
Figure 30. Poiseuille flow for low, medium, and high Reynolds number.

5 Instabilities

We started these lectures by studying some simple, laminar flows in which the fluid

moves smoothly through space. One important question that we haven’t yet addressed

is: are these flows stable? If we perturb them in some way, does the flow persist or

does it get driven to something more complicated?

The answer is that many flows, even very simple ones, can be unstable. This state-

ment is especially true at high Reynolds number, where viscosity fails to dampen the

perturbations. You can see an example in the photographs9 of Poiseuille flow, de-

scribing fluid flowing down a pipe, shown in Figure 30. The fluid in the pictures is

transparent and the flow is moving from left to right, but some black dye is released

from the same point on the left-hand edge and traces out what is known as a streakline.

(For time independent flows, it coincides with both the path line and the streamline

that we introduced previously. For time dependent flows, it di↵ers.)

The top picture shows the flow when it is slow, so that Re . 1 and the fluid is well

described by the solution that we already met in Section 3.2.3. The flow is laminar,

with the velocity field lying parallel to the pipe and the picture looks boring:

But as the flow speeds up, so that Re ⇠ 100 or so, things become more interesting.

This is shown in the middle picture where the streakline starts to wobble in places,

9These pictures are snapshots from this Youtube video. You can also find remarkably similar
pictures drawn by Reynolds in his original paper from 1883.
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with the wobbles dragged along by the flow. This is the manifestation of instabilities

of the simple solution.

Finally, by the time we are in the regime Re ⇠ 103 or 104 (the exact number depends

on how rough the boundary of the pipe is), the flow appears qualitatively di↵erent yet

again. This is shown in the bottom figure. Any clearly defined wobbles have vanished.

The flow just looks messy. This is the turbulent regime.

Our goal in this section is to start to understand these kinds of instabilities. Although

Poiseuille and Couette are the simplest examples of laminar flows, it turns out that

understanding their instabilities is not so straightforward. For this reason, we start by

looking at specific instabilities in other contexts. (For what it’s worth, our instabilities

of choice are the Kelvin-Helmholtz instability, the Plateau-Rayleigh instability, and the

Rayleigh-Bénard instability. We’ll see what these names mean as we proceed.)

Our method to analyse instabilities will mirror the analysis of waves in Section 4.

That is: we start with some background flow and perturb it. The perturbations that

we call waves oscillate back and forth about the original flow. In contrast, the unstable

perturbations that we will meet here grow without bound. These are known as linear

instabilities. Our linear analysis only shows the beginning of the instability, rather

than the end point of the flow, but with some imaginative thinking (and the help of

experiment!) we can figure out the qualitative form of the final flow.

With these successes in hand, we then turn to understand the stability of seemingly

simpler flows, like Couette flow and Poisseuille flow that we met in Section 3.2. As we

mentioned above, it turns out that understanding the fate of these flows is somewhat

harder. We will succeed in giving some general results about when flows of this kind

are stable against linear perturbations and when they are not. However, as we explain,

these results do not stand up particularly well against either experiment or numerical

simulation. This is because, ultimately, these flows have more complicated non-linear

instabilities where an arbitrarily small perturbation is innocuous, but the instability

manifests itself only when the perturbation grows to a certain size. We will not study

these non-linear instabilities in these lectures.

There are a number of other topics that we won’t touch upon. These include tran-

sitory phenomenon, and the transition to turbulence, with features characteristic of

chaos such as period doubling and the appearance of strange attractors. We will how-

ever describe some aspects of fully developed turbulence in Section 6.
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Figure 31. The Kelvin-Helmholtz instability between two moving fluids. The left-hand

figure is unstable to turn into the right.

5.1 Kelvin-Helmholtz Instability

The set-up is straightforward. We have two fluids, with densities ⇢1  ⇢2. The lighter

fluid sits on top and travels with constant speed U1 in the x-direction. The heavier

fluid sits at the bottom and travels with constant speed U2 6= U1 in the same direction.

Initially, there is an interface between the two at z = 0 as shown in Figure 31.

The initial velocity profile has a discontinuity at z = 0. In reality, this will be

smoothed out by a thin layer in which viscosity is important. For our purposes, we’ll

neglect this and study the flow using the Euler equation for each fluid,

⇢i

✓
@ui

@t
+ ui ·rui

◆
= �rPi + ⇢ig i = 1, 2

Note that we’ve included the e↵ect of gravity on the right-hand side. It turns out that

this won’t be necessary to exhibit the physics that we’re interested in, but it does have

an interesting role to play.

We want to understand whether the initial flow is stable. (Spoiler: it won’t be!) In

particular, we’ll look at perturbations in which the interface is perturbed to

z = ⌘(x, t) = ⌘0e
ikx�i!t (5.1)

In other words, we’re looking for an instability in which the interface develops waves.

The analysis is almost identical to that of Section 4.1 where we first met surface

waves. We look for 2d flows, with u = u(x, z, t). We will assume that the flow remains

irrotational after the perturbation, so we introduce velocity potentials and write

u =

(
U1 +r�1 z > ⌘

U2 +r�2 z < ⌘
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where Ui = Uix̂. The requirement that the fluid is incompressible then means that we

must, once again, solve the Laplace equation

r
2�1 = r

2�2 = 0

As usual, all the subtleties lie in the boundary conditions. We require that the fluid

returns to its initial state asymptotically, so �1 ! 0 as z ! 1 and �2 ! 0 as z ! �1.

On the interface, we impose the free boundary condition that we described previously

in (4.6)

uz =
D⌘

Dt

This now reads

@�i

@z

����
z=⌘

=
@⌘

@t
+

 
Ui +

@�i

@x

����
z=⌘

!
@⌘

@x
i = 1, 2 (5.2)

Finally, the pressure forces on either side of the interface must balance the surface

tension,

P2(x, ⌘)� P1(x, ⌘) = ��
@2⌘

@x2
(5.3)

with � the surface tension. Rather like gravity, it will turn out that the presence of

surface tension is unnecessary to explain the main physics point that we’re interested

in, but has an interesting implication later on.

To implement the pressure di↵erence equation, we follow the analysis of Section 4.1.2

and use the Bernoulli principle. The analog of our earlier result (4.7) is now

⇢i
@�i

@t
+

1

2
⇢i|Ui +r�i|

2 + Pi + ⇢igz = fi(t) i = 1, 2

with fi(t) independent of space. The condition (5.3) then becomes

⇢1

✓
@�1

@t
+

1

2
|U1 +r�1|

2 + gz

◆

z=⌘

� ⇢2

✓
@�2

@t
+

1

2
|U2 +r�2|

2 + gz

◆

z=⌘

= f̃(t)� �
@2⌘

@x2
(5.4)

for some spatially-independent function f̃(t). This, then, is our goal. Solve the Laplace

equations subject to (5.2) and (5.4).
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The Linearised Approximation

As for surface waves, we make progress by assuming that the amplitude of the pertur-

bation is small. For us, this means

k⌘0 ⌧ 1

This allows us to linearise the boundary conditions (5.2) and (5.4). The first (5.2)

becomes

@�i

@z

����
z=0

=
@⌘

@t
+ Ui

@⌘

@x

����
z=0

i = 1, 2 (5.5)

while (5.4) becomes

⇢1

✓
@�1

@t
+ U1

@�1

@x

◆

z=0

� ⇢2

✓
@�2

@t
+ U2

@�2

@x

◆

z=0

+ g(⇢1 � ⇢2)⌘ = f̃(t)� �
@2⌘

@x2
(5.6)

Now we have something eminently more achievable on our hands: solve the Laplace

equations subject to (5.5) and (5.6).

5.1.1 The Simplest Instability

To illustrate the key idea, we first ignore both gravity and surface tension. This means

that we set g = � = 0 in (5.6). We’ve already shown our hand for the kind of

perturbation (5.1) of the interface that we’re looking for. We augment this with a

commensurate wavey solution for the velocity perturbations,

�i(x, z, t) = �̂i(z)e
ikx�i!t and ⌘(x, t) = ⌘0e

ikx�i!t

The Laplace equations tell us that

d2�̂i

dz2
= k2�̂i )

(
�̂1 = A1e�kz

�̂2 = A2e+kz

where the solutions have been chosen so that �̂1 ! 0 as z ! +1 and �̂2 ! 0 as

z ! �1. The two boundary conditions in (5.5) then tell us that

�kA1 = (�i! + ikU1) ⌘0 and + kA2 = (�i! + ikU2) ⌘0

while the fact that f̃(t) in (5.6) is independent of x and z means that

⇢1(�i! + ikU1)A1 = ⇢2 (�i! + ikU2)A2
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We can eliminate A1, A2 and ⌘0 to get the quadratic in !,

(⇢1 + ⇢2)!
2
� 2k!(⇢1U1 + ⇢2U2) + k2(⇢1U

2
1 + ⇢2U

2
2 ) = 0 (5.7)

The roots of this quadratic give us the dispersion relation,

! =
k

⇢1 + ⇢2

h
(⇢1U1 + ⇢2U2)± i

p
⇢1⇢2|U1 � U2|

i
(5.8)

The key piece of physics is sitting in that factor of i. This is the telltale sign of an

instability. To see this, we substitute this frequency into the expression (5.1) for the

interface, to learn that the perturbations of the interface evolve as

z = ⌘(x, t) = ⌘0 exp

✓
ik

✓
x�

⇢1U1 + ⇢2U2

⇢1 + ⇢2
t

◆
±

p
⇢1⇢2

⇢1 + ⇢2
|U1 � U2|kt

◆
(5.9)

The first term comes with an oscillatory factor of i and tells us that the disturbance

propagates with velocity

v =
⇢1U1 + ⇢2U2

⇢1 + ⇢2

But our real interest lies in the second term. Here there’s no factor of i: the oscil-

latory time dependent behaviour e�i!t becomes exponential growth or decay when !

is complex. We learn that the perturbation grows exponentially with time. Or, more

precisely, one perturbation grows and the other decays. The existence of the growing

mode means that the original flow is unstable. This is the Kevin-Helmholtz instability.

The next question that we can

ask is: why does this happen?

Some intuition comes from boost-

ing to a frame where the dis-

turbance is stationary and then

thinking about the streamlines, as

shown in the figure. The stream-

lines of the upper fluid are more

clustered together near the peaks

and so, because of mass conserva-

tion, the fluid must travel faster there. Bernoulli’s theorem then tells us that the

pressure is smaller. But, in the trough, the streamlines are less closely packed, the fluid

moves slower and so the pressure is greater.
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This story is reversed for the lower fluid. The pressure is now greatest in the peak

and lowest in the trough. Of course, the pressure is continuous across the interface

itself — this was one of our initial boundary conditions (5.3) — but there is a pressure

di↵erence over the whole perturbation and this drives the crest upwards and the trough

downwards. This is the reason for the instability.

In fact, this same e↵ect also explains the existence of the decaying mode. If we set up

a perturbation where the crest is travelling downwards, and the trough travelling up,

then the pressure di↵erences now act to decelerate the amplitude and the disturbance

grows smaller over time.

Viscosity Acts as a UV Cut-O↵

For a fixed background fluid flow, the instability (5.9) grows as ⇠ eUkt. This means

that the small wavelength modes, with k large, are more unstable. In fact, taken at

face value the instability for very small wavelengths (i.e. very large k) grows without

bound. What should we make of this? Are the equations telling us that the continuum

description of fluids will ultimately break down, and the interface should be thought of

in terms of individual atoms?

Thankfully, no. There are (at least) two mechanisms within the continuum descrip-

tion that halt the runaway behaviour for large k. One of these is surface tension, and

we will describe this shortly. But even in the absence of surface tension, viscosity does

the job. We should replace the discontinuity in the velocity profile with an appropriate

boundary layer. Our analysis above is then valid only for wavenumbers k . |U1�U2|/⌫.

For wavelengths smaller than this, the perturbation is stabilised by the e↵ects of vis-

cosity. This is a common theme in fluid dynamics, and one that we will meet again in

Section 6 when we discuss turbulence: viscosity acts as a UV cut-o↵.

5.1.2 Rolling Up The Vortex Sheet

There is another way to think about the instability, this time in terms of vorticity. If

we integrate around a rectangular contour in the (x, z)-plane that crosses the interface,

with sides of length L in the x direction, then the initial flow have vorticity

� =

I
u · dx = (U1 � U2)L

The flows on either side of the interface are irrotational, so this vorticity must be

localised at the interface itself. In the initial flow, the interface has constant vorticity

per unit length. For this reason, the interface is referred to as a vortex sheet.
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The vorticity points in the direction ! = |!|ŷ, where ŷ points out of the page in the

previous figures. (Note: we’ll refer to the magnitude of vorticity as |!| rather than !

to avoid confusion with the frequency) and is given by

|!| = (U1 � U2)�(z)

We can view the instability as a deformation of this vortex sheet. Evaluated on the

linearised solution, we have

|!| =


(U1 � U2) +

@�1

@x

����
z=0+

�
@�2

@x

����
z=0�

�
�(z � ⌘)

=
⇥
(U1 � U2) + (�2! + k(U1 + U2))⌘0e

ikx�i!t
⇤
�(z � ⌘)

It’s simplest to illustrate the physics if we restrict to the case ⇢1 = ⇢2, so that we have

two identical fluids travelling at di↵erent speeds. Then, using the dispersion relation

(5.8), this becomes

|!| =
h
(U1 � U2)� i|U1 � U2|k⌘

i
�(z � ⌘)

with ⌘ = ⌘0eikx�i!t the unstable

boundary. We see that, as the

perturbation grows, the vorticity

is no longer constant in space. It

tracks the development of the in-

terface but, because of that fac-

tor if i, is ⇡/2 out of phase,

corresponding to 1/4 of a wave-

length. This means that there is

no change to the vorticity at the maxima and minima, but the vorticity alternates

clockwise/anti-clockwise at the midway points of the perturbation, as shown in the

figure. This acts to push the crests up, and the troughs down, again

Our analysis throughout this section has been done in the linearised approximation,

where the perturbation is small. However, the vortex picture gives us a good sense for

what happens as the perturbation grows. If we sit in the frame where the disturbance

doesn’t propagate, then the upper fluid moves to the right, and the lower fluid moves

to the left. The vorticity is advected in this direction, and so accumulates at the

midpoint points between the peaks and troughs, shown in red in the figure. As the

perturbation grows, so too does the vorticity density in this region with the result that

the perturbation starts to curl around, or “roll up”. The end result is the distinctive
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Figure 32. When non-linear e↵ects are taken into account, the Kelvin-Helmholtz instability

rolls up to produce, among other things, these beautiful cloud formations.

rolling-wave feature of the Kelvin-Helmholtz instability, as shown in the cloud formation

in Figure 3210.

5.1.3 Gravity Helps. Surface Tension Helps Too.

With our basic understanding of the instability, we can now repeat the analysis with

gravity and surface tension turned on. Both manifest themselves in the boundary

condition (5.6). After some algebra, the steps that previously led us to (5.7) now give

(⇢1 + ⇢2)!
2
� 2!k(⇢1U1 + ⇢2U2) + k2(⇢1U

2
1 + ⇢2U

2
2 ) = �k3

� gk(⇢1 � ⇢2)

Solving this as a quadratic in ! gives the dispersion relation

! =
1

⇢1 + ⇢2

h
k(⇢1U1 + ⇢2U2)±

p
(⇢1 + ⇢2)(�k3 + gk(⇢2 � ⇢1))� ⇢1⇢2k2(U1 � U2)2

i

This reduces to (5.8) when g = � = 0. The presence of gravity and surface tension

means that the function under the square root is no longer negative for all k. This is

telling us that some wavelengths are no longer unstable, while others are.

First, suppose that have gravity g 6= 0 but negligible surface tension � = 0. In this

case, there is an instability only if

k >
⇢22 � ⇢21
⇢1⇢2

g

(U1 � U2)2
(5.10)

We see that the long wavelength (small k) modes are no longer unstable. Heuristically,

these modes are heavier and so the e↵ect of gravity pulling them down wins over the

runaway instability.

10and also in this wonderful Sixty Symbols video.
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Next suppose that we have surface tension � 6= 0, but gravity is negligible so g = 0.

Then there is an instability only if

k <
⇢1⇢2

⇢1 + ⇢2

(U1 � U2)2

�
(5.11)

This time the short wavelength (large k) modes are stabilised. This too makes intuitive

sense: the surface tension means that you pay a large cost in energy when the interface

has large gradients, so small wavelength perturbations are rescued from the instability.

Alternatively, we can view (5.10) and (5.11) as conditions on how large the velocity

di↵erence |U1 � U2| must be to initiate an instability for a fixed k. If we have both

g, � 6= 0 then there is no instability at all for small velocity di↵erences. The instability

only kicks in when there is some value of k such that the frequency ! has an imaginary

part. This arises when

(U1 � U2)
2 > 2

⇢1 + ⇢2
⇢1⇢2

p
(⇢2 � ⇢1)�g

Moreover, there is maximally unstable mode for which ! has the largest imaginary

value. This is the wavelength at which the instability will tend to develop.

We can do some order of magnitude estimates. For wind blowing above water, we

have ⇢1 = ⇢air ⇡ 1 kgm�3 and ⇢2 = ⇢water ⇡ 103 kgm�3. The surface tension turns out

to be given by � ⇡ 0.07 Jm�2. This gives a critical wind speed of Uwind ⇡ 7 m s�1 .

This is the minimum speed needed to before the wind becomes responsible for making

waves. It is, it turns out, in the ballpark of the average speed across the ocean. The

corresponding unstable mode number is around k ⇡ 400 m�1, corresponding to a

wavelength of a couple of centimetres. In other words, the Kelvin-Helmholtz instability

due to wind causes only tiny capillary waves. The Kelvin-Helmholtz instability is not

responsible for the great rolling waves on the ocean.

5.1.4 The Rayleigh-Taylor Instability

There’s a particularly simple application of the machinery above. We consider two

fluids, now both stationary, but with the heavier one on top. It’s unlikely to come as a

surprise to learn that this situation is unstable. But how does the heavy fluid succeed

in moving past the lighter fluid? If they’re truly immiscible, then they can’t just swap

places. Instead, something more complicated must be going on11.

11Again, there is a nice demonstration on Youtube.
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What happens is a simple form of the Kelvin-Helmholtz instability. We can trivially

import our previous dispersion relation, now with U1 = U2 = 0 and ⇢1 > ⇢2,

! = ±

s
�k3 � gk(⇢1 � ⇢2)

⇢1 + ⇢2

We see that the long wavelength modes, with k2 < g(⇢1 �

⇢2)/� are unstable. If introduce the generalisation of the

capillary length that we met earlier in (4.23),

lc =

r
�

g(⇢1 � ⇢2)

The most unstable mode occurs for 3k2 = 1/l2
c
. This de-

termines the size of the perturbation at which the upper

layer descends into the lower. This is the Rayleigh-Taylor

instability.

Taylor’s contribution to the story above was to invoke

the equivalence principle. The mathematics remains unchanged when a heavier fluid

is accelerated through a lighter fluid, rather than pulled down due to gravity. This is

actually a more common phenomenon, and the Rayleigh-Taylor instability describes,

among other things, the mushroom clouds that appear from volcanic eruptions and

nuclear explosions.

5.2 A Piece of Piss

We’ve all seen it. The stream of liquid starts out unblem-

ished and pure. But, as it falls, ripples start to appear on

the surface and these grow until the stream ultimately dis-

integrates into individual droplets12. This is known as the

Plateau-Rayleigh instability and our goal in this section is

to understand it. Fluid dynamicists refer to the stream of

liquid as a jet and we’ll adopt this terminology (although,

in some contexts, that seems overly praiseworthy).

In most situations the column of liquid forms in the first

place because it falls under gravity. But it will turn out

that the most prominent role in the development of the

12The picture is a snapshot from this Youtube video.
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instability is played by surface tension. For this reason, we’ll start by ignoring gravity

and assuming that we are simply given a cylindrical jet, meaning a column of flowing

liquid. Then, in Section 5.2.1, we’ll see how gravity changes things. We ignore viscosity

throughout this section.

We can go to a frame where the fluid is stationary, u = 0, and with constant pressure

P0. The first question that we have to ask is: what keeps the jet together? Why doesn’t

the liquid just fly o↵ in random directions? The answer is surface tension.

As we learned in Section 4.1.3, the surface tension allows for a pressure di↵erence

between the liquid and the outside air. For simplicity, we’ll assume that the external

pressure is vanishing. We take the jet to lie in the z-direction and have radius R0.

We use the radial coordinate r =
p
x2 + y2 so, following (4.2), the surface is given by

F (r) = r � R0 = 0. The curvature of a circle of radius R0 is simply 1/R0 so, from

(4.20), the surface tension � balances the pressure inside the jet when

P0 =
�

R0
(5.12)

Now we perturb. We will consider capililary surface waves that run along the jet, so

that the radius is displaced by

R(z, t) = R0 + R̃eikz�i!t

This means that we’re anticipating wave-like behaviour. But, as in the previous section,

this will be unstable if ! is imaginary. We look for solutions in which the velocity profile

and pressure have the same behaviour,

u(x, t) = [ur(r)r̂+ uz(r)ẑ] e
ikz�i!t and P (x, t) = P0 + P̃ (r)eikz�i!t

Note that each of the perturbations is a function of the radial direction r, as well as

exhibiting wave-like behaviour in the z direction.

The incompressibility condition r · u = 0 tells us that

1

r

d(rur)

dr
+ ikuz = 0

After linearising, the two components of the Euler equation are

�i!ur = �
1

⇢

dP̃

dr
and � i!uz = �

ik

⇢
P̃ (5.13)

We can combine our three equations into a single, second order equation for ur,

r2
d2ur

dr2
+ r

dur

dr
� (1 + k2r2)ur = 0
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This is a standard di↵erential equation, with solu-

tions given by the modified Bessel functions I1(kr)

and K1(kr). Of these, K1(x) diverges as x ! 0

and so is not appropriate for our needs. Mean-

while, I1(x) ! 0 as x ! 0 but grows exponentially

for large x, as shown in the figure. This is the so-

lution for us. We learn that the radial velocity

profile is given by

ur(r) = V I1(kr)

for some constant V . We still have two boundary conditions to impose on the surface

of the jet, which is now defined by the constraint

F (r, z, t) = r �R(z, t) = 0

The first is the usual boundary condition (4.3) for a free surface, which tells us that

the velocity of the fluid normal to the surface must track the surface itself. After

linearisation, this gives

DF

Dt
⇡ u · r̂�

@R

@t
) V ⇡ �

i!R̃

I1(kR0)
(5.14)

and determines the unknown constant V in terms of ! and k. The second boundary

condition is the requirement that the pressure is balanced by the surface tension. But

now there are two contributions to the curvature of the surface. The first is because

the surface is a curved in the (x, y)-plane, and gives a contribution like (5.12). The

second comes from the additional curvature of the form (4.20) arising from waves in

the z-direction. Combining these, we have

P (R(t)) = P0 + P̃ (R(t))eikz�i!t =
�

R(t)
+ �k2R̃eikz�i!t

We can linearise the R(t) terms in the second equation. We have P̃ (R(t)) ⇡ P̃ (R0)

and, by Taylor expanding, 1/R(t) ⇡ 1/R0 � (R̃/R2
0)e

ikz�i!t. The terms involving just

the background variables P0 and R0 cancel by virtue of (5.12), and we’re left with a

condition that relates the perturbation of the pressure P̃ to the perturbation of the

radius R̃,

P̃ (R0) =
R̃�

R2
0

(k2R2
0 � 1) (5.15)

– 193 –



Already here we can see that there is a di↵erence between short wavelength and long

wavelength perturbations. For short wavelengths, with kR0 > 1, the pressure increases

at the surface. But for long wavelengths, with kR0 < 1, the pressure decreases at the

surface. This will turn out to be important.

We can get another expression for the pressure perturbation everywhere within the

jet from the radial component of the Euler equation (5.13). This tells us that

dP̃

dr
= i!⇢ur = i!⇢V I1(kr) ) P̃ (r) =

i!⇢V

k
I0(kr) (5.16)

where we’ve made use of the Bessel function identity I1 = dI0/dx to integrate the first

expression. (The function I0(x) also grows exponentially as x ! 1, but has the value

I0(0) = 1 at the origin.) Equating (5.15) and (5.16), and using our expression (5.14)

for the constant V , we find

!2 =
k�

⇢R2
0

I1(kR0)

I0(kR0)
(k2R2

0 � 1)

This is the dispersion relation that we were looking for. For large k, the ratio of Bessel

functions is I1(x)/I0(x) ! 1 as x ! 1 and so we get waves propagating with the

dispersion ! ⇠ k3/2. This is the same dispersion relation that we found for surface

capillary waves. (See the large k limit of (4.24).) This is to be expected: waves with

a small wavelength have no knowledge of their global surrounding. They’re unaware if

they’re sitting on a stream of liquid or on a rolling ocean.

More interesting for our purposes is the long wavelength behaviour of the dispersion

relation. The frequency is imaginary when

kR0 < 1

This means that perturbations with wavelength bigger than the radius R0 of the jet

will grow exponentially quickly.

The plot to right shows the function |!| ⇠p
x(1� x2)I1(x)/I0(x) in the unstable regime,

corresponding to 0  x ⌘ kR0  1. We see

that there is a maximally unstable mode at around

kR0 ⇡ 0.7, corresponding to a wavelength

�max ⇡ 9R0
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The associated time that it takes the perturbation to grow is

T ⇠
1

|!|
⇡

1

0.34

s
⇢R3

0

�

where the 0.34 is seen to be roughly the maximum of the graph. For water, with

⇢ ⇡ 103 kgm�3 and � ⇡ 0.07 Jm�2. A stream of water from a tap has a radius of

roughly 1
2 cm, and, from the analysis above, is expected to decay in around 0.1 seconds.

5.2.1 Gravity Makes the Flow Thinner

We’ve neglected gravity in the above analysis, despite the fact that gravity is clearly

responsible for the formation of the most familiar streams of liquid. We now remedy

this. In fact, the most important ramification of gravity is not in the evolution of the

perturbations, but in the form of the stream itself. That’s what we will focus on here.

Our result is a simple application of Bernoulli’s theorem that we first met in Section

2.1.4. This says that, in a gravitational field with potential � = �⇢gz, the quantity

H =
1

2
⇢|u|2 + P � ⇢gz

is constant. (Here we’re measuring z so that it increases in a downwards direction.)

Clearly we expect the component of the velocity U = uz to increase with z simply

because the fluid is being accelerated downwards. But now we have to reconcile this

with the fact that the pressure must balance the surface tension as in (5.12)

P =
�

R

As we will see, this requires that both the radius R(z) and the velocity U(z) depend

on z. This follows because of mass conservation, which tells us that the flux of fluid

along the stream is

Flux = ⇡R2U

and this too must be constant.

Suppose that the fluid has velocity U0 and radius R0 at z = 0. Then flux conservation

gives R2
0U0 = R(z)2U(z) and Bernoulli’s principle becomes

1

2
⇢U2

0 +
�

R0
=

1

2
⇢
R4

0U
2
0

R(z)4
+

�

R(z)
� ⇢gz
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On rearranging,

R(z)4
✓
1

2
⇢U2

0 +
�

R0
+ ⇢gz

◆
� �R(z)3 �

1

2
⇢R4

0U
2
0 = 0 (5.17)

In general, this has no closed form solution, although the physics is clear: as z increases,

R(z) must decrease roughly as z�1/4, at least for large z. There is also a limit in which

we can make more progress. We define the dimensionless Weber number as

We =
⇢R0U2

0

�

The limit of We ! 1 is where surface tension e↵ects are no longer important. In this

limit we can drop the � terms in (5.17) and we have

R(z) = R0

✓
1 +

2gz

U2
0

◆�1/4

where we see very clearly the advertised z�1/4 behaviour for large z. From our analysis

of the Plateau-Rayleigh instability, we know that as the radius of the stream gets

thinner, the wavelength at which the instability kicks in gets shorter.

5.3 Rayleigh-Bénard Convection

In this section, we will discuss fluid flows due to temperature di↵erences. This is known

as convection.

To start, we discuss some basics of heat. Consider a system with an energy density

E(x, t). We’ll assume, for now, that there is no net fluid flow of the system. Nonetheless,

energy can be transported from one place to another by means of heat. Microscopically,

this describes the kinetic energy of the underlying atoms, which can be flying around

in random directions even when the macroscopic fluid appears to be stationary. When

energy is transported in this way, the associated continuity equation, telling us that

energy is conserved, is

@E

@t
+r · q = 0

where q is the heat flow.

To make progress, we need a couple of results. First, at constant pressure, the change

in the energy density is related to the change in the temperature T (x, t) by

@E

@t
= cP

@T

@t
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where cP is the specific heat capacity at constant pressure. (We derived an expression

for this in Section 4.4.) Second, the heat flow is related temperature di↵erence,

q = �rT

with the minus sign telling us that heat flows from high temperatures to small. The

coe�cient  is called the thermal conductivity. Combining these with the continuity

equation, we get

@T

@t
=



cP
r

2T (5.18)

This is the heat equation.

Now we want to upgrade this description to include a background motion u(x, t) of

the fluid. We’ll focus on a thin layer of fluid, sandwiched between two plates held at

di↵erent temperatures, the bottom hot and the top cold. Our expectation is that this

temperature di↵erence will drive the flow upwards and our goal is to understand how

this happens.

We assume that the flow is incompressible, so

r · u = 0

As we’ll see shortly, this assumption isn’t entirely innocent when we have heat conduc-

tion and we will induce a small amount of handwringing below. The generalisation of

the heat equation is then straightforward: it should now be applied to parcels of fluid

that are swept along with the flow, meaning

DT

Dt
=

✓
@

@t
+ u ·r

◆
T =



cP
r

2T (5.19)

We already met this equation in (4.66) when discussing sound waves. There was an

additional r · u term in (4.66) but we’ve set this to zero on the grounds that we’re

dealing with an incompressible fluid.

Our other equation is, of course, Navier-Stokes.

⇢

✓
@u

@t
+ u ·ru

◆
= �rP � ⇢(x, t)gẑ+ µr2u (5.20)

We’ve included a gravitational force and viscosity. Both will be important for what is

to come. We now have five equations (two scalar and one vector) for six unknowns: u,

P , ⇢ and T . We must augment these with an equation of state, relating ⇢, P and T .

When discussing sound waves we relied heavily on the ideal gas equation of state. Here

we are dealing with a thin layer of liquid and our equation of state will be di↵erent.
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5.3.1 The Boussinesq Approximation

As always, we will invoke some approximation to allow us to solve the equations. This

one is more subtle than most.

We start by assuming that the temperature di↵erence between the upper and lower

plate is small. Mathematically, this means that if we think of ⇢ = ⇢(T ), then the

di↵erence in density is well approximated by a Taylor expansion

⇢(x, t) ⇡ ⇢0 (1� ↵(T (x, t)� T0)) (5.21)

with ↵ constant. We take T0 and ⇢0 to be the temperature and density at the bottom

plate. Above the plate, we expect T < T0 and so if ↵ > 0, the density will get greater

as we go up. This is what we expect: increased temperature causes fluids to expand.

In addition, the form (5.21) assumes that the density is independent of pressure.

At this point, it turns out that not all of our assumptions are mutually compatible!

In particular, the assumption of an incompressible flow, r · u = 0, means that mass

conservation reduces to

@⇢

@t
+r · (⇢u) = 0 )

D⇢

Dt
=

@⇢

@t
+ u ·r⇢ = 0

We saw the same equation in Section 4.2 when discussing gravity waves in stratified

flows. But if ⇢ and T are linearly related, as in (5.21), then they should solve the same

equation. And the corresponding equation for temperature (5.19) has the di↵usion

term, proportional to /cP on the right-hand side. In other words, incompressible

flows are incompatible with heat di↵usion.

Our strategy is to just blu↵ our way through this impasse. We will have our cake

and eat it by pretending that the density ⇢ is actually constant. Except when it’s not

constant. More precisely, we will assume that the changes in density due to temperature

are much smaller than the initial density ⇢0. We will make the substitution ⇢ = ⇢0 in

all places except one: the exception is the term g⇢ in the Navier-Stokes equation. This

is the term that will ultimately govern the physics for the simple reason that we have

orchestrated a situation in which the denser, colder fluid sits on top. This means that

there’s a balance of forces at play in the problem, in which the heavier fluid wants to

sink, but is kept afloat by the temperature gradient. It is this buoyancy force that will

be important in driving the instability.
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Another, perhaps more palatable, way of saying this is that we’re in a situation in

which the changes in the density are small, but the gravitational acceleration is large

enough to make these changes important in the buoyancy force. (In addition, we use

this to justify treating /cP as constant. Recall from Section 4.4 that cP depends

on ⇢, at least for an ideal gas.) This collection of ideas is known as the Boussinesq

approximation.

Practically, this means that we work with an incompressible fluid r · u = 0 and the

temperature is governed by the heat di↵usion equation (5.19), while the Navier-Stokes

equation becomes

@u

@t
+ u ·ru = �

1

⇢0
rP � g (1� ↵(T � T0)) ẑ+ ⌫r2u (5.22)

where the kinematic viscosity is ⌫ = µ/⇢0. These are now five equations (two scalar,

one vector) for five unknowns: u, P and T .

We now start by solving these equations for

the heat flow between two plates. The lower

plate sits at z = 0 and has temperature T0;

the upper plate sits at z = d and has temper-

ature T0 ��T . If the plates are separated by

a distance d, then there is a simple, time inde-

pendent, solution to our equations with u = 0

and

T = T0 ��T
z

d
and P = P0 � ⇢0g

✓
z +

↵�T

2d
z2
◆

(5.23)

In this solution, the heat transfer is not due to the motion of the fluid itself. In other

words, there is conduction but no convection. We would like to understand if this

situation is stable against perturbations.

It turns out, unsurprisingly given the general

theme of this section, that it won’t be. The

solution (5.23) is unstable to the fluid moving,

so that heat is transferred by convection as well

as conduction. The end point of this instability

looks something like the situation on the right,

with the fluid arranging itself into blocks known as Bénard cells, within each of which

the fluid rises and falls13.
13A nice demonstration can be seen in this Youtube video.
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Before doing the full analysis, we can get some sense for why this happens. The key,

as so often, is to look at the vorticity ! = r ⇥ u. The physics is actually clearest

before we make the Boussinesq approximation. We take the curl of the Navier-Stokes

equation (5.20) (after dividing by the density ⇢) to get

@!

@t
+ u ·r! =

1

⇢2
r⇢⇥rP + ! ·ru+ ⌫r2! (5.24)

The novelty is the first term on the right-hand side. (A similar term survives after the

Boussinesq approximation if we take the curl of (5.22).) This is telling us that if the

gradient of the density lies in a di↵erent direction to the gradient of pressure then it

will drive a creation of vorticity. As we will see below, the perturbations that have this

property give rise to the convection cells.

We can also try to figure out under what circumstances the instability will occur.

Let’s suppose that the width of each cell is d, the same as the height of the fluid. (At

this point we’re just guessing this on the grounds, but it will turn out that the size of

the cell is indeed set by the depth.) We’ve already noted that the heavier fluid sits on

top. This means that the potential energy gained if the fluid can somehow right itself

is

P.E. ⇠ gd(d3�⇢) ⇠ gd4⇢0↵�T

But to flip over, the fluid has to overcome some viscous forces. If it flips over at speed

U , then the viscous force per volume is µr2u ⇠ µU/d2. This means that the actual

force is µUd and the work done, which is
R
F dz, scales as

Work Done ⇠ µUd2

Comparing these two expressions, the gain in potential energy is su�cient to overcome

the work done against viscous forces when

gd2↵�T

⌫U
� 1

We can also get an order of magnitude estimate for the speed U at which this takes

place. From the heat equation (5.18), the time scale at which heat di↵uses is ⌧di↵ ⇠

d2cP/. Meanwhile, if the fluid flips over at speed U then it takes a time ⌧ ⇠ d/U . If

we equate these we get U ⇠ /cPd. The inequality above then becomes a condition on

a collection of dimensionless constants

Ra =
g↵cPd3�T

⌫
� 1 (5.25)

This is called the Rayleigh number. This back of the envelope analysis above suggests

that we will find an instability when Ra � 1. We’ll see that this is confirmed in our

subsequent analysis.
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5.3.2 Perturbation Analysis

We will perturb the background solution (5.23), turning on a velocity field u together

with temperature and pressure perturbations that we denote as �T (x, t) and �P (x, t)

respectively. These will all be considered small in the sense that we will linearise the

equations of motion. The temperature equation (5.19) becomes

@�T

@t
�

�T

d
uz =



cP
r

2�T (5.26)

and the Navier-Stokes equation becomes

@u

@t
= �

1

⇢0
r�P + g↵ �T ẑ+ ⌫r2u (5.27)

Meanwhile, the velocity perturbations remain incompressible, r · u = 0.

Dimensional Analysis

We can illustrate the physics in these equations if we write them in terms of dimen-

sionless variables. For this, we’ll need to rescale both space and time as

x̃ =
x

d
and t̃ =



cPd2
t

This means, in particular, that our lower and upper boundaries are at z̃ = 0 and z̃ = 1

respectively. We also rescale our dynamical variables

T̃ =
�T

�T
, P̃ =

c2
P
d2

2⇢0
�P , ũ =

cPd


u

Then the temperature perturbation equation (5.26) becomes

@T̃

@ t̃
� ũz = r̃

2T̃ (5.28)

while the perturbed Navier-Stokes equation (5.27) exhibits two dimensionless coe�-

cients.

@ũ

@ t̃
= �r̃P̃ +RaPr T̃ ẑ+ Pr r̃2ũ (5.29)

The first of these is the Rayleigh number Ra that we already met in (5.25). The second

is the Prandtl number,

Pr =
cP⌫



Unlike most of our other dimensionless numbers, the Prandtl number is a property only

of the liquid, not of the flow. It has the value Pr ⇡ 0.7 for air and for most gases. It

is Pr ⇡ 7.5 for water at room temperature.
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Our goal is to solve (5.28) and (5.29) subject to suitable boundary conditions. Clearly

we require ũz = 0 at z̃ = 0 and z̃ = 1 so that nothing flows into either plate. Also

T̃ = 0 at z̃ = 0 and z̃ = 1 as the plates are at a fixed temperature.

In addition, it is natural to impose the no-slip boundary condition on both plates,

since our liquid is viscous. It may be natural, but we’re not going to do it. The reason

is simply laziness! The calculation below is challenging enough and by the time we

get to solve the equations life is much easier if we impose the somewhat unphysical

requirement that there is no stress on the plate, meaning

@ũx

@z̃
=

@ũy

@z̃
= 0 at z̃ = 0, 1

In fact it turns out that this is the correct boundary condition to impose on a free

surface, rather than a rigid plate. As we’ll see (in the discussion following (5.37)), to

do the calculation we really need a boundary condition on ũz. We get this by writing

the boundary condition above as

@

@z̃

✓
@ũx

@x̃
+

@ũy

@ỹ

◆
= 0 )

@2ũz

@z̃2
= 0 at z̃ = 0, 1 (5.30)

where we’ve invoked the incompressibility condition r̃ · ũ = 0.

You May Wish To Roll Up Your Sleeves

To proceed, we first take the curl of (5.29) to get

@!̃

@ t̃
= RaPr r̃T̃ ⇥ ẑ+ Pr r̃2!̃

where !̃ = r̃ ⇥ ũ. Curiously, it turns out that the best way to proceed is to take yet

another curl. This then gives

@r̃2ũ

@ t̃
= RaPr

 
ẑ r̃2T̃ � r̃

 
@T̃

@z̃

!!
+ Pr r̃4ũ

where we’ve used r̃⇥ (r̃⇥ ũ) = �r̃
2ũ for an incompressible flow with r̃ · ũ = 0. This

is now fourth order in spatial derivatives. We’ll focus on the z-component, which is

@r̃2ũz

@ t̃
= RaPr

 
@2T̃

@x̃2
+

@2T̃

@ỹ2

!
+ Pr r̃4ũz (5.31)

This is to be solved in conjunction with the temperature equation (5.28).
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We’ll look for solutions using separation of variables. Furthermore, we’ll anticipate

the instability by looking for solutions that grow exponentially in time as e�t̃,

ũz(x, t) = V (z̃)X(x̃, ỹ)e�t̃ and T̃ (x, t) = ✓(z̃) X(x̃, ỹ)e�t̃ (5.32)

Note that we’ve assumed that both the velocity field and temperature have the same

spatial dependenceX(x, y) in the x and y directions. With this ansatz, the temperature

equation (5.28) becomes

1

✓


d2✓

dz̃2
� �✓ + V

�
= �

1

X


@2X

@x̃2
+

@2X

@ỹ2

�
(5.33)

Now, the left-hand side depends only on z̃ and the right-hand side depends only on x̃

and ỹ, which means that both sides must actually be constant. For the solution to be

bounded in the x and y directions, this constant should be positive. We’ll call it K2.

We then have

r̃
2
2X ⌘

@2X

@x̃2
+

@2X

@ỹ2
= �K2X ) X(x̃, ỹ) ⇠ eiKxx̃+iKy ỹ (5.34)

where K2 = K2
x
+K2

y
. We already start to see the ripples forming in the (x, y)-plane.

Reverting back to dimensionful coordinates, we see that these ripples will have wave-

length � = 2⇡d/K and so the constantK is simply the (magnitude of the) dimensionless

wavenumber.

Our next task is to relate K to the instability constant �. This ultimately comes

from equating the left-hand side of (5.33) to the same constant,
✓

d2

dz̃2
� ��K2

◆
✓ = �V (5.35)

This equation relates the temperature profile ✓(z̃) to the velocity profile V (z̃).

We can get another equation relating these variables by substituing the same ansatz

(5.32) into the Navier-Stokes equation (5.31). We replace r̃
2
2X with the expression

(5.34) to get

�

✓
d2

dz̃2
�K2

◆
V = �RaPrK2✓ + Pr

✓
d2

dz2
�K2

◆2

V (5.36)

We can eliminate ✓ in this equation using (5.35). To do this, we have to act with

(d2/dz̃2 � ��K2). We have
✓

d2

dz̃2
�K2

◆✓
d2

dz̃2
� ��K2

◆✓
�� Pr

✓
d2

dz̃2
�K2

◆◆
V = RaPrK2V (5.37)

Good? Good. After all of this, we’re left with a sixth order di↵erential equation.

Sometimes, physics just isn’t pretty.
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We want to solve this subject to the boundary condition V = 0 and, from (5.30),

d2V/dz̃2 = 0 at the two boundaries z̃ = 0, 1. We also require ✓ = 0 at z̃ = 0, 1 and, from

(5.36), we can see that this is only consistent if, in addition, we require d4V/dz̃4 = 0

at the boundaries. This means that we must solve (5.37) subject to the six boundary

conditions

V =
d2V

dz̃2
=

d4V

dz̃4
= 0 at z̃ = 0, 1 (5.38)

This, as we shall now see, isn’t so bad.

Before we do the thing that isn’t so bad, it’s worth pausing to reconsider these

boundary conditions. Recall that the condition (5.30) was born more out of sloth

than physical necessity. With a rigid boundary, it would have been more appropriate

to impose the no-slip condition which leads to the requirement dV/dz̃ = 0 at the

boundaries rather than d2V/dz̃2 = 0. It turns out that we have to work harder to find

such solutions.

Returning to the boundary conditions (5.38), the solutions are simply sine functions

V (z̃) = sin(n⇡z̃)

with n 2 Z. The somewhat daunting looking equation (5.37) then becomes the algebraic

condition

�
n2⇡2 +K2

� �
n2⇡2 + �+K2

�✓
n2⇡2 +K2 +

�

Pr

◆
= RaK2 (5.39)

This is the analog of our previous dispersion relations, now telling us how the charac-

teristic (inverse) time of the instability, �, relates to the wavelength. For some fixed

n 2 Z, there is clearly a solution to this equation with � > 0 when the Rayleigh number

is su�ciently large,

Ra >
(n2⇡2 +K2)3

K2
(5.40)

This confirms that intuition that we saw previously that the instability should only

kick in when Ra is big enough.

The smallest value of Ra for which there is a solution occurs when n = 1. In this

case, we minimise the function above

d

dK2


(n2⇡2 +K2)3

K2

�
= 0 ) K2 =

⇡2

2
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From our previous discussion, this corresponds to the formation of a cell with size

⇠ 2
p
2d. Plugging this value back into (5.40), we have an instability provided that

Ra >
27⇡4

4
⇡ 660

For values of Ra just above this number, only the n = 1 mode is unstable. As Ra

increases, more and more K modes become unstable as well as mode of higher n. As

usual, the most unstable mode is that with largest � and this determines the preferred

choice of K.

5.4 Instabilities of Inviscid Shear Flows

In this section, we turn our attention to instabilities of shear flows. That is, flows that

takes the form

u(x, t) = U(z)x̂

together with some pressure field P (x). We’ll consider this velocity field over some

finite width,

�h  z  +h

with suitable boundary conditions imposed on the edges z = ±h. Both Couette flow

and Poiseuille flow described in Section 3.2 are of this form. Our goal is to understand

when instabilities of such flows may arise. We’ll make progress, albeit limited. In

particular, it turns out that we will not be able to demonstrate instability of either of

these basic flows, even though they both unstable at suitably high Reynolds number.

We will, however, be able to understand why this is a di�cult problem!

We give the shear flow a nudge with perturbations of the form

u(x, t) = U(z)x̂+ ũ(z)eikxx+ikyy�i!t

together with some perturbation of the pressure

�P (x) = ⇢P̃ (z)eikxx+ikyy�i!t

Note that we’ve included a factor of ⇢ on the right-hand side to ensure that later equa-

tions are a little simpler. It does mean, however, that P̃ does not have the dimensions

of pressure.
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As in our previous examples, we take the wavenumbers kx and ky to be some fixed

real numbers and we choose them to be positive, kx, ky > 0. We then use the equations

of motion to determine !. In general, ! can be complex (as, indeed, can ũz and P̃z,)

and an instability occurs when we find Im! > 0. We will now derive some general

statements about when the original flow is unstable.

We first met shear flows when we introduced viscosity in Section 3, with the shear

induced by the no-slop boundary condition. Nonetheless, we will first study instabilities

in the context of the Euler equation,

@u

@t
+ u ·ru = �

1

⇢
rP

We’ll then add viscosity to the discussion in Section 5.5. The linearised perturbation

equations read

i(kxU � !)ũx + ũz

dU

dz
= �ikxP̃ (5.41)

i(kxU � !)ũy = �ikyP̃ (5.42)

i(kxU � !)ũz = �
dP̃

dz
(5.43)

These should be augmented with the incompressibility condition

ikxũx + ikyũy +
dũz

dz
= 0 (5.44)

We’ve allowed for wavelike perturbations in both the x and y-directions and a general

perturbation in the z-direction. In fact, if we’re looking for the onset of instabilities

then we can ignore motion in the y-direction and focus just on the two-dimensional

setting. This follows from:

Squire’s Theorem: Perturbations in the y-direction do not induce further insta-

bilities of the flow.

Proof: Define a velocity in the diagonal direction in the (x, y)-plane by

v =
1

K
(kxũx + kyũy) with K2 = k2

x
+ k2

y

We can combine (5.41) and (5.42) into the equation

i(KU � !0)v + ũz

dU

dz
= �iKP̃ 0 (5.45)
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where the primes do not denote derivatives but, instead, are a rescaled frequency and

a rescaled pressure perturbation,

!0 =
K

kx
! and P̃ 0 =

K

kx
P̃

In terms of these rescaled variables, the perturbation equation (5.43) in the z-direction

and the incompressibility condition (5.44) become

i(KU � !0)ũz = �
dP̃ 0

dz
and iKv +

dũz

dz
= 0 (5.46)

Equations (5.45) and (5.46) describe an e↵ective 2d system, with various quantities

rescaled as above. In particular, the frequency is rescaled so that |!0
| > |!|. But, as

in previous examples, the question of whether the flow is unstable will boil down to

whether the imaginary part of the frequency is non-zero. Clearly, we have Im!0
6= 0

whenever Im! 6= 0. The fact that |!0
| > |!| tells us that the growth of instability is

faster in the v direction, but doesn’t change when the instability kicks in. ⇤

5.4.1 Rayleigh’s Criterion

Because our interest will lie in identifying the conditions under which flows are unstable,

Squire’s theorem a↵ords us the option of simplifying the situation by setting ũy = ky =

0. We’ll also take this opportunity to write kx = k. This leaves us with the perturbation

equations (5.41), (5.43) and (5.44). We can eliminate ũx using the incompressibility

condition (5.44), leaving us with two equations

�

⇣
U �

!

k

⌘ dũz

dz
+ ũz

dU

dz
= �ikP̃

i(kU � !)ũz = �
dP̃

dz

Next, we can eliminate the pressure perturbation at the expense of di↵erentiating the

first of the equations above. In doing so, there are two terms of the form (dU/dz)(dũz/dz)

that cancel and we are left with a simple, second order di↵erential equation for ũz,
⇣

U �
!

k

⌘✓ d2

dz2
� k2

◆
�

d2U

dz2

�
ũz = 0 (5.47)

This is the Rayleigh equation. Our goal is to solve this equation for a given back-

ground flow U(z) and wavenumber k, subject to the boundary condition ũz = 0 at

z = ±h, which ensures that the perturbations don’t flow into the edges of the channel.

The solution contains both the profile of the boundary perturbation ũz as well as the

corresponding frequency !.
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We’d like to know when solutions to the Rayleigh equation (5.47) have Im(!) 6= 0,

signalling an instability. One possibility is to simply pick a choice of initial flow U(z) and

solve the eigenvalue equation (5.47). That is often hard. Here, instead, we derive some

simple, general conditions that any flow must obey if it is to have a linear instability.

We write the Rayleigh equation as

d2ũz

dz2
� k2ũz �

U 00

U � !/k
ũz = 0

We now multiply both sides by the complex conjugate of the velocity perturbation, ũ?

z

and integrate across the width of flow in the z-direction. After integrating by parts,

and using the boundary condition ũz = 0 at z = ±h, we have

Z +h

�h

dz

 ����
dũz

dz

����
2

+ k2
|ũz|

2

!
= �

Z +h

�h

dz
U 00

U � !/k
|ũz|

2 (5.48)

The left-hand side is real and positive. This means that the imaginary part of the

right-hand side must vanish. The only complex quantity on the right-hand side is the

frequency !, so this tells us

Im

Z +h

�h

dz
U 00

U � !/k
|ũz|

2

�
=

Im(!)

k

Z +h

�h

dz
U 00

|U � !/k|2
|ũz|

2 = 0

How can this equation be satisfied? One obvious way is if Im(!) = 0, in which case the

flow is stable. But they’re not the perturbations that we care about. Instead, we’re

interested in situation in which Im(!) 6= 0 and the flow is unstable. This can only

happen if

Z +h

�h

dz
U 00

|U � !/k|2
|ũz|

2 = 0 (5.49)

But both |ũz|
2 and the denominator are manifestly positive. The only possible way

that the equality can hold is if U 00 changes sign at some value of �h < z < h, so that

it is positive in some region of the flow and negative in others. This means that there

must be an inflection point,

d2U

dz2
= 0 for some �h < z < h

This is the Rayleigh criterion for linear instability of an inviscid flow. It is not a

su�cient criterion. But it is necessary.
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5.4.2 Fjortoft’s Criterion

There is more that we can say about the condition for instability, at least under certain

circumstances. Our equation (5.48) tells us that

Re

Z +h

�h

dz
U 00

U � !/k
|ũz|

2

�
< 0 )

Z +h

�h

dz
U 00(U � Re(!)/k)

|U � !/k|2
|ũz|

2 < 0

If there is an instability, then (5.49) must hold and this means that the Re(!) term in

the above expression actually vanishes when integrated over the width of the channel.

So we actually have the requirement
Z +h

�h

dz
U 00U

|U � !/k|2
|ũz|

2 < 0 (5.50)

It’s not immediately obvious that this buys us anything beyond the Rayleigh criterion.

This is because we have little information about most of the variables in the equation

(5.50). We assume that we’re given some starting flow U(z) and we’re searching for

a perturbation with some fixed wavenumber k. But both ! and ũz are fixed by the

Rayleigh equation (5.47) that we haven’t yet solved. In particular, for a given k it may

well be that ũz is peaked at some value of z, but we have no idea where. So it’s di�cult

to see what new information can be buried in the inequality (5.50)

Nonetheless, there’s a clever trick that does allow us to extract more information

from (5.50). The equation (5.48) that previously allowed us to drop the Re(!) term

from the integral also allows us to add any other constant to the numerator, so we can

equally well write (5.50) as
Z +h

�h

dz
U 00(U � U?)

|U � !/k|2
|ũz|

2 < 0 (5.51)

for any constant U? of our choice. At this point, we need two further assumptions to

make progress. We assume that:

• There is just a single Rayleigh inflection point at z = z?.

• The background flow U(z) is monotonically increasing, so U 0(z) � 0 for all z.

With these two assumptions, we take U? = U(z?). Together with the assumption of

monotonicity of U , this ensures that the factor (U � U?) flips sign at z = z?. This, of

course, is the same place that U 00(z) flips sign so, for this particular choice, the product

U 00(U � U?) has the same sign for all values of z. The inequality (5.50) tells us that

this sign must be negative:

U 00(U � U?)  0 8 z

with equality only when z = z?. This is the Fjortoft criterion.
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Figure 33. The first flow is stable by Rayleigh, the second by Fjortoft. Only the third may

be unstable.

We can also phrase this criterion in terms of the vorticity of the background flow,

! = r⇥ u, whose magnitude is

|!| = ⌦ =
dU

dz

The Rayleigh criterion tells us that there is a point in the flow where the vorticity

is stationary, with d⌦/dz = 0. The Fjortoft criterion tells us that, away from this

inflection point,

d⌦

dz
(U � U?) < 0 (5.52)

Suppose that, away from this point, U 0(z) > 0 so that ⌦ > 0. Then for z < z? we have

U � U? < 0 and (5.52) tells us that ⌦ is increasing. Similarly, for z > z?, (5.52) says

that the vorticity ⌦ must be decreasing. In other words, the Fjortoft criterion is telling

us that, for a flow to be unstable, the vorticity ⌦ must have a maximum at z = z?.

The same conclusion is reached if U 0(z) < 0: the magnitude of the vorticity |⌦| must

have a maximum for the flow to be unstable.

Three examples of shear flows are shown in Figure 33. The first has no point where

U 00(z) = 0 and so is stable by the Rayleigh criterion. The second has an inflection point

but the vorticity is a minimum there: it is stable by the Fjortoft criterion. The third

has a point where the vorticity is maximum and obeys both criterion. Only this one

may have a linear instability. (And even then, it is not guaranteed. Our conditions are

su�cient, not necessary.)

You might have noticed that our original Poiseuille flow of Section 3.2 is stable

according to the Rayleigh criterion, with U 00(z) < 0 everywhere. That’s something of a

surprise because we showed photographs in Figure 30 of Poiseuille flow disintegrating

as the Reynolds number is cranked up. But the Rayleigh and Fjortoft criteria apply

only to inviscid flows and it turns out that to fully understand instabilities we need to
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include the e↵ects of viscosity. We’ll turn to this in Section 5.5. (The Couette flow

is something of a special case since it has U 00(z) = 0 everywhere and we’ll consider it

separately in Section 5.4.4.)

5.4.3 Howard’s Semi-circle Theorem

There’s yet more information to be extracted from the Rayleigh equation. To do this,

we make the change of variables that combines the perturbation ũz with the background

flow U ,

V =
ũz

U � !/k

We should be a little careful because it may be that the new variable V is ill-defined if,

for some value of z, we have U(z) = !/k. Clearly, however, this will not be a problem

if we have an unstable perturbation with ! complex because U(z) is real.

The Rayleigh equation (5.47) is


(U � !/k)

✓
d2

dz2
� k2

◆
�

d2U

dz2

�
(U � !/k)V = 0

After expanding out, this becomes

(U � !/k)2
d2V

dz2
+ 2(U � !/k)

dU

dz

dV

dz
� k2(U � !/k)2V = 0

which we can then write as

d

dz

⇣
U �

!

k

⌘2 dV
dz

�
� k2

⇣
U �

!

k

⌘2
V = 0

Now we play the same trick as before: we multiply by the complex conjugate V ? and

integrate over the width of the flow. After integrating by parts, and using the boundary

condition ũz = 0 at z = ±h, we have

Z +h

�h

dz
⇣
U �

!

k

⌘2
Q = 0 with Q =

����
dV

dz

����
2

+ k2
|V |

2 (5.53)

Clearly the quantity Q is non-negative for all z. If the flow is unstable then Im(!) 6= 0,

and the imaginary part of the equation is

2Im(!)

k

Z +h

�h

dz

✓
U �

Re(!)

k

◆
Q = 0 (5.54)
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So the quantity in brackets must change sign. This is only possible if

kUmin < Re(!)  kUmax

This can also be viewed as a bound on the phase velocity of the disturbance, c =

Re(!)/k. The phase velocity is bounded by the velocities of the background flow:

Umin < c < Umax.

The real part of (5.53) reads

Z +h

�h

dz
⇣
(Uk � Re(!))2 � Im(!)2

⌘
Q = 0 (5.55)

There’s a way to massage this into something more useful by removing the explicit

factors of U in the integrand. To remove the term quadratic in U , we make use of the

trivial fact that (U � Umin)(Umax � U) � 0, so we have

Z +h

�h

dz (U � Umin)(Umax � U)k2Q � 0 (5.56)

Adding (5.55) and (5.56), and using (5.57), we have

Z +h

�h

dz
⇣
Uk
⇣
� 2Re(!) + k(Umax � Umin)

⌘
+ Re(!)2 � Im(!)2 � UmaxUmink

2
⌘
Q � 0

But we can remove terms linear in U since, by (5.54), we have

Z +h

�h

dz Uk Q =

Z +h

�h

dz Re(!)Q (5.57)

The upshot is that we get the inequality

Z +h

�h

dz
⇣
Re(!)2 + Im(!)2 � Re(!)(Umax � Umin)k + UmaxUmink

2
⌘
Q  0

Clearly the object in brackets must be negative, meaning that the real and imaginary

parts of the frequency are bounded by

✓
Re(!)�

k

2
(Umax � Umin)

◆2

+ Im(!)2 
k2

4
(Umax + Umin)

2

This is Howard’s semi-circle theorem. It puts a bound on the instability in the complex

! plane in the form of a semi-circle as shown in Figure 34. In particular, this condition

gives a bound on the growth rate Im(!) of the instability.
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Figure 34. The range of allowed unstable behaviour in the complex ! plane.

5.4.4 Couette Flow Revisited

Couette flow is special because, as we saw in Section 3.2, the velocity field is linear:

U(z) ⇠ z. This means that U 00(z) = 0 for all z and the Rayleigh criterion (5.49) appears

to be toothless. Which leads us to ask: is the flow actually unstable?

In this case, the background flow is simple enough that we can just go ahead and

solve the equations. The Rayleigh equation (5.47) reads

⇣
↵z �

!

k

⌘✓ d2

dz2
� k2

◆
ũz = 0 (5.58)

where we’ve taken the background flow to be U(z) = ↵z for constant ↵. If we look for

smooth solutions then the background perturbation must be given by

✓
d2

dz2
� k2

◆
ũz = 0 ) ũz = A sinh k(z � z0)

But we still need to impose the boundary condition ũz = 0 at z = ±h. And that can

only hold if A = 0.

This is a little confusing! It seems to be telling us that there can be no perturbations

of Couette flow, stable or otherwise. But that doesn’t sound right. What if you splash

it?! Surely something must happen. What?

In fact, to find perturbations we must relax the condition that ũz is smooth. Suppose

that we admit the solution

ũz =

(
A+ sinh k(z � h) z > zc

A� sinh k(z + h) z < zc
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This immediately satisfies the boundary condition requirement ũz = 0. We still need

the velocity perturbation to be continuous, even if it’s not di↵erentiable, and this

imposes the condition

A+ sinh k(zc � h) = A� sinh k(zc + h)

This should be thought of as fixing, say A+, in terms of A� given the position zc of the

jump.

How worried should we be about the discontinuity? The derivative in the Rayleigh

equation (5.58) will certainly hit it, giving infinity. But we can rescue the situation if

the pre-factor vanishes. This holds if the frequency ! is given by

! = ↵zck

This is rather nice. We find that we have a continuous spectrum of stable, wavelike

modes, with the discontinuity propagating at the same phase velocity as the background

flow at that point, !/k = ↵zc = U(zc).

The modes that we have found are marginal, in the sense that they neither grow nor

decay with time. But we’ve only looked at first order in perturbation theory and it

may well be that higher order corrections change the story. Although we will not show

it here, it turns out that these marginal modes are not rendered unstable by higher

order terms. Nor are they unstable when we include viscosity. Couette flow is stable

to arbitrarily small perturbations.

However, that doesn’t mean that Couette flow actually stable! Experiment and

numerics show that the Couette flow is actually unstable, and develops turbulence for

Re & 400. The instability arises due to perturbations of some finite amplitude.

5.5 Instabilities of Viscous Shear Flows

In this section, we’ll repeat the analysis of the stability of shear flows, this time with

viscosity added.

The set-up is the same as in Section 5.4, with a flow over a finite width |z|  h, with

suitable boundary conditions (such as no-slip) imposed on the edges. The initial flow

U, together with the perturbations ũ, take the form

u(x, t) = U(z)x̂+ ũ(z)eikxx+ikyy�i!t

In addition, there is a perturbation of the pressure field P (x).

�P (x) = ⇢P̃ (z)eikxx+ikyy�i!t
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where we’ve again included a factor of ⇢ on the right-hand side to simplify subsequent

equations.

This time we will perturb the full Navier-Stokes equation

@u

@t
+ u ·ru = �

1

⇢
rP + ⌫r2u

The linearised perturbation equations are

i(kxU � !)ũx + ũz

dU

dz
= �ikxP̃ + ⌫

✓
d2

dz2
� k2

x
� k2

y

◆
ũx (5.59)

i(kxU � !)ũy = �ikyP̃ + ⌫

✓
d2

dz2
� k2

x
� k2

y

◆
ũy (5.60)

i(kxU � !)ũz = �
dP̃

dz
+ ⌫

✓
d2

dz2
� k2

x
� k2

y

◆
ũz (5.61)

and the incompressibility condition is, as before,

ikxũx + ikyũy +
dũz

dz
= 0 (5.62)

We would like to derive a generalisation of the Rayleigh equation (5.47), now including

the e↵ects of viscosity. This is an equation just for ũz.

To achieve this, we first take the divergence of the Navier-Stokes equation which,

after using the incompressibility condition r · u = 0, gives

1

⇢
r

2P = �2
dU

dz

@uz

@x
)

✓
d2

dz2
� k2

x
� k2

y

◆
P̃ = �2ikx

dU

dz
ũz

If we now take r
2 of the third equation (5.61) (which really means multiplying by

(d2/dz2 � k2
x
� k2

y
), then we get a fourth order di↵erential equation for ũz,

"
i(kxU � !)

✓
d2

dz2
� k2

x
� k2

y

◆
� ikx

d2U

dz2
� ⌫

✓
d2

dz2
� k2

x
� k2

y

◆2
#
ũz = 0 (5.63)

This is the Orr-Sommerfeld equation. If we set ky = 0 then, in the limit ⌫ ! 0 (which,

as always, should really be thought of as the limit Re ! 1) it reduces to the Rayleigh

equation (5.47).
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We want to impose the no-penetration boundary condition ũz = 0 and also the no-

slip boundary condition ũx = ũy = 0 at the edges of the flow. From (5.62), no-slip

implies that ũ0
z
= 0. But that still leaves the other linear combination of ũx and ũy

which we recognise as the vorticity normal to the edge,

⇣ := ! · ẑ = ikxũy � ikyũx

We’ll impose ⇣ = 0 at the boundary. But we can also look at the dynamics of this

component of vorticity in the interior of the flow. By taking suitable linear combinations

of (5.59) and (5.60) (ky of the first minus kx of the second) we get

i(kxU � !)� ⌫

✓
d2

dz2
� k2

x
� k2

y

◆�
⇣ = iky

dU

dz
ũz (5.64)

This is the Squire equation. We should solve it in conjunction with the Orr-Sommerfeld

equation (5.63), with the velocity perturbations ũz acting as a source for the vorticity

perturbations ⇣.

In the limit ⌫ = 0 we have no possibility of interesting vorticity fluctuations since ⇣

is fully determined by the velocity perturbation ũz. However, the presence of viscosity

turns the algebraic relation into a di↵erential equation and this has more interesting

solutions. In particular, we can have vorticity perturbations ⇣ 6= 0 even when ũz = 0.

These are known as Squire modes.

Claim: Squire modes are always damped. This means that the vorticity doesn’t lead

to an instability unless driven by the velocity perturbation ũz.

Proof: The proof uses the same kind of trick that we saw when deriving the Rayleigh

criterion. We multiply the homogeneous Squire equation by the complex conjugate ⇣?

and integrate over the width of the flow. After integrating by parts and imposing the

boundary condition ⇣ = 0 at z = ±h, we have

⌫

Z +h

�h

dz

 ����
d⇣

dz

����
2

+ (k2
x
+ k2

y
)|⇣|2

!
= �

Z +h

�h

dz i(kxU � !)|⇣|2

Taking the real part gives

⌫

Z +h

�h

dz

 ����
d⇣

dz

����
2

+ (k2
x
+ k2

y
)|⇣|2

!
= �Im(!)

Z +h

�h

dz |⇣|2

Clearly the left-hand side is positive if ⇣ 6= 0. So the right-hand side must also be

positive which means that Im(!) < 0. But the fluctuations evolve as e�i!t
⇠ eIm(!)t so

for Im(!) < 0 these are decaying modes. ⇤
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5.5.1 Poiseuille Flow Revisited

To finish this section, we return to Poiseuille flow, restricted to a plane. Recall from

Section 3.2 that Poiseuille flow is driven by a constant pressure gradient, with the

background velocity field taking the parabolic form

U(z) = ↵(h2
� z2)

for some constant ↵. We define the Reynolds number for this flow to be

Re =
Umaxh

⌫
=

↵h3

⌫

To determine the stability of Poiseuille flow, our task is clear. We look for perturbations

with ky = 0 and kx = k and try to solve the Orr-Sommerfeld equation

"
i(kU � !)

✓
d2

dz2
� k2

◆
� ik

d2U

dz2
� ⌫

✓
d2

dz2
� k2

◆2
#
ũz = 0

We view this as an eigenvalue equation, with the both the eigenfunction ũz and the

eigenvalue ! to be determined. The flow is unstable if there exists solutions with

Im(!) > 0.

This is not a computation that can be done

analytically and the equation must be solved

numerically14. One finds that there is no insta-

bility for low Reynolds number, but Pouiseuille

flow becomes unstable for any Reynolds num-

ber beyond the critical value

Re > Recrit ⇡ 5772

The range of unstable k-values for a given Reynolds number takes the form of the red

region shown in the figure.

There’s something rather surprising about this result. By now we’re used to viscosity

acting as a dampening force, causing perturbations to die away. But here it plays the

opposite role! Without viscosity, Poiseuille flow is linearly stable. Viscosity causes it

to become unstable at high Reynolds number.

14This was done by Orszag in 1971 in this paper where the critical Reynolds number was first
calculated.
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This is far from the last word on instabilities. The linear analysis sketched above

suggests that Couette flow should be stable for all Re while Poiseuille flow should

break down only for Re ⇡ 6000. Neither of these agrees well with experiment. Instead,

Couette flow is turbulent by Re ⇡ 400 while Poiseuille flow is typically turbulent by

Re ⇡ 2000. This shows up the failure of our simple linear analysis. While the flows are

stable against infinitesimally small perturbations, fluctuations whose amplitude grows

beyond some critical value can push them over the edge. The instability is akin to a

first order phase transition in thermodynamics, or to a tunnelling event in quantum

mechanics, with some finite barrier to cross.
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