
5. Electromagnetism and Relativity

We’ve seen that Maxwell’s equations have wave solutions which travel at the speed

of light. But there’s another place in physics where the speed of light plays a promi-

nent role: the theory of special relativity. How does electromagnetism fit with special

relativity?

Historically, the Maxwell equations were discovered before the theory of special rel-

ativity. It was thought that the light waves we derived above must be oscillations of

some substance which fills all of space. This was dubbed the aether. The idea was that

Maxwell’s equations only hold in the frame in which the aether is at rest; light should

then travel at speed c relative to the aether.

We now know that the concept of the aether is unnecessary baggage. Instead,

Maxwell’s equations hold in all inertial frames and are the first equations of physics

which are consistent with the laws of special relativity. Ultimately, it was by studying

the Maxwell equations that Lorentz was able to determine the form of the Lorentz

transformations which subsequently laid the foundation for Einstein’s vision of space

and time.

Our goal in this section is to view electromagnetism through the lens of relativity.

We will find that observers in di↵erent frames will disagree on what they call electric

fields and what they call magnetic fields. They will observe di↵erent charge densities

and di↵erent currents. But all will agree that these quantities are related by the same

Maxwell equations. Moreover, there is a pay-o↵ to this. It’s only when we formulate

the Maxwell equations in a way which is manifestly consistent with relativity that we

see their true beauty. The slightly cumbersome vector calculus equations that we’ve

been playing with throughout these lectures will be replaced by a much more elegant

and simple-looking set of equations.

5.1 A Review of Special Relativity

We start with a very quick review of the relevant concepts of special relativity. (For

more details see the lecture notes on Dynamics and Relativity). The basic postulate of

relativity is that the laws of physics are the same in all inertial reference frames. The

guts of the theory tell us how things look to observers who are moving relative to each

other.

The first observer sits in an inertial frame S with spacetime coordinates (ct, x, y, z)

the second observer sits in an inertial frame S 0 with spacetime coordinates (ct0, x0
, y

0
, z

0).
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If we take S
0 to be moving with speed v in the x-direction relative to S then the

coordinate systems are related by the Lorentz boost

x
0 = �

⇣
x�

v

c
ct

⌘
and ct

0 = �

⇣
ct�

v

c
x

⌘
(5.1)

while y
0 = y and z

0 = z. Here c is the speed of light which has the value,

c = 299792458 ms
�1

Meanwhile � is the ubiquitous factor

� =

s
1

1� v2/c2
(5.2)

The Lorentz transformation (5.1) encodes within it all of the fun ideas of time dilation

and length contraction that we saw in our first course on relativity.

5.1.1 Four-Vectors

It’s extremely useful to package these spacetime coordinates in 4-vectors, with indices

running from µ = 0 to µ = 3

X
µ = (ct, x, y, z) µ = 0, 1, 2, 3

Note that the index is a superscript rather than subscript. This will be important

shortly. A general Lorentz transformation is a linear map from X to X
0 of the form

(X 0)µ = ⇤µ
⌫X

⌫

Here ⇤ is a 4⇥ 4 matrix which obeys the matrix equation

⇤T
⌘⇤ = ⌘ , ⇤⇢

µ⌘⇢�⇤
�
⌫ = ⌘µ⌫ (5.3)

with ⌘µ⌫ the Minkowski metric

⌘µ⌫ = diag(+1,�1,�1,�1)

The solutions to (5.3) fall into two classes. The first class is simply rotations. Given a

3⇥ 3 rotation matrix R obeying R
T
R = 1, we can construct a Lorentz transformation

⇤ obeying (5.3) by embedding R in the spatial part,

⇤µ
⌫ =

0

BBBB@

1 0 0 0

0

0 R

0

1

CCCCA
(5.4)

These transformations describe how to relate the coordinates of two observers who are

rotated with respect to each other.
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The other class of solutions to (5.3) are the Lorentz boosts. These are the transfor-

mations appropriate for observers moving relative to each other. The Lorentz transfor-

mation (5.1) is equivalent to

⇤µ
⌫ =

0

BBBB@

� ��v/c 0 0

��v/c � 0 0

0 0 1 0

0 0 0 1

1

CCCCA
(5.5)

There are similar solutions associated to boosts along the y and z axes.

The beauty of 4-vectors is that it’s extremely easy to write down invariant quantities.

These are things which all observers, no matter which their reference frame, can agree

on. To construct these we take the inner product of two 4-vectors. The trick is that

this inner product uses the Minkowski metric and so comes with some minus signs. For

example, the square of the distance from the origin to some point in spacetime labelled

by X is

X ·X = X
µ
⌘µ⌫X

⌫ = c
2
t
2
� x

2
� y

2
� z

2

which is the invariant interval. Similarly, if we’re given two four-vectors X and Y then

the inner product X · Y = X
µ
⌘µ⌫Y

⌫ is also a Lorentz invariant.

5.1.2 Proper Time

The key to building relativistic theories of Nature is to find the variables that have

nice properties under Lorentz transformations. The 4-vectors X, labelling spacetime

points, are a good start. But we need more. Here we review how the other kinematical

variables of velocity, momentum and acceleration fit into 4-vectors.

Suppose that, in some frame, the particle traces out a worldline. The clever trick is to

find a way to parameterise this path in a way that all observers agree upon. The natural

choice is the proper time ⌧ , the duration of time experienced by the particle itself.

If you’re sitting in some frame, watching some particle move with an old-fashioned

Newtonian 3-velocity u(t), then it’s simple to show that the relationship between your

time t and the proper time of the particle ⌧ is given by

dt

d⌧
= �(u)
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The proper time allows us to define the 4-velocity and the 4-momentum. Suppose that

the particle traces out a path X(⌧) in some frame. Then the 4-velocity is

U =
dX

d⌧
= �

 
c

u

!

Similarly, the 4-momentum is P = mU where m is the rest mass of the particle. We

write

P =

 
E/c

p

!
(5.6)

where E = m�c
2 is the energy of the particle and p = �mu is the 3-momentum in

special relativity.

The importance of U and P is that they too are 4-vectors. Because all observers

agree on ⌧ , the transformation law of U and P are inherited from X. This means that

under a Lorentz transformation, they too change as U ! ⇤U and P ! ⇤P . And it

means that inner products of U and P are guaranteed to be Lorentz invariant.

5.1.3 Indices Up, Indices Down

Before we move on, we do need to introduce one extra notational novelty. The minus

signs in the Minkowski metric ⌘ means that it’s useful to introduce a slight twist to

the usual summation convention of repeated indices. For all the 4-vectors that we

introduced above, we always place the spacetime index µ = 0, 1, 2, 3 as a superscript

(i.e. up) rather than a subscript.

X
µ =

 
ct

x

!

This is because the same object with an index down, Xµ, will mean something subtly

di↵erent. We define

Xµ =

 
ct

�x

!

With this convention, the Minkowski inner product can be written using the usual

convention of summing over repeated indices as

X
µ
Xµ = c

2
t
2
� x · x

In contrast, X
µ
X

µ = c
2
t
2 + x2 is a dumb thing to write in the context of special

relativity since it looks very di↵erent to observers in di↵erent inertial frames. In fact,

we will shortly declare it illegal to write things like X
µ
X

µ.
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There is a natural way to think of Xµ in terms of Xµ using the Minkowski metric

⌘µ⌫ = diag(+1,�1,�1,�1). The following equation is trivially true:

Xµ = ⌘µ⌫X
⌫

This means that we can think of the Minkowski metric as allowing us to lower indices.

To raise indices back up, we need the inverse of ⌘µ⌫ which, fortunately, is the same

matrix: ⌘
µ⌫ = diag(+1,�1,�1,�1) which means we have ⌘

µ⇢
⌘⇢⌫ = �

µ
⌫ and we can

write

X
⌫ = ⌘

⌫µ
Xµ

From now on, we’re going to retain this distinction between all upper and lower indices.

All the four-vectors that we’ve met so far have upper indices. But all can be lowered

in the same way. For example, we have

Uµ = �

 
c

�u

!
(5.7)

This trick of distinguishing between indices up and indices down provides a simple

formalism to ensure that all objects have nice transformation properties under the

Lorentz group. We insist that, just as in the usual summation convention, repeated

indices only ever appear in pairs. But now we further insist that pairs always appear

with one index up and the other down. The result will be an object which is invariant

under Lorentz transformations.

5.1.4 Vectors, Covectors and Tensors

In future courses, you will learn that there is somewhat deeper mathematics lying be-

hind distinguishing X
µ and Xµ: formally, these objects live in di↵erent spaces (some-

times called dual spaces). We’ll continue to refer to X
µ as vectors, but to distinguish

them, we’ll call Xµ covectors. (In slightly fancier language, the components of the vec-

tor X
µ are sometimes said to be contravariant while the components of the covector

Xµ are said to be covariant).

For now, the primary di↵erence between a vector and covector is how they transform

under rotations and boosts. We know that, under a Lorentz transformation, any 4-

vector changes as

X
µ
! X

0µ = ⇤µ
⌫X

⌫
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From this, we see that a covector should transform as

Xµ ! X
0
µ = ⌘µ⇢X

0 ⇢

= ⌘µ⇢⇤
⇢
�X

�

= ⌘µ⇢⇤
⇢
�⌘

�⌫
X⌫

Using our rule for raising and lowering indices, now applied to the Lorentz transforma-

tion ⇤, we can also write this as

Xµ ! ⇤ ⌫
µ X⌫

where our notation is now getting dangerously subtle: you have to stare to see whether

the upper or lower index on the Lorentz transformation comes first.

There is a sense in which ⇤ ⌫
µ can be thought of a the components of the inverse

matrix ⇤�1. To see this, we go back to the definition of the Lorentz transformation

(5.3), and start to use our new rules for raising and lowering indices

⇤⇢
µ⌘⇢�⇤

�
⌫ = ⌘µ⌫ ) ⇤⇢

µ⇤⇢⌫ = ⌘µ⌫

) ⇤⇢
µ⇤

�
⇢ = �

�
µ

) ⇤ �
⇢ ⇤⇢

µ = �
�
µ

In the last line above, we’ve simply reversed the order of the two terms on the left.

(When written in index notation, these are just the entries of the matrix so there’s no

problem with commuting them). Now we compare this to the formula for the inverse

of a matrix,

(⇤�1)�⇢⇤
⇢
µ = �

�
µ ) (⇤�1)�⇢ = ⇤ �

⇢ (5.8)

Note that you need to be careful where you place the indices in equations like this.

The result (5.8) is analogous to the statement that the inverse of a rotation matrix is

the transpose matrix. For general Lorentz transformations, we learn that the inverse

is sort of the transpose where “sort of” means that there are minus signs from raising

and lowering. The placement of indices in (5.8) tells us where those minus signs go.

The upshot of (5.8) is that if we want to abandon index notation all together then

vectors transform as X ! ⇤X while covectors – which, for the purpose of this sentence,

we’ll call X̃ – transform as X̃ ! ⇤�1
X̃. However, in what follows, we have no intention

of abandoning index notation. Instead, we will embrace it. It will be our friend and

our guide in showing that the Maxwell equations are consistent with special relativity.
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A particularly useful example of a covector is the four-derivative. This is the rela-

tivistic generalisation of r, defined by

@µ =
@

@Xµ
=

✓
1

c

@

@t
,r

◆

Notice that the superscript on the spacetime 4-vector Xµ has migrated to a subscript

on the derivative @µ. For this to make notational sense, we should check that @µ does

indeed transform as covector. This is a simple application of the chain rule. Under a

Lorentz transformation, Xµ
! X

0µ = ⇤µ
⌫X

⌫ , so we have

@µ =
@

@Xµ
!

@

@X 0µ =
@X

⌫

@X 0µ
@

@X⌫
= (⇤�1)⌫µ@⌫ = ⇤ ⌫

µ @⌫

which is indeed the transformation of a co-vector.

Tensors

Vectors and covectors are the simplest examples of objects which have nice transfor-

mation properties under the Lorentz group. But there are many more examples. The

most general object can have a bunch of upper indices and a bunch of lower indices,

T
µ1...µn

⌫1...⌫m . These objects are also called tensors of type (n,m). In order to qualify

as a tensor, they must transform under a Lorentz transformation as

T
0µ1...µn

⌫1...⌫m = ⇤µ1
⇢1 . . .⇤

µn
⇢n⇤

�1
⌫1 . . .⇤ �m

⌫m T
⇢1...⇢n

�1...�m
(5.9)

You can always use the Minkowski metric to raise and lower indices on tensors, changing

the type of tensor but keeping the total number of indices n+m fixed.

Tensors of this kind are the building blocks of all our theories. This is because if you

build equations only out of tensors which transform in this manner then, as long as

the µ, ⌫, . . . indices match up on both sides of the equation, you’re guaranteed to have

an equation that looks the same in all inertial frames. Such equations are said to be

covariant. You’ll see more of this kind of thing in courses on General Relativity and

Di↵erential Geometry.

In some sense, this index notation is too good. Remember all those wonderful things

that you first learned about in special relativity: time dilation and length contraction

and twins and spaceships so on. You’ll never have to worry about those again. From

now on, you can guarantee that you’re working with a theory consistent with relativity

by ensuring two simple things

• That you only deal with tensors.

• That the indices match up on both sides of the equation.

It’s sad, but true. It’s all part of growing up and not having fun anymore.
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5.2 Conserved Currents

We started these lectures by discussing the charge density ⇢(x, t), the current density

J(x, t) and their relation through the continuity equation,

@⇢

@t
+r · J = 0

which tells us that charge is locally conserved.

The continuity equation is already fully consistent with relativity. To see this, we

first need to appreciate that the charge and current densities sit nicely together in a

4-vector,

J
µ =

 
⇢c

J

!

Of course, placing objects in a four-vector has consequence: it tells us how these objects

look to di↵erent observers. Let’s quickly convince ourselves that it makes sense that

charge density and current do indeed transform in this way. We can start by considering

a situation where there are only static charges with density ⇢0 and no current. So

J
µ = (⇢0, 0). Now, in a frame that is boosted by velocity v, the current will appear as

J
0µ = ⇤µ

⌫J
⌫ with the Lorentz transformation given by (5.5). The new charge density

and current are then

⇢
0 = �⇢0 , J0 = ��⇢v

The first of these equations tells us that di↵erent observers see di↵erent charge densities.

This is because of Lorentz contraction: charge density means charge per unit volume.

And the volume gets squeezed because lengths parallel to the motion undergo Lorentz

contraction. That’s the reason for the factor of � in the observed charge density.

Meanwhile, the second of these equations is just the relativistic extension of the formula

J = ⇢v that we first saw in the introduction. (The extra minus sign is because v here

denotes the velocity of the boosted observer; the charge is therefore moving with relative

velocity �v).

In our new, relativistic, notation, the continuity equation takes the particularly sim-

ple form

@µJ
µ = 0 (5.10)

This equation is Lorentz invariant. This follows simply because the indices are con-

tracted in the right way: one up, and one down.
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5.2.1 Magnetism and Relativity

We’ve learned something unsurprising: boosted charge gives rise to a current. But,

combined with our previous knowledge, this tells us something new and important:

boosted electric fields must give rise to magnetic fields. The rest of this chapter will

be devoted to understanding the details of how this happens. But first, we’re going to

look at a simple example where we can re-derive the magnetic force purely from the

Coulomb force and a dose of Lorentz contraction.

To start, consider a bunch of positive charges

A

vv

u

Figure 47:

+q moving along a line with speed +v and a bunch of

negative charges �q moving in the opposite direction

with speed�v as shown in the figure. If there is equal

density, n, of positive and negative charges then the

charge density vanishes while the current is

I = 2nAqv

where A is the cross-sectional area of the wire. Now consider a test particle, also

carrying charge q, which is moving parallel to the wire with some speed u. It doesn’t

feel any electric force because the wire is neutral, but we know it experiences a magnetic

force. Here we will show how to find an expression for this force without ever invoking

the phenomenon of magnetism.

The trick is to move to the rest frame of the test particle. This means we have to

boost by speed u. The usual addition formula tells us that the velocities of the positive

and negative charges now di↵er, given by

v± =
v ⌥ u

1⌥ uv/c2

But with the boost comes a Lorentz contraction which means that the charge density

changes. Moreover, because the velocities of positive and negative charges are now

di↵erent, this will mean that, viewed from the rest frame of our particle, the wire is

no longer neutral. Let’s see how this works. First, we’ll introduce n0, the density of

charges when the particles in the wire are at rest. Then the density of the +q charges

in the original frame is

⇢ = qn = �(v)qn0

The charge density of the �q particles is the same, but with opposite sign, so that in

the original frame the wire is neutral. However, in our new frame, the charge densities
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are

⇢± = qn± = q�(v±)n0 =
⇣
1⌥

uv

c2

⌘
�(u)�(v) qn0

where you’ve got to do a little bit of algebra to get to the last result. Since v� > v+,

we have n� > n+ and the wire carries negative charge. The overall net charge density

in the new frame is

⇢
0 = qn

0 = q(n+ � n�) = �
2uv

c2
�(u) qn

But we know that a line of electric charge creates an electric field; we calculated it in

(2.6); it is

E(r) = �
2uv

c2

�(u) qnA

2⇡✏0r
r̂

where r is the radial direction away from the wire. This means that, in its rest frame,

the particle experiences a force

F
0 = �u�(u)

nAq
2
v

⇡✏0c
2r

where the minus sign tells us that the force is towards the wire for u > 0. But if there’s

a force in one frame, there must also be a force in another. Transforming back to where

we came from, we conclude that even when the wire is neutral there has to be a force

F =
F

0

�(u)
= �u

nq
2
Av

⇡✏0c
2r

= �uq
µ0I

2⇡r
(5.11)

But this precisely agrees with the Lorentz force law, with the magnetic field given by

the expression (3.5) that we computed for a straight wire. Notice that if u > 0 then

the test particle – which has charge q – is moving in the same direction as the particles

in the wire which have charge q and the force is attractive. If u < 0 then it moves in

the opposite direction and the force is repulsive.

This analysis provides an explicit demonstration of how an electric force in one frame

of reference is interpreted as a magnetic force in another. There’s also something rather

surprising about the result. We’re used to thinking of length contraction as an exotic

result which is only important when we approach the speed of light. Yet the electrons

in a wire crawl along. They take around an hour to travel a meter! Nonetheless, we

can easily detect the magnetic force between two wires which, as we’ve seen above, can

be directly attributed to the length contraction in the electron density.
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The discussion above needs a minor alteration for actual wires. In the rest frame of

the wire the positive charges – which are ions, atoms stripped of some of their electrons

– are stationary while the electrons move. Following the explanation above, you might

think that there is an imbalance of charge density already in this frame. But that’s not

correct. The current is due to some battery feeding electrons into the wire and taking

them out the other end. And this is done in such a way that the wire is neutral in the

rest frame, with the electron density exactly compensating the ion density. In contrast,

if we moved to a frame in which the ions and electrons had equal and opposite speeds,

the wire would appear charged. Although the starting point is slightly di↵erent, the

end result remains.

5.3 Gauge Potentials and the Electromagnetic Tensor

Under Lorentz transformations, electric and magnetic fields will transform into each

other. In this section, we want to understand more precisely how this happens. At

first sight, it looks as if it’s going to be tricky. So far the objects which have nice

transformation properties under Lorentz transformations are 4-vectors. But here we’ve

got two 3-vectors, E and B. How do we make those transform into each other?

5.3.1 Gauge Invariance and Relativity

To get an idea for how this happens, we first turn to some objects that we met previ-

ously: the scalar and vector potentials � and A. Recall that we introduced these to

solve some of the equations of electrostatics and magnetostatics,

r⇥ E = 0 ) E = �r�

r ·B = 0 ) B = r⇥A

However, in general these expressions can’t be correct. We know that when B and E

change with time, the two source-free Maxwell equations are

r⇥ E+
@B

@t
= 0 and r ·B = 0

Nonetheless, it’s still possible to use the scalar and vector potentials to solve both of

these equations. The solutions are

E = �r��
@A

@t
and B = r⇥A

where now � = �(x, t) and A = A(x, t).
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Just as we saw before, there is no unique choice of � and A. We can always shift

A ! A +r� and B remains unchanged. However, now this requires a compensating

shift of �.

� ! ��
@�

@t
and A ! A+r� (5.12)

with � = �(x, t). These are gauge transformations. They reproduce our earlier gauge

transformation for A, while also encompassing constant shifts in �.

How does this help with our attempt to reformulate electromagnetism in a way

compatible with special relativity? Well, now we have a scalar, and a 3-vector: these

are ripe to place in a 4-vector. We define

A
µ =

 
�/c

A

!

Or, equivalently, Aµ = (�/c,�A). In this language, the gauge transformations (5.12)

take a particularly nice form,

Aµ ! Aµ � @µ� (5.13)

where � is any function of space and time

5.3.2 The Electromagnetic Tensor

We now have all the ingredients necessary to determine how the electric and magnetic

fields transform. From the 4-derivative @µ = (@/@(ct),r) and the 4-vector Aµ =

(�/c,�A), we can form the anti-symmetric tensor

Fµ⌫ = @µA⌫ � @⌫Aµ

This is constructed to be invariant under gauge transformations (5.13). We have

Fµ⌫ ! Fµ⌫ + @µ@⌫�� @⌫@µ� = Fµ⌫

This already suggests that the components involve the E and B fields. To check that

this is indeed the case, we can do a few small computations,

F01 =
1

c

@(�Ax)

@t
�

@(�/c)

@x
=

Ex

c

and

F12 =
@(�Ay)

@x
�

@(�Ax)

@y
= �Bz
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Similar computations for all other entries give us a matrix of electric and magnetic

fields,

Fµ⌫ =

0

BBBB@

0 Ex/c Ey/c Ez/c

�Ex/c 0 �Bz By

�Ey/c Bz 0 �Bx

�Ez/c �By Bx 0

1

CCCCA
(5.14)

This, then, is the answer to our original question. You can make a Lorentz covariant

object consisting of two 3-vectors by arranging them in an anti-symmetric tensor. Fµ⌫

is called the electromagnetic tensor. Equivalently, we can raise both indices using the

Minkowski metric to get

F
µ⌫ = ⌘

µ⇢
⌘
⌫�
F⇢� =

0

BBBB@

0 �Ex/c �Ey/c �Ez/c

Ex/c 0 �Bz By

Ey/c Bz 0 �Bx

Ez/c �By Bx 0

1

CCCCA

Both Fµ⌫ and F
µ⌫ are tensors. They are tensors because they’re constructed out of

objects, Aµ, @µ and ⌘µ⌫ , which themselves transform nicely under the Lorentz group.

This means that the field strength must transform as

F
0µ⌫ = ⇤µ

⇢⇤
⌫
�F

⇢� (5.15)

Alternatively, if you want to get rid of the indices, this reads F 0 = ⇤F⇤T . The observer

in a new frame sees electric and magnetic fields E0 and B0 that di↵er from the original

observer. The two are related by (5.15). Let’s look at what this means in a couple of

illustrative examples.

Rotations

To compute the transformation (5.15), it’s probably simplest to just do the sums that

are implicit in the repeated ⇢ and � labels. Alternatively, if you want to revert to

matrix multiplication then this is the same as F
0 = ⇤F⇤T . Either way, we get the

same result. For a rotation, the 3 ⇥ 3 matrix R is embedded in the lower-right hand

block of ⇤ as shown in (5.4). A quick calculation shows that the transformation of the

electric and magnetic fields in (5.15) is as expected,

E0 = RE and B0 = RB

– 107 –



Boosts

Things are more interesting for boosts. Let’s consider a boost v in the x-direction, with

⇤ given by (5.5). Again, you need to do a few short calculations. For example, we have

�
E

0
x

c
= F

0 01 = ⇤0
⇢⇤

1
�F

⇢�

= ⇤0
0⇤

1
1F

01 + ⇤0
1⇤

1
0F

10

=
�
2
v
2

c2

Ex

c
� �

2Ex

c
= �

Ex

c

and

�
E

0
y

c
= F

0 02 = ⇤0
⇢⇤

2
�F

⇢�

= ⇤0
0⇤

2
2F

02 + ⇤0
1⇤

2
2F

12

= ��
Ey

c
+

�v

c
Bz = �

�

c
(Ey � vBz)

and

�B
0
z = F

0 12 = ⇤1
⇢⇤

2
�F

⇢�

= ⇤1
0⇤

2
2F

02 + ⇤1
1⇤

2
2F

12

=
�v

c2
Ey � �Bz = ��(Bz � vEy/c

2)

The final result for the transformation of the electric field after a boost in the x-direction

is

E
0
x = Ex

E
0
y = �(Ey � vBz) (5.16)

E
0
z = �(Ez + vBy)

and, for the magnetic field,

B
0
x = Bx

B
0
y = �

⇣
By +

v

c2
Ez

⌘
(5.17)

B
0
z = �

⇣
Bz �

v

c2
Ey

⌘

As we anticipated above, what appears to be a magnetic field to one observer looks like

an electric field to another, and vice versa.
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Note that in the limit v ⌧ c, we have E0 = E + v ⇥ B and B0 = B. This can be

thought of as the Galilean boost of electric and magnetic fields. We recognise E+v⇥B

as the combination that appears in the Lorentz force law. We’ll return to this force in

Section 5.4.1 where we’ll see how it’s compatible with special relativity.

5.3.3 An Example: A Boosted Line Charge

In Section 2.1.3, we computed the electric field due to a line with uniform charge density

⌘ per unit length. If we take the line to lie along the x-axis, we have (2.6)

E =
⌘

2⇡✏0(y2 + z2)

 
0
y

z

!
(5.18)

Meanwhile, the magnetic field vanishes for static electric charges: B = 0. Let’s see

what this looks like from the perspective of an observer moving with speed v in the

x-direction, parallel to the wire. In the moving frame the electric and magnetic fields

are given by (5.16) and (5.17). These read

E0 =
⌘�

2⇡✏0(y2 + z2)

 
0
y

z

!
=

⌘�

2⇡✏0(y0 2 + z0 2)

 
0
y
0

z
0

!

B0 =
⌘�v

2⇡✏0c2(y2 + z2)

 
0
z

�y

!
=

⌘�v

2⇡✏0c2(y0 2 + z0 2)

 
0
z
0

�y
0

!
(5.19)

In the second equality, we’ve rewritten the expression in terms of the coordinates of S 0

which, because the boost is in the x-direction, are trivial: y = y
0 and z = z

0.

From the perspective of an observer in frame S
0, the charge density in the wire is

⌘
0 = �⌘, where the factor of � comes from Lorentz contraction. This can be seen in

the expression above for the electric field. Since the charge density is now moving, the

observer in frame S
0 sees a current I 0 = ��⌘v. Then we can rewrite (5.19) as

B0 =
µ0I

0

2⇡
p

y0 2 + z0 2
'̂0 (5.20)

But this is something that we’ve seen before. It’s the magnetic field due to a current

in a wire (3.5). We computed this in Section 3.1.1 using Ampére’s law. But here we’ve

re-derived the same result without ever mentioning Ampére’s law! Instead, our starting

point (5.18) needed Gauss’ law and we then used only the Lorentz transformation of

electric and magnetic fields. We can only conclude that, under a Lorentz transforma-

tion, Gauss’ law must be related to Ampére’s law. Indeed, we’ll shortly see explicitly

that this is the case. For now, it’s worth repeating the lesson that we learned in Section

5.2.1: the magnetic field can be viewed as a relativistic e↵ect.
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5.3.4 Another Example: A Boosted Point Charge

Consider a point charge Q, stationary in an inertial frame S. We know that it’s electric

field is given by

E =
Q

4⇡✏0r2
r̂ =

Q

4⇡✏0[x2 + y2 + z2]3/2

 
x

y

z

!

while its magnetic field vanishes. Now let’s look at this same particle from the frame

S
0, moving with velocity v = (v, 0, 0) with respect to S. The Lorentz boost which

relates the two is given by (5.5) and so the new electric field are given by (5.16),

E0 =
Q

4⇡✏0[x2 + y2 + z2]3/2

 
x

�y

�z

!

But this is still expressed in terms of the original coordinates. We should now rewrite

this in terms of the coordinates of S 0, which are x
0 = �(x� vt) and y

0 = y and z
0 = z.

Inverting these, we have

E0 =
Q�

4⇡✏0[�2(x0 + vt0)2 + y0 2 + z0 2]3/2

 
x
0 + vt

0

y
0

z
0

!
(5.21)

In the frame S
0, the particle sits at x0 = (�vt

0
, 0, 0), so we see that the electric field

emanates from the position of the charge, as it should. For now, let’s look at the electric

field when t
0 = 0 so that the particle sits at the origin in the new frame. The electric

field points outwards radially, along the direction

r0 =

 
x
0

y
0

z
0

!

However, the electric field is not isotropic. This arises from the denominator of (5.21)

which is not proportional to r
0 3 because there’s an extra factor of �2 in front of the x

0

component. Instead, at t0 = 0, the denominator involves the combination

�
2
x
0 2 + y

0 2 + z
0 2 = (�2

� 1)x0 2 + r0 2

=
v
2
�
2

c2
x
0 2 + r0 2

=

✓
v
2
�
2

c2
cos2 ✓ + 1

◆
r0 2

= �
2

✓
1�

v
2

c2
sin2

✓

◆
r0 2
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v

Figure 48: The isotropic field lines of a

static charge

Figure 49: The squeezed field lines of a

moving charge

where the ✓ is the angle between r0 and the x0-axis and, in the last line, we’ve just used

some simple trig and the definition of �2 = 1/(1 � v
2
/c

2). This means that we can

write the electric field in frame S
0 as

E0 =
1

�2(1� v2 sin2
✓/c2)3/2

Q

4⇡✏0r0 2
r̂0

The pre-factor is responsible for the fact that the electric field is not isotropic. We see

that it reduces the electric field along the x0-axis (i.e when ✓ = 0) and increases the field

along the perpendicular y0 and z
0 axes (i.e. when ✓ = ⇡/2). This can be thought of as

a consequence of Lorentz contraction, squeezing the electric field lines in the direction

of travel.

The moving particle also gives rise to a magnetic field. This is easily computed using

the Lorentz transformations (5.17). It is

B =
µ0Q�v

4⇡[�2(x0 + vt0)2 + y0 2 + z0 2]3/2

 
0
z
0

�y
0

!

5.3.5 Lorentz Scalars

We can now ask a familiar question: is there any combination of the electric and

magnetic fields that all observers agree upon? Now we have the power of index notation

at our disposal, this is easy to answer. We just need to write down an object that doesn’t

have any floating µ or ⌫ indices. Unfortunately, we don’t get to use the obvious choice

of ⌘µ⌫F µ⌫ because this vanishes on account of the anti-symmetry of F µ⌫ . The simplest

thing we can write down is

1

2
Fµ⌫F

µ⌫ = �
E2

c2
+B2

Note the relative minus sign between E and B, mirroring a similar minus sign in the

spacetime interval.
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However, this isn’t the only Lorentz scalar that we can construct from E and B.

There is another, somewhat more subtle, object. To build this, we need to appreciate

that Minkowski spacetime comes equipped with another natural tensor object, beyond

the familiar metric ⌘µ⌫ . This is the fully anti-symmetric object known as the alternating

tensor,

✏
µ⌫⇢� =

(
+1 if µ⌫⇢� is an even permutation of 0123

�1 if µ⌫⇢� is an odd permutation of 0123

while ✏
µ⌫⇢� = 0 if there are any repeated indices.

To see why this is a natural object in Minkowski space, let’s look at how it changes

under Lorentz transformations. The usual tensor transformation is

✏
0µ⌫⇢� = ⇤µ

⇤
⌫
�⇤

⇢
↵⇤

�
�✏

�↵�

It’s simple to check that ✏0µ⌫⇢� is also full anti-symmetric; it inherits this property from

✏
�↵� on the right-hand side. But this means that ✏0µ⌫⇢� must be proportional to ✏

µ⌫⇢�.

We only need to determine the constant of proportionality. To do this, we can look at

✏
0 0123 = ⇤0

⇤
1
�⇤

2
↵⇤

3
�✏

�↵� = det(⇤)

Now any Lorentz transformations have det(⇤) = ±1. Those with det(⇤) = 1 make

up the “proper Lorentz group” SO(1, 3). (This was covered in the Dynamics and

Relativity notes). These proper Lorentz transformations do not include reflections or

time reversal. We learn that the alternating tensor ✏
µ⌫⇢� is invariant under proper

Lorentz transformations. What it’s really telling us is that Minkowski space comes

with an oriented orthonormal basis. By lowering indices with the Minkowski metric,

we can also construct the tensor ✏µ⌫⇢� which has ✏0123 = �1.

The alternating tensor allows us to construct a second tensor field, sometimes called

the dual electromagnetic tensor (although “dual” is perhaps the most overused word in

physics),

F̃
µ⌫ =

1

2
✏
µ⌫⇢�

F⇢� =

0

BBBB@

0 �Bx �By �Bz

Bx 0 Ez/c �Ey/c

By �Ez/c 0 Ex/c

Bz Ey/c �Ex/c 0

1

CCCCA
(5.22)

F̃
µ⌫ is sometimes also written as ?

F
µ⌫ . We see that this is looks just like F µ⌫ but with

the electric and magnetic fields swapped around. Actually, looking closely you’ll see

that there’s a minus sign di↵erence as well: F̃
µ⌫ arises from F

µ⌫ by the substitution

E ! cB and B ! �E/c.
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The statement that F̃
µ⌫ is a tensor means that it too has nice properties under

Lorentz transformations,

F̃
0µ⌫ = ⇤µ

⇢⇤
⌫
�F̃

⇢�

and we can use this to build new Lorentz invariant quantities. Taking the obvious

square of F̃ doesn’t give us anything new, since

F̃
µ⌫
F̃µ⌫ = �F

µ⌫
Fµ⌫

But by contracting F̃ with the original F we do find a new Lorentz invariant

1

4
F̃

µ⌫
Fµ⌫ =

1

c
E ·B

This tells us that the inner-product of E and B is the same viewed in all frames.

5.4 Maxwell Equations

We now have the machinery to write the Maxwell equations in a way which is manifestly

compatible with special relativity. They take a particularly simple form:

@µF
µ⌫ = µ0J

⌫ and @µF̃
µ⌫ = 0 (5.23)

Pretty aren’t they!

The Maxwell equations are not invariant under Lorentz transformations. This is

because there is the dangling ⌫ index on both sides. However, because the equations

are built out of objects which transform nicely – F
µ⌫ , F̃ µ⌫ , Jµ and @µ – the equations

themselves also transform nicely. For example, we will see shortly that Gauss’ law

transforms into Ampére’s law under a Lorentz boost, something we anticipated in

Section 5.3.3. We say that the equations are covariant under Lorentz transformations.

This means that an observer in a di↵erent frame will mix everything up: space

and time, charges and currents, and electric and magnetic fields. Although observers

disagree on what these things are, they all agree on how they fit together. This is what

it means for an equation to be covariant: the ingredients change, but the relationship

between them stays the same. All observers agree that, in their frame, the electric and

magnetic fields are governed by the same Maxwell equations.

Given the objects F
µ⌫ , F̃

µ⌫ , J
µ and @µ, the Maxwell equations are not the only

thing you could write down compatible with Lorentz invariance. But they are by

far the simplest . Any other equation would be non-linear in F or F̃ or contain more

derivative terms or some such thing. Of course, simplicity is no guarantee that equations

are correct. For this we need experiment. But surprisingly often in physics we find

that the simplest equations are also the right ones.

– 113 –



Unpacking the Maxwell Equations

Let’s now check that the Maxwell equations (5.23) in relativistic form do indeed coincide

with the vector calculus equations that we’ve been studying in this course. We just

need to expand the di↵erent parts of the equation. The components of the first Maxwell

equation give

@iF
i0 = µ0J

0
) r · E =

⇢

✏0

@µF
µi = µ0J

i
) �

1

c2

@E

@t
+r⇥B = µ0J

In the first equation, which arises from ⌫ = 0, we sum only over spatial indices i = 1, 2, 3

because F
00 = 0. Meanwhile the components of the second Maxwell equation give

@iF̃
i0 = 0 ) r ·B = 0

@µF̃
µi = 0 )

@B

@t
+r⇥ E = 0

These, of course, are the familiar equations that we’ve all grown to love over this course.

Here a few further, simple comments about the advantages of writing the Maxwell

equations in relativistic form. First, the Maxwell equations imply that current is con-

served. This follows because F
µ⌫ is anti-symmetric, so @µ@⌫F

µ⌫ = 0 automatically,

simply because @µ@⌫ is symmetric. The first of the Maxwell equations (5.23) then

requires that the continuity equation holds

@µJ
µ = 0

This is the same calculation that we did in vector notation in Section 4.2.1. Note that

it’s marginally easier in the relativistic framework.

The second Maxwell equation can be written in a number of di↵erent ways. It is

equivalent to:

@µF̃
µ⌫ = 0 , ✏

µ⌫⇢�
@⌫F⇢� = 0 , @⇢Fµ⌫ + @⌫F⇢µ + @µF⌫⇢ = 0

where the last of these equalities follows because the equation is constructed so that it

is fully anti-symmetric with respect to exchanging any of the indices ⇢, µ and ⌫. (Just

expand out for a few examples to see this).
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The gauge potential Aµ was originally introduced to solve the two Maxwell equations

which are contained in @µF̃
µ⌫ = 0. Again, this is marginally easier to see in relativistic

notation. If we write Fµ⌫ = @µA⌫ � @⌫Aµ then

@µF̃
µ⌫ =

1

2
✏
µ⌫⇢�

@µF⇢� =
1

2
✏
µ⌫⇢�

@µ(@⇢A� � @�A⇢) = 0

where the final equality holds because of the symmetry of the two derivatives, combined

with the anti-symmetry of the ✏-tensor. This means that we could equally well write

the Maxwell equations as

@µF
µ⌫ = µ0J

⌫ where Fµ⌫ = @µA⌫ � @⌫Aµ

The first of these coincides with the first equation in (5.23); the second is an alternative

way of writing the second equation in (5.23). In more advanced formulations of elec-

tromagnetism (for example, in the Lagrangian formulation), this is the form in which

the Maxwell equations arise.

5.4.1 The Lorentz Force Law

There’s one last aspect of electromagnetism that we need to show is compatible with

relativity: the Lorentz force law. In the Newtonian world, the equation of motion for

a particle moving with velocity u and momentum p = mu is

dp

dt
= q(E+ u⇥B) (5.24)

We want to write this equation in 4-vector notation in a way that makes it clear how

all the objects change under Lorentz transformations.

By now it should be intuitively clear how this is going to work. A moving particle

experiences the magnetic force. But if we boost to its rest frame, there is no magnetic

force. Instead, the magnetic field transforms into an electric field and we find the same

force, now interpreted as an electric force.

The relativistic version of (5.24) involves the 4-momentum P
µ, defined in (5.6), the

proper time ⌧ , reviewed in Section 5.1.2, and our new friend the electromagnetic tensor

F
µ⌫ . The electromagnetic force acting on a point particle of charge q can then be

written as

dP
µ

d⌧
= q F

µ⌫
U⌫ (5.25)
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where the 4-velocity is

U
µ =

dX
µ

d⌧
= �

 
c

u

!
(5.26)

and the 4-momentum is P = mU . Again, we see that the relativistic form of the

equation (5.25) is somewhat prettier than the original equation (5.24).

Unpacking the Lorentz Force Law

Let’s check to see that the relativistic equation (5.25) is giving us the right physics.

It is, of course, four equations: one for each µ = 0, 1, 2, 3. It’s simple to multiply

out the right-hand side, remembering that Uµ comes with an extra minus sign in the

spatial components relative to (5.26). We find that the µ = 1, 2, 3 components of (5.25)

arrange themselves into a familiar vector equation,

dp

d⌧
= q�(E+ u⇥B) )

dp

dt
= q(E+ u⇥B) (5.27)

where we’ve used the relationship dt/d⌧ = �. We find that we recover the Lorentz

force law. Actually, there’s a slight di↵erence from the usual Newtonian force law

(5.24), although the di↵erence is buried in our notation. In the Newtonian setting, the

momentum is p = mu. However, in the relativistic setting above, the momentum is

p = m�u. Needless to say, the relativistic version is correct, although the di↵erence

only shows up at high speeds.

The relativistic formulation of the Lorentz force (5.25) also contains an extra equation

coming from µ = 0. This reads

dP
0

d⌧
=

q

c
� E · u (5.28)

Recall that the temporal component of the four-momentum is the energy P
0 = E/c.

Here the energy is E = m�c
2 which includes both the rest-mass of the particle and its

kinetic energy. The extra equation in (5.25) is simply telling us that the kinetic energy

increases when work is done by an electric field

d(Energy)

dt
= qE · u

where I’ve written energy as a word rather than as E to avoid confusing it with the

electric field E.
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5.4.2 Motion in Constant Fields

We already know how electric and magnetic fields act on particles in a Newtonian world.

Electric fields accelerate particles in straight lines; magnetic fields make particles go

in circles. Here we’re going to redo this analysis in the relativistic framework. The

Lorentz force law remains the same. The only di↵erence is that momentum is now

p = m�u. We’ll see how this changes things.

Constant Electric Field

Consider a vanishing magnetic field and constant electric field E = (E, 0, 0). (Note

that E here denotes electric field, not energy!). The equation of motion (5.27) for a

charged particle with velocity u = (u, 0, 0) is

m
d(�u)

dt
= qE ) m�u = qEt

where we’ve implicitly assumed that the particle starts from rest at t = 0. Rearranging,

we get

u =
dx

dt
=

qEtp
m2 + q2E2t2/c2

Reassuringly, the speed never exceeds the speed of light. Instead, u ! c as t ! 1 as

one would expect. It’s simple to integrate this once more. If the particle starts from

the origin, we have

x =
mc

2

qE

 r
1 +

q2E2t2

m2c2
� 1

!

For early times, when the speeds are not too high, this reduces to

mx ⇡
1

2
qEt

2 + . . .

which is the usual non-relativistic result for particles undergoing constant acceleration

in a straight line.

Constant Magnetic Field

Now let’s turn the electric field o↵ and look at the case of constant magnetic field

B = (0, 0, B). In the non-relativistic world, we know that particles turn circles with

frequency ! = qB/m. Let’s see how relativity changes things.
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We start by looking at the zeroth component of the force equation (5.28) which, in

the absence of an electric field, reads

dP
0

d⌧
= 0

This tells us that magnetic fields do no work. We knew this from our course on

Newtonian physics, but it remains true in the relativistic context. So we know that

energy, E = m�c
2, is constant. But this tells us that the speed (i.e. the magnitude of

the velocity) remains constant. In other words, the velocity, and hence the position,

once again turn circles. The equation of motion is now

m
d(�u)

dt
= qu⇥B

Since � is constant, the equation takes the same form as in the non-relativistic case

and the solutions are circles (or helices if the particle also moves in the z-direction).

The only di↵erence is that the frequency with which the particle moves in a circle now

depends on how fast the particle is moving,

! =
qB

m�

If you wanted, you could interpret this as due to the relativistic increase in the mass

of a moving particle. Naturally, for small speeds � ⇡ 1 and we reproduce the more

familiar cyclotron frequency ! ⇡ qB/m.

So far we have looked at situations in which E = 0 and in which B = 0. But we’ve

seen that E ·B = 0 and E2
�B2 are both Lorentz invariant quantities. This means that

the solutions we’ve described above can be boosted to apply to any situation where

E ·B = 0 and E2
�B2 is either > 0 or < 0. In the general situation, both electric and

magnetic fields are turned on so E ·B 6= 0 and we have three possibilities to consider

depending on whether E2
�B2 is > 0 or < 0 or = 0.

5.5 Epilogue

This bring us to the end of our first course on electromagnetism. We have learned how

the Maxwell equations capture the electric and magnetic forces, the relationship be-

tween them, and the existence of electromagnetic waves. However, there are many more

phenomena still to discover in these equations. Prominent among them is the way in

which accelerated charges emit light, and a description of how electromagnetism works

inside di↵erent materials. Both of these will be covered in next year’s Electrodynamics

course.
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The second strand running through these lectures is that, despite the complexity of

phenomena that they contain, the Maxwell equations themselves are extraordinarily

simple and elegant. Indeed, when viewed in the right way, in terms of the electromag-

netic tensor Fµ⌫ = @µA⌫ � @⌫Aµ, the equations are

@µF
µ⌫ = µ0J

⌫

This formalism provides a blueprint for the other forces in Nature. Like electromag-

netism, all forces are described in terms of fields interacting with particles which carry

a type of conserved charge. Rather remarkably, the equations governing the weak and

strong nuclear force are essentially identical to the Maxwell equations above; all that

changes is the meaning of the tensor Fµ⌫ (and, for what it’s worth, the derivative is

also replaced by something called a “covariant derivative”). The resulting equations

are called the Yang-Mills equations and will described in some detail in courses in Part

III.

Gravity is somewhat di↵erent, but even there the ingredients that go into the equa-

tions are very similar to those seen here. And, as with electromagnetism, once you have

these ingredients the equations that govern our Universe turn out to be the simplest

ones that you can write down. Indeed, this is perhaps the most important lesson to

take from this course: the laws of physics are gloriously simple. You should learn them.
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