
4. Lattice Gauge Theory

Quantum field theory is hard. Part of the reason for our di�culties can be traced to

the fact that quantum field theory has an infinite number of degrees of freedom. You

may wonder whether things get simpler if we can replace quantum field theory with a

di↵erent theory which has a finite, albeit very large, number of degrees of freedom. We

will achieve this by discretizing space (and, as we will see, also time). The result goes

by the name of lattice gauge theory.

There is one, very practical reason for studying lattice gauge theory: with a discrete

version of the theory at hand, we can put it on a computer and study it numerically.

This has been a very successful programme, especially in studying the mass spectrum

of Yang-Mills and QCD, but it is not our main concern here. Instead, we will use lattice

gauge theory to build better intuition for some of the phenomena that we have met in

these lectures, including confinement and some subtle issues regarding anomalies.

There are di↵erent ways that we could envisage trying to write down a discrete

theory:

• Discretize space, but not time. We could, for example, replace space with a cubic,

three dimensional lattice. This is known as Hamiltonian lattice gauge theory.

This has the advantage that it preserves the structure of quantum mechanics, so

we can discuss states in a Hilbert space and the way they evolve in (continuous)

time. The resulting quantum lattice models are conceptually similar to the kinds

of things we meet in condensed matter physics. The flip side is that we have

butchered Lorentz invariance and must hope that it emerges at low energies.

This is the approach that we will use when we first introduce fermions in Section

4.3. But, for other fields, we will be even more discrete...

• Discretize spacetime. We might hope to do this in such a way that preserves some

remnant of Lorentz invariance, and so provide a natural discrete approximation

to the path integral.

There are two ways we could go about doing this. First, we could try to construct

a lattice version of Minkowski space. This, it turns out, is a bad. Any lattice

clearly breaks the Lorentz group. However, while a regular lattice will preserve

some discrete remnant of the rotation group SO(3), it preserves no such remnant

of the Lorentz boosts. The di↵erence arises because SO(3) is compact, while

SO(3, 1) is non-compact. This means that if you act on a lattice with SO(3),

you will come back to your starting point after, say, a ⇡ rotation. In contrast,
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acting with a Lorentz boost in SO(3, 1) will take you further and further away

from your starting point. The upshot is that lattices in Minkowski space are not

a good idea.

The other option is to work with Euclidean spacetime. Here there is no problem

in writing down a four dimensional lattice that preserves some discrete subgroup

of SO(4). The flip side is that we have lost the essence of quantum mechanics;

there is no Hilbert space, and no concept of entanglement. Instead, we have what

is essentially a statistical mechanics system, with the Euclidean action playing

the role of the free energy. Nonetheless, we can still compute correlation functions

and, from this, extract the spectrum of the theory and we may hope that this is

su�cient for our purposes.

Throughout this section, we will work with a cubic, four-dimensional Euclidean

lattice, with lattice spacing a. We introduce four basis vectors, each of unit length. It

is useful, albeit initially slightly unfamiliar, to denote these as µ̂, with µ = 1, 2, 3, 4. A

point x in our discrete Euclidean spacetime is then restricted to lie on the lattice �,

defined by

� =
n
x : x =

4X

µ=1

anµµ̂ , nµ 2 Z
o

(4.1)

The lattice spacing plays the role of the ultra-violet cut-o↵ in our theory

a =
1

⇤UV

For the lattice to be a good approximation, we will need a to be much smaller than

any other physical length scale in our system.

Because our system no longer has continuous translational symmetry, we can’t in-

voke Noether’s theorem to guarantee conservation of energy and momentum. Instead

we must resort to Bloch’s theorem which guarantees the conservation of “crystal mo-

mentum”, lying in the Brillouin zone, |k|  ⇡/a. (See, for example, the lectures on

Applications of Quantum Mechanics.) Umklapp processes are allowed in which the lat-

tice absorbs momentum, but only in units of 2⇡/a. This means that provided we focus

on low-momentum processes, k ⌧ ⇡/a, we e↵ectively have conservation of momentum

and energy.

(An aside: the discussion above was a little quick. Bloch’s theorem is really a

statement in quantum mechanics in which we have continuous time. It applies directly
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only in the framework of Hamiltonian lattice gauge theory. In the present context, we

really mean that the implications of momentum conservation on correlation functions

will continue to hold in our discrete spacetime lattice, provided that we look at suitably

small momentum.)

4.1 Scalar Fields on the Lattice

To ease our way into the discrete world, we start by considering a real scalar field �(x).

A typical continuum action in Euclidean space takes the form

S =

Z
d4x

1

2
(@µ�)

2 + V (�) (4.2)

Our first task is to construct a discrete version of this, in which the degrees of freedom

are

�(x) with x 2 �

This is straightforward. The kinetic terms are replaced by the finite di↵erence

@µ�(x) �! �(x+ aµ̂)� �(x)

a
(4.3)

while the integral over spacetime is replaced by the sum

Z
d4x �! a4

X

x2�

Our action (4.2) then becomes

S = a4
X

x2�

1

2

X

µ

✓
�(x+ aµ̂)� �(x)

a

◆2

+ V (�(x))

As always, this action sits in the path integral, whose measure is now simply a whole

bunch of ordinary integrals, one for each lattice point:

Z =

Z Y

x2�

d�(x) e�S

With this machinery, computing correlation functions of any operators reduces to per-

forming a large but (at least for a lattice of finite size) finite number of integrals.
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It’s useful to think about the renormalisation group (RG) in this framework. Suppose

that we start with a potential that takes the form

V (�) =
m2

0

2
�2 +

�0
4
�4 (4.4)

As usual in quantum field theory, m2
0 and �0 are the “bare” parameters, appropriate for

physics at the lattice scale. We can follow their fate under RG by performing the kind

of blocking transformation that was introduced in statistical mechanics by Kadano↵.

This is a real space RG procedure in which one integrates out the degrees of freedom

on alternate lattice sites, say all the sites in (4.1) in which one or more nµ is odd.

This then leaves us with a new theory defined on a lattice with spacing 2a. This will

renormalise the parameters in the action. In particular, the mass term will typically

shift to

m2 ⇠ m2
0 +

�0
a2

This is the naturalness issue for scalar fields. If we want to end up with a scalar field

with physical mass m2
phys ⌧ 1/a2, then the bare mass must be delicately tuned to be

of order the cut-of, m2
0 ⇠ ��0/a2, so that it cancels the contribution that arises when

performing RG. This makes it rather di�cult in practice to put scalar fields on the

lattice. As we will see below, life is somewhat easier for gauge fields and, after jumping

through some hoops, for fermions.

As usual, RG does not leave the potential in the simple, comfortable form (4.4).

Instead it will generate all possible terms consistent with the symmetries of the the-

ory. These include higher terms such as �6 and �8 in the potential, as well as higher

derivative terms such as (@µ�@µ�)2. (Here, and below, we use the derivative notation

as shorthand for the lattice finite di↵erence (4.3).) This doesn’t bother us because all

of these terms are irrelevant (in the technical sense) and so don’t a↵ect the low-energy

physics.

However, this raises a concern. The discrete rotational symmetry of the lattice is less

restrictive than the continuous rotational symmetry of R4. This means that RG on the

lattice will generate some terms involving derivatives @� that would not arise in the

continuum theory. If these terms are irrelevant then they will not a↵ect the infra-red

physics and we can sleep soundly, safe in the knowledge that the discrete theory will

indeed give a good approximation to the continuum theory at low energies. However, if

any of these new terms are relevant then we’re in trouble: now the low-energy physics

will not coincide with the continuum theory.
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So what are the extra terms that arise from RG on the lattice? They must respect

the Z2 symmetry � ! �� of the original action, which means that they have an even

number of � fields. They must also respect the discrete rotation group that includes,

for example, x1 ! x2. This rules out lone terms like (@1�)2. The lowest dimension

term involving derivatives that respects these symmetries is

4X

µ=1

(@µ�)
2

But this is, of course, the usual derivative term in the action. The first operator that

is allowed on the lattice but prohibited in the continuum is

4X

µ=1

� @4
µ
� (4.5)

This has dimension 6, and so is irrelevant. Happily, we learn that the lattice scalar field

theory di↵ers from the continuum only by irrelevant operators. Provided that we fine

tune the mass, we expect the long wavelength physics to well approximate a continuum

theory of a light scalar field.

4.2 Gauge Fields on the Lattice

We now come to Yang-Mills. Our task is write down a discrete theory on the lattice

that reproduces the Yang-Mills action. For concreteness, we will restrict ourselves to

SU(N) gauge theory, with matter in the fundamental representation.

As a first guess, it’s tempting to follow the prescription for the scalar field described

above and introduce four, Lie algebra valued gauge fields Aµ(x), with µ = 1, 2, 3, 4 at

each point x 2 �. This, it turns out, is not the right way to proceed. At an operational

level, it is di�cult to implement gauge invariance in such a formalism. But, more

importantly, this approach completely ignores the essence of the gauge field. It misses

the idea of holonomy.

4.2.1 The Wilson Action

Mathematicians refer to the gauge field as a connection. This hints at the fact that

the gauge field is a guide, telling the internal, colour degrees of freedom or a particle

or field how to evolve through parallel transport. The gauge field “connects” these

internal degrees of freedom at one point in space to those in another.
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We saw this idea earlier in Section 2 after introducing the Yang-Mills field. (See Sec-

tion 2.1.3.) Consider a test particle which carries an internal vector degree of freedom

wi, with i = 1, . . . , N . As the particle moves along a path C, from xi to xf , this vector

will evolve through parallel transport

w(⌧f ) = U [xi, xf ]w(⌧i)

where the holonomy, or Wilson line, is given by the path ordered exponential

U [xi, xf ] = P exp

✓
i

Z
xf

xi

A

◆
(4.6)

Note that U [xi, xf ] depends both on the end points, and on the choice of path C.

This is the key idea that we will implement on the lattice. We will not treat the Lie-

algebra valued gauge fields Aµ as the fundamental objects. Instead we will work with

the group-valued Wilson lines U . These Wilson lines are as much about the journey as

the destination: their role is to tell other fields how to evolve. The matter fields live

on the sites of the lattice. In contrast, the Wilson lines live on the links.

Specifically, on the link from lattice site x to x + µ̂, we will introduce a dynamical

variable

link x ! x+ µ̂ : Uµ(x) 2 G

The fact that the fundamental degrees of freedom are group valued, rather than Lie

algebra valued, plays an important role in lattice gauge theory. It means, for example

that there is an immediate di↵erence between, say, SU(N) and SU(N)/ZN , a distinc-

tion that was rather harder to see in the continuum. We will see other benefits of this

below.

At times we will wish to compare our lattice gauge theory with the more familiar

continuum action. To do this, we need to re-introduce the Aµ gauge fields. These are

related to the lattice degrees of freedom by

Uµ(x) = eiaAµ(x) (4.7)

The placing of the µ subscripts on the left and right hand side of this equation should

make you feel queasy. It looks bad because if one side transforms covariantly un-

der SO(4) rotations, then the other does not. But we don’t want these variables to

transform under continuous symmetries; only discrete ones. This is the source of your

discomfort.
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We will wish to identify configurations related by gauge transformations. In the

continuum, under a gauge transformation ⌦(x), the Wilson line (4.6) transforms as

U [xi, xf ;C] ! ⌦(xi)U [xi, xf ;C]⌦†(xf )

We can directly translate this into our lattice. The link variable transforms as

Uµ(x) ! ⌦(x)Uµ(x)⌦(x+ µ̂) (4.8)

The next step is to write down an action that is invariant under gauge transformations.

We can achieve this by multiplying together a string of neighbouring Wilson lines, and

then taking the trace. With no dangling ends, this is guaranteed to be gauge invariant.

This is the lattice version of the Wilson loop (2.15) that we met in Section 2.

We can construct a Wilson loop for any closed path C in the

x x+µ

x+ν x+   + νµ

Figure 34:

lattice. When the path goes from the site x to x+ µ̂, we include a

factor of Uµ(x); when the path goes from site x to site x � µ̂, we

include a factor of U †

µ
(x + µ̂). The simplest such path is a square

which traverses a single plaquette of the lattice as shown in the

figure. The corresponding Wilson loop is

W⇤ = trUµ(x)U⌫(x+ µ̂)U †

µ
(x+ ⌫̂)U †

⌫
(x)

To get some intuition for this object, we can write it in terms of the gauge field (4.7). We

will assume that we can Taylor expand the gauge field so that, for example, A⌫(x+µ̂) ⇡
A⌫(x) + a@µA⌫(x) + . . .. Then we have

W⇤ ⇡ tr eiaAµ(x) eia(A⌫(x)+a@µA⌫(x)) e�ia(Aµ(x)+a@⌫Aµ(x)) e�iaA⌫(x)

⇡ tr eia(Aµ(x)+A⌫(x)+a@µA⌫(x)+
ia
2 [Aµ(x),A⌫(x)]) e�ia(A⌫(x)+Aµ(x)+a@⌫Aµ(x))�

ia
2 [Aµ(x),A⌫(x)])

where, to go to the second line, we’ve used the BCH formula eAeB = eA+B+ 1
2 [A,B]+....

On both lines we’ve thrown away terms of order a3 in the exponent. Using BCH just

once more, we have

W⇤ = tr eia
2
Fµ⌫(x)+... = tr

✓
1 + ia2Fµ⌫ �

a4

2
Fµ⌫Fµ⌫ + . . .

◆

= �a4

2
trFµ⌫Fµ⌫ + . . .

where, as usual, Fµ⌫(x) = @µA⌫(x)�@⌫Aµ(x)� i[Aµ(x), A⌫(x)] and the . . . include both

a constant term and terms higher in order in a2. Note that there is no sum over µ, ⌫

in this expression; instead these µ, ⌫ indices tell us of the orientation of the plaquette.
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By summing over all possible plaquettes, we get something that reproduces the Yang-

Mills action at leading order. The Wilson loop W⇤ itself is not real so we need to add

the conjugate W †

⇤, which is the loop with the opposite orientation. This then gives us

the Wilson action

SWilson = � �

2N

X

⇤

⇣
W⇤ +W †

⇤

⌘
=

a4�

4N

Z
d4x trFµ⌫Fµ⌫ + . . . (4.9)

where now we are again using summation convention for µ, ⌫ indices. An extra factor of

1/2 has appeared because the sum over plaquettes di↵ers by a factor of 2 from the sum

over µ, ⌫. It is convention to put a factor of 1/N in front of the action. The coupling

� is related to the continuum Yang-Mills coupling (2.8) by

�

2N
=

1

g2

The Wilson action only coincides with the Yang-Mills action at leading order. Expand-

ing to higher orders in a will give corrections. The next lowest dimension operator

to appear is Fµ⌫D2
µ
Fµ⌫ . It has dimension 6 and does not correspond to an operator

that respects continuous O(4) rotational symmetry. In this way, it is analogous to the

operator (4.5) that we saw for the scalar field. Happily, it is irrelevant.

The Wilson action is far from unique. For example, we could have chosen to sum over

double plaquettes ⇤⇤ as opposed to single plaquettes. Expanding these, or any such

Wilson loop, will result in a Fµ⌫Fµ⌫ term simply because this is the lowest dimension,

gauge invariant operator. These Wilson loops di↵er in the relative coe�cients of the

expansion.

For numerical purposes, this lack of uniqueness can be exploited. We could augment

the Wilson action with additional terms corresponding to double, or larger, plaquettes.

This can be done in such a way that the Yang-Mills action survives, but the higher

dimension operators, such as Fµ⌫D2
µ
Fµ⌫ cancel. This means that the leading higher

derivative terms are even more irrelevant, and helps with numerical convergence. We

won’t pursue this (or, indeed, any numerics) here.

Adding Dynamical Matter

As we mentioned before, matter fields live on the sites of the lattice. Consider a

scalar field �(x) transforming in the fundamental representation of the gauge group.

(Fermions will come with their own issues, which we discuss in Section 4.3.) Under a

gauge transformation we have

�(x) ! ⌦(x)�(x)
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We can now construct gauge invariant objects by topping and tailing the Wilson line

with particle and anti-particle matter insertions. The simplest example has the particle

and anti-particle separated by just one lattice spacing, �†(x)Uµ(x)�(x + µ̂). More

generally, we can separate the two as much as we like, as the long as the Wilson line

forges a continuous path between them.

To write down a kinetic term for this scalar, we need the covariant version of the

finite di↵erence (4.3). This is given by

Z
d4x |Dµ�(x)|2 �! a2

X

(x,µ)

⇥
2�†(x)�(x)� �†(x)Uµ(x)�(x+ µ̂)� �†(x+ µ̂)U †

µ
(x)�(x)

⇤

In this way, it is straightforward to coupled scalar matter to gauge fields. We won’t have

anything more to say about dynamical matter here, but we’ll return to the question in

Section 4.3 when we discuss fermions on the lattice.

4.2.2 The Haar Measure

To define a quantum field theory, it’s not enough to give the action. We also need to

specify the measure of the path integral.

Of course, usually in quantum field theory we’re fairly lax about this, and the measure

certainly isn’t defined at the level of rigour that would satisfy a mathematician. The

lattice provides us an opportunity to do better, since we have reduced the path integral

to a large number of ordinary integrals. For lattice gauge theory, the appropriate

measure is something like

Y

(x,µ̂)

dUµ(x) (4.10)

so that we integrate over the U 2 G degree of freedom on each link. The question is:

what does this mean?

Thankfully this is a question that is well understood. We want to define an inte-

gration measure over the group manifold G. We will ask that the measure obeys the

following requirements:

• Left and right invariance. This means that for any function f(U), with U 2 G,

and for any ⌦ 2 G,
Z

dU f(U) =

Z
dU f(⌦U) =

Z
dU f(U⌦) (4.11)
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This will ensure that our path integral respects the gauge symmetry (4.8). By a

change of variables, this is equivalent to the requirement that d(U⌦) = d(⌦U) =

dU for all ⌦ 2 G.

• Linearity:
Z

dU (↵f(U) + �g(U)) = ↵

Z
dU f(U) + �

Z
dU g(U)

This is something that we take for granted in integration, and we would very

much like to retain it here.

• Normalisation condition:
Z

dU 1 = 1 (4.12)

A di↵erence between gauge theory on the lattice and in the continuum is that the

dynamical degrees of freedom live in the group G, rather than its Lie algebra. The

group manifold is compact, so that
R
dU 1 just gives the volume of G. There’s

no real meaning to this volume, so we choose to normalise it it to unity.

It turns out that there is a unique measure with these properties. It is known as the

Haar measure.

We won’t need to explicitly construct the Haar measure in what follows, because

the properties above are su�cient to calculate what we’ll need. Nonetheless, it may

be useful to give a sense of where it comes from. We start in a neighbourhood of the

identity. Here we can write any SU(N) group element as

U = ei↵
a
T

a

with T a the generators of the su(N) algebra. In this neighbourhood, the Haar measure

becomes (up to normalisation)
Z

dU =

Z
dN

2
�1↵

p
det � (4.13)

where � is the canonical metric on the group manifold,

�ab = tr

✓
U�1 @U

@↵a
U�1 @U

@↵b

◆

This measure is both left and right invariant in the sense of (4.11), since the group

action corresponds to shifting ↵a ! ↵a + constant.
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Now suppose that we want to construct the measure in the neighbourhood of any

other point, say U0. We can do this by using the group multiplication to transport the

neighbourhood around the identity to a corresponding neighbourhood around U0. In

this way, we can construct the measure over various patches of the group manifold.

One way to transport the measure from one neighbourhood to another is by right

multiplication. We write

U = ei↵
a
T

a
U0 (4.14)

We then again use the definition (4.13) to define the measure. This measure is left

invariant, satisfying dU = d(⌦U) since multiplying U on the left by ⌦ corresponds to

shifting ↵a ! ↵a + constant. In fact, this is the unique left invariant measure.

But is the measure right invariant? If we multiply U on the right then the group

element ⌦ must make its way past U0 before we can conclude that it shifts ↵a by a

constant. But ⌦ and U0 do not necessarily commute. Nonetheless, the measure is

right invariant. This follows from the fact that we have constructed the unique left

invariant measure which means that, if we consider the measure d(U⌦), which is also

left invariant then, by uniqueness, it must be the same as the original. So d(U⌦) = dU .

Integrating over the Group

In what follows, we will need results for some of the simpler integrations.

We start by computing the integral
R
dU U . Because the measure is both left and

right invariant, we must have

Z
dU U =

Z
dU ⌦1U⌦2

for any ⌦1 and ⌦2 2 G. But there’s only one way to achieve this, which is

Z
dU U = 0 (4.15)

More generally, we will only get a non-vanishing answer if we integrate objects which

are invariant under G. This will prove to be a powerful constraint, and we’ll discuss it

further below.
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The simplest, non-trivial integral is therefore
R
dU U †

ij
Ukl, where we’ve included the

gauge group indices i, j = 1, . . . , N . This must be proportional to an invariant tensor,

and the only option is
Z

dU U †

ij
Ukl =

1

N
�jk�il (4.16)

To see that the 1/N factor is correct, we can contract the jk indices and reproduce

the normalisation condition (4.12). One further useful integral comes from the baryon

vertex, which gives
Z

dU Ui1j1 . . . UiN jN =
1

N !
✏i1...iN ✏j1...jN

Elitzur’s Theorem

Let’s now return to our lattice gauge theory. We wish to compute expectation values

of operators O by computing

hOi = 1

Z

Z Y

(x,µ)

dUµ(x) O e�SWilson

This is simply lots of copies of the group integration defined above. The fact that any

object which transforms under G necessarily vanishes when integrated over the group

manifold has an important consequence for our gauge theory: it ensures that we have

hOi = 0

for any operator O that is not gauge invariant. This is known as Elitzur’s theorem.

Note that this statement has nothing to do with confinement. It is just as valid for

electromagnetism as for Yang-Mills, and is a statement about the operators we should

be considering in a gauge theory.

Elitzur’s theorem follows in a straightforward manner from (4.15). To illustrate the

basic idea, we will show how it works for a link variable, O = U⌫(y). We want to

compute

hU⌫(y)i =
1

Z

Z Y

(x,µ)

dUµ(x) U⌫(y) e
�SWilson

The specific link variable U⌫(y) will appear in a bunch of di↵erent plaquettes that arise

in the Wilson action. For example, we could focus on the plaquette Wilson loop

W⇤ = trU⌫(y)U⇢(y + ⌫̂)U †

⌫
(y + ⇢̂)U †

⇢
(y) (4.17)
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But we know that the measure is invariant under group multiplication of any link

variable. We can therefore make the change of variable

U⇢(y) ! U †

⌫
(y)U⇢(y) (4.18)

in which case the particular plaquette Wilson loop (4.17) becomes

W⇤ ! trU⇢(y + ⌫̂)U †

⌫
(y + ⇢̂)U †

⇢
(y)

and is independent of U⌫(y). You might think that this will

y y+

y+ρ

ν

Figure 35:

screw up some other plaquette action, where U⌫(y) will reappear.

There are 8 links emanating from the site y, as shown in the

disappointingly 3d figure on the right. You can convince yourself

that if you make the same change of variables (4.18) for each of

them then SWilson no longer depends on the specific link variable

U⌫(y). We can then isolate the integral over the link variable

U⌫(y), to get

hU⌫(y)i = other stu↵⇥
Z

dU⌫(y) U⌫(y) = 0

which, as shown, vanishes courtesy of (4.15). This tells us that a single link variable

cannot play the role of an order parameter in lattice gauge theory. But this is something

we expected from our discussion in the continuum.

We see that the Wilson action is rather clever. It’s constructed from link variables

U⌫(y), but doesn’t actually depend on them individually. Instead, it depends only on

gauge invariant quantities that we can construct from the link variables. These are the

Wilson loops.

A Comment on Gauge Fixing

The integration measure (4.10) will greatly overcount physical degrees of freedom: it

will integrate over many configurations all of which are identified by gauge transfor-

mations. What do we do about this? The rather wonderful answer is: nothing at

all.

In the continuum, we bend over backwards worrying about gauge fixing. This is

because we are integrating over the Lie algebra and will get a divergence unless we

fix a gauge. But there is no such divergence in the lattice formulation because we are

integrating over the compact group G. Instead, the result of failing to fix the gauge

will simply be a harmless normalisation constant.

– 212 –



4.2.3 The Strong Coupling Expansion

We now have all the machinery to define the partition function of lattice gauge theory,

Z =

Z Y

(x,µ)

dUµ(x) e
�SWilson (4.19)

with SWilson the sum over plaquette Wilson loops,

SWilson = � �

2N

X

⇤

⇣
W⇤ +W †

⇤

⌘
(4.20)

Because we’re in Euclidean spacetime, the parameter � plays the same role as the in-

verse temperature in statistical mechanics. It is related to the bare Yang-Mills coupling

as � = 2N/g2.

We expect this theory to give a good approximation to continuum Yang-Mills when

the lattice spacing a is suitably small. Here “small” is relative to the dynamically

generated scale ⇤QCD. Thinking of 1/a as the UV cut-o↵ of the theory, the physical

scale is defined by

⇤QCD =
1

a
e1/2�0g

2
(4.21)

where �0 is the one-loop beta-function which, despite the unfortunate similarity in their

names, has nothing to do with the lattice coupling � that we introduced in the Wilson

action. We calculated the one-loop beta function in Section 2.4 and, importantly,

�0 < 0.

In the expression (4.21), g2 is the bare gauge coupling. We see that we have a

separation of scales between ⇤QCD and the cut-o↵ provided our theory is weakly coupled

in the UV,

g2 ⌧ 1 , � � 1

In this case, we expect the lattice gauge theory to closely match the continuum. We

only have to do some integrals. Lots of integrals. I can’t do them. You probably can’t

either. But a computer can.

We could also ask: what happens in the opposite regime, namely

g2 � 1 , � ⌧ 1

It’s not obvious that this regime is of interest. From (4.21), we see that there is

no separation between the physical scale, ⇤QCD, and the cut-o↵ scale 1/a, so this is
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unlikely to give us quantitative insight into continuum Yang-Mills. Nonetheless, it does

have one thing going for it: we can actually calculate in this regime! We do this by

expanding the partition function (4.19) in powers of �. This is usually referred to as

the strong coupling expansion; it is analogous to the high temperature expansion in

statistical lattice models. (See the lectures on Statistical Physics for more details of

how this works in the Ising model.)

Confinement

We’ll use the strong coupling expansion to compute the expec-
L

T

Figure 36:

tation value of a large rectangular Wilson loop, W [C],

W [C] =
1

N
tr

0

@P
Y

(x,µ)2C

Uµ(x)

1

A (4.22)

Here the factor of 1/N is chosen so that if all the links are

U = 1 then W [C] = 1. We’ll place this loop in a plane of the

lattice as shown in the figure, and give the sides length L and

T . (Each of these must be an integer multiple of a.)

We would like to calculate

hW [C]i = 1

Z

Z Y

(x,µ)

dUµ(x) W [C] e�SWilson

In the strong coupling expansion, we achieve this by expanding e�SWilson in powers of

� ⌧ 1. What is the first power of � that will give a non-zero answer? If a given

link variable U appears in the integrand just once then, as we’ve seen in (4.15), it will

integrate to zero. This means, for example, that the �0 term in the expansion of e�SWilson

will not contribute, since it leaves the each of the links in W [C] unaccompanied.

The first term in the expansion of e�SWilson that will give a non-vanishing answer

must contribute a U † for each link in C. But any U † that appears in the expansion

of SWilson must be part of a plaquette of links. The further links in these plaquettes

must also have companions, and these come from further plaquettes. It is best to

think graphically. The links U of the Wilson loop are shown in red. They must be

compensated by a corresponding U † from SWilson plaquettes; these are shown in blue in

the next figure. The simplest way to make sure that no link is left behind is to tile a

surface bounded by C by plaquettes. We have shown some of these tiles in the figure.

Note that each of the plaquettes W⇤ must have a particular orientation to cancel the

Wilson loop on the boundary; this orientation then dictates the way further tiles are

laid.
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There are many di↵erent surfaces S that we could use to

Figure 37:

tile the interior of C. The simplest is the one that lies in the

same plane as C and covers each lattice plaquette exactly once.

However, there are other surfaces, including those that do not lie

in the plane. We can compute the contribution to hW [C]i from
any given surface S. Only the plaquettes of a specific orientation

in the Wilson action (4.20) will contribute (e.g. W⇤, but not

W †

⇤). The beta dependence is therefore

✓
�

2N

◆# of plaquettes

Each link in the surface (including those in the original C) will give rise to an integral

of the form (4.16). This then gives a term of the form

✓
1

N

◆# of links

Finally, for every site on the surface (including those on the original C), we’ll be left

with a summation �ij�ji = N . This gives a factor of

N# of sites

Including the overall factor of 1/N in the normalisation of the Wilson loop (4.22), we

have the contribution to the Wilson loop

hW [C]i = 1

N

✓
�

2N

◆# of plaquettes✓ 1

N

◆# of links
N# of sites

where we’ve used the fact that Z = 1 at leading order in �. This is the answer for a

general surface. The leading order contribution comes from the minimal, flat surface

which bounds C which has

# of plaquettes =
LT

a2

and

# vertical links =
(L+ a)T

a2
and # horizontal links =

L(T + a)

a2

and

# sites =
(L+ a)(T + a)

a2
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The upshot is that the leading order contribution to the Wilson loop is

hW [C]i =
✓

�

2N2

◆LT/a
2

But this is exactly what we expect from a confining theory: it is the long sought area

law (2.75) for the Wilson loop,

hW [C]i = e��A

where A = LT is the area of the minimal surface bounded by C and the string tension

� is given by

� = � 1

a2
log

✓
�

2N2

◆

At the next order, this will get corrections of O(�). Note that the string tension is of

order the UV cut-o↵ 1/a, which reminds us that we are not working in a physically

interesting regime. Nonetheless we have demonstrated, for the first time, the promised

area law of Yang-Mills, the diagnostic for confinement.

A particularly jarring way to illustrate that we’re not computing in the continuum

limit is to note that the computation above makes no use of the non-Abelian nature

of the gauge group. We could repeat everything for Maxwell theory, in which the link

variables are U 2 U(1). Nothing changes. We again find an area law in the strong

coupling regime, indicating the existence of a confining phase.

What are we to make of this? For U(1) gauge theory, there clearly must be a phase

transition as we vary the coupling from � ⌧ 1 to � � 1 where we have the free,

continuum Maxwell theory that we know and love. But what about Yang-Mills? We

may hope that there is no phase transition for non-Abelian gauge groups G, so that

the confining phase persists for all values of �. It seems that this hope is likely to be

dashed. At least as far as the string tension is concerned, it appears that there is a

finite radius of convergence around � = 0, and the string tension exhibits an essential

singularity at a finite value of �. It is not known if there is a di↵erent path – say by

choosing a di↵erent lattice action – which avoids this phase transition.

The Mass Gap

We can also look for the existence of a mass gap in the strong coupling expansion.

Since we’re in Euclidean space, we have neither Hilbert space nor Hamiltonian so we

can’t talk directly about the spectrum. However, we can look at correlation functions

between two far separated objects.
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The objects that we have to hand are the Wilson loops. We take two, parallel

plaquette Wilson loops W⇤ and W⇤0 , separated along a lattice axis by distance R. We

expect the correlation function of these Wilson loops to scale as

hW⇤ W⇤0i ⇠ e�mR (4.23)

with m the mass of the lightest excitation. If the theory turns out to be gapless, we

will instead find power-law decay.

We can compute this correlation function in the strong coupling expansion. The

argument is the same as that above: to get a non-zero answer, we must form a tube of

plaquettes. The minimum such tube is depicted in the figure, with the source Wilson

loops shown in red, and the tiling from the action shown in blue. (This time we have

not shown the orientation of the Wilson loops to keep the figure uncluttered.) It has

Figure 38:

# of plaquettes =
4R

a

# links =
4(2R + a)

a

# sites =
4(R + a)

a

The leading order contribution to the connected part of the correlation function is

therefore

hW⇤ W⇤0i = 1

N2

✓
�

2N2

◆4R/a

Comparing to the expected form (4.23), we see that we have a mass gap

m = �4

a
log

✓
�

2N2

◆

Once again, it’s comforting to see the expected behaviour of Yang-Mills. Once again,

we see the lack of physical realism highlighted in the fact that the mass scale is the

same order of magnitude as the UV cut-o↵ 1/a.
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4.3 Fermions on the Lattice

Finally we turn to fermions. Here things are not so straightforward. The reason is

simple: anomalies.

Even before we attempt any calculations, we can anticipate that things might be

tricky. Lattice gauge theory is a regulated version of quantum field theory. If we work

on a finite, but arbitrarily large lattice, we have a finite number of degrees of freedom.

This means that we are back in the realm of quantum mechanics. There is no room for

the subtleties associated to the chiral anomaly. There is no infinite availability at the

Hilbert hotel.

This means that we’re likely to run into trouble if we try to implement chiral sym-

metry on the lattice or, at the very least, if we attempt to couple gapless fermions to

gauge fields. We might expect even more trouble if we attempt to put chiral gauge

theories on the lattice. In this section, we will see the form that this trouble takes.

4.3.1 Fermions in Two Dimensions

We can build some intuition for the problems ahead by looking at fermions in d = 1+1

dimensions. Here, Dirac spinors are two-component objects. We work with the gamma

matrices

�0 = �1 , �1 = i�2 , �3 = ��0�1 = �3

The Dirac fermion then decomposes into chiral fermions �± as

 =

 
 +

 �

!

In the continuum, the action for a massless fermion is

S =

Z
d2x i ̄ /@ =

Z
d2x i †

+@� + + i †

�@+ � (4.24)

with @± = @t ± @x. The equations of motion tell us @� + = @+ � = 0. This means

that  + is a left-moving fermion, while  � is a right-moving fermion.

As in Section 3.1, it is useful to think in the language of the Dirac sea. The dispersion

relation E(k) for fermions in the continuum is drawn in the left hand figure. All states

with E < 0 are to be thought of as filled; all states with E > 0 are empty.
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Figure 39: The dispersion relation for a

Dirac fermion in the continuum

Figure 40: A possible deformation to

keep the dispersion periodic in the Bril-

louin zone (with a = 1).

The (blue) line with positive gradient describes the excitations of the right-moving

fermion  �: the particles have momentum k > 0 while the filled states have momentum

k < 0 which means that the anti-particles (a.k.a holes) again have momentum k > 0.

Similarly, the (orange) line with negative gradient describes the excitations of the left-

moving fermion  +.

The chiral symmetry of the action (4.24) means that the left- and right-handed

fermions are individually conserved. As we have seen Section 3.1, this is no longer the

case in the presence of gauge fields. But, for now, we will consider only free fermions so

the chiral symmetry remains a good symmetry, albeit one that has a ’t Hooft anomaly.

So much for the continuum. What happens if we introduce a lattice? We will start

by keeping time continuous, but making space discrete with lattice spacing a. This is

familiar from condensed matter physics, and we know what happens: the momentum

takes values in the Brillouin zone

k 2
h
�⇡
a
,
⇡

a

⌘

Importantly, the Brillouin zone is periodic. The momentum k = +⇡/a is identified

with the momentum k = �⇡/a.

What does this mean for the dispersion relation? We’ll look at some concrete models

shortly, but first let’s entertain a few possibilities. We require that the dispersion

relation E(k) remains a continuous, smooth function, but now with k 2 S1 rather than

k 2 R. This means that the dispersion relation must be deformed in some way.

One obvious possibility is shown in the right hand figure above: we deform the shape

of the dispersion relation so that it is horizontal at the boundary of the Brillouin zone
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Figure 41: The dispersion relation for a

right-handed fermion in the continuum

Figure 42: A possible deformation to

keep the dispersion periodic in the Bril-

louin zone (with a = 1).

|k| = ⇡/a. We then identify the states at k = ±⇡/a. Although this seems rather mild,

it’s done something drastic to the chiral symmetry. If we take, say, a right-moving

excitation with k > 0 and accelerate it, it will eventually circle the Brillouin zone and

come back as a left-moving excitation. This is shown graphically by the fact that the

blue line connects to the orange line at the edge of the Brillouin zone. (This is similar

to the phenomenon of Bloch oscillations observed in cold atom systems; see the lectures

on Applications of Quantum Mechanics.) Said another way, to get such a dispersion

relation we must include an interaction term between  + and  �. This means that,

even without introducing gauge fields, there is no separate conservation of left and

right-moving particles: we have destroyed the chiral symmetry. Note, however, that

we have to excite particles to the maximum energy to see violation of chiral symmetry,

so it presumably survives at low energies.

Suppose that we insist that we wish to preserve chiral symmetry. In fact, suppose

that we try to be bolder and put just a single right-moving fermion  + on a lattice.

We know that the dispersion relation E(k) crosses the E = 0 axis at k = 0, with

dE/dk > 0. But now there’s no other line that it can join. The only option is that

the dispersion relation also crosses the E = 0 at some other point k 6= 0, now with

dE/dk < 0. An example is shown in right hand figure above. Now the lattice has

an even more dramatic e↵ect: it generates another low energy excitation, this time a

left-mover. We learn that we don’t have a theory of a chiral fermion at all: instead

we have a theory of two Weyl fermions of opposite chirality. Moreover, once again

a right-moving excitation can evolve continuously into a left-moving excitation. This

phenomenon is known as fermion doubling.

You might think that you can simply ignore the high momentum fermion. And, of
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course, in a free theory you essentially can. But as soon as we turn on interactions —

for example, by adding gauge fields — these new fermions can be pair produced just

as easily as the original fermions. This is how the lattice avoids the gauge anomaly: it

creates new fermion species!

More generally, it is clear that the Brillouin zone must house as many gapless left-

moving fermions as right-moving fermions. This is for a simple reason: what goes up,

must come down. This is a precursor to the Nielsen-Ninomiya theorem that we will

discuss in Section 4.3.3

Quantising a Chiral Fermion

Let’s now see how things play out if we proceed in the obvious fashion. The Hamiltonian

for a chiral fermion on a line is

H = ±
Z

dx i †

±@x ±

The form of the Hamiltonian is the same for both chiralities; only the ± sign out front

determines whether the particle is left- or right-moving. As we will see below, the

requirement that the Hamiltonian is positive definite will ultimately translate this sign

into a choice of vacuum state above which all excitations move in a particular direction.

For concreteness, we’ll work with right-moving fermions  �. We discretise this system

in the obvious way: we consider a one-dimensional lattice with sites at x = na, where

n 2 Z, and take the Hamiltonian to be

H = �a
X

x2aZ

i †

�(x)


 �(x+ a)�  �(x� a)

2a

�

The Hamiltonian is Hermitian as required. We introduce the usual momentum expan-

sion

 �(x) =

Z +⇡/a

�⇡/a

dk

2⇡
eikx ck

Note that we have momentum modes for both k > 0 and k < 0, even though this is a

purely right-moving fermion. Inserting the mode expansion into the Hamiltonian gives

H =
1

2a

Z +⇡/a

�⇡/a

dk

2⇡
2 sin(ka) c†

k
ck
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From this we can extract the one-particle dispersion relation by constructing the state

|ki = c†
k
|0i, to find the energy H|ki = E(k)|ki, with

E(k) =
1

a
sin(ka)

This gives a dispersion relation of the kind we anticipated above: it has zeros at both

k = 0 and at the edge of the Brillouin zone k = ⇡/a. As promised, we started with a

right-moving fermion but the lattice has birthed a left-moving partner.

Finally, a quick comment on the existence of states with k < 0. The true vacuum is

not |0i, but rather |⌦i which has all states with E < 0 filled. This is the Dirac sea or,

Fermi sea since the number of such states are finite. This vacuum obeys ck|⌦i = 0 for

k > 0 and c†
k
|⌦i = 0 for k < 0. In this way, c†

k
creates a right-moving particle when

k > 0, and ck creates a right-moving anti-particle with momentum |k| when k < 0.

4.3.2 Fermions in Four Dimensions

A very similar story plays out in d = 3 + 1 dimensions. A Weyl fermion  ± is a

2-component complex spinor and obeys the equation of motion

@0 ± = ±�i@i ±

The Hamiltonian for a single Weyl fermion takes the form

H = ±
Z

d3x i †

±�
i@i ±

Once again, we wish to write down a discrete version of this Hamiltonian on a cubic

spatial lattice �. For concreteness, we’ll work with  �. We take the Hamiltonian to be

H = �a3
X

x2�

i �(x)
X

i=1,2,3

�i

"
 �(x+ âi)�  �(x� âi)

2a

#

where i = 1, 2, 3 labels the spatial directions. In momentum space, the spinor is

 �(x) =

Z

BZ

d3k

(2⇡)3
eik·x ck

where ck is again a two-component spinor. Here the momentum is integrated over the

Brillouin zone

ki 2
h
�⇡
a
,
⇡

a

⌘
i = 1, 2, 3
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The Hamiltonian now takes the form

H =
1

2a

Z

BZ

d3k

(2⇡)3

X

i=1,2,3

2 sin(kia) c
†

k �
i ck (4.25)

If we focus on single particle excitations, the spectrum now has two bands, correspond-

ing to a particle and anti-particle, and is given by

E(k) =
1

a

X

i=1,2,3

sin(kia) �
i

Close to the origin, k ⌧ 1/a, the Hamiltonian looks like that of the continuum fermion,

with dispersion

k

E(k)

Figure 43:

E(k) ⇡ k · � (4.26)

This is referred to as the Dirac cone; it is sketched in the

figure. Note that the bands cross precisely at E = 0 which,

in a relativistic theory, plays the role of the Fermi energy. If

the dispersion relation were to cross anywhere else, we would

have a Fermi surface.

The fact that the Dirac cone corresponds to a right-handed

fermion  � shows up only in the overall + sign of the Hamil-

tonian. A left-handed fermion would have a minus sign in front. In fact, our full lattice

Hamiltonian (4.25) has both right- and left-handed fermions since, like the d = 1 + 1

example above, it exhibits fermion doubling. There are gapless modes at momentum

ki = 0 or
⇡

a

This gives 23 = 8 gapless fermions in total. If we expand the dispersion relation around,

say k1 = (⇡/a, 0, 0), it looks like

E(k0) ⇡ �k0 · � where k0 = k� k1

which is left-handed. Of the 8 gapless modes, you can check that 4 are right-handed

and 4 are left-handed. We see that, once again, the lattice has generated new gapless

modes. Anything to avoid that anomaly.
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4.3.3 The Nielsen-Ninomiya Theorem

We saw above that a naive attempt to quantise a d = 3 + 1 chiral fermion gives equal

numbers of left and right-handed fermions in the Brillouin zone. The Nielsen-Ninomiya

theorem is the statement that, given certain assumptions, this is always going to be

the case. It is the higher dimensional version of “what goes up must come down”.

The Nielsen-Ninomiya theorem applies to free fermions. We will work in terms of

the one-particle dispersion relation, rather than the many-body Hamiltonian. To begin

with, we consider a dispersion relation for a single Weyl fermion (we will generalise

shortly). In momentum space, the most general Hamiltonian is given by

H = vi(k)�
i + ✏(k)12 (4.27)

where k takes values in the Brillouin zone.

In the language of condensed matter physics, this Hamiltonian has two bands, cor-

responding to the fact that each term is a 2⇥ 2 matrix. The first question that we will

ask is: when do the two bands touch? This occurs when each vi(k) = 0 for i = 1, 2, 3.

This is three conditions, and so we expect to generically find solutions at points, rather

than lines, in the Brillouin zone BZ ⇢ R3. Let us suppose that there are D such points,

which we call k↵,

vi(k↵) = 0 , ↵ = 1, . . . , D

Expanding about any such point, the dispersion relation becomes

H ⇡ vij(k↵) (k� k↵)
j�i with vij =

@vi
@kj

This now takes a similar form to (4.26), but with an anisotropic dispersion relation.

The chirality of the fermion is dictated by

chirality = sign det vij(k↵) (4.28)

The assumption that the band crossing occurs only at points means that det vij(k↵) 6= 0.

The Nielsen-Ninomiya theorem is the statement that, for any dispersion (4.27) in a

Brillouin zone, there are equal numbers of left- and right-handed fermions.

We o↵er two proofs of this statement. The first follows from some simple topological

considerations. For k 6= k↵, we can define a unit vector

v̂(k) =
v

|v|

– 224 –



The key idea is that this unit vector can wind around each of the degenerate points k↵.

To see this, surround each such point with a sphere S2
↵
. Evaluated on these spheres, v̂

provides a map

v̂ : S2
↵
7! S2

But we know that such maps are characterised by ⇧2(S2) = Z. Generically, this winding

will take values ±1 only. In non-generic cases, where we have, say, winding +2, we can

perturb the v slightly and the o↵ending degenerate point will split into two points each

with winding +1. This is the situation we will deal with.

This winding {+1,�1} ⇢ ⇧2(S2) is precisely the chirality (4.28). One, quick argu-

ment for this is the a spatial inversion will flip both the winding and the sign of the

determinant.

To finish the argument, we need to show that the total winding must vanish. This

follows from the compactness of the Brillouin zone. Here are some words. We could

consider a sphere S2
bigger which encompasses more and more degenerate points. The

winding of around this sphere is equal to the sum of the windings of the S2
↵
which sit

inside it. By the time we get to a sphere S2
biggest which encompasses all the points, we

can use the compactness of the Brillouin zone to contract the sphere back onto itself

on the other side. The winding around this sphere must, therefore, vanish.

Here are some corresponding equations. The winding number ⌫↵ is given by

⌫↵ =
1

8⇡

Z

S2
↵

d2Si ✏
ijk✏abcv̂a

@v̂b

@kj

@v̂c

@kk
= ±1

We saw this expression previously in (2.89) when discussing ’t Hooft-Polyakov monopoles.

Let us define BZ0 as the Brillouin zone with the balls inside S2
↵
excised. This means

that the boundary of BZ0 is

@(BZ0) =
DX

↵=1

S2
↵

Note that this is where we’ve used the compactness of the Brillouin zone: there is no

contribution to the boundary from infinity. We can then use Stokes’ theorem to write

DX

↵=1

⌫↵ =
1

8⇡

Z

BZ0
d3k

@

@ki

✓
✏ijk✏abcv̂a

@v̂b

@kj

@v̂c

@kk

◆
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But the bulk integrand is strictly zero,

@

@ki

✓
✏ijk✏abcv̂a

@v̂b

@kj

@v̂c

@kk

◆
= ✏ijk✏abc

@v̂a

@ki

@v̂b

@kj

@v̂c

@kk
= 0

because each of the three vectors @v̂a/@ki, i = 1, 2, 3 is orthogonal to v̂a and so all three

lie must in the same plane. This tells us that

DX

↵=1

⌫↵ = 0

as promised.

Note that the Nielsen-Ninomiya theorem counts only the points of degeneracy in the

dispersion relation (4.27): it makes no comment about the energy ✏(k↵) of these points.

To get relativistic physics in the continuum, we require that ✏(k↵) = 0. This ensures

that the bands cross precisely at the top of the Dirac sea, and there is no Fermi surface.

This isn’t as finely tuned as it appears and arises naturally if there is one electron per

unit cell; we saw an example of this phenomenon in the lectures on Applications of

Quantum Field Theory when we discussed graphene.

Another Proof of Nielsen-Ninomiya: Berry Phase

There is another viewpoint on the Nielsen-Ninomiya theorem that is useful. This places

the focus on the Hilbert space of states, rather than the dispersion relation itself9.

For each k 2 BZ, there are two states. As long as k 6= k↵, these have di↵erent

energies. In the language of the Dirac sea, the one with lower energy is filled and the

one with higher energy is empty. We focus on the lower energy, filled states which we

refer to as | (k)i, k 6= k↵. The Berry connection is a natural U(1) connection on these

filled states, which tells us how to relate their phases for di↵erent values of k,

Ai(k) = �ih (k)| @

@ki
| (k)i

You can find a detailed discussion of Berry phase in both the lectures on Applications

of Quantum Field Theory and the lectures on Quantum Hall E↵ect. From the Berry

phase, we can define the Berry curvature

Fij =
@Aj

@ki
� @Ai

@kj

9This is closely related to the Nobel winning TKKN formula that we discussed the lectures on the
Quantum Hall E↵ect.
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The Berry curvature for the dispersion relation (4.27) is the simplest example that

we met when we first came across the Berry phase and is discussed in detail in both

previous lectures. The chirality of the gapless fermion can now be expressed in terms of

the curvature F , which has the property that, when integrated around any degenerate

point k↵,

⌫↵ =
1

2⇡

Z

S2
↵

F = ±1

Now we complete the argument in the same way as before. We have

1

2⇡

Z

BZ0
dF =

1

2⇡

DX

↵=1

Z

S2
↵

F =
DX

↵=1

⌫↵ = 0

Again, we learn that there are equal numbers of left- and right-handed fermions.

We can extend this proof to systems with multiple bands. Suppose that we have

a system with q bands, of which p are filled. This state of a↵airs persists apart from

at points k↵ where the pth band intersects the (p + 1)th. Away from these points, we

denote the filled states as | a(k)i with a = 1, . . . p. These states then define a U(p)

Berry connection

(Ai)ba = �ih a|
@

@ki
| bi

and the associated U(p) field strength

(Fij)ab =
@(A

j
)ab

@ki
� @(Ai)ab

@kj
� i[Ai,Aj]ab

This time the winding is

⌫↵ =
1

2⇡

Z

S2
↵

trF

The same argument as above tells us that, again,
P

↵
⌫↵ = 0.

4.3.4 Approaches to Lattice QCD

So far our discussion of fermions has been in the Hamiltonian formulation, where time

remains continuous. The issues that we met above do not disappear when we consider

discrete, Euclidean spacetime. For example, the action for a single massless Dirac

fermion is

S =

Z
d4x i ̄�µ@µ 
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The obvious discrete generalisation is

S = a4
X

x2�

i ̄(x)
X

µ

�µ

 (x+ aµ̂)�  (x� aµ̂)

2a

�
(4.29)

Working in momentum space, this becomes

S =
1

a

Z

BZ

d4k

(2⇡)4
 ̄�k D(k) k (4.30)

with the inverse propagator

D(k) =
X

µ

�µ sin(kµa) (4.31)

We again see the fermion doubling problem, now in the guise of poles in the propagator

D�1(k) at kµ = 0 and kµ = ⇡/a. Since we have also discretised time, the problem has

become twice as bad: there are now 24 = 16 poles.

The Nielsen-Ninomiya theorem that we met earlier has a direct translation in this

context. It states that it is not possible to write down a D(k) in (4.30) that obeys the

following four conditions,

• D(k) is continuous within the Brillouin zone. This means, in particular, that it

is periodic in k.

• D(k) ⇡ �µkµ when k ⌧ 1/a, so that the theory looks like a massless Dirac

fermion when the momentum is small.

• D(k) has poles only at k = 0. This is the requirement that there are no fermion

doublers. As we’ve seen, this requirement doesn’t hold if we follow the naive

discretization (4.31).

• {�5, D(k)} = 0. This is the statement that the theory preserves chiral symmetry.

It is true for our naive approach (4.31), but this su↵ered from fermionic doublers.

As we will see below, if we try to remove these we necessarily screw with chiral

symmetry. Indeed, we saw a very similar story in Section 4.3.1 when we discussed

fermions in d = 1 + 1 dimensions.

What to make of this? Clearly, we’re not going to be able to simulate chiral gauge

theories using these methods. But what about QCD? This is a non-chiral theory that

involves only Dirac fermions. Even here, we have some di�culty because if we try to

remove the doublers to get the right number of degrees of freedom, then we are going to

break chiral symmetry explicitly. Of course, ultimately chiral symmetry will be broken

by the anomaly anyway, but there’s interesting physics in that anomaly and that’s

going to be hard to see if we’ve killed chiral symmetry from the outset.
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What to do? Here are some possible approaches. We will discuss a more innovative

approach in the following section.

SLAC Fermions

We’re going to have to violate one of the requirements of the Nielsen-Ninomiya theorem.

One possibility is to give up on periodicity in the Brillouin zone. Now what goes up

need not necessarily come down. We make the dispersion relation discontinuous at

some high momentum. For example, you could just set D(k) = �µkµ everywhere, and

su↵er the discontinuity at the edge of the Brillouin zone. This, it turns out, is bad. A

discontinuity in momentum space corresponds to a breakdown of locality in real space.

The resulting theories are not local quantum field theories. They do not behave in a

nice manner.

Wilson Fermions

As we mentioned above, another possibility is to kill the doublers, at the expense of

breaking chiral symmetry. One way to implement this, first suggested by Wilson, is to

add to the original action (4.30) the term

S = ar

Z
d4x  ̄ @2 = a3r

X

x2�

 ̄(x)
X

µ


 (x+ aµ̂)� 2 (x) +  (x� aµ̂)

a2

�

In momentum space, this becomes

S =
4r

a2

Z

BZ

d4k

(2⇡)4
 ̄�k sin

2

✓
kµa

2

◆
 k

and we’re left with the inverse propagator

D(k) = �µ sin(kµa) +
4r

a
sin2

✓
kµa

2

◆
(4.32)

This now satisfies the first three of the four requirements above, with all the spurious

fermions at kµ = ⇡/a lifted. The resulting dispersion relation is analogous to what

we saw in d = 1 + 1 dimensions. The down side is that we have explicitly broken

chiral symmetry, which can be seen by the lack of gamma matrices in the second term

above. This becomes problematic when we consider interacting fermions, in particular

when we introduce gauge fields. Under RG, we no longer enjoy the protection of chiral

symmetry and expect to generate any terms which were previously prohibited, such

as mass terms  ̄ and dimension 5 operators  ̄�µ�⌫Fµ⌫ . Each of these must be fine

tuned away, just like the mass of the scalar in Section 4.1.
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Staggered Fermions

The final approach is to embrace the fermion doublers. In fact, as we will see, we don’t

need to embrace all 16 of them; only 4.

To see this, we need to return to the real space formalism. At each lattice site, we

have a 4-component Dirac spinor  (x). We denote the position of the lattice site as

x = a(n1, n2, n3, n4), with nµ 2 Z. We then introduce a new Dirac spinor �(x), defined

by

 (x) = �n1
1 �

n2
2 �

n3
3 �

n4
4 �(x) (4.33)

In the action (4.29), we have  ̄(x) �µ  (x ± aµ̂). Written in the � variable, the term

�µ  (x± aµ̂) will have two extra powers of �µ compared to  ̄(x); one from the explicit

�µ out front, and the other coming from the definition (4.33). Since we have (�µ)2 = +1

in Euclidean space, we will find

�µ  (x± aµ̂) = (�1)some integer�n1
1 �

n2
2 �

n3
3 �

n4
4 �(x± aµ̂)

where the integer is determined by commuting various gamma matrices past each other.

But this means that the integrand of the action has terms of the form

 ̄(x) �µ (x+ aµ̂) = ⌘x,µ�̄(x)�(x+ aµ̂)

where there’s been some more commuting and annihilating of gamma matrices going

on, resulting in the signs

⌘x,1 = 1 , ⌘x,2 = (�1)n1 , ⌘x,3 = (�1)n1+n2 , ⌘x,4 = (�1)n1+n2+n3

The upshot is that the transformation (4.33) has diagonalised the action in spinor space.

One can check that this same transformation goes through unscathed if we couple the

fermion to gauge fields. This means that, on the lattice, we have

det(i /D) = det 4(D̂)

for some operator D̂. The operator D̂ still includes contributions from the 16 fermions

dotted around the Brillouin zone, but only one spinor index contribution from each.

We may then take the fourth power and consider det(D̂) by itself. Perhaps surprisingly,

one still finds a relativistic theory in the infra-red, with 4 of the 16 doublers providing

the necessary spinor degrees of freedom.

– 230 –



Roughly speaking, you can think of the staggered fermions as arising from placing

just a single degree of freedom on each lattice site. After doubling, we have 16 degrees

of freedom living at the origin of momentum space and the corners of the Brillouin

zone. The staggering trick is to recombine these 16 degrees of freedom back into 4

Dirac spinors. The idea that some subset of the fermion doublers may play the role of

spin sounds strange at first glance, but is realised in d = 2+1 dimensions in graphene.

This staggered approach still leaves us with 16/4 = 4 Dirac fermions. At high energy,

these are coupled in a way which is distinct from four flavours in QCD. Nonetheless, it

is thought that, when coupled to gauge fields, the continuum limit coincides with QCD

with four flavours which, in this context, are referred to as tastes. The lattice theory

has a U(1)⇥ U(1) chiral symmetry, less than the U(4)⇥ U(4) chiral symmetry of the

(classical) continuum but still su�cient to prevent the generation of masses. This is a

practical advantage of staggered fermions.

In fact, there are further reasons to be nervous about staggered fermions. As we’ve

seen, the continuum limit results in 4 Dirac fermions. Let’s call them  ↵i, where

↵ = 1, 2, 3, 4 is the spinor index and i = 1, 2, 3, 4 is the taste (flavour) index. However,

these spinor and tase indices appear on the same footing in the lattice: both come from

doubling. This suggests that they will sit on the same footing in the continuum limit.

But that’s rather odd. It means that, upon a Lorentz transformation ⇤, the resulting

Dirac spinors will transform as

 ↵i ! S[⇤] �

↵
S[⇤] j

i
 �j

with S[⇤] the spinor representation of the Lorentz transformation. (Since we’re in

Euclidean space, it is strictly speaking just the rotation group SO(4).) The first term

S[⇤] �

↵
is the transformation property that we would expect of a spinor, but the second

term S[⇤] j

i
is very odd, since these are flavour indices. In particular, it means that if

we rotate by 2⇡, we never see the famous minus sign acting on the staggered fermions.

Instead we get two minus signs, one acting on the two indices, and the resulting object

actually has integer spin!

What’s going on here is that the object  ↵i is really a bi-spinor, in the sense that

both ↵ and i are spinor indices. In representation theory language, a Dirac spinor

transforms as (12 , 0)� (0, 12). The staggered fermions then transform in

[(12 , 0)� (0, 12)]⌦ [(12 , 0)� (0, 12)] = 2(0, 0)� 2(12 ,
1
2)� (1, 0)� (0, 1)

Here (0, 0) are scalars, (12 ,
1
2) is the vector representation, while (1, 0) and (0, 1) are the

self-dual and anti-self-dual representations of 2-forms. In fact, formally, the collection
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of objects on the right can be written as a sum of forms of di↵erent degrees,

� = �(0) + �(1)
µ
dxµ + �(2)

µ⌫
dxµ ^ dx⌫ + �(3)

µ⌫⇢
dxµ ^ dx⌫ ^ dx⇢ + �(4)

µ⌫⇢�
dxµ ^ dx⌫ ^ dx⇢ ^ dx�

where Poincaré duality means that the 4-form has the same degrees of freedom as a

scalar and the 3-form the same as a vector. The 16 degrees of freedom that sit in

the staggered fermions  ↵i can then be rearranged to sit in �. Moreover, the Dirac

equation on  has a nice description in terms of these forms; it becomes

(d� ⇤d ⇤+m)� = 0

This is sometimes called a Dirac-Kähler field.

The upshot is that staggered fermions don’t quite give rise to Dirac fermions, but a

slightly more exotic object constructed in terms of forms. Nonetheless, this doesn’t stop

people using them in an attempt to simulate QCD, largely because of the numerical

advantage that they bring. Given the discussion above, one might be concerned that

this is not quite a legal thing to do and it is, in fact, simulating a di↵erent theory.

This is not the only di�culty with staggered fermions. The four tastes necessarily

have the same mass meaning that, the problems above notwithstanding, staggered

fermions do not allow us to get close to a realistic QCD theory, where the masses of

the four lightest quarks are very di↵erent. To evade this issue, one sometimes attempts

to simulate a single quark by taking yet another fourth-root, det 1/4(D̂). It seems clear

that this does not result in a local quantum field theory. Arguments have raged about

how evil this procedure really is.

4.4 Towards Chiral Fermions on the Lattice

A wise man once said that, when deciding what to work on, you should first evaluate

the importance of the problem and then divide by the number of people who are

already working on it. By this criterion, the problem of putting chiral fermions on the

lattice ranks highly. There is currently no fully satisfactory way of evading the Nielsen-

Ninomiya theorem. This means that there is no way to put the Standard Model on a

lattice.

On a practical level, this is not a particularly pressing problem. It is the weak sector

of the Standard Model which is chiral, and here perturbative methods work perfectly

well. In contrast, the strong coupling sector of QCD is a vector-like theory and this is

where most e↵ort on the lattice has gone. However, on a philosophical level, the lack of

lattice regularisation is rather disturbing. People will bang on endlessly about whether
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or not we live “the matrix’”, seemingly unaware that there are serious obstacles to

writing down a discrete version of the known laws of physics, obstacles which, to date,

no one has overcome.

In this section, I will sketch some of the most promising ideas for how to put chiral

fermions on a lattice. None of them quite works out in full – yet – but may well do in

the future.

4.4.1 Domain Wall Fermions

Our first approach has its roots in the continuum, which allows us to explain much of

the basic idea without invoking the lattice. We start by working in d = 4+1 dimensions.

The fifth dimension will be singled out in what follows, and we refer to it as x5 = y.

In d = 4 + 1, the Dirac fermion has four components. The novelty is that we endow

the fermion with a spatially dependent mass, m(y)

i /@ + i�5@y �m(y) = 0 (4.34)

where we pick the boundary conditions

m(y) ! ±M as y ! ±1

with M > 0. We will take the profile m(y) to be

y

m(y)

Figure 44:

monotonic, with m(y) = 0 only at y = 0. A typical

form of the mass profile is shown in the figure. Pro-

files of this kind often arise when we solve equations

which interpolate between two degenerate vacua. In

that context, they are referred to as domain walls

and we’ll keep the same terminology, even though we

have chosen m(y) by hand.

The fermion excitation spectrum includes a contin-

uum of scattering states with energies E � M which can exist asymptotically in the y

direction. At these energies, physics is very much five dimensional. But there are also

states with E < M which are bound to the wall. If we restrict to these energies then

physics is essentially four dimensional. In this sense, the mass M can be thought of as

an unconventional cut-o↵ for the four dimensional theory on the wall.
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In the chiral basis of gamma matrices,

�0 =

 
0 1

1 0

!
, �i =

 
0 �i

��i 0

!
, i = 1, 2, 3 , �5 =

 
i 0

0 �i

!

where the factors of i in �5 reflect the fact that we’re working in signature (+,�,�,�,�).

The Dirac equation becomes

i@0 � + i�i@i � � @5 + = m(y) +

i@0 + � i�i@i + + @5 � = m(y) �

where  = ( +, �)T . There is one rather special solution to these equations,

 +(x, y) = exp

✓
�
Z

y

dy0 m(y0)

◆
�+(x) and  �(x, y) = 0

The profile is supported only in the vicinity of the domain wall; it dies o↵ exponentially

⇠ e�M |y| as y ! ±1. Importantly, there is no corresponding solution for  �, since

the profile must be of the form exp
�
+
R
dy0m(y0)

�
which now diverges exponentially in

both directions.

The two-component spinor �+(x) obeys the equation for a right-handedWeyl fermion,

@0�+ � �i�+ = 0

We see that we can naturally localise chiral fermions on domain walls. The existence

of this mode, known as a fermion zero mode, does not depend on any of the detailed

properties of m(y). We met a similar object in Section 3.3.4 when discussing the

topological insulator.

This is interesting. Our original 5d theory had no hint of any chiral symmetry. But,

at low-energies, we find an emergent chiral fermion and an emergent chiral symmetry.

Implications for the Lattice

So far, our discussion in this section has taken place in the continuum. How does it

help us in our quest to put chiral fermions on the lattice?

The idea to apply domain wall fermions to lattice gauge theory is due to Kaplan.

At first sight, this doesn’t seem to buy us very much: a straightforward discretisation

of the Dirac equation (4.34) shows that the domain wall does nothing to get rid of the

doublers: in Euclidean space there are now 24 right-handed fermions �+, with the new

modes sitting at the corners of the Brillouin zone as usual. Moreover, on the lattice

one also finds a further 24 left-moving fermions ��. This brings us right back to a

vector-like theory, with 24 Dirac fermions.
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However, the outlook is brighter when we add a 5dWilson term (4.32) to the problem.

By a tuning the coe�cient to lie within a certain range, we can not only remove all of

the 16 left-handed fermions ��, but we can remove 15 of the 16 right-handed fermions.

This leaves us with just a single right-handed Dirac fermion localised on the domain

wall.

It is surprising that the Wilson term (4.32) can remove an odd number of gapless

fermions from the spectrum since everything we learned up until now suggests that

gapless modes can only be removed in pairs. But we have something new here, which

is the existence of the infinite fifth dimension. This gives a novel mechanism by which

zero modes can disappear: they can become non-normalisable.

There is an alternative way to view this. Suppose that we make the fifth direction

compact. Then the domain wall must be accompanied by an anti-domain wall that

sits at some distance L. While the domain wall houses a right-handed zero mode, the

anti-domain wall has a left-handed zero mode. Now Nielsen-Ninomiya is obeyed, but

the two fermions are sequestered on their respective walls, with any chiral symmetry

breaking interaction suppressed by e�L/a.

I will not present that analysis that leads to the conclusions above. But we will

address a number of questions that this raises. First, what happens if we couple the

chiral mode on the domain wall to a gauge field? Second, how has the single chiral

mode evaded the Nielsen-Ninomiya theorem?

4.4.2 Anomaly Inflow

We have seen that a domain wall in d = 4 + 1 dimension naturally localises a chiral

d = 3 + 1 fermion. This may make us nervous: what happens if we now couple the

system to gauge fields?

At low energies, the only degree of freedom is the zero mode on the domain wall, so

we might think it makes sense to restrict our attention to this. (We’ll see shortly that

things are actually a little more subtle.) Let us introduce a U(1) gauge field everywhere

in d = 4+1 dimensional spacetime, under which the original Dirac fermion  has charge

+1.

We haven’t yet discussed gauge theories in d = 4 = 1 dimensions, although we’ll

learn a few things below. The first statement we’ll need is that there are no chiral

anomalies in odd spacetime dimensions. This is because there is no analog of �5. We

might, therefore, expect that a U(1) gauge theory coupled to a single Dirac fermion is

consistent in d = 4 + 1 dimensions. We will revisit this expectation shortly.
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However, from a low energy perspective we seem to be in trouble, because there is

a single massless chiral fermion �+ on the domain wall which has charge +1 under

the gauge field. The fact that the gauge field extends in one extra dimension does not

stop the anomaly which is now restricted to the region of the domain wall. Under the

assumption that the zero mode is restricted to the y = 0 slice, the anomaly (3.34) for

the gauge current

@µj
µ =

1

32⇡2
✏µ⌫⇢�Fµ⌫F⇢� �(y) (4.35)

It is a factor of 1/2 smaller than the chiral anomaly for a Dirac fermion because we

have just a single Weyl fermion. This is bad: if the U(1) gauge field is dynamical then

this is precisely the form of gauge anomaly that we cannot tolerate. Indeed, as we saw

in (3.33), under a gauge transformation Aµ ! Aµ + @µ!(x, y), the measure for the 4d

chiral fermion will transform as
Z

D�D�̄ �!
Z

D�D�̄ exp

✓
� i

32⇡2

Z
d4x !(x; 0) ✏µ⌫⇢�Fµ⌫F⇢�

◆
(4.36)

Fortunately, there is another phenomenon which will save us. Let’s return to d = 4+1

dimensions. Far from the domain wall, the fermion is massive and we can happily

integrate it out. You might think that as m ! 1, the fermion simply decouples

from the dynamics. But that doesn’t happen in odd spacetime dimensions. Instead,

integrating out a massive fermions generates a term that is proportional to sign(m),

SCS = � k

24⇡2

Z
d5x ✏µ⌫⇢��Aµ @⌫A⇢ @�A� (4.37)

with

k =
1

2

m

|m|

This is a Chern-Simons term and k is referred to as the level. We will discuss the

corresponding term in d = 2+ 1 dimensions in some detail in Section 8.4. We will also

perform the analogous one-loop calculation in Section 8.5 and show how the Chern-

Simons term, proportional to the sign of the mass, is generated when a Dirac fermion

is integrated out. The calculation necessary to generate (4.37) is entirely analogous.

Under a gauge transformation Aµ ! Aµ + @µ!, the Chern-Simons action (4.37)

transforms as

�SCS = � k

24⇡2

Z
d5x @µ

�
✏µ⌫⇢��!@⌫A⇢ @�A�

�
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This is a total derivative. Under most circumstances, we can simply throw this away.

But there are some circumstances when we cannot, and the presence of a domain wall

is one such an example. We take the thin wall limit, in which we approximate

m

|m| =
(
�1 y < 0

+1 y > 0

Since the level is now spatially dependent, we should put it inside the integral. After

some integration by parts, we then find that the change of the Chern-Simons term is

then

�SCS = � 3

24⇡2

Z
d5x

m

2|m|@y (!✏
µ⌫⇢�@µA⌫ @⇢A�)

= +
1

8⇡2

Z
d5x �(y)!✏µ⌫⇢�@µA⌫ @⇢A�

We see that this precisely cancels the gauge transformation that comes from the chiral

fermion (4.36). A very similar situation occurs in the integer quantum Hall e↵ect,

where a 2d chiral fermion on the boundary compensates the lack of gauge invariance

of a d = 2+1 dimensional Chern-Simons theory in the bulk. This was described in the

lectures on the Quantum Hall E↵ect.

We learn that the total theory is gauge invariant, but only after we combine two

subtle e↵ects. In particular, the anomalous current (4.35) on the domain wall is real.

A low energy observer, living on the wall, would see that the number of fermions is

not conserved in the presence of an electric and magnetic field. But, for a higher

dimensional observer there is no mystery. The current is generated in the bulk (strictly

speaking, at infinity) by the Chern-Simons term,

Jµ =
�SCS[A]

�Aµ

= � 1

32⇡2

m

|m|✏
µ⌫⇢��F⌫⇢F��

The current is conserved in the bulk, but has a non-vanishing divergence on the domain

wall where it is cancelled by the anomaly. This mechanism is referred to as anomaly

inflow.

There is one final subtlety. I mentioned above that the five-dimensional Maxwell

theory coupled to a single Dirac fermion is consistent. This is not quite true. Even in

the absence of a domain wall, one can show that the 5d Chern-Simons (4.37) theory

is invariant under large gauge transformations only if we take k 2 Z. (We’ll explain

why this is for 3d Chern-Simons theories in Section 8.4.) But integrating out a massive
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fermion gives rise to a half-integer k rather than integer. In other words, even in the

absence of a domain wall the 5d theory is not quite gauge invariant. This doesn’t

invalidate our discussion above; we can simply need to add a bare Chern-Simons term

with level k = 1/2 so that, after integrating out the massive fermion, the e↵ective level

is k = 1 when y > 0 and k = 0 when y < 0. (This discussion is slightly inaccurate:

we’ll have more to say on these issues in Section 8.5.)

4.4.3 The Ginsparg-Wilson Relation

We have not yet addressed exactly how the domain wall fermion evades the Nielsen-

Ninomiya theorem. Here we explain the loophole. The idea that follows is more general

than the domain wall, and goes by the name of overlap fermions.

Rather than jump straight to the case of a Weyl fermion, let’s first go back and think

about a Dirac fermion. We take the action in momentum space to be

S =
1

a

Z

BZ

d4k

(2⇡)4
 ̄�k D(k) k

for some choice of inverse propagator D(k). As explained in Section 4.3.4, the Nielsen-

Ninomiya theorem can be cast as four criterion which cannot all be simultaneously

satisfied byD(k). One of these is the requirement that the theory has a chiral symmetry,

in the guise of

{�5, D(k)} = 0

The key idea is to relax this constraint, but relax it in a very particular way. We will

instead require

{�5, D(k)} = aD �5 D (4.38)

This is the Ginsparg-Wilson relation. Note the presence of the lattice spacing a on the

right-hand-side. This means that in the continuum limit, which is naively a ! 0, we

expect to restore chiral symmetry.

In fact, the Ginsparg-Wilson relation ensures that a chiral symmetry exists at all

scales. However, it’s rather di↵erent from the chiral symmetry that we’re used to. It’s

simple to check that the action is invariant under

� = i�5
⇣
1� a

2
D
⌘
 , � ̄ = i ̄

⇣
1� a

2
D
⌘
�5 (4.39)

These transformation rules have the strange property that the amount a fermion is

rotated depends on its momentum. In real space, this means that the symmetry does

not act in the same way on all points of the lattice. In the language of condensed

matter physics, it is not an onsite symmetry. This will cause us a headache shortly.
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So the Ginsparg-Wilson relation (4.38) is su�cient to guarantee a chiral symmetry,

albeit an unconventional one. The next, obvious question is: what form of D obeys

this relation? It’s perhaps simplest to give a solution in the continuum, where a = 1/M

is simply interpreted as some high mass scale. You can check that, in real (Euclidean)

space, the following operator obeys the Ginsparg-Wilson relation,

D =
1

a

✓
1� 1� a /@p

1� a2@2

◆
) D(k) =

1

a

✓
1� 1� i/kp

1 + a2k2

◆
(4.40)

This is the overlap operator. It obeys the Hermiticity property D† = �5D�5. At low

momenta, a@ ⌧ 1, we reproduce the usual Dirac operator,

D = /@ + . . .

At high momentum, things look stranger. In particular, the derivatives in the denom-

inator mean that this operator is non-local. However, it’s not very non-local, and can

be shown to fall o↵ exponentially at large distances.

The Ginsparg-Wilson relation relies only on the gamma matrix structure of the

operator (4.40). This means that we can also write down operators on the lattice,

simply by replacing /@ by the operator appropriate for, say, Wilson fermions (4.32).

Moreover, we can couple our fermions to gauge fields simply by replacing /@ with /D, or

its lattice equivalent.

Next, we can try to use this chiral symmetry to restrict the Dirac fermion to an

analog a Weyl fermion. Usually this is achieved by using the projection operators

P± =
1

2

�
1± �5

�

For overlap fermions, we need a di↵erent projection operator. This is

P̂± =
1

2

�
1± �5(1� aD)

�

You can check that this obey P 2
±

= P± and P±P⌥ = 0, using the Ginsparg-Wilson

relation (4.38). To write down the theory in terms of chiral fermions, we actually need

both projection operators: the action can be expressed as

S =
1

a

Z

BZ

d4k

(2⇡)4
 ̄�k(P+ + P�)D(k) (P̂+ + P̂�) k

=
1

a

Z

BZ

d4k

(2⇡)4

h
 ̄�kP+ D(k) P̂+  k +  ̄�kP� D(k) P̂�  k

i

Throwing away one of these terms can then be thought of as a chiral fermion. It can be

shown that if one writes down a strict 4d action for the domain wall fermion, it takes

a form similar to that above.
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It seems like we have orchestrated a way to put a chiral fermion on the lattice, albeit

with a number of concessions forced upon us by the strange Ginsparg-Wilson relation.

So what’s the catch? The problem comes because, although the action is invariant

under (4.39), the measure is not. The measure for a Dirac fermion transforms as

�
⇥
D ̄D 

⇤
= D ̄D Tr

h
i�5
⇣
1� a

2
D
⌘
+ i
⇣
1� a

2
D
⌘
�5
i

= D ̄D Tr
⇥
�ia�5D

⇤

This now smells like the way the anomaly shows up in the continuum. Except here,

the lack of invariance shows up even before we couple to gauge fields. If we also include

gauge fields, and project onto a chiral fermions, then we run into trouble. In general,

the measure will not be gauge invariant. This, of course, is the usual story of anomalies.

However, now life has become more complicated, in large part because of the non-onsite

nature of the chiral transformation. What we would like to show is that the measure

remains gauge invariant if and only if the matter coupling does not su↵er a gauge

anomaly. This was studied in some detail by Lüscher. The current state of the art is

that this technique can be shown to be consistent for Abelian, chiral gauge theories,

but open questions remain in the more interesting non-Abelian case.

4.4.4 Other Approaches

There is one final assumption of the Nielsen-Ninomiya theorem that we could try to

leverage in an attempt to put chiral fermions on the lattice: this is the assumption

that the fermions are free, so that we can talk in terms of a one-particle dispersion

relation. One might wonder if it’s possible to turn on some interactions to lift collections

of gapless fermions in a manner consistent with ’t Hooft anomalies, while preserving

symmetries which you might naively have thought should be broken. There has been

a large body of work on this topic, which now goes by the name of symmetric mass

generation, starting with Eichten and Preskill. It’s interesting.

4.5 Further Reading

Kenneth Wilson is one of the more important figures in the development of quantum

field theory. His work in the early 1970s on the renormalisation group, largely driven

by the need to understand second order phase transitions in statistical physics, had

an immediate impact on particle physics. The older ideas of renormalisation, due to

Schwinger, Tomonaga, Feynman and Dyson, appeared to be little better than sweeping

infinites under the carpet. Viewed through Wilson’s new lens, it was realised that these

infinities are telling us something deep about the way Nature appears on di↵erent length

scales.
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Wilson’s pioneering 1974 paper on lattice gauge theory showed how to discretize a

gauge theory, and demonstrated the existence of confinement in the strong coupling

regime [214]. He worked only with U(1) gauge group, although this was quickly gener-

alised to a large number of non-Abelian gauge theories [8]. The Hamiltonian approach

to lattice gauge theory was developed soon after by Kogut and Susskind [124].

In fact, Wilson was not the first to construct a lattice gauge theory. A few years

earlier, Wegner described a lattice construction of what we now appreciate as Z2 gauge

theory [201]. (Arguably, the first lattice gauge theory paper was earlier still: in 1966

an electrical engineer called Kane Yee wrote down a discrete version of Maxwell theory,

with the gauge fields on the links, with the goal of solving the classical equations

numerically rather than simulating the quantum theory [233].) The lattice continued

to play a prominent role in many subsequent conceptual developments of quantum field

theory, not least because such a (Hamiltonian) lattice really exists in condensed matter

physics. Elitzur’s theorem was proven in [52].

Wilson’s original lattice gauge theory paper does not mention that a discrete version

of the theory lends itself to numerical simulation, but this was surely on his mind.

He later used numerical renormalisation group techniques [215] to solve the Kondo

problem – a sea of electrons interacting with a spin impurity — which also exhibits

asymptotic freedom [125]. It wasn’t until the late 1970s that people thought seriously

about simulating Yang-Mills on the lattice. The first Monte Carlo simulation of four

dimensional Yang-Mills was performed by Creutz in 1980 [33].

More details on the basics of lattice gauge theory can be found in the book by Creutz

[34] or the review by Guy Moore [138].

Fermions on the Lattice

Wilson introduced his approach to fermions, giving mass to the doublers at the corners

of the Brillouin zone, in Erice lectures in 1975. To my knowledge, this has never been

published. Other approaches soon followed: the discontinuous SLAC derivative in [48],

and the staggered approach in [124]. The general problem of putting fermions on the

lattice was later elaborated upon by Susskind [188]. The “rooting” trick, to reduce

the number of staggered fermions, is prominently used in lattice simulations, but its

validity remains controversial: see [180, 35] for arguments.

The idea that placing fermions on the lattice is a deep, rather than irritating, problem

is brought into sharp focus by the theorem of Nielsen and Ninomiya [146, 147].
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The story of domain wall fermions has its origins firmly in the continuum. Jackiw

and Rebbi were the first to realise that domain walls house chiral fermions [111], a result

which now underlies the classification of certain topological insulators. The interaction

of these fermions with gauge fields was studied by Callan and Harvey who introduced

the idea of anomaly inflow [25]. The fact that this continuum story can be realised in

the lattice setting was emphasised by David Kaplan [117].

In a parallel development, the Ginsparg-Wilson relation was introduced in [73] in a

paper that sat unnoticed for many years. Maybe it would have helped if the authors

were more famous. The first (and, to date, only) solution to this relation was discov-

ered by Neuberger [143, 144], and the resulting exact chiral symmetry on the lattice

was shown by Lüscher [126]. The relationship between domain wall fermions and the

Ginsparg-Wilson relation was shown in [121].

The idea that strong coupling e↵ects could lift the fermion doublers, in a way consis-

tent with (’t Hooft) anomalies, was first suggested by Eichten and Preskill [51]. This

subject has had a renaissance of late, starting with the pioneering work of Fidkowski

and Kitaev on interacting 1d topological insulators [58, 59]. They show that Majorana

zero modes can be lifted, preserving a particular time reversal symmetry, only in groups

of 8. There are more conjectural extensions to higher dimensions where, again, it is

thought that only specific numbers of fermions can be gapped together. In d = 3 + 1,

the conjecture is that Weyl fermions can become gapped in groups of 16; the fact that

the Standard Model (with a right-handed neutrino) has 16n Weyl fermions has not

escaped attention [202, 234].

The lectures by Witten on topological phases of matter include a clear discussion of

the Nielsen-Ninomiya theorem [229]. Excellent reviews on the issues surrounding chiral

fermions on the lattice have been written by Lüscher [127] and Kaplan [118].
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