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Professor David Tong, February 2015

1. A steady current I flows along a cylindrical conductor of constant circular cross-

section and uniform conductivity σ. Show, using the relevant equations for E and J,

that the current is distributed uniformly across the cross-section of the cylinder, and

calculate the electric and magnetic fields just outside the surface of the cylinder.

Verify that the integral of the Poynting vector over unit length of the surface is equal

to the rate per unit length of dissipation of electrical energy as heat.

2. A monochromatic wave with fields

Einc = E0x̂ ei(kz−ωt) , Binc =
E0

c
ŷ ei(kz−ωt)

propagates in empty space z < 0. A perfect conductor fills the region z ≥ 0. Show

that if the reflected fields are given by

Eref = −E0x̂ ei(−kz−ωt) , Bref =
E0

c
ŷ ei(−kz−ωt)

then the total fields E = Einc+Eref and B = Binc+Bref satisfy the Maxwell equations

and the relevant boundary conditions at z = 0.

What surface current flows in the plane z = 0? Compute the Poynting vector in the

region z < 0 and compute its value averaged over a period T = 2π/ω.

Recall from Q6, Sheet 2, that a surface current experiences a Lorentz force from

the average magnetic field on either side of the surface. Use this to show that the

time-averaged force per unit area on the conductor is f̄ = ǫ0E
2
0 .

3. Perfectly conducting planes are positioned at y = 0 and y = a. Show that a

monochromatic plane wave can propagate between the plates in the y direction only if

the frequency is given by ω = nπc/a with n ∈ Z.

4. Perfectly conducting planes are positioned at y = 0 and y = a. Show that a

monochromatic wave may propagate between the plates in the direction z if the field

components are

Ex = ωA sin
(nπy

a

)
sin(kz − ωt)

By = kA sin
(nπy

a

)
sin(kz − ωt)

Bz =
nπA

a
cos
(nπy

a

)
cos(kz − ωt)
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with A a constant and n ∈ Z. Show that the wavelength λ is given by

1

λ2
=

1

λ2
∞

−
n2

4a2

where λ∞ is the wavelength of waves of the same frequency in the absence of conducting

plates.

5. Consider a plane polarized electromagnetic wave described by the vector and scalar

potentials,

A(r, t) = A0e
i(k·r−ωt) and φ(r, t) = φ0e

i(k·r−ωt)

with constant A0 and φ0. Use Maxwell’s equations to find a relationship between A0

and φ0.

Find a gauge transformation such that the new vector potential is “transversely

polarised”, i.e. A0 · k = 0. What is the scalar potential φ in this gauge?

6. For constant electric and magnetic fields, E and B, show that if E · B = 0 and

E2 − c2B2 6= 0 then there exist frames of reference where either E or B are zero, but

not both.

[Hint: it suffices to take just Ey and Bz non zero and consider Lorentz transforma-

tions along the x-direction with speed v < c.]

7. An electromagnetic wave is reflected by a perfect conductor at x = 0. The electric

field has the form

E(t,x) = ŷ [f(t−)− f(t+)]

where f is an arbitrary function and ct± = ct±x. Show that this satisfies the relevant

boundary condition at the conductor. Find the corresponding magnetic field B.

Show that under a Lorentz transformation to a frame moving with speed v in the

x-direction the electric field is transformed to

E′(t′,x′) = ŷ

[
ρf(ρt′−)−

1

ρ
f

(
t′+
ρ

)]
where ρ =

√
c− v

c+ v

Hence for an incident wave E(t,x) = ŷF (t−), find the wave that is reflected after it

hits a perfectly conducting mirror moving with speed v in the x-direction.
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8. In d+ 1 space-time dimensions, the equations of electromagnetism are given by

∂µF
µν = µ0J

ν with Fµν = ∂µAν − ∂νAµ where µ, ν = 0, 1, . . . d

How many components does the electric field have? How many components does the

magnetic field have? What is the potential energy between two electric charges q1 and

q2? How many independent, linear polarisations does an electromagnetic wave have?

[Note: Pay particular attention to the cases d = 1 and d = 2, partly because they’re

special and partly because they can actually be realised in experiment. For d ≥ 4, you

may denote the area of a (d− 1)-dimensional sphere as Sd−1.]

9. A particle of rest mass m and charge q moves in a constant uniform electric field

E = (E, 0, 0). It starts from the origin with initial momentum p = (0, p0, 0). Show

that the particle traces out a path in the (x, y) plane given by

x =
E0

qE

(
cosh

(
qEy

p0c

)
− 1

)

where E0 =
√

p20c
2 +m2c4 is the initial kinematic energy of the particle.

10⋆. For a general 4-velocity, written as Uµ = γ(c,−v), show that

F µνUν = γ

(
E · v/c

E+ v×B

)

In the rest-frame of a conducting medium, Ohm’s law states that J = σE where σ is

the conductivity and J is the 3-current. Assuming that σ is a Lorentz scalar, show

that Ohm’s law can be written covariantly as

Jµ −
1

c2
(JνUν)U

µ = σF µνUν

where Jµ is the 4-current and Uµ is the (uniform) 4-velocity of the medium. If the

medium moves with 3-velocity v in some inertial frame, show that the current in that

frame is

J = ρv + σγ

(
E+ v ×B−

1

c2
(v · E)v

)

where ρ is the charge density. Simplify this formula, given that the charge density

vanishes in the rest-frame of the medium.
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