
5. When Gravity is Weak

The elegance of the Einstein field equations ensures that they hold a special place in the

hearts of many physicists. However, any fondness you may feel for these equations will

be severely tested if you ever try to solve them. The Einstein equations comprise ten,

coupled partial di↵erential equations. While a number of important solutions which

exhibit large amounts symmetry are known, the general solution remains a formidable

challenge.

We can make progress by considering situations in which the metric is almost flat.

We work with ⇤ = 0 and consider metrics which, in so-called almost-inertial coordinates

xµ, takes the form

gµ⌫ = ⌘µ⌫ + hµ⌫ (5.1)

Here ⌘µ⌫ = diag(�1,+1,+1,+1) is the Minkowski metric. The components hµ⌫ are

assumed to be small perturbation of this metric: hµ⌫ ⌧ 1.

Our strategy is to expand the Einstein equations to linear order in the small pertur-

bation hµ⌫ . At this order, we can think of gravity as a symmetric “spin 2” field hµ⌫

propagating in flat Minkowski space ⌘µ⌫ . To this end, all indices will now be raised and

lowered with ⌘µ⌫ rather than gµ⌫ . For example, we have

hµ⌫ = ⌘µ⇢⌘⌫�h⇢�

Our theory will exhibit a Lorentz invariance, under which xµ ! ⇤µ
⌫x⌫ and the gravi-

tational field transforms as

hµ⌫(x) ! ⇤µ
⇢⇤

⌫
� h

⇢�(⇤�1x)

In this way, we construct a theory around flat space that starts to look very much like

the other field theories that we meet in physics.

5.1 Linearised Theory

To proceed, we need to construct the various curvature tensors from the metric (5.1).

For each, we work at linear order in h. To leading order, the inverse metric is

gµ⌫ = ⌘µ⌫ � hµ⌫

The Christo↵el symbols are then

��

⌫⇢
=

1

2
⌘�� (@⌫h�⇢ + @⇢h⌫� � @�h⌫⇢) (5.2)
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The Riemann tensor is

R�
⇢µ⌫ = @µ�

�

⌫⇢
� @⌫�

�

µ⇢
+ ��

⌫⇢
��

µ�
� ��

µ⇢
��

⌫�

The �� terms are second order in h, so to linear order we have

R�
⇢µ⌫ = @µ�

�

⌫⇢
� @⌫�

�

µ⇢

=
1

2
⌘�� (@µ@⇢h⌫� � @µ@�h⌫⇢ � @⌫@⇢hµ� + @⌫@�hµ⇢) (5.3)

The Ricci tensor is then

Rµ⌫ =
1

2
(@⇢@µh⌫⇢ + @⇢@⌫hµ⇢ �⇤hµ⌫ � @µ@⌫h)

with h = hµ
µ the trace of hµ⌫ and ⇤ = @µ@µ. The Ricci scalar is

R = @µ@⌫hµ⌫ �⇤h (5.4)

By the time we get to the Einstein tensor, we’ve amassed quite a collection of terms

Gµ⌫ =
1

2

h
@⇢@µh⌫⇢ + @⇢@⌫hµ⇢ �⇤hµ⌫ � @µ@⌫h� (@⇢@�h⇢� �⇤h) ⌘µ⌫

i
(5.5)

The Bianchi identity for the full Einstein tensor is rµGµ⌫ = 0. For the linearised

Einstein tensor, this reduces to

@µGµ⌫ = 0 (5.6)

It’s simple to check explicitly that this is indeed obeyed by (5.5).

The Einstein equations then become the linear, but somewhat complicated, set of

partial di↵erential equations

@⇢@µh⌫⇢ + @⇢@⌫hµ⇢ �⇤hµ⌫ � @µ@⌫h� (@⇢@�h⇢� �⇤h) ⌘µ⌫ = 16⇡GTµ⌫ (5.7)

where, for consistency, the source Tµ⌫ must also be suitably small. The left-hand side

of this equation should be viewed as a second order, linear di↵erential operator acting

on hµ⌫ . This is known as the Lichnerowicz operator.

The Fierz-Pauli Action

The linearised equations of motion can be derived from an action principle, first written

down by Fierz and Pauli,

SFP =
1

8⇡G

Z
d4x


�1

4
@⇢hµ⌫@

⇢hµ⌫ +
1

2
@⇢hµ⌫@

⌫h⇢µ +
1

4
@µh@

µh� 1

2
@⌫h

µ⌫@µh

�
(5.8)

This is the expansion of the Einstein-Hilbert action to quadratic order in h (after some

integration by parts). (At linear order, the expansion of the Lagrangian is equal to the

linearised Ricci scalar (5.4) which is a total derivative.)
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Varying the Fierz-Pauli action, and performing some integration by parts, we have

�SFP =
1

8⇡G

Z
d4x


1

2
@⇢@

⇢hµ⌫ � @⇢@⌫h⇢µ �
1

2
@⇢@⇢h⌘µ⌫ +

1

2
@⌫@µh+

1

2
@⇢@�h

⇢�⌘µ⌫

�
�hµ⌫

=
1

8⇡G

Z
d4x

h
�Gµ⌫ �h

µ⌫

i
(5.9)

We see that the Fierz-Pauli action does indeed give the vacuum Einstein equations

Gµ⌫ = 0. We can then couple matter by adding Tµ⌫hµ⌫ to the action.

5.1.1 Gauge Symmetry

Linearised gravity has a rather pretty gauge symmetry. This is inherited from the dif-

feomorphisms of the full theory. To see this, we repeat our consideration of infinitesimal

di↵eomorphisms from Section 4.1.3. Under an infinitesimal change of coordinates

xµ ! xµ � ⇠µ(x)

with ⇠ assumed to be small. The metric changes by (4.6)

�gµ⌫ = (L⇠g)µ⌫ = rµ⇠⌫ +r⌫⇠µ

When the metric takes the form (5.1), this can be viewed as a transformation of the

linearised field hµ⌫ . Because both ⇠ and h are small, the covariant derivative should be

taken using the vanishing connection of Minkowski space. We then have

hµ⌫ ! hµ⌫ + (L⇠⌘)µ⌫ = hµ⌫ + @µ⇠⌫ + @⌫⇠µ (5.10)

This looks very similar to the gauge transformation of Maxwell theory, where the

gauge potential shifts as Aµ ! Aµ + @µ↵. Just as the electromagnetic field strength

Fµ⌫ = 2@[µA⌫] is gauge invariant, so is the linearised Riemann tensor R�
⇢µ⌫ .

We can quickly check that the Fierz-Pauli action is invariant under the gauge sym-

metry (5.10). From (5.9), we have

�SFP = � 1

8⇡G

Z
d4x 2Gµ⌫@

µ⇠⌫ = +
1

8⇡G

Z
d4x 2(@µGµ⌫)⇠

⌫ = 0

where, in the second equality, we’ve integrated by parts (and discarded the boundary

term) and in the third equality we’ve invoked the linearised Bianchi identity (5.6). In

fact, this is just the same argument that we used to derive the Bianchi identity in

Section 4.1.3, now played backwards.
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When doing calculations in electromagnetism, it’s often useful to pick a gauge. One

of the most commonly used is Lorentz gauge,

@µAµ = 0

Once we impose this condition, the Maxwell equations @µFµ⌫ = j⌫ reduce to the wave

equations

⇤A⌫ = j⌫

We solved these equations in detail in the lectures on Electromagnetism.

We can impose a similar gauge fixing condition in linearised gravity. In this case,

the analog of Lorentz gauge is called de Donder gauge

@µhµ⌫ �
1

2
@⌫h = 0 (5.11)

To see that this is always possible, suppose that you are handed a metric that doesn’t

obey the de Donder condition but instead satisfies @µhµ⌫� 1

2
@⌫h = f⌫ for some functions

f⌫ . Then do a gauge transformation (5.10). Your new gauge potential will satisfy

@µhµ⌫� 1

2
@⌫h+⇤⇠⌫ = f⌫ . So if you pick a gauge transformation ⇠µ that obeys ⇤⇠µ = fµ

then your new metric will be in de Donder gauge.

There is a version of de Donder gauge condition (5.11) that we can write down in

the full non-linear theory. We won’t need it in this course, but it’s useful to know it

exists. It is

gµ⌫�⇢

µ⌫
= 0 (5.12)

This isn’t a tensor equation because the connection �⇢

µ⌫
is not a tensor. Indeed, if a

tensor vanishes in one choice of coordinates then it vanishes for all choices while the

whole point of a gauge fixing condition is to pick out a preferred choice of coordinates.

If we substitute in the linearised Christo↵el symbols (5.2), this reduces to the de Donder

gauge condition.

The non-linear gauge condition (5.12) has a number of nice features. For example,

in general the wave operator (or, on a Riemannian manifold, the Laplacian 4) is

⇤ = rµrµ = gµ⌫(@⌫@µ � �⇢

⌫µ
@⇢). If we fix the gauge (5.12), the annoying connection

term vanishes and we simply have ⇤ = gµ⌫@µ@⌫ . A similar simplification happens if

we compute the covariant divergence of a one-form in this gauge: rµ!µ = gµ⌫rµ!⌫ =

gµ⌫(@µ!⌫ � �⇢

µ⌫
!⇢) = @µ!µ.
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Back in our linearised world, de Donder gauge greatly simplifies the Einstein equation

(5.7), which now become

⇤hµ⌫ �
1

2
⇤h⌘µ⌫ = �16⇡GTµ⌫ (5.13)

It is useful to define

h̄µ⌫ = hµ⌫ �
1

2
h⌘µ⌫

Taking the trace of both sides gives h̄ = ⌘µ⌫ h̄µ⌫ = �h so, given h̄µ⌫ we can trivially

reconstruct hµ⌫ as

hµ⌫ = h̄µ⌫ �
1

2
h̄⌘µ⌫ (5.14)

Written in terms of h̄µ⌫ , the linearised Einstein equations in de Donder gauge (5.13)

then reduce once again to a bunch of wave equations

⇤h̄µ⌫ = �16⇡GTµ⌫ (5.15)

and we can simply import the solutions from electromagnetism to learn something

about gravity. We’ll look at some examples shortly.

5.1.2 The Newtonian Limit

Under certain circumstances, the linearised equations of general relativity reduce to

the familiar Newtonian theory of gravity. These circumstances occur when we have a

low-density, slowly moving distribution of matter.

For simplicity, we’ll look at a stationary matter configuration. This means that we

take

T00 = ⇢(x)

with the other components vanishing. Since nothing depends on time, we can replace

the wave operator by the Laplacian inR3: ⇤ = �@2

t
+r2 = r2. The Einstein equations

are then simply

r2h̄00 = �16⇡G⇢(x) and r2h̄0i = r2h̄ij = 0

With suitable boundary conditions, the solutions to these equations are

h̄00 = �4�(x) and h̄0i = h̄ij = 0 (5.16)
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where the field � is identified with the Newtonian gravitational potential, obeying (0.1)

r2� = 4⇡G⇢

Translating this back to hµ⌫ using (5.14), we use h̄ = +4� to find

h00 = �2� , hij = �2��ij , h0i = 0

Putting this back into the full metric gµ⌫ = ⌘µ⌫ + hµ⌫ , we have

ds2 = �(1 + 2�)dt2 + (1� 2�)dx · dx

If we take a � = �GM/r as expected for a point mass, we find that this coincides with

the leading expansion of the Schwarzschild metric (4.8). (The g00 term turns out to be

exact; the gij term is the leading order Taylor expansion of (1 + 2�)�1.)

Way back in Section 1.2, we gave a naive, intuitive discussion of curved spacetime.

There we already anticipated that the Newtonian potential � would appear in the

g00 component of the metric (1.26). However, in solving the Einstein equations, we

learn that this is necessarily accompanied by an appearance of � in the gij component.

Ultimately, this is the reason for the factor of 2 discrepancy between the Newtonian

and relativistic predictions for light bending that we met in Section 1.3

5.2 Gravitational Waves

A long time ago, in a galaxy far far away, two black holes collided. Here a “long time

ago” means 1.3 billion years ago. And “far far away” means a distance of about 1.3

billion light years.

To say that this was a violent event is something of an understatement. One of

the black holes was roughly 35 times heavier than the Sun, the other about 30 times

heavier. When they collided they merged to form a black hole whose mass was about

62 times heavier than the Sun. Now 30 + 35 6= 62. This means that some mass, or

equivalently energy, went missing during the collision. In a tiny fraction of a second,

this pair of black holes emitted an energy equivalent to three times the mass of the

Sun.

That, it turns out, is quite a lot of energy. For example, nuclear bombs convert the

mass of a handful of atoms into energy. But here we’re talking about solar masses, not

atomic masses. In fact, for that tiny fraction of a second, these colliding black holes

released more energy than all the stars in all the galaxies in the visible universe put

together.
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But the most astonishing part of the story is how we know this collision happened.

It’s because, on September 14th, 2015, at 9.30 in the morning UK time, we felt it.

The collision of the black holes was so violent that it caused an enormous perturbation

of spacetime. Like dropping a stone in a pond, these ripples propagated outwards as

gravitational waves. The ripples started 1.3 billion years ago, roughly at the time that

multi-cellular life was forming here on Earth. They then travelled through the cosmos at

the speed of light. The ripples hit the outer edge of our galaxy about 50,000 years ago,

at a time when humans were hanging out with neanderthals. The intervening 50,000

years gave us just enough time to join together into hunter-gatherer tribes, develop

cohesive societies bound by false religions, invent sophisticated language and writing,

discover mathematics, understand the theory that governs the spacetime continuum

and, finally, build a machine that is capable of detecting the ripples, turning it on just

in time for the gravitational wave to hit the south pole and pass, up through the Earth,

triggering the detector.

The purpose of this section is to tell the story above in equations.

5.2.1 Solving the Wave Equation

Gravitational waves propagate in vacuum, in the absence of any sources. This means

that we need to solve the linearised equation

⇤h̄µ⌫ = 0 (5.17)

One solution is provided by the gravitational wave

h̄µ⌫ = Re
�
Hµ⌫ e

ik⇢x
⇢�

(5.18)

Here Hµ⌫ is a complex, symmetric polarisation matrix and the wavevector kµ is a real

4-vector. Usually when writing these solutions we are lazy and drop the Re on the

right-hand side, leaving it implicit that one takes the real part. This plane wave ansatz

solves the linearised Einstein equation (5.17) provided that the wavevector is null,

kµk
µ = 0

This tells us that gravitational waves, like light waves, travel at the speed of light. If we

write the wavevector as kµ = (!,k), with ! the frequency, then this condition becomes

! = ±|k|.

Because the wave equation is linear, we may superpose as many di↵erent waves of

the form (5.18) as we wish. In this way, we build up the most general solution to the

wave equation.
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Naively, the polarisation matrix Hµ⌫ has 10 components. But we still have to worry

about gauge issues. The ansatz (5.18) satisfies the de Donder gauge condition @µh̄µ⌫ = 0

only if

kµHµ⌫ = 0 (5.19)

This tells us that the polarisation is transverse to the direction of propagation. Fur-

thermore, the choice of de Donder gauge does not exhaust our ability to make gauge

transformations. If we make a further gauge transformation hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ,

then

h̄µ⌫ ! h̄µ⌫ + @µ⇠⌫ + @⌫⇠µ � @⇢⇠⇢⌘µ⌫

This transformation leaves the solution in de Donder gauge @µh̄µ⌫ = 0 provided that

⇤⇠⌫ = 0

In particular, we can take

⇠µ = �µ e
ik⇢x

⇢

which obeys ⇤⇠µ = 0 because k⇢k⇢ = 0. A gauge transformation of this type shifts the

polarisation matrix to

Hµ⌫ ! Hµ⌫ + i (kµ�⌫ + k⌫�µ � k⇢�⇢⌘µ⌫) (5.20)

Polarisation matrices that di↵er in this way describe the same gravitational wave. We

now choose the gauge transformation �µ in order to further set

H0µ = 0 and Hµ
µ = 0 (5.21)

These conditions, in conjunction with (5.19), are known as transverse traceless gauge.

Because H is traceless, this choice of gauge has the advantage that hµ⌫ = h̄µ⌫ .

At this stage we can do some counting. The polarisation matrix Hµ⌫ has 10 com-

ponents. The de Donder condition (5.19) gives 4 constraints, and there are 4 residual

gauge transformations (5.20). The upshot is that there are just 10 � 4 � 4 = 2 inde-

pendent polarisations in Hµ⌫ .

(There is a similar counting in Maxwell theory. The polarisation of Aµ seemingly has

4 components. The Lorentz gauge @µAµ = 0 kills one of them, and a residual gauge

transformation kills another, leaving the 2 familiar polarisation states of light.)
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An Example

Consider a wave propagating in the z direction. The wavevector is

kµ = (!, 0, 0,!)

The condition (5.19) sets H0⌫ +H3⌫ = 0. The additional constraint (5.21) restricts the

polarisation matrix to be

Hµ⌫ =

0

BBBB@

0 0 0 0

0 H+ HX 0

0 HX �H+ 0

0 0 0 0

1

CCCCA
(5.22)

Both H+ and HX can be complex; we take the real part when computing the metric in

(5.18). Here we see explicitly the two polarisation states H+ and HX . We’ll see below

how to interpret these two polarisations.

5.2.2 Bobbing on the Waves

What do you feel if a gravitational wave passes you by? Well, if you’re happy to be

modelled as a pointlike particle, moving along a geodesic, then the answer is simple:

you feel nothing at all. This follows from the equivalence principle. Instead, it’s all

about your standing relative to your neighbours.

This relative physics is captured by the geodesic deviation equation that we met in

Section 3.3.4. Consider a family of geodesics xµ(⌧, s), with s labelling the di↵erent

geodesics, and ⌧ the a�ne parameter along any geodesic. The vector field tangent to

these geodesics is the velocity 4-vector

uµ =
@xµ

@⌧

����
s

Meanwhile, the displacement vector Sµ takes us between neighbouring geodesics,

Sµ =
@xµ

@s

����
⌧

We previously derived the geodesic deviation equation (3.36).

D2Sµ

D⌧ 2
= Rµ

⇢�⌫u
⇢u�S⌫
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We’ll consider the situation where, in the absence of the gravitational wave, our family

of geodesics are sitting happily in a rest frame, with uµ = (1, 0, 0, 0). As the gravita-

tional wave passes, the geodesics will change as

uµ = (1, 0, 0, 0) +O(h)

Fortunately, we won’t need to compute the details of this. We will compute the devia-

tion to leading order in the metric perturbation h, but the Riemann tensor is already

O(h), which means that we can neglect the corrections in the other terms. Similarly,

we can replace the proper time ⌧ for the coordinate time t. We then have

d2Sµ

dt2
= Rµ

00⌫S
⌫

The Riemann tensor in the linearised regime was previously computed in (5.3)

Rµ
⇢�⌫ =

1

2
⌘µ� (@�@⇢h⌫� � @�@�h⌫⇢ � @⌫@⇢h�� + @⌫@�h�⇢)

Using hµ0 = 0, the component we need is simply

Rµ
00⌫ =

1

2
@2

0
hµ

⌫

Our geodesic deviation equation is then

d2Sµ

dt2
=

1

2

d2hµ
⌫

dt2
S⌫ (5.23)

We see that the gravitational wave propagating in, say, the z direction with polarisation

vector (5.22) a↵ects neither S0 nor S3. The only e↵ect on the geodesics is in the (x, y)-

plane, transverse to the direction of propagation. For simplicity, we will solve this

equation in the z = 0 plane.

H+ Polarisation: If we set HX = 0 in (5.22), then the geodesic deviation equation (5.23)

becomes

d2S1

dt2
= �!2

2
H+e

i!tS1 and
d2S2

dt2
= +

!2

2
H+e

i!tS2

We can solve these perturbatively in H+. Keeping terms of order O(h) only, we have

S1(t) = S1(0)

✓
1 +

1

2
H+e

i!t + . . .

◆
and S2(t) = S2(0)

✓
1� 1

2
H+e

i!t + . . .

◆
(5.24)

where, as we mentioned previously, we should take the real part of the right-hand-side.

(Recall that H+ can also be complex.)
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From these solutions, we can determine the way in which geodesics are a↵ected

by a passing wave. Think of the displacement vector Sµ as the distance from the

origin to a neighbouring geodesic. We will consider a family of neighbouring geodesics

corresponding to a collection of particles which, at time t = 0, are arranged around

a circle of radius R. This means that we have initial conditions Sa(t = 0) satisfying

S1(0)2 + S2(0)2 = R2.

The solutions (5.24) tell us how these geodesics evolve. The relative minus sign

between the two equations means that when geodesics move outwards in, say, the

x1 = x direction, they move inwards in the x2 = y direction, and vice-versa. The net

result is that, as time goes on, these particles will evolve from a circle to an ellipse and

back again, displaced like this:

HX Polarisation: If we set H+ = 0 in (5.22), then the geodesic deviation equation (5.23)

becomes

d2S1

dt2
= �!2

2
HXe

i!tS2 and
d2S2

dt2
= �!2

2
HXe

i!tS1

Again, we solve these perturbatively in HX . We have

S1(t) = S1(0) +
1

2
S2(0)HXe

i!t + . . . and S2(t) = S2(0) +
1

2
S1(0)HXe

i!t + . . .

The displacement is the same as previously, but rotated by 45�. (To see this, note that

the displacements S1(t)± S2(t) have the same functional form as (5.24).) This means

that this time the displacement of geodesics looks like this:
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Figure 42: The discovery of gravitational waves by the LIGO detectors.

We can also take linear combinations of the polarisation states. Adding the two

polarisations above gives an elliptic displacement whose axis rotates. This is analogous

to the circular polarisation of light.

The displacements due to gravitational waves are invariant under rotations by ⇡.

This contrasts with polarisation of light which is described by a vector, and so is only

invariant under 2⇡ rotations. This reflects the fact that graviton has spin 2, while the

photon has spin 1.

Gravitational Wave Detectors

Gravitational wave detectors are interferometers. They bounce light back and forth

between two arms, with the mirrors at either end playing the role of test masses.

If the gravitational wave travels perpendicular to the plane of the detector, it will

shorten one arm and lengthen the other. With the arms aligned along the x and y

axes, the maximum change in length can be read from (5.24),

L0 = L

✓
1± H+

2

◆
) �L

L
=

H+

2

To get a ballpark figure for this, we need to understand how large we expect H+ to be

from any plausible astrophysical source. We’ll do this in Section 5.3.2. It turns out it’s

not really very large at all: typical sources have H+ ⇠ 10�21. The lengths of each arm

in the LIGO detectors is around L ⇠ 3 km, meaning that we have to detect a change

in length of �L ⇠ 10�18 m. This seems like a crazy small number: it’s smaller than the

radius of a proton, and around 1012 times smaller than the wavelength of the light used

in the interferometer. Nonetheless, the sensitivity of the detectors is up to the task and

the LIGO observatories detected gravitational waves for the first time in 2015. For this,

three members of the collaboration were awarded the 2017 Nobel prize. Subsequently,
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the LIGO and VIRGO detectors have observed a large number of mergers involving

black holes and neutron stars.

5.2.3 Exact Solutions

We have found a wave-like solution to the linearised Einstein equations. The metric

for a wave moving in, say, the positive z direction takes the form

ds2 = �dt2 + (�ab + hab(z � t))dxadxb + dz2 (5.25)

where the a, b = 1, 2 indices run over the spatial directions transverse to the direction

of the wave. Because the wave equation is linear, any function hab(z� t) is a solution to

the linearised Einstein equations; the form that we gave in (5.18) is simply the Fourier

decomposition of the general solution.

Because gravitational waves are so weak, the linearised metric is entirely adequate

for any properties of gravitational waves that we wish to calcuate. Nonetheless, it’s

natural to ask if this solution has an extension to the full non-linear Einstein equations.

Rather surprisingly, it turns out that it does.

For a wave propagating in the positive z direction, we first introduce lightcone coor-

dinates

u = t� z , v = t+ z

Then we consider the plane wave ansatz, sometimes called the Brinkmann metric

ds2 = �dudv + dxadxa +Hab(u)x
axbdu2

Note that our linearised gravitational wave (5.25) is not of this form; there is some

(slightly fiddly) change of coordinates that takes us between the two metrics. One can

show that the Brinkmann metric is Ricci flat, and hence solves the vacuum Einstein

equations, for any traceless metric Hab

Rµ⌫ = 0 , Ha
a(u) = 0

The general metric again has two independent polarisation states,

Hab(u) =

 
H11(u) H12(u)

H12(u) �H11(u)

!

It is unusual to find solutions on non-linear PDEs which depend on arbitrary functions,

like H11(u) and H12(u). The Brinkmann metrics are a rather special exception.
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5.3 Making Waves

The gravitational wave solutions described in the previous section are plane waves.

They come in from infinity, and go out to infinity. In reality however, gravitational

waves start at some point and radiate out.

As we will see, the story is entirely analogous to what we saw in our earlier course

on Electromagnetism. There, you generate electromagnetic waves by shaking electric

charges. Similarly, we generate gravitational waves by shaking masses. The purpose of

this section is to make this precise.

5.3.1 The Green’s Function for the Wave Equation

Our starting point is the linearised Einstein equation (5.15),

⇤h̄µ⌫ = �16⇡GTµ⌫ (5.26)

which assumes that both the source, in the guise of the energy momentum tensor Tµ⌫ ,

and the perturbed metric h̄µ⌫ are small. This is simply a bunch of decoupled wave

equations. We already solved these in Section 6 of the lectures on Electromagnetism,

and our discussion here will parallel the presentation there.

We will consider a situation in which matter fields are localised to some spatial region

⌃. In this region, there is a time-dependent source of energy and momentum Tµ⌫(x0, t),

such as two orbiting black holes. Outside of this region, the energy-momentum tensor

vanishes: Tµ⌫(x0, t) = 0 for x0 /2 ⌃. We want to know what the metric hµ⌫ looks like a

long way from the region ⌃. The solution to (5.26) outside of ⌃ can be given using the

(retarded) Green’s function; it is

h̄µ⌫(x, t) = 4G

Z

⌃

d3x0
Tµ⌫(x0, tret)

|x� x0| (5.27)

here tret is the retarded time, given by

tret = t� |x� x0|

It’s not too hard to show that this solution satisfies the de Donder gauge condition

@µh̄µ⌫ = 0 provided that the energy momentum tensor is conserved, @µTµ⌫ = 0. The

solution does not, however, automatically satisfy the temporal and traceless conditions

(5.21). The solution (5.27) captures the causality of the wave equation: the gravita-

tional field h̄µ⌫(x, t) is influenced by the matter at position x0 at the earlier time tret,

so that there is time for this influence to propagate from x0 to x.
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We denote the size of the region ⌃ as d. We’re interested in what’s happening at a

point x which is a distance r = |x| away. If |x � x0| � d for all x0 2 ⌃ then we can

approximate

|x� x0| = r � x · x0

r
+ . . . ) 1

|x� x0| =
1

r
+

x · x0

r3
+ . . . (5.28)

We also have a factor of |x� x0| that sits inside tret = t� |x� x0|. This means that we

should also Taylor expand the argument of the energy-momentum tensor

Tµ⌫(x
0, tret) = Tµ⌫(x

0, t� r + x · x0/r + . . .)

Now we’d like to further expand out this argument. But, to do that, we need to know

something about what the source is doing. We will assume that the motion of matter

is non-relativistic, so that the energy momentum tensor doesn’t change very much over

the time ⌧ ⇠ d that it takes light to cross the region ⌃. For example, if we have a

system comprised of two objects (say, neutron starts or black holes) orbiting each other

with characteristic frequency ! then Tµ⌫ ⇠ e�i!t and the requirement that the motion

is non-relativistic becomes d ⌧ 1/!. Then we can further Taylor expand the current

to write

Tµ⌫(x
0, tret) = Tµ⌫(x

0, t� r) + Ṫµ⌫(x
0, t� r)

x · x0

r
+ . . . (5.29)

We have two Taylor expansions, (5.28) and (5.29). At leading order in d/r we take the

first term from both these expansions to find

h̄µ⌫(x, t) ⇡
4G

r

Z

⌃

d3x0 Tµ⌫(x
0, t� r)

We first look at the expressions for h̄00 and h̄0i. The first of these is

h̄00(x, t) ⇡
4G

r
E with E =

Z

⌃

d3x0 T00(x
0, t� r) (5.30)

This is simply a recapitulation of the Newtonian limit (5.16), with the long distance

gravitational potential given by � = �GE/r where E is the total energy inside the

region ⌃. At the linear order to which we’re working, current conservation @µTµ⌫ = 0

ensures that the energy E inside ⌃ is constant, so the time dependence drops out.

Similarly, we have

h̄0i(x, t) ⇡ �4G

r
Pi with Pi = �

Z

⌃

d3x0 T0i(x
0, t� r) (5.31)

Here Pi is the total momentum of the matter inside ⌃ which, again, is conserved. We

can always go to a rest frame where this matter is stationary in which case Pi = 0 and

hence h̄0i = 0. This was the choice we implicitly made in describing the Newtonian

limit (5.16).

– 218 –



Neither the expression for h̄00 nor h̄0j captures the physics that we are interested in.

The results only know about the conserved quantities inside the region ⌃, not about

how they’re moving. However, things become more interesting when we look at the

spatial components of the metric,

h̄ij(x, t) ⇡
4G

r

Z

⌃

d3x0 Tij(x
0, t� r)

with i, j = 1, 2, 3. Now the integral on the right-hand side is not a conserved quantity.

However, it is possible to relate it to certain properties of the energy distribution inside

⌃.

Claim:
Z

⌃

d3x0 Tij(x
0, t) =

1

2
Ïij(t)

where Iij is the quadrupole moment of the energy,

Iij(t) =

Z

⌃

d3x T 00(x, t) xixj (5.32)

Proof: We start by writing

T ij = @k(T
ikxj)� (@kT

ik)xj = @k(T
ikxj) + @0T

0ixj

where, in the second equality, we’ve used current conservation @µT µ⌫ = 0. (Note that

current conservation in the full theory is rµT µ⌫ = 0, but in our linearised analysis this

reduces to @µT µ⌫ = 0.) For the T 0i term, we play the same trick again. Symmetrising

over (ij), we have

T 0(ixj) =
1

2
@k(T

0kxixj)� 1

2
(@kT

0k)xixj =
1

2
@k(T

0kxixj) +
1

2
@0T

00xixj

When we integrate this over ⌃, we drop the terms that are total spatial derivatives.

We’re left with
Z

⌃

d3x0 T ij(x0, t) =
1

2
@2

0

Z

⌃

d3x0 T 00(x0, t)x0ix0j

which is the claimed result. ⇤
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We learn that, far from the source, the metric takes the form

h̄ij(x, t) ⇡
2G

r
Ïij(t� r) (5.33)

This is the physics that we want: if we shake the matter distribution in some way

then, once the signal has had time to propagate, this will a↵ect the metric. Because

the equations are linear, if the matter shakes at some frequency ! the spacetime will

respond by creating waves at parametrically same frequency. (In fact, we’ll see a factor

of 2 arises in the example of a binary system (5.36).)

In fact, we can now revisit the other components h̄00 and h̄0i. The gauge condition

@µh̄µ⌫ = 0 tells us that

@0h̄0i = @jh̄ji and @0h̄00 = @ih̄i0

The first of these equations gives

@0h̄0i ⇡ @j

✓
2G

r
Ïij(t� r)

◆
= �2Gx̂j

r2
Ïij(t� r)� 2Gx̂j

r

...
I ij(t� r) (5.34)

where we’ve used the fact that @jr = xj/r = x̂j. Which of these two terms in (5.34) is

bigger? As we get further from the source, we would expect the second, 1/r, term to

dominate over the first, 1/r2 term. But the second term has an extra time derivative,

which means an extra factor of the characteristic frequency of the source, !. This

means that the second term dominates provided that r � 1/! or, in terms of the

wavelength � of the emitted gravitational wave, r � �. This is known as the far-field

zone or, sometimes, the radiation zone. In this regime, we have

h̄0i ⇡ �2Gx̂j

r
Ïij(t� r)

where we’ve integrated (5.34). In general, the integration constant is given by the Pi

term that we previously saw in (5.31). In the answer above, we’ve set this integration

constant to zero by choosing coordinates in which Pi = 0, meaning that the centre of

mass of the source doesn’t move. We can now repeat this to determine h̄00. The same

argument means that we discard one term, and retain

h̄00 =
4G

r
E +

2Gx̂ix̂j

r
Ïij(t� r)

If we tried to compute these Ï terms in h̄00 and h̄0i directly from (5.27), we would have

to go to higher order in the expansion. Implementing the gauge condition, as above,

saves us this work.
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5.3.2 An Example: Binary Systems

As an example, consider two stars (or neutron stars, or black holes) each with mass

M , separated by distance R, orbiting in the (x, y) plane. Using Newtonian gravity, the

stars orbit with frequency

!2 =
2GM

R3
(5.35)

If we treat these stars as point particles, then the energy density is simply a product

of delta-functions

T 00(x, t) = M�(z)


�

✓
x� R

2
cos!t

◆
�

✓
y � R

2
sin!t

◆
+ �

✓
x+

R

2
cos!t

◆
�

✓
y +

R

2
sin!t

◆�

The quadrupole (5.32) is then easily evaluated

Iij(t) =
MR2

2

0

BB@

cos2 !t cos!t sin!t 0

cos!t sin!t sin2 !t 0

0 0 0

1

CCA

=
MR2

4

0

BB@

1 + cos 2!t sin 2!t 0

sin 2!t 1� cos 2!t 0

0 0 0

1

CCA (5.36)

The resulting metric perturbation is then

h̄ij ⇡ �2GMR2!2

r

0

BB@

cos 2!tret sin 2!tret 0

sin 2!tret � cos 2!tret 0

0 0 0

1

CCA

where tret = t� r is the retarded time.

This gravitational wave propagates out more or less radially. If we look along the z-

axis, then the wave takes the same form as the plane wave (5.22) that we saw previously,

now with combination of H+ and HX polarisations, ⇡/2 out of phase, also known as

circular polarisation.

We can use this to give us a ballpark figure for the expected strength of gravitational

waves. Using (5.35) to replace the frequency, we have

|hij| ⇠
G2M2

Rr
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Clearly the signal is largest for large masses M , orbiting as close as possible so R is

small. The densest objects are black holes whose size is given by the Schwarzschild

radius Rs = 2GM . As the black holes come close, we take R ⇡ Rs to get

|hij| ⇠
GM

r

A black hole weighing a few solar masses has Schwarzschild radius Rs ⇠ 10 km. Now it’s

a question of how far away these black holes are. If two such black holes were orbiting in,

say, the Andromeda galaxy which, at 2.5 million light years, has r ⇡ 1018 km, we would

get h ⇠ 10�17. At a distance of a billion light-years, we’re looking at h ⇠ 10�20. These

are small numbers. Nonetheless, as we mentioned previously, this is the sensitivity that

has been achieved by gravitational wave detectors.

5.3.3 Comparison to Electromagnetism

For both electromagnetic and gravitational waves, there is a multipole expansion that

determines the long distance wave behaviour in terms of the source. (Full details of the

calculations in Maxwell theory can be found in the lectures on Electromagnetism.) In

electromagnetism, the multipoles of the charge distribution ⇢(x) are the charge

Q =

Z

⌃

d3x ⇢(x)

the dipole

p =

Z

⌃

d3x ⇢(x)x

the quadrupole

Qij =

Z

⌃

d3x ⇢(x)
�
3xixj � �ijx

2
�

and so on. Charge conservation tells us that Q̇ = 0: the total charge cannot change

which means that there is no monopole contribution to electromagnetic waves. Instead

the leading order contribution comes from the dipole. Indeed, repeating the calculation

that we saw above in the context of Maxwell theory shows that the leading order

contribution to electromagnetic waves

A(x, t) ⇡ µ0

4⇡r
ṗ(t� r) (5.37)

We can compare this to the situation in gravity. The multipoles of the energy distri-

bution T00(x) are the total energy

E =

Z

⌃

d3x T00(x)
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the dipole which, in this context, is related to the centre of mass of the distribution

X =
1

E

Z

⌃

d3x T00(x)x

the quadrupole

Iij(t) =

Z
d3x T00(x, t) xixj

The conservation of energy, Ė = 0, is responsible for the lack of a monopole contribution

to gravitational radiation. But, as we saw above, in contrast to electromagnetism, the

dipole contribution also vanishes. This too can be traced to a conservation law: we

have

EẊi =

Z

⌃

d3x (@0T00)xi =

Z

⌃

d3x (@jTj0)xi = �
Z

⌃

d3x Ti0 = Pi

where, in the penultimate equality, we have integrated by parts and, in the final equal-

ity, we have used the definition of the total momentum Pi defined in (5.31). But

conservation of momentum P means that the second time derivative of the dipole van-

ishes

EẌ = Ṗ = 0

This is the physical reason that there’s no gravitational dipole: it would violate the

conservation of momentum.

In electromagnetism, there is another dipole contribution to the gauge potential: this

is

AMD(x, t) = � µ0

4⇡r
x̂⇥ ṁ(t� r)

where the magnetic dipole m is defined by

m =
1

2

Z

⌃

d3x x⇥ J(x)

In our gravity, the analogous term comes from the Ṫij in the expansion (5.29). The

analog of the magnetic dipole in gravity is

Ji =

Z

⌃

d3x ✏ijkxjT0k

But this is again something familiar: it is the angular momentum of the system. This

too is conserved, J̇ = 0, which means that, again, the dipole contribution vanishes in

gravity. The leading order e↵ect is the quadrupole.
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5.3.4 Power Radiated: The Quadrupole Formula

A source which emits gravitational waves will lose energy. We’d like to know how much

energy is emitted. In other words, we’d like to understand how much energy is carried

by the gravitational waves.

In the context of electromagnetism, it is fairly easy to calculate the analogous quan-

tity. The energy current in electromagnetic waves is described by the T 0i components

of the energy-momentum tensor, better known as the Poynting vector

S =
1

µ0

E⇥B

To compute the power P emitted by an electromagnetic source, we simply integrate

this energy flux over a sphere S2 that surrounds the source,

P =

Z

S2

d2r · S

Evaluating this using the dipole approximation for electromagnetic waves (5.37), and

doing a suitable average, we find the Larmor formula

P =
µ0

6⇡c
|p̈|2

Our task in this section is to perform the same calculations for gravitational waves.

This is not as easy as it sounds. The problem is the one we addressed in Section

4.5.5: there is no local energy-momentum tensor for gravitational fields. This means

that there is no analog of the Poynting vector for gravitational waves. It looks like

we’re scuppered.

There is, however, a way forward. The idea is that we will attempt to define an

energy-momentum tensor tµ⌫ for gravitational waves which, in the linearised theory,

obeys

@µtµ⌫ = 0

The problem is that, as we mentioned in Section 4.5.5, there is no way to achieve this

in a di↵eomorphism invariant way. In the full non-linear theory, this mean that tµ⌫ is

not actually a tensor. In our linearised theory, it means that tµ⌫ will not be invariant

under the gauge transformations (5.10). Nonetheless, we’ll first define an appropriate

tµ⌫ , and then worry about the lack of gauge invariance later.

– 224 –



A Quick and Dirty Approach: the Fierz-Pauli Action

When asked to construct an energy-momentum tensor for the metric perturbations, the

first thing that springs to mind is to return to the Fierz-Pauli action (5.8). Viewed as

an action describing a spin 2 field propagating in Minkowski space, we can then treat

it as any other classical field theory and compute the energy-momentum tensor in the

usual ways.

For example if we work in transverse traceless gauge, with h = 0 and @µhµ⌫ = 0

then, after an integration by parts, the Fierz-Pauli action becomes

SFP = � 1

8⇡G

Z
d4x

1

4
@⇢hµ⌫@

⇢hµ⌫

which looks like the action for a bunch of massless scalar fields. The energy density

then takes the schematic form

t00 ⇠ 1

G
ḣµ⌫ ḣ

µ⌫

There are also gradient terms but, for wave equations, these contribute in the same

way as time derivatives. Strictly speaking, we should be working with the momentum

t0i, but this scales in the same way and the calculation is somewhat easier if we work

with t00. Our previous expression (5.33) for the emitted gravitational wave wasn’t in

transverse-traceless gauge. If we were to massage it into this form, we have

hij(x, t) ⇠
G

r
Q̈ij(t� r)

where Qij is the traceless part of the quadrupole moment,

Qij = Iij �
1

3
Ikk�ij

Putting this together suggests that the energy density carried in gravitational waves is

schematically of the form

t00 ⇠ G

r2
...
Q2

ij

Integrating over a sphere at a large distance, suggests that the energy lost in gravita-

tional waves should depend on the square of the third derivative of the quadrupole,

P ⇠ G
...
Q2

ij

It turns out that this is indeed correct. A better treatment gives

P =
G

5

...
Q ij

...
Q ij

(5.38)

where, as in all previous formulae,
...
Q ij should be evaluated in retarded time tret = t�r.

This is the quadrupole formula, the gravitational equivalent of the Larmor formula.
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Before the direct detection of gravitational waves, the quadrupole formula gave us

the best observational evidence of their existence. The Hulse-Taylor pulsar is a binary

neutron star system, discovered in 1974. One of these neutron stars is a pulsar, emitting

a sharp beam every 59 ms. This can be used to very accurately track the orbit of the

stars and show that the period – which is about 7.75 hours – is getting shorter by

around 10 µs each year. This is in agreement with the quadrupole formula (5.38).

Hulse and Taylor were awarded the 1993 Nobel prize for this discovery.

Looking for a Better Approach

Any attempt to improve on the discussion above opens up a can of worms. The calcu-

lation needed to nail the factor of 1/5 is rather arduous. More importantly, however,

there are also a number of conceptual issues that we need to overcome. Rather than

explaining the detailed integrals that give the factor of 1/5, we’ll instead focus on some

of these conceptual ideas.

Our first task is to do a better job of defining tµ⌫ . There are a number of ways to

proceed.

• First, we could try to do a less shoddy job of computing the energy-momentum

tensor tµ⌫ from the Fierz-Pauli action (5.8). This, it turns out, su↵ers a number

of ambiguities. If, for example, we attempted to compute tµ⌫ as the Noether

currents associated to spacetime translations, then we would find that the result

is neither symmetric in µ and ⌫, nor gauge invariant. That’s not such a surprise

as it’s also true for Maxwell theory. We can then try to add an “improvement”

term

tµ⌫ ! tµ⌫ + @⇢⇥⇢µ⌫

where ⇥⇢µ⌫ = �⇥µ⇢⌫ which ensures that @µ@⇢⇥⇢µ⌫ = 0 and the extra term doesn’t

ruin conservation of the current. In Maxwell theory, such a term can be added to

make the resulting energy-momentum tensor both symmetric and gauge invariant.

For the Fierz-Pauli action, we can make it symmetric but not gauge invariant.

A similar approach is to forget the origin of the Fierz-Pauli action and then at-

tempt to write a generalisation of the action in “curved spacetime” by contracting

indices with a metric gµ⌫ and replacing derivatives with rµ. We could then eval-

uate the energy-momentum tensor using the usual formula (4.46), subsequently

restricting to flat space. Here too there are ambiguities which now arise from the

possibility of including terms like Rµ⌫hµ⇢h⌫
⇢ or Rµ⌫⇢�hµ⇢h⌫� in the action. These

vanish in Minkowski space, but give di↵erent energy-momentum tensors. For any

choice, the result is again symmetric but not gauge invariant.
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• Another approach is to take the lack of energy-conservation of the matter fields

seriously, and try to interpret this as energy transferred into the gravitational

field. To this end, let’s look again at the covariant conservation rµT µ⌫ = 0. As

we stressed in Section 4.5.5, covariant conservation is not the same thing as actual

conservation. In particular, we can rewrite the covariant conservation equation

as

rµT
µ
⌫ =

1p
�g

@µ
�p

�gT µ
⌫

�
� �⇢

µ⌫
T µ

⇢

=
1p
�g

@µ
�p

�gT µ
⌫

�
� 1

2
@⌫gµ⇢T

µ⇢ = 0

where, to get the second line, we’ve invoked the symmetry of T µ⇢. Note that

the simplification of the Christo↵el symbol to gµ⇢,⌫ only happens when the ⌫

index is down; this reflects the fact we’re writing the equations in a non-covariant

way. Next, we use the Einstein equation to replace T µ⇢ on the right-hand side by
1

8⇡G
Gµ⇢. This gives

@µ
�p

�gT µ
⌫

�
=

1

16⇡G

p
�g @⌫gµ⇢

✓
Rµ⇢ � 1

2
Rgµ⇢

◆
=

1

16⇡G

p
�g @⌫gµ⇢R

µ⇢

The idea is to massage the right-hand side so that this expression becomes

@µ(
p
�gT µ

⌫) = �@µ(
p
�gtµ⌫)

for some tµ⌫ which is referred to as the Landau-Lifshitz pseudotensor. This equa-

tion suggests that the sum of the matter energy T µ
⌫ and the gravitational energy

tµ⌫ is conserved. However, this statement should be treated with suspicion be-

cause it’s coordinate dependent: the pseudotensor tµ⌫ is not a real tensor: its

expression is long and horrible involving many terms, each of which is quadratic

in � and quadratic in g. (You can find it in (101.6) of Landau and Lifshitz, vol-

ume 2 but it’s unlikely to give you a sense of enlightenment.) The expression for

the pseudo-tensor is slightly nicer in the linearised theory, but only slightly.

• The final approach is perhaps the least intuitive, but has the advantage that it

gives a straightforward and unambiguous path to find an appropriate non-tensor

tµ⌫ . Motivated by the expectation that any putative tµ⌫ will be quadratic in hµ⌫ ,

we expand the Einstein equations to the next order. We keep gµ⌫ = ⌘µ⌫ + hµ⌫ .

Expanding to second order, the Einstein equations becomes


Rµ⌫ �

1

2
Rgµ⌫

�(1)
+


Rµ⌫ �

1

2
Rgµ⌫

�(2)
= 8⇡GTµ⌫
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where the subscript (n) means restrict to terms of order hn. We rewrite this as

Rµ⌫ �

1

2
Rgµ⌫

�(1)
= 8⇡G (Tµ⌫ + tµ⌫) (5.39)

with the second order expansion of the Einstein tensor now sitting suggestively on

the right-hand side where it is interpreted as the gravitational energy-momentum

non-tensor

tµ⌫ = � 1

8⇡G


Rµ⌫ �

1

2
Rgµ⌫

�(2)

= � 1

8⇡G


R(2)

µ⌫
� 1

2
R(2)⌘µ⌫ �

1

2
R(1)hµ⌫

�

If we’re far from the source then we can neglect the term R(1) since it vanishes by

the equation of motion. (More precisely, it vanishes at linear order and so fails

to contribute at the quadratic order that we care about.) We end up with the

seemingly simple expression

tµ⌫ = � 1

8⇡G


R(2)

µ⌫
� 1

2
R(2)⌘µ⌫

�
(5.40)

The linearised Bianchi identity is @µ
⇥
Rµ⌫ � 1

2
Rgµ⌫

⇤(1)
= 0. But this means that if

we are far from sources, so T µ⌫ = 0, and the equation of motion (5.39) is satisfied,

then we necessarily have @µtµ⌫ = 0 as befits a conserved current. All that’s left

is to evaluate the Ricci tensor to second order in the perturbation hµ⌫ . This is

painful. The answer turns out to be

R(2)

µ⌫
[h] =

1

2
h⇢�@µ@⌫h⇢� � h⇢�@⇢@(µh⌫)� +

1

4
@µh⇢�@⌫h

⇢� + @�h⇢
⌫@[�h⇢]µ

+
1

2
@� (h

�⇢@⇢hµ⌫)�
1

4
@⇢h@⇢hµ⌫ �

✓
@�h

⇢� � 1

2
@⇢h

◆
@(µh⌫)⇢

Pretty huh? Substituting this into the expression (5.40) gives an equally pretty

expression for tµ⌫ . Once again however, tµ⌫ is not gauge invariant.

We see that there are a number of di↵erent ways to construct an energy-momentum

tensor tµ⌫ for gravitational waves. But none are gauge invariant. In order to relate this

to something physical, we clearly have to construct something which is gauge invariant.

It is possible to extract something gauge invariant from tµ⌫ provided that our space-

time is asymptotically Minkowski. We could, for example, integrate t00 over an infinite

spatial hypersurface. This defines the so-called ADM energy which can be shown to be

constant in time.
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Alternatively, we could integrate t0i over a sphere at I+. This too gives a gauge

invariant quantity, which is the time dependence of the so-called Bondi energy. This

too can be defined in the full non-linear theory.

Here we give a less rigorous but slightly simpler construction. The gravitational

wave, like any wave, varies over some typical length scale �. We average over these

oscillations by introducing a coarse-grained energy tensor

htµ⌫i =
Z

V

d4x W (x� y)tµ⌫(y)

where the integral is over some region V of typical size a. The weighting function

W (x) has the property that it varies smoothly over V with
R
V
d4x W (x) = 1 and

W (x) = 0 on @V . The coarse graining means that averages of total derivatives scale as

h@Xi ⇠ 1/a. For large a, we can neglect such terms. Similarly, we can “integrate by

parts” inside averages, so that hX@Y i = �h(@X)Y i+O(1/a). A fairly straightforward

calculation shows that, in transverse-traceless gauge, the averaged energy-momentum

tensor is simply

htµ⌫i =
1

32⇡G
h@µh⇢�@⌫h

⇢�i

where we neglect total derivatives. We can check that this is indeed conserved,

@µhtµ⌫i =
1

32⇡G
h(⇤h⇢�)@⌫h

⇢� +
1

2
@⌫ (@µh⇢�@

µh⇢�)i = 0

The first term vanishes by the equation of motion, while the second is a total derivative

and so can be neglected. More importantly, under a gauge transformation

�htµ⌫i =
1

16⇡G
h@µh⇢�@⌫(@

⇢⇠� + @�⇠⇢)i

But now we can integrate by parts and use the de Donder gauge condition @⇢h⇢� = 0.

We see that the averaged htµ⌫i is gauge invariant, with �htµ⌫i = 0 up to total derivative

term of order O(1/a). In other words, htµ⌫i is almost gauge invariant. A better way of

saying “almost gauge invariant” is “not gauge invariant”. If we really want something

gauge invariant, which we do, we must take a ! 1, meaning that we average over all

of spacetime.

Finally, we can compute the power emitted by a gravitational wave at infinity by

P =

Z

S2

d2x n̂iht0ii

with n̂i a normal vector to S2

1
. With some tedious integrals, we then find the answer

(5.38).
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5.3.5 Gravitational Wave Sources on the �

We can do some quick, back-of-the-envelope calculations to get a sense for how much

energy is emitted by a gravitational wave source. Assuming Newtonian gravity is a good

approximation, two masses M , separated by a distance R, will orbit with frequency

!2R ⇠ GM

R2

The quadrupole is Q ⇠ MR2 and so
...
Q ⇠ !3MR2. We learn that the power emitted

scales as (5.38)

P ⇠ G
...
Q2 ⇠ G4M5

R5
(5.41)

To get numbers out of this, we need to put the factors of c back in. Recall that the

Schwarzschild radius of an object is Rs = 2GM/c2 and the dimensions of Newton’s

constant are [G] = M�1L3T�2. So we can write this as

P =

✓
Rs

R

◆5

LPlanck (5.42)

where the Planck luminosity is

LPlanck =
c5

G
⇡ 3.6⇥ 1052 J s�1

This is a silly luminosity. The luminosity of the Sun is L� ⇡ 10�26LPlanck. With 1011

stars, the luminosity of the galaxy is Lgalaxy ⇡ 10�15LPlanck. There are roughly 1010

galaxies in the visible universe, which means that all the stars in all the galaxies shine

with a luminosity ⇡ 10�5LPlanck.

Yet, when two black holes orbit and spiral towards each other, at the point where

their separation is comparable to their Schwarzschild radius, the formula (5.42) tells

us that the power they emit in gravitational waves is approximately LPlanck. For that

brief moment before they collide, spiralling black holes emit more energy than all the

stars in the visible universe.

Since the power emitted by colliding black holes is so ridiculously large, we might

harbour some hope that we will still get a significant energy from more mundane

systems. We could, for example, look at our solar system. The formula (5.42) assumes

that the orbiting objects have the same mass. If two objects with masses M1 � M2

are in orbit, then (5.41) is replaced by

P ⇠ G4M3

1
M2

2

R5

– 230 –



(A derivation of this can be found on Examples Sheet 4.) Jupiter has a mass 10�3M�

and orbits at a distance ⇡ 109 km from the Sun. Using the fact that the Schwarzschild

radius of the Sun is Rs ⇡ 3 km, we find that the power emitted in gravitational waves

by Jupiter is

P ⇡ 10�50LPlanck ⇡ 10�24L�

This is completely negligible. We can trace this to the power of 5 in (5.42) which means

the fall-o↵ in power is quick: extreme events in the universe emit a ridiculous amount

of energy in gravitational waves. Events involving objects that are merely heavy emit

essentially zero.

Of course, the question that we all really want to ask is: how much gravitational

radiation can we emit by shaking our arms around? Suppose that we go really crazy,

doing jumping jacks and generally acting like a loon. For once, SI units are useful. The

mass of our arms is few kg, moving a distance of around a metre, with a frequency

around a second. So Q ⇡ 1 kgm2 and
...
Q ⇡ 1 kgm2 s�3. The power is then

P ⇠ G
...
Q

2

c5
⇡ 10�52 J s�1

To put this in perspective, let’s remind ourselves that ultimately the world is quantum

and although we have no hope of detecting individual gravitons it is surely the case

that gravitational waves come in quanta with energy E = ~!. So we could ask: how

long do we have to wave our arms before we emit a single graviton? The energy of a

graviton with frequency ! ⇡ 1 s�1 is E ⇡ 10�34 J . So the calculation above tells us

that we can expect to emit a single graviton if we wave our hands around for

T = 1018 s

This is more or less the age of the universe. You may be many things, but you are not

a factory for making gravitons.
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