
3. Magnetostatics

Charges give rise to electric fields. Current give rise to magnetic fields. In this section,

we will study the magnetic fields induced by steady currents. This means that we are

again looking for time independent solutions to the Maxwell equations. We will also

restrict to situations in which the charge density vanishes, so ⇢ = 0. We can then set

E = 0 and focus our attention only on the magnetic field. We’re left with two Maxwell

equations to solve:

r⇥B = µ0J (3.1)

and

r ·B = 0 (3.2)

If you fix the current density J, these equations have a unique solution. Our goal in

this section is to find it.

Steady Currents

Before we solve (3.1) and (3.2), let’s pause to think about the kind of currents that we’re

considering in this section. Because ⇢ = 0, there can’t be any net charge. But, of course,

we still want charge to be moving! This means that we necessarily have both positive

and negative charges which balance out at all points in space. Nonetheless, these

charges can move so there is a current even though there is no net charge transport.

This may sound artificial, but in fact it’s exactly what happens in a typical wire. In

that case, there is background of positive charge due to the lattice of ions in the metal.

Meanwhile, the electrons are free to move. But they all move together so that at each

point we still have ⇢ = 0. The continuity equation, which captures the conservation of

electric charge, is

@⇢

@t
+r · J = 0

Since the charge density is unchanging (and, indeed, vanishing), we have

r · J = 0

Mathematically, this is just saying that if a current flows into some region of space, an

equal current must flow out to avoid the build up of charge. Note that this is consistent

with (3.1) since, for any vector field, r · (r⇥B) = 0.
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3.1 Ampère’s Law

The first equation of magnetostatics,

r⇥B = µ0J (3.3)

is known as Ampère’s law. As with many of these vector dif-

J

S

C

Figure 25:

ferential equations, there is an equivalent form in terms of inte-

grals. In this case, we choose some open surface S with boundary

C = @S. Integrating (3.3) over the surface, we can use Stokes’

theorem to turn the integral of r ⇥ B into a line integral over

the boundary C,

Z

S

r⇥B · dS =

I

C

B · dr = µ0

Z

S

J · dS

Recall that there’s an implicit orientation in these equations. The surface S comes

with a normal vector n̂ which points away from S in one direction. The line integral

around the boundary is then done in the right-handed sense, meaning that if you stick

the thumb of your right hand in the direction n̂ then your fingers curl in the direction

of the line integral.

The integral of the current density over the surface S is the same thing as the total

current I that passes through S. Ampère’s law in integral form then reads

I

C

B · dr = µ0I (3.4)

For most examples, this isn’t su�cient to determine the form of the magnetic field;

we’ll usually need to invoke (3.2) as well. However, there is one simple example where

symmetry considerations mean that (3.4) is all we need...

3.1.1 A Long Straight Wire

Consider an infinite, straight wire carrying current I. We’ll take it to point in the ẑ

direction. The symmetry of the problem is jumping up and down telling us that we

need to use cylindrical polar coordinates, (r,', z), where r =
p

x2 + y2 is the radial

distance away from the wire.

We take the open surface S to lie in the x � y plane, centered on the wire. For the

line integral in (3.4) to give something that doesn’t vanish, it’s clear that the magnetic

field has to have some component that lies along the circumference of the disc.
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But, by the symmetry of the problem, that’s actually the

S

C

I

ϕ z

r

Figure 26:

only component that B can have: it must be of the form

B = B(r)'̂. (If this was a bit too quick, we’ll derive

this more carefully below). Any magnetic field of this

form automatically satisfies the second Maxwell equation

r·B = 0. We need only worry about Ampère’s law which

tells us
I

C

B · dr = B(r)

Z 2⇡

0

r d' = 2⇡rB(r) = µ0I

We see that the strength of the magnetic field is

B =
µ0I

2⇡r
'̂ (3.5)

The magnetic field circles the wire using the ”right-hand rule”: stick the thumb of your

right hand in the direction of the current and your fingers curl in the direction of the

magnetic field.

Note that the simplest example of a magnetic field falls o↵ as 1/r. In contrast, the

simplest example of an electric field – the point charge – falls of as 1/r2. You can trace

this di↵erence back to the geometry of the two situations. Because magnetic fields

are sourced by currents, the simplest example is a straight line and the 1/r fall-o↵ is

because there are two transverse directions to the wire. Indeed, we saw in Section 2.1.3

that when we look at a line of charge, the electric field also drops o↵ as 1/r.

3.1.2 Surface Currents and Discontinuities

Consider the flat plane lying at z = 0 with a surface current density that we’ll call K.

Note that K is the current per unit length, as opposed to J which is the current per

unit area. You can think of the surface current as a bunch of wires, all lying parallel

to each other.

We’ll take the current to lie in the x-direction: K = Kx̂ as shown below.

z

x

y

K

From our previous result, we know that the B field should curl around the current in

the right-handed sense. But, with an infinite number of wires, this can only mean that
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B is oriented along the y direction. In fact, from the symmetry of the problem, it must

look like

z

x

y
B

B

with B pointing in the �ŷ direction when z > 0 and in the +ŷ direction when z < 0.

We write

B = �B(z)ŷ

with B(z) = �B(�z). We invoke Ampère’s law using the following open surface:

C

z

x

y

with length L in the y direction and extending to ±z. We have
I

C

B · dr = LB(z)� LB(�z) = 2LB(z) = µ0KL

so we find that the magnetic field is constant above an infinite plane of surface current

B(z) =
µ0K

2
z > 0

This is rather similar to the case of the electric field in the presence of an infinite plane

of surface charge.

The analogy with electrostatics continues. The magnetic field is not continuous

across a plane of surface current. We have

B(z ! 0+)� B(z ! 0�) = µ0K

In fact, this is a general result that holds for any surface current K. We can prove this

statement by using the same curve that we used in the Figure above and shrinking it
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until it barely touches the surface on both sides. If the normal to the surface is n̂ and

B± denotes the magnetic field on either side of the surface, then

n̂⇥B|+ � n̂⇥B|� = µ0K (3.6)

Meanwhile, the magnetic field normal to the surface is continuous. (To see this, you

can use a Gaussian pillbox, together with the other Maxwell equation r ·B = 0).

When we looked at electric fields, we saw that the normal component was discontinu-

ous in the presence of surface charge (2.9) while the tangential component is continuous.

For magnetic fields, it’s the other way around: the tangential component is discontin-

uous in the presence of surface currents.

A Solenoid

A solenoid consists of a surface current that travels around a cylin- B

z

r

Figure 27:

der. It’s simplest to think of a single current-carrying wire winding

many times around the outside of the cylinder. (Strictly speaking,

the cross-sectional shape of the solenoid doesn’t have to be a circle –

it can be anything. But we’ll stick with a circle here for simplicity).

To make life easy, we’ll assume that the cylinder is infinitely long.

This just means that we can neglect e↵ects due to the ends.

We’ll again use cylindrical polar coordinates, (r,', z), with the

axis of the cylinder along ẑ. By symmetry, we know that B will

point along the z-axis. Its magnitude can depend only on the radial

distance: B = B(r)ẑ. Once again, any magnetic field of this form immediately satisfies

r ·B = 0.

We solve Ampère’s law in di↵erential form. Anywhere other than

C

Figure 28:

the surface of the solenoid, we have J = 0 and

r⇥B = 0 )
dB

dr
= 0 ) B(r) = constant

Outside the solenoid, we must have B(r) = 0 since B(r) is constant

and we know B(r) ! 0 as r ! 1. To figure out the magnetic field

inside the solenoid, we turn to the integral form of Ampère’s law

and consider the surface S, bounded by the curve C shown in the

figure. Only the line that runs inside the solenoid contributes to

the line integral. We have
I

C

B · dr = BL = µ0INL
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where N is the number of windings of wire per unit length. We learn that inside the

solenoid, the constant magnetic field is given by

B = µ0IN ẑ (3.7)

Note that, since K = IN , this is consistent with our general formula for the disconti-

nuity of the magnetic field in the presence of surface currents (3.6).

3.2 The Vector Potential

For the simple current distributions of the last section, symmetry considerations were

enough to lead us to a magnetic field which automatically satisfied

r ·B = 0 (3.8)

But, for more general currents, this won’t be the case. Instead we have to ensure that

the second magnetostatic Maxwell equation is also satisfied.

In fact, this is simple to do. We are guaranteed a solution to r ·B = 0 if we write

the magnetic field as the curl of some vector field,

B = r⇥A (3.9)

Here A is called the vector potential. While magnetic fields that can be written in the

form (3.9) certainly satisfy r · B = 0, the converse is also true; any divergence-free

magnetic field can be written as (3.9) for some A.

(Actually, this previous sentence is only true if our space has a suitably simple

topology. Since we nearly always think of space as R3 or some open ball on R3,

we rarely run into subtleties. But if space becomes more interesting then the possible

solutions to r ·B = 0 also become more interesting. This is analogous to the story of

the electrostatic potential that we mentioned briefly in Section 2.2).

Using the expression (3.9), Ampère’s law becomes

r⇥B = �r
2A+r(r ·A) = µ0J (3.10)

where, in the first equality, we’ve used a standard identity from vector calculus. This

is the equation that we have to solve to determine A and, through that, B.
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3.2.1 Magnetic Monopoles

Above, we dispatched with the Maxwell equation r · B = 0 fairly quickly by writing

B = r⇥A. But we never paused to think about what this equation is actually telling

us. In fact, it has a very simple interpretation: it says that there are no magnetic

charges. A point-like magnetic charge g would source the magnetic field, giving rise a

1/r2 fall-o↵

B =
gr̂

4⇡r2

An object with this behaviour is usually called a magnetic monopole. Maxwell’s equa-

tions says that they don’t exist. And we have never found one in Nature.

However, we could ask: how robust is this conclusion? Are we sure that magnetic

monopoles don’t exist? After all, it’s easy to adapt Maxwell’s equations to allow for

presence of magnetic charges: we simply need to change (3.8) to read r ·B = ⇢m where

⇢m is the magnetic charge distribution. Of course, this means that we no longer get to

use the vector potential A. But is that such a big deal?

The twist comes when we turn to quantum mechanics. Because in quantum mechan-

ics we’re obliged to use the vector potential A. Not only is the whole framework of

electromagnetism in quantum mechanics based on writing things using A, but it turns

out that there are experiments that actually detect certain properties of A that are lost

when we compute B = r⇥A. I won’t explain the details here, but if you’re interested

then look up the “Aharonov-Bohm e↵ect”.

Monopoles After All?

To summarise, magnetic monopoles have never been observed. We have a law of physics

(3.8) which says that they don’t exist. And when we turn to quantum mechanics we

need to use the vector potential A which automatically means that (3.8) is true. It

sounds like we should pretty much forget about magnetic monopoles, right?

Well, no. There are actually very good reasons to suspect that magnetic monopoles

do exist. The most important part of the story is due to Dirac. He gave a beautiful

argument which showed that it is in fact possible to introduce a vector potential A

which allows for the presence of magnetic charge, but only if the magnetic charge g is

related to the charge of the electron e by

ge = 2⇡~n n 2 Z (3.11)

This is known as the Dirac quantization condition.
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Moreover, following work in the 1970s by ’t Hooft and Polyakov, we now realise that

magnetic monopoles are ubiquitous in theories of particle physics. Our best current

theory – the Standard Model – does not predict magnetic monopoles. But every theory

that tries to go beyond the Standard Model, whether Grand Unified Theories, or String

Theory or whatever, always ends up predicting that magnetic monopoles should exist.

They’re one of the few predictions for new physics that nearly all theories agree upon.

These days most theoretical physicists think that magnetic monopoles probably exist

and there have been a number of experiments around the world designed to detect them.

However, while theoretically monopoles seem like a good bet, their future observational

status is far from certain. We don’t know how heavy magnetic monopoles will be, but

all evidence suggests that producing monopoles is beyond the capabilities of our current

(or, indeed, future) particle accelerators. Our only hope is to discover some that Nature

made for us, presumably when the Universe was much younger. Unfortunately, here

too things seem against us. Our best theories of cosmology, in particular inflation,

suggest that any monopoles that were created back in the Big Bang have long ago been

diluted. At a guess, there are probably only a few floating around our entire observable

Universe. The chances of one falling into our laps seem slim. But I hope I’m wrong.

3.2.2 Gauge Transformations

The choice of A in (3.9) is far from unique: there are lots of di↵erent vector potentials

A that all give rise to the same magnetic field B. This is because the curl of a gradient

is automatically zero. This means that we can always add any vector potential of the

form r� for some function � and the magnetic field remains the same,

A0 = A+r� ) r⇥A0 = r⇥A

Such a change ofA is called a gauge transformation. As we will see in Section 5.3.1, it is

closely tied to the possible shifts of the electrostatic potential �. Ultimately, such gauge

transformations play a key role in theoretical physics. But, for now, we’re simply going

to use this to our advantage. Because, by picking a cunning choice of �, it’s possible

to simplify our quest for the magnetic field.

Claim: We can always find a gauge transformation � such that A0 satisfies r·A0 = 0.

Making this choice is usually referred to as Coulomb gauge.

Proof: Suppose that we’ve found some A which gives us the magnetic field that

we want, so r ⇥ A = B, but when we take the divergence we get some function

r ·A =  (x). We instead choose A0 = A+r� which now has divergence

r ·A0 = r ·A+r
2
� =  +r

2
�
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So if we want r ·A0 = 0, we just have to pick our gauge transformation � to obey

r
2
� = � 

But this is just the Poisson equation again. And we know from our discussion in Section

2 that there is always a solution. (For example, we can write it down in integral form

using the Green’s function). ⇤

Something a Little Misleading: The Magnetic Scalar Potential

There is another quantity that is sometimes used called the magnetic scalar potential,

⌦. The idea behind this potential is that you might be interested in computing the

magnetic field in a region where there are no currents and the electric field is not

changing with time. In this case, you need to solve r⇥ B = 0, which you can do by

writing

B = �r⌦

Now calculations involving the magnetic field really do look identical to those involving

the electric field.

However, you should be wary of writing the magnetic field in this way. As we’ll

see in more detail in Section 5.3.1, we can always solve two of Maxwell’s equations by

writing E and B in terms of the electric potential � and vector potential A and this

formulation becomes important as we move onto more advanced areas of physics. In

contrast, writing B = �r⌦ is only useful in a limited number of situations. The reason

for this really gets to the heart of the di↵erence between electric and magnetic fields:

electric charges exist; magnetic charges don’t!

3.2.3 Biot-Savart Law

We’re now going to use the vector potential to solve for the magnetic field B in the

presence of a general current distribution. From now, we’ll always assume that we’re

working in Coulomb gauge and our vector potential obeys r ·A = 0. Then Ampère’s

law (3.10) becomes a whole lot easier: we just have to solve

r
2A = �µ0J (3.12)

But this is just something that we’ve seen already. To see why, it’s perhaps best to

write it out in Cartesian coordinates. This then becomes three equations,

r
2
Ai = �µ0Ji (i = 1, 2, 3) (3.13)

and each of these is the Poisson equation.
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It’s worth giving a word of warning at this point: the expression r
2A is simple in

Cartesian coordinates where, as we’ve seen above, it reduces to the Laplacian on each

component. But, in other coordinate systems, this is no longer true. The Laplacian

now also acts on the basis vectors such as r̂ and '̂. So in these other coordinate

systems, r2A is a little more of a mess. (You should probably use the identity r
2A =

�r ⇥ (r ⇥ A) + r(r · A) if you really want to compute in these other coordinate

systems).

Anyway, if we stick to Cartesian coordinates then everything is simple. In fact,

the resulting equations (3.13) are of exactly the same form that we had to solve in

electrostatics. And, in analogy to (2.21), we know how to write down the most general

solution using Green’s functions. It is

Ai(x) =
µ0

4⇡

Z

V

d
3
x
0 Ji(x0)

|x� x0|

Or, if you’re feeling bold, you can revert back to vector notation and write

A(x) =
µ0

4⇡

Z

V

d
3
x
0 J(x0)

|x� x0|
(3.14)

where you’ve just got to remember that the vector index on A links up with that on J

(and not on x or x0).

Checking Coulomb Gauge

We’ve derived a solution to (3.12), but this is only a solution to Ampère’s equation

(3.10) if the resulting A obeys the Coulomb gauge condition, r · A = 0. Let’s now

check that it does. We have

r ·A(x) =
µ0

4⇡

Z

V

d
3
x
0
r ·

✓
J(x0)

|x� x0|

◆

where you need to remember that the index of r is dotted with the index of J, but the

derivative in r is acting on x, not on x0. We can write

r ·A(x) =
µ0

4⇡

Z

V

d
3
x
0 J(x0) ·r

✓
1

|x� x0|

◆

= �
µ0

4⇡

Z

V

d
3
x
0 J(x0) ·r0

✓
1

|x� x0|

◆

Here we’ve done something clever. Now our r0 is di↵erentiating with respect to x0. To

get this, we’ve used the fact that if you di↵erentiate 1/|x� x0
| with respect to x then
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you get the negative of the result from di↵erentiating with respect to x0. But since r
0

sits inside an
R
d
3
x
0 integral, it’s ripe for integrating by parts. This gives

r ·A(x) = �
µ0

4⇡

Z

V

d
3
x
0

r

0
·

✓
J(x0)

|x� x0|

◆
�r

0
· J(x0)

✓
1

|x� x0|

◆�

The second term vanishes because we’re dealing with steady currents obeying r ·J = 0.

The first term also vanishes if we take the current to be localised in some region of space,

V̂ ⇢ V so that J(x) = 0 on the boundary @V . We’ll assume that this is the case. We

conclude that

r ·A = 0

and (3.14) is indeed the general solution to the Maxwell equations (3.1) and (3.2) as

we’d hoped.

The Magnetic Field

From the solution (3.14), it is simple to compute the magnetic field B = r⇥A. Again,

we need to remember that the r acts on the x in (3.14) rather than the x0. We find

B(x) =
µ0

4⇡

Z

V

d
3
x
0 J(x

0)⇥ (x� x0)

|x� x0|3
(3.15)

This is known as the Biot-Savart law. It describes the magnetic field due to a general

current density.

There is a slight variation on (3.15) which more often goes by the name of the Biot-

Savart law. This arises if the current is restricted to a thin wire which traces out a

curve C. Then, for a current density J passing through a small volume �V , we write

J�V = (JA)�x where A is the cross-sectional area of the wire and �x lies tangent to

C. Assuming that the cross-sectional area is constant throughout the wire, the current

I = JA is also constant. The Biot-Savart law becomes

B(x) =
µ0I

4⇡

Z

C

dx0
⇥ (x� x0)

|x� x0|3
(3.16)

This describes the magnetic field due to the current I in the wire.

An Example: The Straight Wire Revisited

Of course, we already derived the answer for a straight wire in (3.5) without using this

fancy vector potential technology. Before proceeding, we should quickly check that the

Biot-Savart law reproduces our earlier result. As before, we’ll work in cylindrical polar

– 51 –



coordinates. We take the wire to point along the ẑ axis and use

ϕ

x

x−x’

x’

r

I

Figure 29:

r
2 = x

2 + y
2 as our radial coordinate. This means that the line

element along the wire is parametrised by dx0 = ẑdz and, for a point

x away from the wire, the vector dx0
⇥(x�x0) points along the tangent

to the circle of radius r,

dx0
⇥ (x� x0) = r'̂ dz

So we have

B =
µ0I'̂

4⇡

Z +1

�1
dz

r

(r2 + z2)3/2
=

µ0I

2⇡r
'̂

which is the same result we found earlier (3.5).

3.2.4 A Mathematical Diversion: The Linking Number

There’s a rather cute application of these ideas to pure mathematics. Consider two

closed, non-intersecting curves, C and C
0, in R3. For each pair of curves, there is an

integer n 2 Z called the linking number which tells you how many times one of the

curves winds around the other. For example, here are pairs of curves with linking

number |n| = 0, 1 and 2.

Figure 30: Curves with linking number n = 0, n = 1 and n = 2.

To determine the sign of the linking number, we need to specify the orientation of each

curve. In the last two figures above, the linking numbers are negative, if we traverse

both red and blue curves in the same direction. The linking numbers are positive if we

traverse one curve in a clockwise direction, and the other in an anti-clockwise direction.

Importantly, the linking number doesn’t change as you deform either curve, provided

that the two curves never cross. In fancy language, the linking number is an example

of a topological invariant.
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There is an integral expression for the linking number, first written down by Gauss

during his exploration of electromagnetism. The Biot-Savart formula (3.16) o↵ers a

simple physics derivation of Gauss’ expression. Suppose that the curve C carries a

current I. This sets us a magnetic field everywhere in space. We will then computeH
C0 B ·dx0 around another curve C. (If you want a justification for computing

H
C0 B ·dx0

then you can think of it as the work done when transporting a magnetic monopole of

unit charge around C, but this interpretation isn’t necessary for what follows.) The

Biot-Savart formula gives
I

C0
B(x0) · dx0 =

µ0I

4⇡

I

C0
dx0

·

I

C

dx⇥ (x0
� x)

|x� x0|3

where we’ve changed our conventions somewhat from (3.16): now x labels coordinates

on C while x0 labels coordinates on C
0.

Meanwhile, we can also use Stokes’ theorem, followed by Ampère’s law, to write
I

C0
B(x0) · dx0 =

Z

S0
(r⇥B) · dS = µ0

Z

S0
J · dS

where S
0 is a surface bounded by C

0. The current is carried by the other curve, C,

which pierces S 0 precisely n times, so that
I

C0
B(x0) · dx0 = µ0

Z

S0
J · dS = nµ0I

Comparing the two equations above, we arrive at Gauss’ double-line integral expression

for the linking number n,

n =
1

4⇡

I

C0
dx0

·

I

C

dx⇥ (x0
� x)

|x� x0|3
(3.17)

Note that our final expression is symmetric in C and C
0, even though these two curves

played a rather di↵erent physical role in the original definition, with C carrying a

current, and C
0 the path traced by some hypothetical monopole. To see that the

expression is indeed symmetric, note that the triple product can be thought of as the

determinant det(x0
,x,x0

� x). Swapping x and x0 changes the order of the first two

vectors and changes the sign of the third, leaving the determinant una↵ected.

The formula (3.17) is rather pretty. It’s not at all obvious that the right-hand-side

doesn’t change under (non-crossing) deformations of C and C
0; nor is it obvious that

the right-hand-side must give an integer. Yet both are true, as the derivation above

shows. This is the first time that ideas of topology sneak into physics. It’s not the last.
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3.3 Magnetic Dipoles

We’ve seen that the Maxwell equations forbid magnetic monopoles with a long-range

B ⇠ 1/r2 fall-o↵ (3.11). So what is the generic fall-o↵ for some distribution of currents

which are localised in a region of space? In this section we will see that, if you’re

standing suitably far from the currents, you’ll typically observe a dipole-like magnetic

field.

3.3.1 A Current Loop

We start with a specific, simple example. Consider

I

B

Figure 31:

a circular loop of wire C of radius R carrying a

current I. We can guess what the magnetic field

looks like simply by patching together our result

for straight wires: it must roughly take the shape

shown in the figure However, we can be more ac-

curate. Here we restrict ourselves only to the mag-

netic field far from the loop.

To compute the magnetic field far away, we won’t

start with the Biot-Savart law but instead return to the original expression for A given

in (3.14). We’re going to return to the notation in which a point in space is labelled as

r rather than x. (This is more appropriate for long-distance distance fields which are

essentially an expansion in r = |r|). The vector potential is then given by

A(r) =
µ0

4⇡

Z

V

d
3
r
0 J(r0)

|r� r0|

Writing this in terms of the current I (rather than the current density J), we have

A(r) =
µ0I

4⇡

I

C

dr0

|r� r0|

We want to ask what this looks like far from the loop. Just as we did for the electrostatic

potential, we can Taylor expand the integrand using (2.22),

1

|r� r0|
=

1

r
+

r · r0

r3
+ . . .

So that

A(r) =
µ0I

4⇡

I

C

dr0
✓
1

r
+

r · r0

r3
+ . . .

◆
(3.18)
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The first term in this expansion vanishes because we’re integrating around a circle.

This is just a reflection of the fact that there are no magnetic monopoles. For the

second term, there’s a way to write it in slightly more manageable form. To see this,

let’s introduce an arbitrary constant vector g and use this to look at
I

C

dr0 · g (r · r0)

Recall that, from the point of view of this integral, both g and r are constant vectors;

it’s the vector r0 that we’re integrating over. This is now the kind of line integral of a

vector that allows us to use Stokes’ theorem. We have
I

C

dr0 · g (r · r0) =

Z

S

dS ·r⇥ (g (r · r0)) =

Z

S

dSi ✏ijk@
0
j(gkrlr

0
l)

where, in the final equality, we’ve resorted to index notation to help us remember what’s

connected to what. Now the derivative @0 acts only on the r
0 and we get

I

C

dr0 · g (r · r0) =

Z

S

dSi ✏ijkgkrj = g ·

Z

S

dS⇥ r

But this is true for all constant vectors g which means that it must also hold as a vector

identity once we strip away g. We have
I

C

dr0 (r · r0) = S ⇥ r

where we’ve introduced the vector area S of the surface S bounded by C, defined as

S =

Z

S

dS

If the boundary C lies in a plane – as it does for us – then the vector S points out of

the plane.

Now let’s apply this result to our vector potential (3.18). With the integral over r0,

we can treat r as the constant vector g that we introduced in the lemma. With the

first term vanishing, we’re left with

A(r) =
µ0

4⇡

m⇥ r

r3
(3.19)

where we’ve introduced the magnetic dipole moment

m = IS
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This is our final, simple, answer for the long-range behaviour of the vector potential

due to a current loop. It remains only to compute the magnetic field. A little algebra

gives

B(r) =
µ0

4⇡

✓
3(m · r̂)r̂�m

r3

◆
(3.20)

Now we see why m is called the magnetic dipole; this form of the magnetic field is

exactly the same as the dipole electric field (2.19).

I stress that the B field due to a current loop and E field due to two charges don’t

look the same close up. But they have identical “dipole” long-range fall-o↵s.

3.3.2 General Current Distributions

We can now perform the same kind of expansion for a general current distribution J

localised within some region of space. We use the Taylor expansion (2.22) in the general

form of the vector potential (3.14),

Ai(r) =
µ0

4⇡

Z
d
3
r
0 Ji(r0)

|r� r0|
=

µ0

4⇡

Z
d
3
r
0
✓
Ji(r0)

r
+

Ji(r0) (r · r0)

r3
+ . . .

◆
(3.21)

where we’re using a combination of vector and index notation to help remember how

the indices on the left and right-hand sides match up.

The first term above vanishes. Heuristically, this is because currents can’t stop and

end, they have to go around in loops. This means that the contribution from one part

must be cancelled by the current somewhere else. To see this mathematically, we use

the slightly odd identity

@j(Jjri) = (@jJj) ri + Ji = Ji (3.22)

where the last equality follows from the continuity condition r · J = 0. Using this,

we see that the first term in (3.21) is a total derivative (of @/@r0i rather than @/@ri)

which vanishes if we take the integral over R3 and keep the current localised within

some interior region.

For the second term in (3.21) we use a similar trick, now with the identity

@j(Jjrirk) = (@jJj)rirk + Jirk + Jkri = Jirk + Jkri

Because J in (3.21) is a function of r0, we actually need to apply this trick to the

Jir
0
j terms in the expression. We once again abandon the boundary term to infinity.
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Dropping the argument of J, we can use the identity above to write the relevant piece

of the second term as
Z

d
3
r
0
Ji rjr

0
j =

Z
d
3
r
0 rj

2
(Jir

0
j � Jjr

0
i) =

Z
d
3
r
0 1

2
(Ji (r · r

0)� r
0
i(J · r))

But now this is in a form that is ripe for the vector product identity a ⇥ (b ⇥ c) =

b(a · c)� c(a · b). This means that we can rewrite this term as

Z
d
3
r
0 J (r · r0) =

1

2
r⇥

Z
d
3
r
0 J⇥ r0 (3.23)

With this in hand, we see that the long distance fall-o↵ of any current distribution

again takes the dipole form (3.19)

A(r) =
µ0

4⇡

m⇥ r

r3

now with the magnetic dipole moment given by the integral,

m =
1

2

Z
d
3
r
0 r0 ⇥ J(r0) (3.24)

Just as in the electric case, the multipole expansion continues to higher terms. This

time you need to use vector spherical harmonics. Just as in the electric case, if you

want further details then look in Jackson.

3.4 Magnetic Forces

We’ve seen that a current produces a magnetic field. But a current is simply moving

charge. And we know from the Lorentz force law that a charge q moving with velocity

v will experience a force

F = qv ⇥B

This means that if a second current is placed somewhere in the neighbourhood of the

first, then they will exert a force on one another. Our goal in this section is to figure

out this force.

3.4.1 Force Between Currents

Let’s start simple. Take two parallel wires carrying currents I1 and I2 respectively.

We’ll place them a distance d apart in the x direction.
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The current in the first wire sets up a magnetic field

y
z

x

I2

B

I1

1

d

Figure 32:

(3.5). So if the charges in the second wire are moving with

velocity v, they will each experience a force

F = qv ⇥B = qv ⇥

✓
µ0I1

2⇡d

◆
ŷ

where ŷ is the direction of the magnetic field experienced

by the second wire as shown in the Figure. The next step

is to write the velocity v in terms of the current I2 in

the second wire. We did this in Section 1.1 when we first

introduced the idea of currents: if there’s a density n of these particles and each carries

charge q, then the current density is

J2 = nqv

For a wire with cross-sectional area A, the total current is just I2 = J2A. For our

set-up, J2 = J2ẑ.

Finally, we want to compute the force on the wire per unit length, f . Since the

number of charges per unit length is nA and F is the force on each charge, we have

f = nAF =

✓
µ0I1I2

2⇡d

◆
ẑ⇥ ŷ = �

✓
µ0I1I2

2⇡d

◆
x̂ (3.25)

This is our answer for the force between two parallel wires. If the two currents are

in the same direction, so that I1I2 > 0, the overall minus sign means that the force

between two wires is attractive. For currents in opposite directions, with I1I2 < 0, the

force is repulsive.

The General Force Between Currents

We can extend our discussion to the force experienced between two current distributions

J1 and J2. We start by considering the magnetic field B(r) due to the first current J1.

As we’ve seen, the Biot-Savart law (3.15) tells us that this can be written as

B(r) =
µ0

4⇡

Z
d
3
r
0 J1(r0)⇥ (r� r0)

|r� r0|3

If the current J1 is localised on a curve C1, then we can replace this volume integral

with the line integral (3.16)

B(r) =
µ0I1

4⇡

I

C1

dr1 ⇥ (r� r1)

|r� r1|3
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Now we place a second current distribution J2 in this magnetic field. It experiences a

force per unit area given by (1.3), so the total force is

F =

Z
d
3
r J2(r)⇥B(r) (3.26)

Again, if the current J2 is restricted to lie on a curve C2, then this volume integral can

be replaced by the line integral

F = I2

I

C2

dr⇥B(r)

and the force can now be expressed as a double line integral,

F =
µ0

4⇡
I1I2

I

C1

I

C2

dr2 ⇥

✓
dr1 ⇥

r2 � r1
|r2 � r1|3

◆

In general, this integral will be quite tricky to perform. However, if the currents are

localised, and well-separated, there is a somewhat better approach where the force can

be expressed purely in terms of the dipole moment of the current.

3.4.2 Force and Energy for a Dipole

We start by asking a slightly di↵erent question. We’ll forget about the second current

and just focus on the first: call it J(r). We’ll place this current distribution in a

magnetic field B(r) and ask: what force does it feel?

In general, there will be two kinds of forces. There will be a force on the centre of

mass of the current distribution, which will make it move. There will also be a torque

on the current distribution, which will want to make it re-orient itself with respect to

the magnetic field. Here we’re going to focus on the former. Rather remarkably, we’ll

see that we get the answer to the latter for free!

The Lorentz force experienced by the current distribution is

F =

Z

V

d
3
r J(r)⇥B(r)

We’re going to assume that the current is localised in some small region r = R and

that the magnetic field B varies only slowly in this region. This allows us to Taylor

expand

B(r) = B(R) + (r ·r)B(R) + . . .
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We then get the expression for the force

F = �B(R)⇥

Z

V

d
3
r J(r) +

Z

V

d
3
r J(r)⇥ [(r ·r)B(R)] + . . .

The first term vanishes because the currents have to go around in loops; we’ve already

seen a proof of this following equation (3.21). We’re going to do some fiddly manipula-

tions with the second term. To help us remember that the derivative r is acting on B,

which is then evaluated at R, we’ll introduce a dummy variable r0 and write the force

as

F =

Z

V

d
3
r J(r)⇥ [(r ·r0)B(r0)]

����
r0=R

(3.27)

Now we want to play around with this. First, using the fact that r ⇥ B = 0 in the

vicinity of the second current, we’re going to show, that we can rewrite the integrand

as

J(r)⇥ [(r ·r0)B(r0)] = �r
0
⇥ [(r ·B(r0))J(r)]

To see why this is true, it’s simplest to rewrite it in index notation. After shu✏ing a

couple of indices, what we want to show is:

✏ijkJj(r) rl @
0
lBk(r

0) = ✏ijkJj(r) rl @
0
kBl(r

0)

Or, subtracting one from the other,

✏ijkJj(r) rl (@
0
lBk(r

0)� @
0
kBl(r

0)) = 0

But the terms in the brackets are the components of r ⇥ B and so vanish. So our

result is true and we can rewrite the force (3.27) as

F = �r
0
⇥

Z

V

d
3
r (r ·B(r0))J(r)

����
r0=R

Now we need to manipulate this a little more. We make use of the identity (3.23) where

we replace the constant vector by B. Thus, up to some relabelling, (3.23) is the same

as
Z

V

d
3
r (B · r)J =

1

2
B⇥

Z

V

d
3
r J⇥ r = �B⇥m

where m is the magnetic dipole moment of the current distribution. Suddenly, our

expression for the force is looking much nicer: it reads

F = r⇥ (B⇥m)
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where we’ve dropped the r0 = R notation because, having lost the integral, there’s no

cause for confusion: the magnetic dipole m is a constant, while B varies in space. Now

we invoke a standard vector product identity. Using r ·B = 0, this simplifies and we’re

left with a simple expression for the force on a dipole

F = r(B ·m) (3.28)

After all that work, we’re left with something remarkably simple. Moreover, like many

forces in Newtonian mechanics, it can be written as the gradient of a function. This

function, of course, is the energy U of the dipole in the magnetic field,

U = �B ·m (3.29)

This is an important expression that will play a role in later courses in Quantum

Mechanics and Statistical Physics. For now, we’ll just highlight something clever: we

derived (3.29) by considering the force on the centre of mass of the current. This is

related to how U depends on r. But our final expression also tells us how the energy

depends on the orientation of the dipole m at fixed position. This is related to the

torque. Computing the force gives us the torque for free. This is because, ultimately,

both quantities are derived from the underlying energy.

The Force Between Dipoles

As a particular example of the force (3.28), consider the case where the magnetic field

is set up by a dipole m1. We know that the resulting long-distance magnetic field is

(3.24),

B(r) =
µ0

4⇡

✓
3(m1 · r̂)r̂�m1

r3

◆
(3.30)

Now we’ll consider how this a↵ects the second dipole m = m2. From (3.28), we have

F =
µ0

4⇡
r

✓
3(m1 · r̂)(m2 · r̂)�m1 ·m2

r3

◆

where r is the vector from m1 to m2. Note that the structure of the force is identical

to that between two electric dipoles in (2.30). This is particularly pleasing because

we used two rather di↵erent methods to calculate these forces. If we act with the

derivative, we have

F =
3µ0

4⇡r4
⇥
(m1 · r̂)m2 + (m2 · r̂)m1 + (m1 ·m2)r̂� 5(m1 · r̂)(m2 · r̂)r̂

⇤
(3.31)
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First note that if we swap m1 and m2, so that we also send r ! �r, then the force

swaps sign. This is a manifestation of Newton’s third law: every action has an equal

and opposite reaction. Recall from Dynamics and Relativity lectures that we needed

Newton’s third law to prove the conservation of momentum of a collection of particles.

We see that this holds for a bunch of dipoles in a magnetic field.

But there was also a second part to Newton’s third law: to prove the conservation

of angular momentum of a collection of particles, we needed the force to lie parallel to

the separation of the two particles. And this is not true for the force (3.31). If you set

up a collection of dipoles, they will start spinning, seemingly in contradiction of the

conservation of angular momentum. What’s going on?! Well, angular momentum is

conserved, but you have to look elsewhere to see it. The angular momentum carried

by the dipoles is compensated by the angular momentum carried by the magnetic field

itself.

Finally, a few basic comments: the dipole force drops o↵ as 1/r4, quicker than the

Coulomb force. Correspondingly, it grows quicker than the Coulomb force at short

distances. If m1 and m2 point in the same direction and lie parallel to the separation

R, then the force is attractive. If m1 and m2 point in opposite directions and lie

parallel to the separation between them, then the force is repulsive. The expression

(3.31) tells us the general result.

3.4.3 So What is a Magnet?

Until now, we’ve been talking about the magnetic field

Figure 33:

associated to electric currents. But when asked to en-

visage a magnet, most people would think if a piece of

metal, possibly stuck to their fridge, possibly in the form

of a bar magnet like the one shown in the picture. How

are these related to our discussion above?

These metals are permanent magnets. They often in-

volve iron. They can be thought of as containing many

microscopic magnetic dipoles, which align to form a large

magnetic dipole M. In a bar magnet, the dipole M points between the two poles. The

iron filings in the picture trace out the magnetic field which takes the same form that

we saw for the current loop in Section 3.3.

This means that the leading force between two magnets is described by our result

(3.31). Suppose that M1, M2 and the separation R all lie along a line. If M1 and M2
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point in the same direction, then the North pole of one magnet faces the South pole

of another and (3.31) tells us that the force is attractive. Alternatively, if M1 and M2

point in opposite directions then two poles of the same type face each other and the

force is repulsive. This, of course, is what we all learned as kids.

The only remaining question is: where do the microscopic dipole moments m come

from? You might think that these are due to tiny electric atomic currents but this

isn’t quite right. Instead, they have a more fundamental origin. The electric charges

— which are electrons — possess an inherent angular momentum called spin. Roughly

you can think of the electron as spinning around its own axis in much the same way as

the Earth spins. But, ultimately, spin is a quantum mechanical phenomenon and this

classical analogy breaks down when pushed too far. The magnitude of the spin is:

s =
1

2
~

where, recall, ~ has the same dimensions as angular momentum.

We can push the classical analogy of spin just a little further. Classically, an electri-

cally charged spinning ball would give rise to a magnetic dipole moment. So one may

wonder if the spinning electron also gives rise to a magnetic dipole. The answer is yes.

It is given by

m = g
e

2m
s

where e is the charge of the electron and m is its mass. The number g is dimensionless

and called, rather uninspiringly, the g-factor. It has been one of the most important

numbers in the history of theoretical physics, with several Nobel prizes awarded to

people for correctly calculating it! The classical picture of a spinning electron suggests

g = 1. But this is wrong. The first correct prediction (and, correspondingly, first Nobel

prize) was by Dirac. His famous relativistic equation for the electron gives

g = 2

Subsequently it was observed that Dirac’s prediction is not quite right. The value of g

receives corrections. The best current experimental value is

g = 2.00231930419922± (1.5⇥ 10�12)

Rather astonishingly, this same value can be computed theoretically using the frame-

work of quantum field theory (specifically, quantum electrodynamics). In terms of

precision, this is one of the great triumphs of theoretical physics.
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There is much much more to the story of magnetism, not least what causes the

magnetic dipoles m to align themselves in a material. The details involve quantum

mechanics and are beyond the scope of this course.

3.5 Units of Electromagnetism

More than any other subject, electromagnetism is awash with di↵erent units. In large

part this is because electromagnetism has such diverse applications and everyone from

astronomers, to electrical engineers, to particle physicists needs to use it. But it’s still

annoying. Here we explain the basics of SI units.

The SI unit of charge is the Coulomb. As of 20192, the Coulomb is defined in terms

of the charge �e carried by the electron. This is taken to be exactly

e = 1.602176634⇥ 10�19
C

If you rub a balloon on your sweater, it picks up a charge of around 10�6
C or so.

A bolt of lightening deposits a charge of about 15 C. The total charge that passes

through an AA battery in its lifetime is about 5000 C.

The SI unit of current is the Ampere, denoted A. It is defined as one Coulomb of

charge passing every second. The current that runs through single ion channels in

cell membranes is about 10�12
A. The current that powers your toaster is around

1 A to 10 A. There is a current in the Earth’s atmosphere, known as the Birkeland

current, which creates the aurora and varies between 105 A and 106 A. Galactic size

currents in so-called Seyfert galaxies (particularly active galaxies) have been measured

at a whopping 1018 A.

The electric field is measured in units of NC
�1. The electrostatic potential � has

units of Volts, denoted V , where the 1 Volt is the potential di↵erence between two

infinite, parallel plates, separated by 1 m, which create an electric field of 1 NC
�1.

2Prior to 2019, a reluctance to rely on fundamental physics meant that the definitions were a little
more tortuous. The Ampere was taken to be the base unit, and the Coulomb was defined as the
amount of charge transported by a current of 1 A in a second. The Ampere, in turn, was defined to
be the current carried by two straight, parallel wires when separated by a distance of 1 m, in order
to experience an attractive force-per-unit-length of 2 ⇥ 10�7 Nm�1. (Recall that a Newton is the
unit of force needed to accelerate 1 Kg at 1 ms�1.) From our result (3.25), we see that if we plug in
I1 = I2 = 1 A and d = 1 m then this force is f = µ0/2⇡ A2m�1. This definition is the reason that µ0

has the strange-looking value µ0 = 4⇡ ⇥ 10�7 mKgC�2. The new definitions of SI units means that
we can no longer say with certainty that µ0 = 4⇡ ⇥ 10�7 mKgC�2, but this only holds up to the
experimental accuracy of a dozen significant figures or so. For our purposes, the main lesson to draw
from this is that, from the perspective of fundamental physics, SI units are arbitrary and a little daft.
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A nerve cell sits at around 10�2
V . An AA battery sits at 1.5 V . The largest man-

made voltage is 107 V produced in a van der Graaf generator. This doesn’t compete

well with what Nature is capable of. The potential di↵erence between the ends of a

lightening bolt can be 108 V . The voltage around a pulsar (a spinning neutron star)

can be 1015 V .

The unit of a magnetic field is the Tesla, denoted T . A particle of charge 1 C, passing

through a magnetic field of 1 T at 1 ms
�1 will experience a force of 1 N . From the

examples that we’ve seen above it’s clear that 1 C is a lot of charge. Correspondingly,

1 T is a big magnetic field. Our best instruments (SQUIDs) can detect changes in

magnetic fields of 10�18
T . The magnetic field in your brain is 10�12

T . The strength

of the Earth’s magnetic field is around 10�5
T while a magnet stuck to your fridge has

about 10�3
T . The strongest magnetic field we can create on Earth is around 100 T .

Again, Nature beats us quite considerably. The magnetic field around neutron stars can

be between 106 T and 109 T . (There is an exception here: in “heavy ion collisions”,

in which gold or lead nuclei are smashed together in particle colliders, it is thought

that magnetic fields comparable to those of neutron stars are created. However, these

magnetic fields are fleeting and small. They are stretch over the size of a nucleus and

last for a millionth of a second or so).

As the above discussion amply demonstrates, SI units are based entirely on historical

convention rather than any deep underlying physics. A much better choice is to pick

units of charge such that we can discard ✏0 and µ0. There are two commonly used

frameworks that do this, called Lorentz-Heaviside units and Gaussian units. I should

warn you that the Maxwell equations take a slightly di↵erent form in each.

To fully embrace natural units, we should also set the speed of light c = 1. (See

the rant in the Dynamics and Relativity lectures). However we can’t set everything

to one. There is one combination of the fundamental constants of Nature which is

dimensionless. It is known as the fine structure constant,

↵ =
e
2

4⇡✏0~c
and takes value ↵ ⇡ 1/137. Ultimately, this is the correct measure of the strength of

the electromagnetic force. It tells us that, in units with ✏0 = ~ = c = 1, the natural,

dimensionless value of the charge of the electron is e ⇡ 0.3.

3.5.1 A History of Magnetostatics

The history of magnetostatics, like electrostatics, starts with the Greeks. The fact

that magnetic iron ore, sometimes known as “lodestone”, can attract pieces of iron was
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apparently known to Thales. He thought that he had found the soul in the stone. The

word “magnetism” comes from the Greek town Magnesia, which is situated in an area

rich in lodestone.

It took over 1500 years to turn Thales’ observation into something useful. In the 11th

century, the Chinese scientist Shen Kuo realised that magnetic needles could be used

to build a compass, greatly improving navigation.

The modern story of magnetism begins, as with electrostatics, with William Gilbert.

From the time of Thales, it had been thought that electric and magnetic phenomenon

are related. One of Gilbert’s important discoveries was, ironically, to show that this is

not the case: the electrostatic forces and magnetostatic forces are di↵erent.

Yet over the next two centuries, suspicions remained. Several people suggested that

electric and magnetic phenomena are intertwined, although no credible arguments were

given. The two just smelled alike. The following unisightful quote from Henry Elles,

written in 1757 to the Royal Society, pretty much sums up the situation: “There are

some things in the power of magnetism very similar to those of electricity. But I do

not by any means think them the same”. A number of specific relationships between

electricity and magnetism were suggested and all subsequently refuted by experiment.

When the breakthrough finally came, it took everyone by surprise. In 1820, the Dan-

ish scientist Hans Christian Ørsted noticed that the needle on a magnet was deflected

when a current was turned on or o↵. After that, progress was rapid. Within months,

Ørsted was able to show that a steady current produces the circular magnetic field

around a wire that we have seen in these lectures. In September that year, Ørsted’s

experiments were reproduced in front of the French Academy by Francois Arago, a talk

which seemed to mobilise the country’s entire scientific community. First out of the

blocks were Jean-Baptiste Biot and Félix Savart who quickly determined the strength

of the magnetic field around a long wire and the mathematical law which bears their

name.

Of those inspired by Arago’s talk, the most important was André-Marie Ampère.

Skilled in both experimental and theoretical physics, Ampère determined the forces

that arise between current carrying wires and derived the mathematical law which

now bears his name:
H

B · dr = µ0I. He was also the first to postulate that there

exists an atom of electricity, what we would now call the electron. Ampère’s work was

published in 1827 a book with the catchy title “Memoir on the Mathematical Theory

of Electrodynamic Phenomena, Uniquely Deduced from Experience”. It is now viewed

as the beginning of the subject of electrodynamics.
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