent choices of coordinates. One option is to retain the 3d

spherical polars (1.2) and eliminate w using w
2 = R

2
� r

2. A point on the sphere

S3 is then labelled by a “radial” coordinate r, with range r 2 [0, R], and the two

angular coordinates ✓ 2 [0, ⇡] and � 2 [0, 2⇡). We can compute the metric on S3

by noting

w
2 = R

2
� r

2
) dw = �

r dr
p
R2 � r2

The metric on the sphere is then inherited from the flat metric in R4. We sub-

stitute the expression above into the flat metric ds
2 = dx

2 + dy
2 + dz

2 + dw
2 to

find the metric on S3,

ds
2 =

R
2

R2 � r2
dr

2 + r
2(d✓2 + sin2

✓ d�
2) (1.4)

Strictly speaking, this set of coordinates only covers half the S3, the hemisphere

with w � 0.

Arguably a more natural set of coordinates are provided by the 4d general-

isation of the spherical polar coordinates (1.2). These are defined by writing

r = R sin�, so

x = R sin� sin ✓ cos� , y = R sin� sin ✓ sin�

z = R sin� cos ✓ , w = R cos� (1.5)

Now a point on S3 is determined by three angular coordinates, �, ✓ 2 [0, ⇡] and

� 2 [0, 2⇡). The metric becomes

ds
2 = R

2

h
d�

2 + sin2
�(d✓2 + sin2

✓ d�
2)
i

(1.6)

Although we introduced the 3d sphere S3 by embedding it R4, the higher dimen-

sional space is a crutch that we no longer need. Worse, it is a crutch that can
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be quite misleading. Both mathematically, and physically, the sphere S3 makes

sense on its own without any reference to a space in which it’s embedded. In par-

ticular, should we discover that the spatial geometry of our universe is S3, this

does not imply the physical existence of some ethereal R4 in which the universe

is floating.

• Negative Curvature Our final homogeneous and isotropic space is perhaps the

least familiar. It is a hyperboloidH3, which can again be defined as an embedding

in R4, this time with

x
2 + y

2 + z
2
� w

2 = �R
2 (1.7)

This is a space of uniform negative curvature. Parallel lines diverge on a space

with negative curvature.

Once again, the metric is inherited from the embedding in R4, but this time

with signature (+++�), so ds
2 = dx

2+dy
2+dz

2
�dw

2 as befits the embedding

(1.7). Using the 3d coordinates (r, ✓,�), we have w
2 = r

2 +R
2. The metric is

ds
2 =

R
2

R2 + r2
dr

2 + r
2(d✓2 + sin2

✓ d�
2) (1.8)

Alternatively, we can write r = R sinh�, in which case the metric becomes

ds
2 = R

2

h
d�

2 + sinh2
�(d✓2 + sin2

✓ d�
2)
i

(1.9)

It is often useful to write these metrics in a unified form. In the (r, ✓,�) coordinates,

we can write the general metric (1.3), (1.4) and (1.8) as

ds
2 =

dr
2

1� kr2/R2
+ r

2(d✓2 + sin2
✓ d�

2) with k =

8
>><

>>:

+1 Spherical

0 Euclidean

�1 Hyperbolic

(1.10)

Throughout these lectures, we will use k = �1, 0,+1 to denote the three possible spatial

geometries. Alternatively, in the coordinates (�, ✓,�), the metrics (1.3), (1.6) and (1.9)

can be written in a unified way as

ds
2 = R

2

h
d�

2 + S
2

k
(�)(d✓2 + sin2

✓ d�
2)
i

with Sk(�) =

8
>><

>>:

sin� k = +1

� k = 0

sinh� k = �1

(1.11)

where now � is a dimensionless coordinate. (In flat space, we have to introduce an

arbitrary, fiducial scale R to write the metric in this form.)
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Global Topology

We have identified three possible spatial geometries consistent with the cosmological

principle. Of these, S3 is a compact space, meaning that it has finite volume (which is

2⇡2
R

3). In contrast, both R3 and H3 are non-compact, with infinite volume.

In fact, it is straightforward to construct compact spaces for the k = 0 and k =

�1 cases. We simply need to impose periodicity conditions on the coordinates. For

example, in the k = 0 case we could identify the points xi = x
i + R

i, i =, 1, 2, 3 with

some fixed R
i. This results in the torus T3.

Spaces constructed this way are homogenous, but no longer isotropic. For example,

on the torus there are special directions that bring you back to where you started

on the shortest path. This means that such spaces violate the cosmological principle.

More importantly, there is no observational evidence that they do, in fact, describe our

universe so we will not discuss them in what follows.

1.1.2 The FRW Metric

Our universe is not three-dimensional. It is four-dimensional, with time as the forth

coordinate. In special relativity, we consider the flat four-dimensional spacetime known

as Minkowski space, with metric2

ds
2 = �c

2
dt

2 + dx2

with c the speed of light. This metric has the property that the distance between two

points in spacetime is invariant under Lorentz transformations; it is the same for all

inertial observers.

The Minkowski metric is appropriate for describing physics in some small region of

space and time, like the experiments performed here on Earth. But, on cosmological

scales, the Minkowski metric needs replacing so that it captures the fact that the

universe is expanding. This is straightforward. We replace the flat spatial metric dx2

with one of the three homogeneous and isotropic metrics that we met in the previous

section and write

ds
2 = �c

2
dt

2 + a
2(t)


1

1� kr2/R2
dr

2 + r
2(d✓2 + sin2

✓ d�
2)

�
(1.12)

This is the Friedmann-Robertson-Walker, or FRWmetric. The role of the dimensionless

scale factor a(t) is, as we shall see, to change distances over time.

2An introduction to special relativity can be found in Section 7 of the lectures on Dynamics and
Relativity. There we used the metric with opposite signature ds

2 = +c
2
dt

2
� dx2.
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Figure 5: The expansion of the universe. The physical distance between fixed co-moving

coordinates increases with time.

There is a redundancy in the description of the metric. If we rescale coordinates as

a ! �a, r ! r/� and R ! R/� then the metric remains unchanged. We use this to

set the scale factor evaluated at the present time t0 to unity,

a0 = a(t0) = 1

where the subscript 0 will always denote the value of a quantity evaluated today.

Consider a galaxy sitting at some fixed point point (r, ✓,�). We refer to the coor-

dinates (r, ✓,�) (or, equivalently, (�, ✓,�)) on the 3d space as co-moving coordinates.

They are analogous to the Lagrangian coordinates used in fluid mechanics. The physical

(or proper) distance between the point (r, ✓,�) and the origin is then

dphys = a(t)

Z
r

0

1p
1� kr0 2/R2

dr
0 = a(t)R� (1.13)

However, there is nothing special about the origin, and the same scaling with a(t) is

seen for the distance between any two points. If we choose a function a(t) with ȧ > 0,

then the distance between any two points is increasing. This is the statement that

the universe is expanding: two galaxies, at fixed co-moving co-ordinates, will be swept

apart as spacetime stretches.

Importantly, the universe isn’t expanding “into” anything. Instead, the geometry

of spacetime, as described by the metric (1.12), is getting bigger, without reference to

anything which sits outside. Similarly, a metric with ȧ < 0 describes a contracting

universe. In Section 1.2, we will introduce the tools needed to calculate a(t). But first,

we look at some general features of expanding, or contracting universes.

The FRW metric is not invariant under Lorentz transformation. This means that

the universe picks out a preferred rest frame, described by co-moving coordinates. We
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can still shift this rest frame by translations (in flat space) or rotations, but not by

Lorentz boosts. Consider a galaxy which, in co-moving coordinates, traces a trajectory

x(t). Then, in physical coordinates, the position is

xphys(t) = a(t)x(t) (1.14)

The physical velocity is then

vphys(t) =
dxphys

dt
=

da

dt
x+ a

dx

dt
= Hxphys + vpec (1.15)

There are two terms. The first, which is due entirely to the expansion of the universe

is written in terms of the Hubble parameter,

H(t) =
ȧ

a

The second term, vpec, is referred to as the peculiar velocity and is describes the in-

herent motion of the galaxy relative to the cosmological frame, typically due to the

gravitational attraction of other nearby galaxies.

Our own peculiar velocity is vpec ⇡ 400 km s�1 which is pretty much typical for a

galaxy. Meanwhile, the present day value of the Hubble parameter is

H0 ⇡ 70 km s�1 Mpc�1

This is, rather misleadingly, referred to as the Hubble constant. Clearly there is nothing

constant about it. Although, in fairness, it is pretty much the same today as it was

yesterday. It is also common to see the notation

H0 = 100h km s�1 Mpc�1 (1.16)

and then to describe the value of the Hubble constant in terms of the dimensionless

number h ⇡ 0.7. In this course, we’ll simply use the notation H0.

The Hubble parameter has dimensions of time�1, but is written in the rather unusual

units km s�1 Mpc�1. This is telling us that a galaxy 1 Mpc away will be seen to be

retreating at a speed of 70 km s�1 due to the expansion of space. For nearby galaxies,

this tends to be smaller than their peculiar velocity. However, as we look further away,

the expansion term will dominate. The numbers above suggest that this will happen

at distances around 400/70 ⇡ 5 Mpc.
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Figure 6: Hubble’s original data, from

1929, with a rather optimistic straight line

drawn through it.

Figure 7: Data from 1996, looking out to

much further distances.

If we ignore the peculiar velocities, and further assume that we can approximate the

Hubble parameter H(t) as the constant H0, then the velocity law (1.15) becomes a

linear relation between velocity and distance

vphys = H0 xphys (1.17)

This linear relationship is referred to as Hubble’s law; some data is shown in the figures3.

At yet further distances, we would expect the time dependence of H(t) to reveal itself.

We will discuss this in Section 1.4.

There is no obstacle in (1.17) to velocities that exceed the speed of light, |vphys| > c.

This may make you nervous. However, there is no contradiction with relativity and,

indeed, the entire framework that we have discussed above sits, without change, in the

full theory of general relativity. The statement that “nothing can travel faster than

the speed of light” is better thought of as “nothing beats light in a race”. Given two

objects at the same point, their relative velocity is always less than c. However, the

velocity vphys is measuring the relative velocity of two objects at very distant points

and, in an expanding spacetime, there is no such restriction.

1.1.3 Redshift

All our observational information about the universe comes to us through light waves

and, more recently, gravitational waves. To correctly interpret what we’re seeing, we

need to understand how such waves travel in an expanding spacetime.

3Both of these plots are taken from Ned Wright’s cosmology tutorial.
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In a spacetime metric, light travels along null paths with ds = 0. In the FRW metric

(1.12), light travelling in the radial direction (i.e. with fixed ✓ and �) will follow a path,

c dt = ±a(t)
drp

1� kr2/R2
(1.18)

If we place ourselves at the origin, the minus sign describes light moving towards us.

Aliens on a distant planet, tuning in for the latest Buster Keaton movie, should use

the plus sign.

Suppose that a distant galaxy sits stationary in co-moving coordinate r1 and emits

light at time t1. We observe this signal at r = 0, at time t0, determined by solving the

integral equation

c

Z
t0

t1

dt

a(t)
=

Z
r1

0

drp
1� kr2/R2

If the galaxy emits a second signal at time t1 + �t1, this is observed at t0 + �t0, with

c

Z
t0+�t0

t1+�t1

dt

a(t)
=

Z
r1

0

drp
1� kr2/R2

The right-hand side of both of these equations is the same because it is written in

co-moving coordinates. We therefore have

Z
t0+�t0

t1+�t1

dt

a(t)
�

Z
t0

t1

dt

a(t)
= 0 )

�t1

a(t1)
=

�t0

a(t0)
= �t0 (1.19)

where, in the last equality, we’ve used the fact that we observe the signal today, where

a(t0) = 1. We see that the expansion of the universe means that the time di↵erence

between the two emitted signals di↵ers from the time di↵erence between the two ob-

served signals. This has an important implication when applied to the wave nature of

light. Two successive wave crests are separated by a time

�t1 =
�1

c

with �1 the wavelength of the emitted light. Similarly, the time interval between two

observed wave crests is

�t0 =
�0

c
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The result (1.19) tells us that the wavelength of the observed light di↵ers from that of

the emitted light,

�0 =
a(t0)

a(t1)
�1 =

�1

a(t1)
(1.20)

This is intuitive: the light is stretched by the expansion of space as it travels through

it so that the observed wavelength is longer than the emitted wavelength. This e↵ect

is known as cosmological redshift. It shares some similarity with the Doppler e↵ect,

in which the wavelength of light or sound from moving sources is shifted. However,

the analogy is not precise: the Doppler e↵ect depends only on the relative velocity of

the source and emitter, while the cosmological redshift is independent of ȧ, instead

depending on the overall expansion of space over the light’s journey time.

The redshift parameter z is defined as the fractional increase in the observed wave-

length,

z =
�0 � �1

�1

=
1� a(t1)

a(t1)
) 1 + z =

1

a(t1)
(1.21)

As this course progresses, we will often refer to times in the past in terms of the redshift

z. Today we sit at z = 0. When z = 1, the universe was half the current size. When

z = 2, the universe was one third the current size.

The redshift is something that we can directly measure. Light from far galaxies come

with a fingerprint, the spectral absorption lines that reveal the molecular and atomic

makeup of the stars within. By comparing the frequencies of those lines to those on

Earth, it is a simple matter to extract z. As an aside, by comparing the relative

positions of spectral lines, one can also confirm that atomic physics in far flung places

works the same as on Earth, with no detected changes in the laws of physics or the

fundamental constants of nature.

1.1.4 The Big Bang and Cosmological Horizons

We will find that all our cosmological models predict a time in the past, tBB < t0,

where the scale factor vanishes, a(tBB) = 0. This point is colloquially referred to as

the Big Bang. The Big Bang is not a point in space, but is a point in time. It happens

everywhere in space.

We can get an estimate for the age of the Universe by Taylor expanding a(t) about

the present day, and truncating at linear order. Recalling that a(t0) = 1, we have

a(t) ⇡ 1 +H0(t� t0) (1.22)
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This rather naive expansion suggests that the Big Bang occurs at

t0 � tBB = H
�1

0
⇡ 4.4⇥ 1017 s ⇡ 1.4⇥ 1010 years (1.23)

This result of 14 billion years is surprisingly close to the currently accepted value of

around 13.8 billion years. However, there is a large dose of luck in this agreement, since

the linear approximation (1.22) is not very good when extrapolated over the full age of

the universe. We’ll revisit this in Section 1.4.

Strictly speaking, we should not trust our equations at the point a(tBB) = 0. The

metric (1.12) is singular here, and any matter in the universe will be squeezed to infinite

density. In such a regime, our simple minded classical equations are not to be trusted,

and should be replaced by a quantum theory of matter and gravity. Despite much work,

it remains an open problem to understand the origin of the universe at a(tBB) = 0.

Did time begin here? Was there a previous phase of a contracting universe? Did the

universe emerge from some earlier, non-geometric form? We simply don’t know.

Understanding the Big Bang is one of the ultimate goals of cosmology. In the mean-

time, the game is to push as far back in time as we can, using the classical (and

semi-classical) theory of gravity that we trust. We will be able to reach scales a ⌧ 1,

even if we can’t get all the way to a = 0, and follow the subsequent evolution of the

universe from the initial hot, dense state to the world we see today. This set of ideas,

is often referred to as the Big Bang theory, even though it tells us nothing about the

initial “Big Bang” itself.

The Size of the Observable Universe

The existence of a special time, tBB, means that there is a limit as to how far we can

peer into the past. In co-moving coordinates, the greatest distance rmax that we can see

is the distance that light has travelled since the Big Bang. From (1.18), this is given

by

c

Z
t

tBB

dt
0

a(t0)
=

Z
rmax(t)

0

drp
1� kr2/R2

The corresponding physical distance is

dH(t) = a(t)

Z
rmax(t)

0

drp
1� kr2/R2

= c a(t)

Z
t

0

dt
0

a(t0)
(1.24)

This is the size of the observable universe. Note that this size is not simply c(t �

tBB), which is the naive distance that light has travelled since the Big Bang. Indeed,

mathematically it could be that the integral on the left-hand side of (1.24) does not

converge at tBB, in which case the maximum distance rmax would be infinite.
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The distance dH is sometimes referred to as the particle horizon. The name mimics

the event horizon of black holes. Nothing inside the event horizon of a black hole

can influence the world outside. Similarly, nothing outside the particle horizon can

influence us today.

The Event Horizon

“It does seem rather odd that two or more observers, even such as sat on

the same school bench in the remote past, should in future, when they

have followed di↵erent paths in life, experience di↵erent worlds, so that

eventually certain parts of the experienced world of one of them should

remain by principle inaccessible to the other and vice versa.”

Erwin Schrödinger, 1956

The particle horizon tells us that there are parts of the universe that we cannot

presently see. One might expect that, as time progresses, more and more of spacetime

comes into view. In fact, this need not be the case.

One option is that the universe begins collapsing in the future, and there is a second

time tBC > t0 where a(tBC) = 0. This is referred to as the Big Crunch. In this case,

there is a limit on how far we can communicate before the universe comes to an end,

given by

c

Z
tBC

t

dt
0

a(t0)
=

Z
rmax(t)

0

drp
1� kr2/R2

Perhaps more surprisingly, even if the universe continues to expand and the FRWmetric

holds for t ! 1, then there could still be a maximum distance that we can influence.

The relevant equation is now

c

Z 1

t

dt
0

a(t0)
=

Z
rmax(t)

0

drp
1� kr2/R2

(1.25)

The maximum co-moving distance rmax is finite provided that the left-hand side con-

verges. For example, this happens if we have a(t) ⇠ e
Ht as t ! 1. As we will see later

in the course, this seems to be the most likely fate of our universe. As Schrödinger de-

scribed, it is quite possible that two friends who once played together as children could

move apart from each other, only to find that they’ve travelled too far and can never

return as they are inexorably swept further apart by the expansion of the universe. It’s

not a bad metaphor for life.
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Figure 8: The particle horizon defines the size of your observable universe.

In this context, the distance rmax(t) is called the (co-moving) cosmological event

horizon. Once again, there is the analogy with the black hole. Regions beyond the cos-

mological horizon are beyond our reach; if we choose to sit still, we will never see them

and never communicate with them. However, there are also important distinctions. In

contrast to the event horizon of a black hole, the concept of cosmological event horizon

depends on the choice of observer.

Conformal Time

The properties of horizons are perhaps best illustrated by introducing a di↵erent time

coordinate,

⌧ =

Z
t
dt

0

a(t0)
(1.26)

This is known as conformal time. If we also work with the � spatial coordinate (1.11)

then the FRW metric takes the simple form

ds
2 = a

2(⌧)
⇥
�c

2
d⌧

2 +R
2
d�

2 +R
2
Sk(�)

2(d✓2 + sin2
d�

2)
⇤

with all time dependence sitting as on overall factor outside. This has a rather nice

consequence because if we draw events in the (c⌧, R�) plane then light-rays, which

travel with ds
2 = 0, correspond to 45� lines, just like in Minkowski space. This helps

visualise the causal structure of an expanding universe.

Suppose that we sit at some conformal time ⌧ . A signal can be emitted no earlier

than ⌧BB where the Big Bang singularity occurs. This then puts a restriction on how

far we can see in space, defined to be the particle horizon

R�ph = c(⌧ � ⌧BB)

This is shown in Figure 8.
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Figure 9: The cosmological event horizon defines the events you can hope to influence.

Looking forward, the issue comes because the end of the universe, at t ! 1, corre-

sponds to a finite conformal time ⌧end. This means that nothing we can do will be seen

beyond a maximum distance which defines the cosmological event horizon,

R�eh = ⌧end � ⌧

This is shown in Figure 9.

It turns out that conformal time is also a useful change of variable when solving the

equations of cosmology. We’ll see an example in Section 1.3.2.

1.1.5 Measuring Distance

These lectures are unapologetically theoretical. Nonetheless, we should ask how we

know certain facts about the universe. One of the most important challenges facing

observational astronomers and cosmologists is the need to accurately determine the

distance to various objects in the universe. This is crucial if we are to reconstruct the

history of the expansion of the universe a(t).

Furthermore, there is even an ambiguity in what we mean by “distance”. So far, we

have defined the co-moving distance R� and, in (1.13), the physical distance dphys(t) =

a(t)R�. The latter is, as the name suggests, more physical, but it does not equate

directly to something we can measure. Instead, dphys(t) is the distance between two

events which took place at some fixed time t, but to measure this distance, we would

need to pause the expansion of the universe while we wheel out a tape measure, typically

one which stretches over several megaparsecs. This, it turns out, is impractical.
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Figure 10: This cow is small. Figure 11: This cow is far away.

For these reasons, we need a more useful definition of distance and how to measure

it. A useful measure of distance should involve what we actually see, and what we see

is light that has travelled across the universe, sometimes for a long long time.

For objects that are reasonably close, we can use parallax, the slight wobble of a

stars position caused by the Earth orbiting the Sun. The current state of the art is the

Gaia satellite which can measure the parallax of su�ciently bright star to an accuracy

of 2 ⇥ 10�5 arc seconds, corresponding to distances of 1/10th of a megaparsec. While

impressive this is, to quote the classics, peanuts to space. We therefore need to turn

to more indirect methods.

The Luminosity Distance

One way to measure distance is to use the brightness of the object. Obviously, the

further away an object is, the less bright it appears in the sky. The problem with this

approach is that it’s di�cult to be sure if an object is genuinely far away, or intrinsically

dim. It is entirely analogous to the famous problem with cows: how do we tell if they

are small, or merely far away?

To resolve this degeneracy, cosmologists turn to standard candles. These are objects

whose intrinsic brightness can be determined by other means. There are a number of

candidates for standard candles, but some of the most important are:

• Cepheids are bright stars which pulsate with a period ranging from a few days to

a month. This periodicity is thought to vary linearly with the intrinsic brightness

of the star. These were the standard candles originally used by Hubble.

• A type Ia supernova arises when a white dwarf accretes too much matter from

an orbiting companion star, pushing it over the Chandrasekhar limit (the point

at which a star collapses). Such events are rare — typically a few a century in

a galaxy the size of the Milky Way — but with a brightness that is comparable
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to all the stars in the host galaxy. The universal nature of the Chandrasekhar

limit means that there is considerable uniformity in these supernovae. What little

variation there is can be accounted for by studying the “light curve”, meaning

how fast the supernova dims after the original burst. These supernovae were first

developed as standard candles in the 1990s and resulted in the discovery of the

acceleration of the universe.

• The more recent discovery of gravitational waves opens up the possibility for

a standard siren. The gravitational waveform can be used to accurately deter-

mine the distance. When these waves arise from the collision of a neutron star

and black hole (sometimes called a kilanova), the event can also be seen in the

electromagnetic spectrum, allowing identification of the host galaxy.

Given a standard candle, we can be fairly sure that we know the intrinsic luminosity

L of an object, defined as the energy emitted per unit time. We would like to determine

the apparent luminosity l, defined by the energy per unit time per unit area, seen by a

distant observer. In flat space, this is straightforward: at a distance d, the energy has

spread out over a sphere S2 of area 4⇡d2, giving us

l =
L

4⇡d2
in flat space (1.27)

The question we would like to ask is: how does this generalise in an FRW universe?

To answer this, it’s best to work in the coordinates (1.11), so the FRW metric reads

ds
2 = �c

2
dt

2 +R
2

h
d�

2 + S
2

k
(�)(d✓2 + sin2

✓ d�
2)
i

with

Sk(�) =

8
>><

>>:

sin� k = +1

� k = 0

sinh� k = �1

There are now three things that we need to take into account. The first is that a sphere

S2 with radius � now has area 4⇡R2
Sk(�)2, which agrees with our previous result in

flat space, but di↵ers when k 6= 0. Secondly, the photons are redshifted after their

long journey. If they are emitted with frequency ⌫1 then, from (1.20), they arrive with

frequency

⌫0 =
2⇡c

�0

=
⌫1

1 + z
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This lower arrival rate decreases the observed flux. Finally, the observed energy E0 of

each photon is reduced compared to the emitted energy E1,

E0 = ~⌫0 =
E1

1 + z

The upshot is that, in an expanding universe, the observed flux from a source with

intrinsic luminosity L sitting at co-moving distance � is

l =
L

4⇡R2Sk(�)2(1 + z)2

Comparing to (1.27) motivates us to define the luminosity distance

dL(�) = RSk(�)(1 + z) (1.28)

For a standard candle, where L is known, the luminosity distance dL is something that

can be measured. From this, and the redshift, we can infer the co-moving distance

RSk(�). In flat space, this is simply R� = r.

Extracting H0

Finally, we can use this machinery to determine the Hubble constant H0. We first

Taylor expand the scale factor a(t) about the present day. Setting a0 = 1, we have

a(t) = 1 +H0(t� t0)�
1

2
q0H

2

0
(t� t0)

2 + . . . (1.29)

Here we’ve introduced the second order term, with dimensionless parameter q0. This

is known as the deceleration parameter, and should be thought of as the present day

value of the function

q(t) = �
äa

ȧ2
= �

ä

aH2

The name is rather unfortunate because, as we will learn in Section 1.4, the expansion

of our universe is actually accelerating, with ä > 0! In our universe, the deceleration

parameter is negative: q0 ⇡ �0.5.

First, we integrate the path of a light-ray (1.18) to get an expression for the co-moving

distance � in terms of the “look-back time” (t0 � t1)

R� = c

Z
t0

t1

dt

a(t)
= c

Z
t0

t1

h
1�H0(t� t0) + . . .

i
dt

= c(t0 � t1)
h
1 +

1

2
H0(t0 � t1) + . . .

i
(1.30)
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Next, we get an expression for the look-back time t0 � t1 in terms of the redshift z.

From (1.21), light emitted at some time t1 su↵ers a redshift 1 + z = 1/a(t). Inverting

the Taylor expansion (1.29), we have

z =
1

a(t1)
� 1 ⇡ H0(t0 � t1) +

1

2
(2 + q0)H

2

0
(t0 � t1)

2 + . . .

We now invert this to give the “look-back time” t0 � t1 as a Taylor expansion in the

redshift z. (As an aside: you could do the inversion by solving the quadratic formula,

and subsequently Taylor expanding the square-root. But when inverting a power series,

it’s more straightforward to write an ansatz H0(t0 � t1) = A1z + A2z
2 + . . ., which we

substitute this into the right-hand side and match terms.) We find

H0(t0 � t1) = z �
1

2
(2 + q0)z

2 + . . . (1.31)

Combining (1.30) and (1.31) gives

H0R�

c
= z �

1

2
(1 + q0)z

2 + . . .

We can now substitute this into our expression for the luminosity distance (1.28). Life

is easiest in flat space, where RSk(�) = R� and we find

dL =
c

H0

✓
z +

1

2
(1� q0)z

2 + . . .

◆

This expression is valid only for z ⌧ 1. By plotting the observed dL vs z, and fitting

to this functional form, we can extract H0 and q0.

1.2 The Dynamics of Spacetime

We have learned that, on the largest distance scales, the universe is described by the

FRW metric

ds
2 = �c

2
dt

2 + a
2(t)


1

1� kr2/R2
dr

2 + r
2(d✓2 + sin2

d�
2)

�

with the history of the expansion (or contraction) of the universe captured by the

function a(t). Our goal now is to calculate this function.

A good maxim for general relativity is: spacetime tells matter how to move, matter

tells space how to curve. We saw an example of the first statement in the previous

section, with galaxies swept apart by the expansion of spacetime. The second part of

the statement tells us that, in turn, the function a(t) is determined by the matter, or

more precisely the energy density, in the universe. Here we will first describe the kind

of substances that fill the universe and then, in Section 1.2.3 turn to their e↵ect on the

expansion.
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1.2.1 Perfect Fluids

The cosmological principle guides us to model the contents of the universe as a ho-

mogeneous and isotropic fluid. The lumpy, clumpy nature of galaxies that we naively

observe is simply a consequence of our small perspective. Viewed from afar, we should

think of these galaxies as like atoms in a cosmological fluid. Moreover, as we will learn,

the observable galaxies are far from the most dominant energy source in the universe.

We treat all such sources as homogeneous and isotropic perfect fluids. This means

that they are characterised by two quantities: the energy density ⇢(t) and the pressure

P (t). (If you’ve taken a course in fluid mechanics, you will be more used to thinking

of ⇢(t) as the mass density. In the cosmological, or relativistic context, this becomes

the total energy density.)

The Equation of State

For any fluid, there is a relation between the energy and pressure, P = P (⇢), known as

the equation of state.

We will need the equation of state for two, di↵erent kinds of fluids. Both of these flu-

ids contain constituent “atoms” of massm which obey the relativistic energy-momentum

relation

E
2 = p

2
c
2 +m

2
c
4 (1.32)

The two fluids come from considering this equation in two di↵erent regimes:

• Non-Relativistic Limit: pc ⌧ mc
2. Here the energy is dominated by the mass,

E ⇡ mc
2, and the velocity of the atoms is v ⇡ p/m.

• Relativistic Limit: pc � mc
2. Now the energy is dominated by the momentum,

E ⇡ pc, and the velocity of the atoms approaches the speed of light |v| ⇡ c.

Suppose that there are N such atoms in a volume V . In general, these atoms will not

have a fixed momentum and energy, but instead the number density n(p) will be some

distribution. Because the fluid is isotropic, this distribution can depend only on the

magnitude of momentum p = |p|. It is normalised by

N

V
=

Z 1

0

dp n(p)

The pressure of a gas is defined to be force per unit area. For our purposes, a better

definition is the flux of momentum across a surface of unit area. This is equivalent
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to the earlier definition because, if the surface is a solid wall, the momentum must be

reflected by the wall resulting in a force. However, the “flux” definition can be used

anywhere in the fluid, not just at the boundary where there’s a wall. Because the fluid

is isotropic, we are free to choose this area to be the (x, y)-plane. Then, we have

P =

Z 1

0

dp vzpzn(p)

(If this is unfamiliar, an elementary derivation of this formula is given later in Section

2.1.2.) Because v and p are parallel, we can write

v · p = vp = vxpx + vypy + vzpz = 3vzpz

where the final equality is ensured by isotropy. This then gives us

P =
1

3

Z 1

0

dp vp n(p) (1.33)

Now we can relate this to the energy density in the two cases. First, the non-relativistic

gas. In this case, p ⇡ mv so we have

Pnon�rel ⇡
1

3

Z 1

0

dp mv
2
n(p) =

1

3

N

V
mhv

2
i (1.34)

where hv
2
i is the average square-velocity in the gas.

For cosmological purposes, our interest is in the total energy (1.32) and this is dom-

inated by the contribution from the mass E ⇡ mc
2 + . . .. If we relate the pressure of a

non-relativistic gas to this total energy E, we have

Pnon�rel =
NE

3V

hv
2
i

c2

Since hv
2
i/c

2
⌧ 1, we say that the pressure of a non-relativistic gas is simply

Pnon�rel ⇡ 0

Note that this is the same pressure that keeps balloons afloat and your eardrums

healthy: it’s not really vanishing. But it is negligible when it comes to its e↵ect on the

expansion of the universe. (We will, in fact, revisit this in Section 2 where we’ll see

that the pressure does give rise to important phenomena in the early universe.)

Cosmologists refer to a non-relativistic gas as dust, a name designed to reflect the

fact that it just hangs around and is boring. Examples of dust include galaxies, dark

matter, and hydrogen atoms floating around and not doing much. We will also refer to

dust simply as matter.
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We can repeat this for a gas of relativistic particles with v ⇡ c and E ⇡ pc. Now the

formula for the pressure (1.33) becomes

Prel ⇡
1

3

Z 1

0

dp vp n(p) ⇡
1

3

Z 1

0

dp E n(p) =
NhEi

3V

with hEi the average energy of a particle. The energy density is ⇢ = NhEi/V , so the

relativistic gas obeys the equation of state

Prel =
1

3
⇢

Cosmologists refer to such a relativistic gas as radiation. Examples of radiation include

the gas of photons known as the cosmic microwave background, gravitational waves,

and neutrinos.

Most of the equations of state we meet in cosmology have the simple form

P = w⇢ (1.35)

for some constant w. As we have seen, dust has w = 0 and radiation has w = 1/3. We

will meet other, more exotic fluids as the course progresses.

There is an important restriction on the equation of state. The speed of sound cs in

a fluid is given by

c
2

s
= c

2
dP

d⇢

We will derive this formula in Section 3.1.1, but for now we simply quote it. It’s

important that the speed of sound is less than the speed of light. (Remember: nothing

can beat light in a race.) This means that to be consistent with relativity, we must have

w  1. In fact, the more exotic substances we will meet will have w < 0, suggesting

an imaginary sound speed. What this is really telling us is that substances with w < 0

do not support propagating sound waves, with perturbations decaying exponentially in

time.

An Aside: The Equation of State and Temperature

In many other areas of physics, the equation of state is usually written in terms of the

temperature T of a fluid. For example, the ideal gas equation relates the pressure P

and volume V as

PV = NkBT (1.36)
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where N is the number of particles and kB the Boltzmann constant. (You may have

seen this written in chemist’s notation NkB = nR where n is the number of moles and

R the gas constant. Our way is better.) The equations of state that we’re interested

in can be viewed in this way if we relate T/V to the energy density.

For example, starting from our expression, in (1.34) we derived an expression for the

pressure of a non-relativistic gas: Pnon�rel ⇡ Nmhv
2
i/3V . This coincides with the ideal

gas law if we relate the temperature to the average kinetic energy of an atom in the

gas through

1

2
mhv

2
i =

3

2
kBT (1.37)

We will revisit this in Section 2.1 and gain a better understanding of this result and

the role played by temperature.

1.2.2 The Continuity Equation

As the universe expands, we expect the energy density (of any sensible fluid) to dilute.

The way this happens is dictated by the conservation of energy, also known as the

continuity equation.

A proper discussion of the continuity equation requires the machinery of general rel-

ativity. This is one of a number of places were we will revert to some simple Newtonian

thinking to derive the correct equation. Such derivations are not entirely convincing,

not least because it’s unclear why they would be valid when applied to the entire uni-

verse. Nonetheless, they will give the correct answer. A more rigorous approach can

be found in the lectures on General Relativity.

Consider a gas trapped in a box of volume V . The

Pressure, P
dx

Area, A

Figure 12:

gas exerts pressure on the sides of the box. If the box

increases in size, as shown in the figure, then the change

of volume is dV = Area ⇥ dx. The work done by the gas

is Force ⇥ dx = (PA)dx = P dV , and this reduces the

internal energy of the gas. We have

dE = �P dV

This is a simple form of the first law of thermodynamics, valid for reversible or adiabatic

processes. It is far from obvious that we can view the universe as a box filled with gas

and naively apply this formula. Nonetheless, it happily turns out that the final result
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agrees with the more rigorous GR approach so we will push ahead, and invoke the time

dependent version of the first law,

dE

dt
= �P

dV

dt
(1.38)

Now consider a small region of fluid, in co-moving volume V0. The physical volume is

V (t) = a
3(t)V0 )

dV

dt
= 3a2ȧV0

Meanwhile, the energy in this volume is

E = ⇢a
3
V0 )

dE

dt
= ⇢̇a

3
V0 + 3⇢a2ȧV0

The first law (1.38) then becomes

⇢̇+ 3H (⇢+ P ) = 0 (1.39)

This slightly unfamiliar equation is the expression of energy conservation in a cosmo-

logical setting.

Before we proceed, a warning: energy is a famously slippery concept in general

relativity, and we will meet things later which, taken naively, would seem to violate

energy conservation. For example, in Section 1.3.3, we will meet a fluid with equation

of state ⇢ = �P . For such a fluid, ⇢̇ = 0 which means that the energy density

remains constant even as the universe expands. Such is the way of the world and we

need to get used to it. If this makes you nervous, recall that the usual derivation of

energy conservation, via Noether’s theorem, holds only in time independent settings.

So perhaps it’s not so surprising that energy conservation takes a somewhat di↵erent

form in an expanding universe.

If we specify an equation of state P = w⇢, as in (1.35), then we can integrate the

continuity equation (1.39) to determine how the energy density depends on the scale

factor. We have

⇢̇

⇢
= �3(1 + w)

ȧ

a
) log(⇢/⇢0) = �3(1 + w) log a

) ⇢(t) = ⇢0a
�3(1+w) (1.40)

with ⇢0 = ⇢(t0) and we’ve used the fact that a(t0) = 1.
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We can look at how this behaves in simple examples. For dust (also known as matter),

we have w = 0 and so

⇢m ⇠
1

a3

This makes sense. As the universe expands, the volume increases as a
3, and so the

energy density decreases as 1/a3.

For radiation, we instead find

⇢r ⇠
1

a4
(1.41)

This also makes sense. The energy density is diluted as 1/a3 but, on top of this, there

is also a redshift e↵ect which shifts the frequency, and hence the energy, by a further

power of 1/a.

The fact that the energy densities of dust and radiation scale di↵erently plays a

crucial role in our cosmological history. As we shall see in Section 1.4, our current

universe has much greater energy density in dust than in radiation. However, this

wasn’t always the case. There was a time in far past when the converse was true, with

the radiation subsequently diluting away faster. We’ll see other contributions to the

energy density of the universe that have yet di↵erent behaviour.

1.2.3 The Friedmann Equation

“Friedmann more than once said that his task was to indicate the possible

solutions of Einstein’s equations, and that the physicists could do what they

wished with these solutions”

Vladimir Fock, on his friend Alexander Friedmann

Finally we come to the main part of the story: we would like to describe how the

perfect fluids which fill all of space a↵ect the expansion of the universe. We start by

giving the answer. The dynamics of the scale factor is dictated by the energy density

⇢(t) through the Friedmann equation

H
2
⌘

✓
ȧ

a

◆2

=
8⇡G

3c2
⇢�

kc
2

R2a2
(1.42)

Here R is some fixed scale, as in the FRW metric (1.12), k = �1, 0,+1 determines the

curvature of space, and G is Newton’s gravitational constant

G ⇡ 6.67⇥ 10�11 m3 kg�1 s�2
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The Friedmann equation is arguably the most important equation in all of cosmology.

Taken together with the continuity equation (1.39) and the equation of state (1.35),

they provide a closed system which can be solved to determine the history and fate of

the universe itself.

At this point, I have a confession to make. The only honest derivation of the Fried-

mann equation is in the framework of General Relativity Here we can only present a

dishonest derivation, using Newtonian ideas. In an attempt to alleviate the shame, I

will at least be open about where the arguments are at their weakest.

First, we work in flat space, with k = 0. This, of course, is the natural habitat for

Newtonian gravity. Nonetheless, we will see the possibility of a curvature term �k/a
2

in the Friedmann equation, re-emerging at the end of our derivation.

Our discussions so far prompt us to consider an infinite universe, filled with a constant

matter density. That, it turns out, is rather subtle in a Newtonian setting. Instead, we

consider a ball of uniform density of size L, expanding outwards away from the origin,

and subsequently pretend that we can take L ! 1.

Consider a particle (or element of fluid) of mass m at some position x with r =

|x| ⌧ L. It will experience the force of gravity in the form of Newton’s inverse-square

law. But a rather special property of this law states that, for a spherically symmetric

distribution of masses, the gravitational force at some point x depends only on the

masses at distances smaller than r and, moreover, acts as if all the mass is concentrated

at the origin.

This statement is simplest to prove if we formulate the gravitational force law as a

kind of Gauss’ law,

Fgrav = �mr� where r
2� =

4⇡G

c2
⇢

with � the gravitational potential. The (perhaps) unfamiliar factor of c2 in the final

equation arises because, for us, ⇢ is the energy density, rather than mass density. We

then integrate both sides over a ball V of radius x, centred at the origin. Using the kind

of symmetry arguments that we used extensively in the lectures on Electromagnetism,

we have

Z

S

r� · dS =

Z

V

4⇡G

c2
⇢ dV ) r�(r) =

GM(r)

r2
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where M(r) = 4⇡⇢r3/3c2 is the mass contained inside the ball of radius r. This means

that the acceleration of the particle at x is given by

mr̈ = �
GmM(r)

r2

We multiply by ṙ and integrate. As the ball expands with ṙ 6= 0, the total mass

contained with a ball of radius r(t) does not change, so Ṁ = 0. We then get

1

2
ṙ
2
�

GM(r)

r
= E (1.43)

where we recognise E as the energy (per unit mass) of the particle. Finally, we describe

the position x of the particle in a way that chimes with our previous cosmological

discussion, introducing a scale factor a(t)

x(t) = a(t)x0

Substituting this into (1.43) and rearranging gives

✓
ȧ

a

◆2

=
8⇡G

3c2
⇢�

C

a2
(1.44)

where C = �2E/|x0|
2 is a constant. This is remarkably close to the Friedmann equa-

tion (1.42). The only remaining issue is why we should identify the constant C with

the curvature kc
2
/R

2. There is no good argument here and, indeed, we shouldn’t ex-

pect one given that the whole Newtonian derivation took place in a flat space. It is,

unfortunately, simply something that you have to suck up.

There is, however, an analogy which makes the identification C ⇠ k marginally more

palatable. Recall that a particle has reached escape velocity if its total energy E > 0.

Conversely, if E < 0, the particle comes crashing back down. For us, the case of E < 0

means C > 0 which, in turn, corresponds to positive curvature. We will see in Section

1.3.2 that a universe with positive curvature will, under many circumstances, ultimately

su↵er a big crunch. In contrast, a negatively curved space k < 0 will keep expanding

forever.

Clearly the derivation above is far from rigorous. There are at least two aspects that

should give us pause. First, when we assumed Ṁ = 0, we were implicitly restricting

ourselves to non-relativistic matter with ⇢ ⇠ 1/a3. It turns out that in general relativity,

the Friedmann equation also holds for any other scaling (1.40) of ⇢.
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However, the part of the above story that should make you feel most queasy is

replacing an infinitely expanding universe, with an expanding ball of finite size L. This

introduces an origin into the story, and gives a very misleading impression of what the

expansion of the universe means. In particular, if we dial the clock back to a(t) = 0

in this scenario, then all matter sits at the origin. This is one of the most popular

misconceptions about the Big Bang and it is deeply unfortunate that it is reinforced by

the derivation above. Nonetheless, the arguments that lead to (1.44) do provide some

physical insight into the meaning of the various terms that can be hard to extract from

the more formal derivation using general relativity. So let us wash the distaste from

our mouths, and proceed with understanding the universe.

1.3 Cosmological Solutions

We now have a closed set of equations that describe the evolution of the universe.

These are the Friedmann equation,

H
2
⌘

✓
ȧ

a

◆2

=
8⇡G

3c2
⇢�

kc
2

R2a2
(1.45)

the continuity equation,

⇢̇+ 3H (⇢+ P ) = 0

and the equation of state

P = w⇢

In this section, we will solve them. Our initial interest will be on a number of designer

universes whose solutions are particularly simple. Then, in Section 1.4, we describe the

solutions of relevance to our universe.

1.3.1 Simple Solutions

To solve the Friedmann equation, we first need to decide what fluids live in our universe.

In general, there will be several di↵erent fluids. If they share the same equation of state

(e.g. dark matter and visible matter) then we can, for cosmological purposes, just treat

them as one. However, if the universe contains fluids with di↵erent equations of state,

we must include them all. In this case, we write

⇢ =
X

w

⇢w
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As we have seen in (1.40), each component scales independently as

⇢w =
⇢w,0

a3(1+w)
(1.46)

where ⇢w,0 = ⇢w(t0). Substituting this into the Friedmann equation then leaves us with

a tricky-looking non-linear di↵erential equation for a.

Life is considerably simpler if we restrict attention to a flat k = 0 universe with just

a single fluid component. In this case, using (1.46), we have
✓
ȧ

a

◆2

=
D

2

a3(1+w)
(1.47)

where D
2 = 8⇡G⇢w,0/3c2 is a constant. The solution is

a(t) =

✓
t

t0

◆2/(3+3w)

(1.48)

The various constants have been massaged into t0 = (3
2
(1 +w)D)�1 so that we recover

our convention a0 = a(t0) = 1. There is also an integration constant which we have set

to zero. This corresponds to picking the time of the Big Bang, defined by a(tBB) = 0

to be tBB = 0. With this choice, t0 is identified with the age of the universe.

Let’s look at this solution in a number of important cases

• Dust (w = 0): For a flat universe filled with dust-like matter (i.e. galaxies, or

cold dark matter), we have

a(t) =

✓
t

t0

◆2/3

(1.49)

This is known as the Einstein-de Sitter universe (not to be confused with either

the Einstein universe or the de Sitter universe, both of which we shall meet in

Section 1.3.3). The exponent 2/3 is the same 2/3 that appears in Kepler’s third

law: the radius R of a planet’s orbit is related to its period by R ⇠ T
2/3. Both

follow by simple dimensional analysis in Newtonian gravity.

The Hubble constant is

H0 =
2

3

1

t0

If we lived in such a place, then a measurement ofH0 would immediately tell us the

age of the universe t0 =
2

3
H

�1

0
. Using the observed value ofH0 ⇡ 70 km s�1 Mpc�1

gives

t0 ⇡ 9⇥ 109 years (1.50)
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The extra factor of 2/3 brings us down from the earlier estimate of 14 billion

years in (1.23) to 9 billion years. This is problematic since there are stars in the

universe that appear to be older than this.

Finally note that in the Einstein-de Sitter universe the matter density scales as

⇢(t) =
c
2

6⇡G

1

t2
(1.51)

In particular, there is a direct relationship between the age of the universe and

the present day matter density. We’ll revisit this relationship later.

• Radiation (w = 1/3): For a flat universe filled with radiation (e.g. light), we have

a(t) =

✓
t

t0

◆1/2

Once again, there is a direct relation between the Hubble constant and the age

of the universe, now given by t0 =
1

2
H

�1

0
. In a radiation dominated universe, the

energy density scales as

⇢(t) =
3c2

32⇡G

1

t2

• Curvature (w = �1/3): We can also apply the calculation above to a universe

with curvature a term, which is devoid of any matter. Indeed, the curvature term

in (1.45) acts just like a fluid (1.46) with w = �1/3. In the absence of any further

fluid contributions, the Friedmann equation only has solutions for a negatively

curved universe, with k = �1. In this case,

a(t) =
t

t0

This is known as the Milne universe.

A Comment on Multi-Component Solutions

If the universe has more than one type of fluid (or a fluid and some curvature) then it is

more tricky to write down analytic solutions to the Friedmann equations. Nonetheless,

we can build intuition for these solutions using our results above, together with the

observation that di↵erent fluids dilute away at di↵erent rates. For example, we have

seen that

⇢m ⇠
1

a3
and ⇢r ⇠

1

a4
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This means means that, in a universe with both dust and radiation (like the one we call

home) there will be a period in the past, when a is suitably small, when we necessarily

have ⇢r � ⇢m. As a increases there will be a time when the energy density of the two

are roughly comparable, before we go over to another era with ⇢m � ⇢r. In this way,

the history of the universe is divided into di↵erent epochs. When one form of energy

density dominates over the other, the expansion of the universe is well-approximated

by the single-component solutions we met above .

The Big Bang Revisited: A Baby Singularity Theorem

All of the solutions we met above have a Big Bang, where a = 0. It is natural to ask: is

this a generic feature of the Friedmann equation with arbitrary matter and curvature?

Within the larger framework of general relativity, there are a number of important

theorems which state that, under certain circumstances, singularities in the metric

necessarily arise. The original theorems, due to Penrose (for black holes) and Hawking

(for the Big Bang), are tour-de-force pieces of mathematical physics. You can learn

about them next year. Here we present a simple Mickey mouse version of the singularity

theorem for the Friedmann equation.

We start with the Friedmann equation, written as

ȧ
2 =

8⇡G

3c2
⇢a

2
�

kc
2

R2

Di↵erentiating both sides with respect to time gives

2äȧ =
8⇡G

3c2
�
⇢̇a

2 + 2⇢ȧa
�
=

8⇡G

3c2
(�3ȧa(⇢+ P ) + 2⇢ȧa)

where, in the second equality, we have used the continuity equation ⇢̇+3H(⇢+P ) = 0

Rearranging gives the acceleration equation

ä

a
= �

4⇡G

3c2
(⇢+ 3P ) (1.52)

This is also known as the Raychaudhuri equation and will be useful in a number of

places in this course. (It is a special case of the real Raychaudhuri equation, which has

application beyond cosmology.) Using this result, we can prove the following:

Claim: If matter obeys the strong energy condition

⇢+ 3P � 0 (1.53)

then there was a singularity at a finite time tBB in the past where a(tBB) = 0. Fur-

thermore, t0 � tBB  H
�1

0
.
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Proof: The strong energy condition immediately tells us that ä/a  0. This is the

statement that the universe is decelerating, meaning that it must have been expanding

faster in the past.

Suppose first that ä = 0. In this case we must have

t0tBB

a(t)

t

H−1
0

Figure 13:

a(t) = H0t + const. (We have used the fact that H0 = ȧ0

since a0 = 1). This is the dotted line shown in the figure.

If this is the case, the Big Bang occurs at t0 � tBB = H
�1

0
.

But the strong energy condition ensures that ä  0, so the

dotted line in the figure provides an upper bound on the

scale factor. In such a universe, the Big Bang must occur

at t0 � tBB  H
�1

0
. ⇤

The proof above is so simple because we have restricted

attention to the homogeneous and isotropic FRW universe.

Hawking’s singularity theorem (proven in his PhD thesis) shows the necessity of a

singularity even in the absence of such assumptions.

The strong energy condition is obeyed by all conventional matter, including dust and

radiation. However, it’s not hard to find substances which violate it, and we shall meet

examples as we go along. When the strong energy condition is violated, we have an

accelerating universe with ä > 0. In this case, the single component solutions (1.48)

still have a Big Bang singularity. However, the argument above cannot rule out the

possibility of more complicated solutions which avoid this.

The Future Revisited: Cosmological Event Horizons

Recall from section 1.1.4 the idea of an event horizon: for certain universes, it may

be that our friends in distant galaxies get swept away from us by the expansion of

space and are lost to us forever. At a time t, the furthest distance with which we can

communicate, rmax is governed by the equation (1.25)

c

Z 1

t

dt
0

a(t0)
=

Z
rmax(t)

0

drp
1� kr2/R2

If the integral on the left converges then rmax is finite and there is a cosmological

horizon.

When does this happen? If the late time universe is dominated by a single component

with expansion given by a ⇠ t
2/(3+3w) as in (1.48) then

Z
dt

a(t)
⇠

Z
dt

t2/(3+3w)
⇠ t

(3w+1)/(3w+3)
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For w � �1/3, the integral diverges and there is no event horizon. (In the limiting

case of w = �1/3, the integral is replaced by log t.) For �1  w < �1/3, the integral

converges and there is a horizon.

Fluids with w < �1/3 are precisely those which violate the strong energy condi-

tion (1.53). We learn that cosmological event horizons arise whenever the late time

expansion of the universe is accelerating, rather than decelerating.

1.3.2 Curvature and the Fate of the Universe

Let’s look again at a flat universe, with k = 0. The Friedmann equation (1.45) tells us

that for such a universe to exist, something rather special has to happen, because the

energy density of the universe today ⇢0 has to be precisely correlated with the Hubble

constant

H
2

0
=

8⇡G

3c2
⇢0

We saw such behaviour in our earlier solutions. For example, this led us to the result

(1.51) which relates the energy density of an Einstein-de Sitter universe to the current

age of the universe.

In principle, this gives a straightforward way to test whether the universe is flat.

First, you measure the expansion rate as seen in H0. Then you add up all the energy

in the universe and see if they match. In practice, this isn’t possible because, as we

shall see, much of the energy in the universe is invisible.

What happens if we have a universe with some small curvature and, say, a large

amount of conventional matter with w = 0? We can think of the curvature term in

the Friedmann equation as simply another contribution to the energy density, ⇢k, one

which dilutes away more slowly that the matter contribution,

⇢m ⇠
1

a3
and ⇢k ⇠

1

a2

This tells us that, regardless of their initial values, if we wait long enough then the

curvature of space will eventually come to dominate the dynamics.

If we start with ⇢m > ⇢k, then there will be a moment when the two are equal,

meaning

8⇡G

3c2
⇢m =

|k|c
2

R2a2
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For a negatively curved universe, with k = �1, the Friedmann equation (1.45) gives

ȧ > 0. However, for a positively curved universe, with k = +1, we find ȧ = 0 at the

moment of equality. In other words, the universe stops expanding. In fact, as we now

see, such a positively curved universe subsequently contracts until it hits a big crunch.

Perhaps surprisingly, it is possible to find an exact solution to the Friedmann equation

with both matter and curvature. To do this, it is useful to work in conformal time (1.26),

defined by

⌧(t) =

Z
t

0

dt
0

a(t0)
)

d⌧

dt
=

1

a
(1.54)

We further define the dimensionless time coordinate ⌧̃ = c⌧/R. (In flat space, with

k = 0, just pick a choice for R; it will drop out in what follows.) Finally, we define

h =
a
0

a
with a

0 =
da

d⌧̃

In these variables, one can check that the Friedmann equation (1.45) becomes

h
2 + k =

8⇡GR
2

3c4
⇢a

2 (1.55)

Rather than solve this in conjunction with the continuity equation, it turns out to be

more straightforward to look at the acceleration equation (1.52). A little algebra shows

that, for matter with P = 0, the acceleration equation becomes

h
0 = �

4⇡GR
2

3c4
⇢a

2
) 2h0 + h

2 + k = 0 (1.56)

where, to get the second equation, we have simply used (1.55). Happily this latter

equation is independent of ⇢ and we can go ahead and solve it. The solutions are:

h(⌧̃) =

8
>><

>>:

cot(⌧̃/2) k = +1

2/⌧̃ k = 0

coth(⌧̃/2) k = �1

We can then solve h = a
0
/a to derive an expression for the scale factor a(⌧̃) as a function

of ⌧̃ ,

a(⌧̃) = A⇥

8
>><

>>:

sin2(⌧̃/2) k = +1

⌧̃
2

k = 0

sinh2(⌧̃/2) k = �1

(1.57)
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a(t)

t
k=+1

k=0

k=−1

Figure 14: The FRW scale factor for a matter dominated universe with curvature.

with A an integration constant. We see that, as advertised, the positively curved

k = 1 universe eventually re-collapses, with the Big Crunch occurring at conformal

time ⌧ = 2⇡R/c. In contrast, the negatively curved k = �1 universe expands for ever.

The flat space k = 0 separates these two behaviours.

Finally, we can use the solution for the scale factor to determine how conformal time

(1.54) scales with our original time coordinate t,

t =
RA

2c
⇥

8
>><

>>:

⌧̃ � sin ⌧̃ k = +1
2

3
⌧̃
3

k = 0

sinh ⌧̃ � ⌧̃ k = �1

(1.58)

In the k = 0 case, this reproduces our previous result (1.49) for the expansion of the

Einstein-de Sitter universe. The resulting scale factors a(t) are sketched in Figure 14.

There are a couple of lessons to take from this calculation. The first is that a flat

universe is dynamically unstable, rather like a pencil balancing on its tip. Any small

initial curvature will grow and dominate the late time behaviour.

The second lesson comes with an important caveat. The result above suggests that

a measurement of curvature of the space will tell us the ultimate fate of the universe.

If we find k = 1, then we are doomed to su↵er a Big Crunch. On the other hand,

a curvature of k = �1 or k = 0 means that universe expands for ever, becoming

increasingly desolate and lonely. However, this conclusion relies on the assumption

that the dominant energy in the universe is matter. In fact, it’s not hard to show that

the conclusion is unaltered provided that all energies in the universe dilute away faster
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than the curvature. However, as we will now see, there are more exotic fluids at play

in the universe for which the conclusion does not hold.

1.3.3 The Cosmological Constant

The final entry in the dictionary of cosmological fluids is both the most strange and, in

some ways, the most natural. A cosmological constant is a fluid with equation of state

w = �1. The associated energy density is denoted ⇢⇤ and obeys

⇢⇤ = �P

First the strange. The continuity equation (1.39) tells us that such an energy density

remains constant over time: ⇢⇤ ⇠ a
0. Naively, that would seem to violate the conser-

vation of energy. However, as stressed previously, energy is a rather slippery concept in

an expanding universe and the only thing that we have to worry about is the continuity

equation (1.39) which is happily obeyed. So this is something we will just have to live

with. For now, note that any universe with ⇢⇤ 6= 0 will ultimately become dominated

by the cosmological constant, as all other energy sources dilute away.

Now the natural. The cosmological constant is something that you’ve seen before.

Recall that whenever you write down the energy of a system, any overall constant

shift of the energy is unimportant and does not a↵ect the physics. For example, in

classical mechanics if we have a potential V (x), then the force is F = �rV which

cares nothing about the constant term in V . Similarly, in quantum mechanics we work

with the Hamiltonian H, and adding an overall constant is irrelevant for the physics.

However, when we get to general relativity, it becomes time to pay the piper. In the

context of general relativity, all energy gravitates, including the constant energy that

we previously neglected. And the way this constant manifests itself is as a cosmological

constant. For this reason, the cosmological constant is also referred to as vacuum

energy.

Strictly speaking, ⇢⇤ is the vacuum energy density, while the cosmological constant

⇤ is defined as

⇢⇤ =
⇤c2

8⇡G

so ⇤ has dimensions of (time)�2. (Usually, by the time people get to describing the

cosmological constant, they have long set c = 1, so other definitions may di↵er by

hidden factors of c.) Here we will treat the terms “cosmological constant” and “vacuum
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energy” as synonymous. In the presence of a cosmological constant and other matter,

the Friedmann equation becomes

H
2 =

8⇡G

3c2
⇢+

⇤

3
�

kc
2

R2a2
(1.59)

We will shortly solve this in various cases. Before we do, we pause to ask a slightly

oblique question. How does the cosmological constant appear in our Newtonian analysis

of Section 1.2.3? To see this, we indulge in a little bit of answer analysis and work

backwards. You can check that the steps that previously took us from Newton’s law

of motion (1.43) to the Friedmann equation (1.44), now require that we start with

Newton’s law in the form

1

2
ṙ
2
�

GM(r)

r
�

1

6
⇤r2 = E (1.60)

In other words, the cosmological constant acts like a harmonic oscillator, with potential

V (r) = �
1

6
⇤r2. For ⇤ > 0 this is a an inverted harmonic oscillator and our (admittedly

slightly dodgy) Newtonian analysis suggests that particles will race o↵ to r ! 1.

Meanwhile, for ⇤ < 0 we have a standard harmonic oscillator, which suggests that

particles will be trapped. We’ll now see that, suitably interpreted, this is not a bad

way to think about the cosmological constant.

de Sitter Space

First, consider a universe with positive cosmological constant ⇤ > 0. If we empty it

of all other matter, so that ⇢ = 0, then we can solve the Friedmann equation for any

choice of curvature k = �1, 0,+1 to give

a(t) =

8
>>><

>>>:

A cosh
⇣p

⇤/3 t
⌘

k = +1

exp
⇣p

⇤/3 t
⌘

k = 0

A sinh
⇣p

⇤/3 t
⌘

k = �1

where A2 = 3c2/⇤R2 for the k = ±1 solutions, and for all solutions we’ve made a choice

of an integration constant. At large time, all of these solutions exhibit exponential

behaviour, independent of the spatial curvature. In fact, it turns out (although we

won’t show it here) that each of these solutions describes the same spacetime, but with

di↵erent coordinates that slice spacetime into space+time in di↵erent ways. (This is

described in the lectures on General Relativity.) This spacetime is known as de Sitter

space.
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The k = +1 solution most accurately represents the geometry of de Sitter space

because it uses coordinates which cover the whole spacetime. It shows a contracting

phase when t < 0, followed by a phase of accelerating expansion when t > 0. The phase

of exponential expansion is what was captured in our naive Newtonian perspective

which suggested that particles “race o↵ to infinity”. Crucially, there is no Big Bang

because there’s no point in time when a = 0. In contrast, the k = 0 and k = �1

coordinates give a slightly misleading view of the space, because they suggest a Big Bang

when t = �1 and t = 0 respectively. You need to work harder to show that actually

this is an artefact of the choice of coordinates (a so-called “coordinate singularity”)

rather than anything physical. These kind of issues will be addressed in next term’s

course on general relativity.

To better understand this spacetime and, in particular, the existence of cosmological

horizons, it is best to work with k = +1 and conformal time, ⌧ 2 (�⇡/2,+⇡/2), given

by

cos
⇣p

⇤/3⌧
⌘
=
h
cosh

⇣p
⇤/3t

⌘i�1

You can check that d⌧/dt = 1/ cosh(
p

⇤/3 t), which, up to an overall unimportant

scale, is the definition of conformal time (1.26). In these coordinates, the metric for de

Sitter space becomes

ds
2 =

1

cos2(
p

⇤/3⌧)

⇥
�c

2
d⌧

2 +R
2
d�

2 +R
2 sin2

�(d✓2 + sin2
✓ d�

2)
⇤

where we’re using the polar coordinates (1.6) on the spa-

τ=−π/2

τ=+π/2

χ=0 χ=π

Figure 15:

tial S3. We now consider a fixed ✓ and � and draw the

remaining 2d spacetime in the (c⌧,�) plane where ⌧ 2

(�⇡/2, ⇡/2) and � 2 [0, ⇡]. The left-hand edge of the dia-

gram can be viewed as the north pole of S3, � = 0, while

the right-hand edge of the diagram is the south pole � = ⇡.

The purpose of this diagram is not to exhibit distances be-

tween points, because these are distorted by the 1/ cos2 ⌧

factor in front of the metric. Instead, the diagram shows

only the causal structure, with 45� lines denoting light

rays.

Consider an observer sitting at the north pole. She has a particle horizon and an

event horizon. Even if she waits forever, as shown in the figure, there will be part of

the spacetime that she never sees.
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Anti-de Sitter Space

We could also look at solutions with ⇤ < 0, again devoid of any matter so ⇢ = 0. A

glance at the Friedmann equation (1.59) shows that such solutions can only exist when

k = �1. In this case, the scale factor is given by

a(t) = A sin
⇣p

�⇤/3 t
⌘

This is known as anti-de Sitter space. It has, as far as we can tell, no role to play in

cosmology. However it has become rather important as a testing ground for ideas in

quantum gravity and holography. In many ways, anti-de Sitter space acts like a gravi-

tational box, trapping particles inside. This was suggested by the Newtonian, harmonic

potential picture and will be explored more in the lectures on General Relativty. We

will not discuss anti-de Sitter space further in these lectures.

Matter + Cosmological Constant

For a flat k = 0 universe, we can find a solution for a positive cosmological constant

⇤ > 0, with matter ⇢m ⇠ 1/a3. We write the Friedmann equation as
✓
ȧ

a

◆2

=
8⇡G

3c2

⇣
⇢⇤ +

⇢0

a3

⌘

This has the solution

a(t) =

✓
⇢0

⇢⇤

◆1/3

sinh2/3

 p
3⇤t

2

!
(1.61)

There are a number of comments to make about this. First note that, in contrast to de

Sitter space, the Big Bang has unavoidably reappeared in this solution at t = 0 where

a(t = 0) = 0. This, it turns out, is generic: any universe more complicated than de

Sitter (like ours) has a Big Bang singularity.

The present day time t0 is defined, as always, by a(t0) = 1. There is also another

interesting time, teq, where we have matter-vacuum energy equality, so that ⇢⇤ = ⇢0/a
3.

This occurs when

sinh

 p
3⇤teq
2

!
= 1 (1.62)

At late times, the solution (1.61) coincides with the de Sitter expansion a(t) ⇠ e

p
⇤/3t,

telling us that the cosmological constant is dominating as expected. Meanwhile, at

early times we have a ⇠ t
2/3 and we reproduce the characteristic expansion of the

Einstein-de Sitter universe (1.49).
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An Historical Curiosity: The Einstein Static Universe

The cosmological constant was first introduced by Einstein in 1917 in an attempt to

construct a static cosmology. This was over a decade before Hubble’s discovery of the

expanding universe.

The acceleration equation (1.52)

ä

a
= �

4⇡G

3c2
(⇢+ 3P ) (1.63)

tells us that a static universe is only possible if ⇢ = �3P . Obviously this is not possible

if we have only matter ⇢m with Pm = 0 or only a cosmological constant ⇢⇤ = �P⇤.

But in a universe with both, we can have

⇢ = ⇢m + ⇢⇤ = �3P = 3⇢⇤ ) ⇢m = 2⇢⇤

The Friedmann equation (1.59) is then

H
2 =

8⇡G

3c2
(⇢m + ⇢⇤)�

kc
2

R2a2

and the right-hand side vanishes if we take a positively curved universe, k = +1, with

radius

(Ra)2 =
c
4

8⇡G⇢⇤
=

c
2

⇤
(1.64)

This is the Einstein static universe. It is unstable. If a is a little smaller than the

critical value (1.64) then ⇢m ⇠ a
�3 is a little larger and the acceleration equation (1.63)

says that a will decrease further. Similarly, if a is larger than the critical value it will

increase further.

1.3.4 How We Found Our Place in the Universe

In 1543, Copernicus argued that we do not sit at the centre of the universe. It took

many centuries for us to understand where we do, in fact, sit.

Thomas Wright was perhaps the first to appreciate the true vastness of space. In

1750, he published “An original theory or new hypothesis of the universe”, suggesting

that the Milky Way, the band of stars that stretches across the sky, is in fact a “flat

layer of stars” in which we are embedded, looking out. He further suggested that cloudy

spots in the night sky, known as nebulae, are other galaxies, “too remote for even our

telescopes to reach”.
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Wright was driven by poetry and art as much

Figure 16: The wonderful imagina-

tion of Thomas Wright

as astronomy and science and his book is illus-

trated by glorious pictures. His flights of fantasy

led him to guesstimate that there are 3, 888, 000

stars in the Milky Way, and 60 million planets.

We now know, of course, that Wright’s imagina-

tion did not stretch far enough: he underestimated

the number of stars in our galaxy by 7 orders of

magnitude.

Wright’s suggestion that spiral nebulae are far

flung galaxies, similar to our own Milky Way, was

not met with widespread agreement. As late as

1920, many astronomers held that these nebulae were part of the Milky Way itself.

Their argument was simple: if these were individual galaxies, or “island universes” as

Kant referred to them, then they would lie at distances too vast to be credible.

The dawning realisation that our universe does indeed spread over such mind bog-

gling distances came only with the discovery of redshifts. The American astronomer

Vesto Slipher was the first to measure redshifts in 1912. He found spiral nebulae with

both blueshifts and redshifts, some moving at speeds which are much too fast to be

gravitationally bound to the Milky Way. Yet Slipher did not appreciate the full signif-

icance of his observations.

A number of other astronomers improved on Slipher’s result, but the lion’s share of

the credit ended up falling into the lap of Edwin Hubble. His data, first shown in 1925,

convinced everyone that the nebulae do indeed lie far outside our galaxy at distances of

hundreds of kiloparsecs. Subsequently, in 1929 he revealed further data and laid claim

to the law v = Hx that bears his name. For this, he is often said to have discovered

the expanding universe. Yet strangely Hubble refused to accept this interpretation of

his data, claiming as late as 1936 that “expanding models are definitely inconsistent

with the observations that have been made”.

It fell to theorists to put the pieces together. A framework in which to discuss the

entire cosmos came only with the development of general relativity in 1915. Einstein

himself was the first to apply relativity to the universe as a whole. In 1917, driven by a

philosophical urge for an unchanging universe, he introduced the cosmological constant

to apply a repulsive pressure which would counteract the gravitational attraction of
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matter, resulting in the static spacetime that we met in (1.64). After Einstein’s death,

the physicist Gammow gave birth to the famous “biggest blunder” legend, stating

“Einstein remarked to me many years ago that the cosmic repulsion idea

was the biggest blunder he had made in his entire life.”

Many other physicists soon followed Einstein. First out of the blocks was the dutch

astronomer Willem de Sitter who, in 1917, published the solution that now bears his

name, describing a spacetime with positive cosmological constant and no matter. de

Sitter originally wrote the solution in strange coordinates, which made him think that

his spacetime was static rather than expanding. He was then surprised to discover that

signals between distant observers are redshifted. Both Slipher and Hubble referred to

their redshift observations as the “de Sitter e↵ect”.

In St Petersburg, an applied mathematician-cum-meteorologist called Alexander

Friedmann was also looking for solutions to the equations of general relativity. He

derived his eponymous equation in 1922 and found a number of solutions, including

universes which contracted and others which expanded indefinitely. Remarkably, at

the end of his paper he pulls an estimate for the energy density of the universe out

of thin air, gets it more or less right, and comes up with an age of the universe of 10

billion years. Sadly his work was quickly forgotten and three years later Friedmann

died. From eating a pear. (No, really.)

The first person to understand the big picture was a Belgian, Catholic priest called

Georges Lemâıtre. In 1927 he independently reproduced much of Friedmann’s work,

finding a number of further solutions. He derived Hubble’s law (two years before

Hubble’s observations), extracting the first derivation of H0 in the process and was,

moreover, the first to connect the redshifts predicted by an expanding universe with

those observed by Slipher and Hubble. For this reason, many books refer to the FRW

metric as the FLRWmetric. Although clearly aware of the significance of his discoveries,

he chose to publish them in French in “Annales de la Société Scientifique de Bruxelles”,

a journal which was rather far down the reading list of most physicists. His work only

became publicised in 1931 when a translation was published in the Monthly Notices

of the Royal Astronomical Society, by which time much of the credit had been bagged

by Hubble. Lemâıtre, however, was not done. Later that same year he proposed what

he called the “hypothesis of the primeval atom”, these days better known as the Big

Bang theory. He was also the first to realise that the cosmological constant should be

identified with vacuum energy.
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We have not yet met R and W. The first is Howard Robertson who, in 1929, de-

scribed the three homogeneous and isotropic spaces. This work was extended in 1935

by Roberston and, independently, by Arthur Walker, who proved these are the only

possibilities.

Despite all of these developments, there was one particularly simple solution that had

fallen through the cracks. It fell to Einstein and de Sitter to fill this gap. In 1932, when

both were visitors at Caltech, they collaborated on a short, 2 page paper in which they

described an expanding FRW universe with only matter. The result is the Einstein-de

Sitter universe that we met in (1.49). Apparently neither thought very highly of the

paper. Eddington reported a conversation with Einstein, who shrugged o↵ this result

with

“I did not think the paper very important myself, but de Sitter was keen

on it.”

On hearing this, de Sitter wrote to Eddington to put the record straight,

“You will have seen the paper by Einstein and myself. I do not myself

consider the result of much importance, but Einstein seemed to think it

was.”

This short, unimportant paper, unloved by both authors, set the basic framework for

cosmology for the next 60 years, until the cosmological constant was discovered in the

late 1990s. As we will see in the next section, it provides an accurate description of the

expansion of the universe for around 10 billion years of its history.

1.4 Our Universe

The time has now come to address the energy content and geometry of our own universe.

We have come across a number of di↵erent entities that can contribute to the energy

density of a universe. The three that we will need are

• Conventional matter, with ⇢m ⇠ a
�3

• Radiation, with ⇢r ⇠ a
�4

• A cosmological constant, with ⇢⇤ constant.

We will see that these appear in our universe in somewhat surprising proportions.
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Critical Density

Recall from Section 1.3.2 that in a flat universe the total energy density today must

sum to match the Hubble constant. This is referred to as the critical energy density,

⇢crit,0 =
3c2

8⇡G
H

2

0
(1.65)

We use this to define dimensionless density parameters for each fluid component,

⌦w =
⇢w,0

⇢crit,0

We have not included a subscript 0 on the density parameters but, as the definition

shows, they refer to the fraction of energy observed today. Cosmologists usually specify

the energy density in our Universe in terms of these dimensionless numbers ⌦w.

By design, the dimensionless density parameters sum to
X

w=m,r,⇤

⌦w = 1 +
kc

2

R2H
2

0

In particular, if we are to live in a flat universe then we must have
P

w
⌦w = 1. Any

excess energy density, with
P

w
⌦w > 1 means that we necessarily live in a positively

curved universe with k = +1. Any deficit in the energy, with
P

w
⌦w < 1 gives rise to

a negatively curved, k = �1 universe.

It is sometimes useful to place the curvature term on a similar footing to the other

energy densities. We define the energy density in curvature to be

⇢k = �
3kc4

8⇡GR2a2

and the corresponding density parameter as

⌦k =
⇢k,0

⇢crit,0
= �

kc
2

R2H
2

0

(1.66)

With these definitions, together with the scaling ⇢w = ⇢w,0 a
�3(1+w), the Friedmann

equation

H
2 =

8⇡G

3c2

X

w=m,r,⇤

⇢w �
kc

2

R2a2

can be rewritten in terms of the density parameters as
✓
H

H0

◆2

=
⌦r

a4
+

⌦m

a3
+

⌦k

a2
+ ⌦⇤ (1.67)

One of the tasks of observational cosmology is to measure the various parameters in

this equation.
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1.4.1 The Energy Budget Today

After many decades of work, we have been able to measure the energy content of our

universe fairly accurately. The two dominant components are

⌦⇤ = 0.69 and ⌦m = 0.31 (1.68)

The cosmological constant, which we now know comprises almost 70% of the energy of

our universe, was discovered in 1998. There are now two independent pieces of evidence.

The first comes from direct measurement of Type Ia supernovae at large redshifts. (We

saw the importance of supernovae in Section 1.1.5.) Similar data from 2003 is shown

in Figure 174. The 2011 Nobel prize was awarded to Perlmutter, Schmidt and Riess

for this discovery.

The second piece of evidence is slightly more indirect, although arguably cleaner. The

fluctuations in the cosmic microwave background (CMB) contain a wealth of informa-

tion about the early universe. In combination with information from the distribution

of galaxies in the universe, this provides separate confirmation of the results (1.68), as

shown in Figure 18. (The label BAO in this figure refers “baryon acoustic oscillations”;

we will briefly discuss these in Section 3.2.4.)

All other contributions to the current energy budget are orders of magnitude smaller.

For example, the amount of energy in photons (denoted as �) is

⌦� ⇡ 5⇥ 10�5 (1.69)

Moreover, as the universe expanded and particles lost energy and slowed, they can

transition from relativistic speeds, where they count as “radiation”, to speeds much

less than c where they count as “matter”. This happened fairly recently to neutrinos,

which contribute ⌦⌫ ⇡ 3.4⇥ 10�5.

Finally, there is no evidence for any curvature in our universe. The bound is

|⌦k| < 0.01

This collection of numbers, ⌦m, ⌦⇤, ⌦r and ⌦k sometimes goes by the name of the

⇤CDM model, with ⇤ denoting the cosmological constant and CDM denoting cold

dark matter, a subject we’ll discuss more in Section 1.4.3.

4This data is taken from R. Knopp et al., “New Constraints on ⌦m, ⌦⇤, and w from an Independent
Set of Eleven High-Redshift Supernovae Observed with HST”, Astrophys.J.598:102 (2003).
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Fig. 6.— Upper panel: Averaged Hubble diagram with a linear redshift scale
for all supernovae from our low-extinction subsample. Here supernovae within
�z < 0.01 of each other have been combined using a weighted average in order
to more clearly show the quality and behavior of the dataset. (Note that these
averaged points are for display only, and have not been used for any quantitative
analyses.) The solid curve overlaid on the data represents our best-fit flat-universe
model, (⌦M, ⌦⇤) = (0.25, 0.75) (Fit 3 of Table 8). Two other cosmological mod-
els are shown for comparison: (⌦M, ⌦⇤) = (0.25, 0) and (⌦M, ⌦⇤) = (1, 0). Lower
panel: Residuals of the averaged data relative to an empty universe, illustrating the
strength with which dark energy has been detected. Also shown are the suite of
models from the upper panel, including a solid curve for our best-fit flat-universe
model. 23

Figure 17: The redshift of a number of supernovae plotted against measured brightness.

Various theoretical curves are shown for comparison.

The lack of any suggestion of curvature strongly suggests that we are living in a

universe with k = 0. Given that the curvature of the universe is a dynamical variable

and, as we have seen in Section 1.3.2, the choice of a flat universe is unstable, this

is rather shocking. We will o↵er a putative explanation for the observed flatness in

Section 1.5.

Energy and Time Scales

To convert the dimensionless ratios above into physical energy densities and time scales,

we need an accurate measurement of the Hubble constant. Here there is some minor

controversy. A direct measurement from Type IA supernovae gives5

H0 = 74.0 (±1.4) km s�1Mpc�1

5The latest supernova data can be found in Riess et al., arXiv:1903.07603. Meanwhile, the final
Planck results, extracting cosmological parameters from the CMB, can be found at arXiv:1807.06209.
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Figure 18: CMB, BAO and Supernovae results combined.

Meanwhile, analysis of the cosmic microwave background measured by the Planck satel-

lite puts the value at

H0 = 67.4 (±0.5) km s�1Mpc�1

The error bars suggest a 3� discrepancy between the two measurements. Most of

the community suspect that there is some systematic issue in one of the measurements,

possibly in our understanding of cepheid luminosity which is used as a calibration for the

supernovae results. However, it remains a possibility that there is something important

and fundamental hiding in this mismatch. Here we use H0 ⇡ 70 km s�1Mpc�1. If we

translate this into a time scale, we get

1

H0

= 4.3⇥ 1018 s = 1.4⇥ 1011 years (1.70)

From a knowledge of the Hubble constant, and with k = 0, the expression (1.65) tells

us that the total energy density of the universe is equal to the critical density,

⇢crit,0 =
3c2H2

0

8⇡G
= 8.5 ⇥ 10�10 kgm�1s�2 (1.71)

A di↵erent method of calibrating supernovae distances has recently found the result H0 =
69.8(±1.7) km s�1Mpc�1, in much closer agreement with the CMB data; see arXiv:1907.05922.
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The corresponding mass density is

⇢crit,0

c2
=

3H2

0

8⇡G
⇡ 10�26 kgm�3 (1.72)

This is about one galaxy per cubic Mpc. Or, in more down to earth terms, one hydrogen

atom per cubic metre. (Or, if you like, 10�68 galaxies per cubic metre!) The actual

matter in the universe is, of course, fractionally less at ⇢m,0 = ⌦m⇢crit,0.

With the universe dominated by ⇢⇤ and ⇢m, the solution (1.61), given by

a(t) =

✓
⇢0

⇢⇤

◆1/3

sinh2/3

 p
3⇤t

2

!

o↵ers a good description of the expansion for much of this history. Recall that, in such

a solution, the Big Bang takes place at t = 0 while the present day is defined by

sinh2

 p
3⇤t0
2

!
=

⇢⇤

⇢0

Inverting this gives the age

t0 =
c

p
6⇡G⇢⇤

sinh�1

✓r
⇢⇤

⇢0

◆
=

2

3
p
⌦⇤H0

sinh�1

 r
⌦⇤

⌦0

!

The various factors almost cancel out, leaving us with an age which is very close to the

naive estimate (1.23)

t0 ⇡ 0.96⇥
1

H0

⇡ 1.4⇥ 1010 years

We can also calculate the age at which the vacuum energy was equal to the energy in

matter (1.62). We get

teq =
2

3
p
⌦⇤H0

sinh�1(1) ⇡ 0.7⇥
1

H0

⇡ 0.98⇥ 1010 years

or about 4 billion years ago. To put this in perspective, the Earth is around 4.5

billion years old, and life started to evolve (at least) 3.5 billion years ago. In the grand

scheme of things, equality between matter energy density and the cosmological constant

occurred very recently.
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Throughout these lectures, we will often use redshift z, rather than years, to refer to

the time at which some event happened. Recall the the redshift is defined as (1.21)

1 + z =
1

a

This means that at redshift z,the universe was 1/(1+z)th its present size. This has the

advantage that it’s very easy to compute certain numbers in terms of z. For example,

the equality of the cosmological constant and matter occurred when ⇢m = ⇢⇤ which,

in terms of todays fractional energy density ,means that ⌦m/a
3 = ⌦⇤. Plugging in the

numbers gives z = 0.3.

Matter-Radiation Equality

Today, radiation is an almost negligible part of the total energy density. However, this

wasn’t always the case. Because ⇢r ⇠ 1/a4, as we go backwards in time the energy

density in radiation grows much faster than matter, with ⇢ ⇠ 1/a3, or the cosmological

constant. We can ask: when do we have matter-radiation equality? In terms of redshift

this requires

⌦m

a3
=

⌦r

a4

Here there is a small subtlety because neutrinos transition from relativistic to non-

relativistic during this period. If we include the present day neutrino density as radia-

tion, then we have ⌦r ⇡ 8.4⇥ 10�5, which gives matter-radiation equality at z ⇡ 3700.

A more accurate assessment gives

zeq ⇡ 3400 (1.73)

We can translate this into years. The universe was matter dominated for most of

the time since z = 3400, with the cosmological constant becoming important only

(relatively) recently. If we work with a(t) = (t/t0)2/3 as befits a matter-dominated

universe, then we can trace back the evolution from the present day to get a rough

estimate for the time of matter-radiation equality to be

teq =
t0

(1 + zeq)3/2
⇡ 70, 000 years

A more accurate calculation gives

teq ⇡ 50, 000 years

Prior to this, the universe was radiation dominated.

– 53 –



ρ(t)/ρ
crit,0

log ( )

1

matter

radiation

cosmological constant

10

0

10
−4

10
−3

10
−1

10
−2

5

a(t)

Figure 19: The evolution of the energy densities in our universe.

A plot of the evolution of the three kinds of energy is shown in Figure 19.

1.4.2 Dark Energy

For a number of observational cosmologists, who had long been wrestling with the

di�culty of reconciling the early age (1.50) of a matter dominated universe with the

lifetime of stars, the discovery of the cosmological constant came as a welcome relief.

However, for the more theoretical minded physicists, it was something of a bombshell.

In the comfortable world of classical physics, there is no mystery to the cosmological

constant. It is, as we have seen, simply the constant energy term that we previously

neglected. However, our fundamental theories of physics are quantum. And here there

is a problem, because they provide a way to estimate the size of the cosmological

constant ⇤.

Even before we put in any numbers, it’s obvious that it’s going to be a challenge to

predict ⇤ from any underlying, quantum theory. That’s simply because of the order of

magnitudes. Recall that ⇤ has dimensions of (time)�2 and is given approximately by

⇤ ⇠ H
2

0
. As we saw in (1.70), this time scale is measured in billions of years,

⇤ ⇡
1

(1011 years)2

That’s a rather long time in anyone’s book. But it’s an especially long time from

the perspective of fundamental particles, where time scales are typically measured in

fractions of a second. Before we put in any numbers at all, it’s clear that if we try
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to derive the cosmological constant using, say, the Standard Model of particle physics

then we’re never going to get the right answer! You’re surely going to get a much larger

cosmological constant associated to a microscopic timescale.

Having convinced ourselves that no calculation of this kind can possibly work, let’s

go ahead and do it anyway, just to see how badly we fail. The story is usually told in

terms of the relevant energy scales, rather than time scales. Taking the critical energy

density to be (1.71), the observed vacuum energy density is ⇢⇤ ⇡ 6 ⇥ 10�10 Jm�3.

However, a more natural unit of energy is not the joule, but the electron volt, with

1 J ⇡ 6.2⇥ 1018 eV. In these units,

⇢⇤ = 3.7⇥ 109 eVm�3

Perhaps more surprisingly, our preferred unit of inverse length is also the electron

volt! To convert from one to the other, we use the fundamental constants of nature,

~c ⇡ 2.0⇥ 10�7 eVm. Putting this together, gives

~3c3⇢⇤ ⇡ (10�3 eV)4

Usually, this is written in natural units, with ~ = c = 1, so that

⇢⇤ ⇡ (10�3 eV)4

What are our expectations for the vacuum energy? Our fundamental laws of physics

are written in framework called quantum field theory. All quantum field theories have

a term, analogous to the +1

2
~! ground state energy of the harmonic oscillator, which

contributes to the vacuum energy of the universe. However, in contrast to the harmonic

oscillator, in quantum field theory the ground state energy gets contributions from all

possible frequencies. Taken at face value, this integral over frequencies would appear

to diverge.

To make sense of this divergence, we need to embrace a little humility. Our theories

have not been tested to arbitrarily high energy scales, and surely break down at some

point. The best we can say at present is that the theories make sense up to the scales

tested at the LHC, which operates at energies

MLHC ⇠ 1 TeV = 1012 eV

With this conservative estimate for the validity of our theories, the most “natural”

value for the vacuum energy arising from quantum field theory

⇢QFT = (1012 eV)4 = 1060⇢⇤
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This is not particularly close to the observed value. It is, moreover, a ridiculous num-

ber that makes no sense in the cosmological context. Such a universe would not be

conducive to forming nuclei or atoms, let alone galaxies and life. The huge discrep-

ancy between the expected value of ⇢QFT and the observed value of ⇢⇤ is known as the

cosmological constant problem.

Physicists with masochistic tendencies will try to make the situation look even worse.

There is some minimal, circumstantial evidence that the framework of quantum field

theory holds up to the Planck scale Mpl =
p

~c/8⇡G which corresponds to the energy

Mplc
2
⇡ 1019 GeV. In this case, we would get ⇢QFT = 10122⇢⇤. I’m not sure this way

of stating things is particularly helpful.

The value of ⇢QFT is not a precise prediction of quantum field theory, but rather a

ballpark figure for the natural energy scale of the theory. We are always free to just

add a further arbitrary constant to the energy of the theory. In that case, there are

two contributions

⇢⇤ = ⇢QFT + ⇢constant

Apparently, the two contributions on the right must add up to give the observed value

of ⇢⇤. We call this fine-tuning. As presented above, it looks fairly absurd: two numbers

of order 1060 (or higher) have to coincide in the first 60 digits, but di↵er in the 61st,

leaving behind a number of order 1.

It is quite possible that there is some missing principle that we’ve failed to grasp that

makes fine tuning less silly than it first appears. The task of finding such a mechanism

is made considerably harder when we realise that there have been a number of times

in the history of the universe when ⇢QFT abruptly changed while, presumably, ⇢constant
did not. This occurs at a phase transition. For example, the QCD phase transition,

where quarks which were once free became trapped in protons and neutrons, took place

in the early universe. At this moment, there was a change �⇢QFT ⇠ (100 MeV)4. Still

earlier, the electroweak phase transition, where the Higgs boson kicks in and gives mass

to fundamental particles, should have resulted in a change of �⇢QFT ⇠ (100 GeV)4.

In other words, any putative cancellation mechanism must conspire to give a tiny

cosmological constant ⇢⇤ at the end of the life of the universe, not at the beginning.

Given these di�culties, most physicists in the 20th century buried their heads in the

sand and assumed that there must be some deep principle that sets the cosmological

constant to zero. No such principle was found. In the 21st century, we have a much

harder job. We would like a deep principle that sets the late-time cosmological constant

to ⇢⇤ ⇠ (10�3 eV)4. Needless to say, we haven’t found that either.
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If this wasn’t bad enough, there is yet another issue that we should confront. The

value of the current vacuum energy is remarkably close to the energy in matter. Why?

As illustrated in Figure 19, these energy densities scale very di↵erently and we would

naively expect that they di↵er by orders of magnitude. Why are ⌦m and ⌦⇤ so very

close today? This is known as the coincidence problem. We have no good explanation.

The A-Word

As we saw above, a naive application of quantum field theory suggests a ludicrous value

for the cosmological constant, one that results in an expansion so fast that not even

atoms have a chance to form from their underlying constituents. Given this, we could

ask the following question: what is the maximum value of the cosmological constant

that still allows complex structures to evolve? For example, what is the maximum

allowed value of ⇤ that allows galaxies to form?

It turns out that the upper bound on ⇤ depends on the strength of the initial seeds

from which the galaxies grew. At very early times, there are small variations �⇢ in the

otherwise homogeneous universe. As we will discuss in more detail in Section 3, in our

universe these seeds have size �⇢/⇢ ⇠ 10�5. Let us fix this initial condition, and then

ask again: how big can the cosmological constant be?

We will present this calculation in Section 3.3.4. The answer is quite striking: the

scale of the vacuum energy is pretty much the maximum it could be. If ⇢⇤ were bigger

by an order of magnitude or so, then no galaxies would form, presumably making it

rather more di�cult for life to find a comfortable foothold in the universe.

What to make of this observation? One possibility is to shrug and move on. Another

is to weave an elaborate story. Suppose that our observable universe is part of a much

larger structure, a “multiverse” in which di↵erent domains exhibit di↵erent values of

the fundamental parameters, or perhaps even di↵erent laws of physics. In this way, the

cosmological constant is not a fundamental parameter which we may hope to predict,

but rather an environmental parameter, no di↵erent from, say, the distance between

the Earth and the Sun. We should not be shocked by its seemingly small value because,

were it any higher, we wouldn’t be around to comment on it. Such reasoning goes by

the name of the anthropic principle.

The anthropic explanation for the cosmological constant may be correct. But, in the

absence of any testable predictions, discussions of this idea rapidly descend into a haze

of sophomoric tedium. Trust me: there are better things to do with your life. (Like

find a proper explanation.)

– 57 –



A Rebranding: Dark Energy

Given our manifest befuddlement about all things ⇤, it is prudent to wonder if ⇢⇤ is

actually a cosmological constant at all. Perhaps it is some other form of fluid, with

an equation of state w ⇡ �1, rather than precisely w = �1. More interesting, it may

be a fluid whose equation of state evolves over time. (We will meet behaviour like

this in Section 1.5.) I stress that there are no compelling theoretical reasons to believe

that this is the case, and nor does it alleviate the need to explain why ⇢QFT does not

gravitate. Nonetheless, this is clearly an area where we are totally at sea and we should

be open to such possibilities. For these reasons, the mysterious 70% of the energy in

the universe is often referred to as dark energy.

1.4.3 Dark Matter

Our embarrassing ignorance of the universe we call home is further illustrated if we

delve a little deeper into the ⌦m = 0.31 energy in matter. Of this, the amount that we

understand is

⌦B ⇡ 0.05 (1.74)

This is the energy in matter made from atoms in the periodic table. The B in ⌦B

stands for “baryons”, which are protons and neutrons. This is appropriate because the

mass in electrons is negligible in comparison.

The remaining matter energy is in the form of cold dark matter,

⌦CDM ⇡ 0.26

This is stu↵ that we have not (yet?) created here on Earth. The “cold” refers to the

fact that it is non-relativistic today and, moreover, has been so for some time.

We know very little about this dark matter. We do not know if it is a single species

of particle, or many. We do not know if it consists of several decoupled sectors, or just

one. Given the wonderful complexity that lurks in ⌦B, it seems reasonable to assume

that there is still rather a lot to learn about ⌦CDM .

Here we simply describe some of the evidence for the existence of dark matter. To do

this, we need to construct methods to determine the mass of the large objects, such as

galaxies or clusters of galaxies. These are small enough for us to ignore the expansion

of the universe so, for the rest of this section, we will work in flat space.
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Figure 20: The rotation curve of galaxy M33. Image taken from Wikipedia.

Galaxy Rotation Curves

At the galactic scale, rotation curves provide a clean way to measure mass. This method

was pioneered by Vera Rubin and her collaborator Kent Ford in the 1960s and 70s.

For a quick and dirty sketch of the idea, we will assume spherical symmetry. A

quick glance at a typical spiral galaxy shows this is a poor approximation, at least

for the visible matter, but it will su�ce to get the basic idea across. The centrifugal

acceleration of a star, orbiting at distance r from the galactic centre, must be provided

by the gravitational force,

v
2

r
=

GM(r)

r2

where M(r) is the mass enclosed inside a sphere of radius r. We learn that we expect

the rotational speed to vary as

v(r) =

r
GM(r)

r

Far from the bulk of the galaxy, we would expect that M(r) is constant, so the velocity

drops o↵ as v ⇠
p

1/r. This is not what is observed. The rotation speeds can be

measured from the edge of the galaxy by studying interstellar gas, in particular the

21cm line of hydrogen. (The origin of this line was discussed in the Atomic Physics

section of the Lectures on Topics in Quantum Mechanics..) One finds that the rotation

remains more or less constant very far from what appears to be the edge of the galaxy.

This suggests that the mass continues to grow as M(r) ⇠ r far from the observable

galaxy. This is known as the dark matter halo.
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The Virial Theorem and Galaxy Clusters

The virial theorem o↵ers a clever method of weighing a collection of objects that are

far away.

Virial Theorem: A collection of N particles, with masses mi and positions xi,

interact through a gravitational potential

V =
X

i<j

Vij =
X

i<j

�
Gmimj

|xi � xj|
(1.75)

We will assume that the system is gravitationally bound, and that the positions xi and

velocities ẋi are bounded for all time. We will further assume that the time average of

the kinetic energy T and potential energy V are well defined. Then

T = �
1

2
V

where the bar denotes time average (a quantity we will define more precisely below).

Proof: We start by defining something akin to the moment of inertia,

I =
1

2

X

i

mixi · xi ) İ =
X

i

pi · xi (1.76)

with pi the momentum of the ith particle. The quantity İ is known as the virial. Note

that, in contrast to the potential V , both I and İ depend on our choice of origin. The

correct choice is to pick this origin to be the centre of mass. The time derivative of the

virial is

Ï =
X

i

ṗi · xi +
X

i

pi · ẋi =
X

i

Fi · xi + 2T

where, in the second equality, we have used the definition of kinetic energy T and

Newton’s force law Fi = ṗi. The force Fi on the i
th particle is determined by the

potential Vij by

Fi = �

X

j 6=i

riVij )

X

i

Fi · xi = �

X

i<j

riVij · xi �

X

j<i

riVij · xi

= �

X

i<j

riVij · xi �

X

i<j

rjVji · xj

= �

X

i<j

riVij · (xi � xj)
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where, in the second step, we simply swapped the dummy indices i and j and, in the

third step, we used Vij = Vji and riVij = �rjVij. But now we can use the explicit

form of the potential (1.75) to find

�

X

i<j

riVij · (xi � xj) =
X

i<j

Vij = V

We learn that the time variation of the virial is

Ï = V + 2T

At this point we take the time average, defined by

X = lim
t!1

1

t

Z
t

0

X(t0) dt0

The time average of all these quantities is assumed to be well-defined. But,

dİ

dt
= lim

t!1

İ(t)� İ(0)

t
= 0

Note that the last step follows only if the virial (1.76) is measured relative to the centre

of mass, otherwise the positions xi will have a drift linear in time. We’re left with the

promised virial theorem V + 2T = 0. ⇤

As an aside: the virial theorem also holds in other contexts. For example, a proof

using the variational method can be found in the Lectures on Topics in Quantum

Mechanics.

The virial theorem can be used to estimate

Figure 21: Coma cluster.

the mass of any collection of objects that satisfy

the assumptions of the theorem. Roughly speaking,

this holds when the objects have reached something

akin to thermodynamic equilibrium. In 1933, Zwicky

used this technique to estimate the mass of the Coma

cluster, shown in the figure, a conglomerate of a few

thousand galaxies.

We will make a few simplifying assumptions. First

we will assume that there are N galaxies, all of the

same mass m. (We can do better, but this will serve

our purposes.) Second, we will assume that the system is “self-averaging”, which
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means that the average over many galaxies is a proxy for averaging over time so that,

for example,

T̄ ⇡ hT i =
1

2N

NX

i=1

mv
2

i

This has the advantage that we don’t need to wait several billion years to perform the

time average. The virial theorem then reads

2hT i = mhv
2
i ⇡ hV i ⇡

1

2
Gm

2
N

D1
r

E

where h1/ri is the average inverse distance between galaxies and, in the last step, we

have replaced N � 1 with N . This then gives an expression for the total mass of the

galaxy cluster,

Nm ⇡
2hv2i

Gh1/ri
(1.77)

The right-hand-side contains quantities that we can measure, giving us an estimate for

the mass of the cluster. (Strictly speaking, we can measure vredshift, the velocity in the

line of sight. If we further assume spherical symmetry, we have hv
2
i = 3hv2

redshift
i.)

There is a much simpler way to compute the mass in each galaxy: simply count the

number of stars. In practice, this is done by measuring the luminosity. This provides

two very di↵erent ways to determine the mass and we can compare the two. One

typically finds that the virial mass is greater than the luminosity mass by a factor of

a couple of hundred. The di↵erence is made up by what Zwicky referred to as Dunkle

Materie, or dark matter.

(An aside: Zwicky was viewed by his peers as a genius and a bit of a prick. He

referred to his enemies as “spherical bastards” because, no matter what direction you

looked at them, they were still bastards.)

Other Evidence

There are a number of other pieces of evidence, all of which consistently point to the

existence of dark matter. The mathematics underlying these requires more than just

Newtonian dynamics so, for now, we will replace the maths with some pretty pictures.

• Gravitational Lensing: A classic prediction of general relativity is that light bends

as it passes heavy objects. Furthermore, the image gets distorted, a phenomenon

known as gravitational lensing. Sometimes this happens in a spectacular fashion,
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Figure 22: Abell S1063 cluster. Figure 23: The bullet cluster.

as shown in the picture on the left, where the image of a background galaxy

is distorted into the blue arcs by the cluster in the foreground. Even small

distortions of this kind allow us accurately determine the mass of the cluster in

the foreground. You will not be surprised to hear that the mass greatly exceeds

that seen in visible matter.

The bullet cluster, shown in the right-hand figure, provides a particularly dra-

matic example of gravitational lensing. This picture shows two sub-clusters of

galaxies which are thought to have previously collided. There are three types of

matter shown in the picture: stars which you can see, hot gas which is observed in

x-rays and is shown in pink, and the distribution of mass detected through grav-

itational lensing shown in blue. The stars sit cleanly in two distinct sub-clusters

because individual galaxies have little chance of collision. In contrast, most of

the baryonic matter sits in clouds of hot gas which interact fairly strongly as the

clusters collide, slowing the gas and leaving it displaced from the stars as shown

in the figure. But most of the matter, as detected through gravitational lensing,

is dark and this, like the galaxies, has glided past each other seemingly una↵ected

by the collision. The interpretation is that dark matter interacts weakly, both

with itself and with baryonic matter.

• BBN: The observations described above show clearly that on the scale of both

galaxies and clusters of galaxies there is more matter than can be detected by

electromagnetic radiation. This alone is not su�cient to tell us that dark matter

must be composed of some new unknown particle. For example, it could be in

the form of failed stars (“jupiters”). There is, however, compelling evidence that

this is not the case, and dark matter is something more exotic.
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Figure 24: The relative abundance of light elements forged in the early universe, as a

function of the overall baryon density.

The primary evidence comes from Big Bang nucleosynthesis (BBN), an impres-

sively accurate theory of how the light elements were forged in the early universe.

It turns out that the relative abundance of di↵erent elements depends on the

total amount of baryon matter. In particular, the relative abundance of deu-

terium changes rapidly with baryon density. This is shown6 in Figure 24, with

the horizontal turquiose bar fixed by observations of relative abundance. (The

black boxes show the relative abundance of each element, with error bars, and

the corresponding constraint on the baryon density.) This tells us that the total

amount of baryonic matter is just a few percent of the total energy density. We

will describe some aspects of BBN in Section 2.5.3.

• Structure formation: The CMB tells us that the very early universe was close

to homogeneous and isotropic, with fluctuations in the energy of the order of

6This figure is taken from Burles, Nollett and Turner, Big-Bang Nucleosynthesis: Linking Inner

Space and Outer Space”, astro-ph/99033.
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�⇢/⇢ ⇠ 10�5. Yet today, these tiny fluctuations have grown into the clusters,

galaxies and stars that we see around us. How did this happen?

It turns out that there this can not be achieved by baryonic matter alone. In the

fireball of the Big Bang, baryonic matter is coupled to photons and these provide

a pressure which suppresses gravitational collapse. This collapse can only proceed

after the fireball cools and photons decouple, an event which takes place around

300,000 years after the Big Bang. This does not leave enough time to form the

universe we have today. Dark matter, however, has no such constraints. It de-

couples from the photons much earlier, and so its density perturbations can start

to grow, forming gravitational wells into which visible matter can subsequently

fall. We will tell this story in Section 3.

• CMB: As we mentioned above, baryonic matter and dark matter behave di↵er-

ently in the early universe. Dark matter is free to undergo gravitational collapse,

while baryonic matter is prevented from doing so by the pressure of the photons.

These di↵erences leave their mark on the fireball, and this shows up in the fluc-

tuations etched in the microwave background. This too will be briefly described

in Section 3.

1.5 Inflation

We have learned that our universe is a strange and unusual place. The cosmological

story that emerged above has a number of issues that we would like to address. Some

of these – most notably those related to dark matter and dark energy – have yet to be

understood. But there are two puzzles that do have a compelling solution, known as

cosmological inflation. The purpose of this section is to first describe the puzzles, and

then describe the solution.

1.5.1 The Flatness and Horizon Problems

The first puzzle is one we’ve met before: our universe shows no sign of spatial curvature.

We can’t say for sure that it’s exactly flat but observations bound the curvature to be

|⌦k| < 0.01. A universe with no curvature is a fixed point of the dynamics, but it is an

unstable fixed point, and any small amount of curvature present in the early universe

should have grown over time. At heart, this is because the curvature term in the

Friedmann equation scales as 1/a2 while both matter and radiation dilute much faster,

as 1/a3 and 1/a4 respectively.

Let’s put some numbers on this. We will care only about order of magnitudes. We

ignore the cosmological constant on the grounds that it has been irrelevant for much of
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the universe’s history. As we saw in Section 1.4.1, for most of the past 14 billion years

the universe was matter dominated. In this case,

⇢k(t)

⇢m(t)
=

⇢k,0

⇢m,0

a ) ⌦k(t) =
⌦k,0

⌦m,0

⌦m(t)

1 + z

where, for once, we have defined time-dependent density parameters ⌦w(t) and, corre-

spondingly, added the subscript ⌦m,0 to specify the fractional density today. This for-

mula holds all the way back to matter-radiation equality at t = teq where ⌦m(teq) ⇡ 1/2

(the other half made up by radiation) and z ⇡ 3000. Using the present day value of

⌦k,0/⌦m,0 . 10�2, we must have

|⌦k(teq)|  10�6

At earlier times, the universe is radiation dominated. Now the relevant formula is

⇢k(t)

⇢r(t)
=

⇢k,eq

⇢r,eq

a
2

a2
eq

) ⌦k(t) =
⌦k(teq)

⌦r(teq)

(1 + zeq)2

(1 + z)2
⌦r(t)

We can look, for example, at the flatness of the universe during Big Bang nucleosyn-

thesis, a period which we understand pretty well. As we will review in Section 2, this

took place at z ⇡ 4⇥ 108. Here, the curvature must be

|⌦k(tBBN)|  10�16

We have good reason to trust our theories even further back to the electroweak phase

transition at z ⇡ 1015. Here, the curvature must be

|⌦k(tEW)|  10�30

These are small numbers. Why should the early universe be flat to such precision?

This is known as the flatness problem.

The second puzzle is even more concerning. As we have mentioned previously, and

will see in more detail in Section 2, the universe is filled with radiation known as the

cosmic microwave background (CMB). This dates back to 300,000 years after the Big

Bang when the universe cooled su�ciently for light to propagate.

The CMB is almost perfectly uniform and isotropic. No matter which direction we

look, it has the same temperature of 2.725 K. However, according to the standard

cosmology that we have developed, these di↵erent parts of the sky sat outside each

others particle horizons at the time the CMB was formed. This concept is simplest to

see in conformal time, as shown in Figure 25.
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Figure 25: The horizon problem: di↵erent regions of the CMB are causally disconnected at

the time it was formed.

We can put some numbers on this. For a purely matter-dominated universe, with

a(t) = (t/t0)2/3, the particle horizon (1.24) at time t is defined by

dH(t) = c a(t)

Z
t

0

dt
0

a(t0)
= 3ct

We use H(t) = 2/3t = H0/a(t)3/2 to write this as

dH(z) =
2cH�1

0

(1 + z(t))3/2
(1.78)

We will see in Section 2.3 that the CMB is formed when z ⇡ 1100. We would like to

know how large the particle horizon (1.78) looks in the sky today. In the intervening

time, the distance scale dH(z) has been stretched by the expansion of the universe to

(1+ z)dH(z). Meanwhile, this should be compared to the particle horizon today which

is dH(t0) = 2cH�1

0
. From this, we learn that the distance dH(z) today subtends an

angle on the sky given by

✓ ⇡
(1 + z)dH(z)

dH(t0)
⇡

1
p
1100

⇡ 0.03 rad ) ✓ ⇡ 1.7�

Assuming the standard cosmology described so far, patches of the sky separated by

more than ⇠ 1.7� had no causal contact at the time the CMB was formed. We would

naively expect to see significant variations in temperature over the sky on this scale, but

instead we see the same temperature everywhere we look. It is very hard to envisage

how di↵erent parts of the universe could have reached thermal equilibrium without ever

being in causal contact. This is known as the horizon problem.
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Ultimately, the two problems above are both concerned with the initial conditions in

the universe. We should be honest and admit that we’re not really sure what the rules of

the game are here. If you’re inclined to believe in a creator, you might find it plausible

that she simply stipulated that the universe was absolutely flat, with constant energy

density everywhere in space at some initial time t = ✏. It’s not the kind of explanation

that scientists usually find compelling, but you might think it has a better chance to

convince in this context.

However, there is a more nuanced version of the horizon problem which makes the

issue significantly more acute, and renders the “God did it” explanation significantly

less plausible. Somewhat ironically, this di�culty arises when we appreciate that the

CMB is not completely uniform after all. It contains tiny, but important anisotropies.

There are small fluctuations in temperature at about 1 part in 105. Furthermore, there

are also patterns in the polarisation of the of the light in the CMB. And, importantly,

the polarisation and temperature patterns are correlated. These correlations – which

go by the uninspiring name of “TE correlations” – are the kind of thing that arises

through simple dynamical processes in the early universe, such as photons scattering

o↵ electrons. But observations reveal that there are correlations over patches of the

sky that are as large as 5�.

These detailed correlations make it more di�cult to appeal to a creator without

sounding like a young Earth creationist, arguing that the fossil record was planted to

deceive us. Instead, the observations are clearly telling us that there were dynamical

processes taking place in the early universe but, according to our standard FRW cos-

mology, these include dynamical processes that somehow connect points that were not

in causal contact. This should make us very queasy. If we want to preserve some of

our most cherished ideas in physics – such as locality and causality – it is clear that

we need to do something that changes the causal structure of the early universe, giving

time for di↵erent parts of space to communicate with each other.

1.5.2 A Solution: An Accelerating Phase

There is a simple and elegant solution to both these problems. We postulate that the

very early universe underwent a period of accelerated expansion referred to as inflation.

Here “very early” refers to a time before the electroweak phase transition, although we

cannot currently date it more accurately than this. An accelerating phase means

a(t) ⇠ t
n with n > 1 (1.79)

Alternatively, we could have a de Sitter-type phase with a(t) ⇠ e
Hinf t with constant

Hinf . This is exactly the kind of accelerating phase that we are now entering due to
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the cosmological constant. However, while the present dark energy is ⇢⇤ ⇠ (10�3 eV)4,

the dark energy needed for inflation is substantially larger, with ⇢inflation � (103 GeV)4

and, in most models, closer to (1015 GeV)4.

Let’s see why such an inflationary phase would solve our problems. First, the horizon

problem. The particle horizon is defined as (1.24),

dH(t) = c a(t)

Z
t

0

dt
0

a(t0)

It is finite only if the integral converges. This was the case for a purely matter (or

radiation) dominated universe, as we saw in (1.78). But, for a(t) ⇠ t
n we have

Z
t

0

dt
0

a(t0)
⇠

Z
t

0

dt
0

t0n
! 1 if n > 1

This means that an early accelerating phase buys us (conformal) time and allows far

flung regions of the early universe to be in causal contact.

An inflationary phase also naturally solves the flatness problem. An inflationary

phase of the form (1.79) must be driven by some background energy density that scales

as

⇢inf ⇠
1

a2/n

which, for n > 1, clearly dilutes away more slowly than the curvature ⇢k ⇠ 1/a2. This

means that, with a su�ciently long period of inflation, the spatial curvature can be

driven as small as we like. Although we have phrased this in terms of energy densities,

there is a nice geometrical intuition that underlies this: if you take any smooth, curved

manifold and enlarge it, then any small region looks increasingly flat.

This putative solution to the flatness problem also highlights the pitfalls. In the

inflationary phase, the curvature ⇢k will be driven to zero but so too will the energy

in matter ⇢m and radiation ⇢r. Moreover, we’ll be left with a universe dominated by

the inflationary energy density ⇢inf . To avoid this, the mechanism that drives inflation

must be more dynamic than the passive fluids that we have considered so far. We need

a fluid that provides an energy density ⇢inf for a suitably long time, allowing us to

solve our problems, but then subsequently turns itself o↵! Or, even better, a fluid that

subsequently converts its energy density into radiation. Optimistic as this may seem,

we will see that there is a simple model that does indeed have this behaviour.
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How Much Inflation Do We Need?

We will focus on the horizon problem. For simplicity, we will assume that the early

universe undergoes an exponential expansion with a(t) ⇠ e
Hinf t. Suppose that inflation

lasts for some time T . If, prior to the onset of inflation, the physical horizon had size dI
then, by the end of inflation, this region of space has been blown up to dF = e

HinfTdI .

We quantify the amount of inflation by N = HinfT which we call the number of e-folds.

Subsequently, scales that were originally at dI grow at a more leisurely rate as the

universe expands. If the end of inflation occurred at redshift zinf , then

dnow = e
N(1 + zinf)dI

We will see that zinf is (very!) large, and we lose nothing by writing 1 + zinf ⇡ zinf .

The whole point of inflation is to ensure that this length scale dnow is much larger than

what we can see in the sky. This is true, provided

dnow � cH
�1

0
) e

N
>

c

H0dI

1

zinf

Clearly, to determine the amount of inflation we need to specify both when inflation

ended, zinf , and the size of the horizon prior to inflation, dI . We don’t know either

of these, so we have to make some guesses. A natural scale for the initial horizon is

dI = cH
�1

inf
, which gives

e
N
>

Hinf

H0

1

zinf

Post-inflation, the expansion of the universe is first dominated by radiation with H ⇠

1/a2, and then by matter with H ⇠ 1/a3/2. Even though the majority of the time

is in the matter-dominated era, the vast majority of the expansion takes place in

the radiation dominated era when energy densities were much higher. So we write

Hinf/H0 ⇠ (1 + zinf)2. We then have

e
N
>

✓
Hinf

H0

◆1/2

= zinf

It remains to specify Hinf or, equivalently, zinf .

We don’t currently know Hinf . (We will briefly mention a way in which this can be

measured in future experiments in Section 3.5.) However, as we will learn in Section 2,

we understand the early universe very well back to redshifts of z ⇠ 108�109. Moreover,

we’re fairly confident that we know what’s going on back to redshifts of z ⇠ 1015 since
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this is where we can trust the particle physics of the Standard Model. The general

expectation is that inflation took place at a time before this, or

zinf > 1015 ) N > 35

Recall that H0 ⇡ 10�18 s�1, so if inflation took place at z ⇡ 1015 then the Hubble scale

during inflation was Hinf = 1012 s
�1. In this case, inflation lasted a mere T ⇠ 10�11

s.

These are roughly the time scales of processes that happen in modern particle colliders.

Many models posit that inflation took place much earlier than this, at an epoch where

the early universe is getting close to Planckian energy scales. A common suggestion is

zinf ⇠ 1027 ) N > 62

in which case Hinf ⇠ 1036 s�1 and T ⇠ 10�35 s. This is an extraordinarily short time

scale, and corresponds to energies way beyond anything we have observed in our puny

experiments on Earth.

Most textbooks will quote around 60 e-foldings as necessary. For now, the take-away

message is that, while there are compelling reasons to believe that inflation happened,

there is still much we don’t know about the process including the scale Hinf at which

it occurred.

1.5.3 The Inflaton Field

Our theories of fundamental physics are written in terms of fields. These are objects

which vary in space and time. The examples you’ve met so far are the electric and

magnetic fields E(x, t) and B(x, t).

The simplest (and, so far, the only!) way to implement a transient, inflationary

phase in the early universe is to posit the existence of a new field, usually referred to as

the inflaton, �(x, t). This is a “scalar field”, meaning that it doesn’t have any internal

degrees of freedom. (In contrast, the electric and magnetic fields are both vectors.)

The dynamics of this scalar field are best described using an action principle. In

particle mechanics, the action is an integral over time. But for fields, the action is

an integral over space and time. We’ll first describe this action in flat space, and

subsequently generalise it to the expanding FRW universe.
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In Minkowski spacetime, the action takes the form

S =

Z
d
3
x dt


1

2
�̇
2
�

c
2

2
r� ·r�� V (�)

�
(1.80)

Here V (�) is a potential. Di↵erent potentials describe di↵erent physical theories. We

do not yet know the form of the inflationary potential, but it turns out that many do

the basic job. (More detailed observations do put constraints on the form the potential

can take as we will see in Section 3.5.) Later, when we come to solve the equations of

motion, we will work with the simplest possible potential

V (�) =
1

2
m

2
�
2 (1.81)

The action (1.80) is then the field theory version of the harmonic oscillator. In the

language of quantum field theory, m is called the mass of the field. (It is indeed the

mass of a particles that arise when the field is quantised.)

The equations of motion for � follow from the principle of least action. If we vary

� ! �+ ��, then the action changes as

�S =

Z
d
3
x dt


�̇ ��̇� c

2
r� ·r���

@V

@�
��

�

=

Z
d
3
x dt


��̈+ c

2
r

2
��

@V

@�

�
��

where, in the second line, we have integrated by parts and discarded the boundary

terms. Insisting that �S = 0 for all variations �� gives the equation of motion

�̈� c
2
r

2
�+

@V

@�
= 0

This is known as the Klein-Gordon equation. It has the important property that it is

Lorentz covariant.

We want to generalise the action (1.80) to describe a scalar field in a homogenous and

isotropic FRW universe. For simplicity, we restrict to the case of a k = 0 flat universe.

This is a little bit unsatisfactory since we’re invoking inflation in part to explain the

flatness of space. However, it will allow us to keep the mathematics simple, without

the need to understand the full structure of fields in curved spacetime. Hopefully, by

the end you will have enough intuition for how scalar fields behave to understand that

they will, indeed, do the promised job of driving the universe to become spatially flat.
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In flat space, the FRW metric is simply

ds
2 = �c

2
dt

2 + a
2(t) dx2

The scale factor a(t) changes the spatial distances. This results in two changes to the

action (1.80): one in the integration over space, and the other in the spatial derivatives.

We now have

S =

Z
d
3
x dt a

3(t)


1

2
�̇
2
�

c
2

2a2(t)
r� ·r�� V (�)

�
(1.82)

Before we compute the equation of motion for �, we first make a simplification: because

we’re only interested in spatially homogeneous solutions we may as well look at fields

which are constant in space, so r� = 0 and �(x, t) = �(t). We then have

S =

Z
d
3
x dt a

3(t)


1

2
�̇
2
� V (�)

�
(1.83)

Varying the action now gives

�S =

Z
d
3
x dt a

3(t)


�̇ ��̇�

@V

@�
��

�
=

Z
d
3
x dt


�

d

dt

⇣
a
3
�̇

⌘
� a

3
@V

@�

�
��

Insisting that �S = 0 for all �� again gives the equation of motion, but now there is an

extra term because, after integration by parts, the time derivative also hits the scale

factor a(t). The equation of motion in an expanding universe is therefore

�̈+ 3H�̇+
@V

@�
= 0 (1.84)

In the analogy with the harmonic oscillator, the extra term 3H�̇ looks like a friction

term. It is sometimes referred to as Hubble friction or Hubble drag.

We also need to understand the energy density ⇢inf ⌘ ⇢⇢ associated to the inflaton

field � since this will determine the evolution of a(t) through the Friedmann equation.

There is a canonical way to compute this (through the stress-energy tensor) but the

answer turns out to be what you would naively guess given the action (1.83), namely

⇢� =
1

2
�̇
2 + V (�) (1.85)

The resulting Friedmann equation is then

H
2 =

8⇡G

3c2

✓
1

2
�̇
2 + V (�)

◆
(1.86)
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We will shortly solve the coupled equations (1.84) and (1.86). First we can ask: what

kind of fluid is the inflaton field? To answer this, we need to determine the pressure.

This follows straightforwardly by looking at

⇢̇� =

✓
�̈+

@V

@�

◆
�̇ = �3H�̇

2

Comparing to the continuity equation (1.39), ⇢̇ + 3H (⇢+ P ) = 0, we see that the

pressure must be

P� =
1

2
�̇
2
� V (�) (1.87)

Clearly, this doesn’t fit into our usual classification of fluids with P = w⇢ for some

constant w. Instead, we have something more dynamical and interesting on our hands.

V(  )φ

φ

start
here

Figure 26: The inflationary scalar rolling down the potential V (�).

Slow Roll Solutions

We want to solve the coupled equations (1.84) and (1.86). In particular, we’re looking

for solutions which involve an inflationary phase. Taking the time derivative of (1.86),

we have

2H

✓
ä

a
�H

2

◆
=

8⇡G

3c2

✓
�̈+

@V

@�

◆
�̇ = �

8⇡G

c2
H�̇

2

where, in the second equality, we have used (1.84). Rearranging gives

ä

a
= �

8⇡G

3c2

⇣
�̇
2
� V (�)

⌘

which we recognise as the Raychaudhuri equation (1.52). We see that we get an infla-

tionary phase only when the potential energy dominates the kinetic energy, V (�) > �̇
2.

Indeed, in the limit that V (�) � �̇
2, the relationship between the energy (1.85) and

pressure (1.87) becomes P� ⇡ �⇢�, which mimics dark energy.
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Now we can get some idea for the set-up. We start with a scalar field sitting high

on some potential, as shown in Figure 26 with �̇ small. This will give rise to inflation.

As the scalar rolls down the potential, it will pick up kinetic energy and we will exit

the inflationary phase. The presence of the Hubble friction term in (1.84) means that

the scalar can ultimately come to rest, rather than eternally oscillating backwards and

forwards.

Let’s put some equations on these words. We assume that V (�) � 1

2
�̇
2, a requirement

that is sometimes called the slow-roll condition. The Friedmann equation (1.86) then

becomes

H
2
⇡

8⇡G

3c2
V (�) (1.88)

Furthermore, if inflation is to last a suitably long time, it’s important that the scalar

does not rapidly gain speed. This can be achieved if the Hubble friction term dominates

in equation (1.84), so that �̈ ⌧ H�̇. In the context of the harmonic oscillator, this is

the over-damped regime. The equation of motion is then

3H�̇ ⇡ �
@V

@�
(1.89)

These are now straightforward to solve. For concreteness, we work with the quadratic

potential V = 1

2
m

2
�
2. Then the solutions to (1.88) and (1.89) are

H = ↵� and �̇ = �
m

2

3↵
with ↵

2 =
4⇡Gm

2

3c2

Integrating the second equation gives

�(t) = �0 �
m

2

3↵
t

where we have taken the scalar field to start at some initial value �0 at t = 0. We can

now easily integrate the H = ↵� equation to get an expression for the scale factor,

a(t) = a(0) exp


2⇡G

c2
(�2

0
� �(t)2)

�
(1.90)

This is a quasi-de Sitter phase of almost exponential expansion.

This solution remains valid provided that the condition V (�) � �̇
2 is obeyed. The

space will cease to inflate when V (�) ⇡ �̇
2, which occurs when �

2(tend) ⇡ 2m2
/(3↵)2.

By this time, the universe will have expanded by a factor of

a(tend)

a(0)
⇡ exp


2⇡G�

2

0

c2
�

1

3

�

We see that, by starting the scalar field higher up the potential, we can generate an

exponentially large expansion.
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1.5.4 Further Topics

There is much more to say about the physics of inflation. Here we briefly discuss a few

important topics, some of which are fairly well understood, and some of which remain

mysterious or problematic.

Reheating

By the end of inflation, the universe is left flat but devoid of any matter or radiation. For

this to be a realistic mechanism, we must find a way to transfer energy from the inflaton

field into more traditional forms of matter. This turns out to be fairly straightforward,

although we are a long way from a detailed understanding of the process. Roughly

speaking, if the inflaton field is coupled to other fields in nature, then these will be

excited as the inflaton oscillates around the minimum of its potential. This process is

known as reheating. Afterwards, the standard hot Big Bang cosmology can start.

Dark Energy or Cosmological Constant?

Inflation is a period of dynamically driven, temporary, cosmic acceleration in the very

early universe. Yet, as we have seen, the universe is presently entering a second stage

of comic acceleration. How do we know that this too isn’t driven by some underlying

dynamics and will, again, turn out to be temporary? The answer is: we don’t. It is

not di�cult to cook up a mathematical model in which the cosmological constant is

set to zero by hand and the current acceleration is driven using some scalar field. Such

models go by the unhelpful name of quintessence.

Quintessence models are poorly motivated and do nothing to solve the fine-tuning

problems of the cosmological constant. In fact, they are worse. First, we have to set

the genuine cosmological constant to zero (and we have no reason to do so) and then

we have to introduce a new scalar field which, to give the observed acceleration, must

have an astonishingly small mass of order m ⇠ 10�33
eV .

Such models look arbitrary and absurd. And yet, given our manifest ignorance about

the cosmological constant, it is perhaps best to keep a mildly open mind. The smoking

gun would be to measure an equation of state P = w⇢ for the present day dark energy

which di↵ers from w = �1.

Initial Conditions

For the idea of inflation to fly, we must start with the scalar field sitting at some point

high up the potential. It is natural to ask: how did it get there?
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One possibility is that the initial value of the scalar field varies in space. The regions

where the scalar are biggest then inflate the most, and all traces of the other regions are

washed away beyond the horizon. These kind of ideas raise some thorny issues about

the nature of probabilities in an inflationary universe (or multiverse) and are poorly

understood. Needless to say, it seems very di�cult to test such ideas experimentally.

A More Microscopic Underpinning?

Usually when we introduce a scalar field in physics, it is an approximation to something

deeper going on underneath. For example, there is a simple theory of superconductivity,

due to Landau and Ginsburg, which invokes a scalar field coupled to the electromagnetic

field. This theory makes little attempt to justify the existence of the scalar field.

Only later was a more microscopic theory of superconductivity developed — so-called

BCS theory — in which the scalar field emerges from bound pairs of electrons. Many

further examples, in which scalar fields are invoked to describe everything from water

to magnets, can be found in the lectures on Statistical Field Theory.

This raises a question: is the scalar field description of inflation an approximation to

something deeper going on underneath? We don’t know the answer to this.

Quantum Fluctuations

Although inflation was first introduced to solve the flatness and horizon problems, its

greatest triumph lies elsewhere. As the scalar field rolls down the potential, it su↵ers

small quantum fluctuations. These fluctuations are swept up in the expansion of the

universe and stretched across the sky where, it is thought, they provide the seeds for the

subsequent formation of structure in the universe. These fluctuations are responsible

for the hot and cold spots in the CMB which, in turn, determine where matter clumps

and galaxies form. In Section 3.5 we will look more closely at this bold idea.
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