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Recommended Books and Resources

e L. Hand and J. Finch, Analytical Mechanics

This very readable book covers everything in the course at the right level. It is similar
to Goldstein’s book in its approach but with clearer explanations, albeit at the expense
of less content.

There are also three classic texts on the subject
e H. Goldstein, C. Poole and J. Safko, Classical Mechanics

In previous editions it was known simply as “Goldstein” and has been the canonical
choice for generations of students. Although somewhat verbose, it is considered the
standard reference on the subject. Goldstein died and the current, third, edition found
two extra authors.

e L. Landau an E. Lifshitz, Mechanics

This is a gorgeous, concise and elegant summary of the course in 150 content packed
pages. Landau is one of the most important physicists of the 20th century and this is
the first volume in a series of ten, considered by him to be the “theoretical minimum”
amount of knowledge required to embark on research in physics. In 30 years, only 43
people passed Landau’s exam!

A little known fact: Landau originally co-authored this book with one of his students,
Leonid Pyatigorsky. They subsequently had a falling out and the authorship was
changed. There are rumours that Pyatigorsky got his own back by denouncing Landau
to the Soviet authorities, resulting in his arrest.

e V. I Arnold, Mathematical Methods of Classical Mechanics

Arnold presents a more modern mathematical approach to the topics of this course,
making connections with the differential geometry of manifolds and forms. It kicks off
with “The Universe is an Affine Space” and proceeds from there...
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1. Newton’s Laws of Motion

“So few went to hear him, and fewer understood him, that oftimes he did,
for want of hearers, read to the walls. He usually stayed about half an hour;
when he had no auditors he commonly returned in a quarter of that time.”

Appraisal of a Cambridge lecturer in classical mechanics, circa 1690

1.1 Introduction

The fundamental principles of classical mechanics were laid down by Galileo and New-
ton in the 16" and 17" centuries. In 1686, Newton wrote the Principia where he
gave us three laws of motion, one law of gravity and pretended he didn’t know cal-
culus. Probably the single greatest scientific achievement in history, you might think
this pretty much wraps it up for classical mechanics. And, in a sense, it does. Given
a collection of particles, acted upon by a collection of forces, you have to draw a nice
diagram, with the particles as points and the forces as arrows. The forces are then
added up and Newton’s famous “F = ma” is employed to figure out where the par-
ticle’s velocities are heading next. All you need is enough patience and a big enough
computer and you're done.

From a modern perspective this is a little unsatisfactory on several levels: it’s messy
and inelegant; it’s hard to deal with problems that involve extended objects rather than
point particles; it obscures certain features of dynamics so that concepts such as chaos
theory took over 200 years to discover; and it’s not at all clear what the relationship is
between Newton’s classical laws and quantum physics.

The purpose of this course is to resolve these issues by presenting new perspectives
on Newton’s ideas. We shall describe the advances that took place during the 150
years after Newton when the laws of motion were reformulated using more powerful
techniques and ideas developed by some of the giants of mathematical physics: people
such as Euler, Lagrange, Hamilton and Jacobi. This will give us an immediate practical
advantage, allowing us to solve certain complicated problems with relative ease (the
strange motion of spinning tops is a good example). But, perhaps more importantly,
it will provide an elegant viewpoint from which we’ll see the profound basic principles
which underlie Newton’s familiar laws of motion. We shall prise open “F = ma” to
reveal the structures and symmetries that lie beneath.



Moreover, the formalisms that we’ll develop here are the basis for all of fundamental
modern physics. Every theory of Nature, from electromagnetism and general relativity,
to the standard model of particle physics and more speculative pursuits such as string
theory, is best described in the language we shall develop in this course. The new
formalisms that we’ll see here also provide the bridge between the classical world and
the quantum world.

There are phenomena in Nature for which these formalisms are not particularly
useful. Systems which are dissipative, for example, are not so well suited to these
new techniques. But if you want to understand the dynamics of planets and stars and
galaxies as they orbit and spin, or you want to understand what’s happening at the
LHC where protons are collided at unprecedented energies, or you want to know how
electrons meld together in solids to form new states of matter, then the foundations
that we’ll lay in in this course are a must.

1.2 Newtonian Mechanics: A Single Particle

In the rest of this section, we'll take a flying tour through the basic ideas of classical
mechanics handed down to us by Newton. More details can be found in the lectures
on Dynamics and Relativity.

We'll start with a single particle.. A particle is defined to be an object of insignificant
size. e.g. an electron, a tennis ball or a planet. Obviously the validity of this statement
depends on the context: to first approximation, the earth can be treated as a particle
when computing its orbit around the sun. But if you want to understand its spin, it
must be treated as an extended object.

The motion of a particle of mass m at the position r is governed by Newton’s Second
Law F = ma or, more precisely,

F(r,i) = p (1.1)

where F is the force which, in general, can depend on both the position r as well as
the velocity 1 (for example, friction forces depend on r) and p = mr is the momentum.
Both F and p are 3-vectors which we denote by the bold font. Equation (1.1) reduces
to F = ma if 7 = 0. But if m = m(t) (e.g. in rocket science) then the form with p is
correct.

General theorems governing differential equations guarantee that if we are given r
and I at an initial time ¢ = ¢;, we can integrate equation (1.1) to determine r(¢) for all
t (as long as F remains finite). This is the goal of classical dynamics.
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Equation (1.1) is not quite correct as stated: we must add the caveat that it holds
only in an inertial frame. This is defined to be a frame in which a free particle with
m = 0 travels in a straight line,

r=ry+ vt (1.2)
Newtons’s first law is the statement that such frames exist.

An inertial frame is not unique. In fact, there are an infinite number of inertial frames.
Let S be an inertial frame. Then there are 10 linearly independent transformations
S — S’ such that S’ is also an inertial frame (i.e. if (1.2) holds in S, then it also holds
in S’). These are

e 3 Rotations: 1’ =Or where O is a 3 x 3 orthogonal matrix.

e 3 Translations: r =r+c for a constant vector c.
e 3 Boosts: r' =r+ut for a constant velocity u.
e 1 Time Translation: t' =t -+ c for a constant real number ¢

If motion is uniform in S, it will also be uniform in S’. These transformations make
up the Galilean Group under which Newton’s laws are invariant. They will be impor-
tant in section 2.4 where we will see that these symmetries of space and time are the
underlying reason for conservation laws. As a parenthetical remark, recall from special
relativity that Einstein’s laws of motion are invariant under Lorentz transformations
which, together with translations, make up the Poincaré group. We can recover the
Galilean group from the Poincaré group by taking the speed of light to infinity.

1.2.1 Angular Momentum

We define the angular momentum L of a particle and the torque T acting upon it as
L=rxp , T=rxF (1.3)

Note that, unlike linear momentum p, both L and 7 depend on where we take the
origin: we measure angular momentum with respect to a particular point. Let us cross

both sides of equation (1.1) with r. Using the fact that r is parallel to p, we can write

%(r X p) =r xp. Then we get a version of Newton’s second law that holds for angular

momentum:

=L (1.4)
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1.2.2 Conservation Laws

From (1.1) and (1.4), two important conservation laws follow immediately.

o [f F =0 then p is constant throughout the motion
o [f 7 =0 then L is constant throughout the motion

Notice that 7 = 0 does not require ¥ = 0, but only r x F = 0. This means that F
must be parallel to r. This is the definition of a central force. An example is given by
the gravitational force between the earth and the sun: the earth’s angular momentum
about the sun is constant. As written above in terms of forces and torques, these
conservation laws appear trivial. In section 2.4, we’ll see how they arise as a property
of the symmetry of space as encoded in the Galilean group.

1.2.3 Energy
Let’s now recall the definitions of energy. We firstly define the kinetic energy T as

T = %m r-T (1.5)
Suppose from now on that the mass is constant. We can compute the change of kinetic
energy with time: % =p -1 =F 1. If the particle travels from position r; at time t;

to position ry at time t5 then this change in kinetic energy is given by

N@—NM:/QEﬁ:/MFTﬁ:/QFm- (1.6)

t1 dt t1 r]

where the final expression involving the integral of the force over the path is called the
work done by the force. So we see that the work done is equal to the change in kinetic
energy. From now on we will mostly focus on a very special type of force known as a
conservative force. Such a force depends only on position r rather than velocity r and
is such that the work done is independent of the path taken. In particular, for a closed
path, the work done vanishes.

fF-drzo & VxF=0 (1.7)

It is a deep property of flat space R? that this property implies we may write the force
as

F=_VV() (1.8)

for some potential V(r). Systems which admit a potential of this form include gravi-
tational, electrostatic and interatomic forces. When we have a conservative force, we



necessarily have a conservation law for energy. To see this, return to equation (1.6)
which now reads

or, rearranging things,
Tt)+V(t)=T(t) + V() =E (1.10)

So E =T +V is also a constant of motion. It is the energy. When the energy is
considered to be a function of position r and momentum p it is referred to as the
Hamiltonian H. In section 4 we will be seeing much more of the Hamiltonian.

1.2.4 Examples

e Example 1: The Simple Harmonic Oscillator

This is a one-dimensional system with a force proportional to the distance x to the
origin: F(z) = —kx. This force arises from a potential V' = %k‘xQ. Since F' # 0,
momentum is not conserved (the object oscillates backwards and forwards) and, since
the system lives in only one dimension, angular momentum is not defined. But energy

E = %mi’Q + %lmQ is conserved.

e Example 2: The Damped Simple Harmonic Oscillator

We now include a friction term so that F'(x, &) = —kx—~&. Since F is not conservative,
energy is not conserved. This system loses energy until it comes to rest.

e Example 3: Particle Moving Under Gravity

Consider a particle of mass m moving in 3 dimensions under the gravitational pull of
a much larger particle of mass M. The force is F = —(GMm/r?)r which arises from
the potential V' = —GMm/r. Again, the linear momentum p of the smaller particle
is not conserved, but the force is both central and conservative, ensuring the particle’s
total energy E and the angular momentum L are conserved.

1.3 Newtonian Mechanics: Many Particles

It’s easy to generalise the above discussion to many particles: we simply add an index
to everything in sight! Let particle 7 have mass m; and position r; where : = 1,..., N
is the number of particles. Newton’s law now reads

F; = p; (1.11)



where F; is the force on the i*® particle. The subtlety is that forces can now be working
between particles. In general, we can decompose the force in the following way:

F, =) F;+F (1.12)
J#i

where Fy; is the force acting on the i*® particle due to the j™ particle, while F&* is the
external force on the i*" particle. We now sum over all N particles

YFi= > Fy+y B

i,j with j#i i
=) (Fy+F;)+> F (1.13)
1<j 7

where, in the second line, we’ve re-written the sum to be over all pairs i < j. At this
stage we make use of Newton’s third law of motion: every action has an equal and
opposite reaction. Or, in other words, F;; = —Fj;. We see that the first term vanishes
and we are left simply with

> F=F (1.14)

where we've defined the total external force to be F&** = Y~ F¢*. We now define the

total mass of the system M = ). m; as well as the centre of mass R
E Nunv
R=="— 1.15

Then using (1.11), and summing over all particles, we arrive at the simple formula,
F<* = MR (1.16)

which is identical to that of a single particle. This is an important formula. It tells that
the centre of mass of a system of particles acts just as if all the mass were concentrated
there. In other words, it doesn’t matter if you throw a tennis ball or a very lively cat:
the center of mass of each traces the same path.

1.3.1 Momentum Revisited

The total momentum is defined to be P = ). p; and, from the formulae above, it is
simple to derive P = F*'. So we find the conservation law of total linear momentum
for a system of many particles: P is constant if F®* vanishes.



Similarly, we define total angular momentum to be L = ) . L;. Now let’s see what
happens when we compute the time derivative.

L = ZI‘Z‘ X pz
= rix <Z Fi; + ngt> (1.17)

J J#i

= D rxFi+) rxFX (1.18)

i,j with ij

The last term in this expression is the definition of total external torque: T =Y. r; X
F¢&**. But what are we going to do with the first term on the right hand side? Ideally we
would like it to vanish! Let’s look at the circumstances under which this will happen.
We can again rewrite it as a sum over pairs ¢ < j to get

D (ri—1y) xFy (1.19)

i<j

which will vanish if and only if the force F;; is parallel to the line joining to two particles
(r; —r;). This is the strong form of Newton’s third law. If this is true, then we have a
statement about the conservation of total angular momentum, namely L is constant if
T = ().

Most forces do indeed obey both forms of Newton’s third law: 1
F,; = —F;; and F;; is parallel to (r;—r;). For example, gravitational
and electrostatic forces have this property. And the total momentum
and angular momentum are both conserved in these systems. But
some forces don’t have these properties! The most famous example
is the Lorentz force on two moving particles with electric charge Q.
This is given by,

Fz‘j = QVZ‘ X Bj (120)

—

Figure 1: The
magnetic field for

where v; is the velocity of the i*" particle and B, is the magnetic
field generated by the j* particle. Consider two particles crossing
each other in a “T” as shown in the diagram. The force on particle i
. . . . two particles.
1 from particle 2 vanishes. Meanwhile, the force on particle 2 from

particle 1 is non-zero, and in the direction

Foy ~ T XQ ~ (121)



Does this mean that conservation of total linear and angular momentum is violated?
Thankfully, no! We need to realise that the electromagnetic field itself carries angular
momentum which restores the conservation law. Once we realise this, it becomes a
rather cheap counterexample to Newton’s third law, little different from an underwater
swimmer who can appear to violate Newton’s third law if we don’t take into account
the momentum of the water.

1.3.2 Energy Revisited

The total kinetic energy of a system of many particles is T = %ZZ m;r?. Let us
decompose the position vector r; as

where 1; is the distance from the centre of mass to the particle 2. Then we can write
the total kinetic energy as

T=1MR*+ 1% mi, (1.23)
Which shows us that the kinetic energy splits up into the kinetic energy of the centre
of mass, together with an internal energy describing how the system is moving around
its centre of mass. As for a single particle, we may calculate the change in the total
kinetic energy,

T(tg) — T(tl) = Z/ F?Xt : dI'l' + Z/ Fi]’ . dI’i (124)
i i#]
Like before, we need to consider conservative forces to get energy conservation. But
now we need both

e Conservative external forces: F&' = —V,V(ry,...,ry)

e Conservative internal forces: F;; = —V,;V;;(r1,...,rn)

where V; = 0/0r;. To get Newton’s third law F;; = —F;; together with the requirement
that this is parallel to (r;—r;), we should take the internal potentials to satisfy V;; =V
with

V;J(I'l,I'N) :‘/Z](|I'Z—I']D (125)

so that V;; depends only on the distance between the i'* and j™ particles. We also
insist on a restriction for the external forces, Vi(ry,...,ry) = Vi(r;), so that the force
on particle ¢ does not depend on the positions of the other particles. Then, following
the steps we took in the single particle case, we can define the total potential energy
V=>Vi+>,.;Vij and we can show that H =T +V is conserved.



1.3.3 An Example

Let us return to the case of gravitational attraction between two bodies but, unlike
in Section 1.2.4, now including both particles. We have T' = %mlr‘% + %mgfg. The
potential is V' = —Gmymy/|r; — ra|. This system has total linear momentum and total

angular mometum conserved, as well as the total energy H =T 4 V.



2. The Lagrangian Formalism

When I was in high school, my physics teacher called me down one day after
class and said, “You look bored, I want to tell you something interesting”.
Then he told me something I have always found fascinating. Every time

the subject comes up I work on it. _
Richard Feynman

Feynman’s teacher told him about the “Principle of Least Action”, one of the most
profound results in physics.

2.1 The Principle of Least Action

Firstly, let’s get our notation right. Part of the power of the Lagrangian formulation
over the Newtonian approach is that it does away with vectors in favour of more general
coordinates. We start by doing this trivially. Let’s rewrite the positions of N particles
with coordinates r; as 4 where A =1,...3N. Then Newton’s equations read

ooV
paA = 9

= (2.1)

where py = m4i®. The number of degrees of freedom of the system is said to be 3NV.
These parameterise a 3N-dimensional space known as the configuration space C'. Each
point in C specifies a configuration of the system (i.e. the positions of all NV particles).
Time evolution gives rise to a curve in C.

Figure 2: The path of particles in real space (on the left) and in configuration space (on the
right).

The Lagrangian

Define the Lagrangian to be a function of the positions 24 and the velocities 4 of all
the particles, given by

L(z?, &%) = T(2%) — V(2P (2.2)

— 10 —



where T' = £ %, ma(é*)? is the kinetic energy, and V(z*) is the potential energy.
Note the minus sign between T and V! To describe the principle of least action, we
consider all smooth paths z4(¢) in C with fixed end points so that

() =zl and () = Th (2.3)

initial

Of all these possible paths, only one is the true path
taken by the system. Which one? To each path, let us Xt
assign a number called the action S defined as

SlA (1)) = /t " L@ ), i) dt (2.4)

The action is a functional (i.e. a function of the path which x

is itself a function). The principle of least action is the fol- )
. Figure 3:
lowing result:

Theorem (Principle of Least Action): The actual path taken by the system is an
extremum of S.

Proof: Consider varying a given path slightly, so

() = 2A(t) + oz (t) (2.5)

where we fix the end points of the path by demanding dz*(¢;) = dz(t;) = 0. Then

ty
[ vl
t;
Ly
= / oL dt
t;
oL oL
= — ot + b6 ) dt 2.6
/ti <8xA oA ) (2:6)
At this point we integrate the second term by parts to get

oL oL b
o= [ (- (L))ot [P 27

But the final term vanishes since we have fixed the end points of the path so dz(t;) =

the change in the action is

55:5[

dxz(t;) = 0. The requirement that the action is an extremum says that §S = 0 for all
changes in the path dx“(t). We see that this holds if and only if

oL d <8L

Pl &7‘)20 foreach A=1,...3N (2.8)

- 11 -



These are known as Lagrange’s equations (or sometimes as the Euler-Lagrange equa-
tions). To finish the proof, we need only show that Lagrange’s equations are equivalent
to Newton’s. From the definition of the Lagrangian (2.2), we have 0L /dz* = —0V /0x*,
while OL/0i" = p4. It’s then easy to see that equations (2.8) are indeed equivalent to
(2.1). O

Some remarks on this important result:

e This is an example of a variational principle which you already met in the epony-
mous “variational principles” course.

e The principle of least action is a slight misnomer. The proof only requires that
0S = 0, and does not specify whether it is a maxima or minima of S. Since
L =T —V, we can always increase S by taking a very fast, wiggly path with
T > 0, so the true path is never a maximum. However, it may be either a
minimum or a saddle point. So “Principle of stationary action” would be a more
accurate, but less catchy, name. It is sometimes called “Hamilton’s principle”.

e Allthe fundamental laws of physics can be written in terms of an action principle.
This includes electromagnetism, general relativity, the standard model of particle
physics, and attempts to go beyond the known laws of physics such as string
theory. For example, (nearly) everything we know about the universe is captured
in the Lagrangian

L= Vi (R— B, P" £ D) 2.9

where the terms carry the names of Einstein, Maxwell (or Yang and Mills) and
Dirac respectively, and describe gravity, the forces of nature (electromagnetism
and the nuclear forces) and the dynamics of particles like electrons and quarks.
If you want to understand what the terms in this equation really mean, then you
can find explanations in the lectures on General Relativity, Electromagnetism,
and Quantum Field Theory.

e There is a beautiful generalisation of the action principle to quantum mechan-
ics due to Feynman in which the particle takes all paths with some probability
determined by S. We will describe this in Section 4.8.

e Back to classical mechanics, there are two very important reasons for working with
Lagrange’s equations rather than Newton’s. The first is that Lagrange’s equations
hold in any coordinate system, while Newton’s are restricted to an inertial frame.
The second is the ease with which we can deal with constraints in the Lagrangian
system. We’ll look at these two aspects in the next two subsections.

- 12 —
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2.2 Changing Coordinate Systems

We shall now show that Lagrange’s equations hold in any coordinate system. In fact,
this follows immediately from the action principle, which is a statement about paths
and not about coordinates. But here we shall be a little more pedestrian in order to
explain exactly what we mean by changing coordinates, and why it’s useful. Let

da ZQG(xla"'7x3N7t) (21())

where we’ve included the possibility of using a coordinate system which changes with
time ¢t. Then, by the chain rule, we can write

- an o aQG - A GQa
=" "o’ T o

In this equation, and for the rest of this course, we’re using the “summation convention”

(2.11)

in which repeated indices are summed over. Note also that we won’t be too careful
about whether indices are up or down - it won’t matter for the purposes of this course.
To be a good coordinate system, we should be able to invert the relationship so that
12 = 2%(q,,t) which we can do as long as we have det(dx/0q,) # 0. Then we have,
- A al'A . 8xA
T0 = F—qa+

RS (2.12)

Now we can examine L(z, i) when we substitute in 24(q,,t). Using (2.12) we have

0L oL oz* OL [ 9*x* . 0%4
== +— i + (2.13)
dq, 0z dq, 014 \ 0¢,0q, otdq,
while
oL oL 0i*
= 2.14
94, ~ 03 04, (2.14)

We now use the fact that we can “cancel the dots” and 9i*/dq, = dx*/dq, which we
can prove by substituting the expression for 4 into the LHS. Taking the time derivative
of (2.14) gives us

d (0L d (OL\ oz OL [ &z .  0%x4
d(oLy_d(o + 2 it I8 2.15)
dt \ 9q, dt \ozA) 0q, 014 \ 0q.0q 0q,0t
So combining (2.13) with (2.15) we find
d (9L 0L [d (9L OL| da* (2.16)
dt \ 9q, dq, | dt \9iA ozt | 0q, '
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Equation (2.16) is our final result. We see that if Lagrange’s equation is solved in the
x4 coordinate system (so that [...] on the RHS vanishes) then it is also solved in the
s coordinate system. (Conversely, if it is satisfied in the ¢, coordinate system, so the
LHS vanishes, then it is also satisfied in the * coordinate system as long as our choice

of coordinates is invertible: i.e det(dx"/dq,) # 0).

So the form of Lagrange’s equations holds in any coordinate system. This is in
contrast to Newton’s equations which are only valid in an inertial frame. Let’s illustrate
the power of this fact with a couple of simple examples

2.2.1 Example: Rotating Coordinate Systems

Consider a free particle with Lagrangian given by

L = tmi® (2.17)

1
2

with r = (z,y, z). Now measure the motion of the particle with respect to a coordinate
system which is rotating with angular velocity w = (0,0,w) about the z axis. If
r' = (2/,y', 7') are the coordinates in the rotating system, we have the relationship

T = xcoswt+ ysinwt
Yy = ycoswt — xsinwt

7=z (2.18)

Then we can substitute these expressions into the Lagrangian to find L in terms of the
rotating coordinates,

L — %me/ . wy/)Q =+ (y/ _|_w$/)2 + 22] — %m(i" +w X r/)z (2'19)

In this rotating frame, we can use Lagrange’s equations to derive the equations of
motion. Taking derivatives, we have

% =m' X w—w X (wxr))
% (%) =i’ 4w x¥) (2.20)
so Lagrange’s equation reads
() - Eemrox @) rwxr =0 @2

The second and third terms in this expression are the centrifugal and coriolis forces
respectively. These are examples of the “fictitious forces” that you were warned about in
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Force parallel to the Earth’s surface
-
Particle Velocity

Figure 4: In the northern hemisphere, a particle is deflected in a clockwise direction; in the
southern hemisphere in an anti-clockwise direction.

the first year. They're called fictitious because they're a consequence of the reference
frame, rather than any interaction. But don’t underestimate their importance just
because they’re “fictitious”! According to Einstein’s theory of General Relativity, the
force of gravity is on the same footing as these fictitious forces.

The centrifugal force Feopy = —mw X (w X r’) points outwards in the plane perpen-
dicular to w with magnitude mw?|r’,| = m|v|?/|r/,| where | denotes the projection
perpendicular to w.

The coriolis force Fo,, = —2mw x 1’ is responsible for the large scale circulation of
oceans and the atmosphere. For a particle travelling on the surface of the rotating
earth, the direction of the coriolis force is drawn in figure 4. We see that a particle
thrown in the northern hemisphere will be seen to rotate in a clockwise direction; a
particle thrown in the southern hemisphere rotates in an anti-clockwise direction. For
a particle moving along the equator, the coriolis force points directly upwards, so has
no effect on the particle.

More details on the effect of the Coriolis force in various circumstances can be found
in the Dynamics and Relativity lecture notes. Questions discussed include:

e The coriolis force is responsible for the formation of hurricanes. These rotate
in different directions in the northern and southern hemisphere, and never form
within 500 miles of the equator where the coriolis force is irrelevant. But hur-
ricanes rotate anti-clockwise in the northern hemisphere. This is the opposite
direction from what we deduced above for a projected particlel What did we
miss?
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e Estimate the magnitude of the coriolis force. Do you think that it really affects
the motion of water going down a plughole? What about the direction in which
a CD spins?

e Stand on top of a tower at the equator and drop a ball. As the ball falls, the
earth turns underneath from west to east. Does the ball land
1. At the base of the tower?
2. To the east?

3. To the west?

2.2.2 Example: Hyperbolic Coordinates

A particle moves in the (x,y) plane with a force y
directed towards the origin O with magnitude propor-
tional to the distance from O. How does it move? In
Cartesian coordinates, this problem is easy. We have

2xy=p

the Lagrangian .

L=1im(@®+¢?) — Lk(z® + ¢?) (2.22)

x2-y222
Let’s set m = k = 1 for simplicity. The equation of

motion for this system is simply Figure 5: Hyperbolic coordi-

nates.

f=—-x and §=-—y (2.23)

Now suppose we want to know the motion of the system in hyperbolic coordinates
defined as

2ey=p , rr—y?=2\ (2.24)

The coordinates p and A are curvilinear and orthogonal (i.e. two hyperbolics intersect
at 90°). We could try solving this problem by substituting the change of coordinates
directly into the equations of motion. It’s a mess. (Try if you don’t believe me!).
A much simpler way is to derive expressions for z,y,# and g in terms of the new
coordinates and substitute into the Lagrangian to find,
2 2
L:llLii——g N2+ 2 (2.25)
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From which we can easily derive the equation of motion for A

i 8_L _a_L—i —A +l(}\2+‘2) A _1 A
dt \ o\ ox  dt \4./32 1 112 8 H (A2 p2)32  2(N2 4 p2)3/2
=0 (2.26)

Which is also a mess! But it’s a mess that was much simpler to derive. Moreover, we
don’t need to do any more work to get the second equation for u: the symmetry of the
Lagrangian means that it must be the same as (2.26) with A <> p interchanged.

2.3 Constraints and Generalised Coordinates

Now we turn to the second advantage of the Lagrangian formulation. In writing p; =
—V,;V, we implicitly assume that each particle can happily roam anywhere in space
R?. What if there are constraints? In Newtonian mechanics, we introduce “constraint
forces”. These are things like the tension of ropes, and normal forces applied by surfaces.
In the Lagrangian formulation, we don’t have to worry about such things. In this
section, we’ll show why.

An Example: The Pendulum

The simple pendulum has a single dynamical degree of freedom
6, the angle the pendulum makes with the vertical. The position of
the mass m in the plane is described by two cartesian coordinates x

length, 1

and y subject to a constraint 2% +y? = [2. We can parameterise this
T

as x = Isinf and y = [cosf. Employing the Newtonian method

to solve this system, we introduce the tension 7" as shown in the

diagram and resolve the force vectors to find,

mir = —ng/l ) my =mg — Ty/l (227) Ve

. . . . Figure 6:
To determine the motion of the system, we impose the constraints eur

at the level of the equation of motion, and then easily find
0=—(g/l)sin® , T =mlb*+mgcosf (2.28)

While this example was pretty straightforward to solve using Newtonian methods,
things get rapidly harder when we consider more complicated constraints (and we’ll
see plenty presently). Moreover, you may have noticed that half of the work of the
calculation went into computing the tension 7. On occasion we’ll be interested in this.
(For example, we might want to know how fast we can spin the pendulum before it
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breaks). But often we won’t care about these constraint forces, but will only want to
know the motion of the pendulum itself. In this case it seems like a waste of effort to
go through the motions of computing 7. We’ll now see how we can avoid this extra
work in the Lagrangian formulation. Firstly, let’s define what we mean by constraints
more rigorously.

2.3.1 Holonomic Constraints

Holonomic Constraints are relationships between the coordinates of the form
fa(za,t) =0 a=1,....3N —n (2.29)

In general the constraints can be time dependent and our notation above allows for
this. Holonomic constraints can be solved in terms of n generalised coordinates g;,
1=1,...n. So

zaA=2a(q1, -, qn) (2.30)

The system is said to have n degrees of freedom. For the pendulum example above,
the system has a single degree of freedom, ¢ = 6.

Now let’s see how the Lagrangian formulation deals with constraints of this form. We
introduce 3N — n new dynamical degrees of freedom, A\, (). These are called Lagrange
multipliers. Note that each sits on the same footing as the original z4(t) in the sense
that they are functions of time. We now define a new Lagrangian

L' = Lz, &™) + Mo falz?, 1) (2.31)
We treat A\, like new coordinates. Since L’ doesn’t depend on }\a, Lagrange’s equations
for A, are
oL A
= fo(x,t) = 2.32
T~ dalet ) =0 (2:52)

which gives us back the constraints. Meanwhile, the equations for 24 are

d (oL OL _ O
dt \ 9iA

oA T oA (2.33)

The LHS is the equation of motion for the unconstrained system. The RHS is the
manifestation of the constraint forces in the system. We can now solve these equations
as we did in the Newtonian formulation.
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The Pendulum Example Again

The Lagrangian for the pendulum is given by that for a free particle moving in the
plane, augmented by the Lagrange multiplier term for the constraints. It is

L' = gm(i® + 9%) + mgy + 5A(@* +y* = 1°) (2.34)
From which we can calculate the two equations of motion for x and y,
mi = \x and J=mg+ \y (2.35)

while the equation of motion for A reproduces the constraint 2%2+y?—1? = 0. Comparing
with the Newtonian approach (2.27), we again see that the Lagrange multiplier \ is
proportional to the tension: A = —T/I.

So we see that we can easily incorporate constraint forces into the Lagrangian setup
using Lagrange multipliers. But the big news is that we don’t have to! Often we don’t
care about the tension 7" or other constraint forces, but only want to know what the
generalised coordinates ¢; are doing. In this case we have the following useful theorem

Theorem: For constrained systems, we may derive the equations of motion directly
in generalised coordinates g;

Proof: Let’s work with I/ = L + A\, f, and change coordinates to
; L =1,...,
TA — ¢ ! " (237)
o a=1...3N—n

We know that Lagrange’s equations take the same form in these new coordinates. In
particular, we may look at the equations for ¢;,

4 (LY 0L | Of
dt \ 0g; g " 0g;

(2.38)

But, by definition, 0f,/dq; = 0. So we are left with Lagrange’s equations purely in
terms of ¢;, with no sign of the constraint forces. If we are only interested in the
dynamics of the generalised coordinates ¢;, we may ignore the Lagrange multipliers
and work entirely with the unconstrained Lagrangian L(g;, ¢;, t) defined in (2.36) where
we just substitute in x4 = x4(q;, t). O
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The Pendulum Example for the Last Time

Let’s see how this works in the simple example of the pendulum. We can parameterise
the constraints in terms of the generalised coordinate 6 so that x = [sinf and y =
lcosf. We now substitute this directly into the Lagrangian for a particle moving in
the plane under the effect of gravity, to get

L = im(#* + 9%) + mgy
= %ml292 + mgl cos (2.39)

From which we may derive Lagrange’s equations using the coordinate 6 directly

d (0L oL = oo
— (%> 90 = ml“0 +mglsinf = 0 (2.40)

dt
which indeed reproduces the equation of motion for the pendulum (2.28). Note that,
as promised, we haven’t calculated the tension 7" using this method. This has the
advantage that we’ve needed to do less work. If we need to figure out the tension, we
have to go back to the more laborious Lagrange multiplier method.

2.3.2 Non-Holonomic Constraints

For completeness, let’s quickly review a couple of non-holonomic constraints. There’s
no general theory to solve systems of this type, although it turns out that both of the
examples we describe here can be solved with relative ease using different methods. We
won’t discuss non-holonomic constraints for the rest of this course, and include a brief
description here simply to inform you of the sort of stuff we won’t see!

Inequalities

Consider a particle moving under gravity on the outside of a sphere of radius R. It is
constrained to satisfy 22 +y?+22 > R?. This type of constraint, involving an inequality,
is non-holonomic. When the particle lies close to the top of the sphere, we know that
it will remain in contact with the surface and we can treat the constraint effectively as
holonomic. But at some point the particle will fall off. To determine when this happens
requires different methods from those above (although it is not particularly difficult).

Velocity Dependent Constraints

Constraints of the form g(x#,i4,¢) = 0 which cannot be integrated to give f(z4,t) =0
are non-holonomic. For example, consider a coin of radius R rolling down a slope as
shown in figure 7. The coordinates (x,y) fix the coin’s position on the slope. But the
coin has other degrees of freedom as well: the angle # it makes with the path of steepest
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Figure 7: The coin rolling down a slope leads to velocity dependant, non-holonomic con-
straints.

descent, and the angle ¢ that a marked point on the rim of the coin makes with the
vertical. If the coin rolls without slipping, then there are constraints on the evolution
of these coordinates. We must have that the velocity of the rim is v, = R(ﬁ So, in
terms of our four coordinates, we have the constraint

i = Rosinb , § = Rocos b (2.41)

But these cannot be integrated to give constraints of the form f(z,y,6,¢) = 0. They
are non-holonomic.

2.3.3 Summary

Let’s review what we’ve learnt so far. A system is described by n generalised coordinates
¢; which define a point in an n-dimensional configuration space C'. Time evolution is a
curve in C' governed by the Lagrangian

L(gi, di, t) (2.42)
such that the g; obey
d (0L oL
— — =0 2.43

These are n coupled 2°¢ order (usually) non-linear differential equations. Before we
move on, let’s take this opportunity to give an important definition. The quantity

oL
04,

pi (2.44)

is called the generalised momentum conjugate to ¢;. (It only coincides with the real
momentum in Cartesian coordinates). We can now rewrite Lagrange’s equations (2.43)
as p; = OL/0q;. The generalised momenta will play an important role in Section 4.
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Note: The Lagrangian L is not unique. We may make the transformation

L' = alL for« € R

daf
or L'=L+— 2.45
o (2.45)
for any function f and the equations of motion remain unchanged. To see that the last
statement is true, we could either plug L’ into Lagrange’s equations or, alternatively,
recall that Lagrange’s equations can be derived from an action principle and the ac-
tion (which is the time integral of the Lagrangian) changes only by a constant under
the transformation. (As an aside: A system no longer remains invariant under these
transformations in quantum mechanics. The number « is related to Planck’s constant,
while transformations of the second type lead to rather subtle and interesting effects

related to the mathematics of topology).

2.3.4 Joseph-Louis Lagrange (1736-1813)

Lagrange started off life studying law but changed his mind and turned to mathematics
after reading a book on optics by Halley (of comet fame). Despite being mostly self-
taught, by the age of 19 he was a professor in his home town of Turin.

He stayed in Italy, somewhat secluded, for the next 11 years although he commu-
nicated often with Euler and, in 1766, moved to Berlin to take up Euler’s recently
vacated position. It was there he did his famous work on mechanics and the calculus of
variations that we’ve seen above. In 1787 he moved once again, now to Paris. He was
just in time for the French revolution and only survived a law ordering the arrest of
all foreigners after the intervention of the chemist Lavoisier who was a rather powerful
political figure. (One year later, Lavoisier lost his power, followed quickly by his head.)

Lagrange published his collected works on mechanics in 1788 in a book called “Mechanique
Analytique”. He considered the work to be pure mathematics and boasts in the intro-
duction that it contains no figures, thereby putting the anal in analytique.

Since I started with a quote about Newton’s teaching, I'll include here a comment
on Lagrange’s lectures by one of his more famous students:

“His voice is very feeble, at least in that he does not become heated; he
has a very pronounced Italian accent and pronounces the s like z ... The
students, of whom the majority are incapable of appreciating him, give him
little welcome, but the professors make amends for it.”

Fourier analysis of Lagrange
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2.4 Noether’s Theorem and Symmetries

In this subsection we shall discuss the appearance of conservation laws in the Lagrangian
formulation and, in particular, a beautiful and important theorem due to Noether
relating conserved quantities to symmetries.

Let’s start with a definition. A function F(g;,¢;,t) of the coordinates, their time
derivatives and (possibly) time ¢ is called a constant of motion (or a conserved quantity)
if the total time derivative vanishes

dF " /OF OF OF
el or . 9r . 9r 2.4
di ; (aqj% + 8%‘%) + ot 0 ( 6)

whenever ¢;(t) satisfy Lagrange’s equations. This means that F' remains constant along
the path followed by the system. Here’s a couple of examples:

Claim: If L does not depend explicitly on time ¢ (i.e. L/0t = 0) then
oL
H=> g-——1L (2.47)
— 04

is constant. When H is written as a function of ¢; and p;, it is known as the Hamiltonian.
It is usually identified with the total energy of the system.

Proof

dH oL d (0L oL oL
dH 2oL d (oL OL. OL. 2.4
d ; (q] 94, TG (a%‘) 9q;7 "~ 0, qJ) 249

which vanishes whenever Lagrange’s equations (2.43) hold. O

Claim: Suppose 0L/Jq; = 0 for some ¢;. Then g; is said to be ignorable (or cyclic).
We have the conserved quantity

oL
P = — (2.49)
J aqj
Proof:
dp; d L L
dpy _ 4 (OL) _OL (2.50)
dt dt an 8qj
where we have used Lagrange’s equations (2.43) in the second equality. O
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2.4.1 Noether’s Theorem

Consider a one-parameter family of maps

Qi(t) - Qi(57 t)

seR (2.51)

such that @;(0,t) = ¢;(t). Then this transformation is said to be a continuous symmetry

of the Lagrangian L if
(2.52)

L 0(Qu5.1), 05,10, = 0

Noether’s theorem states that for each such symmetry there exists a conserved quantity.

Proof of Noether’s Theorem:
OL 0L 0Q; . 0L 9Q;
ds  0Q; 9s 90, Os (2:53)

so we have
o 9L _ 0L 9Qi oL 90,
Os o 06 Os |y Odi Os .
_ 4 (0L 0@ oL 0Q;
Tt (8%) Os |,_y 04 0s| (By Lagrange)
d (0L 00Q;
0 (8% 0s $_0> (2.54)

and the quantity Y .(0L/0¢;)(0Q;/0s), evaluated at s = 0, is constant for all time. [J

Example: Homogeneity of Space
Consider the closed system of N particles discussed in Section 1 with Lagrangian

L= %Zmii‘? —V(|r; — 1)) (2.55)

This Lagrangian has the symmetry of translation: r; — r; + sn for any vector n and

for any real number s. This means that

L(ri7 I"’h t) = L(rz + sn, i'ia t) (256)

This is the statement that space is homogeneous and a translation of the system by
sn does nothing to the equations of motion. These translations are elements of the
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Galilean group that we met in section 1.2. From Noether’s theorem, we can compute
the conserved quantity associated with translations. It is

Z 81'2 = Zpi ‘n (2.57)

which we recognise as the the total linear momentum in the direction n. Since this

holds for all n, we conclude that ). p; is conserved. But this is very familiar. It is
simply the conservation of total linear momentum. To summarise

Homogeneity of Space = Translation Invariance of L

= Conservation of Total Linear Momentum

This statement should be intuitively clear. One point in space is much the same as any
other. So why would a system of particles speed up to get over there, when here is just
as good? This manifests itself as conservation of linear momentum.

Example: Isotropy of Space

The isotropy of space is the statement that a closed system, described by the Lagrangian
(2.55) is invariant under rotations around an axis n, so all r; — r} are rotated by the
same amount. To work out the corresponding conserved quantities it will suffice to
work with the infinitesimal form of the rotations

r, —r;+ 51‘1‘
=1, +an X1y (2.58)

where « is considered infinitesimal. To see that this is indeed a rotation, you could
calculate the length of the vector and notice that it’s preserved to linear order in a.
Then we have

L(I’i, I'Z) = L(I’Z + an x r;, I'Z + an x I'Z) (259)

which gives rise to the conserved quantity

Z@rz (n X r;) —;fl-(rixpi):ﬁ-L (2.60)

This is the component of the total angular momentum in the direc-

S

r

tion n. Since the vector n is arbitrary, we get the result Figure 8:

Isotropy of Space = Rotational Invariance of L

= Conservation of Total Angular Momentum
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Example: Homogeneity of Time

What about homogeneity of time? In mathematical language, this means L is invariant
under ¢ — t+s or, in other words, 0L/0t = 0. But we already saw earlier in this section
that this implies H = ). ¢;(0L/0¢;) — L is conserved. In the systems we're considering,
this is simply the total energy. We see that the existence of a conserved quantity which
we call energy can be traced to the homogeneous passage of time. Or

Time is to Energy as Space is to Momentum

Recall from the lectures on Special Relativity that energy and 3-momentum fit together
to form a 4-vector which rotates under spacetime transformations. Here we see that
the link between energy-momentum and time-space exists even in the non-relativistic
framework of Newtonian physics. You don’t have to be Einstein to see it. You just
have to be Emmy Noether.

Remarks: It turns out that all conservation laws in Nature (as described by the
Standard Model and General Relativity) are related to symmetries through Noether’s
theorem. This includes the conservation of electric charge and the conservation of
particles such as protons and neutrons (known as baryons).

There are also discrete symmetries in Nature which don’t depend on a continuous
parameter. For example, many theories are invariant under reflection (known as parity)
in which r; — —r;. These types of symmetries do not give rise to conservation laws in
classical physics (although they do in quantum physics).

2.5 Applications

Having developed all of these tools, let’s now apply them to a few examples.

2.5.1 Bead on a Rotating Hoop

This is an example of a system with a time dependent holonomic constraint. The hoop
is of radius a and rotates with frequency w as shown in figure 9. The bead, of mass m,
is threaded on the hoop and moves without friction. We want to determine its motion.
There is a single degree of freedom 1), the angle the bead makes with the vertical. In
terms of Cartesian coordinates (z,y, z) the position of the bead is

xr =asinycoswt y=asinysinwt , z=a—acosy (2.61)

To determine the Lagrangian in terms of the generalised coordinate 1) we must substi-
tute these expressions into the Lagrangian for the free particle. For the kinetic energy
T we have

T = dm(@ +§ + 2) = bma[§? + o sin® ] (2.62)
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while the potential energy V is given by (ignoring an overall z

constant) S N
V =mgz = —mgacos (2.63)
So, replacing x, y and z by 9, we have the Lagrangian Jwa -
L = ma? (%@2 _ V;ﬁ> (2.64) y
where the effective potential is \
Vig = # (—mga cos) — %ma2w2 sin’ 1/1) (2.65) Figure 9:

We can now derive the equations of motion for the bead simply from Lagrange’s equa-
tions which read

OV
O

Let’s look for stationary solutions of these equations in which the bead doesn’t move

) = (2.66)

(i.e solutions of the form w =1 = 0). From the equation of motion, we must solve
OVer /O = 0 to find that the bead can remain stationary at points satisfying

gsiny = aw?sin cos 1) (2.67)

Unstable Veit ) Unstable Vert , Unstable

Unstable
Stable

Stable
0 ks

=0 0<w gla ®>g/a

Figure 10: The effective potential for the bead depends on how fast the hoop is rotating

There are at most three such points: 1 = 0, ¢ = 7 or cosy) = g/aw?. Note that the
first two solutions always exist, while the third stationary point is only there if the hoop
is spinning fast enough so that w? > g/a. Which of these stationary points is stable
depends on whether V.¢(¢) has a local minimum (stable) or maximum (unstable). This
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in turn depends on the value of w. Vig is drawn for several values of w in figure 10.
For w? < g/a, the point 1) = 0 at the bottom of the hoop is stable, while for w? > g/a,
the position at the bottom becomes unstable and the new solution at cos¢ = g/aw? is
the stable point. For all values of w the bead perched at the top of the hoop ¥ = 7 is

unstable.

2.5.2 Double Pendulum

A double pendulum is drawn in figure 11, consisting of two
particles of mass m; and ms, connected by light rods of length
ly and [,. For the first particle, the kinetic energy 77 and the
potential energy V; are the same as for a simple pendulum

T, = %mllfﬁf and Vi = —magl; cos 0, (2.68)

For the second particle it’s a little more involved. Consider the
position of the second particle in the (z,y) plane in which the
pendulum swings (where we take the origin to be the pivot of the
first pendulum with y increasing downwards)

To = l1sin by + lysin b, and Yo =l cos By + l5 cos by
Which we can substitute into the kinetic energy for the second particle

TQ = %mg(.’tQ + y2)
1
2

= 5Mo (Z%Q% + lgeg + 2[112 COS(@l — 62)9192)
while the potential energy is given by

Vo = —magys = —miag (11 cos by + Iz cos O)

Figure 11:

(2.69)

(2.70)

(2.71)

The Lagrangian is given by the sum of the kinetic energies, minus the sum of the

potential energies

L = %(ml + TTLQ)Z%@% -+ %mglgeg + m211l2 COS(¢91 — 02)9192
+(my + mg)gly cos By + magls cos Oy

(2.72)

The equations of motion follow by simple calculus using Lagrange’s two equations (one

for #; and one for 6,). The solutions to these equations are complicated. In fact, above

a certain energy, the motion is chaotic.
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2.5.3 Spherical Pendulum

The spherical pendulum is allowed to rotate in three dimen-
sions. The system has two degrees of freedom drawn in figure
12 which cover the range

0<f<m and 0<¢<27 (2.73)

In terms of cartesian coordinates, we have

r=Ilcos¢sinf , y=Isingsinf , z= —lcosf

We substitute these constraints into the Lagrangian for a free

particle to get
Figure 12:

= Im(i® + 9> + 2°) — mgz
= %le(éz + ¢*sin? ) + mgl cos 0 (2.74)

Notice that the coordinate ¢ is ignorable. From Noether’s theorem, we know that the
quantity
0L

" = mi?dsin’ 0 (2.75)

J ==
¢

is constant. This is the component of angular momentum in the ¢ direction. The
equation of motion for # follows from Lagrange’s equations and is

mi*0 = mi?$* sin 0 cos § — mglsin 0 (2.76)

We can substitute ¢ for the constant J in this expression to get an equation entirely in
terms of 6 which we chose to write as

. 8{/eff
)= — 2.77
where the effective potential is defined to be
g J: 1
() = —=cosb+ ———— 2.
Ver (6) ] °" + 2m214 sin? 0 (2.78)

An important point here: we must substitute for J into the equations of motion. If
you substitute J for gzﬁ directly into the Lagrangian, you will derive an equation that
looks like the one above, but you’ll get a minus sign wrong! This is because Lagrange’s
equations are derived under the assumption that 6 and ¢ are independent.
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Figure 13: The effective potential for the spherical pendulum.

As well as the conservation of angular momentum .J, we also have dL/0t = 0 so
energy is conserved. This is given by

E =164+ V.g(0) (2.79)

— 2

where F is a constant. In fact we can invert this equation for F to solve for # in terms
of an integral

t—tozi/d—e (2.80)
V2.J) VE=Va(0)

If we succeed in writing the solution to a problem in terms of an integral like this then
we say we've “reduced the problem to quadrature”. It’s kind of a cute way of saying
we can’t do the integral. But at least we have an expression for the solution that we
can play with or, if all else fails, we can simply plot on a computer.

Once we have an expression for 6(t) we can solve for ¢(¢) using the expression for

J,

J 1 J 1 1
= dt = df
¢ / ml? sin? 6 V2mi2 / E — Vg (0) sin® 0

which gives us ¢ = ¢(0) = ¢(t). Let’s get more of a handle on what these solutions

look like. We plot the function Vig in figure 13. For a given energy FE, the particle is
restricted to the region Vg < E (which follows from (2.79)). So from the figure we
see that the motion is pinned between two points #; and 6,. If we draw the motion of
the pendulum in real space, it must therefore look something like figure 14, in which
the bob oscillates between the two extremes: 0; < 6 < #,. Note that we could make
more progress in understanding the motion of the spherical pendulum than for the
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double pendulum. The reason for this is the existence of two conservation laws for the
spherical pendulum (energy and angular momentum) compared to just one (energy)
for the double pendulum.

There is a stable orbit which lies between the two
extremal points at § = 6y, corresponding to the minimum
of Veg. This occurs if we balance the angular momentum J
and the energy E just right. We can look at small oscilla-
tions around this point by expanding 8 = 6y + 06. Substi-
tuting into the equation of motion (2.77), we have

-- DV
50 = — ( =

0=09

) 50 + O(56%) (2.81)

so small oscillations about 6 = 6y have frequency w? = .
(0?Veg /00?) evaluated at 6 = 6. Figure 14:

2.5.4 Two Body Problem

We now turn to the study of two objects interacting through a central force. The most
famous example of this type is the gravitational interaction between two bodies in
the solar system which leads to the elliptic orbits of planets and the hyperbolic orbits
of comets. Let’s see how to frame this famous physics problem in the Lagrangian
setting. We start by rewriting the Lagrangian in terms of the centre of mass R and
the separation ris = r; — ry and work with an arbitrary potential V' (|rys])

L = mlr? + %mgrg — V(|I‘12|>

(m1 +mo)R? + Lty — V(|ria)) (2.82)

1
2
1
2

where p = mymsy/(my + my) is the reduced mass. The Lagrangian splits into a piece
describing the centre of mass R and a piece describing the separation. This is familiar
from Section 1.3.2. From now on we neglect the centre of mass piece and focus on the
separation. We know from Noether’s theorem that L = ris X p12 is conserved, where
p12 is the momentum conjugate to rys. Since L is perpendicular to ris, the motion of
the orbit must lie in a plane perpendicular to L. Using polar coordinates (7, ¢) in that
plane, the Lagrangian is

L= +1%%%) - V(r) (2.83)

To make further progress, notice that ¢ is ignorable so, once again using Noether’s
theorem, we have the conserved quantity

J = ur’¢ (2.84)
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This is also conservation of angular momentum: to reduce to the Lagrangian (2.83), we
used the fact that the direction of L is fixed; the quantity .J is related to the magnitude
of L. To figure out the motion we calculate Lagrange’s equation for r from (2.83)

d (0L OL . ., OV
a(ﬁ)‘a—w—“w*a—o (2.85)

We can eliminate ¢ from this equation by writing it in terms of the constant J to get
a differential equation for the orbit purely in terms of r,

pit = =5 Verr(r) (2.86)

where the effective potential is given by

J2
2412

Veu(r) = V(r) + (2.87)

The last term is known as the “angular momentum barrier”. Let me reiterate the
warning of the spherical pendulum: do not substitute J = pur?¢ directly into the
Lagrangian — you will get a minus sign wrong! You must substitute it into the equations

\ hyperbolic orbit

of motion.

elliptic orbit

\,\

circular orbit

Figure 15: The effective potential for two bodies interacting gravitationally.

So far, you may recognise that the analysis has been rather similar to that of the
spherical pendulum. Let’s continue following that path. Since 0L/0t = 0, Noether
tells us that energy is conserved and

E =i 4+ Vig(r) (2.88)
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is constant throughout the motion. We can use this fact to “reduce to quadrature”,

t—toz\/E/L (2.89)
2 A/ E — ‘/eﬁ‘ (T’)
Up to this point the analysis is for an arbitrary potential V(7). At this point let’s
specialise to the case of two bodies interacting gravitationally with

Gmimes

V() = - (2.90)

where GG is Newton’s constant. For this potential, the different solutions were studied
in your Part I mechanics course where Kepler’s laws were derived. The orbits fall into
two categories: elliptic if £ < 0 and hyperbolic if £ > 0 as shown in figure 15.

It’s worth noting the methodology we used to solve this problem. We started with
6 degrees of freedom describing the positions of two particles. Eliminating the centre
of mass reduced this to 3 degrees of freedom describing the separation. We then used
conservation of the direction of L to reduce to 2 degrees of freedom (r and ¢), and
conservation of the magnitude of L to reduce to a single variable r. Finally conservation
of E allowed us to solve the problem. You might now be getting an idea about how
important conservation laws are to help us solve problems!

2.5.5 Restricted Three Body Problem

Consider three masses mi, mo and mg interacting gravitationally. In general this prob-
lem does not have an analytic solution and we must resort to numerical methods (i.e.
putting it on a computer). However, suppose that ms < m; and my. Then it is a good
approximation to first solve for the motion of m; and ms interacting alone, and then
solve for the motion of mj3 in the time dependent potential set up by m; and msy. Let’s
see how this works.

For simplicity, let’s assume m; and ms are in a circular orbit with ¢ = wt. We saw
in the previous section that the circular orbit occurs for OV.g/0r = 0, from which we
get an expression relating the angular velocity of the orbit to the distance

w2 = Glm ma) (2.91)

r

which is a special case of Kepler’s third law. Let’s further assume that ms moves in the
same plane as m; and msy (which is a pretty good assumption for the sun-earth-moon
system). To solve for the motion of mg in this background, we use our ability to change
coordinates. Let’s go to a frame which rotates with m; and ms with the centre of
mass at the origin. The particle m; is a distance ru/my from the origin, while my is a
distance ru/ms from the origin.
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Then, from the example of Section 2.2.1, the y
Lagrangian for m3 in the rotating frame is

ru/my rp/m,

L=3ms[(&—wy)’+ (y+wz)’] -V

where V' is the gravitational potential for ms inter-
acting with m; and my

V= _Gm1m3 _ Gm2m3 (292>

713 T93 Figure 16:

The separations are given by

riy = (x+rp/m)? +y> i =(z—ru/ma)? +y° (2.93)

Be aware that z and y are the dynamical coordinates in this system, while r is the
fixed separation between m; and ms. The equations of motion arising from L are

y . , OV
msx = 2mgwy + MW r — —
ox
oV
mslj = —2mawd + maw’y — B0 (2.94)
Y

The full solutions to these equations are interesting and complicated. In fact, in 1889,
Poincaré studied the restricted three-body system and discovered the concept of chaos
in dynamical systems for the first time (and, in the process, won 2,500 krona and lost
3,500 krona). We’ll be a little less ambitious here and try to find solutions of the form
& = gy = 0. This is where the third body sits stationary to the other two and the whole
system rotates together. Physically, the centrifugal force of the third body exactly
cancels its gravitational force. The equations we have to solve are

T — rp/my

ov

msw’s = — = GmlmgLéL/ml + Gmams 3 (2.95)
ox T35 T53
oV

maw?y = — = Gmlmg% + szmg% (2.96)
dy T3 T3

There are five solutions to these equations. Firstly suppose that y = 0 so that ms sits
on the same line as m; and ms. Then we have to solve the algebraic equation

x+ru/m T — rp/ms

2
wr = Gm————— m
a4 rpfmy [P ’]

- L = 2.97
x —ru/msl3 ( )

In figure 17, we have plotted the LHS and RHS of this equation to demonstrate the
three solutions, one in each of the regimes:
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®2x

—rp/my rmy,

Figure 17: The three solutions sitting on y = 0.

x<—m, IR T , x> E (2.98)

Now let’s look for solutions with y # 0. From (2.96) we have

G G
= - (2.99)
T'23 T3

which we can substitute into (2.95) and, after a little algebra, we find the condition for
solutions to be

W = G(ml;r ma) _ Glm . ma) (2.100)
T3 T'a3

which means that we must have r;3 = r93 = r. There are two such points.

In general there are five stationary points drawn
in the figure. These are called Lagrange points. It
turns out that L, L, and L3 are unstable, while
L4 and L5 are stable as long as ms is sufficiently
less than m;.

For the earth-sun system, NASA and ESA make
use of the Lagrange points L, and L3 to place
satellites. There are solar observatories at Ls;
satellites such as WMAP and PLANCK which
measure the cosmic microwave background radi-

) ) ~ Figure 18: The five Lagrange points.
ation (the afterglow of the big bang) gather their

data from Ly. Apparently, there is a large collec-
tion of cosmic dust which has accumulated at Ly and Ls. Other planetary systems (e.g.

X marks the spots.

the sun-jupiter and sun-mars systems) have large asteroids, known as trojans, trapped
at their Ly and Ls.
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2.5.6 Purely Kinetic Lagrangians

Often in physics, one is interested in systems with only kinetic energy and no potential
energy. For a system with n dynamical degrees of freedom ¢%, a = 1,...,n, the most
general form of the Lagrangian with just a kinetic term is

L=1gu(q)q"¢ (2.101)

The functions g4 = g¢p, depend on all the generalised coordinates. Assume that
det(gas) # 0 so that the inverse matrix ¢ exists (¢g%°gp. = 02). It is a short exer-
cise to show that Lagrange’s equation for this system are given by

i+ T =0 (2.102)
where
Ogpa  0Gea  Ogpe
b=39" — 2.103
be 2 g < aqc + 8qb aqd ( )

The functions g, define a metric on the configuration space, and the equations (2.102)
are known as the geodesic equations. They appear naturally in General Relativity
where they describe a particle moving in curved spacetime. Lagrangians of the form
(2.101) also appear in many other areas of physics, including the condensed matter
physics, the theory of nuclear forces and string theory. In these contexts, the systems
are referred to as sigma models.

2.5.7 Particles in Electromagnetic Fields

We saw from the beginning that the Lagrangian formulation works with conservative
forces which can be written in terms of a potential. It is no good at dealing with friction
forces which are often of the type F' = —kx. But there are other velocity dependent
forces which arise in the fundamental laws of Nature. It’s a crucial fact about Nature
that all of these can be written in Lagrangian form. Let’s illustrate this in an important
example.

Recall that the electric field E and the magnetic field B can be written in terms of
a vector potential A(r,¢) and a scalar potential ¢(r, 1)

B=VxA |, E:—vgf)—aa—j:‘ (2.104)

Let’s study the Lagrangian for a particle of electric charge e of the form,

L=1mi*—e(p—1-A) (2.105)
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The momentum conjugate to r is
oL
= — =mr+ecA 2.106
R + (2.106)
Notice that the momentum is not simply mr; it’s modified in the presence of electric
and magnetic fields. Now we can calculate Lagrange’s equations

d (0L oL d . .
To disentangle this, let’s work with indices a,b = 1,2, 3 on the Cartesian coordinates,
and rewrite the equation of motion as

o Jdp  0A, 04, 0A.)\ .,
mit = —e (8r“+ o >+e(8r“ — 8rb>r (2.108)

Now we use our definitions of the E and B fields (2.104) which, in terms of indices,

read

op  0A, 0A,
— — B, = €cqp—— 2.109
o ot e g (2.109)
The last of these can be equivalently written as 9A4,/0r® — A,/0r° = €weBe. The
equation of motion then reads

E, =

mi® = eF, + e€up i’ B,
or, reverting to vector notation,
mi =e(E+1 x B) (2.110)
which is the Lorentz force law.

Gauge Invariance: The scalar and vector potentials are not unique. We may make
a change of the form

¢_>¢_g_>t< , A—>A+Vy (2.111)

These give the same E and B fields for any function y. This is known as a gauge
transformation. Under this change, we have

ox . dy
L— L — . =1L — 2.112
— —1—6(% +er-Vy +€dt ( )

but we know that the equations of motion remain invariant under the addition of a
total derivative to the Lagrangian. This concept of gauge invariance underpins much of
modern physics. You can learn more about this in the lectures on Electromagnetism.
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2.6 Small Oscillations and Stability
“Physics is that subset of human experience which can be reduced to cou-

pled harmonic oscillators” Michael Peskin

Peskin doesn’t say this to knock physics. He’s just a fan of harmonic oscillators. And
rightly so. By studying the simple harmonic oscillator and its relatives in ever more
inventive ways we understand why the stars shine and why lasers shine and, thanks to
Hawking, why even black holes shine.

In this section we’ll see one reason why the simple harmonic oscillator is so important
to us. We will study the motion of systems close to equilibrium and see that the
dynamics is described by n decoupled simple harmonic oscillators, each ringing at a
different frequency.

Let’s start with a single degree of freedom z. We've already seen several examples
where we get an equation of the form

i = f(x) (2.113)

An equilibrium point, x = x¢, of this system satisfies f(z¢) = 0. This means that if we
start with the initial conditions

r=x9 and =0 (2.114)

then the system will stay there forever. But what if we start slightly away from x = x(?
To analyse this, we write

x(t) = xo + n(t) (2.115)
where 7 is assumed to be small so that we can Taylor expand f(z) to find

i=f'(x)n 4+ O (2.116)

and we neglect the terms quadratic in n and higher. There are two possible behaviours
of this system

1. f'(zo) < 0. In this case the restoring force sends us back to 7 = 0 and the solution
1s

n(t) = Acos(w(t —tg)) (2.117)

where A and t, are integration constants, while w? = —f’(z9). The system

undergoes stable oscillations about x = x( at frequency w.
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2. f'(zg) > 0. In this case, the force pushes us away from equilibrium and the
solution is

n(t) = AeM + Be ™ (2.118)

where A and B are integration constants, while \> = f’(z,). In this case, there
is a very special initial condition A = 0 such that x — z( at late times. But for
generic initial conditions, n gets rapidly large and the approximation that 7 is
small breaks down. We say the system has a linear instability.

Now let’s generalise this discussion to n degrees of freedom with equations of motion
of the form,

Gi=fila....q)  i=1,...n (2.119)

An equilibrium point ¢ must satisfy fi(¢?,...,¢%) = 0 for all i = 1...,n. Consider
small perturbations away from the equilibrium point

4(t) = ¢ + ni(t) (2.120)

where, again, we take the n; to be small so that we can Taylor expand the f;, and
neglect the quadratic terms and higher. We have

M ~
aCIj ar=q"

n; (2.121)

where the sum over 7 = 1,...,n is implicit. It’s useful to write this in matrix form.
We define the vector n and the n x n matrix F' as

of of

n Oq1 """ Ogn
n=|: ., F= : : (2.122)

Ofn Ofn

where each partial derivative in the matrix F' is evaluated at ¢; = ¢Y. The equation
now becomes simply

n=Fn (2.123)

Our strategy is simple: we search for eigenvectors of F. If F' were a symmetric matrix,
it would have a complete set of orthogonal eigenvectors with real eigenvalues. Unfortu-
nately, we can’t assume that F'is symmetric. Nonetheless, it is true that for equations
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of the form (2.123) arising from physical Lagrangian systems, the eigenvalues will be
real. We shall postpone a proof of this fact for a couple of paragraphs and continue
under the assumption that F' has real eigenvalues. In general, F' will have different left
and right eigenvectors,

Fu,=Xp, . C¢Ir=x¢t a=1,...,n (2.124)

where there’s no sum over a in these equations. The left and right eigenvectors satisfy
¢, - 1y = dap- Note that although the eigenvectors differ, the eigenvalues A2 for a =
1,...,n are the same. Although A2 are real for the physical systems of interest (to be
proved shortly) they are not always positive. The most general solution to ) = F'n is

n(t) = Z B [AgeM' + Bye '] (2.125)

where A, and B, are 2n integration constants. Again, we have two possibilities for
each eigenvalue

1. A2 < 0 In this case £\, = iw, for some real number w,. The system will be stable
in the corresponding direction 1 = pu,.

2. A2 > 0. Now +), are real and the system exhibits a linear instability in the
direction n = p,

The eigenvectors p, are called normal modes. The equilibrium point is only stable if
A < 0 for every a = 1,...,n. If this is the case the system will typically oscillate
around the equilibrium point as a linear superposition of all the normal modes, each
at a different frequency.

To keep things real, we can write the most general solution as

nt) = 3 g [A™ + Bae ™ + Y poAgcos(walt —ta)  (2.126)

a, \2>0 a,A\2<0
where now A,, B, and t, are the 2n integration constants.

The Reality of the Eigenvalues

Finally, let’s show what we put off above: that the eigenvalues A\ are real for matrices
F' derived from a physical Lagrangian system. Consider a general Lagrangian of the
form,

L =1T;(q)did; — V(q) (2.127)
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We will require that T};(¢) is invertible and positive definite for all ¢. Expanding about
an equilibrium point as in (2.120), to linear order in 7; the equations read

Tiji; = —Vin; (2.128)

where T;; = T;;(¢") and V;; = 9*°V/0¢;dq;, evaluated at ¢; = ¢. Then in the ma-
trix notation of (2.123), we have F' = —T~'V. Both T}; and Vj; are symmetric, but
not necessarily simultaneously diagonalisable. This means that Fj; is not necessarily
symmetric. Nevertheless, F' does have real eigenvalues. To see this, look at

Fu=Xp = Vupu=-\NTu (2.129)

So far, both p and A\? could be complex. We will now show that they’re not. Take
the inner product of this equation with the complex conjugate eigenvector pi. We have
-V =X - Tu. But for any symmetric matrix S, the quantity g - Sp is real. (This
follows from expanding p in the complete set of real, orthogonal eigenvectors of .S, each
of which has a real eigenvalue). Therefore both @V and @ - T’ are both real. Since
we have assumed that 7' is invertible and positive definite, we know that @ - T # 0
so, from (2.129), we conclude that the eigenvalue \? is indeed real.

2.6.1 Example: The Double Pendulum

In section 2.5.2, we derived the Lagrangian for the double pendulum. Restricting to
the case where the two masses are the same m; = my = m and the two lengths are the
same [; = Iy = [, we derived the Lagrangian (2.72) for arbitrary oscillations

L = leQf + %ml29§ + ml? cos(f; — 92)9192 + 2mgl cos 01 + mgl cos O

The stable equilibrium point is clearly ; = 63 = 0. (You could check mathematically if
you're dubious). Let’s expand for small #; and 0,. If we want to linearise the equations
of motion for 0, then we must expand the Lagrangian to second order (so that after we
take derivatives, there’s still a € left standing). We have

L~ mi%? + %ml@% + mi*6,0, — mglh? — tmglb; (2.130)

where we’ve thrown away an irrelevant constant. From this we can use Lagrange’s
equations to derive the two linearised equations of motion

2ml291 + ml2é2 = —2myglbt
mi%0y + mi?, = —mgls (2.131)

Or, writing @ = (6, 605)", this becomes
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Normal Mode 1 Normal Mode 2

Figure 19: The two normal modes of the double pendulum

2 1) . 2 0 . 2 _1
o=-2 6 = 6=-7 0 (2132
1 1 I'\o 1 I\ -2 2

We have two eigenvectors. They are

1
1. gy = (\/§> which has eigenvalue A = —(g/1)(2 — v/2). This corresponds to

the motion shown in figure 19 for the first normal mode.

1
2. p, = < \/§) which has eigenvalue A2 = —(g/1)(2 + v/2). This corresponds to
the motion shown in figure 19 for the second normal mode.

We see that the frequency of the mode in which the two rods oscillate in different
directions should be higher than that in which they oscillate together.

2.6.2 Example: The Linear Triatomic Molecule

Consider the molecule drawn in the figure. It’s a rough M

m

approximation of C'O,. We'll only consider motion in the € S ) S

direction parallel to the molecule for each atom, in which
case the Lagrangian for this object takes the form, Figure 20:

L= 1mit 4+ I M3 + imij — V() — 22) — V(zs — 33) (2.133)
The function V' is some rather complicated interatomic potential. But, the point of this
section is that if we’re interested in oscillations around equilibrium, this doesn’t matter.
Assume that z; = 2¥ in equilibrium. By symmetry, we have |2 — 29| = [z — 29| = ro.
We write deviations from equilibrium as

zi(t) = 20 + ni(t) (2.134)
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Normal Mode 1 Normal Mode 2 Normal Mode 3

§§®@§@@§@

—_— —_— - _ < R —

Figure 21: The three normal modes of the triatomic molecule

Taylor expanding the potential about the equilibrium point,

ov 0*V
V(r)=Vi)+ 5-|  (r=r)+3 55

or | (r—ro)*+... (2.135)

0 0

Here the first term V() is a constant and can be ignored, while the second term oV/0r
vanishes since we are in equilibrium. Substituting into the Lagrangian, we have

L & g + gMi + gmig — 5 [(m = m)* + (12 = s)°] (2.136)

where k = 9?V/9r? evaluated at r = 5. Then the equations of motion are

mi m — N2
Mijy | ==k | (n2—m)+ (12 — n3) (2.137)
mij3 N3 — 12

or, putting it in the form 7 = F'n, we have

—k/m k/m 0
F=| k/M —2k/M k/M (2.138)
0 k/m —k/m

Again, we must look for eigenvectors of F'. There are three:

1. p = (1,1,1)T which has eigenvalue \? = 0. But this is just an overall translation
of the molecule. It’s not an oscillation.

2. py = (1,0,—1)T which has eigenvalue A3 = —k/m. In this motion, the outer
two atoms oscillate out of phase, while the middle atom remains stationary. The

oscillation has frequency ws = \/k/m.

3. g = (1,—2m/M,1)T which has eigenvalue \3 = —(k/m)(1 + 2m/M). This
oscillation is a little less obvious. The two outer atoms move in the same direction,
while the middle atom moves in the opposite direction. The frequency of this
vibration ws = \/—A} is greater than that of the second normal mode.
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All motions are drawn in figure 21. For small deviations from equilibrium, the most
general motion is a superposition of all of these modes.

n(t) = p (A + Bt) + pyC cos(wa(t — ta)) + pyD cos(ws(t — t3)) (2.139)
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3. The Motion of Rigid Bodies

Figure 22: Wolfgang Pauli and Niels Bohr stare in wonder at a spinning top.

Having now mastered the technique of Lagrangians, this section will be one big
application of the methods. The systems we will consider are the spinning motions of
extended objects. As we shall see, these can often be counterintuitive. Certainly Pauli
and Bohr found themselves amazed!

We shall consider extended objects that don’t have any internal
degrees of freedom. These are called “rigid bodies”, defined to be
a collection of N points constrained so that the distance between
the points is fixed. i.e.

|r; — r;| = constant (3.1)

.. . . Figure 23:
foralli,j =1,...,N. A simple example is a dumbbell (two masses

connected by a light rod), or the pyramid drawn in the figure. In both cases, the
distances between the masses is fixed.
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Often we will work with continuous, rather than discrete, bodies simply by replacing
>o.mi — [ dr p(r) where p(r) is the density of the object. A rigid body has six degrees
of freedom

3 Translation + 3 Rotation

The most general motion of a free rigid body is a translation plus a rotation about
some point P. In this section we shall develop the techniques required to describe this
motion.

3.1 Kinematics

Consider a body fixed at a point P. The most general allowed motion is a rotation
about P. To describe this, we specify positions in a fized space frame {&,} by embedding
a moving body frame {e,} in the body so that {e,} moves with the body.

e, ()

o)
w

€

e, (ty)

A

time

e5(ty)

Figure 24: The fixed space frame and the moving body frame.

Both axes are orthogonal, so we have
éa . éb = 5ab 5 ea(t) : eb(t) = 6ab (32)
We will soon see that there is a natural choice of the basis {e,} in the body.
Claim: For all ¢, there exists a unique orthogonal matrix R(t) with components R (t)
such that e,(t) = Rup(t)é

Proof: e, e, = 0y = RucRpa€c - €4 = 0oy = RucRpe = d4 or, in other words,
(RTR)ab = 4 which is the statement that R is orthogonal. The uniqueness of R
follows by construction: R,, = e, - €. .
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So as the rigid body rotates it is described by a time dependent orthogonal 3 x 3
matrix R(t). This matrix also has the property that its determinant is 1. (The other
possibility is that its determinant is —1 which corresponds to a rotation and a reflection
e, — —e,). Conversely, every one-parameter family R(¢) describes a possible motion
of the body. We have

C' = Configuration Space = Space of 3 x 3 Special Orthogonal Matrices = SO(3)
A 3 x 3 matrix has 9 components but the condition of orthogonality RT R = 1 imposes
6 relations, so the configuration space C' is 3 dimensional and we need 3 generalised

coordinates to parameterise C'. We shall describe a useful choice of coordinates, known
as Euler angles, in section 3.5.

3.1.1 Angular Velocity

Any point r in the body can be expanded in either the space frame or the body frame:

r(t) = 7.(t) €, in the space frame
= r,€e4(t) in the body frame (3.3)

where 7, (t) = r,Ra(t). Taking the time derivative, we have

e f
o7 = g ©  in the space frame
de,(t
=T e;t( ) in the body frame
ARy
=T, 4
T dt €y (3 )

Alternatively, we can ask how the body frame basis itself changes with time,

dea dRab ~ dRab

- = T

i R, 'e. = wyee. (3.5)

where, in the last equality, we have defined w,, = Rab(R_l)bc = Ru, Ry using the fact
that RTR = 1.

Claim: w,. = —w, i.e. w is antisymmetric.

Proof: R, Ry = 04 = RabRcb + RabRCb =0 = Wye + Weq =0 O
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Since w,. is antisymmetric, we can use it to define an object with a single index
(which we will also call w) using the formula

We = %Eabcwbc (3 6)

so that w3 = wio and so on. We treat these w, as the components of a vector in the
body frame, so w = wye,. Then finally we have our result for the change of the body
frame basis with time

de,
dt

= —€aheWp€e = W X €, (3.7)

where, in the second equality, we have used the fact that our body frame axis has
a “right-handed” orientation, meaning e, X e, = €.€e.. The vector w is called the
instantaneous angular velocity and its components w, are measured with respect to the
body frame.

Since the above discussion was a little formal, let’s draw a picture i
to uncover the physical meaning of w. Consider a displacement of a
given point r in the body by rotating an infinitesimal amount d¢ about
an axis n. From the figure, we see that |dr| = |r|d¢sinf. Moreover,
this displacement is perpendicular to r since the distance to P is fixed

by the definition of a rigid body. So we have

dr =d¢ xr (3.8)
with d¢ = nd¢. “Dividing” this equation by dt, we have the result Figure 25:
Fr=wxr (3.9)

where w = d¢/dt is the instantaneous angular velocity. In general, both the axis of
rotation n and the rate of rotation d¢/dt will change over time.

Aside: One could define a slightly different type of angular velocity by looking at
how the space frame coordinates 7,(t) change with time, rather than the body frame
axes e,. Since we have 7,(t) = r,R(t), performing the same steps as above, we have

o =roRap = Fo(R7'R) g (3.10)

which tempts us to define a different type of angular velocity, sometimes referred to as
“convective angular velocity” by Q. = R;cchb which has the R~! and R in a different
order. Throughout our discussion of rigid body motion, we will only deal with the
original w = RR™'.
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3.1.2 Path Ordered Exponentials

In the remainder of this chapter, we will devote much effort to determine the angular
velocity vector w(t) of various objects as they spin and turn. But how do we go from
this to the rotation R(t)? As described above, we first turn the vector w = w,e, into a
3 x 3 antisymmetric matrix wy, = €4pewe. Then, from this, we get the rotation matrix
R by solving the differential equation

dR

w=—R" 3.11

I (3.11)
If w and R were scalar functions of time, then we could simply integrate this equation
to get the solution

R(t) = exp ( /0 L) dt’> (3.12)

which satisfies the initial condition R(0) = 1. But things are more complicated because
both w and R are matrices. Let’s first describe how we take the exponential of a matrix.
This is defined by the Taylor expansion. For any matrix M, we have

exp(M) =1+ M+ iM*+ ... (3.13)

As our first guess for the solution to the matrix equation (3.11), we could try the scalar
solution (3.12) and look at what goes wrong. If we take the time derivative of the
various terms in the Taylor expansion of this putative solution, then problems first
arise when we hit the %M 2 type term. The time derivative of this reads

3o ([wwar) = o ([wwra)+3([wwa)un @

We would like to show that R = wR. The first term on the right-hand side looks
good since it appears in the Taylor expansion of wR. But the second term isn’t right.

2

The problem is that we cannot commute w(t) past w(t’) when t' # ¢. For this reason,
equation (3.12) is not the solution to (3.11) when w and R are matrices. But it does
give us a hint about how we should proceed. Since the problem is in the ordering of
the matrices, the correct solution to (3.11) takes a similar form as (3.12), but with a
different ordering. It is the path ordered exponential,

R(t) = P exp (/Ot w(t) dt’) (3.15)
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where the P in front means that when we Taylor expand the exponential, all matrices
are ordered so that later times appear on the left. In other words

Rt)=1+ / tw(t’) dt’' + / " / tw(t”)w(t’) e’ + ... (3.16)

The double integral is taken over the range 0 < ¢’ < t” < t. If we now differentiate
this double integral with respect to ¢, we get just the one term w(t) ( fot w(t) dt'),
instead of the two that appear in (3.14). It can be checked that the higher terms in the
Taylor expansion also have the correct property if they are ordered so that matrices
evaluated at later times appear to the left in the integrals. This type of path ordered
integral comes up frequently in theories involving non-commuting matrices, including
the standard model of particle physics.

As an aside, the rotation matrix R is a member of the Lie group SO(3), the space of
3 x 3 orthogonal matrices with unit determinant. The antisymmetric angular velocity
matrix w, corresponding to an instantaneous, infinitesimal rotation, lives in the Lie
algebra so(3).

3.2 The Inertia Tensor

Let’s look at the kinetic energy for a rotating body. We can write
T =13 mi;
= %imi(w X 1) (wxr;)
=1 21: m; (w - w)(r; - 1;) — (r; - w)?) (3.17)
Or, in other words, we can write the kinetic energy of a rotating body as

T = %wa_fabwb (318)

where I, a,b=1,2,3 are the components of the inertia tensor measured in the body
frame, defined by

Iy = Z m; ((r; - )00 — (1) a(r:)s) (3.19)

Note that I,, = I, so the inertia tensor is symmetric. Moreover, the components
are independent of time since they are measured with respect to the body frame. For
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continuous bodies, we have the analogous expression

P+t —xy —az
I = /dsr p(r) —zy a2+ 22 —yz (3.20)
—xz —yz 2?4y

Since I, is a symmetric real matrix, we can diagonalise it. This means that there
exists an orthogonal matrix O such that OIOT = I’ where I’ is diagonal. Equivalently,
we can rotate the body frame axis {e,} to coincide with the eigenvectors of I (which
are {Oe,}) so that, in this frame, the inertia tensor is diagonal. These preferred body
axes, in which [ is diagonal, are called the principal axes. In this basis,

L
I=| 5 (3.21)

The eigenvalues I, are called the principal moments of inertia. The kinematical prop-
erties of a rigid body are fully determined by its mass, principal axes, and moments of
inertia. Often the principal axes are obvious by symmetry.

Claim: The I, are real and positive.

Proof: If c is an arbitrary vector, then

Tpc"c® = Zmi(rfcz —(r;-c)?) >0 (3.22)
with equality only if all the r; lie on a line. If ¢ is the a'" eigenvector of I then this
result becomes I,c®c® = I,|c|? which tells us 7, > 0. O

Example: The Rod

Consider the inertia tensor of a uniform rod of length [ and mass M about its centre.
The density of the rod is p = M/l. By symmetry, we have I = diag([y, I1,0) where

12 1
L = / pr?dr = —MI* (3.23)
71/2 12
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Example: The Disc

Now consider a uniform disc of radius r and mass M. e3=
We take the z axis to be perpendicular to the disc and mea-
sure [ about its centre of mass. Again we know that I =
diag(l;, I, I3). The density of the disc is p = M/7r?, so we

have
I :/prde , Igz/prde "

so Iy = I, by symmetry, while

e,=y

Figure 26:

Iy = / p(z® +y*)d*x
Therefore
ILi=0L+1 = 27rp/ P dr’ = Mr? (3.24)
0

So the moments of inertia are I; = I, = AlerQ and I3 = %Mrg.

3.2.1 Parallel Axis Theorem

The inertia tensor depends on what point P in the body is held fixed. In general, if we
know I about a point P it is messy to compute it about some other point P’. But it
is very simple if P happens to coincide with the centre of mass of the object.

Claim: If P’ is displaced by c from the centre of mass, then
(Ic)ab = (Ic.of.m>ab + M(025ab - Cacb) (325>
Proof:
Jab = Zmz —¢)%0up — (1; — €)a(r; — )} (3.26)

= ZmZ {r?6a — (r:)a(r:)s + [—21; - €Oap + (r5)aCh + (r3)5Ca] + (Pdap — CaCp) }

But the terms in square brackets that are linear in r; vanish if r; is measured from the
centre of mass since ), m;r; = 0. O

The term M (c?0, — €4Cp) is the inertia tensor we would find if the whole body was
concentrated at the centre of mass.
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Example: The Rod Again
The inertia tensor of the rod about one of its ends is I} = 55 M1* + M (1/2)* = s MI*.

Example: The Disc Again

Consider measuring the inertia tensor of the disc about a point displaced by ¢ = (¢, 0, 0)
from the centre. We have

Figure 27:

=M 24

4+
3.2.2 Angular Momentum

The angular momentum L about a point P can also be described neatly in terms of
the inertia tensor. We have
L= Z m;r; X I'l
i

= Zmiri X ((.«.) X I'Z'>
%

= Z mi(riw — (w-1;)r;)
= lw (3.27)
In the body frame, we can write L = L,e, to get
La = ]abwb (328)

where w = w,e,. Note that in general, w is not equal to L: the spin of the body and
its angular momentum point in different directions. This fact will lead to many of the
peculiar properties of spinning objects.

3.3 Euler’s Equations

So far we have been discussing the rotation of a body fixed at a point P. In this section
we will be interested in the rotation of a free body suspended in space - for example, a
satellite or the planets. Thankfully, this problem is identical to that of an object fixed
at a point. Let’s show why this is the case and then go on to analyse the motion.
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f) =RO+Ar©

Figure 28:

The most general motion of a body is an overall translation superposed with a ro-
tation. We could take this rotation to be about any point in the body (or, indeed, a
point outside the body). But it is useful to consider the rotation to be about the center
of mass. We can write the position of a particle in the body as

ri(t) = R(t) + Ar,(t) (3.29)

where Ar; is the position measured from the centre of mass. Then examining the
kinetic energy (which, for a free body, is all there is)

T =1 mi]
= Zmi [%RQ +R- (w X Ar;) + L(w x Ary)?
= %]\4];{,2 + %wa]abwb (330)

where we’ve used the fact that Zz m;Ar; = 0. So we find that the dynamics separates
into the motion of the centre of mass R, together with rotation about the centre of
mass. This is the reason that the analysis of the last section is valid for a free object.

3.3.1 Euler’s Equations

From now on, we shall neglect the center of mass and concentrate on the rotation of
the rigid body. Since the body is free, its angular momentum must be conserved. This
gives us the vector equation

dL

— =0 3.31
7 (3.31)
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Let’s expand this in the body frame. we have

_dL_dL,  de,
Tat T at STty
dL,
= e, +L,w X e, (3.32)

This simplifies if we choose the body axes {e,} to coincide with the the principal axes.
Using L, = I,wy, we can then write L; = [jw; and so on. The equations of motion
(3.32) are now three non-linear coupled first order differential equations,

Ly +wows(I3 — 1) =0

Lyws + wawq (I — I3) =0 (3.33)

L33 + wiwe(Iy — ;) =0

These are Fuler’s Equations.

We can extend this analysis to include a torque 7. The equation of motion becomes
L = 7 and we can again expand in the body frame along the principal axes to derive
Euler’s equations (3.33), now with the components of the torque on the RHS.

3.4 Free Tops

“To those who study the progress of exact science, the common spinning-top
is a symbol of the labours and the perplexities of men.”
James Clerk Mazwell, no less

In this section, we’ll analyse the motion of free rotating bod- &
ies (known as free tops) using Euler’s equation.

o
)

We start with a trivial example: the sphere. For this object,
I, = I, = I3 which means that the angular velocity w is parallel
to the angular momentum L. Indeed, Euler’s equations tell us o
that w, is a constant in this case and the sphere continues to spin
around the same axis you start it on. To find a more interesting
case, we need to look at the next simplest object.

3.4.1 The Symmetric Top Figure 29:

The symmetric top is an object with I; = I, # I3. A typical example is drawn in figure
29. Euler’s equations become

[1(4..)1 = w2w3(11 — [3)

IQCZ)Q = —W1W3(Il — 13) (334)

Igd]g — 0
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3 I]<I3
€ €1

Figure 30: The precession of the spin: the direction of precession depends on whether the
object is short and fat (I3 > I7) or tall and skinny (I3 < I)

So, in this case, we see that ws, which is the spin about the symmetric axis, is a
constant of motion. In contrast, the spins about the other two axes are time dependent
and satisfy

w1 = Qwy Wy = —Qw; (3.35)
where
Q=ws(l; — I3)/ I (3.36)
is a constant. These equations are solved by
(w1, ws2) = wo(sin Qt, cos Qt) (3.37)

for any constant wy. This means that, in the body frame, the direc- = L
tion of the spin is not constant: it precesses about the e; axis with

frequency €2. The direction of the spin depends on the sign on € or,

in other words, whether Iy > I3 or Iy < I3. This is drawn in figure

30.

What does this look like in an inertial frame? The angular momen-
tum L is a fixed vector. But w®, and hence Ls, are also fixed which
ensures that the angle between e; and L doesn’t change in time. In-
stead, e3 precesses around L, while the body simultaneously spins
such that w remains between es and L. (If this is hard to visualise, ~ ¥Figure 31:
then try searching YouTube for "free symmetric tops” or something
similar and you will find videos like this.) The fact that w precesses around the body
frame axis e; is sometimes referred to as a wobble.
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https://www.youtube.com/watch?v=s9wiRjUKctU

3.4.2 Example: The Earth’s Wobble

The spin of the earth causes it to bulge at the equator so it is no longer a sphere but can
be treated as a symmetric top. It is an oblate ellipsoid, with I3 > [, and is spherical
to roughly 1 part in 300, meaning

L—1I 1

L 300
Of course, we know the magnitude of the spin ws: it is ws = (1 day)~!. This information
is enough to calculate the frequency of the earth’s wobble; from (3.36), it should be

(3.38)

Qeartn = 5%6 day ! (3.39)
This calculation was first performed by Euler in 1749 who pre-  Nonh Pole
dicted that the Earth completes a wobble every 300 days. De- < °
spite many searches, this effect wasn’t detected until 1891 when o

Chandler re-analysed the data and saw a wobble with a period
of 427 days. It is now known as the Chandler wobble. 1t is
very smalll The angular velocity w intercepts the surface of
the earth approximately 10 metres from the North pole and

Equator

precesses around it. More recent measurements place the fre-

quency at 435 days, with the discrepancy between the predicted
300 days and observed 435 days due to the fact that the Earth
is not a rigid body, but is flexible because of tidal effects. Less Figure 32:

well understood is why these same tidal effects haven’t caused

the wobble to dampen and disappear completely. There are various theories about
what keeps the wobble alive, from earthquakes to fluctuating pressure at the bottom
of the ocean.

3.4.3 The Asymmetric Top: Stability

The most general body has no symmetries and Iy, # I, # I3 # I;. The rotational
motion is more complicated but there is a simple result that we will describe here.
Consider the case where the spin is completely about one of the principal axes, say e;.
ie.

w1 = Q s W9y = W3 = 0 (340)

This solves Euler’s equations (3.33). The question we want to ask is: what happens if
the spin varies slightly from this direction? To answer this, consider small perturbations
about the spin

w=8Q4m , wa=mn , w3=1;3 (3-41)
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where 7,, a = 1,2, 3 are all taken to be small. Substituting this into Euler’s equations
and ignoring terms of order n? and higher, we have

Lm =0
[2’)72 = Q?]g([g — Il) (342)
Isns = Qmp(l — Io)

S
w
N

We substitute the third equation into the second to find an equation for just one of the
perturbations, say 7s,

2

Lyt = 7 (Is = L) (I, — Ly)me = Ampy (3.44)

3
The fate of the small perturbation depends on the sign of the quantity A. We have two
possibilities

e A < 0: In this case, the disturbance will oscillate around the constant motion.
e A > 0: In this case, the disturbance will grow exponentially.
Examining the definition of A, we find that the motion is unstable if

L < < ]3 or 13 <L <1y (345)

with all other motions stable. In other words, a body will rotate stably about the axis
with the largest or the smallest moment of inertia, but not about the intermediate axis.
Pick up a tennis racket and try it for yourself!

3.4.4 The Asymmetric Top: Poinsot Construction

The analytic solution for the general motion of an asymmetric top is rather complicated,
involving Jacobian elliptic functions. But there’s a nice geometrical way of viewing the
motion due to Poinsot.

We start by working in the body frame. There are two constants of motion: the
kinetic energy 7' and the magnitude of the angular momentum L2 In terms of the
angular velocity, they are

2T = Lw? + Lws + w3 (3.46)

L? = [[w} + Lws + [Jw;

I
~
N—
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Each of these equations defines an ellipsoid in w space. The motion of the vector w is
constrained to lie on the intersection of these two ellipsoids. The first of these ellipsoids,
defined by

I
2T

P I3
is known as the inertia ellipsoid (or, sometimes, the inertia quadric). If we fix the
kinetic energy, we can think of this abstract ellipsoid as embedded within the object,

rotating with it.

The inertia ellipsoid is drawn in figure o,
33, where we've chosen I > Iy > I3 so that
the major axis is w3 and the minor axis is wy.
The lines drawn on the figure are the inter-
section of the inertia ellipsoid with the other o,
ellipsoid, defined by (3.47), for various val-
ues of L2, Since this has the same major and
minor axes as the inertia ellipsoid (because b
I? > IZ > I2), the intersection lines are small Figure 33:
circles around the w; and ws axes, but two
lines passing through the w, axis. For fixed 7" and L2, the vector w moves along one
of the intersection lines. This provides a pictorial demonstration of the fact we learnt
in the previous subsection: an object will spin in a stable manner around the principal
axes with the smallest and largest moments of inertia, but not around the intermediate
axis. The path that w traces on the inertia ellipsoid is known as the polhode curve. We
see from the figure that the polhode curves are always closed, and motion in the body
frame is periodic.

So much for the body frame. What does all this look like in the space frame? The
vector L is a constant of motion. Since the kinetic energy 27 = L - w is also constant,
we learn that w must lie in a fixed plane perpendicular to L. This is known as the
tmwariable plane. The inertia ellipsoid touches the invariable plane at the point defined
by the angular velocity vector w. Moreover, the invariable plane is always tangent to
the inertial ellipsoid at the point w. To see this, note that the angular momentum can
be written as

L=v,T (3.49)

where the gradient operator is in w space, i.e. V, = (0/0wi,d/0ws,d/0ws). But
recall that the inertia ellipsoid is defined as a level surface of T', so equation (3.49) tells
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herpolhode curve

polhode curve

Invariable Plane

Inertial ellipsoid

Figure 34: The inertia ellipsoid rolling around on the invariable plane, with the polhode
and herpolhode curves drawn for a fixed time period.

us that the angular momentum L is always perpendicular to the ellipsoid. This, in
turn, ensures that the invariable plane is always tangent to the ellipsoid. In summary,
the angular velocity traces out two curves: one on the inertia ellipsoid, known as the
polhode curve, and another on the invariable plane, known as the herpolhode curve.
The body moves as if it is embedded within the inertia ellipsoid, which rolls around the
invariable plane without slipping, with the center of the ellipsoid a constant distance
from the plane. The motion is shown in figure 34. Unlike the polhode curve, the
herpolhode curve does not necessarily close.

An Example: The Asteroid Toutatis

Astronomical objects are usually symmetric, but there’s an important exception wan-
dering around our solar system, depicted in figure! 35. This is the asteroid Toutatis. In
September 2004 it passed the earth at a distance of about four times that to the moon.
This is (hopefully!) the closest any asteroid will come for the next 60 years. The orbit
of Toutatis is thought to be chaotic, which could potentially be bad news for Earth
a few centuries from now. As you can see from the picture, its tumbling motion is
complicated. It is aperiodic. The pictures show the asteroid at intervals of a day. The
angular momentum vector L remains fixed and vertical throughout the motion. The
angular velocity w traces out the herpolhode curve in the horizontal plane, perpendic-
ular to L. The angular momentum vector w also traces out a curve over the asteroid’s

!This picture was created by Scott Hudson of Washington State University and was taken from
http://www.solarviews.com/eng/toutatis.htm where you can find many interesting facts about the
asteroid.
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Figure 35: By Toutatis! The three principal axes are shown in red, green and blue (without
arrows). The angular momentum L is the vertical, purple arrow. The angular velocity w is
the circled, yellow arrow.

surface: this is the polhode curve. It has a period of 5.4 days which you can observe
by noting that w has roughly the same orientation relative to the principal axes every
five to six days.

However, there are further effects at play in a real object like Toutatis which is not
spinning around a principal axis. Various stresses and strains lead to dissipation. This
means that the angular velocity w does not quite follow the polhode curve in Figure
33. Instead it begins close to the major axis ws and slowly spirals towards the minor
axis wi. This is why we see so few wobbling asteroids.
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3.5 Euler’s Angles

So far we’ve managed to make quite a lot of progress working just with the angular
velocity w, and we haven’t needed to introduce an explicit parametrization of the
configuration space C. But to make further progress we're going to need to do this.
We will use a choice due to Euler which often leads to simple solutions.

Figure 36: The rotation from space frame {€,} to body frame {e,}.

A general rotation of a set of axis is shown in Figure 36. We'd like to construct a
way of parameterizing such a rotation. The way to do this was first described by Euler:

Euler’s Theorem:

An arbitrary rotation may be expressed as the product of 3 successive rotations about
3 (in general) different axes.

Proof: Let {€,} be space frame axes. Let {e,} be body frame axes. We want to find
the rotation R so that e, = R,€,. We can accomplish this in three steps

(6.} 29 (e} T fery W e (3.50)

Let’s look at these step in turn.
Step 1: Rotate by ¢ about the €3 axis. So €/, = R3(¢®).€, with
cos¢ sing 0
R3(¢) = | —sing cos¢ 0 (3.51)
0 0 1

This is shown in Figure 37.
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€

Figure 37: Step 1: Rotate around the space-frame axis e3.

Step 2: Rotate by 6 about the new axis €|. This axis €] is sometimes called the
“line of nodes”. We write €] = R;(0).€}, with

1 0 0
Ri(#) =10 cosf sinf (3.52)

0 —sin® cosf

This is shown in Figure 38

/
€3

Figure 38: Step 2: Rotate around the new axis axis €.

Step 3: Rotate by ¥ about the new new axis €5 so e, = R3(1))qp€) with

cosy siny 0
R3(¢) = | —sin cosv 0 (3.53)
0 0 1

This is shown in Figure 39.
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Figure 39: Step 3: Rotate around the latest axis €ef.

So putting it all together, we have

Rap(¢,0,¢) = [R3(1) R1(0) R3(0)] (3.54)

OJ
The angles ¢, 0,1 are the Euler angles. If we write out the matrix R(¢,d,1) longhand,
it reads

cos ) cos ¢ — cos 6 sin ¢ sin ¢ sin ¢ cos ) + cos@sinycos¢  sinfsiny
R=1 —cos¢gsiny — cosfcosysing —sinysing + cosfcostcosop sinbcos
sin @ sin ¢ — sin @ cos ¢ cos

Note: Recall that we may expand a vector r either in the body frame r = r,e,, or in
the space frame r = 7,€,. The above rotations can be equally well expressed in terms
of the coordinates r, rather than the basis {e,}: we have 7, = r,R,. Be aware that
some books choose to describe the Euler angles in terms of the coordinates r, which
they write in vector form. In some conventions this can lead to an apparent reversal in
the ordering of the three rotation matrices.

3.5.1 Leonhard Euler (1707-1783)

As is clear from the section headings, the main man for this chapter is Euler, by far the
most prolific mathematician of all time. As well as developing the dynamics of rotations,
he made huge contributions to the fields of number theory, geometry, topology, analysis
and fluid dynamics. For example, the lovely equation e = cos@ + isinf is due to
Euler. In 1744 he was the first to correctly present a limited example of the calculus of
variations (which we saw in section 2.1) although he generously gives credit to a rather
botched attempt by his friend Maupertuis in the same year. Euler also invented much
of the modern notation of mathematics: f(x) for a function; e for exponential; 7 for,

well, 7 and so on.

— 064 —



Euler was born in Basel, Switzerland and held positions in St Petersburg, Berlin and,
after falling out with Frederick the Great, St Petersburg again. He was pretty much
absorbed with mathematics day and night. Upon losing the sight in his right eye in
his twenties he responded with: “Now I will have less distraction”. Even when he went
completely blind later in life, it didn’t slow him down much as he went on to produce
over half of his total work. The St Petersburg Academy of Science continued to publish
his work for a full 50 years after his death.

3.5.2 Angular Velocity

There’s a simple expression for the instantaneous angular velocity w in terms of Euler
angles. To derive this, we could simply plug (3.54) into the definition of angular velocity
(3.5). But this is tedious, and a little bit of thought about what this means physically
will get us there quicker. Consider the motion of a rigid body in an infinitesimal time
dt during which

(1, 0,¢) = (¥ +dy,0 + db, ¢ + do) (3.55)
From the definition of the Euler angles, the angular velocity must be of the form
w=¢& +0e +1ey (3.56)

But we can express the first two vectors in terms of the body frame. They are

€3 = sinfsiny e; + sinf cosy ey + cost es
€] = cose; —siny e, (3.57)

from which we can express w in terms of the Euler angles in the body frame axis
w = [psinfsiny + 0 cosple; + [psinf cos) — Osinv]ey + [ + dcosbles  (3.58)

By playing a similar game, we can also express w in the space frame axis.

3.5.3 The Free Symmetric Top Revisited

In section 3.4 we studied the free symmetric top working in the body frame and found
a constant spin ws while, as shown in equation (3.37), w; and ws precess as

(L — I3)
L

But what does this look like in the space frame? Now that we have parametrised

(w1, wa) = wo(sin Qt, cos Q) with Q =ws (3.59)

motion in the space frame in terms of Fuler angles, we can answer this question. This
is simplest if we choose the angular momentum L to lie along the €3 space-axis. Then
because both L and its body-frame component L3 = I3ws are conserved, so too is the
angle between them. But this angle is precisely . We learn that 0 =0.
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Figure 40: Euler angles for the free symmetric top when L coincides with €3

Next, we use the equations (3.58) to solve for ¢(t) and 1(¢). The solution is given by
= Q. (This relation also follows by starting at the figure and thinking about how the
object spins as it precesses around L.) But we know from (3.58) that the expression
for w3 (which, remember, is the component of w in the body frame) in terms of Euler
angles is w3 = ¥ + ¢ cosb so, substituting for 2 = v, we find the precession frequency

. Igtdg
~ Icosf

(3.60)

Staring at the figure, the relationship ¢y = Q may be not be immediately clear.

An Example: The Wobbling Plate
The physicist Richard Feynman tells the following story:

“I was in the cafeteria and some guy, fooling around, throws a plate in the
air. As the plate went up in the air I saw it wobble, and I noticed the red
medallion of Cornell on the plate going around. It was pretty obvious to me
that the medallion went around faster than the wobbling.

I had nothing to do, so I start figuring out the motion of the rotating plate.
I discover that when the angle is very slight, the medallion rotates twice as
fast as the wobble rate — two to one. It came out of a complicated equation!

I went on to work out equations for wobbles. Then I thought about how the
electron orbits start to move in relativity. Then there’s the Dirac equation
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in electrodynamics. And then quantum electrodynamics. And before I knew
it....the whole business that I got the Nobel prize for came from that piddling
around with the wobbling plate.”

Feynman was right about quantum electrodynamics. But what
about the plate? We can look at this easily using what we’ve learnt.
The spin of the plate is w3, while the precession, or wobble, rate is cb
which is given in (3.60). To calculate this, we need the moments of
inertia for a plate. But we figured this out for the disc in Section 3.2

where we found that I3 = 21;. We can use this to see that w = —wsy
for this example and so, for slight angles 0, have

¢~ —2¢ (3.61) Figure 41:

Or, in other words, the wobble rate is twice as fast as the spin of the plate. It’s the
opposite to how Feynman remembers!

There is another elegant and simple method you can use to see that Feynman was
wrong: you can pick up a plate and throw it. It’s hard to see that the wobble to spin
ratio is exactly two. But it’s easy to see that it wobbles faster than it spins.

3.6 The Heavy Symmetric Top

The “heavy” in the title of this section means that the top is acted upon by gravity.
We'll deal only with a symmetric top, pinned at a point P which is a distance [ from
the centre of mass. This system is drawn in the figure. The principal axes are e;, e,
and e3 and we have I; = [,. From what we have learnt so far, it is easy to write down
the Lagrangian:

L = 16(wi 4 wj) + $13w; — Mgl cosd
= %[1(92 + sin? 0¢?) + %Ig(z/} + cos 0 ) — Mgl cos (3.62)

A quick examination of this equation tells us that both 1 and ¢ are ignorable coordi-
nates. This gives us the constants of motion p,, and p,, where

Py = Is(Y) + cos 0 ¢) = Iyws (3.63)

This is the angular momentum about the symmetry axis ez of the top. The angular
velocity ws about this axis is simply called the spin of the top and, as for the free
symmetric top, it is a constant. The other constant of motion is

po = I sin?0 ¢ + Iscos 0 (¢ + ¢ cos b)) (3.64)
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Figure 42: The heavy top with its Euler angles

As well as these two conjugate momenta, the total energy F is also conserved
E=T+V = %[1(92 + ¢?sin?6) + 1L3w5 + Mgl cosf (3.65)

To simplify these equations, let’s define the two constants

. T3ws _ Dy
a= T, and b= 7, (3.66)
Then we can write
. b—acosf
- T 3.67
¢ sin? 6 ( )
and
-:@_(b—acos@cose (3.68)

]3 SiIl2 0
So if we can solve 0 = 6(t) somehow, then we can always integrate these two equations
to get ¢(t) and ¢ (t). But first we have to figure out what 6 is doing. To do this, let’s

define the “reduced energy” F' = E — %Igwg. Then, since £/ and w3 are constant, so is
E’. We have

E' = 116" + Vig(0) (3.69)

where the effective potential is

I(b— 0)?
Vet (0) = i 25121(2:?98 ) + Mgl cos (3.70)
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f(u)

Figure 43:

So we've succeeded in getting an equation (3.69) purely in terms of 6. To simplify the
analysis, let’s define the new coordinate

u = cosf (3.71)

Clearly —1 < u < 1. We'll also define two further constants to help put the equations
in the most concise form

2L 2M gl
= d e
« T an 16 T

With all these redefinitions, the equations of motion (3.67), (3.68) and (3.69) can be
written as

(3.72)

W = (1 —u*)(a— pu) — (b—au)?® = f(u) (3.73)
¢ = i:—auz (3.74)
o ha  u(b—au)

We could take the square root of equation (3.73) and integrate to reduce the problem
to quadrature. The resulting integral is known as an “elliptic integral”. But, rather
than doing this, there’s a better way to understand the physics qualitatively.

Note that the function f(u) defined in (3.73) is a cubic polynomial that behaves as

Flu) = { +00 as u — 00 (3.76)

—o0 as u — —00

and f(+1) = —(bF a)? < 0. So if we plot the function f(u), it looks like figure 43
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Motion 1) Motion 2) Motion 3)

Figure 44: The three different types of motion depend on the direction of precession at the

extremal points.

The physical range is u*> = f(u) > 0 and —1 < u < 1 so we find that, like in the
spherical pendulum and central force problem, the system is confined to lie between
the two roots of f(u).

There are three possibilities for the motion depending on the sign of gb at the two
roots u = u; and u = us as determined by (3.74). These are

° ¢>Oatbothu:u1andu:u2
° ¢>Oatu:u1,but¢<0atu:u2
° <;5>Oatu:u1and¢:0atu:u2

The different paths of the top corresponding to these three possibilities are shown in
figure 44. Motion in ¢ is called precession while motion in # is known as nutation.

3.6.1 Letting the Top Go

The last of these three motions is not as unlikely as it may first appear. Suppose
we spin the top and let it go at some angle #. What happens? We have the initial

conditions
o =0 = flu=o)=0
= U=0 = U2
and étzo =0 = b—au==0
b
= U= — — (377)
a
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Remember also that the quantity
Py = Lipsin® 0 + Iws cos = Iyws cos B (3.78)

is a constant of motion. We now have enough information to figure out the qualitative
motion of the top. Firstly, it starts to fall under the influence of gravity, so 6 increases.
But as the top falls, gb must turn and increase in order to keep p, constant. Moreover,
we also see that the direction of the precession gb must be in the same direction as the
spin wy itself. What we get is motion of the third kind.

3.6.2 Uniform Precession

Can we make the top precess with bobbing up and down? i.e. with 6 = 0 and ¢
constant. For this to happen, we would need the function f(u) to have a single root ug
lying in the physical range —1 < ug < +1. This root must satisfy,

fuo) = (1 = ug)(a = Bug) — (b~ aug)* =0 (3.79)
and  f'(ug) = —2ug(a — Bug) — B(1 — ud) + 2a(b — auy) = 0

Combining these, we find %ﬁ = a¢ — ¢*ugy. Substitut- w
ing the definitions l1a = l3ws and 8 = 2Mgl/I; into this
expression, we find

Mgl = ¢(Isws — I ¢ cos by) (3.80)

The interpretation of this equation is as follows: for a fixed
value of w3 (the spin of the top) and 6y (the angle at which Figure 45:
you let it go), we need to give exactly the right push ¢ to
make the top spin without bobbing. In fact, since equation (3.80) is quadratic in ¢,

there are two frequencies with which the top can precess without bobbing.

Of course, these “slow” and “fast” precessions only o,
exist if equation (3.80) has any solutions at all. Since it is
quadratic, this is not guaranteed, but requires

2
w3 > ]—\/ Mgl]l cos 90 (381) .

3

So we see that, for a given 6y, the top has to be spinning fast
enough in order to have uniform solutions. What happens Figure 46:
if it’s not spinning fast enough? Well, the top falls over!
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The Stable Sleeping Top The Unstable Sleeping Top

f(w) ()

/1

Figure 47: The function f(u) for the stable and unstable sleeping top.

3.6.3 The Sleeping Top

Suppose we start the top spinning in an upright position, with
0=0=0 (3.82)

When it spins upright, it is called a sleeping top. The question we want to answer is:
will it stay there? Or will it fall over? From (3.73), we see that the function f(u) must
have a root at § = 0, or u = +1: f(1) = 0. From the definitions (3.66) and (3.72), we
can check that @ = b and a = § in this situation and f(u) actually has a double zero
at u = +1,

flu) =1 —u)?*(a(l +u) —a?) (3.83)
The second root of f(u) is at us = a?/a — 1. There are two possibilities

1: ug > 1 or wi > 41, Mgl/I3. In this case, the graph of f(u) is drawn in first in
figure 47. This motion is stable: if we perturb the initial conditions slightly, we will
perturb the function f(u) slightly, but the physical condition that we must restrict to
the regime f(u) > 0 means that the motion will continue to be trapped near u = 1

2: uy < 1 or wi < 4 Mgl/IZ. In this case, the function f(u) looks like the second
figure of 47. Now the top is unstable; slight changes in the initial condition allow a
large excursion.

In practice, the top spins upright until it is slowed by friction to Izws = 2v/11 Mgl,
at which point it starts to fall and precess.

3.6.4 The Precession of the Equinox

The Euler angles for the earth are drawn in figure 48. The earth spins at an angle of
0 = 23.5° to the plane of its orbit around the sun (known as the plane of the elliptic).
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Figure 48: The precession of the earth.

The spin of the earth is ¢ = (day)~!. This causes the earth to bulge at the equator
so it is no longer a sphere, but rather a symmetric top. In turn, this allows the moon
and sun to exert a torque on the earth which produces a precession ¢. Physically this
means that the direction in which the north pole points traces a circle in the sky and
what we currently call the “pole star” will no longer be in several thousand years time.
It turns out that this precession is “retrograde” i.e. opposite to the direction of the
spin.

One can calculate the precession gb of the earth due to the moon and sun using the
techniques described in the chapter. But the calculation is rather long and we won’t go
over it in this course. (See the book by Hand and Finch if you're interested). Instead,
we will use a different technique to calculate the precession of the earth: astrology.?

To compute the precession of the earth, the first fact we need to know is that Jesus
was born in the age of Pisces. This doesn’t mean that Jesus looked up Pisces in his
daily horoscope (while scholars are divided over the exact date of his birth, he seems to
exhibit many traits of a typical Capricorn) but rather refers to the patch of the sky in
which the sun appears during the first day of spring. Known in astronomical terms as
the “vernal equinox”, this day of the year is defined by the property that the sun sits
directly above the equator at midday. As the earth precesses, this event takes place
at a slightly different point in its orbit each year, with a slightly different backdrop of
stars as a result. The astrological age is defined to be the background constellation in
which the sun rises during vernal equinox.

2I learnt about this fact from John Baez’ website where you can find lots of well written explanations
of curiosities in mathematical physics: http://math.ucr.edu/home/baez/README .html.
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It is easy to remember that Jesus was born in the age of Pisces since the fish was
used as an early symbol for Christianity. The next fact that we need to know is
that we're currently entering the age of Aquarius (which anyone who has seen the
musical Hair will know). So we managed to travel backwards one house of the zodiac
in 2,000 years. We've got to make it around 12 in total, giving us a precession time of
2,000 x 12 = 24,000 years. The actual value of the precession is 25,700 years. Our
calculation is pretty close considering the method!

The earth also undergoes other motion. The value of 6 varies from 22.1° to 24.5°
over a period of 41, 000 years, mostly due to the effects of the other planets. These also
affect the eccentricity of the orbit over a period of 105,000 years.

3.7 The Motion of Deformable Bodies

Take a lively cat. (Not one that’s half dead like Schrodinger’s). Hold it upside down and
drop it. The cat will twist its body and land sprightly on its feet. Yet it doesn’t do this
by pushing against anything and its angular momentum is zero throughout. If the cat
were rigid, such motion would be impossible since a change in orientation for a rigid
body necessarily requires non-vanishing angular momentum. But the cat isn’t rigid
(indeed, it can be checked that dead cats are unable to perform this feat) and bodies
that can deform are able to reorient themselves without violating the conservation of
angular momentum. In this section we’ll describe some of the beautiful mathematics
that lies behind this. I should warn you that this material is somewhat more advanced
than the motion of rigid bodies. The theory described below was first developed in the

late 1980s in order to understand how micro-organisms swims?.

3.7.1 Kinematics

We first need to describe the configuration space C of a deformable body. We factor
out translations by insisting that all bodies have the same center of mass. Then the
configuration space C is the space of all shapes with some orientation.

Rotations act naturally on the space C (they simply rotate each shape). This allows
us to define the smaller shape space C so that any two configurations in C which are
related by a rotation are identified in C. In other words, any two objects that have the
same shape, but different orientation, are described by different points in C, but the
same point in C. Mathematically, we say C =2 C/SO(3).

3See A. Shapere and F. Wilczek, “Geometry of Self-Propulsion at Low Reynolds Number”, J. Fluid
Mech. 198 557 (1989) . This is the same Frank Wilczek who won the 2004 Nobel prize for his work
on quark interactions.
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Figure 49: Three possible shapes of a deformable object.

We can describe this in more detail for a body consisting of N point masses, each with
position r;. Unlike in section 3.1, we do not require that the distances between particles
are fixed, i.e. |r; —r;| # constant. (However, there may still be some restrictions on
the r;). The configuration space C is the space of all possible configurations r;. For
each different shape in C, we pick a representative r; with some, fixed orientation. It
doesn’t matter what representative we choose — just as long as we pick one. These
variables T; are coordinates on the space shape C. For each r; € C, we can always find
a rotation matrix R € SO(3) such that

As in section 3.1, we can always do this to continuous bodies. In this case, the con-
figuration space C and the shape space C may be infinite dimensional. Examples of
different shapes for a continuously deformable body are shown in figure 49.

We want to understand how an object rotates as it changes shape keeping its angular
momentum fixed (for example, keeping L = 0 throughout). The first thing to note is
that we can’t really talk about the rotation between objects of different shapes. (How
would you say that the the third object in figure 49 is rotated with respect to the first
or the second?). Instead, we should think of an object moving through a sequence
of shapes before returning to its initial shape. We can then ask if there’s been a net
rotation. As the object moves through its sequence of shapes, the motion is described
by a time dependent ¥;(t), while the corresponding change through the configuration
space is

ri(t) = R(t) ¥(¢) (3.85)

where the 3 x 3 rotation matrix R(t) describes the necessary rotation to go from our
fixed orientation of the shape r to the true orientation. As in section 3.1.1, we can define
the 3 x 3 anti-symmetric matrix that describes the instantaneous angular velocity of
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the object. In fact, it will for once prove more useful to work with the “convective
angular velocity” defined around equation (3.10)

dR
O=R"'— 3.86
i (3.86)

This angular velocity is non-zero due to the changing shape of the object, rather than
the rigid rotation that we saw before. Let’s do a quick change of notation and write

coordinates on the shape space C as z#, with A = 1,...,3N instead of in vector
notation r;, with ¢ = 1,..., N. Then, since € is linear in time derivatives, we can write
Q= Qu(z)i? (3.87)

The component 4 () is the 3 x 3 angular velocity matrix induced if the shape changes
from 24 to x4 4 dz4. It is independent of time: all the time dependence sits in
the @4 factor which tells us how the shape is changing. The upshot is that for each
shape € C, we have a 3 x 3 anti-symmetric matrix €24 associated to each of the
A=1,...,3N directions in which the shape can change.

However, there is an ambiguity in defining the angular velocity €. This comes about
because of our arbitrary choice of reference orientation when we picked a representative
r; € C for each shape. We could quite easily have picked a different orientation,

t; — S(z*) T (3.88)

where S(24) is a rotation that, as the notation suggests, can vary for each shape z4. If
we pick this new set of representative orientations, then the rotation matrix R defined
in (3.85) changes: R(t) — R(t) S~!(z*). Equation (3.86) then tells us that the angular
velocity also change as

95t

Q Q4571
A—)S AS +58xA

(3.89)

This ambiguity is related to the fact that we can’t define the meaning of rotation
between two different shapes. Nonetheless, we will see shortly that when we come to
compute the net rotation of the same shape, this ambiguity will disappear, as it must.
Objects such as €4 which suffer an ambiguity of form (3.89) are extremely important
in modern physics and geometry. They are known as non-abelian gauge potentials to
physicists, or as connections to mathematicians.
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3.7.2 Dynamics

So far we’ve learnt how to describe the angular velocity €2 of a deformable object. The

next step is to see how to calculate 2. We’ll now show that, up to the ambiguity
described in (3.89), the angular velocity €2 is specified by the requirement that the

angular momentum L of the object is zero.
L= Z m;r; X I'z
-3 m [(Rfi) « (RE;) + (RE:) % (Rfi)} —0
In components this reads

La = €abe Zmz [RbdRce(fi)d(f‘i)e + RbdRce(fi>d(fi)e:| =0

The vanishing L = 0 is enough information to determine the following result:

Claim: The 3 x 3 angular velocity matrix ,, = R;cchb is given by
Qab = €abe [N(?dl zd
where I is the instantaneous inertia tensor of the shape described by 1;,
jab = Z mi((f'i : f'i)5ab - (f‘i)a(f'i)b)
and L, is the apparent angular momentum

z/a = €abe Z m; (fz)b(fz)c

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

Proof: We start by multiplying L, by €55, We need to use the fact that if we

multiply two e-symbols, we have €qpc€qarg = (0p0cg — Opgder). Then

EafgLa - Z my; [Rdege(f‘i)d(IL.i)e - Rngfe(f‘i)d(f‘i)e

7

_Rngfe<I~'i)d(f'i)e + Rdege<I~'i)d(I~'i)ei| =0

(3.95)

Now multiply by Rs,R4.. Since R is orthogonal, we known that Ry R¢q = 0pq which,

after contracting a bunch of indices, gives us

RpyRyceargly = Z m; [(fz)b(fz)c — (F)e(T)p — Qal(F)e(Fs)a + Qea(T:)p(Ti)a) =0

i
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This is almost in the form that we want, but the indices aren’t quite contracted in the
right manner to reproduce (3.92). One can try to play around to get the indices working
right, but at this stage it’s just as easy to expand out the components explicitly. For
example, we can look at

Ly = Z my; [(f'i)z(f‘z’):s - ((fz)3<fz)2]

= Z my [QQI(f1)3(fz)l + QZB(f‘i)E}(f.i)S - Q3l(fi)2(fi)l - QSQ(fz)Q(fz)Q]

= 111Q03 + 11oQ1 + L1302 = % €abel1a e (3.96)

where the first equality is the definition of L, while the second equality uses our result
above, and the third equality uses the definition of I given in (3.93). There are two
similar equations, which are summarised in the formula

Lo = 3 €pealapQea (3.97)

Multiplying both sides by I~! gives us precisely the claimed result (3.92). This con-
cludes the proof. L.

To summarise: a system with no angular momentum that can twist and turn and
change its shape has an angular velocity (3.92) where r;(¢) is the path it chooses to take
through the space of shapes. This is a nice formula. But what do we do with it? We
want to compute the net rotation R as the body moves through a sequence of shapes
and returns to its starting point at a time 7" later. This is given by solving (3.86) for
R. The way to do this was described in section 3.1.2. We use path ordered exponentials

R=Pexp ( /O TQ(t) dt) = Pexp ( 7{ Qa dxA) (3.98)

The path ordering symbol P puts all matrices evaluated at later times to the right.
(This differs from the ordering in section 3.1.2 where we put later matrices to the left.
The difference arises because we’re working with the angular velocity Q = R~ R instead
of the angular velocity w = RRfl). In the second equality above, we’ve written the
exponent as an integral around a closed path in shape space. Here time has dropped
out. This tells us an important fact: it doesn’t matter how quickly we perform the
change of shapes — the net rotation of the object will be the same.

In particle physics language, the integral in (3.98) is called a “Wilson loop”. We can
see how the rotation fares under the ambiguity (3.87). After some algebra, you can
find that the net rotation R of an object with shape z* is changed by

R — S(z*)RS(z*)™! (3.99)
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This is as it should be: the S~! takes the shape back to our initial choice of standard
orientation; the matrix R is the rotation due to the change in shape; finally S puts us
back to the new, standard orientation. So we see that even though the definition of the
angular velocity is plagued with ambiguity, when we come to ask physically meaningful
questions — such as how much has a shape rotated — the ambiguity disappears.
However, if we ask nonsensical questions — such as the rotation between two different
shapes — then the ambiguity looms large. In this manner, the theory contains a rather
astonishing new ingredient: it lets us know what are the sensible questions to ask!
Quantities for which the ambiguity (3.87) vanishes are called gauge invariant.

In general, it’s quite hard to explicitly compute the integral (3.98). One case where
it is possible is for infinitesimal changes of shape. Suppose we start with a particular
shape 2%, and move infinitesimally in a loop in shape space:

wa(t) = 2% + aalt) (3.100)
Then we can Taylor expand our angular velocity components,
04
_ 0
Qa(x(t)) = Qa(z”) + 95 . ap (3.101)

Expanding out the rotation matrix (3.98) and taking care with the ordering, one can
show that

1
R = 1+§FAB f O&AdBdt—f-O(Oé?))

1
= 1+§/ FABdAAB—l-O(Oég) (3.102)

where Fyp is anti-symmetric in the shape space indices A and B, and is a 3 X 3 matrix
(the a,b =1, 2,3 indices have been suppressed) given by

0y 00p
T 9xB 9aA

It is known as the field strength to physicists (or the curvature to mathematicians). It is

Fagp + [, Q] (3.103)

evaluated on the initial shape 29%. The second equality in (3.102) gives the infinitesimal
rotation as the integral of the field strength over the area traversed in shape space. This
field strength contains all the information one needs to know about the infinitesimal
rotations of objects induced by changing their shape.

One of the nicest things about the formalism described above is that it mirrors very
closely the mathematics needed to describe the fundamental laws of nature, such as
the strong and weak nuclear forces and gravity. They are all described by “non-abelian
gauge theories”, with an object known as the gauge potential (analogous to 2,4) and
an associated field strength.
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4. The Hamiltonian Formalism

We’ll now move onto the next level in the formalism of classical mechanics, due initially
to Hamilton around 1830. While we won’t use Hamilton’s approach to solve any further
complicated problems, we will use it to reveal much more of the structure underlying
classical dynamics. If you like, it will help us understands what questions we should
ask.

4.1 Hamilton’s Equations

Recall that in the Lagrangian formulation, we have the function L(g;,q;,t) where ¢;
(t=1,...,n) are n generalised coordinates. The equations of motion are

d (oL\ 0L
i (5) o 4

These are n 2" order differential equations which require 2n initial conditions, say

¢;(t = 0) and ¢;(t = 0). The basic idea of Hamilton’s approach is to try and place ¢;
and ¢; on a more symmetric footing. More precisely, we’ll work with the n generalised
momenta that we introduced in section 2.3.3,

)
04,

Di i=1,....n (4.2)
so pi = pi(g;,qj,t). This coincides with what we usually call momentum only if we
work in Cartesian coordinates (so the kinetic term is %mzqf) If we rewrite Lagrange’s
equations (4.1) using the definition of the momentum (4.2), they become

- oL
B 0q;

i (4.3)

The plan will be to eliminate ¢; in favour of the momenta p;, and then to place ¢; and
p; on equal footing.

Figure 50: Motion in configuration space on the left, and in phase space on the right.
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Let’s start by thinking pictorially. Recall that {¢;} defines a point in n-dimensional
configuration space C'. Time evolution is a path in C. However, the state of the system
is defined by {¢;} and {p;} in the sense that this information will allow us to determine
the state at all times in the future. The pair {g;, p;} defines a point in 2n-dimensional
phase space. Note that since a point in phase space is sufficient to determine the future
evolution of the system, paths in phase space can never cross. We say that evolution
is governed by a flow in phase space.

An Example: The Pendulum

Consider a simple pendulum. The configuration space is clearly a circle, S*, parame-
terised by an angle 6 € [—m, m). The phase space of the pendulum is a cylinder R x S?,
with the R factor corresponding to the momentum. We draw this by flattening out the
cylinder. The two different types of motion are clearly visible in the phase space flows.
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\/\ idenify /\/

Oscillating Motion
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Figure 51: Flows in the phase space of a pendulum.

For small # and small momentum, the pendulum oscillates back and forth, motion
which appears as an ellipse in phase space. But for large momentum, the pendulum
swings all the way around, which appears as lines wrapping around the S! of phase
space. Separating these two different motions is the special case where the pendulum



starts upright, falls, and just makes it back to the upright position. This curve in phase
space is called the separatiz.

4.1.1 The Legendre Transform

We want to find a function on phase space that will determine the unique evolution
of ¢; and p;. This means it should be a function of ¢; and p; (and not of ¢;) but must
contain the same information as the Lagrangian L(g;, ¢;,t). There is a mathematical
trick to do this, known as the Legendre transform.

To describe this, consider an arbitrary function f(x,y) so that the total derivative is

_of aof
df = adx + G_ydy (4.4)

Now define a function g(z,y,u) = uxr — f(x,y) which depends on three variables, x,y
and also u. If we look at the total derivative of g, we have

_ _ or, o
dg = d(uz) — df = udr + xdu axc& 9y Yy (4.5)

At this point u is an independent variable. But suppose we choose it to be a specific
function of x and y, defined by

_f

= 4.6
ule,y) = (46)
Then the term proportional to dz in (4.5) vanishes and we have
0
dg = xdu — a—‘;;dy (4.7)

Or, in other words, g is to be thought of as a function of v and y: g = g(u,y). If we
want an explicit expression for g(u,y), we must first invert (4.6) to get z = z(u, y) and
then insert this into the definition of g so that

g(ua y) = ux(“ﬂ?/) - f(x(uvy)a y) (48)

This is the Legendre transform. It takes us from one function f(z,y) to a different func-
tion g(u,y) where u = df /Ox. The key point is that we haven’t lost any information.
Indeed, we can always recover f(x,y) from g(u,y) by noting that

9% o9\ _ _0f

=— 4,
ou y oy, dy (4.9)

=z(u,y) and

which assures us that the inverse Legendre transform f = (0g/0u)u — g takes us back
to the original function.
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The geometrical meaning of the Legendre transform o

is captured in the diagram. For fixed y, we draw the two

curves f(z,y) and ux. For each slope u, the value of g(u) "

is the maximal distance between the two curves. To see .

this, note that extremising this distance means

d of
ngx—ﬂ@)zo - u=o (4.10)

This picture also tells us that we can only apply the Legen-

dre transform to convex functions for which this maximum Figure 52:
exists. Now, armed with this tool, let’s return to dynamics.

4.1.2 Hamilton’s Equations

The Lagrangian L(q;, ¢;,t) is a function of the coordinates ¢;, their time derivatives ¢;
and (possibly) time. We define the Hamiltonian to be the Legendre transform of the
Lagrangian with respect to the ¢; variables,

H(gi,pi,t) = Zpi% — L(gi, Gi» 1) (4.11)
i=1
where ¢; is eliminated from the right hand side in favour of p; by using
oL .
Pi= 5 = pi(gj, 45, 1) (4.12)

and inverting to get ¢; = 4;(q;, p;,t). Now look at the variation of H:

- : oL oL . OL
dH = (dp; §; + pi dg;) — ((9_q-dqi + a_q-d%' + Edt)

oL oL
=dp; ¢; — —dg; — —dt 4.13
pidi = 5 -dai = (4.13)
but we know that this can be rewritten as
OH OH OH
dH = dg; + — dp; + — dt 4.14
9g. "4 By, P (4.14)

So we can equate terms. So far this is repeating the steps of the Legendre transform.
The new ingredient that we now add is Lagrange’s equation which reads p; = dL/0g;.
We find

_oH
Di = aqi
oH
li = 4.15
i =5 (4.15)
oL oOH
= _ 7 4.1
ot ot (4.16)
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These are Hamilton’s equations. We have replaced n 2°¢ order differential equations by
2n 1% order differential equations for ¢; and p;. In practice, for solving problems, this
isn’t particularly helpful. But, as we shall see, conceptually it’s very useful!

4.1.3 Examples
1) A Particle in a Potential

Let’s start with a simple example: a particle moving in a potential in 3-dimensional
space. The Lagrangian is simply

L= %mi‘Q - V(r) (4.17)

We calculate the momentum by taking the derivative with respect to 1

_ oL _
- =

which, in this case, coincides with what we usually call momentum. The Hamiltonian

p mr (4.18)

is then given by
1
H=p 71— L=—p?+V 4.19
p-r 5P V() (4.19)

where, in the end, we've eliminated 1 in favour of p and written the Hamiltonian as a
function of p and r. Hamilton’s equatio