
8. Quantum Field Theory on the Plane

In this section, we step up a dimension. We will discuss quantum field theories in

d = 2 + 1 dimensions. Like their d = 1 + 1 dimensional counterparts, these theories

have application in various condensed matter systems. However, they also give us

further insight into the kinds of phases that can arise in quantum field theory.

8.1 Electromagnetism in Three Dimensions

We start with Maxwell theory in d = 2 = 1. The gauge field is Aµ, with µ = 0, 1, 2.

The corresponding field strength describes a single magnetic field B = F12, and two

electric fields Ei = F0i. We work with the usual action,

SMaxwell =

Z
d3x � 1

4e2
Fµ⌫F

µ⌫ + Aµj
µ (8.1)

The gauge coupling has dimension [e2] = 1. This is important. It means that U(1)

gauge theories in d = 2 + 1 dimensions coupled to matter are strongly coupled in the

infra-red. In this regard, these theories di↵er from electromagnetism in d = 3 + 1.

We can start by thinking classically. The Maxwell equations are

1

e2
@µF

µ⌫ = j⌫

Suppose that we put a test charge Q at the origin. The Maxwell equations reduce to

r2A0 = Q �2(x)

which has the solution

A0 =
Q

2⇡
log

✓
r

r0

◆
+ constant

for some arbitrary r0. We learn that the potential energy V (r) between two charges,

Q and �Q, separated by a distance r, increases logarithmically

V (r) =
Q2

2⇡
log

✓
r

r0

◆
+ constant (8.2)

This is a form of confinement, but it’s an extremely mild form of confinement as the

log function grows very slowly. For obvious reasons, it’s usually referred to as log

confinement.
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In the absence of matter, we can look for propagating degrees of freedom of the gauge

field itself. As explained in the previous section, we expect the gauge field to have a

single, propagating polarisation state in d = 2 + 1 dimensions.

8.1.1 Monopole Operators

Something special happens for U(1) gauge theories in d = 2 + 1 dimensions: they

automatically come an associated global U(1) symmetry that we will call U(1)top, the

“top” for “topological”. The associated current is

Jµ

top =
1

4⇡
✏µ⌫⇢F⌫⇢ (8.3)

which obeys the conservation condition @µJ
µ

top = 0 by the Bianchi identity on Fµ⌫ . The

associated conserved quantity is simply the magnetic flux

Qtop =

Z
d2x J0

top =
1

2⇡

Z
d2x B

In quantum field theory, symmetries act on local operators. The operators that trans-

form under U(1)top are not the usual fields of the theory. Rather, they are disorder

operators, entirely analogous to the ’t Hooft lines that we introduced in Section 2.6. In

the present context, they are referred to as monopole operators.

We work in Euclidean space. A monopole operator M(x) inserted at a point x 2 R3

is defined in the path integral by requiring that we integrate over field configurations

in which there is a Dirac monopole inserted inserted at the point x. This means that,

for an S2 surrounding x, we have

1

4⇡

Z

S2

d2Sµ ✏
µ⌫⇢F⌫⇢ = 1 (8.4)

This operator creates a single unit of magnetic flux so that, in the presence of M(x),

the topological current is no longer conserved; instead it has a source

@µJ
µ

top = �3(x) (8.5)

Equivalently, the monopole operator is charged under U(1)top so that

U(1)top : M(x) 7! ei↵M(x) (8.6)

The definition of monopole operators given above is somewhat abstract. As we will

now see, in certain phases of the theory it is possible to give a more concrete definition.
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Consider free Maxwell theory. Alternatively, consider U(1) gauge theory coupled to

charged fields with masses m� e2. In both cases, the theory lies in the Coulomb phase,

meaning that low energy spectrum contains just a single, free massless photon. The

partition function is particularly straightforward; ignoring gauge fixing terms, we have

Z =

Z
DAµ exp

✓
�
Z

d3x � 1

4e2
Fµ⌫F

µ⌫

◆

Because the action depends only on Fµ⌫ , and not explicitly on Aµ, we can choose

instead to integrate over the field strength. However, we shouldn’t integrate over all

field strengths; in the absence of monopole operators, we should integrate only over

those that satisfy the Bianchi identity ✏µ⌫⇢@µF⌫⇢ = 0. We can do this by introducing a

Lagrange multiplier field �(x),

Z =

Z
DFµ⌫D� exp

✓
�
Z

d3x � 1

4e2
Fµ⌫F

µ⌫ +
i

4⇡
�✏µ⌫⇢@µF⌫⇢

◆
(8.7)

If the field strength obeys the Dirac quantisation condition, then � has periodicity 2⇡.

But in this formulation, it is particularly straightforward to implement a monopole

operator. We simply add to the path integral

M(x) ⇠ ei�(x) (8.8)

This ensures that the topological current has a source (8.5) or, equivalently, inserts a

monopole at x.

We can now go one step further, and integrate out the field strength Fµ⌫ . We’re left

with an e↵ective action for the Lagrange multiplier field �(x) which, in this context, is

usually referred to as the dual photon. We’re left with the e↵ective action,

Z = exp

✓
�
Z

d3x
e2

8⇡2
@µ�@

µ�

◆
(8.9)

Clearly this describes a single, propagating degree of freedom. But this is what we

expect for a photon in d = 2 + 1 which has just a single polarisation state.

In this formulation, the global symmetry U(1)top is manifest, and is given by

U(1)top : � 7! � + ↵ (8.10)

This agrees with our expected symmetry transformation (8.6) given the identification

(8.8). The associated current can be read o↵ from (8.9); it is

Jµ

top =
e2

(2⇡)2
@µ� (8.11)
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There’s one, nice twist to this story. The theory (8.9) has a degeneracy of ground states,

given by constant � 2 [0, 2⇡). These degenerate ground states reflects the fact that if

we place some magnetic flux in the Coulomb phase then it spreads out. In any of these

ground states, the global symmetry U(1)top acts like (8.10) and so is spontaneously

broken. The associated Goldstone boson is simply � itself. But this is equivalent to

the original photon. We have the chain of ideas

Coulomb Phase : Unbroken U(1)gauge , Spontaneously Broken U(1)top

, Goldstone Mode = Photon

A related set of ideas also holds in higher dimensions, but now with the U(1)top a

generalised symmetry, which acts on higher dimensional objects, as we discussed in

Section 3.6.2. d = 2 + 1 dimensions is special because the disorder operator M(x) is

a local operator, ensuring that U(1)top is a standard global symmetry, rather than the

less familiar generalised symmetry.

8.2 The Abelian-Higgs Model

We can get some more intuition for the role of monopole operators, and 3d gauge

theories in general, by looking at the Abelian-Higgs model. This is a U(1) gauge

theory coupled to a scalar field � which we take to have charge 1. The action is

SAH =

Z
d3x � 1

4e2
F 2
µ⌫

+ |Dµ�|2 �m2|�|2 � �

2
|�|4 (8.12)

We will look at what happens to this theory as we vary the mass m2 from positive

to negative. This is a game that we’ve already played in both d = 3 + 1 dimensions

(in Section 2.5.2) and in d = 1 + 1 dimensions (in Section 7.2). In both cases, the

interesting physics came from vortices in the m2 < 0 phase, and the same will be true

here.

When the mass is small, |m| ⌧ e2, the theory is strongly coupled in the infra-red.

It is di�cult to get a handle on the physics here, although we will ultimately be able

understand what happens. In contrast, when |m| � e2, we can first understand the

dynamics of the scalar in a regime where the gauge field is weakly coupled, and then

figure out what’s left. We first look at these two phases.

m2 � e4: When m2 > 0 we can simply integrate out the scalar, to leave ourselves

with free Maxwell theory below the scale of m2. This is the gapless Coulomb phase, in

which we have an unbroken U(1) gauge symmetry. As we explained above, this means

that the global symmetry U(1)top is spontaneously broken. The Goldstone mode is the

photon.
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There are also massive, charged excitations in this phase that come from the � field.

They interact through the Coulomb force which means that charges of opposite sign

experience a logarithmically confining potential (8.2).

m2 ⌧ �e4: This is the Higgs phase. The scalar condenses,

|�|2 = �m2

�

giving the photon a mass. This phase is gapped. The U(1)gauge symmetry is sponta-

neously broken. But now the global topological symmetry U(1)top is unbroken.

The finite energy states of the theory which carry non-vanishing Qtop charge are

the vortices. We discussed these in detail in both d = 3 + 1 dimensions where the

vortices are strings (see section 2.5.2) and in d = 1 + 1 dimensions where the vortices

are instantons (see Section 7.2). In d = 2 + 1, vortices are particle-like excitations.

They are classical configurations in which the phase of � winds asymptotically in the

spatial plane R2. They have finite energy, and finite quantised magnetic flux

I
dxi @i� =

1

2⇡

Z
d2x B = Qtop 2 Z

This is what monopole operators do in the Higgs phase: they create vortices. The

upshot is that we can characterise the Higgs phase of the theory as

Higgs Phase : Spontaneously broken U(1)gauge , Unbroken U(1)top

, Charged Excitation = Vortex

m2 = 0: In d = 2 + 1, the two phases at m2 > 0 and m2 < 0 are clearly di↵erent

since they have a di↵erent global symmetry U(1)top. (This is in contrast to the story

in d = 1 + 1 where vortices are instantons and blur the distinction between the two

phases.)

We can ask: what happens as we dial m2 from positive to negative. We expect a

phase transition to occur at some point, we which we heuristically refer to as m2 = 0.

(In practice, this point can be shifted away from zero). Is this a first order phase

transition, or second order? If second order, what universality class does the theory

lie in? Because the theory is strongly coupled in the regime |m| . e2 it is di�cult to

perform any quantitative calculations to answer this question. Instead, we will guess.
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To guide our guess, we use the symmetries of the problem. Since we have identified

the global U(1)top symmetry as distinguishing phases, it seems reasonable to postulate

that the phase transition lies in the same universality class as other theories governed

by a U(1) global symmetry. This turns out to be true, and underlies a rather beautiful

feature of 3d gauge theories known as particle-vortex duality.

8.2.1 Particle-Vortex Duality

In quantum field theories, there are very often two kinds of particle excitations that can

appear. The first kind is the familiar excitation that we get when we quantise a local

field. This is that kind that we learned about in our Quantum Field Theory course.

The second kind we’ve seen a number of times in these lectures: they are solitons.

Despite the fact that these two kinds of particles arise in di↵erent ways, there is

really little di↵erence between them in the quantum theory. In particular, both are

described as states in the Fock space. Typically at weak coupling, the solitons are

much heavier than the “elementary particles”, but that’s more a limitation of our need

to work at weak coupling. It may be – and often is – that as we move into strongly

coupled regimes, the solitons become light.

This opens up an intriguing possibility. Is it possible to write down a di↵erent

quantum field theory in which the roles of solitons and elementary particles are reversed.

These two quantum field theories would describe the same physics, but what appears

as a soliton in one would appear as an elementary particle in the other, and vice versa.

This is referred to a duality.

In fact, we’ve already met a simple example of a duality in these lectures. In Section

7.5, we used bosonization to demonstrate the equivalence between a massive fermion

and the Sine-Gordon model. The elementary fermion arises as a kink in the Sine-Gordon

model.

Typically, dualities get harder to construct with any conviction as the number of

dimensions increases. There wonderful examples of dualities in d = 3 + 1, which ex-

change electric and magnetic excitations, but they need supersymmetry to keep control

over the dynamics and so are beyond the scope of these lectures. However, things are

somewhat easier in d = 2 + 1. Here we do have examples of dualities. In contrast to

the bosonization story of Section 7.5, we are unable to prove the d = 2 + 1 dualities

from first principles, but nonetheless have convincing evidence that they are true. We

will see a number of these dualities as we proceed.
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As we’ve seen above, in d = 2 + 1 dimensions the appropriate solitons are vortices.

We will now propose a second theory, whose classical dynamics is di↵erent from the

Abelian-Higgs model (8.12), but whose quantum dynamics is argued to be identical.

The vortices in one theory are identified with the elementary particles of the other. For

this reason, the claimed equivalence of the two theories is referred to as particle-vortex

duality.

The XY-Model

The theory which is claimed to be dual to the 3d Abelian-Higgs model is simply a

theory of a complex scalar field �̃, without any gauge field,

SXY =

Z
d3x |@µ�̃|2 � m̃2|�̃|2 � �̃

2
|�̃|4 (8.13)

This is known as the XY-Model. At first glance, the physics of this model is rather

di↵erent from the XY-model. Indeed, at first glance it appears to have fewer degrees

of freedom because it is missing the gauge field. Nonetheless, as we now explain, they

describe the same physics, albeit in a non-obvious and interesting way.

Let’s first address the issue of degrees of freedom. The XY-model clearly has two

degrees of freedom in the UV where it is weakly coupled. But the Abelian-Higgs model

has the same number: the gauge redundancy removes one degree of freedom from �,

but this is replenished by the single polarization state of the photon. We learn an

interesting lesson: gauging a U(1) symmetry in d = 2 + 1 changes the dynamics, but

does not change the overall number of degrees of freedom. This will be important in

later developments.

We can also match the symmetries between the XY-model and the Abelian-Higgs

model. The XY-model clearly has a U(1) global symmetry which rotates the phase of

�̃. The associated current is

Jµ

XY
= i
⇣
�̃†@µ�̃� (@µ�̃†)�̃

⌘

The Abelian-Higgs model also has a single global symmetry that we called U(1)top. You

might worry that the Abelian-Higgs model also has a gauge symmetry, which is clearly

not shared by the XY-model. But, as we have stressed many times, gauge symmetries

are not symmetries at all, but redundancies. This gives another important lesson: there

is no need for gauge symmetries to match on both sides of a duality.

We can now look at how the physics of the XY-model changes as we vary the mass:
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m̃2 > 0: This is a gapped phase. The �̃ excitations are massive and carry charge

under the unbroken U(1) global symmetry. We see that, at least with broad brush, this

looks similar to the the Higgs phase of the Abelian-Higgs model, in which the U(1)top
symmetry was unbroken. In that case, the vortices carried charge under U(1)top.

m̃2 < 0: In this phase, �̃ gets a vacuum expectation value and the U(1) global

symmetry is broken. We can write �̃ = ⇢ei�. The fluctuations of ⇢ are massive, while

the � field is massless: it is the Goldstone mode for the broken U(1). Notice that we’ve

given this field the same name as the dual photon in the Abelian-Higgs model. This is

not a coincidence.

Again, with broad brush this looks similar to the gapless Coulomb phase of the

Abelian-Higgs model. However, the Coulomb phase was also characterised by the

existence of massive, charged � excitations that were logarithmically confined. Can we

see similar excitations in the XY-model? The answer is yes.

The ordered phase of the XY-model also has vortices. As before, these arise from

the phase of �̃ winding asymptotically, but now there is no gauge field to cancel the

log divergence in their energy,

Z
d2x |@i�̃|2 =

Z
d✓dr r

1

r2
|@✓�̃|2 + . . . = 2⇡

Z
1

0

dr
n2

r
|�̃|2 + . . .

The energy of a single vortex is logarithmically divergent. But this divergence can

be cancelled by placing an anti-vortex at some distance r. It’s not hard to convince

yourself that the logarithm reappears in the potential energy between the vortex and

anti-vortex, which scales as

V =
1

2⇡
log

✓
r

r0

◆

for some cut-o↵ r0. In other words, the vortices are logarithmically confined. This, of

course, is the same behaviour exhibited by charged particles in 3d electromagnetism.

m̃2 = 0: Lying between the two phases above is a critical point. Once again, we are

being a little careless in describing this as sitting at m̃ = 0; strictly, you should tune

both m̃ and the other parameters to hit the critical point.

This time, the physics of the critical point is well understood: this is the XY Wilson-

Fischer fixed point. We studied this in some detail in the lectures on Statistical Field

Theory using the epsilon expansion.
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The essence of particle-vortex duality is the claim that the Abelian-Higgs model also

flows to the XY Wilson-Fisher fixed point at m = 0. This claim can be traced back to

work of Peskin in the 1970s, but was brought to prominence by Dasgupta and Halperin

in the early 1980s. Given the similarity in their phase structure, this would seem to

be a reasonable claim. There is currently no proof of the duality, but there is now

convincing numerical evidence that it is true.

The Duality Dictionary

The key to particle-vortex duality is really the idea of universality: the two theories

(8.12) and (8.13) share the same critical point. We can then attempt to map the oper-

ators of the two theories at the critical point. We have only an incomplete dictionary

at the moment, but our discussion above allows us to start to fill in some entries. For

example, we have seen how the currents match on both sides

Jµ

top  ! Jµ

XY

With two theories flowing to the same critical point, we can now turn on relevant

operators in each. As long as we turn on the same relevant operator, we are guaranteed

that the theories coincide in the neighbourhood of the fixed points. We have seen above

how this plays out: when the scalar condenses in one theory, it matches the phase in

which the scalar is not condensed in the other. Roughly speaking, we have

m2 ⇡ �m̃2

Alternatively, we can write this in terms of the relevant operators at the critical point

as

|�|2  ! �|�̃|2 (8.14)

although since the critical points are strongly coupled, this relation is likely to have

corrections, with operators on both sides mixing with others.

Far from the critical point, we have seen that the theories have the same qualitative

features. In particular, the duality inherits its name from the map between massive

excitations,

gauge vortex  ! �̃ excitation

� excitation  ! global vortex

Only the first of these describes a map between finite energy excitations. In this case, it

is better to phrase the map in terms of local operators, rather than solitons: the essence
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of particle-vortex duality is that the monopole operator on one side is a traditional field

in the Lagrangian on the other,

M(x)  ! �̃(x) (8.15)

We could ask: do the interactions between these massive excitations agree in detail?

The answer is most likely no. One could add irrelevant operators to both the Abelian-

Higgs model and the XY model which will a↵ect the interactions between these massive

particles. We would have to work much harder to get quantitative agreement away

from the critical point. For what it’s worth, it is possible to do this matching in certain

supersymmetric versions of the duality. Here, particle-vortex duality is referred to as

3d mirror symmetry.

The View from Statistical Physics

The claim of particle-vortex duality o↵ers a very clear experimental prediction. Al-

though we have phrased our discussion in the context of physics in d = 2+1 dimensions,

everything goes through in the the Euclidean d = 3+0 world. Here, the theories (8.12)

and (8.13) can be viewed as statistical field theories, with the path integral describing

thermal rather than quantum fluctuations. More details can be found in the lecture

notes on Statistical Field Theory.

In this context, the 3d XY-model (8.13) governs the phase transition of a number of

systems, including the superfluid transition of liquid helium. Similarly, the 3d Abelian-

Higgs model (8.12) governs the superconducting phase transition, with the field strength

Fij, i, j = 1, 2, 3 describing the fluctuating magnetic field.

In both cases, the mass2 term determines the deviation from the critical temperature

Tc at which the phase transition occurs. But that makes the map (8.14) between the

masses rather surprising. It means that the duality maps the high temperature phase

of the superfluid to the low temperature phase of the superconductor, and vice versa.

The claim that both theories share a critical point then becomes the claim that the

two phase transitions have the same critical exponents. Experimentally, however, this

claim is incorrect: the two phase transitions are not the same. While the superfluid

transition exhibits the XY Wilson-Fisher exponents, the superconducting transition

has mean field exponents. It would seem that particle-vortex duality has been ruled

out experimentally!
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In fact this is too quick. Recall that the XY-model has two critical points. The mean

field critical point is unstable, with |�|4 a relevant operator that drives the theory to

the Wilson-Fisher point. The same should be true of the Abelian-Higgs model. It is

thought that the mean field exponents seen in the superconducting transition reflect

the fact that the experiments haven’t got close enough to the true critical point, and

are instead probing the unstable mean field point. Calculations suggest that one would

start to see Wilson-Fisher critical exponents in the superconducting transition only at

T � Tc ⇠ 10�9 K. Such a level of precision is not technologically feasible.

But this brings its own issues. It appears that we have a system in Nature which

is fine-tuned. The natural scale of the superconducting phase transition is Tc ⇠ 10 K

or so. In the experiments, we tune the coe�cient of |�|2 by hand to hit the critical

temperature. But why is the coe�cient of the |�|4 relevant operator so small that it

only shows up when T �Tc ⇠ 10�9 K? This is similar to the famous hierarchy problem

in the Standard Model, where again the coe�cient of a relevant operator appears to

be fine-tuned.

Particle physicists have sleepless nights over fine tuning, and desperately search for

an explanation. In large part, this is because of experience with RG in statistical

physics, where any fine-tuning seen in Nature must also have an explanation. In the

case of superconductors, the apparent fine tuning is understood: it arises because the

underlying scalar field � is not fundamental, but instead comprises of a Cooper pair

of electrons. (The analogous possibility for the Higgs fine tuning goes by the name

of technicolour.) A full explanation would take us too far from the purpose of these

lectures, but this su�ces to ensure that the smallness of the |�|4 relevant operator seen
in the superconducting transition is technically natural.

8.3 Confinement in d = 2 + 1 Electromagnetism

We’ve seen that classical electromagnetism in d = 2 + 1 dimensions confines particles,

but only weakly with a log potential

V (r) =
Q2

2⇡
log

✓
r

r0

◆

There is, however, an important e↵ect in the quantum theory that turns the logarithmic

confining potential into a more powerful linearly confining potential. This e↵ect, first

discovered by Polyakov, is due to instantons.

We’ve met instantons in d = 3 + 1 Yang-Mills theory in Section 2.3, and again in

the d = 1+1 Abelian-Higgs model in Section 7.2. In the latter case, vortices that play
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the role of instantons. Now that we are living in d = 2 + 1 dimensions, the instantons

should be objects localised in three Euclidean dimensions. But these are very familiar:

they are magnetic monopoles.

We’ve already introduced the idea of monopole operators in Section 8.1. These can

be thought of Dirac monopoles at a point. They are not quite what we want for the

present purposes. As a starting point for a semi-classical calculation, we would like the

monopoles to be smooth configurations with finite action. But we’ve seen such objects

before: we can use the ’t Hooft Polyakov monopole described in Section 2.8.

Recall that the ’t Hooft Polyakov monopoles arise in an SU(2) gauge theory (or,

more generally, any non-Abelian gauge theory) broken down to its Cartan subalgebra.

To achieve this, we couple the SU(2) gauge theory to a real, adjoint scalar � and work

with the action

S =

Z
d3x � 1

2g2
trFµ⌫F

µ⌫ +
1

g2
tr (Dµ�)

2 � �

4

✓
tr�2 � v2

2

◆2

(8.16)

The ground state of the system has, up to a gauge transformation, � = v�3, and breaks

the gauge symmetry

SU(2)! U(1)

At low energies, the spectrum contains just a single massless photon and looks like

pure electromagnetism. In addition, there is a neutral scalar with mass ⇠
p
�gv and a

charged W-boson of mass ⇠ v.

In this way, we can view the model as U(1) gauge theory, with a UV cut-o↵ at the

scale v. The dimensionless gauge coupling constant is g2/v and to trust any semi-

classical calculation, we must take g2/v ⌧ 1.

8.3.1 Monopoles as Instantons

Our main reason for introducing the action (8.16) is that, in Euclidean spacetime, it

admits smooth monopole solutions. These are the ’t Hooft Polyakov monopoles that

we introduced in Section 2.8, but now localised in Euclidean spacetime meaning that

they play the role of instantons, rather than particles. Here we recount the basics.

The existence of the monopoles can be traced to topology. Any finite action config-

uration must obey tr�2 ! v2 as x!1. This defines a sphere S2 in field space, so all

finite action configurations are classified by a winding number ⇧2(S2) = Z, defined as

⌫ =
1

8⇡v3

Z

S2
1

d2Si ✏
ijk✏abc�

a@j�
b@k�

c 2 Z (8.17)
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However, winding comes at a cost. Any purely scalar configuration that winds has

linearly divergent action. This can be compensated by turning on a gauge field and

this, in turn, endows the soliton with magnetic charge in the unbroken U(1) ⇢ SU(2),

(2.91),

m = �1

v

Z
d2Si

1

2
✏ijk tr (Fjk�) = 4⇡⌫

The solution for a single monopole, with winding ⌫ = 1, has asymptotic form

�a ! v
xa

r
and Aa

i
! �✏aij

xj

r2
as x!1

The action of this configuration is finite, and given by

Smono =
8⇡v

g2
f(�g2)

with f(�g2) a monotonically increasing function. It has the property that f(0) = 1, so

that the action above coincides with that of a BPS monopole (2.93) when � = 0.

We’re used to the idea that finite action configurations in Euclidean space tunnel

between di↵erent vacua of the theory. But what vacua does the monopole tunnel

between? Clearly, it changes the magnetic flux � =
R
d2x B on a spatial slice. If we

were living on a compact space, this would change the energy of a state, which is given

by

�E =

Z
d2x

1

2
B2 ⇠ 1

2
Area

✓
�

Area

◆2

with “Area” the area of a spatial slice. However, as the area tends to infinity, the flux

is suitably diluted and the cost in energy is vanishingly small. These are the di↵erent

vacua that the monopoles tunnel between.

A Dilute Gas of Monopoles and Anti-Monopoles

With our monopole solution in hand, we can use it as the starting point for a semi-

classical evaluation of the path integral. We should be getting used to this by now, and

we follow the structure of the calculation laid out in Section 2.3, and again in Section

7.2.

One key step in the calculation is to invoke the use of a dilute gas of instantons.

In the present case, this means we treat configurations of widely separated monopoles

and anti-monopoles, with magnetic charges mi = ±4⇡, as saddle points in the path

integral. In the previous situations, we argued that the action of a dilute gas of N

(anti)-instantons was roughly S ⇡ NSinst, reflecting the fact that these are approximate

solutions when the objects are far separated.
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For monopoles, however, we should treat this step more carefully. Viewed as particles

in d = 3 + 1 dimensions, we know that the energy will pick up contributions from the

long range Coulomb forces between the monopoles. This translates into a contribution

to the action in our context. If a monopole of charge mi = ±4⇡ sits at position Xi, the

total action will be

S = Smono

X

i

⇣mi

4⇡

⌘2
+

1

4⇡g2

X

i 6=j

mimj

|Xi �Xj|

where the second term reflects the long range Coulomb interaction.

We evaluate the path integral by summing over these dilute gas configurations, con-

taining N constituents of either type. This results in the expression,

Z =
1X

N=0

X

mi=±4⇡

1

N !

�
Ke�Smono

�N
Z NY

i=1

d3Xi exp

 
� 1

8⇡g2

X

i 6=j

mimj

|X i �Xj|

!
(8.18)

Here K is the usual contribution from one-loop determinants and Jacobian factors. We

could compute it, but it does not give any qualitatively new insights into the physics

so we will not. The second factor in the expression above is the novelty. When the

instantons are non-interacting, this just gives a power of V N to the path integral,

with V the spacetime volume. Now that we have long range interactions between the

instantons, we must work a little harder.

There is a useful way to rewrite the final expression. We use the fact that the 1/r

factor also arises in the Green’s function of the Laplacian in three dimensions. In

general, for a scalar field �(x), and any fixed function f(x), we have

Z
D� exp

✓
�
Z

d3x
1

2
(@µ�)

2 + f(x)�(x)

◆
⇠ exp

✓
1

8⇡

Z
d3xd3y

f(x)f(y)

|x� y|

◆

Using this, we rewrite the sum over the Coulomb gas in (8.18) as a path integral

exp

 
� 1

8⇡g2

X

i 6=j

mimj

|X i �Xj|

!
=

Z
D� exp

 
�
Z

d3x
g2

8⇡2
(@µ�)

2 +
i

2⇡

X

i

mi� �
3(x�Xi)

!

(We used a very similar trick in the lectures on Statistical Field Theory when treating

the 2d Coulomb gas in the XY model.)

In fact, we’ve met this field �(x) before: it is precisely the dual photon that we

introduced in Section 8.1. To see this, note that the coupling to the magnetic charge

above coincides with the coupling in (8.7)
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Continuing with our calculation, the partition function becomes

Z =

Z
D� exp

✓
�
Z

d3x
g2

8⇡2
(@µ�)

2

◆ 1X

N=0

(Ke�Smono)N

N !

⇥
Z NY

i=1

d3Xi

X

mi=±4⇡

e�
i
2⇡

P
i mi�(Xi)

=

Z
D� exp

✓
�
Z

d3x
g2

8⇡2
(@µ�)

2

◆ 1X

N=0

1

N !

✓
Ke�Smono

Z
d3x cos(2�(x))

◆N

=

Z
D� exp

✓
�
Z

d3x
g2

8⇡2
(@µ�)

2 �Ke�Smono cos(2�)

◆
(8.19)

We can now see the net e↵ect of the instantons: they have generated a potential for

the dual photon �. Expanding about the minimum at � = 0, we find that the dual

photon has acquired a mass,

m2
photon =

4⇡2Ke�Smono

g2

On dimensional grounds, the one-loop determinants and Jacobian factors that we

lumped into the constant K must have dimension [K] = 3. For small �, it turns

out to scale as K ⇠ v7/2/g. At weak coupling g2/v ⌧ 1 and Smono � 1, where our

semi-classical analysis is valid, we find that the mass of the dual photon is exponentially

smaller than all other scales in the game. This means that we can read o↵ the e↵ective

action from (8.19)

Se↵ =

Z
d3x

g2

8⇡2
(@µ�)

2 +Ke�Smono cos(2�) (8.20)

We recognise this as the Sine-Gordon model that we met in d = 1 + 1 dimensions in

Section 7.5.5. Now it arises as the e↵ective, low-energy description of a gauge theory

in d = 2 + 1 dimensions.

8.3.2 Confinement

What does it mean for the dual photon to get a mass? To answer this, we can see how

the ground state responds to various provocations.

First, let’s try to turn on an electric field in the ground state, say F01 6= 0. To

understand what this means in terms of the dual photon, we need to relate Fµ⌫ with
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�. We can do this by comparing our expressions for the topological current (8.3) and

(8.11),

Jµ

top =
1

4⇡
✏µ⌫⇢Fµ⌫ =

e2

(2⇡)2
@µ�

We find that an electric field corresponds to

F01 =
e2

2⇡
@2�

However, the configuration @2� = constant does not obey the equations of motion of

our e↵ective action (8.20). This means that the vacuum does not support a constant,

background electric field. Instead, solutions to the equations of motion with @2� 6= 0

are kinks, or domain walls, in which � interpolates from, say, � = 0 as x2 ! �1, to

� = 2⇡ as x2 ! +1. We already met these kinks in Section 7.5.5 when discussing the

Sine-Gordon model in d = 1 + 1 dimensions. In the present context, the domain walls

are string-like configurations stretched in the x1 direction, with width ⇠ 1/mphoton in

the x2 direction, and tension,

� =
4

⇡

p
2Kg2e�Smono

a result which follows from translating our earlier result (7.69). (Up until now, we’ve

always referred to the string tension as �. Obviously that’s a bad choice for our current

discussion.)

The domain wall, or string, is a collimated flux tube of electric field F01 6= 0. This is

the expected behaviour of a gauge theory that is linearly confining. In other words, the

classical log potential (8.2) of 3d gauge theories has been replaced with a more severe,

V (r) = �r

We could explicitly compute the Wilson loop in this framework and confirm that it

does indeed exhibit an area law.

We have seen that 3d electromagnetism exhibits linear confinement due to instantons

which, in this context, are monopoles. It is crucial that these monopoles have a finite

action, which we achieved by embedding the theory in a non-Abelian gauge group. If

we introduce other UV completions of the theory, with a finite cut-o↵, ⇤UV , these too

will have monopoles, typically with action Smono ⇠ ⇤UV /g2. (Lattice gauge theory

provides a good example of this). These too will then exhibit linear confinement.
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8.4 Chern-Simons Theory

Gauge theories in d = 2 + 1 dimensions admit a rather special interaction that does

not have a counterpart in even spacetime dimensions. This is the famous Chern-

Simons interaction. It plays a key role in many areas of theoretical and mathematical

physics, from the physics of the quantum Hall e↵ect, to the mathematics of the knot

invariants. Many details on the former application can be found in the lecture notes

on the Quantum Hall E↵ect.

For U(1) gauge theory, the Chern-Simons term takes the form

SCS =
k

4⇡

Z
d3x ✏µ⌫⇢Aµ@⌫A⇢ (8.21)

We could consider this term on its own, or in conjunction with the Maxwell action

(8.1). In either case, the dimensionless coe�cient k is known as the level. We can

write down similar terms in any odd spacetime dimension; we briefly met the d = 4+1

dimensional version in Section 4.4.1.

Let’s start by studying the symmetries of the Chern-Simons action. It is Lorentz

invariant, courtesy of the ✏µ⌫⇢ invariant tensor. At an operational level, the existence

of this tensor means that the term is exclusive to d = 2 + 1 dimensions. However,

this same ✏µ⌫⇢ tensor means that the Chern-Simons interaction breaks both parity and

time-reversal invariance. Here we focus on parity. In even dimensions we can always

take parity to act as x 7! �x (see, for example, (1.25)). But, in odd dimensions, this

coincides with a rotation. We should instead take parity to flip the sign of just a single

spatial coordinate,

x0 ! x0 , x1 ! �x1 , x2 ! x2 (8.22)

and, correspondingly, A0 ! A0, A1 ! �A1 and A2 ! A2. This means that, as

advertised, the Chern-Simons action is odd under parity.

8.4.1 Quantisation of the Chern-Simons level

At first glance, it’s not obvious that the Chern-Simons term is gauge invariant since it

depends explicitly on Aµ. However, under a gauge transformation, Aµ ! Aµ+@µ!, we

have

SCS ! SCS +
k

4⇡

Z
d3x @µ (!✏

µ⌫⇢@⌫A⇢)

The change is a total derivative. In many situations we can simply throw this total

derivative away and the Chern-Simons term is gauge invariant. However, there are
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some situations where the total derivative does not vanish. As we will now show, in

these cases the Chern-Simons partition function is gauge invariant provided that

k 2 Z (8.23)

For Abelian Chern-Simons theories, it’s a little subtle to see the requirement (8.23)

since it only shows up in the presence of magnetic flux. (This is to be contrasted with

the situation for non-Abelian Chern-Simons theories described in Section 8.4.3 where

one can see the analogous quantisation condition around the vacuum state.)

Perhaps the simplest way is to consider the theory on Euclidean spacetime S1 ⇥ S2.

We then add a single unit of magnetic flux through the S2. As we’ve seen many times

in these lectures, if we take the gauge group to compact U(1), the flux is quantised, in

the minimal unit

1

2⇡

Z

S2

F12 = 1 (8.24)

We then consider large gauge transformations of this background that wind around

the S1. We denote the radius of this S1 as R, and parameterise it by the coordinate

x0 2 [0, 2⇡R). Consider a gauge transformation Aµ ! Aµ + @µ! which winds around

the S1, with

! =
x0

R
(8.25)

Under such a transformation, any matter field � with charge q 2 Z remains single

valued, since �! eiq⌧/R�. Even in the absence of charged matter, the statement that

we’re working with a compact U(1) gauge group, rather than a non-compact R gauge

group, means that the theory admits fluxes (8.24) and gauge transformations (8.25).

Under the gauge transformation (8.25), we have

A0 ! A0 +
1

R
(8.26)

This means that the zero mode of A0 is a periodic variable, with periodicity 1/R.

(We came to the same conclusion in Section 7.1 where we discussed two dimensional

electromagnetism on a spatial circle.)

We can now see what becomes of our Chern-Simons action under such a gauge

transformation? Evaluated on a configuration with constant A0, we have

SCS =
k

4⇡

Z
d3x A0F12 + A1F20 + A2F01
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Now it’s tempting to throw away the last two terms when evaluating this on our back-

ground. But we should be careful as it’s topologically non-trivial configuration. We can

safely set all terms with @0 to zero, but integrating by parts on the spatial derivatives

we get an extra factor of 2,

SCS =
k

2⇡

Z
d3x A0F12 (8.27)

Evaluated on the flux (8.24), with constant A0 = a, we have

SCS = 2⇡kRa

And under the gauge transformation (8.26), we have

SCS ! SCS + 2⇡k

The Chern-Simons action is not gauge invariant. But all is not lost. The partition

function depends only on eiSCS and this remains gauge invariant provided k 2 Z, which

is our claimed result. This last part of the argument is exactly the same as the one we

met in Section 2.1.3 when we discussed Chern-Simons terms in quantum mechanics,

and in a number of other places when we’ve discussed WZW terms.

Chern-Simons Theories and Spinors

There are further subtleties associated to the factor of 2 above, which we flag up here.

A better way to think about the Chern-Simons theory on a 3-dimensional manifold M ,

is by viewing this as the boundary of 4-dimensional manifold X. The story is simplest

in the language of forms, where we have

SCS[A;X] =
k

4⇡

Z

M=@X

A ^ dA =
k

4⇡

Z

X

F ^ F

The fact that the Chern-Simons term is related to the 4-dimensional ✓ term was antic-

ipated in (1.12) Written in this way, the Chern-Simons term is clearly gauge invariant

since it depends only on F and not A. Our worry, however, has transmuted to the ques-

tion of whether it depends on the choice of 4-manifold X. How can we be sure that

we get the same answer if we chose a di↵erent 4-manifold X 0 which also has boundary

@X 0 = M? The di↵erence between the two answers involves the integral over the com-

pact manifold Y = X [X 0, formed by gluing together X and X 0 along their common

boundary,

SCS[A;X]� SCS[A;X
0] =

k

4⇡

Z

Y

F ^ F
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We’re safe provided that this di↵erence is is 2⇡ times an integer, since then the partition

function, which depends on eiSCS , is independent on the choice of X. Clearly this

requires

1

2

Z

Y

F

2⇡
^ F

2⇡
2 Z (8.28)

So is this true? Well, actually no. Or, at least, not always! It turns out that (8.28) is

true only if the 4-manifold Y admits spinors or, more precisely, admits a mathematical

object called a spin structure which tells you whether or not a fermion picks up a

minus sign when it is transported around a loop. Any manifold that admits such a spin

structure is called a spin manifold. And (8.28) holds whenever Y is a spin manifold.

For example, Y = T4, Y = S2 ⇥ S2 and Y = S4 are all spin manifolds. In these

cases (8.28) holds. To give you some sense of how this works, suppose that we take

Y = S2⇥S2. Dirac quantisation means that the flux through each of the spheres must

be a multiple of 2⇡. If we take F = F1 + F2, with Fn giving flux through the nth

2-sphere, then

1

2

Z

S2⇥S2

F

2⇡
^ F

2⇡
=

Z

S2

F1

Z

S2

F2 2 Z

with the factor of 2 coming from the cross-term.

However, there are 4-manifolds Y which do not admit a spin structure. The simplest

example is Y = CP2. In this case,
R
Y
(F/2⇡)^(F/2⇡) is an integer, not an even integer.

The upshot of this is that the Chern-Simons level k for a U(1) gauge group can be

integer valued provided that the theory admits fermions. But, otherwise, must be an

even integer. The simple “integrate by parts to get an extra factor of 2” prescription

that we used to get (8.27) sweeps all of these subtleties under the rug.

8.4.2 A Topological Phase of Matter

So what is the physics of Chern-Simons theory? Despite the simplicity of the action,

the physics is remarkably subtle. Let’s start with the basics. We’ll take the d = 2 + 1

dimensional gauge field to be governed by

S = SMaxwell + SCS =

Z
d3x � 1

4e2
Fµ⌫F

µ⌫ +
k

4⇡
✏µ⌫⇢Aµ@⌫A⇢

We can start by gaining some intuition from the classical equation of motion,

@µF
µ⌫ +

ke2

4⇡
✏⌫⇢�F⇢� = 0 (8.29)
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In terms of the electric field Ei = F0i and the magnetic field B = F12, Gauss’ law

becomes

@iEi =
ke2

2⇡
B (8.30)

which tells us that a magnetic field acts as a source for the electric field. This simple ob-

servation will underlie much of the physics of Section 8.6 where we discuss bosonization

in 3d.

What are the propagating excitations of the equations of motion (8.29)? Taking one

further derivative of the equations of motion, we can decouple electric and magnetic

fields to show that each component obeys the massive wave equation,

@2Ei �
✓
ke2

2⇡

◆2

Ei = @2B �
✓
ke2

2⇡

◆2

B = 0

(To do this, it’s perhaps simplest to first define the field Gµ = ✏µ⌫⇢F⌫⇢ and show that

Gµ obeys the massive wave equation.) We see that, at least classically, the excitations

do not propagate at the speed of light. Instead, they are exponentially damped. In the

quantum theory, which means that we have a theory of massive excitations. The mass

of the photon is

mCS =
ke2

2⇡

Yet again, we find ourselves in a situation with a massive gauge boson. How should we

think of this phase?

We’ve already met other situations in d = 2+ 1 dimensions where the photon gets a

mass. There is the confining phase, driven by instantons, that we saw in Section 8.3,

in which the Wilson loop has an area law. And there is, of course, the Higgs phase

in which a charged scalar field condenses and the Wilson line has a perimeter law. It

turns out that the Chern-Simons phase di↵ers from both of these. Instead, it is a novel

phase of matter, referred to as a topological phase.

Topological phases of matter are subtle. They typically have interesting things go-

ing on at energies E ⌧ mCS way below the gap, even though there are no physical

excitations beyond the vacuum. We’ll explain below what these interesting things are.

Chern-Simons Terms are Topological

Before we address the novel physics of Chern-Simons theory, we first point out an

important property of the Chern-Simons action (8.21): it doesn’t depend on the metric
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of the background spacetime manifold. It depends only on the topology of the manifold.

To see this, let’s first look at the Maxwell action for comparison. If we were to couple

this to a background metric gµ⌫ , the action becomes

SMaxwell =

Z
d3x
p
�g � 1

4e2
gµ⇢g⌫�Fµ⌫F⇢�

We see that the metric plays two roles: first, it is needed to raise the indices when

contracting fµ⌫fµ⌫ ; second it provides a measure
p
�g (the volume form) which allows

us to integrate in a di↵eomorphism invariant way. Recall from our first lectures on

Quantum Field Theory that this allows us to quickly construct the stress-tensor of the

theory by di↵erentiating with respect to the metric,

T µ⌫ =
2p
�g

@L
@gµ⌫

In contrast, we have no need to introduce a metric when generalising (8.21) to curved

spacetime. This is best stated in the language of di↵erential geometry: A ^ dA is a

3-form, and we can quite happily integrate this over any three-dimensional manifold

SCS =
k

4⇡

Z
A ^ dA

This means that pure Chern-Simons theory knows nothing length scales. In particular,

the Wilson loop can exhibit neither area nor perimeter law, since both of these are

statements about lengths. Moreover, pure Chern-Simons theory has vanishing stress

tensor.

Chern-Simons Theory on a Torus

If Chern-Simons theory has vanishing stress tensor, and no physical excitations, then

what can it possibly do? The answer is that the theory responds to low-energy probes

in interesting ways.

Here is a simple, yet dramatic way to probe the theory. We will place it on a spatial 2-

dimensional manifold ⌃. As we have seen, Chern-Simons theory knows nothing about

the metric on ⌃. However, as we now show, it does know about the topology and

responds accordingly.

For pure Chern-Simons theory (or, equivalently, the e2 !1 limit of Maxwell-Chern-

Simons theory), Gauss’ law (8.30) becomes

F12 = 0
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Figure 54: Figure 55:

Although this equation is very simple, it can still have interesting solutions if the

background has some non-trivial topology. These are called, for obvious reason, flat

connections. It’s simple to see that such solutions exist on the torus ⌃ = T2, where

one example is to simply set each Ai to be constant. Our first task is to find a gauge-

invariant way to parameterise this space of solutions.

We’ll denote the radii of the two circles of the torus T2 = S1 ⇥ S1 as R1 and R2.

We’ll denote two corresponding non-contractible curves shown in the figure as �1 and

�2. The simplest way to build a gauge invariant object from a gauge connection is to

integrate

wi =

I

�i

dxj Aj

This is invariant under most gauge transformations, but not those that wind around

the circle. By the same kind of arguments that led us to (8.26), we can always construct

gauge transformations which shift Aj ! Aj + 1/Rj, and hence wi ! wi + 2⇡. The

correct gauge invariant objects to parameterise the solutions are therefore the Wilson

loops

Wi = exp

✓
i

I

�i

Ajdx
j

◆
= eiwi

Because the Chern-Simons theory is first order in time derivatives, these Wilson loops

are really parameterising the phase space of solutions, rather than the configuration

space. Moreover, because the Wilson loops are complex numbers of unit modulus,

the phase space is compact. On general grounds, we expect that when we quantise a

compact phase space, we get a finite-dimensional Hilbert space. (We met an example of

this in Section 2.1.3 when first describing Wilson lines.) Our next task is to understand

how to quantise the space of flat connections.
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The canonical commutation relations can be read o↵ from the Chern-Simons action

(8.21)

[A1(x), A2(x
0)] =

i

k
�2(x� x0) ) [w1, w2] =

2⇡i

k

The algebraic relation obeyed by the Wilson loops then follows from the usual Baker-

Campbell-Hausdor↵ formula,

eiw1eiw2 = e[w1,w2]/2ei(w1+w2)

which tells us that

W1W2 = e2⇡i/k W2W1 (8.31)

But such an algebra of operators can’t be realised on a single vacuum state. This imme-

diately tells us that the ground state must be degenerate. The smallest representation

of (8.31) has dimension k, with the action

W1|ni = e2⇡ni/k|ni and W2|ni = |n+ 1i

We have seen that on a torus ⌃ = T2, an Abelian Chern-Simons theory has k degenerate

ground states. The generalisation of this argument to a genus-g Riemann surface tells

us that the ground state must have degeneracy kg. Notice that we don’t have to say

anything about the shape or sizes of these manifolds. The number of ground states

depends only on the topology. This is an example of topological order.

8.4.3 Non-Abelian Chern-Simons Theories

We’ve not had much to say about non-Abelian gauge theories in low dimensions. This

is not because they’re boring, but simply because there is enough to keep us busy

elsewhere. Here we make an exception and give a brief description of non-Abelian

Chern-Simons theory.

Like Yang-Mills, Chern-Simons is based on a Lie algebra valued gauge connection

Aµ. The non-Abelian Chern-Simons action is

SCS =
k

4⇡

Z
d3x ✏µ⌫⇢ tr

✓
Aµ@⌫A⇢ �

2i

3
AµA⌫A⇢

◆
(8.32)

We’ve met this term before: the theta term in d = 3 + 1 dimensions can be written as

a derivative of the Chern-Simons term (2.24). (It also arose in the same context when

discussing canonical quantisation of Yang-Mills (2.35).) Chern-Simons theories with

gauge group G and level k are sometimes denoted as Gk.
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Once again, we will find that the level must be integer, k 2 Z. This time, however,

the computation is more direct than in the Abelian case. Under a gauge transformation,

we have

Aµ ! ⌦�1Aµ⌦+ i⌦�1@µ⌦

with ⌦ 2 G. The field strength transforms as Fµ⌫ ! ⌦�1Fµ⌫⌦. A simple calculation

shows that the Chern-Simons action changes as

SCS ! SCS +
k

4⇡

Z
d3x

⇢
✏µ⌫⇢@⌫tr (@µ⌦⌦�1a⇢) +

1

3
✏µ⌫⇢tr

�
(⌦�1@µ⌦)(⌦

�1@⌫⌦)(⌦
�1@⇢⌦)

��

The first term is a total derivative. The same kind of term arose in Abelian Chern-

Simons theories. However, the second term is novel to non-Abelian gauge theories,

and this is where the quantisation requirement now comes from. In fact, we have seen

this calculation before in Section 2.2.2 when discussing the theta angle in d = 3 + 1

Yang-Mills. On a spacetime manifold S3 (or on R3 with the requirement that gauge

transformations asymptote to the same value at infinity), gauge transformations are

characterised by the homotopy group ⇧3(SU(N)) ⇠= Z. The winding is counted by the

function

n(⌦) =
1

24⇡2

Z

S3

d3S ✏µ⌫⇢tr (⌦�1@µ⌦⌦�1@⌫⌦⌦�1@⇢⌦) 2 Z (8.33)

We recognise this as the final term that appears in the variation of the Chern-Simons

action. This means that the Chern-Simons action is not invariant under these large

gauge transformations; it changes as

SCS ! SCS +
k

12⇡
24⇡2 n(⌦) = SCS + 2⇡k n(⌦)

Insisting that the path integral, with its weighing eiSCS is gauge invariant then gives us

immediately our quantisation condition k 2 Z.

Wilson Loops

We have so far avoided talking about Wilson lines in Chern-Simons theories. There is

rather a lot to say. We will not describe this in detail here, but just sketch the key

idea.

In d = 3 Euclidean spacetime dimensions, a Wilson loop can get tangled. Mathe-

maticians call closed curves in three dimensions knots, and there has been a great deal

of e↵ort in trying to classify the ways in which they can get tangled. It turns out that
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Chern-Simons theories provide one of the most powerful tools. For a given knot C,

we can compute the Wilson loop hW [C]i. In Chern-Simons theory the Wilson loop

exhibits neither an area law, nor a perimeter law. Instead, it depends on the details

of the topology of the knot C. For each gauge group G, the Wilson loop gives a topo-

logical invariant which is a polynomial (roughly in q = e2⇡i/k.) In simple cases, these

topological invariants coincide with ones already understood by mathematicians (such

as the Jones polynomial), but they also o↵er a large number of generalisations. Edward

Witten was awarded the Fields medal, in large part for understanding this connection.

8.5 Fermions and Chern-Simons Terms

There is an intricate interplay between fermions in d = 2 + 1 dimensions and Chern-

Simons terms.

In signature ⌘µ⌫ = diag(+1,�1,�1), the Cli↵ord algebra {�µ, �⌫} = 2⌘µ⌫ is satisfied

by the 2⇥ 2 gamma matrices,

�0 = �2 , �1 = i�1 , �3 = i�3

The Dirac spinor is then a two-component complex object. In odd spacetime dimen-

sions, there is no “�5” matrix and, correspondingly, no Weyl fermions. In d = 2+1, we

can take the gamma matrices as above to be purely imaginary, which means that we can

have Majorana fermions. However, we won’t have a need for this real representation in

what follows.

It will prove useful to understand the action of parity on fermions. As we saw in

(8.22), in three dimensions parity acts as

x0 ! x0 , x1 ! �x1 , x2 ! x2

The Dirac action is then invariant if we take parity to act as

P :  7! �1 (8.34)

But this means that the fermion mass term necessarily breaks parity,

P :  ̄ =  †�0 7! � ̄ 

where, to see this, you need to remember that (�1)† = ��1 and (�1)2 = �1.

This is di↵erent from what happens in d = 3 + 1 dimensions or, indeed, in any

even spacetime dimension. There parity flips the sign of all spatial dimensions and,

correspondingly, the Dirac action is invariant if we take P :  7! �0 . This means that

in even spacetime dimensions,  ̄ is even under parity; in odd spacetime dimensions

 ̄ is odd.
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We can understand why this is by counting degrees of freedom. In d = 3 + 1

dimensions, the Dirac spinor has 4 components. When we quantise a massive fermion,

we get two particle states – spin up and spin down – and the same anti-particle states.

But a Dirac fermion in d = 2+1 dimensions has only two components, and so we must

have half the number of particle states of the d = 3 + 1 theory. The pair that we keep

is dictated by the sign of the mass, and by CPT invariance: if we have a particle with

spin, or angular momentum, +1
2 , the theory must also include an anti-particle of spin

�1
2 . But this necessarily breaks parity: the theory has a particle of spin +1

2 but no

particle of spin �1
2 .

8.5.1 Integrating out Massive Fermions

Let us take a single Dirac fermion, of mass m, coupled to a U(1) gauge field Aµ. The

action is

S =

Z
d3x i ̄ /D +m ̄ 

If we care about physics at energies below the fermion mass m, we can integrate out

the fermion. We work in Euclidean space. The fermion then gives a contribution to

the low-energy e↵ective action for the gauge field,

Se↵ = log det
�
i /D +m

�
= Tr log

�
i /@ + �µAµ +m

�

We expand this as,

Se↵ = Tr log
�
i /@ +m

�
+ Tr log

✓
1

i /@ +m
�µAµ

◆
+

1

2
Tr log

✓
1

i /@ +m
�µAµ

1

i /@ +m
�⌫A⌫

◆
+ . . .

The first term is an overall constant, and the second term cannot lead to anything gauge

invariant. But the third term holds something interesting. If we give the background

field Aµ momentum p, then the trace over momenta corresponds to the diagram,

=
1

2
Aµ(�p)A⌫(p)

Z
d3k

(2⇡)3
tr

✓
1

(/p+ /k) +m
�µ

1

/k +m
�⌫
◆

=
1

2
Aµ(�p)A⌫(p)

Z
d3k

(2⇡)3
tr

✓
/p+ /k �m

(p+ k)2 +m2
�µ

/k �m

k2 +m2
�⌫
◆

where we’ve used the fact that, after the Wick rotation, each gamma matrix squares

to �1.
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The trace picks out the non-vanishing gamma matrix structure. There will be a

contribution to the Maxwell term; that doesn’t interest us here. Instead, we care

about the term we get when three gamma matrices are multiplied together. The trace

structure gives

tr �⇢�µ�⌫ = �2✏µ⌫⇢

The resulting term is

= ✏µ⌫⇢Aµ(�p)A⌫(p) p⇢

Z
d3k

(2⇡)3
m

((p+ k)2 +m2)(k2 +m2)

We’re interested in this integral in the infra-red limit, p! 0, where it is given by

Z
d3k

(2⇡)3
m

(k2 +m2)2
=

1

2⇡2

Z
1

0

dk
mk2

(k2 +m2)2
=

1

8⇡|m|

Putting this together, the 1-loop diagram gives

lim
p!0

=
1

8⇡

m

|m|✏
µ⌫⇢Aµ(�p)A⌫(p) p⇢

Back in real space, this gives us the leading term to the low energy e↵ective action

Se↵ =
i

4⇡

sign(m)

2

Z
d3x ✏µ⌫⇢Aµ@⌫A⇢ (8.35)

There are a number of interesting things to point out about this result. First, the

e↵ective action comes with a power of i; this is expected for the Chern-Simons term in

Euclidean space, and follows from Wick rotating terms with an ✏ symbol.

Second, and more surprisingly, the fermion does not decouple in the limit m ! 1.

After integrating out a massive field, one typically generates terms in the e↵ective action

that scale as a power of 1/m. Not so for the Chern-Simons term: it is proportional

to the sign of the mass. This behaviour holds for fermions in any odd spacetime

dimensions; we met a similar example in d = 4 + 1 when discussing anomaly inflow in

Section 4.4.2.

Finally, and most importantly, the e↵ective action (8.35) is not gauge invariant! It

is a Chern-Simons term (8.21) with level k = ±1
2 . Yet, we saw in the previous section,

that the Chern-Simons term is only gauge invariant for k 2 Z. With k = ±1
2 , the sign

of the partition function can flip under gauge transformations.
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What are we to make of this? It appears that a single massive Dirac fermion, coupled

to a U(1) gauge field, is inconsistent. This is very much reminiscent of the gauge

anomalies that we met in d = 3+1 dimensions in Section 3. However, we shouldn’t be

too hasty. After all, anomalies in d = 3+1 dimensions were strictly related to massless

fermions, and here we’re dealing with a massive fermion. What’s going on?

Indeed, we were sloppy in how we deal with UV divergences in the calculation above.

They do not arise in the calculation of the Chern-Simons term, but they will surely be

important if we compute other quantities and, as in any quantum field theory, we need

a way to regulate them. To achieve this, we introduce a Pauli-Villars regulator field,

together with suitable counterterms. We take the Pauli-Villars field to have real mass

⇤UV > 0. The regulated Dirac determinant is then

det(i /D +m)

det(i /D + ⇤UV )

This gives two contributions to the Chern-Simons term; one from our fermion, and one

from the regulator. The e↵ective action for the gauge field then becomes

det(i /D +m)

det(i /D + ⇤UV )
=

1

2⇡

✓
sign(m)� 1

2

◆Z
d3x ✏µ⌫⇢Aµ@⌫A⇢

which vanishes whenm > 0 but gives a Chern-Simons term of level k = �1 whenm < 0.

In other words, when the regulated fermion determinant is defined more carefully, there

is no problem with gauge invariance.

The resulting situation is notationally inconvenient. Usually we would like to write

down an action as shorthand for a quantum field theory, even though we know that to

fully define the theory really requires a statement about how we regulate. The issue

above means that the sign of the mass of the Pauli-Villars regulator matters in a crucial

fashion. To avoid this, we are often sloppy and pretend that we’ve already integrated

out the Pauli-Villars field to generate a bare Chern-Simons term with level k = �1
2 in

the action.

More generally, we can couple Nf Dirac fermions to a U(1) gauge field with the

leading terms in the action given by

S =

Z
d3x � 1

4e2
Fµ⌫F

µ⌫ +
k

4⇡
✏µ⌫⇢Aµ@⌫A⇢ +

NfX

i=1

i ̄i /D i +mi ̄i i

Using the convention that the Chern-Simons term already includes the contributions

from Pauli-Villars fields, gauge invariance requires

k +
Nf

2
2 Z
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This interplay between the level k and the number of fermions is sometimes referred to

as the parity anomaly. It’s not a great name since the theory with fermion masses is

not parity invariant to begin with.

8.5.2 Massless Fermions and the Parity Anomaly

We can gain a slightly di↵erent perspective on the ideas above by considering a massless

fermion coupled to a U(1) gauge field, Aµ. The action is now

S =

Z
d3x i ̄ /D 

The transformation (8.34) ensures that the classical action is invariant under parity,

provided that we also act with A1 ! �A1.

The classical action is invariant under parity. But what about the partition function.

To answer this, we must make sense of the determinant of the Dirac operator,

Z[A] = det
�
i /D
�

As above, we work in Euclidean space. The Dirac operator is Hermitian, which means

that it has real eigenvalues,

i /D�n = �n�n �n 2 R

So formally we can write

Z =
Y

n

�n

Of course, this formula is divergent and so we must work to make sense of it. For

now, we would like to ask the following question: what is the sign of det(i /D). Roughly

speaking, this must be the di↵erence between the number of negative eigenvalues and

the number of positive eigenvalues. But, as there are an infinite number of each, it is

not clear how to count them.

Why do we care so much about the sign? The problem comes if we try to reconcile a

given sign with the requirements of gauge invariance. Suppose that we start with some

gauge configuration A?

µ
and decide that det(i /D) has a specific sign. Then it better be

the case that, for any gauge configuration A!

µ
, related to A?

µ
by a gauge transformation,

the sign of det(i /D) remain the same.
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At this point, the discussion may be ringing bells. It is entirely analogous to the

SU(2) anomaly that we described in Section 3.4.3. We proceed in a very similar way.

Consider the 1-parameter family of gauge configurations,

Aµ(s; x) = (1� s)A?

µ
(x) + sA!

µ
(x) (8.36)

This has the property that it interpolates from A?

µ
when s = 0 to A!

µ
when s = 1.

The question that we would like to answer is: how many eigenvalues pass through

zero and change sign as we vary s 2 [0, 1]. To answer this, we can consider the gauge

configuration Aµ(s; x) in (8.36) to live on the four manifold I ⇥ R3, where I is the

interval parameterised by 0  s  1.

The number of times that the an eigenvalue crosses zero is given by the index of

the Dirac operator. This is the object that we introduced in Section 3.3.1 where, on a

closed four manifold, the Atiyah-Singer index theorem allowed us to write

Index(i /D4d) =
1

32⇡2

Z

I⇥R3

d4x ✏µ⌫⇢�Fµ⌫F⇢�

In 4d, the index counts the di↵erence between the number of left-handed and right-

handed zero modes. For our purposes, it tells us the di↵erence between the number of

eigenvalues that switch from positive to negative, and those which switch from negative

to positive. In other words, under the gauge transformation A0
µ
! A!

µ
, the partition

function of the massless fermion changes as

Z ! Z (�1)Index(i/D4d)

There is no reason for this index to be even. We see, once again, that without regularisa-

tion the sign of the partition function can change under a suitable gauge transformation.

What happens if we now include a regulator? In mathematics, a suitably regulated

sum of the signs of the eigenvalues of i /D is known as the Atiyah-Patodi-Singer eta-

invariant. It is defined by

⌘(A) = lim
✏!0+

X

n

e�✏ �
2
n sign(�n)

We then define a regulated version of the fermion partition function as

Z = | det(i /D)| e�i⇡⌘(A)/2
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The ⌘ invariant depends on the background gauge field A. The Atiyah-Patodi-Singer

index theorem provides an expression for ⌘ in terms of the gauge field. If we restrict to

the generic situation where the gauge field has no zero modes, then one can show that

⇡ ⌘(A) =
1

4⇡

Z
d3x ✏µ⌫⇢Aµ@⌫A⇢

This reproduces the expression that we found previously from the Pauli-Villars regu-

larisation. In general, the eta-invariant is the more mathematically rigorous way to

describe what’s happening as it allows one to track what happens as eigenvalues pass

through zero.

8.6 3d Bosonization

In two spacetime dimensions, there is not much of a distinction between bosons and

fermions. The map between them is known as bosonization and was described in

Section 7.5.

In three spacetime dimensions, bosons are not the same as fermions. We can tell

which one we have in the same way as we would in four dimensions. Given a pair of

particles we can rotate them by 180�, keeping them well separated. The wavefunction

for a pair of bosons will come back to itself, while the wavefunction for a pair of fermions

comes back with a minus sign.

Nonetheless, it is possible to use Chern-Simons terms to change statistics of an

excitation from a boson to a fermion. This process is referred to as 3d bosonization.

8.6.1 Flux Attachment

To get a feel for what’s going on, it’s useful to first revert to some non-relativistic

physics. Consider Chern-Simons theory coupled to a current Jµ

S =

Z
d3x

k

4⇡
✏µ⌫⇢Aµ@⌫A⇢ + AµJ

µ (8.37)

We can insert a test particle of unit charge by taking Jµ = �2(x). How does the

gauge field respond? Gauss’ law tells us that the charged particle is accompanied by a

fractional magnetic flux,

1

2⇡
B =

1

k
�2(x) (8.38)

This is referred to as flux attachment.
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Now consider two such particles. We will exchange them to determine their quantum

statistics. The wavefunction will pick up a factor of ±1 depending on whether the

original particles were fermions. However, there is a second contribution to the phase

of the wavefunction that comes from the Aharonov-Bohm e↵ect.

Recall that a particle of charge q moving around a flux � picks up a phase eiq�.

But because of flux attachment (8.38), the particles carry both charge q = 1 and flux

� = 2⇡/k. If we move one particle all the way around another, we will get a phase eiq�.

But the statistical phase is defined by exchanging particles, which consists of only half

an orbit (followed by a translation which contributes no phase). So, after exchange,

the expected statistical phase is

± eiq�/2 = ±ei⇡/k

where we take the + sign if our original particles are bosons and the � sign if they

were fermions. We see that the e↵ect of the Chern-Simons term is to transmute the

quantum statistics of the particles. In particular, if we take a Chern-Simons term at

level k = ±1, what were bosons become fermions and vice versa. Once again, we see

that the topological nature of the Chern-Simons term endows it with seemingly magic

infra-red properties: it can change the behaviour of far separated particles, even though

it has no propagating degrees of freedom.

For |k| > 1, the particles are neither bosons nor fermions. Instead they carry frac-

tional quantum statistics. Such particles are called anyons and are allowed only in

d = 2 + 1 dimensions. You can read more about them in the lecture notes on the

Quantum Hall E↵ect where they play a prominent role.

A Famously Fiddly Factor of 2

The calculation above contains an annoying factor of 2 that we’ve swept under the

rug. Here’s the issue. As the charge q in the first particle moved around the flux �

in the second, we picked up a phase eiq�. But you might think that the flux � of the

first particle also moved around the charge q of the second. So surely this should give

another factor of eiq�. Right? Well, no. To see why, it’s best to just do the calculation.

For generality, let’s take N particles sitting at positions xa(t) which, as the notation

shows, we allow to change with time. The charge density and currents are

J0(x, t) =
NX

a=1

�2(x� xa(t)) and J(x, t) =
NX

a=1

ẋa �
2(x� xa(t))
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The equation of motion from (8.37) is

1

2⇡
Fµ⌫ =

1

k
✏µ⌫⇢J

⇢

and can be easily solved even in this general case. We work in Coulomb gauge with

A0 = 0 and r ·A = 0. The solution is then

Ai(x, t) =
1

k

NX

a=1

✏ij
xj � xj

a
(t)

|x� xa(t)|2
(8.39)

This follows from the standard methods that we know from our Electromagnetism

lectures, but this time using the Green’s function for the Laplacian in two dimensions:

r2 log |x � y| = 2⇡�2(x � y). This solution is again the statement that each particle

carries flux 1/k. However, we can also use this solution directly to compute the phase

change when one particle – say, the first one – is transported along a curve C. It is

simply

exp

✓
i

I

C

A · dx1

◆

If the curve C encloses one other particle, the resulting phase change can be computed

to be e2⇡i/m. As before, if we exchange two particles, we get half this phase, or ei⇡/k.

This, of course, is the same result we got above.

8.6.2 A Bosonization Duality

The discussion above shows that Chern-Simons terms can turn bosons into fermions and

vice-versa. However, it holds only for massive particles, and cannot be easily generalised

to massless particles, let alone to relativistic quantum field theories. Nonetheless, it

is suggestive that it may be possible to write down a quantum field theory of bosons

coupled to Chern-Simons terms that has a dual interpretation in terms of fermions. As

we now explain, it is thought that this is indeed the case.

Before we proceed, we’re going to make a small change in notation. In what follows,

there will be lots of U(1) gauge fields floating around. Some of them will be dynamical,

while others will be background gauge fields that we couple to currents. To distinguish

between these, we use the following convention: dynamical gauge fields will be written

in lower case, e.g. aµ. Meanwhile, background gauge fields will be written in upper

case, e.g. Aµ.
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This convention di↵ers from what we’ve used throughout these lectures, where we

typically refer to all gauge fields, dynamical or background, as Aµ. It is, however,

a standard convention in condensed matter physics where the true electromagnetic

gauge field Aµ is typically a background field, describing electric or magnetic fields

that the experimenter has chosen to turn on. In contrast, 3d dynamical gauge fields

aµ are always emergent excitations, arising from some collective behaviour of strongly

coupled electrons.

Consider the following theory, that we refer to as Theory A: a complex scalar field

coupled to a U(1) gauge field, with Chern-Simons term at level k = 1,

SA[�, a] =

Z
d3x � 1

4e2
fµ⌫f

µ⌫ +
1

4⇡
✏µ⌫⇢aµ@⌫a⇢ + |Dµ�|2 �m2|�|2 � �

2
|�|4 (8.40)

This is the Abelian Higgs model (8.12), but with the addition of a Chern-Simons term.

Just as before, it is straightforward to analyse in the limits m2 � e2 and m2 ⌧ �e2
where it is a theory of weakly interacting massive particles. But we’d like to understand

what happens in the strongly coupled regime. We will argue below that as we vary the

m2 from positive to negative, there is a unique second order phase transition, roughly

at m = 0. You can think of this gapless theory as the XY critical point, coupled

to a Chern-Simons gauge field U(1)1. Below, we will conjecture an alternative, and

somewhat simpler, description.

In the infra-red limit e2 ! 1, the Gauss’ law constraint gives rise to the local flux

attachment condition,

f12
2⇡

+ ⇢scalar = 0 (8.41)

where ⇢scalar is the charge density of the scalar field �. In the non-relativistic setting –

which can be invoked when m2 � e2 – we viewed this as attaching flux to every scalar

excitation and saw that, for k = 1, this turns a boson into a fermion. In the relativistic

setting, it turns out to be more appropriate to think of attaching a scalar to every flux.

To see this, first note that the theory has a conserved global symmetry, with the

topological current (8.3)

jµtop =
1

2⇡
✏µ⌫⇢@⌫a⇢ (8.42)

We know from our earlier discussion in Section 8.1 that the local operators which carry

charge under this current are monopole operators M(x), which insert magnetic flux
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at a point. The flux attachment (8.41) is telling us that, in the presence of a Chern-

Simons term, these monopole operators are not gauge invariant. We can make them

gauge invariant only by dressing them with some scalar charge ⇢scalar. Schematically,

we refer to the gauge invariant composite operator as M�.

How do we do this less schematically? The right way to proceed is to solve the

equation of motion for the scalar in the presence of a Dirac monopole. We then treat

each mode quantum mechanically: the flux attachment condition (8.41) tells us that

we should excite a single mode. The monopole operator with the lowest dimension will

correspond to exciting the lowest energy scalar mode.

We won’t go through this full calculation. However, the key physics can be seen

from a simple calculation that we did back in Section 1.1: a charged particle moving

in a minimal Dirac monopole receives a shift of ~/2 to its angular momentum. (See,

in particular, equation (1.9).) This means that exciting any bosonic mode will shift

the angular momentum of the monopole to become 1/2-integer. But, in a relativistic

theory, the spin-statistics relation must hold. If our gauge invariant monopole operator

M� has spin 1/2, then it must also be a fermion.

We see that this argument leads to the same result as before: a bosonic theory coupled

to a U(1) Chern-Simons gauge field at level k = 1 is really a theory of fermions. The

obvious question is: what theory of fermions?

It is conjectured that, close to the critical point, the bosonic theory (8.40) is really

just a free Dirac fermion! In other words, it can be equivalently described as

SB[ ] =

Z
d3x i ̄ /@ �m0 ̄ (8.43)

The map is very similar to that of particle-vortex duality that we saw in Section 8.2.1.

In particular, the fermion is described by the dressed monopole operator in Theory A,

M�  !  

while the U(1) currents map between themselves

jµtop =
1

2⇡
✏µ⌫⇢@⌫a⇢  ! jµ =  ̄�µ (8.44)

Checking the Topological Phases

Let’s now look for some evidence that this claimed duality is correct. In the case

of particle-vortex duality, we checked that the theories looked similar in the weakly

coupled regimes |m2|� e2. We can try to do something similar here.
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This is simplest for Theory B. To study the relevant physics, we couple the current

(8.44) to a background gauge field Aµ. The partition function for each theory then

depends on this background field. For Theory B it is

ZB[A] =

Z
D exp

✓
iSB[ ] + i

Z
d3x jµAµ �

1

2

1

4⇡
✏µ⌫⇢A⌫@⌫A⇢

◆

Note that we are using the convention described in Section 8.5, in which the half-integer

Chern-Simons term arising from the Pauli-Villars regulator field is shown explicitly in

the action. We have chosen to add this term with level k = �1/2.

When the fermions are massive, m0 6= 0, we can integrate them out and generate an

e↵ective theory for the background fields Aµ. The lowest dimension term is a Chern-

Simons interaction for Aµ,

Z[A] = exp

 
i
k̃

4⇡
✏µ⌫⇢Aµ@⌫A⇢ + . . .

!
(8.45)

From our discussion in Section 8.5, we know that after integrating out the massive

fermion  the Chern-Simons level for the background gauge field will be

k̃ =
1

2
(�1 + sign(m0)) =

(
0 m0 > 0

�1 m0 < 0

It may seem odd to write down an action for background fields which don’t fluctuate,

but there’s important information in the coe�cient k̃; it is the Hall conductivity of the

topological gapped phase. This follows by using the partition function Z[A] to compute

the response of the current jµ to a background electric field

hjµ(x)i = �i� logZ[A]
�Aµ(x)

) hjii = �
k̃

2⇡
✏ijEi

You can read (a lot) more about the Hall conductivity in the lectures on the Quantum

Hall E↵ect.

We would like to see how this e↵ect is encoded in the bosonic Theory A. We couple

the background gauge field Aµ to the topological current (8.42) to get the partition

function

ZA[A] =

Z
D�Da exp

✓
iSA[�, a] + i

1

2⇡
✏µ⌫⇢Aµ@⌫a⇢

◆
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where we’re neglecting gauge fixing terms. This time we only have a scalar field, which

does not shift the level of the Chern-Simons term when integrated out. Nonetheless,

we can still reproduce the result (8.46) for the Hall conductivity. To see how this

works, let’s start with the mass m2 � e2 where, at low energies, the scalar field simply

decouples, leaving us with the e↵ective action

Se↵ [a,A] =

Z
d3x

1

4⇡
✏µ⌫⇢aµ@⌫a⇢ +

1

2⇡
✏µ⌫⇢Aµ@⌫a⇢

The equation of motion for the dynamical gauge field a is simply a = �A. Substituting
this back in, given the e↵ective action (8.45) with k̃ = �1.

What happens when m2 ⌧ �e2? In this case the scalar field condenses and the

dynamical gauge field a becomes gapped. This extra term kills the Hall conductivity,

leaving us with (8.45) with k̃ = 0. We see that the scalar field does reproduce the

topological phases of the the fermion theory as promised. This requires the map,

m2  ! �m0 ) �†�  ! � ̄ 

The agreement between the topological phases is promising, but a long way from demon-

strating the claimed duality between Theory A (8.40) and the free fermion (8.43). There

are a number of other routes which lead us to the duality (including large N methods,

holography, lattice constructions and supersymmetry) but we will not discuss them

here. Instead we will assume that bosonization duality holds and ask: what can we do

with it?

8.6.3 The Beginning of a Duality Web

We will now show how, starting from the bosonization duality, we can derive further

equivalences between quantum field theories. First, some conventions. We will revert

to form notation for the gauge fields, and write the Chern-Simons terms as

1

4⇡
✏µ⌫⇢aµ@⌫a⇢ =

1

4⇡
ada

1

2⇡
✏µ⌫⇢Aµ@⌫a⇢ =

1

2⇡
Ada =

1

2⇡
adA

Both of these are correctly normalised as explained in Section 8.4: they can be added

to the action only with integer-valued coe�cients. We will denote the gauge field under

which matter is charged by adding a subscript to the covariant derivative like this,

Da� = @�� ia�
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The spacetime index on the derivatives will be suppressed. In what follows, the dis-

tinction between dynamical gauge fields and background gauge fields will be crucial.

As we mentioned previously, they are distinguished by case. Lower case gauge fields,

a, b, c, . . . will always be dynamical; upper case gauge fields A,B,C, . . . will always be

background.

In this notation, we write the 3d bosonization duality that we described above as an

equivalence between two theories

|Db�|2 � |�|4 + 1

4⇡
bdb+

1

2⇡
Adb  ! i ̄ /DA �

1

2

1

4⇡
AdA (8.46)

Much of this expression is shorthand. First, we have set the mass terms to zero on

both sides. This really means that we tune to the critical point. On the fermionic side

this is obvious, but the scalar side includes a |�|4 term which is taken to mean that we

flow to the Wilson-Fisher fixed point of the theory, rather than the free fixed point. Of

course, we don’t literally get to the Wilson-Fisher by simply setting m2 = 0; instead

we must tune m2, or more generally the coe�cient of the relevant operator, as we flow

to the IR to hit the critical point. All of this is buried in the notation above.

Second, we reiterate that the scalar � in the above expression is charged under a

dynamical gauge field, which we have called b to prepare us for some manipulations

ahead. This means that we integrate over (gauge equivalent) configurations of b in the

path integral. In contrast, the fermion  is charged under the background field A. We

can read o↵ the duality map (8.44) between currents by seeing which terms on both

side are coupled to A. Finally, we’ve omitted nearly all the details of the regularisation

of the field theory, with one exception: the level �1/2 Chern-Simons term on the right-

hand-side can be thought of as coming from integrating out a Pauli-Villars regulator.

This was explained in Section 8.5. (A warning: some places in the literature adopt a

di↵erent convention where this level �1/2 Chern-Simons term remains hidden in the

regulator.)

At this point we start to play with these two theories. Both sides of the duality (8.46)

have a background U(1) gauge field A. The key idea is to promote this to a dynamical

gauge field. This is misleadingly easy in our notation: we simply write a instead of A.

As we explained in Section 8.1, gauging a U(1) symmetry in d = 2+1 results in a new

global symmetry,

jµ =
1

2⇡
✏µ⌫⇢@⌫a⇢

– 425 –



We couple this to a background gauge field C. This means that we add 1
2⇡AdC to both

sides of (8.46), and then make A! a dynamical. This results in a new duality,

|Db�|2 � |�|4 + 1

4⇡
bdb+

1

2⇡
adb+

1

2⇡
adC  ! i ̄ /Da �

1

2

1

4⇡
ada+

1

2⇡
adC

The number of gauge fields on the left-hand side are proliferating. But, at this point,

something nice happens: the gauge field a only appears linearly in the action. This

means that it acts as a Lagrange multiplier, setting db = �dC. But, this, in turn,

freezes the first dynamical gauge field b to be equal, up to gauge connection, to the new

background field �C. The upshot is that we end up with a scalar field theory with no

dynamical gauge fields at all, and the duality

|DC�|2 � |�|4 + 1

4⇡
CdC  ! i ̄ /Da �

1

2

1

4⇡
ada+

1

2⇡
adC (8.47)

This is a new equivalence between two, seemingly very di↵erent looking, theories. The

left-hand-side is something very familiar: it is the XY Wilson-Fisher fixed point. In

contrast, the right-hand side is the a strongly coupled U(1) gauge theory. The claim is

that these two fixed points are the same, so

XY Wilson-Fisher  ! U(1)�1/2 coupled to a Dirac fermion

From our first bosonization duality, we have derived another. Similarly, we can go in

reverse: starting from the equality of partition functions (8.47), it is not hard to derive

the original (8.46).

We can continue in this vein, adding di↵erent matter fields and gauging global sym-

metries, to derive an infinite number of dualities between di↵erent 3d Abelian theories

with Chern-Simons terms. This is referred to as the duality web. Below we give just a

handful of interesting examples.

8.6.4 Particle-Vortex Duality Revisited

Our second bosonization duality (8.47) includes a Chern-Simons coupling for the back-

ground field C on the left-hand-side. Since we don’t integrate over the background

field, there is nothing to stop us taking this term onto the other side of the equation.

We will also take this opportunity to rename some of the variables. The duality (8.47)

is equivalent to

|DA�|2 � |�|4  ! i ̄ /Db �
1

2

1

4⇡
bdb+

1

2⇡
bdA� 1

4⇡
AdA (8.48)
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Having moved the background Chern-Simons term to the other side, we now play the

same game as before: we add a term 1
2⇡AdC, and then again promote A to a dynamical

field, A! a. We now have

|Da�|2 � |�|4 + 1

2⇡
adC  ! i ̄ /Db �

1

2

1

4⇡
bdb+

1

2⇡
bda� 1

4⇡
ada+

1

2⇡
adC

Again, there’s a lot of gauge fields on the right-hand-side. Now a does not appear

linearly as a Lagrange multiplier, but quadratically. Still, it is begging to be integrated

out by imposing the equation of motion a = b+ C, leaving us with

|Da�|2 � |�|4 + 1

2⇡
adC  ! i ̄ /Db +

1

2

1

4⇡
bdb+

1

2⇡
bdC +

1

4⇡
CdC (8.49)

This is still a bosonization duality, relating a scalar theory to a fermionic theory. But

the right-hand-side is very nearly the same expression that we started with in (8.48),

but with one important di↵erence: two of the Chern-Simons have their sign flipped. In

fact, we we send C ! �C, all of the Chern-Simons terms have their sign flipped. In

other words, this partition function describes the time reversal of the theory in (8.48).

As we have seen, Chern-Simons terms break time reversal, so one would not naively

expect that U(1)1/2 coupled to a Dirac fermion is time reversal invariant. However, if

we take the time reversal of the duality (8.48), we have

|D�C�|2 � |�|4  ! i ̄ /Db +
1

2

1

4⇡
bdb� 1

2⇡
bd(�C) +

1

4⇡
CdC (8.50)

By charge conjugation we can replace D�C�! DC�. The left-hand-side is once again

the XY critical point. It is clearly time-reversal invariant. The duality tells us that

U(1)1/2 coupled to a massless fermion must be secretly time reversal invariant: it must

emerge as a discrete symmetry of the quantum theory.

Combining (8.49) together with (8.50) gives us yet another duality. It is

|Da�|2 � |�|4 + 1

2⇡
adC  ! |DC�|2 � |�|4

But this is precisely the statement of particle vortex duality that we discussed in Section

8.2.1: the left-hand-side is the Abelian Higgs model while the right-hand-side is the

XY model. We learn that particle-vortex duality = bosonization2.

8.6.5 Fermionic Particle-Vortex Duality

Above we have managed to use 3d bosonization to derive a duality between purely

bosonic theories. We might ask: can we do something similar to derive a duality

between purely fermionic theories? The answer is yes. But, there will be a new subtlety

that we have to address.
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We can see this subtlety by retracing the steps above. To derive bosonic particle-

vortex duality, we started with the bosonization dual (8.47), moved the background

Chern-Simons term to the other side, and then promoted the background gauge field

to a dynamical one. To derive a fermionic particle-vortex duality, it is natural to

attempt the same manoeuvres for our original bosonization duality (8.46),

|Db�|2 � |�|4 + 1

4⇡
bdb+

1

2⇡
Adb  ! i ̄ /DA �

1

2

1

4⇡
AdA (8.51)

But we immediately run into a stumbling block: we can’t move the background Chern-

Simons term to the other side because it is half-integer valued. It is needed on the

right-hand-side to ensure that the fermion partition function is gauge invariant.

To get around this, we will stipulate that the background gauge field A only admits

flux quantised as

1

2⇡

Z
dA 2 2Z

This is twice the usual requirement. We can then write

A = 2C

with C a background gauge field whose flux is correctly quantised. The duality (8.51)

is then

|Db�|2 � |�|4 + 1

4⇡
bdb+

2

2⇡
Cdb  ! i ̄ /D2C �

2

4⇡
CdC (8.52)

All Chern-Simons terms are now properly quantised. But the fermion on the right-

hand-side has charge 2 under the gauge field C. If we give a fermion of charge q a mass

m and integrate it out, it will generate a Chern-Simons term with level 1
2q

2sign(m).

(This follows from the fact that the one-loop diagram in Section 8.5 has two insertions

of the photon-fermion vertex.) So integrating out a fermion of charge 2 generates an

integer-valued Chern-Simons level and there is no problem with the parity anomaly.

Now let us play games with this theory. We will move the CdC background Chern-

Simons term to the other side, add 1
2⇡BdC to both sides, and finally breath life into C

to make it dynamical, C ! a. We have

|Db�|2 � |�|4 + 1

4⇡
bdb+

2

2⇡
adb+

2

4⇡
ada+

1

2⇡
adB  ! i ̄ /D2a +

1

2⇡
adB

The mess of mixed Chern-Simons terms on the left-hand-side is easily dealt with: we

simply define the new linear combination

â = a+ b
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Then we find

|Db�|2 � |�|4 � 1

4⇡
bdb� 1

2⇡
bdB +

2

4⇡
âdâ+

1

2⇡
âdB  ! i ̄ /D2a +

1

2⇡
adB

But the first four terms in this expression – those which involve � and b— coincide with

the time-reversal of the left-hand-side of (8.51). We can then use the duality (8.51) to

replace them, leaving us with the promised fermion-fermion duality,

i ̄ /DA +
1

2

1

4⇡
AdA+

2

4⇡
âdâ+

1

2⇡
âdA  ! i ̄ /D2a +

1

2⇡
adA

where we’ve taken this opportunity to rename the background field A.

What is this final expression telling us? The right-hand-side is a U(1) gauge theory

coupled to a single Dirac fermion of charge 2. The left-hand-side is very almost a free

fermion. But it also includes a decoupled topological theory, U(1)2, described by the

dynamical gauge field â. We learn that

U(1) with Dirac fermion of charge 2  ! Free Dirac fermion + U(1)2

This is the fermionic version of particle-vortex duality, with the monopole operators

of the gauge theory identified with the fermion. A closely related duality was first

suggested by Son in the context of the half-filled Landau level. It has also been invoked

in the context of topological insulators.

8.7 Further Reading

Quantum field theories in d = 2 + 1 dimensions have a rather special relation to the

real world because, after a Wick rotation, many of them (but not all of them!) can be

viewed as statistical field theories in d = 3+0 dimensions, where they describe systems

near critical points. For example, �4 scalar field theory in d = 3 dimensions describes

the water boiling in your kettle. (Admittedly, you might need to put a fairly tight lid

on the kettle.)

From the high energy perspective, d = 2+1 dimensions o↵er another arena to study

questions about gauge theories that seemed too challenging in d = 3 + 1. Polyakov’s

demonstration of confinement [159, 160], driven by the proliferation of instantons

(monopoles), was a highlight in this regard. Similarly, particle vortex duality was

first introduced by Peskin [152], in an attempt to see whether a similar duality in

d = 3 + 1 could help explain confinement. This was subsequently rediscovered in the

condensed matter community by Dasgupta and Halperin, who also performed numerics

to find convincing evidence of a second order phase transition [37]. Both of these papers

originally expressed the duality in terms of lattice theories; the continuum version that

we described here was first proposed in [61].
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Chern-Simons theory was introduced by Deser, Jackiw and Templeton [42, 43], ini-

tially as a surprising, gauge invariant mechanism to give the three dimensional photon

a mass. The depth of the theory became apparent with Witten’s Fields medal winning

work on knot invariants [228], and the connection to WZW models [53]. The inter-

play between massive fermions and Chern-Simons terms was discovered in [149] and

[168, 169]; a more modern perspective was provided by Witten in [230]. A very clear

discussion of the properties of Chern-Simons theories can be found in the lectures by

Dunne [49]. You can read more about the subtleties related to the quantisation of

Abelian Chern-Simons theories in the appendices of [175] and [176]

The story of 3d bosonization has a long and complicated history. The idea that one

can use Chern-Simons terms to transmute the statistics of non-relativistic particles from

bosons to fermions was pointed out by Wilczek and Zee [211]. Polyakov was the first to

conjecture that there might be a relativistic version of bosonization, but he missed the

need to bosonize at the Wilson-Fisher fixed point [161]. The full story came by bringing

together a wonderfully diverse set of ideas from both high energy and condensed matter

physics. These include dualities in supersymmetric theories [110], large N bosonization

and its relation to holography [76, 5, 6, 7], and physics associated to superfluids [13], the

half-filled Landau level [186] and topological insulators [200, 136]. The web of dualities

among Abelian gauge theories, relating bosonization and particle-vortex duality, was

first described [119, 176].
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