
7. Quantum Field Theory on the Line

In this section, and the next, we describe the physics of relativistic quantum field

theories that live in d = 1 + 1 and d = 2 + 1 dimensions.

There are several reasons to be interested in quantum field theories in lower dimen-

sions. Perhaps most importantly, these field theories play important roles in condensed

matter systems. However, it turns out that it is often easier to solve quantum field the-

ories in lower dimensions. This makes them a testing ground where we can understand

some of the subtleties of field theory and build some intuition for the kinds of issues

arise when the interactions between fields becomes strong.

As we go down in dimension, we find an increased richness in the interactions that a

field theory can enjoy. More specifically, we find an increase in the number of relevant

and marginally relevant interactions that theories admit. These are the terms that

drive us from weakly coupled physics in the UV towards something more interesting

in the IR. In d = 3 + 1, this can only be achieved by non-Abelian gauge fields. As we

will see below, in lower dimensions we have other options. This means that Yang-Mills

theory, which has dominated our lectures so far, becomes somewhat less prominent in

the story of lower dimensional quantum field theories.

7.1 Electromagnetism in Two Dimensions

Maxwell theory in d = 1 + 1 dimensions is rather special. The gauge field is Aµ, with

µ = 0, 1 and the corresponding field strength has just a single component F01. The

action is given by

S =

Z
d2x � 1

2e2
F01F

01 + Aµj
µ

where jµ denotes the coupling to charged matter. Note that we have retained the

notation of Yang-Mills theory where the coupling constant e2 sits outside the action.

With this convention, the matter is taken to have integer valued electric charge.

Electromagnetism in d = 1 + 1 dimensions has a number of properties that are

rather di↵erent from its d = 3 + 1 dimensional counterpart. These occur both at the

classical and quantum levels. Let’s first look at some basic classical properties. The

first di↵erence comes in the pure Maxwell theory, which has equation of motion

@0F
01 = @1F

01 = 0 (7.1)

We see that this allow only for a constant electric field. In particular, there are no

electromagnetic wave solutions in d = 1 + 1 dimensions.
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This is an important point and it’s worth explaining from a slightly di↵erent per-

spective. In general d dimensional spacetime, the gauge field is Aµ with the index

running over µ = 0, 1, . . . , d � 1. However, not all of these components are physical.

The standard way to isolate the physical degrees of freedom is to use the gauge sym-

metry Aµ ! Aµ + @µ! to set A0 = 0. This leaves us with only the spatial gauge fields
~A. However, we still have to impose the equation of motion for A0 which is solved by

insisting that r · ~A = 0. This projects out the longitudinal fluctuations of ~A, leaving

us just with the transverse modes. The upshot is that the gauge field in d dimensions

carries d � 2 physical degrees of freedom. When d = 3 + 1, these are the familiar two

polarisation modes of the photon. However, in d = 1 + 1 dimensions, there are no

transverse modes and the electromagnetic field has no propagating degrees of freedom.

Now let’s look at what happens when we add matter. The classical equations of

motion are

1

e2
@µF

µ⌫ = j⌫

We can consider placing a point charge q at the origin, so the equation that we have

to solve is

1

e2
@1F

01 = q�(x) ) F 01 = qe2✓(x) + E (7.2)

where ✓(x) is the Heaviside step function (✓(x) = 0 for x < 0 and ✓(x) = 1 for x > 0)

and E is a constant background electric field which is typically fixed by the choice of

electric field at spatial infinity. We see that the electric field emitted by a point charge

in d = 1+1 dimensions is constant. (This is the same as the statement that a uniform

surface charge in d = 3 + 1 dimensions gives rise to a constant electric field.)

The energy contained in the electric field is

H =

Z
dx

1

2e2
F 2
01 (7.3)

This means that a classical point charge in d = 1 + 1 dimensions costs infinite energy.

The finite energy states must be charge neutral. To this end, consider a charge q at

position x = �L/2 and a charge �q at position x = +L/2. We have the equation of

motion

1

e2
@1F

01 = q [�(�L/2)� �(+L/2)] ) F 01 =

(
qe2 x 2 (�L/2,+L/2)

0 otherwise
(7.4)
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where we have chosen the integration constant E in (7.2) to ensure vanishing electric

field at x = ±1. The total energy (7.3) stored in the electric field is

H =
q2e2

2
L

We see that the energy grows linearly with the separation. In other words, electric

charges in d = 1+1 dimensions are classically confined. The reason is that the electric

field is forced to form a flux tube, simply because it has nowhere else to go.

7.1.1 The Theta Angle

As we described above, pure Maxwell theory in d = 1+1 dimensions has no propagating,

wave-like solutions. This does not, however, mean that the theory is completely devoid

of content. The classical equations of motion (7.1) still allow for constant electric fields.

As we now explain, this is enough to give rise to a Hilbert space in the quantum theory.

We also take this opportunity to add a new ingredient to pure Maxwell theory. This

is a ✓ term, analogous to the ✓ terms which we met in four dimensional gauge theories

in Sections 1.2 and 2.2. (In fact, such a term exists in any even spacetime dimension.)

The action is

S =

Z
d2x

✓
1

2e2
F 2
01 +

✓

2⇡
F01

◆
(7.5)

Like its four-dimensional counterpart, the theta term is a total derivative and does

not a↵ect the classical equations of motion. Nonetheless, it does a↵ect the quantum

spectrum.

Our first task is to isolate the dynamical degrees of freedom in pure Maxwell theory.

This is best illustrated by taking the theory to live on R⇥S1 where we take the spatial

S1 to have radius R. Although the theory has no propagating degrees of freedom, there

is a single physical mode which is spread all over the S1. It is known as the zero mode

�(t) =

Z 2⇡R

0

dx A1(x, t) (7.6)

The fact that �(t) does not depend on space means that there is no sense in which

it propagates. Said another way, this just a single degree of freedom rather than the

infinite number of degrees of freedom — one per spatial point — that are typically

contained in a field theory.
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The quantity �(t) is gauge invariant and dimensionless. Importantly, it is also peri-

odic. This arises from performing large gauge transformations of kind that we met a

number of times previously. These are single valued gauge transformations of the form

ei!(x), but where ! is not single valued. Instead ! obeys

!(x = 2⇡R) = !(x = 0) + 2⇡n for some n 2 Z

The simplest such example, with n = 1, is just ! = x/R. Under such a gauge trans-

formation, we have

A1 ! A1 + @x! = A1 +
1

R

Under this, or any gauge transformation with n = 1, the zero mode (7.6) transform as

�! �+ 2⇡

This is the statement that � is periodic.

The dynamics of � follows from the Lagrangian

L =
1

4⇡e2R
�̇2 +

✓

2⇡
�̇

As usual, the ✓ term does not a↵ect the classical equations of motion, but it does a↵ect

the definition of the canonical momentum p, which is given by

p =
1

2⇡e2R
�̇+

✓

2⇡

The Hamiltonian is then

H =
1

4⇡e2R
�̇2 = ⇡e2R

✓
p� ✓

2⇡

◆2

This is precisely the problem of a particle moving on a circle in the presence of flux.

We already met this in Section 2.2 as an analogy which captures some of the aspects

of the four dimensional theta term. We also met it subsequently in Section 3.6 where

we saw that it exhibits some interesting discrete anomaly when ✓ = ⇡; we won’t need

this fact in what follows.
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A familiar theme now emerges: although the classical physics remains unchanged

by ✓, there is an important e↵ect in the quantum physics. This arises because the

wavefunctions  should be single valued. The energy eigenstates are  l = eil� with

l 2 Z. The spectrum is given by

H l = El l with El = ⇡e2R

✓
l � ✓

2⇡

◆2

The spectrum is periodic in ✓ as expected. For ✓ 2 (�⇡, ⇡), the ground state is l = 0.

For ✓ = ±⇡, there are two degenerate ground states, l = 0 and l = ±1. If we increase

✓ ! ✓+2⇡, then the spectrum remains the same, but all the states shift along by one.

This is a phenomenon known as spectral flow.

7.1.2 The Theta Angle is a Background Electric Field

There is a particularly simple interpretation of the ✓ angle in two dimensions: it gives

rise to a background electric field. We have already noticed that, classically, the equa-

tion of motion @1F 10 = 0 allows for a constant background electric field. In A0 = 0

gauge, this is given by

F01 =
1

2⇡R
�̇ = e2

✓
p� ✓

2⇡

◆

Evaluated on the state  l, the electric field is given by

F01 = e2
✓
l � ✓

2⇡

◆
l 2 Z (7.7)

We see that the Hilbert space of pure Maxwell theory in d = 1 + 1 dimensions can

be thought of as describing integrally spaced, constant electric fields, shifted by the ✓

angle.

The above analysis was all performed on a spatial circle of radius R. However, the

ultimate quantisation of the electric field (7.7) is independent of this radius. Indeed,

there is a particularly simple way to see that the ✓ angle gives rise to a background

electric field if we work on spatial R. We return to the action (7.5) which, noting that

the ✓ term is a total derivative, we rewrite as

S =

Z
d2x � 1

2e2
F01F

01 +
✓

2⇡

I
dxµAµ

where the contour integral should be taken around the boundary of spacetime. Written

this way, it looks like the insertion of a Wilson line, with a particle of charge ✓/2⇡ at

x = �1, together with a particle of charge �✓/2⇡ at x = +1. As we saw in the

classical analysis leading to (7.4), this results in an electric field F01 = �✓e2/2⇡. This
agrees with the more careful quantum computation (7.7).
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Our discussion above suggests that something interesting happens when ✓ = ⇡:

there are two degenerate ground states. These are the states (7.7) with l = 0 and

l = +1 which have F01 = ±e2✓/2⇡. If we were to change ✓ slowly, passing through the

value ✓ = ⇡, we jump discontinuously from the background field F01 = �e2/2 to the

background field F01 = +e2/2. This is an example of a first order phase transition.

Our next task is to understand what happens to our theory when we include dynam-

ical matter.

7.2 The Abelian-Higgs Model

In this section, we consider a U(1) gauge theory coupled to a complex scalar field �.

The action is

S =

Z
d2x

1

2e2
F 2
01 +

✓

2⇡
F01 + |Dµ�|2 �m2|�|2 � �

2
|�|4 (7.8)

We take the scalar field to have charge q = 1, so that Dµ� = @µ� � iAµ�. In two-

dimensions, the gauge coupling has scaling dimension [e2] = 2. This means that elec-

tromagnetism will always be strongly coupled in the infra-red unless some other physics

kicks in at a higher scale. It will be straightforward to understand the dynamics of the

scalar when |m2| � e2, but harder in the regime |m2| . e2. In what follows, we will

discuss the Abelian-Higgs model in two di↵erent semi-classical regimes: m2 � e2 and

m2 ⌧ �e2.

m2 � e2: For very large, positive m2, quantization of the scalar field simply gives us

particles and anti-particles, each of mass m and charge q = ±1. These particles then

interact through the two-dimensional Coulomb force. We will call this the Coulomb

phase.

To start our discussion, let’s focus on the case ✓ = 0. A particle of charge q = 1 gives

rise to a constant electric field, F01 = e2, which we take to be emitted to the right of

the particle. If an anti-particle, with charge q = �1, sits at a distance L, as shown in

the figure, then we are left with an energy in the electric field given by

E =
e2L

2
(7.9)

This linear growth in energy is the characteristic of confinement. We see that, in

d = 1 + 1 dimensions, confinement occurs rather naturally, with the electric field

automatically forming a flux tube. Indeed, in two dimensions, the Coulomb phase is

the same thing as the confining phase.
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F   =e01
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01F   = +e /22
01F   = −e /22

Figure 51: When ✓ = 0, there is a con-

fining string between particles and anti-

particles

Figure 52: When ✓ = ⇡, the string ten-

sions cancel on either side and alternat-

ing particles/anti-particles feel no long-

distance force.

There is, however, a limit to how far this flux tube can stretch. If we attempt to

separate a particle-anti-particle pair too far, then the energy stored in the string is

greater than the energy required to create a particle-anti-particle pair, and we expect

the string to break. This should happen for e2L/2 & 2m or, L & 4m/e2. The upshot

of this argument, is that we expect the spectrum of the theory to consist of a tower of

neutral meson-like states, each containing a particle and anti-particle. The low-lying

modes of this spectrum can be easily computed using a non-relativistic Schrödinger

equation, although we will not do so here12.

We could also ask how the theory responds if we insert test charges of q /2 Z. A

particle-anti-particle pair will, once again, be confined by the electric field F01 = qe2.

However, the electric field cannot be removed by pair creation of � particles, since these

can only result in a change �F01 = e2. We learn that these test particles are confined

no matter how far they are separated.

The story does not change much as we turn on ✓, until we reach ✓ = ⇡. Now

something more interesting can happen. Suppose that the electric field at x! �1 is

given by F01 = �e2/2. The presence of a particle of charge q means that the electric

field jumps to F01 = +e2/2. Since its magnitude doesn’t change, this particle is free

to roam along the line. We can follow this by a chain of alternating particles and

anti-particles, each of which is free to move at no extra cost of energy (ignoring any

short distance forces between the particles). In this case, the particles are no longer

confined, at least when placed with a particular ordering along the line.

m2 ⌧ �e2: With a large negative mass-squared, the scalar condenses. The minimum

of the classical potential lies at

|�|2 = �m2

�
(7.10)

12See, for example, the discussion of the linear potential and Airy function in the lectures on
Applications of Quantum Mechanics.
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Our naive expectation is that we now lie in the Higgs phase, with the electric field

screened and the charged particles free to roam at will. Rather strikingly, this naive

expectation is completely wrong. Instead, it turns out that the physics in this regime

is exactly the same as the physics when m2 � e2. As we now explain, this is due to a

special property of Abelian gauge theories in two dimensions.

7.2.1 Vortices

The new ingredient is the existence of vortices. These are solutions to the equations

of motion that exist when the theory is formulated in the Euclidean space. These

same vortices were discussed in Section 2.5.2, where they arise as string-like solutions

in d = 3 + 1 dimensions. In contrast, these same solutions will now be localised in

spacetime; they play a role similar to the instantons discussed in Section 2.3 although,

as we shall see, their e↵ect is arguably more profound: they destroy the long-range

order (7.10).

To see this, let’s first formulate the action in Euclidean space. We write the action

(7.8) as

SE =

Z
d2x

1

2e2
F 2
12 +

i✓

2⇡
F12 + |Di�|2 +

�

2

�
|�|2 � v2

�2
(7.11)

where now i = 1, 2. We have written the Higgs vev as v2 = �m2/�. A finite action

configuration requires |�| ! v as r ! 1. This provides us with some interesting

topology: the asymptotic S1 of Euclidean spacetime is mapped into the S1 defined

by |�| = v. Mathematically, this means that field configurations are characterised by

⇧1(S1) = Z, in which the phase of � winds asymptotically. For example, we may take

�! ein✓v (7.12)

where ✓ is the polar coordinate on the spatial R2. This is single valued for n 2 Z. This

integer n is called the winding. Configurations with n > 0 are called vortices; those

with n < 0 are anti-vortices.

However, a scalar that winds in this way has infinite action unless it is also accom-

panied by non-vanishing gauge field. This is because the gradient terms are given

by
Z

d2x |@i�|2 =
Z

d✓dr r
1

r2
|@✓�|2 + . . . = 2⇡

Z
1

0

dr
n2

r
|�|2 + . . .

which is logarithmically divergent. We see that the trouble arises because the gradient

terms fall o↵ too slowly, as 1/r. To compensate for this, we must turn on a gauge field
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Ai, such that Di� = @i�� iAi� falls o↵ at a faster rate. For a configuration that winds

as (7.12), this ensures that the gauge field must take the asymptotic form A✓ ! n/r

which, in turn, tells us that vortices are accompanied by a quantised flux

1

2⇡

Z
d2x F12 =

1

2⇡

I
d✓ rA✓ = n (7.13)

One can construct solutions to the equations of motion with this asymptotic behaviour

by working with an ansatz of the form �(x) = ein✓gn(r) and A✓ = nfn(r), where

the radial functions gn(r) and fn(r) the second order di↵erential equations subject to

certain boundary conditions. The exact form of these solutions will not concern us

here: all we need is the statement that solutions always exist for n = ±1. In this

solution, the flux is restricted to a region of size 1/ev, while the scalar field deviates

from the vacuum over a region 1/
p
�v. We’ll denote the vortex size, a, by the larger

of these two scales,

a = max

✓
1

ev
,

1p
�v

◆

We will also denote the real part of the action for a single, n = ±1, vortex as Svortex.

Because the vortices come with flux (7.13), their contribution to the path integral will

have the characteristic form

e�Svortex±i✓/2⇡

where the ± sign distinguishes a vortex from an anti-vortex.

So much for solutions with n = ±1. What about vortices with higher winding? It

turns out that solutions exist for higher n, but only when � < e2. Nonetheless, we

shall not make use of these solutions. Instead, it will su�ce to consider a dilute gas of

n = ±1 vortices separated by distances � a.

Summing over Vortices

Let’s start by computing the partition function,

Z[✓] =

Z
DAD� exp (�SE[A,�])

As always, the partition function depends on the parameters, or sources, of the ac-

tion. As the notation suggests, we will be particularly interested in the dependence on

the theta angle. In the semi-classical approximation, this path integral gets contribu-

tions from the (approximate) solutions of far-separated vortices and anti-vortices. The
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strategy for performing these kinds of calculations was sketched in Section 2.3.3 in the

context of the double well potential in quantum mechanics. The contribution from a

single vortex takes the schematic form

Zvortex[✓] = V K e�Svortex+i✓/2⇡

Here V denotes the volume of spacetime (which, of course, is really an area since we are

in two dimensions). This factor comes from the fact that the vortex can sit anywhere.

V is, of course, infinite if we work on R2 but it will prove useful to consider it finite

for now. The factor K comes from computing the one-loop determinant contribution

around the background of the vortex; it will depend on parameters such as e2, v2

and � but its precise form will not be important for our needs. Finally, we have the

characteristic exponential suppression of the vortex. Similarly, for an anti-vortex we

have

Zanti�vortex[✓] = V K e�Svortex�i✓/2⇡

For our final expression, we sum over a dilute gas with all possible combinations of p

vortices and p̄ anti-vortices, to get

Z[✓] =
X

p,p̄

1

p!p̄!
(V K e�Svortex)p+p̄ ei(p�p̄)✓/2⇡ = exp

⇣
2V K e�Svortex cos ✓

⌘
(7.14)

What physics can we extract from this? First, this result tells us how the ground state

energy varies as a function of ✓. For this, we need to recall the interpretation of the

partition function as a propagator between states,

Z[✓] = h✓|e�HT |✓i = h✓|e�E0T |✓i

If we write V = LR, with T the size of the temporal direction, and R the radius of the

spatial direction, then we find the ground state energy density

E0(✓)

R
= �2K e�Svortex cos ✓ (7.15)

We can also compute the expected value of the background electric field. This is

hF12i = �
2⇡i

V

@

@✓
log Z[✓] = 4⇡iK e�Svortex sin ✓

The fact that the right-hand-side is imaginary should not concern us; after Wick ro-

tating back to Lorentzian signature, we get the result

hF01i = 4⇡K e�Svortex sin ✓

We see that turning on a ✓ angle once again induces a background electric field. Ad-

mittedly, there are some di↵erences from the case of pure electromagnetism (7.7) or,

indeed, the case of m2 � e2. In particular, the electric field is maximum at ✓ = ⇡/2,

rather than ✓ = ⇡.
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Classically, the energy density in the electric field is proportional to F 2
01. Quantum

mechanically, the energy density (7.15) is not proportional to hF01i2; instead, it is

proportional to hF 2
01i ⇠ @2/@✓2 log Z. This is telling us that there are large fluctuations

in the electric field. At ✓ = ⇡, it is these fluctuations which are contributing to the

energy, even though hF01i = 0.

Note in particular, that when ✓ = ⇡, there is a change in the vacuum structure: when

m2 � e2, there were two values for the electric field, hF01i = ±e2/2, while for m2 ⌧ e2

there is just one, hF01i = 0. This behaviour is characteristic of a phase transition and

we will return to it shortly when we sketch the phase diagram of the theory.

7.2.2 The Wilson Loop

We can now address our main question of interest: when m2 ⌧ �e2, are charged

particles screened, as one would expect in a Higgs phase? To answer this we use the

Wilson loop, introduced in Section 2.5.3, describing the insertion of a particle with

charge q, and an anti-particle with charge �q,

W [C] = exp

✓
iq

I

C

A

◆
(7.16)

Here C is the rectangular loop; the particle and anti-particle are separated by a spatial

distance L, and propagate for time T 0. We will take each of these distances to be much

larger than the size of the vortices, so L, T 0 � a, but much smaller than the size of our

universe, so L⌧ R and T 0 ⌧ T .

We would like to compute the expectation value of the Wilson loop,

hW [C]i = 1

Z

Z
DAD� W [C] exp (�SE[A,�]) (7.17)

But this is particularly simple in the semi-classical approximation. First, we assume

that we can divide all (anti) vortices into those inside the loop C, and those outside.

This ignores those vortices that happen to overlap with the curve C, but these should

be negligible when C is large. In the semi-classical approximation, the expression (7.17)

decomposes into two pieces; one from inside the loop and the other from outside the

loop,
Z

DAD� W [C] exp (�SE[A,�]) = Z̃inside[✓] Z̃outside[✓]

The contribution from outside the loop is given by our original expression for Z[✓]

(7.14), but with the area of spacetime V reduced by the area of the loop,

Z̃outside[✓] = exp
⇣
2(V � LT 0)K e�Svortex cos ✓

⌘
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Meanwhile, the Wilson loop a↵ects only the contribution Z̃inside from inside the loop.

In a given background, the Wilson loop (7.16) simply counts the total winding number,

⌫ = #(vortices)�#(anti-vortices) in the loop.

W [C] = eiq⌫

Comparing to the expression (7.14), we see that the Wilson loop e↵ectively shifts the

theta angle ✓ ! ✓ + 2⇡q. We therefore have

Z̃inside[✓] = exp
⇣
2LT 0K e�Svortex cos(✓ + 2⇡q)

⌘

Combining these results, the expectation value of the Wilson loop becomes

hW [C]i = exp
⇣
2LT 0K e�Svortex [cos(✓ + 2⇡q)� cos ✓]

⌘

Our task now is to interpret this result. First notice that, for q /2 Z, the Wilson loop

exhibits an area law, telling us that the charges are confined. The string tension is

given by the energy density

E

L
= 2K e�Svortex [cos(✓ + 2⇡q)� cos ✓] (7.18)

This is already surprising, since it disagrees with our naive expectation that all charges

should be screened in the Higgs phase. Instead, charges q /2 Z are confined, just as

they are in the Coulomb phase with m2 � e2. In contrast, the string tension vanishes

for q = 1. But, this too, agrees with the Coulomb phase picture, where pair creation of

� particles results in the string breaking, and the test particles forming gauge neutral

meson states.

We learn that, in the d = 1+1 Abelian Higgs model, there is no qualitative distinction

between the behaviour of the theory at m2 � e2 and m2 ⌧ �e2. In both cases, the

charged particles are confined. The only di↵erence is a quantitative one: the string

tension (7.18) is exponentially suppressed when m2 ⌧ �e2, compared to its value (7.9)

when m2 � e2.

The Phase Diagram of the Abelian Higgs Model

The discussion above strongly suggests that there is no phase transition as we move

from m2 � e2 to m2 ⌧ �e2: the would-be Higgs phase is washed away by vortices,

leaving us only with the Coulomb phase.
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Figure 53: The phase diagram of the 2d Abelian Higgs model

However, there is one remaining subtlety, which occurs at ✓ = ⇡. As we saw above,

there are two degenerate ground states, hF01i = ±e2/2 whenm2 � e2, with a first order

phase transition between them as we vary ✓ through ⇡. In contrast, there is a unique

ground state hF01i = 0 when m2 ⌧ �e2. This line of first order phase transitions must

end somewhere. The simplest possibility is that it ends at a critical point at some

value of the mass, presumably around m2 ⇠ �e2. Since the order parameter, F01, is

a parity-odd real scalar, it is natural to conjecture that this critical point is described

by the d = 2 Ising CFT. The resulting phase diagram for the d = 1 + 1 Abelian Higgs

model is shown in the figure.

(As an aside: The story above is similar, but ultimately di↵erent, from the story

from the XY-model in d = 1 + 1 dimensions. This theory describes a complex scalar

without the associated gauge field and was discussed in the lectures on Statistical Field

Theory. Once again, vortices play an important role, but this time they induce the

Kosterlitz-Thouless phase transition.)

7.3 The CPN�1 Model

We now turn to a theory that is closely related to the Abelian Higgs model. It consists

of N complex scalars, �a, a = 1, . . . , N , each coupled to a U(1) gauge field with charge

q = +1.

Our interest will lie in the theory where all scalars have negative m2 so, following

(7.11), we write the action in Euclidean space as

S =

Z
d2x

1

2e2
F 2
12 +

✓

2⇡
F12 +

NX

a=1

|Di�a|2 +
�

2

⇣ NX

a=1

|�a|2 � v2
⌘2

(7.19)
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Note that our theory has a SU(N) global symmetry, acting in the obvious way on

the �a. This will be important below. As always, we would like to ask: what is the

low-energy physics? This arises in the limit e2 !1 and �!1.

We can first look classically. At low-energies, the scalars sit in the minima of the

potential,

NX

a=1

|�a|2 = v2 (7.20)

This restricts the values of the complex � fields to lie on a S2N�1 sphere of radius v2.

But we still have to divide out by gauge transformations. These identify configurations

related by

�a ! ei↵�a

We’re left with scalar fields �a which parameterise the manifold,

S2N�1/U(1) = CPN�1

The manifold CPN�1 is known as complex projective space; it can be equivalently

defined as the space of all complex lines in CN which pass through the origin. CPN�1

has real dimension 2(N � 1), or complex dimension N � 1, and should be thought of

as the complex analog of a round sphere, with the SU(N) global symmetry descending

to an isometry of CPN�1.

To proceed, we could choose to parameterise the �a by coordinates Xm on CPN�1.

Plugging this back into our action would result in a non-linear sigma model of the kind

S =

Z
d2x gmn(X) @iX

m@iX
n (7.21)

where gmn(X) is the metric on CPN�1. (There is an additional term coming from the

theta angle that we will discuss below.) For our purposes, however, it will prove more

useful to work with the action (7.19); this form of the action is sometimes referred to

as a gauged linear sigma model.

Classically, we learn that our CPN�1 model describes N � 1, interacting, massless

complex scalars. These are Goldstone modes. Indeed, picking a solution to (7.20)

breaks the global SU(N) symmetry to SU(N �1)⇥U(1), and the target space CPN�1

can equivalently be written as the coset space

CPN�1 =
SU(N)

SU(N � 1)⇥ U(1)
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The interactions between the Goldstone modes are determined by the coupling v2,

which is the size of CPN�1 or, more pertinently, the inverse curvature. This means

that the theory is weakly coupled when v2 � 1, and strongly coupled when v2 ⌧ 1.

However, as we should now expect: we don’t get to choose, since quantum fluctuations

will cause v2 to change as we flow towards the infra-red. Do we flow to weak coupling

or strong coupling? As we will see below, the answer is that we flow to strong coupling:

the CPN�1 sigma model in two dimensions is asymptotically free.

7.3.1 A Mass Gap

Rather than compute the beta function for v2, we will instead jump straight to figuring

out the low-energy dynamics. This will give us the interesting information that we care

about and, indirectly, also allow us to extract the beta function.

We’re interested in the low-energy limit, e2,�!1. We force the fields to live in the

minima (7.20) by using a Lagrange multiplier constraint, and replace the action (7.19)

with

S =

Z
d2x

NX

a=1

|Di�a|2 + i�
⇣ NX

a=1

|�a|2 � v2
⌘
+

i✓

2⇡
F12 (7.22)

where � is now a dynamical field. Note that � comes with a factor if i because we want

it to impose the constraint (7.20) as a delta function. This will result in some strange

looking factors of i in the e↵ective potential below. However, upon Wick rotating back

to Lorentzian signature, � ! i� and everything looks nice and real again

We have succeeded in writing the path integral so that the �a occur quadratically.

They can now be happily integrated out, and we’re left with the partition function,

Z =

Z
DAD�D�D�? e�S =

Z
DAD� e�Se↵

with

Se↵ = N tr log
⇣
� (@i � iAi)

2 + i�
⌘
� i

Z
d2x

✓
v2� +

✓

2⇡
F12

◆
(7.23)

The problem is that we’re now left with a very complicated looking path integral over

the auxiliary A and �. In general, this is hard. However, some respite comes from

the factor of N in front of the first term, which suggests that one can evaluate the

integral using the saddle point in the limit N !1. The is rather similar to the large

N expansion that we met in Section 6 for Yang-Mills. It turns out, perhaps reasonably,

that theories like the CPN�1 model, where the number of fields grows linearly with N ,

are much easier to deal with than Yang-Mills, where the number of fields grows as N2.
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To proceed, we will first restrict to configurations with Ai = 0, and extract an

e↵ective potential for the constant value of the auxiliary scalar �. The trace above is

an integral over momentum,

Ve↵(�) = N

Z
d2k

(2⇡)2
log(k2 + i�)� iv2�

The integral is divergent and requires us to introduce a UV cut-o↵ ⇤UV . Performing

the integral then gives

Ve↵(�) =
N

4⇡


i� log

✓
i� + ⇤2

UV

i�

◆
+

1

2
⇤2 log

✓
i� + ⇤2

UV

⇤2
UV

◆�
� iv2�

=
N

4⇡
i�


1� log

✓
i�

⇤2
UV

◆�
� iv2� + . . . (7.24)

where, to reach the second line, we’ve Taylor expanded in �/⇤2
UV

, and the . . . include

constant terms and terms which vanish as ⇤2
UV
!1.

We still have to do the path integral over � and that will, in general, be hard.

However, the overall factor of N provides a glimmer of hope, because it means that the

integral will be dominated by the saddle point in the N !1 limit. This saddle point

is given by

@Ve↵

@�
= 0 ) N

4⇡
log

✓
i�

⇤2
UV

◆
= �v2

) i� = ⇤2
UV

exp

✓
�4⇡v2

N

◆
(7.25)

There are a number of di↵erent lessons to take from this. First, note that the CPN�1

model has undergone the phenomenon of dimensional transmutation that we saw in

Yang-Mills theory. The original Lagrangian (7.19) has only dimensionless parameters

(at least, this is true after we have sent e2 !1). Nonetheless, the theory generates a

physical dimensionful scale, arising from the UV cut-o↵ ⇤UV in the partition function,

⇤CPN�1 = ⇤UV exp

✓
�2⇡v2

N

◆
(7.26)

The scale ⇤CPN�1 is entirely analogous to ⇤QCD (2.59) that arises in Yang-Mills. While

the cut-o↵ ⇤UV is unphysical, the low-energy ⇤CPN�1 is the scale at which interesting

physical things can happen. This is sensible only because the dimensionless coupling

v2 runs under RG. In (7.26) the coupling should be thought of as being evaluated at

the cut-o↵, v2 = v2(⇤UV ). More generally, the physical scale is written as

⇤CPN�1 = µ exp

✓
�2⇡v2(µ)

N

◆
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From the requirement that this physical scale is invariant RG we can extract the beta-

function for v2,

d⇤CPN�1

dµ
= 0 ) µ

dv2

dµ
=

N

2⇡
(7.27)

This tells us that v2 gets smaller as we flow towards the IR (small µ). From our previous

discussion, we know that this is the strong coupling limit of the CPN�1 model. In other

words, this beta function tells us that, just like Yang-Mills, theCPN�1 model is strongly

coupled in the IR, and asymptotically free in the UV.

Although the physics very much parallels that of Yang-Mills theory, it’s worth point-

ing out the logic of our derivation is somewhat di↵erent. For Yang-Mills, we started o↵

by computing the one-loop beta function and, from that, extracted the physical scale

⇤QCD. For the CPN�1 model, our discussion ran the other way round. Both are valid.

So far, we’ve figured out that there is a dynamically generated scale ⇤CPN�1 . But

what happens at this scale? To see this, we need to note that, from (7.25), we have

i� = ⇤2
CPN�1 . But substituting this into (7.22), we see that an expectation value

for � acts as a mass term for our original fields �a. In other words, the 2d CPN�1

sigma model is not a theory of massless Goldstone modes at all! In the quantum

theory, these massless modes pick up a mass given by ⇤CPN�1 . Moreover, the SU(N)

global symmetry is restored at low-energies. This is an example of the Mermin-Wagner

theorem which states that there can be no Goldstone bosons in two dimensions13.

Once again, we see the close analogy with Yang-Mills. Both theories appear massless

but actually have a gap. The di↵erence is that we can actually show this for the CPN�1

model.

7.3.2 Confinement

So far we have ignored the role of the gauge field in the e↵ective action (7.23). At

leading order, the e↵ect of integrating out the scalars �a is captured by two Feynman

13We met another example of the Mermin-Wagner theorem in the lecture notes on Statistical Field
Theory. There we discussed the O(N) model, a non-linear sigma model with target space SN ; it is the
real version of the CPN�1 model. Indeed, the first two models in each class coincide at the bottom
of the list, since CP1 = S3. After this, the models di↵er. In particular, the CPN�1 models have
instantons for all N , while the O(N) models do not for N � 4. Nonetheless, the two classes of models
share the same fate. Both are gapped at low-energies.
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diagrams:

+

These generate a Maxwell kinetic term

Se↵ = � N

48⇡2⇤2
CPN�1

Fµ⌫F
µ⌫

Note that we started with a Maxwell term in our original action (7.19), but sent e2 !
1. This was to no avail: we generate a new term at one-loop, now with a coe�cient

that is comparable to the mass gap in the theory.

The upshot of our discussion is that low-energy physics of the CPN�1 model is that

of N massive scalars, each with mass m = ⇤CPN�1 , interacting through an unbroken

U(1) gauge field. As we saw in Section 7.1, electromagnetism gives rise to a linear,

confining force between charged particles in two dimensions. The original scalars �a

transform in the N of the SU(N) global symmetry. We learn that not only are these

now massive, but they are also confined. The physical spectrum of the theory consists

of massive, SU(N) singlets. These are mesons, constructed from � and �?.

7.3.3 Instantons

The low-energy physics of the CPN�1 model is very similar to that of the Abelian

Higgs model that we met in Section 7.2. In both cases, the quantum theory eschews

the Higgs phase, and the fundamental excitations are confined. Yet the way we reached

these conclusions is rather di↵erent. For the Abelian Higgs model, we placed the blame

firmly on the instantons (which we identified as vortices); for the CPN�1 model, we

reached the same conclusion but using the large N expansion.

We could ask: are there instantons in the CPN�1 model? And, if so, what role do

they play?

The answer to the first question is: yes, the CPN�1 model does have instantons.

There are actually two di↵erent ways to see this. If we start with the gauged linear

model (7.19), then the instantons again arise as vortices. (Vortices with more than one

scalar field sometimes go by the unhelpful name of “semi-local vortices”.) They are

labelled by a winding number

n =
1

2⇡

Z
d2x F12 (7.28)
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Alternatively, if we work with the non-linear sigma-model (7.21), these instantons show

up in a rather di↵erent guise. Here field configurations are a map from spatial R2 7!
CPN�1. However, we must first choose a point on the CPN�1 target space which is

the vacuum. This choice breaks the SU(N) symmetry down to SU(N � 1) ⇥ U(1).

The requirement that the fields asymptote to this vacuum point at spatial infinity

means that field configurations are really a map from S2 7! CPN�1, and these are

characterised by the winding number

⇧2

�
CPN�1

�
= Z

This winding is given by

n =
1

2⇡i

Z
d2x @µ✏µ⌫ (�

?

a
@⌫�a)

One can show that this coincides magnetic flux (7.28) using the equation of motion for

Aµ from (7.19).

These instantons have a number of interesting properties. One can show that their

action is given by

Sinstanton = 2⇡v2 (7.29)

The scale invariance of the classical 2d sigma model means that the instantons cannot

have a fixed size. Instead, like their Yang-Mills counterparts discussed in Section 2.3,

they have a scaling modulus. There are also further moduli that describe how the

instanton is oriented inside CPN�1. In all, the single instanton has 2N parameters,

which decompose into two position moduli, a scaling modulus, and 2N�3 orientational
moduli.

We now come to the second question: what role do these instantons play in deter-

mining the low energy physics? For N � 2, the answer is: surprisingly little. This

can be seen, for example, by comparing the mass scale (7.26) to the instanton action

(7.29),

⇤CPN�1 = ⇤UV e�Sinstanton/N

This factor of N is important: it is telling us that the instantons are not responsible

for the mass gap in the CPN�1 model.
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The issue here is that, as we have seen, the CPN�1 model is strongly coupled, and

it is not appropriate to try to employ semi-classical techniques like instantons. Indeed,

the existence of instantons hinges on the fact that we pick a vacuum state on CPN�1

which, in turn, spontaneously breaks the SU(N) global symmetry. Yet, the large

N expansion tells us that this is a red herring: in the quantum theory the SU(N)

symmetry is restored. The true ground state does not involve a preferred point on

CPN�1, but rather a wavefunction that spreads over the whole space. As such, the

role of instantons in this theory is limited when it comes to determining the infra-red

physics. The same lesson is expected to hold in Yang-Mills.

The Theta Angle

So far we have not discussed the role of the theta angle in the CPN�1 model. There is

something interesting here. For N � 3 (e.g. for CP2 or higher) it is thought that, while

the theta angle a↵ects the spectrum of the theory, it does not change the phase and the

theory remains gapped for all ✓. However, for CP1, something special happens. Here,

the theory is thought to be gapped for all ✓ 6= ⇡. At ✓ = ⇡, the theory is expected to

be gapless, with the low-energy physics described by an SU(2)1 Wess-Zumino-Witten

model. This is sometimes referred to as the Haldane conjecture.

7.4 Fermions in Two Dimensions

It’s now time to look at fermions. In this section, we will describe a theory that consists

only of interacting fermions. In d = 3+1 dimensions, such theories are not particularly

interesting because the simplest interaction – a four fermion term – is irrelevant. This

is no longer the case in d = 1 + 1 dimensions and, as we will see, even the simplest

theories of interacting fermions are strongly interacting and, like the CPN�1 model

above, share a number of surprising properties with QCD.

We start by reviewing some basic facts about fermions in d = 1+1 dimensions. The

Cli↵ord algebra {�µ, �⌫} = 2⌘µ⌫ is satisfied by 2 ⇥ 2 matrices. Working in signature

⌘µ⌫ = diag(+1,�1), we take the gamma matrices to be

�0 = �1 and �1 = i�2 ) �3 = �0�1 = �3 (7.30)

Here �3 plays the same role as �5 in d = 3+1 dimensions. It is an extra, anti-commuting

matrix which can be used to decompose the two-component Dirac fermion as

 =

 
 +

 �

!

Here  ± are 2d Weyl spinors; they are eigenstates of �3.
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Fermions in d = 1 + 1 dimensions have the special property that they can be both

Weyl and Majorana at the same time. This follows because the chiral basis of gamma

matrices (7.30) is also real. (In contrast, in d = 3 + 1 dimensions you can pick a

real basis of gamma matrices but it is not chiral, or a chiral basis which is not real.)

This means that we can decompose the Dirac fermion as  = �1 + i�2 and, moreover,

decompose each Weyl fermion as  ± = �1±+ i�2±. In what follows, we won’t need this

Majorana decomposition until section 7.4.2.

The action for a free Dirac fermion is

S =

Z
d2x i ̄ /@ �m ̄ (7.31)

=

Z
d2x i †

+@� + + i †

�@+ � �m( †

� + +  †

+ �)

where we have introduced lightcone coordinates x± = t± x and @± = @t ± @x.

For a massless fermion, with m = 0, the two Weyl spinors decouple, with equations

of motion

@+ � = 0 )  � =  �(x
�) and @� + = 0 )  + =  +(x

+)

We learn that the chiral fermion  � is a function only of x�. In other words,  � is a

right-moving fermion. Similarly,  + is a left-moving fermion. Since the fermions are

massless, each moves at the speed of light.

In d = 3+1 dimensions, interactions between fermions are always mediated by gauge

or scalar fields. In d = 1+1 dimensions we have a more direct possibility. The fermion

field has dimension [ ] = 1/2 which means that four fermion term ( ̄ )2 is marginal.

We can ask: how does this change the low-energy physics. In fact, as we discuss, there

are two di↵erent ways of adding four fermion terms.

7.4.1 The Gross-Neveu Model

The Gross-Neveu model describes N , classically massless Dirac fermions,  i, i =

1, . . . , N , with a four fermi interaction. The action is given by

S =

Z
d2x i ̄i /@ i +

�

2N
( ̄i i)

2 (7.32)

Here � is a dimensionless coupling. We have included the factor of N in anticipation

of the fact that we will solve this theory in the large N limit.
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The action has a manifest U(1)V ⇥ SU(N) flavour symmetry, under which the

fermions transform as N+1. In fact, if we decompose each Dirac fermion into two

Majorana fermions, the symmetry group is actually O(2N) symmetry, and this will

play a role shortly. There is also a discrete Z2 chiral symmetry,

Z2 :  i ! �3 i (7.33)

Importantly, a would-be mass term is odd under this discrete chiral symmetry,  ̄i i !
� ̄i i. This means that the existence of the Z2 symmetry would naively prohibit the

generation of a mass. Our goal is to see how this plays out in the quantum theory.

It turns out that life is easier if we introduce an auxiliary scalar field, �, and write

the action as

S =

Z
d2x i ̄i /@ i �

N

2�
�2 + � ̄i i (7.34)

Although � is dynamical, we do not include a kinetic term for it. We can integrate it

out by imposing the equation of motion

� =
�

N
 ̄i i

and we get back the original action (7.32). The new form of the action (7.34) is again

invariant under the discrete chiral symmetry, but only if we take � to be odd,

Z2 : � ! ��

The introduction of � is reminiscent of the auxiliary field that we introduced in the

CPN�1 model. Indeed, we will proceed by following the same strategy. We will inte-

grate out the fields that we thought we cared about – in this case the fermions – and

focus on the resulting e↵ective dynamics for �. We will see that this is su�cient to

teach us the relevant physics.

Integrating out the fermions leaves behind the following e↵ective action for �,

Se↵ = iN log det
�
i /@ + �

�
�
Z

d2x
N

�
�2

We can write the first term in more concrete form. First,

det
�
i /@ + �

�
= det

�
i /@
�
det
⇣
1� i /@

�1
�
⌘
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and we neglect the factor det(i /@) on the grounds that it contributes an irrelevant

constant. The next step is to deal with the gamma matrix structure in the second

term. Using det �3 = �1, we have

det
⇣
1� i /@

�1
�
⌘
= det

⇣
�3(1� i /@

�1
�)�3

⌘
= det

⇣
1 + i /@

�1
�
⌘

Multiplying these together then gives

det
⇣
1� i /@

�1
�
⌘
= det 1/2

⇣
1 + ( /@

�1
�)2
⌘
= det 1/2

�
1� � @�2�

�

where the argument in the final argument comes with a 2⇥2 unit matrix for the spinor

indices. But this simply changes det1/2 back to det. Finally, we use log det = Tr log to

write

Se↵ = iN Tr log
�
1� � @�2�

�
�
Z

d2x
N

�
�2

This action doesn’t look particularly appealing. But it has one important feature going

for it, which is that it’s proportional to N . This means that in the large N limit it can

be evaluated using a saddle point. We look for solutions in which � is constant. In this

case, the annoying log factor can be replaced by a simple integral, leaving us with the

e↵ective potential for the scalar field. Rotating to Euclidean space, we have

Ve↵(�) = N

Z ⇤UV d2p

(2⇡)2
log

✓
1 +

�2

p2

◆
+

N

�
�2

This is the same kind of integral that we met in (7.24) when solving the 2d CPN�1

model. The same method that we used previously now gives

Ve↵(�) =
N

4⇡
�2

✓
log

✓
�2

⇤2
UV

◆
� 1

◆
+

N

�
�2 (7.35)

In the large N limit, the path integral is dominated by the minimum of the potential

which sits at

@Ve↵

@�
= 0 ) �2 = ⇤2

UV
e�2⇡/�

We learn that the � field gets an expectation value. The theory was originally invariant

under the discrete chiral symmetry, � ! ��, but this is spontaneously broken in the

ground state: the theory must choose one of the two ground states � = ±⇤UV e�⇡/�.
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With the protective Z2 symmetry spontaneously broken, there is nothing to stop the

fermions getting a mass. Indeed, substituting the expectation value of � back into the

action (7.34), we find that the mass is given by

mGN = ⇤UV e
�⇡/� (7.36)

Once again we have the phenomenon of dimensional transmutation: the dimensionless

coupling � has combined with the UV cut-o↵ to provide a physical mass scale of the

theory. Once again, we thought that we started out with a theory of massless particles,

but the interactions find an ingenious way to generate a mass.

Above we have phrased the physics in the terms of the e↵ective potential. Another

approach would be to compute one-loop contributions to the running of the coupling.

We would have found that the theory is asymptotically free, with the beta function

µ
d�(µ)

dµ
= ��

2

⇡
) 1

�(µ)
=

1

�0
� 1

2⇡
log

⇤2
UV

µ2

Phrased in this way, the physical mass is seen to be RG invariant, as it should be:

mGN = µ e�⇡/�(µ).

7.4.2 Kinks in the Gross-Neveu Model

As we’ve seen, the Gross-Neveu model spontaneously breaks the Z2 symmetry. This

means that the theory has two degenerate ground states, distinguished by the sign of

� = ±⇤UV e�⇡/�. This gives us a new state in the the theory: a kink which interpolates

between the two ground states, so that the profile of �(x) obeys

� ! ±⇤UV e
�⇡/� as x! ±1

We would like to understand what properties these kinks have and, in particular, how

they transform under the symmetries of the theory. The key to this is to see what

happens to the original fermions in the presence of the kink.

The Dirac equation from (7.34) is

i /@ i + � i = 0

We’d like to solve this in the kink background. You might think that this is tricky

because we haven’t determined the profile �(x) of the kink. Fortunately, this isn’t a

problem, because the property that we need is robust and independent of the exact

form of �(x): this is the existence of a fermi zero mode.
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We met fermi zero modes on domain walls previously, both in our discussion of

topological insulators in Section 3.3.4 and lattice gauge theory in Section 4.4.1. The

analysis needed here is exactly the same, and we won’t repeat it. But the upshot is

that each fermion  i has a single, complex fermi zero mode on the kink.

At this point, it is important to recall that our Dirac fermions can be decomposed

into Majorana fermions, which we write as

 i = �i + i�i+N i = 1, . . . , N

The existence of Majorana fermions means that the global symmetry of the Gross-

Neveu model is O(2N) rather than U(N). Each of these Majorana fermions gives rise

to a single, Majorana (i.e. real) fermi zero mode on the kink which we will denote as

bi. These obey the commutation relations,

{bi, bj} = 2�ij i = 1, . . . , 2N (7.37)

To convince yourself that these are the right commutation relations, we can pair

the Majorana modes back into their complex counterparts ci =
1
p
2
(bi + ibi+N), with

i = 1, . . . , N which, from (7.37), obey the usual Grassmann creation and annihilation

commutation relations {ci, cj} = 0 and {ci, c†j} = 2�ij

The commutation relations (7.37) are familiar: they are simply the Cli↵ord algebra

in D = 2N dimensions. This has a representation in terms of 2N ⇥ 2N dimensionsal

matrices. Said in a di↵erent way, the Majorana zero modes ensure that the Hilbert

space of kink excitations has dimension 2N .

This 2N dimensional Hilbert space does not form an irreducible representation of the

O(N) symmetry group. Instead, it decomposes into two chiral spinors. We achieve this

by introducing the “�5” matrix, �5 = ib1 . . . b2N which obeys {�5, bi} = 0 and (�5)2 = 1.

The two reducible representations are distinguished by the eigenvalue under �5 = ±1,

and have dimension 2N�1

The upshot of this analysis is rather nice. We started with Majorana fermions trans-

forming in the 2N -dimensional vector representation of O(2N). But the interactions

generate new solitonic states. These are kinks which transform in the left and right-

handed spinor representations of O(2N).This can be thought of as a version of “charge

fractionalisation”.
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Our results in this section used the large N approximation to determine the fate

of the Gross-Neveu model. One might wonder if the kinks survive to small N . It

turns out that for N > 2, both kinks and fermions exist in the spectrum. But, perhaps

counterintuitively, whenN = 2 only kinks, in the spinor representation of O(4), survive;

the original fermions no longer exist. For N = 1, the Gross-Neveu model coincides with

the Thirring model and turns out to be free. We will discuss this case in Section 7.5.

An Odd Number of Majorana Fermions

So far, our discussion of the Gross-Neveu model has focussed on N Dirac fermions or,

equivalently, 2N Majorana fermions. But there’s nothing to stop up writing down the

action for an odd number of Majorana fermions �i,

S =

Z
d2x i�̄i /@�i �

Ñ

4�
�2 + ��̄i�i

where the summation is over i = 1, . . . , Ñ . When Ñ = 2N , this reduces to our previous

action (7.34) in terms of Dirac fermions. When Ñ is odd, our previous analysis goes

through unchanged, and we again find that the Z2 is spontaneously broken, resulting in

two degenerate ground states. The only novel question is: what becomes of the kinks?

The Majorana zero modes again give rise to a Cli↵ord algebra (7.37), but this time

it’s a Cli↵ord algebra in D = Ñ dimensions, with Ñ odd. There is a single reducible

representation which has dimension 2(Ñ�1)/2, and one might think this is the Hilbert

space of the kinks. However, there is another discrete symmetry that we have to take

into account. This is �i ! ��i which is part of the O(Ñ) group, but not SO(Ñ). To

implement this, we introduce the fermion parity operator (�1)F which obeys

(�1)F �i (�1)F = ��i ) {(�1)F , bi} = 0

When Ñ = 2N is even, the operator �5 can be identified with (�1)F . But when Ñ is

odd, there is no action of (�1)F on a single irreducible representation of the Cli↵ord

algebra. Instead, we need two irreducible representations: one with (�1)F = +1 and

one with (�1)F = �1. This means that for Ñ odd, we again have two irreducible

representations of O(Ñ), and the total number of kink states is 2⇥ 2(Ñ�1)/2.

7.4.3 The Chiral Gross-Neveu Model

There is a variant on the Gross-Neveu model that introduces yet another ingredient

into the mix. First, consider the action of the axial symmetry

U(1)A :  ! ei↵�
3
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There are two real, fermion bilinears that we can introduce:  ̄ and i ̄�3 . Neither of

them is invariant under the axial symmetry. Instead, each rotates into the other. We

can form the complex combination  ̄ +  ̄�3 , and this transforms as

U(1)A :  ̄ +  ̄�3 ! e2i↵
�
 ̄ +  ̄�3 

�

 ̄ �  ̄�3 ! e�2i↵
�
 ̄ �  ̄�3 

�

This transformation motivates us to consider the following theory of N massless, inter-

acting Dirac fermions,

S�GN =

Z
d2x i ̄i /@ i +

�

2N

�
( ̄i i)

2 � ( ̄i�
3 i)

2
�

(7.38)

The advantage of this set-up is that the theory is protected from generating a mass

term by the continuous U(1)A chiral symmetry, as opposed to the discrete Z2 chiral

symmetry of the original Gross-Neveu model.

This is an important distinction. We saw above that the discrete Z2 symmetry

proved ine↵ectual at protecting the Gross-Neveu model from developing a gap because

it was spontaneously broken. However, there is a general theorem, due to Mermin and

Wagner, that says it is not possible to spontaneously break continuous symmetries in

d = 1 + 1 quantum field theory. We met this theorem in the lectures on Statistical

Field Theory; its essence is that infra-red fluctuations of fields always destroy any long

range order.

Given this theorem, you might think that the existence of a continuous chiral sym-

metry would be much more powerful and protect the fermions from developing a gap.

You would be wrong. As we now show, the Mermin-Wagner theorem not withstanding,

the chiral Gross-Neveu model (7.38) also generates a gap at low energies.

To see this, we use the same trick as before but this time introduce two auxiliary

fields, � and ⇡. The action (7.33) can be written as

S =

Z
d2x i ̄i /@ i �

N

2�
(�2 + ⇡2) +  ̄i(� + i⇡�3) i (7.39)

The equation of motion for � and ⇡ then tell us that

� ± i⇡ =  ̄i(1⌥ �3) (7.40)

The action (7.39) remains invariant under U(1)A provided that the auxiliary scalars

transform as

U(1)A : � + i⇡ ! e�2i↵(� + i⇡) (7.41)
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Evaluating the fermion determinant in the same way as before, we find

det
⇣
1� i /@

�1
(� + i⇡�5)

⌘
= det 1/2

�
1 + (@µ�)

2 + (@µ⇡)
2
�

Viewing both � and ⇡ as constants, we’re then left with the e↵ective potential,

Ve↵(�, ⇡) =
N

4⇡
(�2 + ⇡2)

✓
log

✓
�2 + ⇡2

⇤2
UV

◆
� 1

◆
+

N

�
(�2 + ⇡2)

This is identical to the potential (7.35) for the original Gross-Neveu model, but with

�2 replaced with �2 + ⇡2. Note, in particular, that the potential is invariant under the

U(1)A action (7.41) as it should be.

What do we do with this potential? Because we’re in d = 1 + 1 dimensions, we

should be a little careful. We parameterise the complex scalar field as

� + i⇡ = ⇢ei✓

The minimum of the potential sits at

⇢ = mGN

where mGN is the same dynamically generated mass scale (7.36) that we saw in the

previous model. This is already su�cient to tell us that the fermions generate a mass.

The care is needed when we come to the angular field mode ✓(x). This transforms

as ✓ ! ✓ + ↵ under the U(1)A symmetry. If we were in a higher dimension, we would

argue that ✓(x) should take some fixed value in the ground state, breaking the U(1)A
symmetry. In such a situation, we would identify the Goldstone boson as ✓, which

necessarily remains gapless.

However, in d = 1+1 dimensions the story is a little di↵erent. As we mentioned above,

the Mermin-Wagner theorem tells us that there are no Goldstone modes. Instead, the

ground state wavefunctions is closer in spirit to quantum mechanics, spreading over

all values of ✓. This is a topic that we discussed in some detail in the lectures on

Statistical Field Theory in the context of the Kosterlitz-Thouless phase transition. We

will recount the important facts here. The key result is that while ✓ does indeed remain

massless, it is not a Goldstone boson. This is not merely a matter of terminology: the

physics di↵ers.
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First, we need to work a little harder in expanding the e↵ective action. The potential

is

Se↵ = iN Tr log
⇣
i /@ + ⇢ei✓�

3
⌘
� N

�

Z
d2x ⇢2

It’s no longer su�cient to focus on constant values of � and ⇡ since the resulting

potential will not depend on ✓. Instead, we need to consider slowly varying ✓. The

leading term in the e↵ective action is the obvious one:

Se↵ =

Z
d2x

N

4⇡
(@µ✓)

2

This theory is less trivial than it looks! Because ✓ is a periodic variable ✓ 2 [0, 2⇡), a

so-called compact boson, the overall normalisation factor N/4⇡ is meaningful and will

show up in correlation functions. We will need to study such theories in some detail in

Section 7.5, but for now a quick and simple computation of the 2-point correlators will

su�ce. If ✓ was a normal scalar field in d = 1 + 1 dimensions, we would have

h✓(x) ✓(0)i = �N log (⇤UV |x|) (7.42)

However, because it’s a compact boson we should really work with the single-valued

operator ei✓. The appropriate correlation function then follows from Wick’s theorem,

together with the result (7.42),

hei✓(x) e�i✓(0)i = eh(✓(x)✓(0))i ⇠ 1

|x|1/N

We see that in the strict N ! 1 limit, the theory exhibits the long range order

expected from spontaneous symmetry breaking. Indeed, there is a loophole in the

Mermin-Wagner theorem and it breaks down in theories with an infinite number of

fields. However, for any large, but finite N , we find “quasi-long range order”, with

correlation functions dropping o↵ very slowly.

This translates directly into correlation functions between fermion bilinears. Using

(7.40), we have again see the phenomenon of quasi-long range order,

h ̄(1� �3) (x)  ̄(1 + �3) (0)i ⇠ 1

|x|1/N

The upshot is that, once again, an interacting quantum field theory (7.38) has found

a way to generate a mass. This time, the fermions get mass but the chiral U(1)A
symmetry remains unbroken.
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7.4.4 Back to Basics: Quantising Fermions in 2d

Given that we’ve just used path integral techniques to solve a theory of strongly inter-

acting fermions, what we’re about to do next may seem a little odd. We will return to

the free fermion and solve it using canonical quantisation.

This is the kind of calculation that we did in our first course in Quantum Field

Theory, and you may reasonably wonder why we’re bothering to do it again now that

we’re grown up. The reason is that it will prove an important warm-up for the following

section where we discuss bosonization.

We introduced the action for a massless fermion in (7.31). A two-component Dirac

fermion can be decomposed into Weyl fermions  T = ( +, �), in terms of which the

action is

S =

Z
d2x i †

�(@t + i@x) � +  †

+(@t � @x) +

The two Weyl fermions  ± are independent. This means that there are two conserved

quantities: these are the vector and axial currents and will be particularly important

in what follows. The vector current is

jµ
V
=  ̄�µ (7.43)

while a massless fermion also has a conserved axial current given by

jµA =  ̄�µ�3 (7.44)

From these we can construct two conserved charges, QV and QA.

The Weyl fermion  � is right-moving, and quantisation of this field will lead to

particles with momentum p > 0. Similarly, the quantisation of  + will lead to particles

with momentum p < 0. The mode expansion of the operators in the Schrödinger picture

follows the familiar story described in the lectures on Quantum Field Theory

 �(x) =

Z
1

0

dp

2⇡

⇣
b� pe

ipx + c†� pe
�ipx

⌘
(7.45)

 +(x) =

Z 0

�1

dp

2⇡

⇣
b+ pe

ipx + c†+ pe
�ipx

⌘
(7.46)

with the creation and annihilation operators obeying the standard anti-commutation

relations {b± p, b
†

± q} = {c± p, c
†

± q} = 2⇡ �(p � q). The vacuum is defined by b± p|0i =
c± p|0i = 0, and the operators b†± p and c†± p then create particles and anti-particles

respectively.
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It will turn out that we will need to be careful about various UV issues. For this

reason, we work instead with the mode expansion

 �(x) =

Z
1

0

dp

2⇡

⇣
b� pe

ipx + c†� pe
�ipx

⌘
e�p/2⇤

 +(x) =

Z 0

�1

dp

2⇡

⇣
b+ pe

ipx + c†+ pe
�ipx

⌘
e�|p|/2⇤

where ⇤ is a UV cut-of scale. In what follows, all integrals will be over the full range

of R unless otherwise stated. We also introduce the UV length scale

✏ =
1

⇤

We can then compute the two-point functions in position space. For example, we have

h �(x) 
†

�(y)i =
Z

1

0

dp dq

(2⇡)2
h bq b†� p i eiqx�ipye�(|p|+|q|)/2⇤

=

Z
1

0

dp

2⇡
eip(x�y)e�|p|/⇤

=
i

2⇡

1

(x� y) + i✏
(7.47)

You can also check that h †

�(x) �(y)i = h �(x) 
†

�(y)i. In particular, if we combine

these results we have

h { �(x), 
†

�(y)} i =
i

2⇡

✓
1

(x� y) + i✏
+

1

�(x� y) + i✏

◆

=
1

⇡

✏

(x� y)2 + ✏2
�! �(x� y) as ✏! 0

in agreement with the standard anti-commutation relations between fermions. Simi-

larly,

h +(x) 
†

+(y)i = �
i

2⇡

1

(x� y)� i✏
(7.48)

and h †

+(x) +(y)i = h +(x) 
†

+(y)i.

The expressions (7.47) and (7.48) are the key bits of information that we need to

take forward into the next section where we discuss bosonization.

7.5 Bosonization in Two Dimensions

There is something rather wonderful about fermions in two dimensions: they can be

rewritten in terms of bosons! The purpose of this section is to explain how on earth

this is possible.
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At first sight, this is a surprise. After all, the di↵erence between bosons and fermions

is one of the most fundamental things we learn as undergraduates. However, there are

reasons to suspect this di↵erence is not so stark in d = 1+1 dimensions. First, the spin

statistics theorem tells us that bosons have integer spin and fermions half-integer spin.

Yet in one spatial dimension there is no meaning to rotation and, correspondingly, no

meaning to spin. Relatedly, if we want to exchange two particles on a line, we can only

do so by moving them past each other. This is in contrast to higher dimensions where

particle positions can be exchanged, while keeping them separated by arbitrarily large

distances. This simple observation suggests that interactions will be as important as

statistics when particles are confined to live on a line.

To begin, we will show that a free massless Dirac fermion in d = 1 + 1 is equivalent

to a free massless, real scalar field �. Even for free fields, this is a rather remarkable

claim. The Hilbert space of a single bosonic oscillator looks nothing the Hilbert space

of a single fermionic oscillator, yet we claim that the theories in d = 1+1 not only have

the same Hilbert space (at least after we include a subtle Z2 issue), but also the same

spectrum. Furthermore, for any operator that we can construct out of fermions, there

is a corresponding operator made from bosons. Here we will focus on these operators

and show that the correlation functions of the fermionic theory coincide with those of

the bosonic theory.

The Compact Boson

The bosonic theory that we will focus on is deceptively simple. It is the theory of a

massless, real scalar field �. We write its action as

S =

Z
d2x

�2

2
(@µ�)

2 (7.49)

However, there is one di↵erence with a usual scalar field: we will take our scalar � to

be periodic, taking values in the range

� 2 [0, 2⇡) (7.50)

We refer to this as a compact boson. The dimensionless parameter � is called the

radius of the boson. (String theorists would usually define R2 = 2⇡�2l2
s
and call R the

radius. Here ls is the string length and which gives R dimension -1. Furthermore, it’s

not uncommon to work in conventions with l2
s
= 2, in which case R2 = 4⇡�2.)

Usually, the overall coe�cient of the kinetic term does not a↵ect the physics, since

it can always be absorbed into a redefinition of the field. But, in the present context,
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we can’t absorb � without changing the periodicity of �. This leads us to suspect that

the simple action (7.49) describes a di↵erent theory for each choice of �2, a suspicion

that we will confirm below. We will see that there is one special choice of �2 for which

the compact boson coincides with the free fermion. (Spoiler: it’s �2 = 1/4⇡.)

What are the implications of having a compact boson? The first thing to notice

is that we can’t add terms like �2 or �4 to the action, since these don’t respect the

periodicity. Instead we should add terms like cos� and sin�. Equivalently, the field � is

not really a well defined operator. We should instead focus on operators like ei� which,

again, respect the periodicity. These are sometimes referred to as vertex operators,

following their role in String Theory. Our task below will be to compute correlation

functions of the vertex operators ei�.

Now let’s turn to the conserved currents of the theory (7.49). The action is invariant

under the symmetry �! �+ constant. The associated current is

jµshift = �2@µ�

Clearly the equation of motion, @2� = 0, ensures that jµshift is conserved. The corre-

sponding Noether charge is Qshift, under which the operator ei� has charge +1.

However, in two dimensions a massless scalar also enjoys another conserved current,

jµwind =
1

2⇡
✏µ⌫@⌫�

which is conserved by dint of the epsilon symbol; we don’t need to invoke the equation

of motion. To see the associated conserved quantity, it is useful to put the theory on a

spatial circle of radius R. The charge associated to jµwind is then

Qwind =

Z 2⇡R

0

dx j0wind =
1

2⇡

Z 2⇡R

0

dx @x�

The conserved charge Qwind is the number of times that � 2 [0, 2⇡) winds around its

range as we go around the spatial circle. It is a topological charge. The existence of two,

independent U(1) global symmetries is reminiscent of the vector and axial symmetries

of the massless fermion. We’ll make this connection more precise shortly.

7.5.1 T-Duality

There is an alternative description of the compact boson in terms of a dual scalar. To

realise this, we take the original action (7.49) and think of @� as the variable, rather

than �. We can do this, only if we also impose an appropriate Bianchi identity. We
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might naively think that the Bianchi identity is @µ(✏µ⌫@⌫�) = 0, but in fact this is too

strong since it kills all winding. Instead, we want

1

2⇡

Z
d2x @µ(✏

µ⌫@⌫�) =
1

2⇡

I
dxµ @µ� 2 Z (7.51)

To impose this, we introduce a second compact boson

�̃ 2 [0, 2⇡)

and consider the action

S =

Z
d2x

1

2
�2(@µ�)

2 +
1

2⇡
✏µ⌫@µ� @⌫�̃

Integrating out �̃ in the partition function imposes the condition (7.51) and takes us

back to the original action (7.49). Alternatively, we can integrate out @�. Completing

the square, we have

S =

Z
d2x

1

2
�2

✓
@µ�� 1

2⇡�2
✏µ⌫@⌫�̃

◆2

+
1

2

1

4⇡2�2
(@�̃)2 (7.52)

This then gives an equivalent theory in terms of the dual scalar,

S =

Z
d2x

1

2
�̃2(@µ�̃)

2 with �̃2 =
1

4⇡2�2
(7.53)

The theory (7.53) is entirely equivalent to our original theory (7.49). This is referred

to as T-duality.

T-duality is particularly striking in the context of string theory. There, the compact

boson � is interpreted as a compact direction of spacetime in which the string can

move. In the usual conventions of string theory, the radius of this circle is taken to

be R =
p
2⇡�ls with ls the string length. T-duality says that, as far as the string

is concerned, the physics is exactly the same if we instead take a spacetime with a

compact circle of radius R̃ = l2
s
/R. In other words, very big circles are the same as

very small circles. You can read more about this interpretation in the lecture notes on

String Theory.

How is this possible? The key is the relation between � and �̃, which can be found

inside the squared brackets in (7.52),

@µ� =
1

2⇡�2
✏µ⌫@

⌫�̃ (7.54)

This clearly relates the momentum current for � to the winding current for �̃, and vice

versa. What looks like momentum modes in one description becomes winding modes

in the other. In particular, ei�̃ carries charge +1 under Qwind.
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Although the transformation between � and �̃ is simple, it is also non-local. If we try

to solve for �̃ in terms of �, we must integrate. We’ll see this clearly in (7.56) below.

Chiral Bosons

In what follows, it will be useful to introduce chiral bosons, which are either purely left

moving or purely right moving. The equation of motion @2� = 0 can be solved by

� = ��(x
�) + �+(x

+)

where x± = t± x. In fact, the decomposition isn’t quite as clean because there is also

a zero mode which does not naturally divide between the two. We will ignore this fact

here.

These chiral bosons give us a novel perspective on the dual scalar. The relation

(7.54) is solved by writing

�̃ = 2⇡�2(�� � �+)

We can then express the chiral bosons in terms of the scalar and its dual by

�⌥(x, t) =
1

2


�(x, t)± 1

2⇡�2
�̃(x, t)

�
(7.55)

Indeed, we can check that

@x�� = @x�+
1

2⇡�2
@x�̃ = @t�̃� 1

2⇡�2
@t� = �@t�� ) @+�� = 0

as required.

7.5.2 Canonical Quantisation of the Boson

Let’s now consider what happens when we quantise the boson. Let’s start by ignoring

the the fact that � is compact: we’ll then reinstate this condition later when we discuss

the viable operators in the theory. In the Schrödinger picture, we expand the operator

�(x) in Fourier modes, following the usual story in Quantum Field Theory

�(x) =
1

�

Z
dp

2⇡

1p
2|p|

�
ape

ipx + a†
p
e�ipx

�
e�|p|/2⇤

Classically, the momentum is ⇡ = �2�̇. In the Schrödinger picture, this is written as

the operator

⇡(x) = �i�
Z

dp

2⇡

r
|p|
2

�
ape

ipx � a†
p
e�ipx

�
e�|p|/2⇤
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We’ve introduced a UV cut-o↵ ⇤ in these expressions. We’ll see the utility of this

shortly. As for fermions, we also introduce the UV length scale ✏ = 2/⇤. Using the

usual commutation relations among the creation and annihilation operators [ap, a†q] =

2⇡ �(p� q), we have

[�(x), ⇡(y)] =
i

⇡

✏

(x� y)2 + ✏2
�! i�(x� y) as ✏! 0

How do we construct the quantum operator for the chiral boson (7.55)? The dual

scalar obeys @x�̃ = ��̇ = �⇡/�2. We can then write down a quantum operator in the

Schrödinger picture, by integrating the momentum thus:

�±(x) =
1

2


�(x)± 1

�2

Z
x

�1

dx0 ⇡(x0)

�
(7.56)

Here we see what we promised earlier: the chiral bosons �±(x) are inherently non-local

objects: they requires knowledge of the profile of the field everywhere to the left of the

point x. To check that these are indeed the right objects, we can work in the our mode

expansion. We have

��(x) =
1

2�

Z
dp

2⇡

s
1

2|p|

⇣
1 +

|p|
p

⌘⇣
ap e

ipx + a†
p
e�ipx

⌘
e�|p|/2⇤

=
1

2�

Z
1

0

dp

2⇡

s
2

|p|

⇣
ap e

ipx + a†
p
e�ipx

⌘
e�p/2⇤

which picks up contributions only from the right-moving, p > 0 modes. This is remi-

niscent of the expansion (7.45) for the Weyl fermion  �. Similarly,

�+(x) =
1

2�

Z 0

�1

dp

2⇡

s
2

|p|

⇣
ap e

ipx + a†
p
e�ipx

⌘
e�|p|/2⇤

which picks up contributions only from left-moving, p < 0 modes. This is reminiscent

of the expansion (7.46) for  +.

The commutation relations of �± are easily computed. We have

[�±(x),�±(y)] = ± 1

4�2

Z
y

�1

dy0 [�(x), ⇡(y0)]± 1

4�2

Z
x

�1

dx0 [⇡(x0),�(y)]

= ⌥ i

4�2
sign(x� y) (7.57)
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Again, we see the non-locality of chiral bosons in their commutation relation. The

operators fail to commute no matter how far separated. Meanwhile,

[�+(x),��(y)] = �
i

4�2
(7.58)

This latter commutation relation is telling us that, in contrast to the Weyl fermions,

the left and right moving scalars have not fully decoupled. The culprit is the zero

momentum mode of the scalar, which is shared by both �+ and ��. This zero mode

is an important subtlety in a number of applications, but we will not treat it properly

here. A slightly better treatment can be found in the lectures on String Theory.

Before we proceed, we need one more computation under our belts. This is the

Green’s functions for the chiral bosons h�±(x)�±(y) i. This is straightforward. To

avoid UV divergences, we first subtract the constant term and define

G±(x, y) = h�±(x)�±(y) i � h�±(0)
2 i

We then have

G�(x, y) =
1

4�2

Z
1

0

dp dq

(2⇡)2
2
p
pq
h apa†q i

�
eipx�iqy � 1

�
e�(p+q)/2⇤

=
1

4�2

Z
1

0

dp

2⇡

2

p

�
eip(x�y) � 1

�
e�p/⇤

=
1

4⇡�2
log

✓
✏

✏� i(x� y)

◆

Note thatG�(x, x) = 0, as it should. Meanwhile, at large distances the Green’s function

exhibits a logarithmic divergence. This infra-red behaviour is characteristic of massless

scalar fields in two dimensions. Similarly, we have

G+(x, y) =
1

4⇡�2
log

✓
✏

✏+ i(x� y)

◆

The Correlators

Finally, we have the tools to compute correlation functions in this theory. But the

question that we should first ask is: what are the operators? The first point to note

is that � is not a good operator, because the classical field is not single valued. The

same is true of the dual �̃. Instead, we must work with derivatives such as @� or with

so-called vertex operators of the form

ei� =: ei� :

– 368 –



where, as usual, normal ordering means all annihilation operators are moved to the

right. Whenever we write an operator like ei� or cos�, we will always mean that normal

ordered version of these operators. In subsequent equations, we will keep punctuation

to a minimum and usually won’t explicitly write the : :.

In what follows, we will compute correlation functions of the form

hei��(x)e�i��(y)i and hei�+(x)e�i�+(y)i

In the next section we will then compare these with expressions involving fermions.

At the same time, we will look a little more closely at the conditions for ei�± to be

consistent with the periodicity of �.

To compute these expressions, we need to think more carefully about what the normal

ordering means. For this, we will need the usual BCH identity,

eAeB = eA+Be+
1
2 [A,B] = eBeAe[A,B]

where the higher order terms vanish whenever [A,B] is a constant. We apply this to

the operators A = ↵a+ ↵0a† and B = �a+ �0a†. We have

: eA : : eB : = e↵
0
a
†
e↵ae�

0
a
†
e�a

= e↵
0
a
†
e�

0
a
†
e↵ae�ae↵�

0

= : eA+B : ehABi

Applying this to the vertex operators ei�, which are nothing more than exponentials of

many creation and annihilation operators, we have

hei��(x)e�i��(y)i = hei��(x)�i��(y)i eG�(x,y)

But the correlation function on the right-hand side is of a normal ordered operator and

this is simply h: ei��(x)�i��(y) :i = 1, since only the 1 in the Taylor expansion of the

exponential contributes. We’re left with

hei��(x)e�i��(y)i = eG�(x,y) =

✓
✏

✏� i(x� y)

◆1/4⇡�2

(7.59)

Similarly

hei�+(x)e�i�+(y)i = eG+(x,y) =

✓
✏

✏+ i(x� y)

◆1/4⇡�2

(7.60)

Note that the correlation functions depend in an interesting way on the radius of the

compact boson �2. This confirms a statement that we made at the beginning of this

section: the radius of the boson �2 is a genuine parameter of the theory. In the language

of conformal field theory, we would say that the operator ei�± has dimension 1/8⇡�2.
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7.5.3 The Bosonization Dictionary

The hard work is now behind us. Looking at the correlation functions (7.59) and (7.60),

it is clear that they take a particularly simple form if we choose the radius of the boson

to be

�2 =
1

4⇡

We can then compare correlation functions for right-moving fermions (7.47) and bosons

(7.59),

h �(x) 
†

�(y)i =
i

2⇡

1

(x� y) + i✏
and hei��(x)e�i��(y)i = i✏

(x� y) + i✏

This tells us that we should identify

 �(x)  !
r

1

2⇡✏
ei��(x) (7.61)

where, recall, ⇤ = 1/✏ is our UV cut-o↵. Similarly, comparing the correlation functions

for left-moving operators, we have the map

 +(x)  !
r

1

2⇡✏
e�i�+(x) (7.62)

We can also develop the map between composite operators. The simplest is the

quadratic, mass term for fermions

 ̄ =  †

�(x) +(x) +  †

+(x) �(x)  !
1

2⇡✏

�
e�i��(x)e�i�+(x) + ei�+(x)ei��(x)

�

At this point, we just need to use the standard BCH identity, eAeB = eA+Be�[A,B]/2.

Using the commutation relation (7.58), we have

 ̄  ! � 1

2⇡✏

�
e�i�(x) + ei�(x)

�
= � 1

⇡✏
cos� (7.63)

Similarly, the chiral mass term

i ̄�3  ! � 1

⇡✏
sin�

These will be important in the next section when we will understand better how to

think of massive fermions in the bosonic language.
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Matching Currents

Bosonization is a kind of duality, in which two seemingly di↵erent theories secretly

describe the same physics. In any such duality, the most important objects to match

on both sides are the conserved currents. We will see how this pans out in the present

context.

The vector (7.43) and axial (7.44) currents are, like the mass term, composite,

quadratic operators. For example,

j0
V
= � † = �( †

� � +  †

+ +) and j1
V
= � †�3 = � †

� � +  †

+ +

However, it turns out that we need to be a little more careful in defining these operators.

We do this through point splitting. For example, consider

 †

� � := lim
y!x

 †

�(x) �(y)

 ! lim
y!x

1

2⇡✏
e�i��(x)ei��(y)

= lim
y!x

1

2⇡✏
e�i(��(x)+��(y))eG�(x,y)

= lim
x!y

1

2⇡✏

✓
1� i(x� y)

@��(x)

@x
+ . . .

◆
✏

✏� i(x� y)

=
1

2⇡

@��(x)

@x
+ lim

x!y

✓
i

2⇡(x� y)

◆

Note that this expression comes with an infinite, constant term. We can remove this

simply by normal ordering the fermionic operator. Identical calculations also hold for

 †

+ +, leaving us with the map

:  †

± ± :  ! 1

2⇡

@�±

@x

From this we can read o↵ the map between currents,

j0
V
 ! � 1

2⇡

@(�� + �+)

@x
= � 1

2⇡

@�

@x

and

j1
V
 ! � 1

2⇡

@(�� � �+)

@x
= +

1

2⇡

1

�2
⇡(x)

Recalling that the classical momentum is ⇡ = �2�̇, we identify j1
V
 ! �̇/2⇡. In other

words, we learn that the vector current of fermions is related to the topological current
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in the bosonic language

jµ
V
 ! �jµwind = � 1

2⇡
✏µ⌫@⌫� (7.64)

Similarly,

jµ
A
 ! �jµshift = ��2@µ� (7.65)

The methods that we’ve described above can be used to find the map between all other

operators in the theory. For our purposes, the basic dictionary described above will

su�ce.

7.5.4 The Allowed Operators: Is the Boson Really a Fermion?

We have seen that, when �2 = 1/4⇡, the operators ei�± can be identified with free

fermions through the map (7.61) and (7.62). But there is one subtlety that we didn’t

address: are the operators ei�± compatible with the periodicity of �?14

Because � 2 [0, 2⇡), the operator ei� is perfectly fine, as indeed is ein� for any n 2 Z.

The dual scalar, defined by (7.54), also has periodicity �̃ 2 [0, 2⇡), so that ei�̃ is also

fine. In general, we can have any operator of the form ein�+iw�̃ with n,w 2 Z. For a

general value of �2, this means that the allowed operators are

ein�+iw�̃ = ei(n+2⇡�2
w)�� ei(n�2⇡�2

w)�+

Restricting to �2 = 1/4⇡, we have

ein�+iw�̃ = ei(n+w/2)�� ei(n�w/2)�+

To get a purely chiral operator we could, for example, set n = 1 and w = ±2. But this

leaves us with e2i�± , rather than ei�± . This is rather disconcerting, since it means that

the operators ei�± are not in the spectrum of the theory because they are incompatible

with the periodicity of � and �̃. Yet these are precisely the operators that we want to

identify with a single fermion. What’s going on?!

The answer is that the compact boson is not actually equivalent to a theory of a

free fermion. Instead, it is equivalent to a theory of a fermion coupled to a Z2 gauge

symmetry, acting as

Z2 :  7! � (7.66)

This eliminates the single fermion from the spectrum, but leaves us with the composite

operators   and  ̄ .

14I’m grateful to Carl Turner for explaining this to me.
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The need to couple the free fermion to a Z2 gauge field shows up in another way

which we briefly describe here. If the two theories are equivalent, then their partition

functions should coincide. It is straightforward to compute the partition function for

the compact boson on a torus T2. It agrees with that of a free fermion only if we

sum over both periodic and anti-periodic boundary conditions on the torus. (These

are usually referred to as Ramond and Neveu-Schwarz sectors respectively.) The fact

that we need to sum over both boundary conditions is another way of saying that the

fermion is coupled to a Z2 gauge field, ensuring that configurations related by (7.66)

are physically identified.

7.5.5 Massive Thirring = Sine-Gordon

Having spent all this time developing the bosonization dictionary, we can now use it in

anger. As we will see, the nice thing about the bosonization map is that it very often

takes a strongly coupled theory and rewrites it in terms of a weakly coupled theory

using the other variables.

Let’s go back to the free theory of a compact scalar,

S =

Z
d2x

�2

2
(@µ�)

2

We know that for the specific value �2 = 1/4⇡, this is equivalent to a free, massless

Dirac fermion. But what about the other values of �2? This is easy to answer using

our bosonization dictionary. We split the kinetic term up as

�2 =
1

4⇡
+

g

2⇡2

and think of the second piece, proportional to g, as a bosonic current-current interac-

tion,

jµwind jwindµ
=

1

4⇡2
(@µ�)

2

Adding such a current is straightforward for the boson: it just shifts the coe�cient of

the kinetic term away from the magic value. Written in terms of the fermion, it must

again be a current-current interaction, this time of the form

jµ
V
jV µ = ( ̄�µ )( ̄�µ )

This is referred to as a Thirring interaction. Rather surprisingly, we learn that a

general, free compact boson corresponds to an interacting fermion,
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More generally, we can consider the massive, interacting Thirring model, with action

S =

Z
d2x i ̄ /@ �m ̄ � g( ̄�µ )( ̄�µ ) (7.67)

Bosonization maps this into a compact boson with a potential, known as the Sine-

Gordon model,

S =

Z
d2x

�2

2
(@µ�)

2 +
m

⇡✏
cos�

Note that the action include an explicit mention of the UV cut-o↵ ⇤ = 1/✏. The

potential V (�) ⇠ � cos� has its minimum at � = 0 and so, indeed, would seem to give

a mass to � as required.

There are a couple of cute subtleties that we learn from the bosonization map. First,

we usually think about adding interaction terms to the Hamiltonian which are positive

definite. For our fermionic theory, the requirement is slightly di↵erent. We must have

�2 > 0 on the bosonic side but, in terms of fermions, this translates to

g > �⇡
2

We learn that we can su↵er a negative contribution to the Hamiltonian, as long as it’s

not too negative.

Second, we expect that the role of m is to make the excitation massive on both sides.

But that’s not quite true. Recall that the two-point correlators (7.59) and (7.60) allow

us to read of the dimension of the vertex operators ei�± or, equivalently, the dimension

of the fermion. This dimension is 1/8⇡�2. It means that the cos� potential for the

boson (or, equivalently, the mass term for the fermion) is relevant only if

1

4⇡�2
< 2 ) �2 >

1

8⇡
) g > �⇡

4

In other words, for �⇡/2 < g < �⇡/4, the mass term is an irrelevant operator and the

massive Thirring model describes a massless theory in the infra-red!

Fermion = Kink

It will pay to look a little more closely at what becomes of a single, massive fermion.

The answer to this follows from looking at the map between currents (7.64). A single

fermion carries charge QV =
R
dx j0

V
= 1. Correspondingly, it corresponds to a state

in the bosonic theory with charge

Qwind =
1

2⇡

Z
dx @x� = �1
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It is straightforward to find a classical configuration with that carries this charge. The

minima of the potential V (�) ⇠ � cos� lie at � = 2⇡n. We simply need to take a

a configuration that interpolates between two minima, say from � = 2⇡ at x ! �1
to � = 0 at x ! +1. We learn that the fermion is identified with a kink in the

Sine-Gordon model.

We can explore this kink in more detail. The classical energy of any configuration in

the Sine-Gordon model can be written, up to an unimportant constant, as

E =

Z
dx

�2

2
�0 2 +

2m

⇡✏
sin2(�/2)

We can rewrite this using the Bogomolnyi trick, in which we complete the square thus:

E =

Z
dx

�2

2

✓
�0 ±

r
4m

�2⇡✏
sin(�/2)

◆2

⌥
r

4m�2

⇡✏
�0 sin(�/2) (7.68)

The first term is a total square, and hence positive definite. The second term is a total

derivative. This ensures that we can bound the energy of any configuration in terms

of the end points

E � 4

r
m�2

⇡✏

����
h
cos(�/2)

i+1

�1

����

For a kink that interpolates between neighbouring minima, we have

Ekink � 8

r
m�2

⇡✏

with equality if the Bogomolnyi equations are satisfied, which can be found in the total

square in (7.68),

�0 = ±
r

4m

�2⇡✏
sin(�/2)

These equations aren’t quite satisfactory, since they still include the UV cut-o↵ ✏.

This arises here because we’re using an unholy combination of classical and quantum

analysis. Still, there’s a simple way to fix it. For g = 0 or, equivalently, �2 = 1/4⇡, the

Sine-Gordon model describes a free fermion. Here, the mass of the Bogomolnyi kink is

Ekink =
4

⇡

r
m

✏
(7.69)

which suggests that we should take the ✏ = 16/m⇡2 if we want the semi-classical

analysis of the Sine-Gordon model to reproduce the mass m of the fermion.
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There is a more general lesson lurking here. Bosonization provides us with a duality

between two di↵erent theories, in which the elementary excitation of one theory is

mapped into a soliton of the other. This, it turns out, is a characteristic signature of

dualities in di↵erent dimensions. (We will meet an example in 3d where particles are

mapped to vortices in Section 8.2.) Often these other dualities are not well understood.

Two dimensional bosonization provides a useful grounding, where the map between the

two theories can be performed explicitly.

7.5.6 QED2: The Schwinger Model

The Schwinger model is the name given to QED in two dimensions: it consists of a

single Dirac fermion, coupled to a U(1) gauge field. The action is

S =

Z
d2x

1

2e2
F 2
01 +

✓

2⇡
F01 + i ̄ /D � im ̄ 

As we have seen in Sections 7.1 and 7.2, Maxwell theory is strongly coupled in two

dimensions, and electric charges confine. When the fermion is very heavy, m2 � e2,

we can use standard perturbative techniques to solve the model. In contrast, when the

fermions are light the theory is strongly coupled and we must look elsewhere for help.

Fortunately, as we now see, bosonization will do the job for us.

The coupling between the fermion and the gauge field is buried in the covariant

derivative: /D = /@ � iAµ�µ . As usual, the gauge field couples to the fermion

current, as Aµj
µ

V
. This makes it straightforward to write down the bosonised version,

S =

Z
d2x

1

2e2
F 2
01 +

✓

2⇡
F01 +

1

8⇡
(@µ�)

2 +
1

2⇡
Aµ✏

µ⌫@⌫�+
m

⇡✏
cos�

=

Z
d2x

1

2e2
F 2
01 +

1

2⇡
(✓ + �)F01 +

1

8⇡
(@µ�)

2 +
m

⇡✏
cos� (7.70)

where the second line follows after an integration by parts. Already here, there’s

something rather nice. Suppose that the mass m = 0. The equation of motion for � is

then
1

4⇡
@2� = � 1

2⇡
F01

But we know from our bosonization formula (7.65) that the axial current is jµ
A

=

�@µ�/2⇡, so we can write this a

@µj
µ

A
=

1

⇡
F01

But this agrees with our earlier derivation (3.36) of the anomaly in two dimensions.

Previously the anomaly was a subtle quantum e↵ect; after bosonization, it simply

becomes the equation of motion.
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Meanwhile, the equation of motion for the gauge field includes

@x

✓
1

e2
F01 +

1

2⇡
�

◆
= 0 ) F01 = �

e2

2⇡
�

where the second condition comes from requiring that this combination vanishes at

infinity. This is reminiscent of our result in Section 7.1 where we found that the theta

angle gives rise to a background magnetic field (7.7). However, once again, we find this

result simply from the classical equation of motion, without the need to invoke any

quantisation. A more careful analysis, along the lines of Section 7.1 shows that

F01 = �
e2

2⇡
(✓ + �)

which seems very reasonable given the action (7.70). (Note: in Section 7.1, we denoted

the Wilson line as �; this is not to be confused with the bosonized fermion � we are

working with here.)

To answer further questions, note that the gauge field Aµ only appears in the field

strength in (7.70). If we take the theory to sit on a line, so that there is no quantisation

condition on F01, we can integrate out the gauge field to get

S =

Z
d2x

1

8⇡
(@µ�)

2 +
m

⇡✏
cos�� e2

8⇡2
(✓ + �)2

Note that we have now lost the periodicity in �. (This is restored on a compact space

where
R
F01 2 2⇡Z. In this case, the potential gets replaced by minn (✓+�+2⇡n)2. We

encountered similar periodic, but non-smooth potentials in our study of 4d Yang-Mills

theory at large N in (6.18).)

There are a number of things we can now look at. First, suppose that our original

fermions were massless, with m = 0. Note that we can now absorb the theta angle

simply by rescaling � ! � � ✓. This is to be expected: as discussed in Section 3.3.3,

the chiral anomaly means that the theta angle is always redundant in the presence of

massless fermions. We’re left simply with a real scalar field whose mass is

mass2 =
e2

⇡

We learn that the massless Schwinger model is not, in fact, massless. It has a gap.
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Let’s now turn on the fermion mass m. The minima of the potential now sit at

sin� = � e2✏

4⇡m
(✓ + �) (7.71)

For large m, this has many solutions but, at least when ✓ 6= ⇡, there is only a unique

ground state. There is now no kink solution that interpolates between neighbouring

minima because the minima are no longer degenerate. This reflects the physics of

confinement that we saw in Section 7.1: a single fermion costs infinite energy due the

resulting flux tube which stretches to infinity. The finite energy excitations are mesons,

bound states of fermions and anti-fermion. One may use the bosonized action above

to study these in the limit of small mass.

Something interesting happens when ✓ = ⇡. This is simplest to see if we shift

�̂ = �� ⇡. The minima of (7.71) then sit at

sin �̂ =
e2✏

4⇡m
�̂ (7.72)

This can be solved graphically. When m� e2✏, there are many solutions. The obvious

one at �̂ = 0 is actually a local maxima of the potential. There are then two degenerate

minima. This is what we expect from our discussion in 7.1: integrating out the very

heavy fermion leaves us with pure Maxwell theory at ✓ = ⇡, and we know that this has

two degenerate ground states.

Now we can decrease the mass. The number of solutions to (7.72) starts to decrease

and for m ⌧ e2✏, we have just a single ground state at �̂ = 0. The critical point

happens at 4⇡m = e2✏, when the two degenerate minima merge into a single one. But

this is a very familiar phase transition: it is described by the Ising critical point. We

learn that as we vary the mass at ✓ = ⇡, the Schwinger model becomes gapless and is

described by the 2d Ising CFT. Note that this is exactly the same behaviour that we

saw for the Abelian Higgs model in Section 7.2.

7.6 Non-Abelian Bosonization

Consider N , massless Dirac fermions,  i with i = 1, . . . , N . Decomposing each into a

Weyl fermion, the action is

S =

Z
d2x i †

�i
@+ �i + i †

+i
@� +i (7.73)

where @± = @t±@x. We clearly have a U(N)⇥U(N) chiral symmetry, which rotates the

left- and right-handed fermion separately. In fact, in two dimensions each Weyl fermion
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can be further split into two Majorana-Weyl fermions. This follows from the fact that

we can choose a basis of gamma matrices (7.30) that are both in the chiral basis and

real. The upshot is that the free fermions (7.73) actually have an O(2N) ⇥ O(2N)

chiral symmetry.

But what becomes of this symmetry on the bosonic side? We have N compact,

real bosons �i. Because these are compact, there is not even an O(N) symmetry that

rotates them. (This is the statement that RN has a O(N) symmetry acting on it, but

the torus TN does not.) Instead, all we have is the Cartan subalgebra U(1)N , together

with the corresponding action on the dual scalars.

What to make of this? One might think that it’s no biggie: after all, the bosonic the-

ory should presumably have the enlarged symmetry since its equivalent to its fermionic

cousin. But it would be nice to make this manifest. And, fortunately, there is a

beautiful way to do so, as first explained by Witten.

Here we will bosonize, keeping the U(N) ⇥ U(N) symmetry manifest, although a

similar method works for the O(2N) ⇥ O(2N) chiral symmetry too. Let’s start by

looking at the currents. The overall U(1) ⇥ U(1) takes a similar form to the previous

section, but we write this as

j� = 2 †

�i
 �i and j+ = 2 †

+i
 +i

These are the components of the vector and axial current written in the lightcone

coordinates x± = t ± x. But now we also have the non-Abelian flavour symmetries,

with the corresponding SU(N) currents,

Ja

�
= 2 †

�i
T a

ij
 �j and Ja

+ = 2 †

+i
T a

ij
 +j

where T a

ij
are the generators of su(N). The equations of motion for the fermions ensure

that the currents obey

@+j� = @�j+ = 0 and @+J
a

�
= @�J

a

+ = 0

We would like to ask: can we write down a bosonic model that has the same currents?

Rather than jumping immediately to the model, we’re first going to write down an

ansatz for the form of the currents, and then see if we can come up with an action

which reproduces this.
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We’ve already seen how to do this for the U(1) currents: we simply write them in

terms of a compact boson �. In lightcone coordinates, this becomes

j� =
1

2⇡
@�� and j+ = � 1

2⇡
@+�

What’s the analog expression for the non-Abelian currents? Here’s a guess. First

let’s write the Abelian currents in a way that highlights their U(1)-ness. We define

g̃ = ei� 2 U(1). Then we can write

j� = � i

2⇡
g̃�1@�g̃ and j+ =

i

2⇡
g̃�1@+g̃ (7.74)

This is now something that we can hope to generalise. We introduce the group-valued

field

g(x, t) 2 SU(N)

We then define the currents

J� = � i

2⇡
g�1@�g and J+ =

i

2⇡
(@+g)g

�1 (7.75)

Note that the ordering of g and g�1 matters in these expressions and di↵ers from what

we might naively have written down simply by copying (7.74). The reason for the

choice above is that we want these currents to obey conservation laws

@+J� = @�J+ = 0 (7.76)

Happily, the ordering in (7.75) means that the first of these conservation laws implies

the second,

@+J� = 0 ) (@+g
�1)@�g + g�1@+@�g = 0

g(@+g
�1)@�g + @+@�g = 0

@+g(@�g
�1)g + @+@�g = 0

@+g@�g
�1 + (@+@�g)g

�1 = 0 ) @�J+ = 0 (7.77)

Had we chosen a di↵erent order of g and g�1 in (7.75) then the conservation laws (7.76)

turn out to be inconsistent with each other.

Now we’ve got a good candidate for the currents (7.75), we want to write down

an action for g whose dynamics implies their conservation. In fact, given the group
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structure, we are pretty restricted in what we can write down. If we want an action

with two derivatives, then there is a unique choice,

S =

Z
d2x

1

4�2
tr
�
@µg @

µg�1
�

(7.78)

for some dimensionless coupling �2. We have met this structure before: it is identical to

the chiral Lagrangian (5.7) that we used to describe pions in QCD. This is a non-linear

sigma model, whose target space is the group manifold SU(N). In two-dimensions,

the sigma-models whose target spaces are group manifolds are sometimes referred to

as principal chiral models.

The action (7.78) enjoys two global symmetries, in which we act by an SU(N)

transformation on either the left or right,

g ! Lg or g ! gR , L,R 2 SU(N)

This gives rise to two currents Jµ

L
⇠ (@µg)g�1 and Jµ

R
⇠ (@µg�1)g. (We computed

these currents in the context of the chiral Lagrangian in (5.11) and (5.12).) These

indeed take the a similar form to our chiral currents J� and J+ defined in (7.75),

which is encouraging. However, closer inspection tells us that things aren’t quite as

straightforward. The equation of motion from (7.78) implies that @µJ
µ

L
= @µJ

µ

R
= 0,

but this not the same thing as what we wanted in (7.76). We learn that the symmetry

structure of the bosonic model (7.78) di↵ers from that of N free fermions.

There is also a dynamical reason why the sigma model (7.78) cannot describe free

fermions: it is asymptotically free. The coupling �2(µ) runs with scale µ and its one-

loop beta function can be shown to be

µ
d�2

dµ
= �(N � 2)

�2

4⇡

This is similar to the behaviour of the CPN�1 model that we met in Section 7.3. (It

is even more similar to the behaviour of the O(N) models in two dimensions that we

met in the lectures on Statistical Field Theory.) In the infra-red, the non-linear sigma

model (7.78) is expected to flow to a gapped phase.

7.6.1 The Wess-Zumino-Witten Term

The simple sigma-model (7.78) does not have the right properties to describe free

fermions. However, it is possible to modify this theory to give us what we want. The

modification is a little subtle, but it’s a subtlety that we have met before: the extra term

cannot be written as integral over 2d spacetime, but instead only over a 3d spacetime.

Such terms are called Wess-Zumino-Witten terms, and we saw an example in Section

5.5 in the context of the chiral Lagrangian for QCD.
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Things are simplest if we work in the Euclidean path integral and take our spacetime

to be S2. We introduce a three-dimensional ball, D, such that @D = S2. We extend the

fields g(x, t) over S2 to g(y), where y are coordinates on the ball D. We then consider

the modified action,

S =

Z
d2x

1

4�2
tr
�
@µg @

µg�1
�
+ k

Z

D

d3y ! (7.79)

where

! =
i

24⇡
✏µ⌫⇢ tr

✓
g�1 @g

@yµ
g�1 @g

@y⌫
g�1 @g

@y⇢

◆

This has a very similar structure to the five-dimensional WZW term (5.35) that we

introduced in Section 5.5.

Just as in the 4d story, there is an ambiguity in our choice of 3d-dimensional ball D

with @D = S2. We could just as well take a ball D0, also with @D0 = S2 but with the

opposite orientation. The now-familiar topological quantisation conditions tell us that

exp

✓
ik

Z

D

d5y !

◆
= exp

✓
�ik

Z

D0
d5y !

◆
) exp

✓
ik

Z

S3

d3y !

◆
= 1

where we have stitched together the two three-balls to make the three-sphere S3 =

D [ D0. The integrand provides a map from S3 to the group manifold SU(N) with

fields g(y). But, as we saw in the context of instantons in Section 2.3, these maps are

characterised by the homotopy group

⇧3(SU(N)) = Z for N � 3

It turns out that, for configurations with winding n, the WZW term evaluates toR
S3 d3y ! = 2⇡n. This quantisation condition then tells us that the coe�cient of the

WZW term must be an integer.

k 2 Z

We refer to this integer as the level.

The e↵ect of the WZW term in two dimensions is, in many ways, much more dramatic

than that of its four dimensional counterpart. In 4d, we had to look at rather specific

scattering processes, or baryons, to see the implications of the WZW term. In contrast,

in 2d the presence of the WZW term a↵ects even the phase of the theory. To see this,
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we can look again at the beta function for �2. At one-loop, one finds that it picks up

an extra term, given by

µ
d�2

dµ
= �(N � 2)

�2

4⇡

"
1�

✓
�2k

4⇡

◆2
#

We see that there is now a fixed point of the RG equation, at

�2 =
4⇡

|k| (7.80)

Here the theory is described by a gapless CFT, known as the SU(N)k WZW theory. It

is completely solvable using various CFT techniques, although we will not discuss these

here. Since our one-loop computation is valid for �2 ⌧ 1, we can trust the existence of

this fixed point only when k � 1 and the theory remains weakly coupled. Nonetheless,

the fixed point is known to persist for all k 2 Z.

At the fixed points, something nice happens with the currents. The classical equation

of motion of the action (7.79) is

1

2�2
@µ(g

�1@µg)�
k

8⇡
✏µ⌫@µ(g

�1@⌫g) = 0

In lightcone coordinates, with metric ⌘+� = 1, this reads
✓

1

2�2
+

1

8⇡k

◆
@�(g

�1@+g) +

✓
1

2�2
� 1

8⇡k

◆
@+(g

�1@�g)

At the fixed point (7.80), one of these terms vanishes. Which one depends on the sign

of k. For k > 0, we’re left with

@�(g
�1@+g) = 0

which is precisely the condition @�J+ = 0 that we wanted for the chiral current (7.76).

The other condition @+J� = 0 then follows automatically, as shown in (7.77).

We’ve found that, for each N , there is a set of conformal field theories, labelled by

k 2 Z. That’s nice but which, if any, describe N free fermions? The answer to this

comes from looking more closely at the algebra obeyed by the SU(N) currents. We

won’t give details of the calculation here, and instead just sketch the basic facts. The

SU(N) currents turn out to obey an extension of the usual su(N) Lie algebra, with an

extra term referred to as a central charge,

[Ja

±
(x), Ja

±
(y)] = ifabcJ±(x)�(x� y)± ik

4⇡
�ab�0(x� y)
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with fabc the structure constants of su(N) and �0(x) the derivative of the delta function.

This is known as a Kac-Moody algebra, and its properties are well studied. It is known

that the algebra has unitary representations only if k 2 Z, a fact which sits well with

our realisation as currents in the WZW model.

One can also compute the same algebra for N free Dirac fermions. Here the compu-

tation is somewhat simpler and follows from the usual commutation relations for free

fermions. One finds the Kac-Moody algebra above, but with the specific value k = 1.

We learn that we can bosonize N free Dirac fermions to an SU(N) WZW model at

level k = 1, together with a compact boson � to describe the U(1) currents. In other

words, the following action

S =

Z
d2x

1

8⇡
(@µ�)

2 +
1

16⇡
tr
�
@µg @

µg�1
�
+

Z

D

d3y !

is, despite appearances, N free Dirac fermions in disguise.

7.7 Further Reading

Quantum field theories in low dimensions were originally studied by particle physicists.

They were viewed as toy models, in which some of the more outlandish behaviour of

quantum field theory, such as confinement, or a dynamically generated mass, could

be viewed in a tractable setting, giving comfort in a time of confusion. Later it was

realised that many of these quantum field theories have direct application to condensed

matter systems.

This programme was initiated by Schwinger who, in 1962, studied massless QED

in d = 1 + 1 [174], in what is probably the first time that a strongly interacting

quantum field theory was solved. This is a model which trivially confines and, somewhat

less trivially, exhibits a mass gap. In these lectures, we solved it using bosonization

techniques. Schwinger used operator methods. One conclusion that he took from this

study was that thinking in terms of elementary particles can be misleading in strongly

interacting field theories:

“This line of thought emphasizes that the question “Which particles are

fundamental?” is incorrectly formulated. One should ask “What are the

fundamental fields?”.”

The massive Schwinger model was revisited by Coleman and collaborators in the 1970s

to better understand both confinement and the role played by the theta angle in two

dimensions [28, 30]. The full phase structure of the theory, including the critical point

at ✓ = ⇡, was described in [179].
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Gross and Neveu introduced their models of N interacting fermions in 1974 [85].

Their goal was to test drive an asymptotically free theory which exhibits a dynamically

generated mass scale as well as, in this case, dynamical spontaneous symmetry breaking.

Witten later determined the spectrum of kinks [218] and showed how to reconcile the

apparent breaking of the U(1) chiral symmetry [219] with the lack of Goldstone bosons

in two dimensions in [134, 26].

The role of instantons in determining the phase structure of the two-dimensional

Abelian-Higgs model was first discussed by Callan, Dashen and Gross in [24]. One

might have thought that this was a warm-up to understanding the vacuum structure

of four-dimensional gauge theories, but in fact it was a warm-down to check that their

earlier 4d analysis was sensible. The full phase diagram, including the critical point at

✓ = ⇡, was described in the appendix of Witten’s CPN paper [220]. A more modern

perspective on this critical point was discussed in [123].

The CPN model was proposed in 1978 [50, 81]. It was quickly noticed that it shares

a number of properties with Yang-Mills, including asymptotic freedom, instantons and

a large N expansion. It was first solved at large N by D’Adda, Lüscher and Di Vecchia

[36]. Soon after, Witten studied the interplay between instantons, the theta term and

the large N expansion, and argued that this provided a useful analogy for Yang-Mills

in four dimensions [220]. The fact that the CP1 model at ✓ = ⇡ is a gapless theory

was first conjectured by Haldane in [87]

In the high energy literature, bosonization was introduced by Sidney Coleman [29]. In

the condensed matter literature, related results were derived slightly earlier by Luther

and Peschel [128], and also by Mattis. Coleman ends his paper with the typically

charming admission “Schroer has also pointed out that many of the results obtained

here are in close correspondence with the results of [...] Luther and collaborators.

Luther and I are in total agreement with Schroer on this point; we are also united in

our embarrassment that we were incapable to reaching this conclusion unprompted.

(Our o�ces are on the same corridor.)” The non-local relationship between fermions

and bosons was discovered soon after by Mandelstam [131]. An earlier, lattice version

of this relationship can be found in the Jordan-Wigner transformation. Finally, the

non-Abelian bosonization is due to Witten in the beautiful paper [227].

There are a number of excellent reviews on bosonization, including [177, 178]

These lectures notes do not discuss conformal field theories in d = 1+ 1 dimensions.

This is a vast topic that deserves its own course. An introduction to the very basics

can be found in the lectures on string theory [192]; an introduction to more than the
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basics can be found in the lectures by Ginsparg [74]; and a fuller treatment can be

found in the big yellow book [40].
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