
Preprint typeset in JHEP style - HYPER VERSION Michaelmas Term, 2019

General Relativity
University of Cambridge Part III Mathematical Tripos

David Tong

Department of Applied Mathematics and Theoretical Physics,

Centre for Mathematical Sciences,

Wilberforce Road,

Cambridge, CB3 OBA, UK

http://www.damtp.cam.ac.uk/user/tong/gr.html

d.tong@damtp.cam.ac.uk

– 1 –

mailto:d.tong@damtp.cam.ac.uk


Recommended Books and Resources

There are many decent text books on general relativity. Here are a handful that I like:

• Sean Carroll, “Spacetime and Geometry”

A straightforward and clear introduction to the subject.

• Bob Wald, “General Relativity”

The go-to relativity book for relativists.

• Steven Weinberg, “Gravitation and Cosmology”

The go-to relativity book for particle physicists.

• Misner, Thorne and Wheeler, “Gravitation”

Extraordinary and ridiculous in equal measure, this book covers an insane amount of

material but with genuinely excellent explanations. Now, is that track 1 or track 2?

• Tony Zee, “Einstein Gravity in a Nutshell”

Professor Zee likes a bit of a chat. So settle down, prepare yourself for more tangents

than Tp(M), and enjoy this entertaining, but not particularly concise, meander through

the subject.

• Nakahara, “Geometry, Topology and Physics”

A really excellent book that will satisfy your geometrical and topological needs for this

course and much beyond. It is particularly useful for Sections 2 and 3 of these lectures

where we cover differential geometry.

A number of excellent lecture notes are available on the web, including an

early version of Sean Carroll’s book. Links can be found on the course webpage:

http://www.damtp.cam.ac.uk/user/tong/gr.html.
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0. Introduction

General relativity is the theory of space and time and gravity. The essence of the

theory is simple: gravity is geometry. The effects that we attribute to the force of

gravity are due to the bending and warping of spacetime, from falling cats, to orbiting

spinning planets, to the motion of the cosmos on the grandest scale. The purpose of

these lectures is to explain this.

Before we jump into a description of curved spacetime, we should first explain why

Newton’s theory of gravity, a theory which served us well for 250 years, needs replac-

ing. The problems arise when we think about disturbances in the gravitational field.

Suppose, for example, that the Sun was to explode. What would we see? Well, for 8

glorious minutes – the time that it takes light to reach us from the Sun – we would

continue to bathe in the Sun’s light, completely oblivious to the fate that awaits us.

But what about the motion of the Earth? If the Sun’s mass distribution changed dra-

matically, one might think that the Earth would start to deviate from its elliptic orbit.

But when does this happen? Does it occur immediately, or does the Earth continue in

its orbit for 8 minutes before it notices the change?

Of course, the theory of special relativity tells us the answer. Since no signal can

propagate faster than the speed of light, the Earth must continue on its orbit for 8

minutes. But how is the information that the Sun has exploded then transmitted?

Does the information also travel at the speed of light? What is the medium that

carries this information? As we will see throughout these lectures, the answers to these

questions forces us to revisit some of our most basic notions about the meaning of space

and time and opens the to door to some of the greatest ideas in modern physics such

as cosmology and black holes.

A Field Theory of Gravity

There is a well trodden path in physics when trying to understand how objects can

influence other objects far away. We introduce the concept of a field. This is a physical

quantity which exists everywhere in space and time; the most familiar examples are

the electric and magnetic fields. When a charge moves, it creates a disturbance in the

electromagnetic field, ripples of which propagate through space until they reach other

charges. To develop a causal theory of gravity, we must introduce a gravitational field

that responds to mass in some way.
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It’s a simple matter to cast Newtonian gravity in terms of a field theory. A particle

of mass m experiences a force that can be written as

F = −m∇Φ

The gravitational field Φ(r, t) is determined by the surrounding matter distribution

which is described by the mass density ρ(r, t). If the matter density is static, so that

ρ(r) is independent of time, then the gravitational field obeys

∇2Φ = 4πGρ (0.1)

with Newton’s constant G given by

G ≈ 6.67× 10−11 m3 kg−1 s−2

This equation is simply a rewriting of the usual inverse square law of Newton. For

example, if a mass M is concentrated at a single point we have

ρ(r) =Mδ3(r) ⇒ Φ = −GM
r

which is the familiar gravitational field for a point mass.

The question that we would like to answer is: how should we modify (0.1) when the

mass distribution ρ(r, t) changes with time? Of course, we could simply postulate that

(0.1) continues to hold even in this case. A change in ρ would then immediately result

in a change of Φ throughout all of space. Such a theory clearly isn’t consistent with

the requirement that no signal can travel faster than light. Our goal is to figure out

how to generalise (0.1) in a manner that is compatible with the postulates of special

relativity. The end result of this goal will be a theory of gravity that is compatible

with special relativity: this is the general theory of relativity.

The Analogy with Electromagnetism

The goal that we’ve set ourselves above looks very similar to the problem of finding a

relativistic generalization of electrostatics. After all, we learn very early in our physics

lives that when objects are stationary, the force due to gravity takes exactly the same

inverse-square form as the force due to electric charge. It’s worth pausing to see why

this analogy does not continue when objects move and the resulting Einstein equations

of general relativity are considerably more complicated than the Maxwell equations of

electromagnetism.
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Let’s start by considering the situation of electrostatics. A particle of charge q

experiences a force

F = −q∇ϕ

where the electric potential ϕ is determined by the surrounding charge distribution.

Let’s call the charge density ρe(r), with the subscript e to distinguish it from the

matter distribution. Then the electric potential is given by

∇2ϕe = −ρe
ϵ0

Apart from a minus sign and a relabelling of the coupling constant (G→ 1/4πϵ0), this

formulation looks identical to the Newtonian gravitational potential (0.1). Yet there

is a crucial difference that is all important when it comes to making these equations

consistent with special relativity. This difference lies in the objects which source the

potential.

For electromagnetism, the source is the charge density ρe. By definition, this is the

electric charge per spatial volume, ρe ∼ Q/Vol. The electric charge Q is something all

observers can agree on. But observers moving at different speeds will measure different

spatial volumes due to Lorentz contraction. This means that ρe is not itself a Lorentz

invariant object. Indeed, in the full Maxwell equations ρe appears as the component in

a 4-vector, accompanied by the charge density current je,

Jµ =

(
ρec

je

)

If you want a heuristic argument for why the charge density ρe is the temporal compo-

nent of the 4-vector, you could think of spatial volume as a four-dimensional volume

divided by time: Vol3 ∼ Vol4/Time. The four-dimensional volume is a Lorentz invari-

ant which means that under a Lorentz transformation, ρe should change in the same

way as time.

The fact that the source Jµ is a 4-vector is directly related to the fact that the

fundamental field in electromagnetism is also a 4-vector

Aµ =

(
ϕ/c

A

)

whereA is the 3-vector potential. From this we can go on to construct the familiar elec-

tric and magnetic fields. More details can be found in the lectures on Electromagnetism.
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Now let’s see what’s different in the case of gravity. The gravitational field is sourced

by the mass density ρ. But we know that in special relativity mass is just a form

of energy. This suggests, correctly, that the gravitational field should be sourced by

energy density. However, in contrast to electric charge, energy is not something that all

observers can agree on. Instead, energy is itself the temporal component of a 4-vector

which also includes momentum. This means that if energy sources the gravitational

field, then momentum must too.

Yet now we have to also take into account that it is the energy density and momentum

density which are important. So each of these four components must itself be the

temporal component of a four-vector! The energy density ρ is accompanied by an

energy density current that we’ll call j. Meanwhile, the momentum density in the ith

direction – let’s call it pi – has an associated current Ti. These i = 1, 2, 3 vectors Ti

can also be written as a 3× 3 matrix T ij. The end result is that if we want a theory of

gravity consistent with special relativity, then the object that sources the gravitational

field must be a 4× 4 matrix,

T µν ∼

(
ρc pc

j T

)

Happily, a matrix of this form is something that arises naturally in classical physics. It

has different names depending on how lazy people are feeling. It is sometimes known

as the energy-momentum tensor, sometimes as the energy-momentum-stress tensor or

sometimes just the stress tensor. We will describe some properties of this tensor in

Section 4.5.

In some sense, all the beautiful complications that arise in general relativity can

be traced back to the fact that the source for gravity is a matrix T µν . In analogy

with electromagnetism, we may expect that the associated gravitational field is also a

matrix, hµν , and this is indeed the case. The Newtonian gravitational field Φ is merely

the upper-left component of this matrix, h00 ∼ Φ.

However, not all of general relativity follows from such simple considerations. The

wonderful surprise awaiting us is that the matrix hµν is, at heart, a geometrical object:

it describes the curvature of spacetime.

When is a Relativistic Theory of Gravity Important

We can simply estimate the size of relativistic effects in gravity. What follows is really

nothing more than dimensional analysis, with a small story attached to make it sound
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more compelling. Consider a planet in orbit around a star of mass M . If we assume a

circular orbit, the speed of the planet is easily computed by equating the gravitational

force with the centripetal force,

v2

r
=
GM

r2

Relativistic effects become important when v2/c2 gets close to one. This tells us that

the relevant, dimensionless parameter that governs relativistic corrections to Newton’s

law of gravity is ∼ GM/rc2.

A slightly better way of saying this is as follows: the fundamental constants G and

c2 allow us to take any mass M and convert it into a distance scale. As we will see

later, it is convenient to define this to be

Rs =
2GM

c2

This is known as the Schwarzschild radius. Relativistic corrections to gravity are then

governed by Rs/r.

In most situations, relativistic corrections to the gravitational force are very small.

We can, for example, look at how big we expect relativistic effects to be for the Earth

or for the Sun:

• For our planet Earth, Rs ≈ 10−2 m. The radius of the Earth is around 6000 km,

which means that relativistic effects give corrections to Newtonian gravity on the

surface of Earth of order 10−8. Satellites orbit at Rs/r ≈ 10−9. These are small

numbers.

• For the Sun, Rs ≈ 3 km. At the surface of the Sun, r ≈ 7 × 105 km, and

Rs/r ≈ 10−6. Meanwhile, the typical distance of the inner planets is ∼ 108 km,

giving Rs/r ≈ 10−8. Again, these are small numbers.

Nonetheless, in both cases there are beautiful experiments that confirm the relativistic

theory of gravity. We shall meet some of these as we proceed.

There are, however, places in Nature where large relativistic effects are important.

One of the most striking is the phenomenon of black holes and, as observational tech-

niques improve, we are gaining increasingly more information about these most extreme

of environments.
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1. Geodesics in Spacetime

Classical theories of physics involve two different objects: particles and fields. The

fields tell the particles how to move, and the particles tell the fields how to sway. For

each of these, we need a set of equations.

In the theory of electromagnetism, the swaying of the fields is governed by the

Maxwell equations, while the motion of test particles is dictated by the Lorentz force

law. Similarly, for gravity we have two different sets of equations. The swaying of the

fields is governed by the Einstein equations, which describe the bending and curving

of spacetime. We will need to develop some mathematical machinery before we can

describe these equations; we will finally see them in Section 4.

Our goal in this section is to develop the analog of the Lorentz force law for gravity. As

we will see, this is the question of how test particles move in a fixed, curved spacetime.

Along the way, we will start to develop some language to describe curved spacetime.

This will sow some intuition which we will then make mathematically precise in later

sections.

The Principle of Least Action

Our tool of choice throughout these lectures is the action. The advantage of the action

is that it makes various symmetries manifest. And, as we shall see, there are some

deep symmetries in the theory of general relativity that must be maintained. This

greatly limits the kinds of equations which we can consider and, ultimately, will lead

us inexorably to the Einstein equations.

We start here with a lightening review of the principle of least action. (A more

detailed discussion can be found in the lectures on Classical Dynamics.) We describe

the position of a particle by coordinates xi where, for now, we take i = 1, 2, 3 for a

particle moving in three-dimensional space. Importantly, there is no need to identify the

coordinates xi with the (x, y, z) axes of Euclidean space; they could be any coordinate

system of your choice.

We want a way to describe how the particle moves between fixed initial and final

positions,

xi(t1) = xiinitial and xi(t2) = xifinal (1.1)

To do this, we consider all possible paths xi(t), subject to the boundary conditions

above. To each of these paths, we assign a number called the action S. This is defined
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as

S[xi(t)] =

∫ t2

t1

dt L(xi(t), ẋi(t))

where the function L(xi, ẋi) is the Lagrangian which specifies the dynamics of the

system. The action is a functional; this means that you hand it an entire function

worth of information, xi(t), and it spits back only a single number.

The principle of least action is the statement that the true path taken by the particle

is an extremum of S. Although this is a statement about the path as a whole, it is

entirely equivalent to a set of differential equations which govern the dynamics. These

are known as the Euler-Lagrange equations.

To derive the Euler-Lagrange equations, we think about how the action changes if

we take a given path and vary it slightly,

xi(t) → xi(t) + δxi(t)

We need to keep the end points of the path fixed, so we demand that δxi(t1) = δxi(t2) =

0. The change in the action is then

δS =

∫ t2

t1

dt δL =

∫ t2

t1

dt

(
∂L

∂xi
δxi +

∂L

∂ẋi
δẋi
)

=

∫ t2

t1

dt

(
∂L

∂xi
− d

dt

(
∂L

∂ẋi

))
δxi +

[
∂L

∂ẋi
δxi
]t2
t1

where we have integrated by parts to go to the second line. The final term vanishes

because we have fixed the end points of the path. A path xi(t) is an extremum of the

action if and only if δS = 0 for all variations δxi(t). We see that this is equivalent to

the Euler-Lagrange equations

∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
= 0 (1.2)

Our goal in this section is to write down the Lagrangian and action which govern

particles moving in curved space and, ultimately, curved spacetime.

1.1 Non-Relativistic Particles

Let’s start by forgetting about special relativity and spacetime and focus instead on the

non-relativistic motion of a particle in curved space. Mathematically, these spaces are

known as manifolds, and the study of curved manifolds is known as Riemannian geom-

etry. However, for much of this section we will dispense with any formal mathematical

definitions and instead focus attention on the physics.
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1.1.1 The Geodesic Equation

We begin with something very familiar: the non-relativistic motion of a particle of mass

m in flat Euclidean space R3. For once, the coordinates xi = (x, y, z) actually are the

usual Cartesian coordinates. The Lagrangian that describes the motion is simply the

kinetic energy,

L =
1

2
m(ẋ2 + ẏ2 + ż2) (1.3)

The Euler-Lagrange equations (1.2) applied to this Lagrangian simply tell us that

ẍi = 0, which is the statement that free particles move at constant velocity in straight

lines.

Now we want to generalise this discussion to particles moving on a curved space.

First, we need a way to describe curved space. We will develop the relevant mathematics

in Sections 2 and 3 but here we offer a simple perspective. We describe curved spaces

by specifying the infinitesimal distance between any two points, xi and xi+dxi, known

as the line element. The most general form is

ds2 = gij(x) dx
idxj (1.4)

where the 3 × 3 matrix gij is called the metric. The metric is symmetric: gij = gji
since the anti-symmetric part drops out of the distance when contracted with dxidxj.

We further assume that the metric is positive definite and non-degenerate, so that its

inverse exists. The fact that gij is a function of the coordinates x simply tells us that

the distance between the two points xi and xi + dxi depends on where you are.

Before we proceed, a quick comment: it matters in this subject whether the indices

i, j are up or down. We’ll understand this better in Section 2 but, for now, remember

that coordinates have superscripts while the metric has two subscripts.

We’ll see plenty of examples of metrics in this course. Before we introduce some

of the simpler metrics, let’s first push on and understand how a particle moves in the

presence of a metric. The Lagrangian governing the motion of the particle is the obvious

generalization of (1.3)

L =
m

2
gij(x)ẋ

iẋj (1.5)

It is a simple matter to compute the Euler-Lagrange equations (1.2) that arise from

this action. It is really just an exercise in index notation and, in particular, making
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sure that we don’t inadvertently use the same index twice. Since it’s important, we

proceed slowly. We have

∂L

∂xi
=
m

2

∂gjk
∂xi

ẋjẋk

where we’ve been careful to relabel the indices on the metric so that the i index matches

on both sides. Similarly, we have

∂L

∂ẋi
= mgikẋ

k ⇒ d

dt

(
∂L

∂ẋi

)
= m

∂gik
∂xj

ẋjẋk +mgikẍ
k

Putting these together, the Euler-Lagrange equation (1.2) becomes

gikẍ
k +

(
∂gik
∂xj

− 1

2

∂gjk
∂xi

)
ẋjẋk = 0

Because the term in brackets is contracted with ẋjẋk, only the symmetric part con-

tributes. We can make this obvious by rewriting this equation as

gikẍ
k +

1

2

(
∂gik
∂xj

+
∂gij
∂xk

− ∂gjk
∂xi

)
ẋjẋk = 0 (1.6)

Finally, there’s one last manoeuvre: we multiply the whole equation by the inverse

metric, g−1, so that we get an equation of the form ẍk = . . .. We denote the inverse

metric g−1 simply by raising the indices on the metric, from subscripts to superscripts.

This means that the inverse metric is denoted gij. By definition, it satisfies

gijgjk = δik

Finally, taking the opportunity to relabel some of the indices, the equation of motion

for the particle is written as

ẍi + Γi
jkẋ

jẋk = 0 (1.7)

where

Γi
jk(x) =

1

2
gil
(
∂glj
∂xk

+
∂glk
∂xj

− ∂gjk
∂xl

)
(1.8)

These coefficients are called the Christoffel symbols. By construction, they are symmet-

ric in their lower indicies: Γi
jk = Γi

kj. They will play a very important role in everything

that follows. The equation of motion (1.7) is the geodesic equation and solutions to this

equation are known as geodesics.
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A Trivial Example: Flat Space Again

Let’s start by considering flat spaceR3. Pythagoras taught us how to measure distances

using his friend, Descartes’ coordinates,

ds2 = dx2 + dy2 + dz2 (1.9)

Suppose that we work in polar coordinates rather than Cartestian coordinates. The

relationship between the two is given by

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

In polar coordinates, the infinitesimal distance between two points can be simply de-

rived by substituting the above relations into (1.9). A little algebra yields,

ds2 = dr2 + r2dθ2 + r2 sin2 θ dϕ2

In this case, the metric (and therefore also its inverse) are diagonal. They are

gij =


1 0 0

0 r2 0

0 0 r2 sin2 θ

 and gij =


1 0 0

0 r−2 0

0 0 (r2 sin2 θ)−1


where the matrix components run over i, j = r, θ, ϕ. From this we can easily compute

the Christoffel symbols. The non-vanishing components are

Γr
θθ = −r , Γr

ϕϕ = −r sin2 θ , Γθ
θr = Γθ

rθ =
1

r

Γθ
ϕϕ = − sin θ cos θ , Γϕ

ϕr = Γϕ
rϕ =

1

r
, Γϕ

θϕ = Γϕ
ϕθ =

cos θ

sin θ
(1.10)

There are some important lessons here. First, Γ ̸= 0 does not necessarily mean that

the space is curved. Non-vanishing Christoffel symbols can arise, as here, simply from

a change of coordinates. As the course progresses, we will develop a diagnostic to

determine whether space is really curved or whether it’s an artefact of the coordinates

we’re using.

The second lesson is that it’s often a royal pain to compute the Christoffel symbols

using (1.8). If we wished, we could substitute the Christoffel symbols into the geodesic

equation (1.7) to determine the equations of motion. However, it’s typically easier to
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revert back to the original action and determine the equations of motion directly. In

the present case, we have

S =
m

2

∫
dt
(
ṙ2 + r2θ̇2 + r2 sin2 θ ϕ̇2

)
(1.11)

and the resulting Euler-Lagrange equations are

r̈ = rθ̇2 + r sin2 θϕ̇2 ,
d

dt
(r2θ̇) = r2 sin θ cos θϕ̇2 ,

d

dt
(r2 sin2 θϕ̇) = 0 (1.12)

These are nothing more than the equations for a straight line described in polar coor-

dinates. The quickest way to extract the Christoffel symbols is usually to compute the

equations of motion from the action, and then compare them to the geodesic equation

(1.7), taking care of the symmetry properties along the way.

A Slightly Less Trivial Example: S2

The above description of R3 in polar coordinates allows us to immediately describe a

situation in which the space is truly curved: motion on the two-dimensional sphere S2.

This is achieved simply by setting the radial coordinate r to some constant value, say

r = R. We can substitute this constraint into the action (1.11) to get the action for a

particle moving on the sphere,

S =
mR2

2

∫
dt
(
θ̇2 + sin2 θ ϕ̇2

)
Similarly, the equations of motion are given by (1.12), with the restriction r = R and

ṙ = 0. The solutions are great circles, which are geodesics on the sphere. To see this in

general is a little complicated, but we can use the rotational invariance to aid us. We

rotate the sphere to ensure that the starting point is θ0 = π/2 and the initial velocity

is θ̇ = 0. In this case, it is simple to check that solutions take the form θ = π/2 and

ϕ = Ωt for some Ω, which are great circles running around the equator.

1.2 Relativistic Particles

Having developed the tools to describe motion in curved space, our next step is to

consider the relativistic generalization to curved spacetime. But before we get to this,

we first need to see how to extend the Lagrangian method to be compatible with

special relativity. An introduction to special relativity can be found in the lectures on

Dynamics and Relativity.
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1.2.1 A Particle in Minkowski Spacetime

Let’s start by considering a particle moving in Minkowski spacetime R1,3. We’ll work

with Cartestian coordinates xµ = (ct, x, y, z) and the Minkowski metric

ηµν = diag(−1,+1,+1,+1)

The distance between two neighbouring points labelled by xµ and xµ + dxµ is then

given by

ds2 = ηµνdx
µdxν

Pairs of points with ds2 < 0 are said to be timelike separated; those for which ds2 > 0

are spacelike separated; and those for which ds2 = 0 are said to be lightlike separated

or, more commonly, null.

Consider the path of a particle through spacetime. In the previous section, we

labelled positions along the path using the time coordinate t for some inertial observer.

But to build a relativistic description of the particle motion, we want time to sit on

much the same footing as the spatial coordinates. For this reason, we will introduce

a new parameter – let’s call it σ – which labels where we are along the worldline of

the trajectory. For now it doesn’t matter what parameterisation we choose; we will

only ask that σ increases monotonically along the trajectory. We’ll label the start

and end points of the trajectory by σ1 and σ2 respectively, with xµ(σ1) = xµinitial and

xµ(σ2) = xµfinal.

The action for a relativistic particle has a nice geometric interpretation: it extremises

the distance between the starting and end points in Minkowski space. A particle with

rest mass m follows a timelike trajectory, for which any two points on the curve have

ds2 < 0. We therefore take the action to be

S = −mc
∫ xfinal

xinitial

√
−ds2

= −mc
∫ σ2

σ1

dσ

√
−ηµν

dxµ

dσ

dxν

dσ
(1.13)

The coefficients in front ensure that the action has dimensions [S] = Energy×Time as

it should. (The action always has the same dimensions as ℏ. If you work in units with

ℏ = 1 then the action should be dimensionless.)
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The action (1.13) has two different symmetries, with rather different interpretations.

• Lorentz Invariance: Recall that a Lorentz transformation is a rotation in space-

time. This acts as

xµ → Λµ
ρx

ρ (1.14)

where the matrix Λµ
ν obeys Λµ

ρηµνΛ
ν
σ = ηρσ, which is the definition of a Lorentz

transformation, encompassing both rotations in space and boosts. Equivalently,

Λ ∈ O(1, 3). This is a symmetry in the sense that if we find a solution to the

equations of motion, then we can act with a Lorentz transformation to generate

a new solution.

• Reparameterisation invariance: We introduced σ as an arbitrary parameterisation

of the path. But we don’t want the equations of motion to depend on this choice.

Thankfully all is good, because the action itself does not depend on the choice of

parameterisation. To see this, suppose that we picked a different parameterisation

of the path, σ̃, related to the first parameterisation by a monotonic function σ̃(σ).

Then we could equally as well construct an action S̃ using this new parameter,

given by

S̃ = −mc
∫ σ̃2

σ̃1

dσ̃

√
−ηµν

dxµ

dσ̃

dxν

dσ̃

= −mc
∫ σ2

σ1

dσ
dσ̃

dσ

√
−ηµν

dxµ

dσ

dxν

dσ

(
dσ

dσ̃

)2

= S

As promised, the action takes the same form regardless of whether we choose to

parameterise the path in terms of σ or σ̃. This is reparameterisation invariance.

This is not a symmetry, in the sense that it does not generate new solutions

from old ones. Instead, it is a redundancy in the way we describe the system.

It is similar to the gauge “symmetry” of Maxwell and Yang-Mills theory which,

despite the name, is also a redundancy rather than a symmetry.

It is hard to overstate the importance of the concept of reparameterisation invari-

ance. A major theme of these lectures is that our theories of physics should not depend

on the way we choose to parameterise them. We’ll see this again when we come to

describe the field equations of general relativity. For now, we’ll look at a couple of

implications of reparameterisation on the worldline.
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Proper Time

Because the action is independent of the parameterisation of the worldline, the value

of the action evaluated between two points on a given path has an intrinsic meaning.

We call this value proper time. For a given path xµ(σ′), the proper time between two

points, say σ′ = 0 and σ′ = σ, is

τ(σ) =
1

c

∫ σ

0

dσ′

√
−gµν(x)

dxµ

dσ′
dxν

dσ′ (1.15)

From our first foray into Special Relativity, we recognise this as the time experienced

by the particle itself.

Identifying the action with the proper time means that the particle takes a path

that extremises the proper time. In Minkowski space, it is simple to check that the

proper time between two timelike-separated points is maximised by a straight line, a

fact known as the twin paradox.

1.2.2 Why You Get Old

There’s a crucial difference between moving in Euclidean space and moving in Minkowski

spacetime. You’re not obliged to move in Euclidean space. You can just stop if you

want to. In contrast, you can never stop moving in a timelike direction in Minkowski

spacetime. You will, sadly, always be dragged inexorably towards the future.

Any relativistic formulation of particle mechanics must capture this basic fact. To

see how it arises from the action (1.13), we can compute the momentum conjugate to

xµ,

pµ =
dL

dẋµ
(1.16)

with ẋµ = dxµ/dσ. For the action L = −mc
√
−ηµν ẋµẋν , we have

pµ = mc
ηµν ẋ

ν√
−ηρσẋρẋσ

= −m
2c2

L
ηµν ẋ

ν (1.17)

But not all four components of the momentum are independent. To see this, we need

only compute the square of the 4-momentum to find

p · p ≡ ηµνp
µpν =

m4c4

L2
ηµν ẋ

µẋν = −m2c2 (1.18)

Rearranging gives

(p0)2 = p2 +m2c2

In particular, we see that we must have p0 ̸= 0: the particle is obliged to move in the

time direction.
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Part of this story is familiar. The condition (1.18) is closely related to the usual

condition on the 4-momentum that we met in our earlier lectures on Special Relativity.

There, we defined the 4-velocity Uµ and 4-momentum P µ as

Uµ =
dxµ

dτ
and P µ = m

dxµ

dτ

This is a special case of (1.16), where we choose to parameterise the worldline by the

proper time τ itself. The definition of the proper time (1.15) means that dτ/dσ =

−L/mc2. Comparing to the canonical momentum (1.17), we see that it coincides with

the older definition above: P µ ≡ pµ.

However, part of this story is likely unfamiliar. Viewed from the perspective of

classical dynamics, it is perhaps surprising to see that the momenta pµ are not all

independent. After all, this didn’t arise in any of the examples of Lagrangians that we

met in our previous course on Classical Dynamics. This novel feature can be traced to

the existence of reparameterisation invariance, meaning that there was a redundancy

in our original description. Indeed, whenever theories have such a redundancy there

will be some constraint analogous to (1.18). (In the context of electromagnetism, this

constraint is called Gauss law.)

There is another way to view this. The relativistic action (1.13) appears to have four

dynamical degrees of freedom, xµ(σ). This should be contrasted with the three degrees

of freedom xi(t) in the non-relativistic action (1.5). Yet the number of degrees of free-

dom is one of the most basic ways to characterise a system, with physical consequences

such as the heat capacity of gases. Why should we suddenly increase the number of

degrees of freedom just because we want our description to be compatible with special

relativity? The answer is that, because of reparameterisation invariance, not all four

degrees of freedom xµ are physical. To see this, suppose that you solve the equations of

motion to find the path xµ(σ) (as we will do shortly). In most dynamical systems, each

of these four functions would tell you something about the physical trajectory. But,

for us, reparameterisation invariance means that there is no actual information in the

value of σ. To find the physical path, we should eliminate σ to find the relationship

between the xµ. The net result is that the relativistic system only has three physical

degrees of freedom after all.

As an example, we are perfectly at liberty to choose the parameterisation of the path

to coincide with the time t for some inertial observer: σ = t. The action (1.13) then

becomes

S = −mc2
∫ t2

t1

dt

√
1− ẋ2

c2
(1.19)
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where here ẋ = dx/dt. This is the action for a relativistic particle in some particular

inertial frame, which exhibits the famous factor

γ =
1√

1− ẋ2/c2

that is omnipresent in formulae in special relativity. We now see clearly that the action

has only three degrees of freedom, x(t). However, the price we’ve paid is that the

Lorentz invariance (1.14) is now rather hidden, since space x and time t sit on very

different footing.

1.2.3 Rediscovering the Forces of Nature

So far, we’ve only succeeded in writing down the action for a free relativistic particle

(1.13). We would now like to add some extra terms to the action to describe a force

acting on the particle. In the non-relativistic context, we do this by adding a potential

Snon−rel =

∫
dt
[m
2
ẋ2 − V (x)

]
However, now we want to write down an action for a relativistic particle that depends

on xµ(σ). But it’s crucial that we retain reparameterisation invariance, since we want

to keep the features that this brings. This greatly limits the kind of terms that we can

add to the action. It turns out that there are two, different ways to introduce forces

that preserve our precious reparameterisations.

Rediscovering Electromagnetism

Rather than jumping straight into the reparameterisation invariant action (1.13), we in-

stead start by modifying the action (1.19). We’ll then try to guess a reparameterisation

invariant form which gives the answer we want. To this end, we consider

S1 =

∫ t2

t1

dt

[
−mc2

√
1− ẋ2

c2
− V (x)

]

and ask: how can this come from a reparameterisation invariant action?

We can’t just add a term
∫
dσ V (x) to the relativistic action (1.13); this is not

invariant under reparameterisations. To get something that works, we have to find

a way to cancel the Jacobian factor that comes from reparameterisations of the dσ

measure. One option that we could explore is to introduce a term linear in ẋµ. But

then, to preserve Lorentz invariance, we need to contract the µ index on ẋµ with
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something. This motivates us to introduce four functions of the spacetime coordinates

Aµ(x). We then write the action

S1 =

∫ σ2

σ1

dσ

[
−mc

√
−ηµν

dxµ

dσ

dxν

dσ
− qAµ(x)ẋ

µ

]
(1.20)

where q is some number, associated to the particle, that characterises the strength with

which it couples to the new term Aµ(x). It’s simple to check that the action (1.20)

does indeed have reparameterisation invariance.

To understand the physics of this new term, we again pick the worldline parameter

to coincide with the time of some inertial observer, σ = t so that dx0/dσ = c. If we

write Aµ(x) = (ϕ(x)/c,A(x)), then we find

S1 =

∫ σ2

σ1

dσ

[
−mc2

√
1− ẋ2

c2
− qϕ(x)− qA(x) · ẋ

]

We see that the A0 term gives us a potential V (x) = qϕ(x) of the kind we wanted.

But Lorentz invariance means that this is accompanied by an additional A · ẋ term.

We have, of course, met both of these terms previously: they describe a particle of

electric charge q moving in the background of an electromagnetic field described by

gauge potentials ϕ(x) and A(x). In other words, we have rediscovered the Lorentz

force law of electromagnetism.

There is a slight generalisation of this argument, in which the particle carries some

extra internal degrees of freedom, that results in the mathematical structure of Yang-

Mills, the theory that underlies the weak and strong nuclear force. You can read more

about this in the lecture notes on Gauge Theory.

Rediscovering Gravity

To describe the force of gravity, we must make a rather different modification to our

action. This time we consider the generalisation of (1.19) given by the action

S2 =

∫ t2

t1

dt

[
−mc2

√
1 +

2Φ(x)

c2
− ẋ2

c2

]
(1.21)

If we Taylor expand the square-root, assuming that |ẋ| ≪ c2 and that 2Φ(x) ≪ c2,

then the leading terms give

S2 =

∫ t2

t1

dt
[
−mc2 + m

2
ẋ2 −mΦ(x) + . . .

]
(1.22)
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The first term is an irrelevant constant. (It is the rest mass energy of the particle.)

But the next two terms describe the non-relativistic motion of a particle moving in a

potential V (x) = mΦ(x).

Why should we identify this potential with the force of gravity, rather than some

other random force? It’s because the strength of the force is necessarily proportional

to the mass m of the particle, which shows up as the coefficient in the mΦ(x) term.

This is the defining property of gravity.

In fact, something important but subtle has emerged from our simple discussion:

the same mass m appears in both the kinetic term and the potential term. In the

framework of Newtonian mechanics there is no reason that these coefficients should be

the same. Indeed, careful treatments refer to the coefficient of the kinetic term as the

inertial mass mI and the coefficient of the potential term as the gravitational mass mG.

It is then an experimentally observed fact that

mI = mG (1.23)

to astonishing accuracy (around 10−13). This is known as the equivalence principle.

But our simple-minded discussion above has offered a putative explanation for the

equivalence principle, since the mass m sits in front of the entire action (1.21), ensuring

that both terms have the same origin.

An aside: you might wonder why the function Φ(x) does not scale as, say, 1/m, in

which case the potential that arises in (1.22) would appear to be independent of m.

This is not allowed. This is because the mass m is a property of the test particle whose

motion we’re describing. Meanwhile the potential Φ(x) is some field set up by the

background sources, and should be independent of m, just as Aµ(x) is independent of

the charge q of the test particle.

The equality (1.23) is sometimes called the weak equivalence principle. A stronger

version, known as the Einstein equivalence principle says that in any metric there exist

local inertial frames. This is the statement that you can always find coordinates so

that, in some small patch, the metric looks like Minkowski space, and there is no way

to detect the effects of the gravitational field. We will describe this more below and

again in Section 3.3.2.

Finally, we ask: how can we write down a reparameterisation invariant form of the

action (1.21)? To answer this, note that the 1 in
√
1 + . . . came from the η00 term in

the action. If we want to turn this into 1 + 2Φ(x)/c2, then we should promote η00 to

a function of x. But if we’re going to promote η00 to a function, we should surely do
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the same to all metric components. This means that we introduce a curved spacetime

metric

ds2 = gµν(x)dx
µdxν

The metric is a symmetric 4×4 matrix, which means that it is specified by 10 functions.

We can then write down the reparameterisation invariant action

S2 = −mc
∫ σ2

σ1

dσ

√
−gµν(x)

dxµ

dσ

dxν

dσ

This describes a particle moving in curved spacetime.

In general, the components of the metric will be determined by the Einstein field

equations. This is entirely analogous to the way in which the gauge potential Aµ(x) in

(1.20) is determined by the Maxwell equation. We will describe the Einstein equations

in Section 4. However, even before we get to the Einstein equations, the story above

tells us that, for weak gravitational fields where the Newtonian picture is valid, we

should identify

g00(x) ≈ −
(
1 +

2Φ(x)

c2

)
(1.24)

where Φ(x) is the Newtonian gravitational field.

1.2.4 The Equivalence Principle

A consequence of the weak equivalence principle (1.23) is that it’s not possible to tell the

difference between constant acceleration and a constant gravitational field. Suppose,

for example, that you one day wake up to find yourself trapped inside a box that looks

like an elevator. The equivalence principle says that there’s no way tell whether you

are indeed inside an elevator on Earth, or have been captured by aliens and are now

in the far flung reaches of the cosmos in a spaceship, disguised as an elevator, and

undergoing constant acceleration. (Actually there are two ways to distinguish between

these possibilities. One is common sense. The other is known as tidal forces and will

be described below.)

Conversely, if you wake in the elevator to find yourself weightless, the equivalence

principle says that there is no way to tell whether the engines on your spaceship have

turned themselves off, leaving you floating in space, or whether you are still on Earth,

plummeting towards certain death. Both of these are examples of inertial frames.
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We can see how the equivalence principle plays out in more detail in the framework

of spacetime metrics. We will construct a set of coordinates adapted to a uniformly

accelerating observer. We’ll see that, in these coordinates, the metric takes the form

(1.24) but with a linear gravitational potential Φ of the kind that we would invoke for

a constant gravitational force.

First we need to determine the trajectory of a constantly accelerating observer. This

was a problem that we addressed already in our first lectures on Special Relativity

(see Section 7.4.6 of those notes). Here we give a different, and somewhat quicker,

derivation.

We will view things from the perspective of an inertial frame, with coordinates

(ct, x, y, z). The elevator will experience a constant acceleration a in the x direction.

We want to know what this looks like in the inertial frame; clearly the trajectory is not

just x = 1
2
at2 since this would soon exceed the speed of light. Instead we need to be

more careful.

Recall that if we do a boost by v1, followed by a boost by v2, the resulting velocity is

v =
v1 + v2

1 + v1v2/c2

This motivates us to define the rapidity φ, defined in terms of the velocity v by

v = c tanhφ

The rapidity has the nice property that is adds linearly under successive boosts: a

boost φ1 followed by a boost φ2 is the same as a boost φ = φ1 + φ2.

A constant acceleration means that the rapidity increases linearly in time, where

here “time” is the accelerating observer’s time, τ . We have φ = aτ/c and so, from the

perspective of the inertial frame, the velocity of the constantly-accelerating elevator

v(τ) =
dx

dt
= c tanh

(aτ
c

)
To determine the relationship between the observer’s time and the time t in the inertial

frame, we use

dt

dτ
= γ(τ) =

√
1

1− v2/c2
= cosh

(aτ
c

)
⇒ t =

c

a
sinh

(aτ
c

)
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Figure 1: A coordinate system for a uniformly accelerating observer.

where we’ve chosen the integration constant so that τ = 0 corresponds to t = 0. Then,

to determine the distance travelled in the inertial frame, we use

v(τ) =
dx

dt
=
dx

dτ

dτ

dt
⇒ dx

dτ
= c sinh

(aτ
c

)
⇒ x =

c2

a
cosh

(aτ
c

)
− c2

a

where this time we’ve chosen the integration constant so that the trajectory passes

through the origin. The resulting trajectory is a hyperbola in spacetime, given by(
x+

c2

a

)2

− c2t2 =
c4

a2

This trajectory is shown in red in Figure 1. As τ → ±∞, the trajectory asymptotes to

the straight lines ct = ±(x+ c2/a). These are the dotted lines shown in the figure.

Now let’s consider life from the perspective of guy in the accelerating elevator. What

are the natural coordinates that such an observer would use to describe events elsewhere

in spacetime? Obviously, for events that happen on his own worldline, we can use the

proper time τ . But we would like to extend the definition to assign a time to points in

the whole space. Furthermore, we would like to introduce a spatial coordinate, ρ, so

that the elevator sits at ρ = 0. How to do this?

There is, it turns out, a natural choice of coordinates. First, we draw straight lines

connecting the point (ct, x) = (0,−c2/a) to the point on the trajectory labelled by τ

and declare that these are lines of constant τ ; these are the pink lines shown in the
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figure. Next we note that, for any given τ , there is a Lorentz transformation that

maps the x-axis to the pink line of constant τ . We can use this to define the spatial

coordinate ρ. The upshot is that we have a map between coordinates (ct, x) in the

inertial frame and coordinates (cτ, ρ) in the accelerating frame given by

ct =

(
ρ+

c2

a

)
sinh

(aτ
c

)
x =

(
ρ+

c2

a

)
cosh

(aτ
c

)
− c2

a
(1.25)

As promised, the line ρ = 0 coincides with the trajectory of the accelerating observer.

Moreover, lines of constant ρ ̸= 0 are also hyperbolae.

The coordinates (cτ, ρ) do not cover all of Minkowski space, but only the right-hand

quadrant as shown in Figure 1. This reflects the fact that signals from some regions

will never reach the guy in the elevator. This is closely related to the idea of horizons

in general relativity, a topic we’ll look explore more closely in later sections.

Finally, we can look at the metric experienced by the accelerating observer, using

coordinates ρ and τ . We simply substitute the transformation (1.25) into the Minkowski

metric to find

ds2 = −c2dt2 + dx2 + dy2 + dz2 = −
(
1 +

aρ

c2

)2
c2dτ 2 + dρ2 + dy2 + dz2

This is the metric of (some part of ) Minkowski space, now in coordinates adapted to

an accelerating observer. These are known as Kottler-Möller coordinates. (They are

closely related to the better known Rindler coordinates. We’ll see Rindler space again

in Section 6.1.2 when we study the horizon of black holes. ) The spatial part of the

metric remains flat, but the temporal component is given by

g00 = −
(
1 +

aρ

c2

)2
= −

(
1 +

2aρ

c2
+ . . .

)
where the . . . is simply a2ρ2/c4, but we’ve hidden it because it is sub-leading in 1/c2.

If we compare this metric with the expectation (1.24), we see that the accelerated

observer feels an effective gravitational potential given by

Φ(ρ) = aρ

This is the promised manifestation of the equivalence principle: from the perspective

of an uniformly accelerating observer, the acceleration feels indistinguishable from a

linearly increasing gravitational field, corresponding to a constant gravitational force.
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Earth Lab frame

Figure 2: The bad news is that you were, in fact, plummeting to your death after all. This

is shown on the left (not to scale). The good news is that you get to measure a tidal force on

the way down. This is shown on the right.

The Einstein Equivalence Principle

The weak equivalence principle tells us that uniform acceleration is indistinguishable

from a uniform gravitational field. In particular, there is a choice of inertial frame

(i.e. free-fall) in which the effect of the gravitational field vanishes. But what if the

gravitational field is non-uniform?

The Einstein equivalence principle states that there exist local inertial frames, in

which the effects of any gravitational field vanish. Mathematically, this means that

there is always a choice of coordinates — essentially those experienced by a freely

falling observer – which ensures that the metric gµν looks like Minkowski space about

a given point. (We will exhibit these coordinates and be more precise about their

properties in Section 3.3.2.) The twist to the story is that if the metric looks like

Minkowski space about one point, then it probably won’t look like Minkowski space

about a different point. This means that if you can do experiments over an extended

region of space, then you can detect the presence of non-uniform gravitational field.

To illustrate this, let’s return to the situation in which you wake, weightless in an

elevator, trying to figure out if you’re floating in space or plummeting to your death.

How can you tell?

Well, you could wait and find out. But suppose you’re impatient. The equivalence

principle says that there is no local experiment you can do that will distinguish between

these two possibilities. But there is a very simple “non-local” experiment: just drop two

test masses separated by some distance. If you’re floating in space, the test masses will

simply float there with you. Similarly, if you’re plummeting towards your death then
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the test masses will plummet with you. However, they will each be attracted to the

centre of the Earth which, for two displaced particles, is in a slightly different direction

as shown in Figure 2. This means that the trajectories followed by the particles will

slightly converge. From your perspective, this will mean that the two test masses

will get closer. This is not due to their mutual gravitational attraction. (The fact

they’re test masses means we’re ignoring this). Instead, it is an example of a tidal

force that signifies you’re sitting in a non-uniform gravitational field. We will meet the

mathematics behind these tidal forces in Section 3.3.4.

1.2.5 Gravitational Time Dilation

Even before we solve the Einstein equations, we can still build some intuition for the

spacetime metric. As we’ve seen, for weak gravitational fields Φ(x), we should identify

the temporal component of the metric as

g00(x) = 1 +
2Φ(x)

c2
(1.26)

This is telling us something profound: there is a connection between time and gravity.

To be concrete, we’ll take the Newtonian potential that arises from a spherical object

of mass M ,

Φ(r) = −GM
r

The resulting shift in the spacetime metric g00 means that an observer sitting at a fixed

distance r will measure a time interval,

dτ 2 = g00 dt
2 =

(
1− 2GM

rc2

)
dt2

This means that if an asymptotic observer, at r → ∞, measures time t, then an observer

at distance r will measure time T given by

T (r) = t

√
1− 2GM

rc2

We learn that time goes slower in the presence of a massive, gravitating object.

We can make this more quantitative. Consider two observers. The first, Alice, is

relaxing with a picnic on the ground at radius rA. The second, Bob, is enjoying a
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romantic trip for one in a hot air balloon, a distance rB = rA + ∆r higher. The time

measured by Bob is

TB = t

√
1− 2GM

(rA +∆r)c2
≈ t

√
1− 2GM

rAc2
+

2GM∆r

r2Ac
2

≈ t

√
1− 2GM

rAc2

(
1 +

GM∆r

r2Ac
2

)
= TA

(
1 +

GM∆r

r2Ac
2

)
where we’ve done a double expansion, assuming both ∆r ≪ rA and 2GM/rAc

2 ≪ 1.

If the hot air balloon flies a distance ∆r = 1000 m above the ground then, taking the

radius of the Earth to be rA ≈ 6000 km, the difference in times is of order 10−12. This

means that, over the course of a day, Bob ages by an extra 10−8 seconds or so.

This effect was first measured by Hafele and Keating in the 1970s by flying atomic

clocks around the world on commercial airlines, and has since been repeated a number

of times with improved accuracy. In all cases the resultant time delay, which in the

experiments includes effects from both special and general relativity, was in agreement

with theoretical expectations.

The effect is more pronounced in the vicinity of a black hole. We will see in Section 1.3

that the closest distance that an orbiting planet can come to a black hole is r = 3GM/c2.

(Such orbits are necessarily highly elliptical.) In this case, someone on the planet

experiences time at the rate T =
√

1/3t ≈ 0.6t, compared to an asymptotic observer

at t→ ∞. This effect, while impressive, is unlikely to make a really compelling science

fiction story. For more dramatic results, our bold hero would have to fly her spaceship

close to the Schwarzschild radius Rs = 2GM/c2, later returning to r → ∞ to find

herself substantially younger than the friends and family she left behind.

Gravitational Redshift

There is another measurable consequence of the gravitational time dilation. To see

this, let’s return to Alice on the ground and Bob, above, in his hot air balloon. Bob

is kind of annoying and starts throwing peanuts at Alice. He throws peanuts at time

intervals ∆TB. Alice receives these peanuts (now travelling at considerable speed) at

time intervals ∆TA where, as above,

∆TA =

√
1 + 2Φ(rA)/c2

1 + 2Φ(rB)/c2
∆TB ≈

(
1 +

Φ(rA)

c2
− Φ(rB)

c2

)
∆TB

We have rA < rB, so Φ(rA) < Φ(rB) < 0 and, hence, ∆TA < ∆TB. In other words,

Alice receives the peanuts at a higher frequency than Bob threw them.
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The story above doesn’t only hold for peanuts. If Bob shines light down at Alice

with frequency ωB ∼ 1/∆TB, then Alice will receive it at frequency ωA given by

ωA ≈
(
1 +

Φ(rA)

c2
− Φ(rB)

c2

)−1

ωB

This is a higher frequency, ωA > ωB, or shorter wavelength. We say that the light

has been blueshifted. In contrast, if Alice shines light up at Bob, then the frequency

decreases, and the wavelength is stretched. In this case, we say that the light has been

redshifted as it escapes the gravitational pull. This effect was measured for the first time

by Pound and Rebka in 1959, providing the first earthbound precision test of general

relativity.

There is a cosmological counterpart of this result, in which light is redshifted in

a background expanding space. You can read more about this in the lectures on

Cosmology.

1.2.6 Geodesics in Spacetime

So far, we have focussed entirely on the actions describing particles, and have have yet

to write down an equation of motion, let alone solve one. Now it’s time to address this.

We work with the relativistic action for a particle moving in spacetime

S = −mc
∫ σ2

σ1

dσ L with L =
√
−gµν(x)ẋµẋν (1.27)

with ẋµ = dxµ/dσ. This is similar to the non-relativistic action that we used in Section

1.1.1 when we first introduced geodesics. It differs by the square-root factor. As we

now see, this introduces a minor complication.

To write down Euler-Lagrange equations, we first compute

∂L

∂xρ
= − 1

2L

∂gµν
∂xρ

ẋµẋν and
∂L

∂ẋρ
= − 1

L
gρν ẋ

ν

The equations of motion are then

d

dσ

(
∂L

∂ẋρ

)
− ∂L

∂xρ
= 0 ⇒ d

dσ

(
1

L
gρν ẋ

ν

)
− 1

2L

∂gµν
∂xρ

ẋµẋν = 0

This is almost the same as the equations that led us to the geodesics in Section 1.1.1.

There is just one difference: the differentiation d/dσ can hit the 1/L, giving an extra

term beyond what we found previously. This can be traced directly to the fact we have

a square-root in our original action.
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Following the same steps that we saw in Section 1.1.1, and relabelling the indices,

the equation of motion can be written as

gµρẍ
ρ +

1

2

(
∂gµρ
∂xν

+
∂gµν
∂xρ

− ∂gνρ
∂xµ

)
ẋν ẋρ =

1

L

dL

dσ
gµρẋ

ρ (1.28)

This is the relativistic version of the geodesic equation (1.6). We see that the square-

root factor in the action results in the extra term on the right-hand side.

Life would be much nicer if there was some way to ignore this extra term. This would

be true if, for some reason, we could set

dL

dσ
?
= 0

Happily, this is within our power. We simply need to pick a choice of parameterisation

of the worldline to make it hold! All we have to do is figure out what parameterisation

makes this work.

In fact, we’ve already met the right choice. Recall that the proper time τ(σ) is

defined as (1.15)

cτ(σ) =

∫ σ

0

dσ′ L(σ′) =

∫ σ

0

dσ′

√
−gµν(x)

dxµ

dσ′
dxν

dσ′ (1.29)

This means that, by construction,

c
dτ

dσ
= L(σ)

If we then choose to parameterise the path by τ itself, the Lagrangian is

L(τ) =

√
−gµν(x)

dxµ

dτ

dxν

dτ
=
dσ

dτ

√
−gµν(x)

dxµ

dσ

dxν

dσ
= c

The upshot of this discussion is that if we parameterise the worldline by proper time

then L = c is a constant and, in particular, dL/dτ = 0. In fact this holds for any

parameter related to proper time by

τ̃ = aτ + b

with a and b constants. These are said to be affine parameters of the worldline.
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Whenever we pick such an affine parameter to label the worldline of a particle, the

right-hand side of the equation of motion (1.28) vanishes. In this case, we are left with

the obvious extension of the geodesic equation (1.7) to curved spacetime

d2xµ

dτ̃ 2
+ Γµ

νρ

dxν

dτ̃

dxρ

dτ̃
= 0 (1.30)

where the Christoffel symbols are given, as in (1.8), by

Γµ
νρ(x) =

1

2
gµσ
(
∂gσν
∂xρ

+
∂gσρ
∂xν

− ∂gνρ
∂xσ

)
(1.31)

A Useful Trick

We’ve gone on something of a roundabout journey. We started in Section 1.1.1 with a

non-relativistic action

S =

∫
dt

m

2
gij(x)ẋ

iẋj

and found that it gives rise to the geodesic equation (1.7).

However, to describe relativistic physics in spacetime, we’ve learned that we need to

incorporate reparameterisation invariance into our formalism resulting in the action

S = −mc
∫
dσ

√
−gµν(x)

dxµ

dσ

dxν

dσ

Nonetheless, when we restrict to a very particular parameterisation – the proper time τ

– we find exactly the same geodesic equation (1.30) that we met in the non-relativistic

case.

This suggests something of a shortcut. If all we want to do is derive the geodesic

equation for some metric, then we can ignore all the shenanigans and simply work with

the action

Suseful =

∫
dτ gµν(x)

dxµ

dτ

dxν

dτ
(1.32)

This will give the equations of motion that we want, provided that they are supple-

mented with the constraint

gµν
dxµ

dτ

dxν

dτ
= −c2 (1.33)

This is the requirement that the geodesic is timelike, with τ the proper time. This

constraint now drags the particle into the future. Note that neither (1.32) nor (1.33)

depend on the mass m of the particle. This reflects the equivalence principle, which

tells us that each particle, regardless of its mass, follows a geodesic.
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Moreover, we can also use (1.32) to calculate the geodesic motion of light, or any

other massless particle. These follow null geodesics, which means that we simply need

to replace (1.33) with

gµν
dxµ

dτ

dxν

dτ
= 0 (1.34)

While the action Suseful is, as the name suggests, useful, you should be cautious in how

you wield it. It doesn’t, as written, have the right dimensions for an action. Moreover,

if you try to use it to do quantum mechanics, or statistical mechanics, then it might

lead you astray unless you are careful in how you implement the constraint.

1.3 A First Look at the Schwarzschild Metric

Physics was born from our attempts to understand the motion of the planets. The

problem was largely solved by Newton, who was able to derive Kepler’s laws of planetary

motion from the gravitational force law. This was described in some detail in our first

lecture course on Dynamics and Relativity.

Newton’s laws are not the end of the story. There are relativistic corrections to

the orbits of the planets that can be understood by computing the geodesics in the

background of a star.

To do this, we first need to understand the metric created by a star. This will be

derived in Section 6. For now, we simply state the result: a star of mass M gives rise

to a curved spacetime given by

ds2 = −
(
1− 2GM

rc2

)
dt2 +

(
1− 2GM

rc2

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2)

This is the Schwarzschild metric. The coordinates θ and ϕ are the usual spherical polar

coordinates, with θ ∈ [0, π] and ϕ ∈ [0, 2π).

We will have to be patient to fully understand all the lessons hiding within this

metric. But we can already perform a few sanity checks. First, note that far from the

star, as r → ∞, it coincides with the Minkowski metric as it should. Secondly, the g00
component is given by

g00 = −
(
1 +

2Φ

c2

)
with Φ(r) = −GM

r

which agrees with our expectation (1.24) with Φ = −GM/r the usual Newtonian

potential for an object of mass M .
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The Schwarzschild metric also has some strange things going on. In particular, the

grr component diverges at r = Rs where

Rs =
2GM

c2

is called the Schwarzschild radius. This is the event horizon of a black hole and will

be explored more fully in Section 6. However, it turns out that space around any

spherically symmetric object, such as a star, is described by the Schwarzschild metric,

now restricted to r > Rstar, with Rstar the radius of the star.

In what follows we will mostly view the Schwarzschild metric as describing the space-

time outside a star, and treat the planets as test particles moving along geodesics in this

metric. We will also encounter a number of phenomena that happen close to r = Rs;

these are relevant only for black holes, since Rstar ≫ Rs. However we will, for now,

avoid any discussion of what happens if you venture past the event horizon.

1.3.1 The Geodesic Equations

Our first task is to derive the equations for a geodesic in the Schwarzschild background.

To do this, we use the quick and easy method of looking at the action (1.32) for a particle

moving in the Schwarzschild spacetime,

Suseful =

∫
dτ L =

∫
dτ gµν(x)ẋ

µẋν

=

∫
dτ
[
− A(r)c2ṫ2 + A−1(r)ṙ2 + r2(θ̇2 + sin2 θ ϕ̇2)

]
(1.35)

with A(r) = 1−Rs/r and ẋµ = dxµ/dτ .

When we solved the Kepler problem in Newtonian mechanics, we started by using

the conservation of angular momentum to restrict the problem to a plane. We can use

the same trick here. We first look at the equation of motion for θ,

d

dτ

(
dL

dθ̇

)
− dL

dθ
= 0 ⇒ d

dτ
(r2θ̇) = r2 sin θ cos θ ϕ̇2

This tells us that if we kick the particle off in the θ = π/2 plane, with θ̇ = 0, then it

will remain there for all time. This is the choice we make.

We still have to compute the magnitude of the angular momentum. Like many

conserved quantities, this follows naturally by identifying the appropriate ignorable
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coordinate. Recall that if the Lagrangian is independent of some specific coordinate x

then the Euler-Lagrange equations immediately give us a conserved quantity,

dL

dx
= 0 ⇒ d

dτ

(
dL

dẋ

)
= 0

This is a baby version of Noether’s theorem.

The action (1.35) has two such ignorable coordinates, t and ϕ. The conserved quan-

tity associated to ϕ is the magnitude of the angular momentum, l. (Strictly, the angular

momentum per unit mass.) Restricting to the θ = π/2 plane, we define this to be

2l =
dL

dϕ̇
= 2r2ϕ̇ (1.36)

where the factor of 2 on the left-hand side arises because the kinetic terms in (1.35)

don’t come with the usual factor of 1/2. Meanwhile, the conserved quantity associated

to t(τ) is

−2E =
dL

dṫ
= −2A(r)c2ṫ (1.37)

The label E is not coincidence: it should be interpreted as the energy of the particle

(or, strictly, the energy divided by the rest mass). To see this, we look far away: as

r → ∞ we have A(r) ≈ 1 and we return to Minkowski space. Here, we know from our

lectures on Special Relativity that dt/dτ = γ. We then have E → γc2 as r → ∞. But

this is precisely the energy per unit rest mass of a particle in special relativity.

We should add to these conservation laws the constraint (1.33) which tells us that

the geodesic is parameterised by proper time. Restricting to θ = π/2 and θ̇ = 0, this

becomes

−A(r)c2ṫ2 + A−1(r)ṙ2 + r2ϕ̇2 = −c2 (1.38)

If we now substitute in the expressions for the conserved quantities l and E, this

constraint can be rewritten as

1

2
ṙ2 + Veff(r) =

1

2

E2

c2
(1.39)

The effective potential Veff(r) includes the factor A(r) which we now write out in full,

Veff(r) =
1

2

(
c2 +

l2

r2

)(
1− 2GM

rc2

)
(1.40)

Our goal is to solve for the radial motion (1.39). We subsequently use the expression

(1.36) to solve for the angular motion and, in this way, determine the orbit.
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r

VN (r)

Figure 3: The effective potential for Newtonian gravity.

1.3.2 Planetary Orbits in Newtonian Mechanics

Before we solve the full geodesic equations, it is useful to first understand how they

differ from the equations of Newtonian gravity. To see this, we write

Veff(r) =
c2

2
− GM

r
+

l2

2r2
− l2GM

r3c2

The non-relativistic limit is, roughly, c2 → ∞. This means that we drop the final term

in the potential that scales as 1/r3. (Since c is dimensionful, it is more accurate to

say that we restrict to situations with l2GM/r3 ≪ c2.) Meanwhile, we expand the

relativistic energy per unit mass in powers of 1/c2,

E = c2 + EN + . . .

where EN is the non-relativistic energy and . . . are terms suppressed by 1/c2. Substi-

tuting these expressions into (1.39), we find

1

2
ṙ2 + VN(r) = EN

where VN is the non-relativistic potential which includes both the Newtonian gravita-

tional potential and the angular momentum barrier,

VN(r) = −GM
r

+
l2

2r2

These are precisely the equations that we solved in our first course on classical mechan-

ics. (See Section 4.3 of the lectures on Dynamics and Relativity.) The only difference is

that r(τ) is parameterised by proper time τ rather than the observers time t. However,

these coincide in the non-relativistic limit that we care about.
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We can build a lot of intuition for the orbits by looking at the potential VN(r),

as shown in Figure 3. At large distances, the attractive −1/r gravitational potential

dominates, while the angular momentum prohibits the particles from getting too close

to the origin, as seen in the +1/r2 term which dominates at short distances. The

potential has a minimum at

V ′(r⋆) =
GM

r2⋆
− l2

r3⋆
= 0 ⇒ r⋆ =

l2

GM

A particle can happily sit at r = r⋆ for all time. This circular orbit always has energy

EN < 0, reflecting the fact that VN(r⋆) < 0.

Alternatively, the particle could oscillate back and forth about the minima. This

happens provided that EN < 0 so that the particle is unable to escape to r → ∞. This

motion describes an orbit in which the distance to the origin varies; we’ll see below

that the shape of the orbit is an ellipse. Finally, trajectories with EN ≥ 0 describe

fly-bys, in which the particle approaches the star, but gets only so close before flying

away never to be seen again.

The discussion above only tells us about the radial motion. To determine the full

orbit, we need to use the angular momentum equation ϕ̇ = l/r2. Let’s remind ourselves

how we solve these coupled equations. We start by employing a standard trick of

working with the new coordinate

u =
1

r

We then view this inverse radial coordinate as a function of the angular variable: u =

u(ϕ). This works out nicely, since we have

u̇ =
du

dϕ
ϕ̇ = lu2

du

dϕ

where in the last equality, we’ve used angular momentum conservation (1.36) to write

ϕ̇ = lu2. Using this, we have

ṙ = − 1

u2
u̇ = −l du

dϕ
(1.41)

The equation giving conservation of energy is then(
du

dϕ

)2

+

(
u− GM

l2

)2

=
2EN

l2
+
G2M2

l4
(1.42)
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But this is now straightforward to solve. We choose to write the solution as

u(ϕ) =
GM

l2
(1 + e cosϕ) (1.43)

Back in our original radial variable, we have

r(ϕ) =
l2

GM

1

1 + e cosϕ
(1.44)

This is the equation for a conic section, with the eccentricity given by

e =

√
1 +

2EN l2

G2M2

The shape of the orbit depends on e. A particle with EN ≥ 0 is not in a bound orbit,

and traces out a hyperbola for e > 1 and a parabola for e = 1. Planets, in contrast,

have energy EN < 0 and, correspondingly, eccentricity e < 1. In this case, the orbits

are ellipses.

To compare with the relativistic result later, we note an important feature of the

Newtonian orbit: it does not precess. To see this, note that for our solution (1.44) the

point at which the planet is closest to the origin – known as the perihelion – always

occurs at the same point ϕ = 0 in the orbit.

1.3.3 Planetary Orbits in General Relativity

We now repeat this analysis for the full relativistic motion of a massive particle moving

along a geodesic in the Schwarzschild metric. We have seen that the effective potential

takes the form (1.40)

Veff(r) =
c2

2
− GM

r
+

l2

2r2
− GMl2

r3c2

The relativistic correction scales as−1/r3 and changes the Newtonian story at short dis-

tances, since it ensures that the potential Veff(r) → −∞ as r → 0. Indeed, the potential

always vanishes at the Schwarzschild radius r = Rs = 2GM/c2, with Veff(Rs) = 0.

The potential takes different shapes, depending on the size of the angular momentum.

To see this, we compute the critical points

V ′
eff(r) =

GM

r2
− l2

r3
+

3GMl2

r4c2
= 0 ⇒ GMr2 − l2r +

3GMl2

c2
= 0 (1.45)
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Veff (r)

r

Veff (r)

Figure 4: The effective potential for a

massive particle when l2c2 > 12G2M2.
Figure 5: . . . and when l2c2 < 12G2M2.

If the discriminant is positive, then this quadratic equation has two solutions. This

occurs when the angular momentum is suitably large.

l2 >
12G2M2

c2

In this case, the potential looks like the figure shown on the left. We call the two

solutions to the quadratic equation (1.45), r+ and r− with r+ > r−. The outermost

solution r+ is a minimum of the potential and corresponds to a stable circular orbit; the

innermost solution r− is a maximum of the potential and corresponds to an unstable

circular orbit.

As in the Newtonian setting, there are also non-circular orbits in which the particle

oscillates around the minimum. However, there is no reason to think these will, in

general, remain elliptical. We will study some of their properties below.

Note also that, in contrast to the Newtonian case, the angular momentum barrier is

now finite: no matter how large the angular momentum, a particle with enough energy

(in the form of ingoing radial velocity) will always be able to cross the barrier, at which

point it plummets towards r = 0. We will say more about this in Section 6 when we

discuss black holes.

If the angular momentum is not large enough,

l2 <
12G2M2

c2

then the potential Veff(r) has no turning points and looks like the right-hand figure. In

this case, there are no stable orbits; all particles will ultimately fall towards the origin.
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The borderline case is l2 = 12G2M2/c2. In this case the turning point is a saddle at

rISCO =
6GM

c2
(1.46)

This is the innermost stable circular orbit. There can be no circular orbits at distances

r < rISCO, although it is possible for the non-circular orbits to extend into distances

r < rISCO.

The innermost stable orbit plays an important role in

Figure 6:

black hole astrophysics, where it marks the inner edge of the

accretion disc which surrounds the black hole. Roughly speak-

ing, this is seen in the famous photograph captured by the

Event Horizon Telescope. Here, the “roughly speaking” is

partly because the light really emerges from the so-called pho-

ton sphere, which is similar to the ISCO, but for light, and

partly because the light emitted from the accretion disc is

warped in a dramatic fashion, so what we see is very different

from what is there! (Furthermore, the black hole in the pic-

ture almost certainly rotating. This makes rISCO smaller than 6GM/c2 and the picture

significantly harder to interpret.)

We could also ask: how close can a non-circular orbit get? This occurs in the

limit l → ∞, where a quick calculation shows that the maximum of Veff tends to

r− → 3GM/c2. This is the closest that any timelike geodesic can get if it wishes to

return.

Perihelion Precession

To understand the orbits in more detail, we can attempt to solve the equations of

motion. We follow our Newtonian analysis, introducing the inverse parameter u = 1/r

and converting ṙ into du/dϕ. Our equation (1.39) becomes(
du

dϕ

)2

+ u2 − 2GM

l2
u− 2GM

c2
u3 =

E2

l2c2
− c2

l2

This equation is considerably harder than our Newtonian orbit equation (1.42). To

proceed, it’s simplest to first differentiate again with respect to ϕ. This gives

d2u

dϕ2
+ u− GM

l2
− 3GM

c2
u2 = 0
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δ

Figure 7: The precession of the perihelion (or aphelion) of an almost elliptical orbit.

where we have assumed that du/dϕ ̸= 0, which means that we are neglecting the simple

circular solution. The equation above differs from the analogous Newtonian equation

by the final term (which indeed vanishes if we take c2 → ∞). There is no closed-form

solution to this equation, but we can make progress by working perturbatively. To this

end, we define the dimensionless parameter

β =
3G2M2

l2c2

and write the orbit equation as

d2u

dϕ2
+ u− GM

l2
= β

l2u2

GM
(1.47)

We will assume β ≪ 1 and look for series solutions of the form

u = u0 + βu1 + β2u2 + . . .

To leading order, we can ignore the terms proportional to β on the right-hand-side of

(1.47). This gives us an equation for u0 which is identical to the Newtonian orbit

d2u0
dϕ2

+ u0 −
GM

l2
= 0 ⇒ u0(ϕ) =

GM

l2
(1 + e cosϕ)

We now feed this back into the equation (1.47) to get an equation for u1,

d2u1
dϕ2

+ u1 =
l2

GM
u20 =

GM

l2

[(
1 +

e2

2

)
+ 2e cosϕ+

e2

2
cos 2ϕ

]
You can check that this is solved by

u1 =
GM

l2

[(
1 +

e2

2

)
+ eϕ sinϕ− e2

6
cos 2ϕ

]
We could proceed to next order in β, but the first correction u1 will be sufficient for

our purposes.
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The interesting term is the ϕ sinϕ in u1. This is not periodic in ϕ and it means that

the orbit no longer closes: it sits at a different radial value at ϕ = 0 and ϕ = 2π. To

illustrate this, we ask: when is the particle closest to origin? This is the perihelion of

the orbit. It occurs when

du

dϕ
≈ d(u0 + βu1)

dϕ
= 0 ⇒ −e sinϕ+ β

(
e sinϕ+ eϕ cosϕ+

e2

3
sin 2ϕ

)
= 0

Clearly this is solved by ϕ = 0. The next solution is at ϕ = 2π + δ where, due to our

perturbative expansion, δ will be small. Expanding our expression above, and dropping

terms of order δ2 and βδ, we find the precession of the perihelion given by

δ = 2πβ = 6π
G2M2

l2c2
(1.48)

For planets orbiting the Sun, the perihelion shift depends only on the angular mo-

mentum l of the planet and the mass of the Sun, denoted M⊙. The latter is M⊙ ≈
2× 1030 kg, corresponding to the length scale

GM⊙

c2
≈ 1.5× 103 m

If a planet on an almost-circular orbit of radius r orbits the sun in a time T , then the

angular momentum (1.36) is

l =
2πr2

T

Recall that Kepler’s third law (which follows from the inverse square law) tells us that

T ∝ r3/2. This means that l ∝ r1/2 and, correspondingly, the perihelion shift (1.48)

is proportional to δ ∝ 1/r. We learn that the effect should be more pronounced for

planets closest to the Sun.

The closest planet to the Sun is Mercury which, happily, is also the only planet whose

orbit differs significantly from a circle; it has eccentricity e ≈ 0.2, the radius varying

from 4.6 to 7×1010 m. Mercury orbits the Sun once every 88 days but, in fact, we don’t

need to use this to compute the angular momentum and precession. Instead, we can

invoke the elliptic formula (1.44) which tells us that the minimum r− and maximum

distance r+ is given by

r± =
l2

GM

1

1∓ e
⇒ l2 = GMr+(1− e) (1.49)

from which we get the precession

δ =
6πGM

c2
1

r+(1− e)

– 38 –



Plugging in the numbers gives δ ≈ 5.0 × 10−7. This is rather small. However, the

perihelion precession is cumulative. Over a century, Mercury completes 415 orbits,

giving the precession of 2.1× 10−4 per century.

The result above is quoted in radians. Astronomers prefer units of arcseconds, with

3600 arcseconds (denoted as 3600′′) in a degree and, of course, 360 degrees in 2π radians.

This means that 1′′ ≈ 4.8× 10−6 radians. Our calculation from general relativity gives

43′′ per century as the shift in the perihelion. This was one of the first successful

predictions of the theory. Subsequently, the perihelion shift of Venus and Earth has

been measured and is in agreement with the predictions of general relativity.

1.3.4 The Pull of Other Planets

The general relativistic contribution of 43′′ per century is not the full story. In fact the

observed perihelion shift of Mercury is much larger, at around 575′′. The vast majority

of this is due to the gravitational force of other planets and can be understood entirely

within the framework of Newtonian gravity. For completeness, we now give an estimate

of these effects.

We start be considering the effect of single, heavy planet with mass M ′, orbiting

at a distance R from the Sun. Of course, the 3-body problem in Newtonian gravity

is famously hard. However, there is an approximation which simplifies the problem

tremendously: we consider the outer planet to be a circular ring, with mass per unit

length given by M ′/2πR.

It’s not obvious that this is a good approximation. Each of the outer planets takes

significantly longer to orbit the Sun than Mercury. This suggests for any given orbit

of Mercury, it would be more appropriate to treat the position of the outer planets to

be fixed. (For example, it takes Jupiter 12 years to orbit the Sun, during which time

Mercury has completed 50 orbits.) This means that the perihelion shift of Mercury

depends on the position of these outer planets and that’s a complicated detail that we’re

happy to ignore. Instead, we want only to compute the total perihelion shift of Mercury

averaged over a century. And for this, we may hope that the ring approximation, in

which we average over the orbit of the outer planet first, suffices.

In fact, as we will see, the ring approximation is not particularly good: the calculation

is non-linear and averaging over the position of the outer planet first does not commute

with averaging over the orbits of Mercury. This means that we will get a ballpark figure

for the perihelion precession of Mercury but, sadly, not one that is accurate enough to

test relativity.
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We would like to determine the Newtonian potential felt

r

R
x

θ

Figure 8:

by a planet which orbits a star of mass M and is surrounded,

in the same plane, by a ring of densityM ′/2πR. The geometry

is shown in the figure. Obviously, the potential (per unit mass)

from the star is

Vstar(r) = −GM
r

We need to calculate the potential (per unit mass) from the

ring. This is

Vring(r) = −GM
′

2π

∫ 2π

0

dθ
1

x(θ)
with x2 = R2 + r2 − 2Rr cos θ (1.50)

We use the fact that Mercury is much closer to the Sun than the other planets and

Taylor expand the integral in r2/R2. To leading order we have

Vring(r) = −GM
′

R

[
1 +

1

4

( r
R

)2
+ . . .

]
Dropping constant terms, we learn that the effective potential (per unit mass) experi-

enced by Mercury is, to leading order,

Veff(r) = −GM
r

+
l2

2r2
−
∑
i

GM ′
i

4

r2

R3
i

+ . . .

where we’ve included the angular momentum barrier and the sum is over all the outer

planets. In what follows, we must assume that the r2 correction term is suitably small

so that it doesn’t destabilise the existence of orbits. Obviously, this is indeed the case

for Mercury.

Now we can follow our calculation for the perihelion precession in general relativity.

Conservation of energy tells us

1

2
ṙ2 + Veff(r) = E

Working with everyone’s favourite orbit variable, u = 1/r, viewed as u = u(ϕ), the

general relativistic equation (1.47) is replaced by

d2u

dϕ2
+ u− GM

l2
= −α(GM)4

l8u3
(1.51)
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where this time our small dimensionless parameter is

α =
l6

2G3M4

∑
i

M ′
i

R3
i

=
(1− e)3

2

∑
i

M ′
i

M

(
r+
Ri

)3

where, in the second equality, we’ve used (1.49); here M is the mass of the Sun, r+ is

the outermost radius of Mercury’s orbit, and e ≈ 0.2 is the eccentricity of Mercury’s

orbit. We safely have α ≪ 1 and so we look for series solutions of the form

u = u0 + αu1 + α2u2 + . . .

We’ve already met the leading order solution, u0(ϕ) = (GM/l2)(1 + e cosϕ) with e the

eccentricity of the planet’s orbit. Feeding this into (1.51), we get an equation for the

first correction

d2u1
dϕ2

+ u1 = −(GM)4

l8
1

u30
= −GM

l2
1

(1 + e cosϕ)3

This equation is somewhat harder to solve than the general relativistic counterpart. To

proceed, we will assume that the eccentricity is small, e ≪ 1, and solve the equation

to leading order in e. Then this equation becomes

d2u1
dϕ2

+ u1 = −GM
l2

(1− 3e cosϕ)

which has the solution

u1 =
GM

l2

(
−1 +

3e

2
ϕ sinϕ

)
The precession of the perihelion occurs when

du

dϕ
= 0 ⇒ −e sinϕ+

3eα

2
(sinϕ+ ϕ cosϕ) = 0

As in the relativistic computation, this is solved by ϕ = 0 and by ϕ = 2π+ δ where, to

leading order, the shift of the perihelion is given by

δ = 3πα =
3π

2

∑
i

M ′
i

M

(
r0
Ri

)3

with r0 = (1− e)r+. Once again, we can put the numbers in. The mass of the Sun is

M =M⊙ ≈ 2× 1030 kg. The formula is very sensitive to the radius of Mercury’s orbit:

we use r0 ≈ 5.64× 1010 m. The relevant data for the other planets is then
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Planet Mass (1024 kg) Distance (1011 m) M
M⊙

(
r0
R

)3
Venus 4.9 1.1 3.6× 10−7

Earth 6.0 1.5 1.7× 10−7

Mars 0.64 2.3 5.1× 10−9

Jupiter 1900 7.8 3.9× 10−7

Saturn 570 14 2.0× 10−8

A quick glance at this table shows that the largest contributions come from Jupiter

(because of its mass) and Venus (because of it proximity), with the Earth in third place.

(The contributions from Uranus, Neptune and Pluto are negligible.)

Adding these contributions, we find δ ≈ 40×10−7 radians per orbit. This corresponds

to 344′′ per century, significantly larger than the 43′′ per century arising from general

relativity but not close to the correct Newtonian value of 532′′.

Higher Order Contributions

Our analysis above gave us a result of 380′′ per century for the perihelion shift of

Mercury. A more precise analysis gives 532′′ coming from the Newtonian pull of the

other planets.

We made a number of different approximations in the discussion above. But the one

that introduced the biggest error turns out to be truncating the ring potential (1.50)

at leading order in r/R. This, it turns out, is particularly bad for Venus since its orbit

compared to Mercury is only (r0/R) ≈ 0.5. To do better, we can expand the potential

(1.50) to higher orders. We have

Vring(r) = −GM
′

2πR

∫ 2π

0

dθ
1√

R2 + r2 − 2Rr cos θ

= −GM
′

R

[
1 +

1

4

( r
R

)2
+

9

64

( r
R

)4
+

25

256

( r
R

)6
+ . . .

]
An identical calculation to the one above now gives a corresponding perturbative ex-

pansion for the perihelion shift,

δ = π
∑
i

M ′
i

M

[
3

2

(
r0
Ri

)3

+
45

16

(
r0
Ri

)5

+
525

128

(
r0
Ri

)7

+ . . .

]
with r0 = (1 − e)r+ the mean orbit of Mercury. The extra terms give significant

contributions for Venus, and smaller for Earth. Using the value of r0 ≈ 5.64×1010 m and
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r

Vnull (r)

Figure 9: The effective potential for null geodesics in the Schwarzschild metric.

the slightly more accurate R′ ≈ 10.6× 1010 m for Venus, the sum of the contributions

gives δ ≈ 59 × 10−7 radians per orbit, or 507′′ per century, somewhat closer to the

recognised value of 532′′ per century but still rather short.

1.3.5 Light Bending

It is straightforward to extend the results above to determine the null geodesics in the

Schwarzschild metric. We continue to use the equations of motion derived from Suseful

in (1.35). But this time we replace the constraint (1.38) with the null version (1.34),

which reads

−A(r)c2ṫ2 + A−1(r)ṙ2 + r2ϕ̇2 = 0

The upshot is that we can again reduce the problem to radial motion,

1

2
ṙ2 + Vnull(r) =

1

2

E2

c2
(1.52)

but now with the effective potential (1.40) replaced by

Vnull(r) =
l2

2r2

(
1− 2GM

rc2

)
A typical potential is shown in Figure 9. Note that, as r → ∞, the potential asymptotes

to zero from above, while Vnull → −∞ as r → 0. The potential has a single maximum

at

V ′
null(r⋆) = − l2

r3⋆
+

3GMl2

r4⋆c
2

= 0 ⇒ r⋆ =
3GM

c2
(1.53)

We learn that there is a distance, r⋆, at which light can orbit a black hole. This is

known as the photon sphere. The fact that this sits on a maximum of the potential
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means that this orbit is unstable. In principle, focussing effects mean that much of the

light emitted from an accretion disc around a non-rotating black hole emerges from

the photon sphere. In practice, it seems likely that photograph of the Event Horizon

Telescope does not have the resolution to see this.

The fate of other light rays depends on the relative value of their energy E and

angular momentum l. To see this, note that the maximum value of the potential is

Vnull(r⋆) =
l2

54

c4

G2M2

The physics depends on how this compares to the right-hand side of (1.52), E2/2c2.

There are two possibilities

• E < lc3/
√
27GM : In this case, the energy of light is lower than the angular

momentum barrier. This means that light emitted from r < r⋆ cannot escape

to infinity; it will orbit the star, before falling back towards the origin. The flip

side is that light coming from infinity will not fall into the star; instead it will

bounce off the angular momentum barrier and return to infinity. In other words,

the light will be scattered. We will compute this in more detail below.

• E > lc3/
√
27GM : Now the energy of the light is greater than the angular mo-

mentum barrier. This means that light emitted from r < r⋆ can escape to infinity.

(We will see in Section 6 that this is only true for light in the region Rs < r < r⋆.)

Meanwhile, light coming in from infinity is captured by the black hole and asymp-

totes to r → 0.

To understand the trajectories of light-rays in more detail, we again adopt the inverse

parameter u = 1/r. The equation of motion (1.52) then becomes(
du

dϕ

)2

+ u2
(
1− 2GM

c2
u

)
=

E2

l2c2

If we now differentiate again, we get

d2u

dϕ2
+ u =

3GM

c2
u2 (1.54)

We will again work perturbatively. First, suppose that we ignore the GM term on the

right-hand side. We have

d2u

dϕ2
+ u = 0 ⇒ u =

1

b
sinϕ

for constant b. The meaning of this solution becomes clearer if we write it as r sinϕ = b:

this is the equation of a horizontal straight line, a distance b above the origin as shown

by the dotted line in Figure 10. The distance b is called the impact parameter.
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Figure 10: Light bending in the Schwarzschild metric.

We will solve the full equation (1.54) perturbatively in the small parameter

β̃ =
GM

c2b

We then look for solutions of the form

u = u0 + β̃u1 + . . .

We start with the straight line solution u0 = (1/b) sinϕ. At leading order, we then

have

d2u1
dϕ2

+ u1 =
3 sin2 ϕ

b
=

3(1− cos 2ϕ)

2b

The general solution is

u1 = A cosϕ+B sinϕ+
1

2b
(3 + cos 2ϕ)

where the first two terms are the complimentary solution, with A and B integration

constants. We pick them so that the initial trajectory at ϕ = π agrees with the straight

line u0. This holds if we choose B = 0 and A = 2/b, so that u1 → 0 as ϕ → π. To

leading order in β̃, the solution is then

u =
1

b
sinϕ+

GM

2b2c2
(3 + 4 cosϕ+ cos 2ϕ)

The question now is: at what angle does the particle escape to r = ∞ or, equivalently,

u = 0? Before we made the correction this happened at ϕ = 0. Within our perturbative

approach, we can approximate sinϕ ≈ ϕ and cosϕ ≈ 1 to find that the particle escapes

at

ϕ ≈ −4GM

bc2
(1.55)

This light bending is known as gravitational lensing.
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Figure 11: Gravitational lensing, as seen

by Eddington’s 1919 eclipse expedition

Figure 12: Gravitational lensing, as seen

by the Hubble space telescope.

For the Sun, GM⊙/c
2 ≈ 1.5 km. If light rays just graze the surface, then the impact

parameter b coincides with the radius of the Sun, R⊙ ≈ 7 × 105 km. This gives a

scattering angle of ϕ ≈ 8.6× 10−5 radians, or ϕ ≈ 1.8′′.

There is a difficulty in testing this prediction: things behind the Sun are rarely

visible. However, Nature is kind to us because the size of the moon as seen in the sky

is more or less the same as the size of the Sun. (This random coincidence would surely

make our planet a popular tourist destination for alien hippies if only it wasn’t such

a long way to travel.) This means that during a solar eclipse the light from the Sun

is blocked, allowing us to measure the positions of stars whose light passes nearby the

Sun. This can then be compared to the usual positions of these stars.

This measurement was first carried out in May 1919, soon after cessation of war, in

two expeditions led by Arthur Eddington, one to the island of Principe and the other

to Brazil. The data is shown in the figure above. In the intervening century, we have

much more impressive evidence of light bending, in which clusters of galaxies distort

the light from a background source, often revealing a distinctive ring-like pattern as

shown in the right-hand figure.

Newtonian Scattering of Light

Before we claim success, we should check to see if the relativistic result (1.55) differs

from the Newtonian prediction for light bending. Strictly speaking, there’s an ambi-

guity in the Newtonian prediction for the gravitational force on a massless particle.

However, we can invoke the principle of equivalence which tells us that trajectories are

independent of the mass. We then extrapolate this result, strictly derived for massive

particles, to the massless case.
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φ δφ

Figure 13: The scattering of light using Newtonian gravity.

Scattering under Newtonian gravity follows a hyperbola (1.43)

1

r
=
GM

l2
(1 + e cosϕ)

with e > 1. The parameterisation of the trajectory is a little different from the rel-

ativistic result, as the light ray asymptotes to infinity at cosϕ = −1/e. For e ≫ 1,

where the trajectory is close to a straight line, the asymptotes occur at ϕ = ±(π+ δϕ)

as shown in Figure 13. The scattering angle is then 2δϕ. This is what we wish to

compute.

Using (1.41), the speed of light along the trajectory is

ṙ = −l du
dϕ

=
GM

l
e sinϕ

This is one of the pitfalls of applying Newtonian methods to light bending: we will

necessarily find that the speed of light changes as it moves in a gravitational field. The

best we can do is ensure that light travels at speed c asymptotically, when cosϕ = −1/e

and sinϕ =
√

1− 1/e2. This gives

c2 =
G2M2

l2
(e2 − 1)

Meanwhile the angular momentum is l = bc, with b the impact parameter. Rearranging,

we have

e2 =
b2c4

G2M2
+ 1 ⇒ e ≈ bc2

GM
where, in the second equation, we have used the fact that we are interested in tra-

jectories close to a straight line with e ≫ 1. As we mentioned above, the trajectory

asymptotes to infinity at cosϕ = −1/e. This occurs at ϕ = π/2+δϕ and ϕ = −π/2−δϕ
with

δϕ ≈ 1

e
≈ GM

bc2

The resulting scattering angle is

2δϕ ≈ 2GM

bc2

We see that this is a factor of 2 smaller than the relativistic prediction (1.55)
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The fact that relativistic light bending is twice as large as the Newtonian answer can

be traced to the fact that both g00 and grr components of the Schwarzschild metric are

non-vanishing. In some sense, the Newtonian result comes from the g00 term, while the

contribution from grr is new. We’ll discuss this more in Section 5.1 where we explain

how to derive Newtonian gravity from general relativity.
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2. Introducing Differential Geometry

Gravity is geometry. To fully understand this statement, we will need more sophisti-

cated tools and language to describe curved space and, ultimately, curved spacetime.

This is the mathematical subject of differential geometry and will be introduced in this

section and the next. Armed with these new tools, we will then return to the subject

of gravity in Section 4.

Our discussion of differential geometry is not particularly rigorous. We will not

prove many big theorems. Furthermore, a number of the statements that we make can

be checked straightforwardly but we will often omit this. We will, however, be careful

about building up the mathematical structure of curved spaces in the right logical order.

As we proceed, we will come across a number of mathematical objects that can live on

curved spaces. Many of these are familiar – like vectors, or differential operators – but

we’ll see them appear in somewhat unfamiliar guises. The main purpose of this section

is to understand what kind of objects can live on curved spaces, and the relationships

between them. This will prove useful for both general relativity and other areas of

physics.

Moreover, there is a wonderful rigidity to the language of differential geometry. It

sometimes feels that any equation that you’re allowed to write down within this rigid

structure is more likely than not to be true! This rigidity is going to be of enormous

help when we return to discuss theories of gravity in Section 4.

2.1 Manifolds

The stage on which our story will play out is a mathematical object called a manifold.

We will give a precise definition below, but for now you should think of a manifold as a

curved, n-dimensional space. If you zoom in to any patch, the manifold looks like Rn.

But, viewed more globally, the manifold may have interesting curvature or topology.

To begin with, our manifold will have very little structure. For example, initially

there will be no way to measure distances between points. But as we proceed, we will

describe the various kinds of mathematical objects that can be associated to a manifold,

and each one will allow us to do more and more things. It will be a surprisingly long

time before we can measure distances between points! (Not until Section 3.)

You have met many manifolds in your education to date, even if you didn’t call

them by name. Some simple examples in mathematics include Euclidean space Rn,

the sphere Sn, and the torus Tn = S1 × . . . × S1. Some simple examples in physics

include the configuration space and phase space that we use in classical mechanics and
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the state space of thermodynamics. As we progress, we will see how familiar ideas in

these subjects can be expressed in a more formal language. Ultimately our goal is to

explain how spacetime is a manifold and to understand the structures that live on it.

2.1.1 Topological Spaces

Even before we get to a manifold, there is some work to do in order to define the

underlying object. What follows is the mathematical equivalent of reading a biography

about an interesting person and having to spend the first 20 pages wading through

a description of what their grandparents did for a living. This backstory will not be

particularly useful for our needs and we include it here only for completeness. We’ll

keep it down to one page.

Our backstory is called a topological space. Roughly speaking, this is a space in which

each point can be viewed as living in a neighbourhood of other points, in a manner

that allows us to define concepts such as continuity and convergence.

Definition: A topological space M is a set of points, endowed with a topology T . This

is a collection of open subsets {Oα ⊂M} which obey:

i) Both the set M and the empty set ∅ are open subsets: M ∈ T and ∅ ∈ T .

ii) The intersection of a finite number of open sets is also an open set. So if O1 ∈ T
and O2 ∈ T then O1 ∩ O2 ∈ T .

iii) The union of any number (possibly infinite) of open sets is also an open set. So if

Oγ ∈ T then ∪γOγ ∈ T .

Given a point p ∈M , we say that O ∈ T is a neighbourhood of p if p ∈ O. This concept

leads us to our final requirement: we require that, given any two distinct points, there

is a neighbourhood which contains one but not the other. In other words, for any

p, q ∈ M with p ̸= q, there exists O1,O2 ∈ T such that p ∈ O1 and q ∈ O2 and

O1 ∩ O2 = ∅. Topological spaces which obey this criterion are called Hausdorff. It is

like a magic ward to protect us against bad things happening.

An example of a good Hausdorff space is the real line,M = R, with T consisting of all

open intervals (a, b), with a < b ∈ R, and their unions. An example of a non-Hausdorff

space is any M with T = {M, ∅}.

Definition: One further definition (it won’t be our last). A homeomorphism between

topological spaces (M, T ) and (M̃, T̃ ) is a map f :M → M̃ which is
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i) Injective (or one-to-one): for p ̸= q, f(p) ̸= f(q).

ii) Surjective (or onto): f(M) = M̃ , which means that for each p̃ ∈ M̃ there exists a

p ∈M such that f(p) = p̃.

Functions which are both injective and surjective are said to be bijective. This

ensures that they have an inverse

iii) Bicontinuous. This means that both the function and its inverse are continuous.

To define a notion of continuity, we need to use the topology. We say that f is

continuous if, for all Õ ∈ T̃ , f−1(Õ) ∈ T .

There’s an animation of a donut morphing into a coffee mug and back that is often

used to illustrate the idea of topology. If you want to be fancy, you can say that a

donut is homeomorphic to a coffee mug.

2.1.2 Differentiable Manifolds

We now come to our main character: an n-dimensional manifold is a space which,

locally, looks like Rn. Globally, the manifold may be more interesting than Rn, but

the idea is that we can patch together these local descriptions to get an understanding

for the entire space.

Definition: An n-dimensional differentiable manifold is a Hausdorff topological space

M such that

i) M is locally homeomorphic to Rn. This means that for each p ∈ M , there is an

open set O such that p ∈ O and a homeomorphism ϕ : O → U with U an open

subset of Rn.

ii) Take two open subsets Oα and Oβ that overlap, so that Oα ∩Oβ ̸= ∅. We require

that the corresponding maps ϕα : Oα → Uα and ϕβ : Oβ → Uβ are compatible,

meaning that the map ϕβ ◦ ϕ−1
α : ϕα(Oα ∩ Oβ) → ϕβ(Oα ∩ Oβ) is smooth (also

known as infinitely differentiable or C∞), as is its inverse. This is depicted in

Figure 14.

The maps ϕα are called charts and the collection of charts is called an atlas. You should

think of each chart as providing a coordinate system to label the region Oα of M . The

coordinate associated to p ∈ Oα is

ϕα(p) = (x1(p), . . . , xn(p))

We write the coordinate in shorthand as simply xµ(p), with µ = 1, . . . , n. Note that we

use a superscript µ rather than a subscript: this simple choice of notation will prove

useful as we go along.
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Figure 14: Charts on a manifold.

If a point p is a member of more than one subset O then it may have a number

of different coordinates associated to it. There’s nothing to be nervous about here:

it’s entirely analogous to labelling a point using either Euclidean coordinate or polar

coordinates.

The maps ϕβ ◦ ϕ−1
α take us between different coordinate systems and are called

transition functions. The compatibility condition is there to ensure that there is no

inconsistency between these different coordinate systems.

Any manifold M admits many different atlases. In particular, nothing stops us from

adding another chart to the atlas, provided that it is compatible with all the others.

Two atlases are said to be compatible if every chart in one is compatible with every

chart in the other. In this case, we say that the two atlases define the same differentiable

structure on the manifold.

Examples

Here are a few simple examples of differentiable manifolds:

• Rn: this looks locally like Rn because it is Rn. You only need a single chart with

the usual Euclidean coordinates. Similarly, any open subset of Rn is a manifold.
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θ1 θ2q qq q

Figure 15: Two charts on a circle. The figures are subtly different! On the left, point q is

removed and θ1 ∈ (0, 2π). On the right, point q′ is removed and θ2 ∈ (−π, π).

• S1: The circle can be defined as a curve in R2 with coordinates (cos θ, sin θ).

Until now in our physics careers, we’ve been perfectly happy taking θ ∈ [0, 2π)

as the coordinate on S1. But this coordinate does not meet our requirements to

be a chart because it is not an open set. This causes problems if we want to

differentiate functions at θ = 0; to do so we need to take limits from both sides

but there is no coordinate with θ a little less than zero.

To circumvent this, we need to use at least two charts to cover S1. For example,

we could pick out two antipodal points, say q = (1, 0) and q′ = (−1, 0). We take

the first chart to cover O1 = S1 −{q} with the map ϕ1 : O1 → (0, 2π) defined by

ϕ1(p) = θ as shown in the left-hand of Figure 15. We take the second chart to

cover O2 = S1 − {q′} with the map ϕ2 : O2 → (−π, π) defined by ϕ2(p) = θ′ as

shown in the right-hand figure.

The two charts overlap on the upper and lower semicircles. The transition func-

tion is given by

θ′ = ϕ2(ϕ
−1
1 (θ)) =

{
θ if θ ∈ (0, π)

θ − 2π if θ ∈ (π, 2π)

The transition function isn’t defined at θ = 0, corresponding to the point q1, nor

at θ = π, corresponding to the point q2. Nonetheless, it is smooth on each of the

two open intervals as required.

• S2: It will be useful to think of the sphere as the surface x2+y2+z2 = 1 embedded

in Euclidean R3. The familiar coordinates on the sphere S2 are those inherited

from spherical polar coordinates of R3, namely

x = sin θ cosϕ , y = sin θ sinϕ , z = cos θ (2.1)

with θ ∈ [0, π] and ϕ ∈ [0, 2π). But as with the circle S1 described above, these

are not open sets so will not do for our purpose. In fact, there are two distinct
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Figure 16: Two charts on a sphere. In the left-hand figure, we have removed the half-equator

defined as y = 0 with x > 0, shown in red. In right-figure, we have removed the half-equator

z = 0 with x < 0, again shown in red.

issues. If we focus on the equator at θ = π/2, then the coordinate ϕ ∈ [0, 2π)

parameterises a circle and suffers the same problem that we saw above. On top

of this, at the north pole θ = 0 and south pole θ = π, the coordinate ϕ is not

well defined, since the value of θ has already specified the point uniquely. This

manifests itself on Earth by the fact that all time zones coincide at the North

pole. It’s one of the reasons people don’t have business meetings there.

Once again, we can resolve these issues by introducing two charts covering differ-

ent patches on S2. The first chart applies to the sphere S2 with a line of longitude

removed, defined by y = 0 and x > 0, as shown in Figure 16. (Think of this as

the dateline.) This means that neither the north nor south pole are included in

the open set O1. On this open set, we define a map ϕ1 : O1 → R2 using the

coordinates (2.1), now with θ ∈ (0, π) and ϕ ∈ (0, 2π), so that we have a map to

an open subset of R2.

We then define a second chart on a different open set O2, defined by S2, with the

line z = 0 and x < 0 removed. Here we define the map ϕ2 : O2 → R2 using the

coordinates

x = − sin θ′ cosϕ′ , y = cos θ′ , z = sin θ′ sinϕ′

with θ′ ∈ (0, π) and ϕ ∈ (0, 2π). Again this is a map to an open subset of R2. We

have O1∪O2 = S2 while, on the overlap O1∩O2, the transition functions ϕ1 ◦ϕ−1
2

and ϕ2 ◦ ϕ−1
1 are smooth. (We haven’t written these functions down explicitly,

but it’s clear that they are built from cos and sin functions acting on domains

where their inverses exist.)
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Note that for both S1 and S2 examples above, we made use of the fact that they

can be viewed as embedded in a higher dimensional Rn+1 to construct the charts.

However, this isn’t necessary. The definition of a manifold makes no mention of a

higher dimensional embedding and these manifolds should be viewed as having an

existence independent of any embedding.

As you can see, there is a level of pedantry involved in describing these charts.

(Mathematicians prefer the word “rigour”.) The need to deal with multiple charts

arises only when we have manifolds of non-trivial topology; the manifolds S1 and S2

that we met above are particularly simple examples. When we come to discuss general

relativity, we will care a lot about changing coordinates, and the limitations of certain

coordinate systems, but our manifolds will turn out to be simple enough that, for all

practical purposes, we can always find a single set of coordinates that tells us what

we need to know. However, as we progress in physics, and topology becomes more

important, so too does the idea of different charts. Perhaps the first place in physics

where overlapping charts become an integral part of the discussion is the construction

of a magnetic monopole. (See the lectures on Gauge Theory.)

2.1.3 Maps Between Manifolds

The advantage of locally mapping a manifold to Rn is that we can now import our

knowledge of how to do maths on Rn. For example, we know how to differentiate

functions on Rn, and what it means for functions to be smooth. This now translates

directly into properties of functions defined over the manifold.

We say that a function f :M → R is smooth, if the map f ◦ϕ−1 : U → R is smooth

for all charts ϕ.

Similarly, we say that a map f : M → N between two manifolds M and N (which

may have different dimensions) is smooth if the map ψ ◦ f ◦ϕ−1 : U → V is smooth for

all charts ϕ :M → U ⊂ Rdim(M) and ψ : N → V ⊂ Rdim(N)

A diffeomorphism is defined to be a smooth homeomorphism f : M → N . In other

words it is an invertible, smooth map between manifolds M and N that has a smooth

inverse. If such a diffeomorphism exists then the manifolds M and N are said to be

diffeomorphic. The existence of an inverse means M and N necessarily have the same

dimension.

Manifolds which are homeomorphic can be continuously deformed into each other.

But diffeomorphism is stronger: it requires that the map and its inverse are smooth.

This gives rise to some curiosities. For example, it turns out that the sphere S7 can
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be covered by a number of different, incompatible atlases. The resulting manifolds are

homeomorphic but not diffeomorphic. These are referred to as exotic spheres. Similarly,

Euclidean space Rn has a unique differentiable structure, except for R4 where there are

an infinite number of inequivalent structures. I know of only one application of exotic

spheres to physics (a subtle global gravitational anomaly in superstring theory) and I

know of no applications of the exotic differential structure on R4. Certainly these will

not play any role in these lectures.

2.2 Tangent Spaces

Our next task is to understand how to do calculus on manifolds. We start here with

differentiation; it will take us a while longer to get to integration, which we will finally

meet in Section 2.4.4.

Consider a function f : M → R. To differentiate the function at some point p, we

introduce a chart ϕ = (x1, . . . , xn) in a neighbourhood of p. We can then construct the

map f ◦ ϕ−1 : U → R with U ⊂ Rn. But we know how to differentiate functions on

Rn and this gives us a way to differentiate functions on M , namely

∂f

∂xµ

∣∣∣∣
p

:=
∂(f ◦ ϕ−1)

∂xµ

∣∣∣∣
ϕ(p)

(2.2)

Clearly this depends on the choice of chart ϕ and coordinates xµ. We would like to

give a coordinate independent definition of differentiation, and then understand what

happens when we choose to describe this object using different coordinates.

2.2.1 Tangent Vectors

We will consider smooth functions over a manifold M . We denote the set of all smooth

functions as C∞(M).

Definition: A tangent vector Xp is an object that differentiates functions at a point

p ∈M . Specifically, Xp : C
∞(M) → R satisfying

i) Linearity: Xp(f + g) = Xp(f) +Xp(g) for all f, g ∈ C∞(M).

ii) Xp(f) = 0 when f is the constant function.

iii) Leibnizarity: Xp(fg) = f(p)Xp(g) + Xp(f) g(p) for all f, g ∈ C∞(M). This, of

course, is the product rule.

Note that ii) and iii) combine to tell us that Xp(af) = aXp(f) for a ∈ R.
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This definition is one of the early surprises in differential geometry. The surprise is

really in the name “tangent vector”. We know what vectors are from undergraduate

physics, and we know what differential operators are. But we’re not used to equating

the two. Before we move on, it might be useful to think about how this definition fits

with other notions of vectors that we’ve met before.

The first time we meet a vector in physics is usually in the context of Newtonian

mechanics, where we describe the position of a particle as a vector x in R3. This

concept of a vector is special to flat space and does not generalise to other manifolds.

For example, a line connecting two points on a sphere is not a vector and, in general,

there is no way to think of a point p ∈M as a vector. So we should simply forget that

points in R3 can be thought of as vectors.

The next type of vector is the velocity of a particle, v = ẋ. This is more pertinent.

It clearly involves differentiation and, moreover, is tangent to the curve traced out by

the particle. As we will see below, velocities of particles are indeed examples of tangent

vectors in differential geometry. More generally, tangent vectors tell us how things

change in a given direction. They do this by differentiating.

It is simple to check that the object

∂µ

∣∣∣
p
:=

∂

∂xµ

∣∣∣∣
p

which acts on functions as shown in (2.2) obeys all the requirements of a tangent vector.

Note that the index µ is now a subscript, rather than superscript that we used for the

coordinates xµ. (On the right-hand-side, the superscript in ∂/∂xµ is in the denominator

and counts as a subscript.) We will adopt the summation convention, where repeated

indices are summed. But, as we will see, the placement of indices up or down will tell

us something and all sums will necessarily have one index up and one index down. This

is a convention that we met already in Special Relativity where the up/downness of the

index changes minus signs. Here it has a more important role that we will see as we

go on: the placement of the index tells us what kind of mathematical space the object

lives in. For now, you should be aware that any equation with two repeated indices

that are both up or both down is necessarily wrong, just as any equation with three or

more repeated indices is wrong.

Theorem: The set of all tangent vectors at point p forms an n-dimensional vector

space. We call this the tangent space Tp(M). The tangent vectors ∂µ
∣∣
p
provide a basis
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for Tp(M). This means that we can write any tangent vector as

Xp = Xµ ∂µ

∣∣∣
p

with Xµ = Xp(x
µ) the components of the tangent vector in this basis.

Proof: Much of the proof is just getting straight what objects live in what spaces.

Indeed, getting this straight is a large part of the subject of differential geometry. To

start, we need a small lemma. We define the function F = f ◦ ϕ−1 : U → R, with

ϕ = (x1, . . . , xn) a chart on a neighbourhood of p. Then, in some (perhaps smaller)

neighbourhood of p we can always write the function F as

F (x) = F (xµ(p)) + (xµ − xµ(p))Fµ(x) (2.3)

where we have introduced n new functions Fµ(x) and used the summation convention

in the final term. If the function F has a Taylor expansion then we can trivially write

it in the form (2.3) by repackaging all the terms that are quadratic and higher into

the Fµ(x) functions, keeping a linear term out front. But in fact there’s no need to

assume the existence of a Taylor expansion. One way to see this is to note that for any

function G(t) we trivially have G(1) = G(0) +
∫ 1

0
dt G′(t). But now apply this formula

to the function G(t) = F (tx) for some fixed x. This gives F (x) = F (0)+x
∫ 1

0
dt F ′(xt)

which is precisely (2.3) for a function of a single variable expanded about the origin.

The same method holds more generally.

Given (2.3), we act with ∂µ on both sides, and then evaluate at xµ = xµ(p). This

tells us that the functions Fµ must satisfy

∂F

∂xµ

∣∣∣∣
x(p)

= Fµ(x(p)) (2.4)

We can translate this into a similar expression for f itself. We define n functions on

M by fµ = Fµ ◦ ϕ. Then, for any q ∈ M in the appropriate neighbourhood of p, (2.3)

becomes

f ◦ ϕ−1(xµ(q)) = f ◦ ϕ−1(xµ(p)) + (xµ(q)− xµ(p))
[
fµ ◦ ϕ−1(xµ(q))

]
But ϕ−1(xµ(q)) = q. So we find that, in the neighbourhood of p, it is always possible

to write a function f as

f(q) = f(p) + (xµ(q)− xµ(p))fµ(q)

for some fµ(q). Note that, evaluated at q = p, we have

fµ(p) = Fµ ◦ ϕ(p) = Fµ(x(p)) =
∂F

∂xµ

∣∣∣∣
x(p)

=
∂f

∂xµ

∣∣∣∣
p

where in the last equality we used (2.2) and in the penultimate equality we used (2.4).
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Now we can turn to the tangent vector Xp. This acts on the function f to give

Xp(f) = Xp

(
f(p) + (xµ − xµ(p))fµ

)
where we’ve dropped the arbitrary argument q in f(q), xµ(q) and fµ(q); these are the

functions on which the tangent vector is acting. Using linearity and Leibnizarity, we

have

Xp(f) = Xp

(
f(p)

)
+Xp

(
(xµ − xµ(p))

)
fµ(p) + (xµ(p)− xµ(p))Xp

(
fµ

)
The first term vanishes because f(p) is just a constant and all tangent vectors are

vanishing when acting on a constant. The final term vanishes as well because the

Leibniz rule tells us to evaluate the function (xµ−xµ(p)) at p. Finally, by linearity, the

middle term includes a Xp(x
µ(p)) term which vanishes because xµ(p) is just a constant.

We’re left with

Xp(f) = Xp(x
µ)

∂f

∂xµ

∣∣∣∣
p

This means that the tangent vector Xp can be written as

Xp = Xµ ∂

∂xµ

∣∣∣∣
p

with Xµ = Xp(x
µ) as promised. To finish, we just need to show that ∂µ

∣∣
p
provide

a basis for Tp(M). From above, they span the space. To check linear independence,

suppose that we have vector α = αµ∂µ
∣∣
p
= 0. Then acting on f = xν , this gives

α(xν) = αµ(∂µx
ν)
∣∣
p
= αν = 0. This concludes our proof. □

Changing Coordinates

We have an ambivalent relationship with coordinates. We can’t calculate anything

without them, but we don’t want to rely on them. The compromise we will come to is

to consistently check that nothing physical depends on our choice of coordinates.

The key idea is that a given tangent vector Xp exists independent of the choice of

coordinate. However, the chosen basis {∂µ
∣∣
p
} clearly depends on our choice of coor-

dinates: to define it we had to first introduce a chart ϕ and coordinates xµ. A basis

defined in this way is called, quite reasonably, a coordinate basis. At times we will work

with other bases, {eµ} which are not defined in this way. Unsurprisingly, these are

referred to as non-coordinate bases. A particularly useful example of a non-coordinate

basis, known as vielbeins, will be introduced in Section 3.4.2.
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Suppose that we picked a different chart ϕ̃, with coordinates x̃µ in the neighbourhood

of p. We then have two different bases, and can express the tangent vector Xp in terms

of either,

Xp = Xµ ∂

∂xµ

∣∣∣∣
p

= X̃µ ∂

∂x̃µ

∣∣∣∣
p

The vector is the same, but the components of the vector change: they are Xµ in the

first set of coordinates, and X̃µ in the second. It is straightforward to determine the

relationship between Xµ and X̃µ. To see this, we look at how the tangent vector Xp

acts on a function f ,

Xp(f) = Xµ ∂f

∂xµ

∣∣∣∣
p

= Xµ ∂x̃
ν

∂xµ

∣∣∣∣
ϕ(p)

∂f

∂x̃ν

∣∣∣∣
p

where we’ve used the chain rule. (Actually, we’ve been a little quick here. You can be

more careful by introducing the functions F = f ◦ϕ−1 and F̃ = f ◦ ϕ̃−1 and using (2.2)

to write ∂f/∂xµ = ∂F (x̃(x))/∂xµ. The end result is the same. We will be similarly

sloppy in the same way as we proceed, often conflating f and F .) You can read this

equation in one of two different ways. First, we can view this as a change in the basis

vectors: they are related as

∂

∂xµ

∣∣∣∣
p

=
∂x̃ν

∂xµ

∣∣∣∣
ϕ(p)

∂

∂x̃ν

∣∣∣∣
p

(2.5)

Alternatively, we can view this as a change in the components of the vector, which

transform as

X̃ν = Xµ ∂x̃
ν

∂xµ

∣∣∣∣
ϕ(p)

(2.6)

Components of vectors that transform this way are sometimes said to be contravariant.

I’ve always found this to be annoying terminology, in large part because I can never

remember it. A more important point is that the form of (2.6) is essentially fixed once

you remember that the index on Xµ sits up rather than down.

What Is It Tangent To?

So far, we haven’t really explained where the name “tangent vector” comes from. Con-

sider a smooth curve in M that passes through the point p. This is a map σ : I →M ,

with I an open interval I ⊂ R. We will parameterise the curve as σ(t) such that

σ(0) = p ∈M .
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p

Figure 17: The tangent space at a point p.

With a given chart, this curve becomes ϕ ◦ σ : R 7→ Rn, parameterised by xµ(t).

Before we learned any differential geometry, we would say that the tangent vector to

the curve at t = 0 is

Xµ =
dxµ(t)

dt

∣∣∣∣
t=0

But we can take these to be the components of the tangent vector Xp, which we define

as

Xp =
dxµ(t)

dt

∣∣∣∣
t=0

∂

∂xµ

∣∣∣∣
p

Our tangent vector now acts on functions f ∈ C∞(M). It is telling us how fast any

function f changes as we move along the curve.

Any tangent vector Xp can be written in this form. This gives meaning to the term

“tangent space” for Tp(M). It is, literally, the space of all possible tangents to curves

passing through the point p. For example, a two dimensional manifold, embedded in

R3 is shown in Figure 17. At each point p, we can identify a vector space which is the

tangent plane: this is Tp(M).

As an aside, note that the mathematical definition of a tangent space makes no

reference to embedding the manifold in some higher dimensional space. The tangent

space is an object intrinsic to the manifold itself. (This is in contrast to the picture

where it was unfortunately necessary to think about the manifold as embedded in R3.)

The tangent spaces Tp(M) and Tq(M) at different points p ̸= q are different. There’s

no sense in which we can add vectors from one to vectors from the other. In fact, at

this stage there’s no way to even compare vectors in Tp(M) to vectors in Tq(M). They

are simply different spaces. As we proceed, we will make some effort to figure ways to

get around this.

– 61 –



2.2.2 Vector Fields

So far we have only defined tangent vectors at a point p. It is useful to consider an

object in which there is a choice of tangent vector for every point p ∈ M . In physics,

we call objects that vary over space fields.

A vector field X is defined to be a smooth assignment of a tangent vector Xp to each

point p ∈M . This means that if you feed a function to a vector field, then it spits back

another function, which is the differentiation of the first. In symbols, a vector field is

therefore a map X : C∞(M) → C∞(M). The function X(f) is defined by(
X(f)

)
(p) = Xp(f)

The space of all vector fields on M is denoted X(M).

Given a coordinate basis, we can expand any vector field as

X = Xµ ∂

∂xµ
(2.7)

where the Xµ are now smooth functions on M .

Strictly speaking, the expression (2.7) only defines a vector field on the open set

O ⊂ M covered by the chart, rather than the whole manifold. We may have to patch

this together with other charts to cover all of M .

The Commutator

Given two vector fields X, Y ∈ X(M), we can’t multiply them together to get a new

vector field. Roughly speaking, this is because the product XY is a second order

differential operator rather than a first order operator. This reveals itself in a failure

of Leibnizarity for the object XY ,

XY (fg) = X(fY (g) + Y (f)g) = X(f)Y (g) + fXY (g) + gXY (f) +X(g)Y (f)

This is not the same as fXY (g) + gXY (f) that Leibniz requires.

However, we can build a new vector field by taking the commutator [X, Y ], which

acts on functions f as

[X, Y ](f) = X(Y (f))− Y (X(f))
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This is also known as the Lie bracket. Evaluated in a coordinate basis, the commutator

is given by

[X, Y ](f) = Xµ ∂

∂xµ

(
Y ν ∂f

∂xν

)
− Y µ ∂

∂xµ

(
Xν ∂f

∂xν

)
=

(
Xµ∂Y

ν

∂xµ
− Y µ∂X

ν

∂xµ

)
∂f

∂xν

This holds for all f ∈ C∞(M), so we’re at liberty to write

[X, Y ] =

(
Xµ∂Y

ν

∂xµ
− Y µ∂X

ν

∂xµ

)
∂

∂xν
(2.8)

It is not difficult to check that the commutator obeys the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

This ensures that the set of all vector fields on a manifold M has the mathematical

structure of a Lie algebra.

2.2.3 Integral Curves

There is a slightly different way of thinking about vector fields on a manifold. A flow

on M is a one-parameter family of diffeomorphisms σt : M → M labelled by t ∈ R.

These maps have the properties that σt=0 is the identity map, and σs◦σt = σs+t. These

two requirements ensure that σ−t = σ−1
t . Such a flow gives rise to streamlines on the

manifold. We will further require that these streamlines are smooth.

We can then define a vector field by taking the tangent to the streamlines at each

point. In a given coordinate system, the components of the vector field are

Xµ(xµ(t)) =
dxµ(t)

dt
(2.9)

where I’ve abused notation a little and written xµ(t) rather than the more accurate but

cumbersome xµ(σt). This will become a habit, with the coordinates xµ often used to

refer to the point p ∈M .

A flow gives rise to a vector field. Alternatively, given a vector field Xµ(x), we can

integrate the differential equation (2.9), subject to an initial condition xµ(0) = xµinitial to

generate streamlines which start at xµinitial. These streamlines are called integral curves,

generated by X.
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Figure 18: Flows on a sphere. Figure 19: Flows in the plane.

In what follows, we will only need the infinitesimal flow generated by X. This is

simply

xµ(t) = xµ(0) + tXµ(x) +O(t2) (2.10)

Indeed, differentiating this obeys (2.9) to leading order in t.

(An aside: Given a vector field X, it may not be possible to integrate (2.9) to

generate a flow defined for all t ∈ R. For example, consider M = R with the vector

field X = x2. The equation dx/dt = x2, subject to the initial condition x(0) = a, has

the unique solution x(t) = a/(1 − at) which diverges at t = 1/a. Vector fields which

generate a flow for all t ∈ R are called complete. It turns out that all vector fields on a

manifold M are complete if M is compact. Roughly speaking, “compact” means that

M doesn’t “stretch to infinity”. More precisely, a topological space M is compact if,

for any family of open sets covering M there always exists a finite sub-family which

also cover M . So R is not compact because the family of sets {(−n, n), n ∈ Z+} covers

R but has no finite sub-family. Similarly, Rn is non-compact. However, Sn and Tn are

compact manifolds.)

We can look at some examples.

• Consider the sphere S2 in polar coordinates with the vector field X = ∂ϕ. The

integral curves solve the equation (2.9), which are

dϕ

dt
= 1 and

dθ

dt
= 0
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This has the solution θ = θ0 and ϕ = ϕ0 + t. The associated one-parameter

diffeomorphism is σt : (θ, ϕ) → (θ, ϕ + t), and the flow lines are simply lines of

constant latitude on the sphere and are shown in the left-hand figure.

• Alternatively, consider the vector field on R2 with Cartesian components Xµ =

(1, x2). The equation for the integral curves is now

dx

dt
= 1 and

dy

dt
= x2

which has the solution x(t) = x0 + t and y(t) = y0 +
1
3
(x0 + t)3. The associated

flow lines are shown in the right-hand figure.

2.2.4 The Lie Derivative

So far we have learned how to differentiate a function. This requires us to introduce a

vector field X, and the new function X(f) can be viewed as the derivative of f in the

direction of X.

Next we ask: is it possible to differentiate a vector field? Specifically, suppose that

we have a second vector field Y . How can we differentiate this in the direction of X

to get a new vector field? As we’ve seen, we can’t just write down XY because this

doesn’t define a new vector field.

To proceed, we should think more carefully about what differentiation means. For a

function f(x) on R, we compare the values of the function at nearby points, and see

what happens as those points approach each other

df

dx
= lim

t→0

f(x+ t)− f(x)

t

Similarly, to differentiate a vector field, we need to subtract the tangent vector Yp ∈
Tp(M) from the tangent vector at some nearby point Yq ∈ Tq(M), and then see what

happens in the limit q → p. But that’s problematic because, as we stressed above, the

vector spaces Tp(M) and Tq(M) are different, and it makes no sense to subtract vectors

in one from vectors in the other. To make progress, we’re going to have to find a way

to do this. Fortunately, there is a way.

Push-Foward and Pull-Back

Suppose that we have a map φ : M → N between two manifolds M and N which we

will take to be a diffeomorphism. This allows us to import various structures on one

manifold to the other.
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For example, if we have a function on f : N → R, then we can construct a new

function that we denote (φ∗f) :M → R,

(φ∗f)(p) = f(φ(p))

Using the map in this way, to drag objects originally defined on N onto M is called

the pull-back. If we introduce coordinates xµ on M and yα on N , then the map φ(x) =

yα(x), and we can write

(φ∗f)(x) = f(y(x))

Some objects more naturally go the other way. For example, given a vector field Y on

M , we can define a new vector field (φ∗Y ) on N . If we are given a function f : N → R,

then the vector field (φ∗Y ) on N acts as

(φ∗Y )(f) = Y (φ∗f)

where I’ve been a little sloppy in the notation here since the left-hand side is a function

onN and the right-hand side a function onM . The equality above holds when evaluated

at the appropriate points: [(φ∗Y )(f)](φ(p)) = [Y (φ∗f)](p). Using the map to push

objects on M onto N is called the push-forward.

If Y = Y µ∂/∂xµ is the vector field on M , we can write the induced vector field on

N as

(φ∗Y )(f) = Y µ∂f(y(x))

∂xµ
= Y µ∂y

α

∂xµ
∂f(y)

∂yα

Written in components, (φ∗Y ) = (φ∗Y )α∂/∂yα, we then have

(φ∗Y )α = Y µ∂y
α

∂xµ
(2.11)

Given the way that the indices are contracted, this is more or less the only thing we

could write down.

We’ll see other examples of these induced maps later in the lectures. The push-

forward is always denoted as φ∗ and goes in the same way as the original map. The

pull-back is always denoted as φ∗ and goes in the opposite direction to the original

map. Importantly, if our map φ : M → N is a diffeomorphism, then we also have

φ−1 : N → M , so we can transport any object from M to N and back again with

impunity.
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∗

Figure 20: To construct the Lie derivative, we use the push-forward (σ−t)⋆ to map the

vector Yσt(p) back to p. The resulting vector, shown in red, is ((σ−t)⋆Y )p.

Constructing the Lie Derivative

Now we can use these ideas to help build a derivative. Suppose that we are given a

vector field X on M . This generates a flow σt : M → M , which is a map between

manifolds, now with N = M . This means that we can use (2.11) to generate a push-

forward map from Tp(M) to Tσt(p)(M). But this is exactly what we need if we want to

compare tangent vectors at neighbouring points. The resulting differential operator is

called the Lie derivative and is denoted LX .

It will turn out that we can use these ideas to differentiate many different kinds

of objects. As a warm-up, let’s first see how an analogous construction allows us to

differentiate functions. Now the function

LXf = lim
t→0

f(σt(x))− f(x)

t
=
df(σt(x))

dt

∣∣∣∣
t=0

=
∂f

∂xµ
dxµ

dt

∣∣∣∣
t=0

But, using (2.9), we know that dxµ/dt = Xµ. We then have

LXf = Xµ(x)
∂f

∂xµ
= X(f) (2.12)

In other words, acting on functions with the Lie derivative LX coincides with action of

the vector field X.

Now let’s look at the action of LX on a vector field Y . This is defined by

LXY = lim
t→0

((σ−t)∗Y )p − Yp
t

Note the minus sign in σ−t. This reflects that fact that vector fields are pushed, rather

than pulled. The map σt takes us from the point p to the point σt(p). But to push
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a tangent vector Yσt(p) ∈ Tσt(p)(M) to a tangent vector in Tp(M), where it can be

compared to Yp, we need to push with the inverse map (σ−t)∗. This is shown Figure

20.

Let’s first calculate the action of LX on a coordinate basis ∂µ = ∂/∂xµ. We have

LX∂µ = lim
t→0

(σ−t)∗∂µ − ∂µ
t

(2.13)

We have an expression for the push-forward of a tangent vector in (2.11), where the

coordinates yα on N should now be replaced by the infinitesimal change of coordinates

induced by the flow σ−t which, from (2.10) is xµ(t) = xµ(0)−tXµ+ . . .. Note the minus

sign, which comes from the fact that we have to map back to where we came from as

shown in Figure 20. We have, for small t,

(σ−t)∗∂µ =

(
δνµ − t

∂Xν

∂xµ
+ . . .

)
∂ν

Acting on a coordinate basis, we then have

LX∂µ = −∂X
ν

∂xµ
∂ν (2.14)

To determine the action of LX on a general vector field Y , we use the fact that the Lie

derivative obeys the usual properties that we expect of a derivative, including linearity,

LX(Y1 + Y2) = LXY1 + LXY2 and Leibnizarity LX(fY ) = fLXY + (LXf)Y for any

function f , both of which follow from the definition. The action on a general vector

field Y = Y µ(x)∂/∂xµ can then be written as

LX(Y
µ∂µ) = (LXY

µ)∂µ + Y µ(LX∂µ)

where we’ve simply viewed the components Y µ(x) as n functions. We can use (2.12)

to determine LXY
µ and we’ve computed LX∂µ in (2.14). We then have

LX(Y
µ∂µ) = Xν ∂Y

µ

∂xν
∂µ − Y µ∂X

ν

∂xµ
∂ν

But this is precisely the structure of the commutator. We learn that the Lie derivative

acting on vector fields is given by

LXY = [X, Y ]

A corollary of this is

LXLYZ − LYLXZ = L[X,Y ]Z (2.15)

which follows from the Jacobi identity for commutators.
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The Lie derivative is just one of several derivatives that we will meet in this course.

As we introduce new objects, we will learn how to act with LX on them. But we will

also see that we can endow different meanings to the idea of differentiation. In fact,

the Lie derivative will take something of a back seat until Section 4.3 when we will see

that it is what we need to understand symmetries.

2.3 Tensors

For any vector space V , the dual vector space V ∗ is the space of all linear maps from

V to R.

This is a standard mathematical construction, but even if you haven’t seen it before

it should resonate with something you know from quantum mechanics. There we have

states in a Hilbert space with kets |ψ⟩ ∈ H and a dual Hilbert space with bras ⟨ϕ| ∈ H∗.

Any bra can be viewed as a map ⟨ϕ| : H → R defined by ⟨ϕ|(|ψ⟩) = ⟨ϕ|ψ⟩.

In general, suppose that we are given a basis {eµ, µ = 1, . . . , n} of V . Then we can

introduce a dual basis {fµ, µ = 1, . . . , n} for V ∗ defined by

f ν(eµ) = δνµ

A general vector in V can be written as X = Xµeµ and f ν(X) = Xµf ν(eµ) = Xν .

Given a basis, this construction provides an isomorphism between V and V ∗ given by

eµ → fµ. But the isomorphism is basis dependent. Pick a different basis, and you’ll

get a different map.

We can repeat the construction and consider (V ∗)∗, which is the space of all linear

maps from V ∗ to R. But this space is naturally isomorphic to V , meaning that the

isomorphism is independent of the choice of basis. To see this, suppose that X ∈ V

and ω ∈ V ∗. This means that ω(X) ∈ R. But we can equally as well view X ∈ (V ∗)∗

and define X(ω) = ω(X) ∈ R. In this sense, (V ∗)∗ = V .

2.3.1 Covectors and One-Forms

At each point p ∈M , we have a vector space Tp(M). The dual of this space, T ∗
p (M) is

called the cotangent space at p, and an element of this space is called a cotangent vector,

sometimes shortened to covector. Given a basis {eµ} of Tp(M), we can introduce the

dual basis {fµ} for T ∗
p (M) and expand any co-vector as ω = ωµf

µ.

We can also construct fields of cotangent vectors, by picking a member of T ∗
p (M)

for each point p in a smooth manner. Such a cotangent field is better known as a

one-form; they map vector fields to real numbers. The set of all one-forms on M is

denoted Λ1(M).
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There is a particularly simple way to construct a one-form. Take a function f ∈
C∞(M) and define df ∈ Λ1(M) by

df(X) = X(f) (2.16)

We can use this method to build a basis for Λ1(M). We introduce coordinates xµ on

M with the corresponding coordinate basis eµ = ∂/∂xµ of vector fields, which we often

write in shorthand as ∂/∂xµ ≡ ∂µ. We then simply take the functions f = xµ which,

from (2.16), gives

dxµ(∂ν) = ∂ν(x
µ) = δµν

This means that fµ = dxµ provides a basis for Λ1(M), dual to the coordinate basis

∂/∂µ. In general, an arbitrary one-form ω ∈ Λ1(M) can then be expanded as

ω = ωµ dx
µ

In such a basis the one-form df takes the form

df =
∂f

∂xµ
dxµ (2.17)

To see this, we simply need to evaluate

df(X) =
∂f

∂xµ
dxµ(Xν∂ν) = Xµ ∂f

∂xµ
= X(f)

which agrees with the expected answer (2.16).

As with vector fields, we can look at what happens if we change coordinates. Given

two different charts, ϕ = (x1, . . . , xn) and ϕ̃ = (x̃1, . . . , x̃n), we know that the basis for

vector fields changes as (2.5),

∂

∂x̃µ
=
∂xν

∂x̃µ
∂

∂xν

We should take the basis of one-forms to transform in the inverse manner,

dx̃µ =
∂x̃µ

∂xν
dxν (2.18)

This then ensures that

dx̃µ
(

∂

∂x̃ν

)
=
∂x̃µ

∂xρ
dxρ

(
∂xσ

∂x̃ν
∂

∂xσ

)
=
∂x̃µ

∂xρ
∂xσ

∂x̃ν
dxρ

(
∂

∂xσ

)
=
∂x̃µ

∂xρ
∂xσ

∂x̃ν
δρσ
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But this is just the multiplication of a matrix and its inverse,

∂x̃µ

∂xρ
∂xρ

∂x̃ν
= δµν

So we find that

dx̃µ
(

∂

∂x̃ν

)
= δµν

as it should. We can then expand a one-form ω in either of these two bases,

ω = ωµdx
µ = ω̃µdx̃

µ with ω̃µ =
∂xν

∂x̃µ
ων (2.19)

In the annoying terminology that I can never remember, components of vectors that

transform this way are said to be covariant. Note that, as with vector fields, the

placement of the indices means that (2.18) and (2.19) are pretty much the only things

that you can write down that make sense.

2.3.2 The Lie Derivative Revisited

In Section 2.2.4, we explained how to construct the Lie derivative, which differentiates

a vector field in the direction of a second vector field X. This same idea can be adapted

to one-forms.

Under a map φ :M → N , we saw that a vector field X onM can be pushed forwards

to a vector field φ∗X on N . In contrast, one-forms go the other way: given a one-form

ω on N , we can pull this back to a one-form (φ∗ω) on M , defined by

(φ∗ω)(X) = ω(φ∗X)

If we introduce coordinates xµ onM and yα on N then the components of the pull-back

are given by

(φ∗ω)µ = ωα
∂yα

∂xµ
(2.20)

We now define the Lie derivative LX acting on one-forms. Again, we use X to generate

a flow σt : M → M which, using the pull-back, allows us to compare one-forms at

different points. We will denote the cotangent vector ω(p) as ωp. The Lie derivative of

a one-form ω is then defined as

LXω = lim
t→0

(σ∗
tω)p − ωp

t
(2.21)
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Note that we pull-back with the map σt. This is to be contrasted with (2.13) where

we pushed forward the tangent vector with the map σ−t and, as we now show, this

difference in minus sign manifests itself in the expression for the Lie derivative. The

infinitesimal map σt acts on coordinates as xµ(t) = xµ(0) + tXµ + . . . so, from (2.20),

the pull-back of a basis vector dxµ is

σ∗
t dx

µ =

(
δµν + t

∂Xµ

∂xν
+ . . .

)
dxν

Acting on the coordinate basis, we then have

LX(dx
µ) =

∂Xµ

∂xν
dxν

which indeed differs by a minus sign from the corresponding result (2.14) for tangent

vectors. Acting on a general one-form ω = ωµdx
µ, the Lie derivative is

LXω = (LXωµ)dx
µ + ωνLX(dx

ν)

= (Xν∂νωµ + ων∂µX
ν) dxµ (2.22)

We’ll return to discuss one-forms (and other forms) more in Section 2.4.

2.3.3 Tensors and Tensor Fields

A tensor of rank (r, s) at a point p ∈M is defined to be a multi-linear map

T :

r︷ ︸︸ ︷
T ∗
p (M)× . . .× T ∗

p (M)×
s︷ ︸︸ ︷

Tp(M)× . . .× Tp(M) → R

Such a tensor is said to have total rank r + s.

We’ve seen some examples already. A cotangent vector in T ∗
p (M) is a tensor of type

(0, 1), while a tangent vector in Tp(M) is a tensor of type (1, 0) (using the fact that

Tp(M) = T ∗∗
p (M)).

As before, we define a tensor field to be a smooth assignment of an (r, s) tensor to

every point p ∈M .

Given a basis {eµ} for vector fields and a dual basis {fµ} for one-forms, the compo-

nents of the tensor are defined to be

T µ1...µr
ν1...νs = T (fµ1 , . . . , fµr , eν1 , . . . , eµs)

Note that we deliberately write the string of lower indices after the upper indices. In

some sense this is unnecessary, and we don’t lose any information by writing T µ1...µr
ν1...νs

.

Nonetheless, we’ll see later that it’s a useful habit to get into.
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On a manifold of dimension n, there are nr+s such components. For a tensor field,

each of these is a function over M .

As an example, consider a rank (2, 1) tensor. This takes two one-forms, say ω and

η, together with a vector field X, and spits out a real number. In a given basis, this

number is

T (ω, η,X) = T (ωµf
µ, ηνf

ν , Xρeρ) = ωµηνX
ρ T (fµ, f ν , eρ) = T µν

ρ ωµηνX
ρ

Every manifold comes equipped with a natural (1, 1) tensor called δ. This takes a

one-form ω and a vector field X and spits out the real number

δ(ω,X) = ω(X) ⇒ δ(fµ, eν) = fµ(eν) = δµν

which is simply the Kronecker delta.

As with vector fields and one-forms, we can ask how the components of a tensor

transform. We will work more generally than before. Consider two bases for the vector

fields, {eµ} and {ẽµ}, not necessarily coordinate bases, related by

ẽν = Aµ
νeµ

for some invertible matrix A. The respective dual bases are {fµ} and {f̃µ} are then

related by

f̃ρ = Bρ
σf

σ

such that

f̃ρ(ẽν) = Aµ
νB

ρ
σf

σ(eµ) = Aµ
νB

ρ
µ = δρν ⇒ Bρ

µ = (A−1)ρµ

The lower components of a tensor then transform by multiplying by A, and the up-

per components by multiplying by B = A−1. So, for example, a rank (1, 2) tensor

transforms as

T̃ µ
ρν = Bµ

σA
τ
ρA

λ
νT

σ
τλ (2.23)

When we change between coordinate bases, we have

Aµ
ν =

∂xµ

∂x̃ν
and Bµ

ν = (A−1)µν =
∂x̃µ

∂xν

You can check that this coincides with our previous results (2.6) and (2.19).

– 73 –



Operations on Tensor Fields

There are a number of operations that we can do on tensor fields to generate further

tensors.

First, we can add and subtract tensors fields, or multiply them by functions. This is

the statement that the set of tensors at a point p ∈M forms a vector space.

Next, there is a way to multiply tensors together to give a tensor of a different type.

Given a tensor S of rank (p, q) and a tensor T of rank (r, s), we can form the tensor

product, S ⊗ T which a new tensor of rank (p+ r, q + s), defined by

S ⊗ T (ω1, . . . , ωp, η1, . . . , ηr, X1, . . . Xq, Y1, . . . , Ys)

= S(ω1, . . . , ωp, X1, . . . Xq)T (η1, . . . , ηr, Y1, . . . , Ys)

In terms of components, this reads

(S ⊗ T )µ1...µpν1...νr
ρ1...ρqσ1...σs

= Sµ1...µp
ρ1...ρqT

ν1...νr
σ1...σs (2.24)

Given an (r, s) tensor T , we can also construct a tensor of lower rank (r − 1, s − 1)

by contraction. To do this, simply replace one of T ∗
p (M) entries with a basis vector

fµ, and the corresponding Tp(M) entry with the dual vector eµ and then sum over

µ = 1, . . . , n. So, for example, given a rank (2, 1) tensor T we can construct a rank

(1, 0) tensor S by

S(ω) = T (ω, fµ, eµ)

Alternatively, we could construct a (typically) different (1, 0) tensor by contracting the

other argument, S ′(ω) = T (fµ, ω, eµ). Written in terms of components, contraction

simply means that we put an upper index equal to a lower index and sum over them,

Sµ = T µν
ν and S ′µ = T νµ

ν

Our next operation is symmetrisation and anti-symmetrisation. For example, given a

(0, 2) tensor T we decompose it into two (0, 2) tensors, in which the arguments are

either symmetrised or anti-symmetrised,

S(X, Y ) =
1

2

(
T (X, Y ) + T (Y,X)

)
A(X, Y ) =

1

2

(
T (X, Y )− T (Y,X)

)
In index notation, this becomes

Sµν =
1

2
(Tµν + Tνµ) and Aµν =

1

2
(Tµν − Tνµ)
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which is just like taking the symmetric and anti-symmetric part of a matrix. We will

work with these operations frequently enough to justify introducing some new notation.

We define

T(µν) =
1

2
(Tµν + Tνµ) and T[µν] =

1

2
(Tµν − Tνµ)

These operations generalise to other tensors. For example,

T (µν)ρ
σ =

1

2

(
T µνρ

σ + T νµρ
σ

)
We can also symmetrise or anti-symmetrise over multiple indices, provided that these

indices are either all up or all down. If we (anti)-symmetrise over p objects, then we

divide by p!, which is the number of possible permutations. This normalisation ensures

that if we start with a tensor which is already, say, symmetric then further symmetrising

doesn’t affect it. In the case of anti-symmetry, we weight each term with the sign of

the permutation. So, for example,

T µ
(νρσ) =

1

3!

(
T µ

νρσ + T µ
ρνσ + T µ

ρσν + T µ
σρν + T µ

σνρ + T µ
νσρ

)
and

T µ
[νρσ] =

1

3!

(
T µ

νρσ − T µ
ρνσ + T µ

ρσν − T µ
σρν + T µ

σνρ − T µ
νσρ

)
There will be times when, annoyingly, we will wish to symmetrise (or anti-symmetrise)

over indices which are not adjacent. We introduce vertical bars to exclude certain

indices from the symmetry procedure. So, for example,

T µ
[ν|ρ|σ] =

1

2
(T µ

νρσ − T µ
σρν)

Finally, given a smooth tensor field T of any rank, we can always take the Lie derivative

with respect to a vector field X. As we’ve seen previously, under a map φ : M → N ,

vector fields are pushed forwards and one-forms are pulled-back. In general, this leaves

a tensor of mixed type unsure where to go. However, if φ is a diffeomorphism then we

also have φ−1 : N → M and this allows us to define the push-forward of a tensor T

from M to N . This acts on one-forms ω ∈ Λ1(N) and vector fields X ∈ X(N) and is

given by

(φ∗T )(ω1, . . . , ωr, X1, . . . , Xs) = T (φ∗ω1, . . . , φ
∗ωr, (φ

−1
∗ X1), . . . , (φ

−1
∗ Xs))

Here φ∗ω are the pull-backs of ω from N to M , while φ−1
∗ X are the push-forwards of

X from N to M .
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The Lie derivative of a tensor T along X is then defined as

LXT = lim
t→0

((σ−t)∗T )p − Tp
t

where σt is the flow generated by X. This coincides with our earlier definitions for

vector fields in (2.13) and for one-forms in (2.21). (The difference in the σ−t vs σt
minus sign in (2.13) and (2.21) is now hiding in the inverse push-forward φ−1

∗ that

appears in the definition φ∗T .)

2.4 Differential Forms

Some tensors are more interesting than others. A particularly interesting class are

totally anti-symmetric (0, p) tensors fields. These are called p-forms. The set of all

p-forms over a manifold M is denoted Λp(M).

We’ve met some forms before. A 0-form is simply a function. Meanwhile, as we

saw previously, a 1-form is another name for a covector. The anti-symmetry means

that we can’t have any form of degree p > n = dim(M). A p-form has
(
n
p

)
different

components. Forms in Λn(M) are called top forms.

Given a p-form ω and a q-form η, we can take the tensor product (2.24) to construct a

(p+q)-tensor. If we anti-symmetrise this, we then get a (p+q)-form. This construction

is called the wedge product, and is defined by

(ω ∧ η)µ1...µpν1...νq =
(p+ q)!

p!q!
ω[µ1...µpην1...νq ]

where the [. . .] in the subscript tells us to anti-symmetrise over all indices. For example,

given ω, η ∈ Λ1(M), we can construct a 2-form

(ω ∧ η)µν = ωµην − ωνηµ

For one forms, the anti-symmetry ensures that ω ∧ ω = 0. In general, if ω ∈ Λp(M)

and η ∈ Λq(M), then one can show that

ω ∧ η = (−1)pqη ∧ ω

This means that ω ∧ ω = 0 for any form of odd degree. We can, however, wedge even

degree forms with themselves. (Which you know already for 0-forms where the wedge

product is just multiplication of functions.)
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As a more specific example, consider M = R3 and ω = ωµdx
µ and η = ηµdx

µ. We

then have

ω ∧ η = (ω1dx
1 + ω2dx

2 + ω3dx
3) ∧ (η1dx

1 + η2dx
2 + η3dx

3)

= (ω1η2 − ω2η1)dx
1 ∧ dx2 + (ω2η3 − ω3η2)dx

2 ∧ dx3 + (ω3η1 − ω1η3)dx
3 ∧ dx1

Notice that the components that arise are precisely those of the cross-product acting

on vectors in R3. This is no coincidence: what we usually think of as the cross-product

between vectors is really a wedge product between forms. We’ll have to wait to Section

3 to understand how to map from one to the other.

It can also be shown that the wedge product is associative, meaning

ω ∧ (η ∧ λ) = (ω ∧ η) ∧ λ

We can then drop the brackets in any such product.

Given a basis {fµ} of Λ1(M), a basis of Λp(M) can be constructed by wedge products

{fµ1 ∧ . . . ∧ fµp}. We will usually work with the coordinate basis {dxµ}. This means

that any p-form ω can be written locally as

ω =
1

p!
ωµ1...µp dx

µ1 ∧ . . . ∧ dxµp (2.25)

Although locally any p-form can be written as (2.25), this may not be true globally.

This, and related issues, will become of some interest in Section 2.4.3.

2.4.1 The Exterior Derivative

We learned in Section 2.3.1 how to construct a one-form df from a function f . In a

coordinate basis, this one-form has components (2.17),

df =
∂f

∂xµ
dxµ

We can extend this definition to higher forms. The exterior derivative is a map

d : Λp(M) → Λp+1(M)

In local coordinates (2.25), the exterior derivative acts as

(dω) =
1

p!

∂ωµ1...µp

∂xν
dxν ∧ dxµ1 ∧ . . . ∧ dxµp (2.26)
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Equivalently we have

(dω)µ1...µp+1 = (p+ 1) ∂[µ1ωµ2...µp+1] (2.27)

Importantly, if we subsequently act with the exterior derivative again, we get

d(dω) = 0

because the derivatives are anti-symmetrised and hence vanish. This holds true for any

p-form, a fact which is sometimes expressed as

d2 = 0

It can be shown that the exterior derivative satisfies a number of further properties,

• d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη, where ω ∈ Λp(M).

• d(φ∗ω) = φ∗(dω) where φ∗ is the pull-back associated to the map between mani-

folds, φ :M → N

• Because the exterior derivative commutes with the pull-back, it also commutes

with the Lie derivative. This ensures that we have d(LXω) = LX(dω).

A p-form ω is said to be closed if dω = 0 everywhere. It is exact if ω = dη everywhere

for some η. Because d2 = 0, an exact form is necessary closed. The question of when

the converse is true is interesting: we’ll discuss this more in Section 2.4.3.

Examples

Suppose that we have a one-form ω = ωµdx
µ, the exterior derivative gives a 2-form

(dω)µν = ∂µων − ∂νωµ ⇒ dω =
1

2
(∂µων − ∂νωµ)dx

µ ∧ dxν

As a specific example of this example, suppose that we take the one-form to live on

R3, with

ω = ω1dx
1 + ω2dx

2 + ω3dx
3

Since this is a field, each of the components ωµ is a function of x1, x2 and x3. The

exterior derivative is given by

dω = ∂2ω1 dx
2 ∧ dx1 + ∂3ω1 dx

3 ∧ dx1 + ∂1ω2 dx
1 ∧ dx2

+∂3ω2 dx
3 ∧ dx2 + ∂1ω3 dx

1 ∧ dx3 + ∂2ω3 dx
2 ∧ dx3 (2.28)

= (∂1ω2 − ∂2ω1)dx
1 ∧ dx2 + (∂2ω3 − ∂3ω2)dx

2 ∧ dx3 + (∂3ω1 − ∂1ω3)dx
3 ∧ dx1

Notice that there’s no term like ∂1ω1 because this would come with a dx1 ∧ dx1 = 0.
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In the olden days (before this course), we used to write vector fields in R3 as ω =

(ω1, ω2, ω3) and compute the curl ∇×ω. But the components of the curl are precisely

the components that appear in dω. In fact, our “vector” ω was really a one-form and

the curl turned it into a two-form. It’s a happy fact that in R3, vectors, one-forms and

two-forms all have three components, which allowed us to conflate them in our earlier

courses. (In fact, there is a natural map between them that we will meet in Section 3.)

Suppose instead that we start with a 2-form B in R3, which we write as

B = B1 dx
2 ∧ dx3 +B2 dx

3 ∧ dx1 +B3 dx
1 ∧ dx2

Taking the exterior derivative now gives

dB = ∂1B1 dx
1 ∧ dx2 ∧ dx3 + ∂2B2 dx

2 ∧ dx3 ∧ dx1 + ∂3B3 dx
3 ∧ dx1 ∧ dx2

= (∂1B1 + ∂2B2 + ∂3B3) dx
1 ∧ dx2 ∧ dx3 (2.29)

This time there is just a single component, but again it’s something familiar. Had we

written the original three components of the two-form in old school vector notation

B = (B1, B2, B3), then the single component of dB is what we previously called ∇ ·B.

The Lie Derivative Yet Again

There is yet another operation that we can construct on p-forms. Given a vector field

X ∈ X(M), we can construct the interior product, a map ιX : Λp(M) → Λp−1(M). If

ω ∈ Λp(M), we define a ιXω ∈ Λp−1(M) by

ιXω(Y1, . . . , Yp−1) = ω(X, Y1, . . . , Yp−1) (2.30)

In other words, we just put X in the first argument of ω. Acting on functions f , we

simply define ιXf = 0.

The anti-symmetry of forms means that ιXιY = −ιY ιX . Moreover, you can check

that

ιX(ω ∧ η) = ιXω ∧ η + (−1)pω ∧ ιXη

where ω ∈ Λp(M).

Consider a 1-form ω. There are two different ways to act with ιX and d to give us

back a one-form. These are

ιXdω = ιX
1

2
(∂µων − ∂νωµ)dx

µ ∧ dxν = Xµ∂µωνdx
ν −Xν∂µωνdx

µ
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and

dιXω = d(ωµX
µ) = Xµ∂νωµdx

ν + ωµ∂νX
µdxν

Adding the two together gives

(dιX + ιXd)ω = (Xµ∂µων + ωµ∂νX
µ)dxν

But this is exactly the same expression we saw previously when computing the Lie

derivative (2.22) of a one-form. We learn that

LXω = (dιX + ιXd)ω (2.31)

This expression is sometimes referred to as Cartan’s magic formula. A similar calcula-

tion shows that (2.31) holds for any p-form ω.

2.4.2 Forms You Know and Love

There are a number of examples of differential forms that you’ve met already, but likely

never called them by name.

The Electromagnetic Field

The electromagnetic gauge field Aµ = (ϕ,A) should really be thought of as the com-

ponents of a one-form on spacetime R4. (Here I’ve set c = 1.) We write

A = Aµ(x)dx
µ

Taking the exterior derivative yields a 2-form F = dA, given by

F =
1

2
Fµνdx

µ ∧ dxν =
1

2
(∂µAν − ∂νAµ)dx

µ ∧ dxν

But this is precisely the field strength Fµν = ∂µAν − ∂νAµ that we met in our lectures

on Electromagnetism. The components are the electric and magnetic fields, arranged

as

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 (2.32)

By construction, we also have dF = d2A = 0. In this context, this is sometimes called

the Bianchi identity; it yields two of the four Maxwell equations. In old school vector

calculus notation, these are ∇ ·B = 0 and ∇×E+ ∂B/∂t = 0. We need a little more

structure to get the other two as we will see later in this chapter.
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The gauge field A is not unique. Given any function α, we can always shift it by a

gauge transformation

A→ A+ dα ⇒ Aµ → Aµ + ∂µα

This leaves the field strength invariant because F → F + d(dα) = F .

Phase Space and Hamilton’s Equations

In classical mechanics, the phase space is a manifold M parameterised by coordinates

(qi, pj) where qi are the positions of particles and pj the momenta. Recall from our

lectures on Classical Dynamics that the Hamiltonian H(q, p) is a function on M , and

Hamilton’s equations are

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
(2.33)

Phase space also comes with a structure called a Poisson bracket, defined on a pair of

functions f and g as

{f, g} =
∂f

∂qj
∂g

∂pj
− ∂f

∂pj

∂g

∂qj

Then the time evolution of any function f can be written as

ḟ = {f,H}

which reproduces Hamilton’s equations if we take f = qi or f = pi.

Underlying this story is the mathematical structure of forms. The key idea is that

we have a manifold M and a function H on M . We want a machinery that turns the

function H into a vector field XH . Particles then follow trajectories in phase space that

are integral curves generated by XH .

To achieve this, we introduce a symplectic two-form ω on an even-dimensional mani-

fold M . This two form must be closed, dω = 0, and non-degenerate, which means that

the top form ω∧ . . .∧ω ̸= 0. We’ll see why we need these requirements as we go along.

A manifold M equipped with a symplectic two-form is called a symplectic manifold.

Any 2-form provides a map ω : Tp(M) → T ∗
p (M). Given a vector field X ∈ X(M),

we can simply take the interior product with ω to get a one-form ιXω. However, we

want to go the other way: given a function H, we can always construct a one-form

dH, and we’d like to exchange this for a vector field. We can do this if the map
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ω : Tp(M) → T ∗
p (M) is actually an isomorphism, so the inverse exists. This turns out

to be true provided that ω is non-degenerate. In this case, we can define the vector

field XH by solving the equation

ιXH
ω = −dH (2.34)

If we introduce coordinates xµ on the manifold, then the component form of this equa-

tion is

Xµ
Hωµν = −∂νH

We denote the inverse as ωµν = −ωνµ such that ωµνωνρ = δµρ . The components of the

vector field are then

Xµ
H = −ωνµ∂νH = ωµν∂νH

The integral curves generated by XH obey the differential equation (2.9)

dxµ

dt
= Xµ

H = ωµν∂νH

These are the general form of Hamilton’s equations. They reduce to our earlier form

(2.33) if we write xµ = (qi, pj) and choose the symplectic form to have block diagonal

form ωµν =
(

0 1

−1 0

)
.

To define the Poisson structure, we first note that we can repeat the map (2.34) to

turn any function f into a vector field Xf obeying ιXf
ω = −df . But we can then feed

these vector fields back into the original 2-form ω. This gives us a Poisson bracket,

{f, g} = ω(Xg, Xf ) = −ω(Xf , Xg)

Or, in components,

{f, g} = ωµν∂µf ∂νg

There are many other ways to write this Poisson bracket structure in invariant form.

For example, backtracking through various definitions we find

{f, g} = −ιXf
ω(Xg) = df(Xg) = Xg(f)

The equation of motion in Poisson bracket structure is then

ḟ = {f,H} = XH(f) = LXH
f

which tells us that the Lie derivative along XH generates time evolution.
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We haven’t yet explained why the symplectic two-form must be closed, dω = 0. You

can check that this is needed so that the Poisson bracket obeys the Jacobi identity.

Alternatively, it ensures that the symplectic form itself is invariant under Hamiltonian

flow, in the sense that LXH
ω = 0. To see this, we use (2.31)

LXH
ω = (dιXH

+ ιXH
d)ω = ιXH

dω

The second equality follows from the fact that dιXH
ω = −d(dH) = 0. If we insist that

dω = 0 then we find LXH
ω = 0 as promised.

Thermodynamics

The state space of a thermodynamic system is a manifold M . For the ideal gas, this is

a two-dimensional manifold with coordinates provided by, for example, the pressure p

and volume V . More complicated systems can have a higher dimensional state space,

but the dimension is always even since, like in classical mechanics, thermodynamical

variables come in conjugate pairs.

When we first learn the laws of thermodynamics, we have to make up some strange

new notation, −d, which then never rears its head again. For example, the first law of

thermodynamics is written as

dE = −dQ+ −dW

Here dE is the infinitesimal change of energy in the system. The first law of thermo-

dynamics, as written above, states that this decomposes into the heat flowing into the

system −dQ and the work done on the system −dW .

Why the stupid notation? Well, the energy E(p, q) is a function over the state space

M and this means that we can write the change of the energy dE = ∂E
∂p
dp + ∂E

∂V
dV .

But there is no such function Q(p, q) or W (p, q) and, correspondingly, −dQ and −dW
are not exact differentials. Indeed, we have −dW = −pdV and later, after we introduce

the second law, we learn that −dQ = TdS, with T the temperature and S the entropy,

both of which are functions over M .

This is much more natural in the language of forms. All of the terms in the first law

are one-forms. But the transfer of heat, −dQ and the work −dW are not exact one-forms

and so can’t be written as d(something). In contrast, dE is an exact one-form. That’s

what the −d notation is really telling us: it’s the way of denoting non-exact one-forms

before we had a notion of differential geometry.
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The real purpose of the first law of thermodynamics is to define the energy functional

E. The 18th century version of the statement is something like: “the amount of work

required to change an isolated system is independent of how the work is performed”. A

more modern rendering would be: “the sum of the work and heat is an exact one-form”.

2.4.3 A Sniff of de Rham Cohomology

The exterior derivative is a map which squares to zero, d2 = 0. It turns out that one

can have a lot of fun with such maps. We will now explore a little bit of this fun.

First a repeat of definitions we met already: a p-form is closed if dω = 0 everywhere.

A p-form is exact if ω = dη everywhere for some η. Because d2 = 0, exact implies

closed. However, the converse is not necessarily true. It turns out that the way in

which closed forms fail to be exact captures interesting facts about the topology of the

underlying manifold.

We’ve met this kind of question before. In electromagnetism, we have a magnetic

field B which obeys ∇ · B = 0. We then argue that this means we can write the

magnetic field as B = ∇×A. This is more properly expressed the language of forms.

We we saw in the previous section, the magnetic field is really a 2-form

B = B1 dx
2 ∧ dx3 +B2 dx

3 ∧ dx1 +B3 dx
1 ∧ dx2

We computed the exterior derivative in (2.29); it is

dB = (∂1B1 + ∂2B2 + ∂3B3) dx
1 ∧ dx2 ∧ dx3

We see that the Maxwell equation ∇ ·B = 0 is really the statement that B is a closed

two-form, obeying dB = 0. We also saw in (2.28) if we write B = dA for some one-form

A, then the components are given by B = ∇ × A. Clearly writing B = dA ensures

that dB = 0. But when is the converse true? We have the following statement (which

we leave unproven)

Theorem (The Poincaré Lemma): On M = Rn, closed implies exact.

Since we’ve spent a lot of time mapping manifolds toRn, this also has consequence for

a general manifoldM . It means that if ω is a closed p-form, then in any neighbourhood

O ⊂M it is always possible to find a η ∈ Λp−1(M) such that ω = dη on O. The catch

is that it may not be possible to find such an η everywhere on the manifold.
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An Example

Consider the one-dimensional manifold M = R. We can take a one-form ω = f(x)dx.

This is always closed because it is a top form. It is also exact. We introduce the

function

g(x) =

∫ x

0

dx′ f(x′)

Then ω = dg.

Now consider the topologically more interesting one-dimensional manifold S1, which

we can view as the phase eiθ ∈ C. We can introduce the form ω = dθ on S1. The way

its written makes it look like its an exact form, but this is an illusion because, as we

stressed in Section 2.1, θ is not a good coordinate everywhere on S1 because it’s not

single valued. Indeed, it’s simple to see that there is no single-valued function g(θ) on

S1 such that ω = dg. So on S1, we can construct a form which, locally, can be written

as dθ but globally cannot be written as d(something). So we have a form that is closed

but not exact.

Another Example

On M = R2, the Poincaré lemma ensures that all closed forms are exact. However,

things change if we remove a single point and consider R2 − {0, 0}. Consider the

one-form defined by

ω = − y

x2 + y2
dx+

x

x2 + y2
dy

This is not a smooth one-form on R2 because of the divergence at the origin. But

removing that point means that ω becomes acceptable. We can check that ω is closed,

dω = − ∂

∂y

(
y

x2 + y2

)
dy ∧ dx+ ∂

∂x

(
x

x2 + y2

)
dx ∧ dy = 0

where the = 0 follows from a little bit of algebra. ω is exact if we can find a function

f , defined everywhere on R2 − {0, 0} such that ω = df , which means

ω =
∂f

∂x
dx+

∂f

∂y
dy ⇒ ∂f

∂x
= − y

x2 + y2
and

∂f

∂y
=

x

x2 + y2

We can certainly integrate these equations; the result is

f(x, y) = tan−1
(y
x

)
+ constant

But this is not a smooth function everywhere on R2−{0, 0}. This means that we can’t,

in fact, write ω = df for a well defined function on R2−{0, 0}. We learn that removing

a point makes a big difference: now closed no longer implies exact.
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There is a similar story for R3. Indeed, this is how magnetic monopoles sneak back

into physics, despite being forbidden by the Maxwell equation ∇·B = 0. You can learn

more about this in the lectures on Gauge Theory.

Betti Numbers

We denote the set of all closed p-forms on a manifold M as Zp(M). Equivalently,

Zp(M) is the kernel of the map d : Λp(M) → Λp+1(M).

We denote the set of all exact p-forms on a manifold M as Bp(M). Equivalently,

Bp(M) is the range of d : Λp−1(M) → Λp(M).

The pth de Rham cohomology group is defined to be

Hp(M) = Zp(M)/Bp(M)

The quotient here is an equivalence class. Two closed forms ω, ω′ ∈ Zp(M) are said to

be equivalent if ω = ω′ + η for some η ∈ Bp(M). We say that ω and ω′ sit in the same

equivalence class [ω]. The cohomology group Hp(M) is the set of equivalence classes;

in other words, it consists of closed forms mod exact forms.

The Betti numbers Bp of a manifold M are defined as

Bp = dimHp(M)

It turns out that these are always finite. The Betti number B0 = 1 for any connected

manifold. This can be traced to the existence of constant functions which are clearly

closed but, because there are no p = −1 forms, are not exact. The higher Betti

numbers are non-zero only if the manifold has some interesting topology. Finally, the

Euler character is defined as the alternating sum of Betti numbers,

χ(M) =
∑
p

(−1)pBp (2.35)

Here are some simple examples. We’ve already seen that the circle S1 has a closed,

non-exact one-form. This means that B1 = 1 and χ = 0. The sphere Sn has only

Bn = 1 and χ = 1 + (−1)n. The torus Tn has Bp =
(
n
p

)
and χ = 0.
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2.4.4 Integration

We have learned how to differentiate on manifolds by using a vector field X. Now it

is time to learn how to integrate. It turns out that the things that we integrate on

manifolds are forms.

Integrating over Manifolds

To start, we need to orient ourselves. A volume form, or orientation on a manifold of

dimension dim(M) = n is a nowhere-vanishing top form v. Any top form has just a

single component and can be locally written as

v = v(x) dx1 ∧ . . . ∧ dxn

where we require v(x) ̸= 0. If such a top form exists everywhere on the manifold, then

M is said to be orientable.

The orientation is called right-handed if v(x) > 0 everywhere, and left-handed if

v(x) < 0 everywhere. Given one volume form v, we can always construct another by

multiplying by a function, giving ṽ = fv where f(x) > 0 everywhere or f(x) < 0

everywhere.

It’s not enough to just write down a volume form with v(x) ̸= 0 locally. We must

also ensure that we can patch these volume forms together over the manifold, without

the handedness changing. Suppose that we have two sets of coordinates, xµ and x̃µ

that overlap on some region. In the new coordinates, the volume form is given by

v = v(x)
∂x1

∂x̃µ1
dx̃µ1 ∧ . . . ∧ ∂xn

∂x̃µn
dx̃µn = v(x) det

(
∂xµ

∂x̃ν

)
dx̃1 ∧ . . . ∧ dx̃n

which has the same orientation provided

det

(
∂xµ

∂x̃ν

)
> 0 (2.36)

Non-orientable manifolds cannot be covered by overlapping charts such that (2.36)

holds. Examples include the Möbius strip and real projective space RPn for n even.

(In contrast RPn is orientable for n odd, and CPn is orientable for all n.) In these

lectures, we deal only with orientable manifolds.

Given a volume form v on M , we can integrate any function f : M → R over the

manifold. In a chart ϕ : O → U , with coordinates xµ, we have∫
O
fv =

∫
U

dx1 . . . dxn f(x)v(x)
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On the right-hand-side, we’re just doing normal integration over some part of Rn. The

volume form is playing the role of a measure, telling us how much to weight various

parts of the integral. To integrate over the entire manifold, we divide the manifold up

into different regions, each covered by a single chart. We then perform the integral over

each region and sum the results.

Integrating over Submanifolds

We don’t have to integrate over the full manifoldM . We can integrate over some lower

dimensional submanifold.

A manifold Σ with dimension k < n is a submanifold of M if we can find a map

ϕ : Σ → M which is one-to-one (which ensures that Σ doesn’t intersect itself in M)

and ϕ∗ : Tp(Σ) → Tϕ(p)(M) is one-to-one.

We can then integrate a k-form ω on M over a k-dimensional submanifold Σ. We do

this by pulling back the k-form to Σ and writing∫
ϕ(Σ)

ω =

∫
Σ

ϕ∗ω

For example, suppose that we have a one-form A living over M . If C is a one-

dimensional manifold, then we can introduce a map σ : C → M which defines a

non-intersecting, one-dimensional curve σ(C) which is a submanifold of M . We can

then pull-back A onto this curve and integrate to get∫
σ(C)

A =

∫
C

σ∗A

This probably looks more familiar in coordinates. If the curve traces out a path xµ(τ)

in M , we have ∫
C

σ∗A =

∫
dτ Aµ(x)

dxµ

dτ

But this is precisely the way the worldline of a particle couples to the electromagnetic

field, as we previously saw in (1.20).

2.4.5 Stokes’ Theorem

Until now, we have considered only smooth manifolds. There is a slight generali-

sation that will be useful. We define a manifold with boundary in the same way

as a manifold, except the charts map ϕ : O → U where U is an open subset of

Rn+ = {{x1, . . . , xn} such that xn ≥ 0}. The boundary has co-dimension 1 and is

denoted ∂M : it is the submanifold with coordinates xn = 0.
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Consider a manifold M with boundary ∂M . If the dimension of the manifold is

dim(M) = n then for any (n− 1)-form ω, we have the following simple result∫
M

dω =

∫
∂M

ω (2.37)

This is Stokes’ theorem.

We do not prove Stoke’s theorem here. The proof is fairly tedious, and does not differ

greatly from the proofs of other things that you’ve called Stokes’ theorem (or Gauss’

divergence theorem) in the past. (See, for example, the lectures on Vector Calculus.)

However, the wonderful thing about (2.37) is the way in which it unifies many results

in a single elegant formula. To see this, we simply need to look at a few examples.

The Mother of all Integral Theorems

First, consider n = 1 with M the interval I. We introduce coordinates x ∈ [a, b] on the

interval. The 0-form ω = ω(x) is simply a function and dω = (dω/dx)dx. In this case,

the two sides of Stokes’ theorem can be evaluated to give∫
M

dω =

∫ b

a

dω

dx
dx and

∫
∂M

ω = ω(b)− ω(a)

Equating the two, we see that Stokes’ theorem is simply a restatement of the funda-

mental theorem of calculus.

Next, we take M ⊂ R2 to be a manifold with boundary. We introduce a one-form

with coordinates

ω = ω1dx
1 + ω2dx

2 ⇒ dω =

(
∂ω2

∂x1
− ∂ω1

∂x2

)
dx1 ∧ dx2

In this case, the ingredients in Stokes’ theorem are∫
M

dw =

∫
M

(
∂ω2

∂x1
− ∂ω1

∂x2

)
dx1dx2 and

∫
∂M

ω =

∫
∂M

ω1dx
1 + ω2dx

2

Equating the two gives the result usually referred to as Green’s theorem in the plane.

Finally, consider M ⊂ R3 to be a manifold with boundary, with a 2-form

ω = ω1 dx
2 ∧ dx3 + ω2 dx

3 ∧ dx1 + ω3 dx
1 ∧ dx2

The right-hand-side of Stokes theorem is∫
∂M

ω1 dx
2dx3 + ω2 dx

3dx1 + ω3 dx
1dx2
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Meanwhile, we computed the exterior derivative of a 2-form in (2.29). The left-hand-

side of Stokes’ theorem then gives∫
M

dω =

∫
M

(∂1ω1 + ∂2ω2 + ∂3ω3) dx
1dx2dx3

This time, equating the two gives us Gauss’ divergence theorem.

We see that Stokes’ theorem, as written in (2.37), is the mother of all integral theo-

rems, packaging many famous results in a single formula. We’ll revisit this in Section

3.2.4 where we relate Stokes’ theorem to a more explicit form of the divergence theorem.

– 90 –



3. Introducing Riemannian Geometry

We have yet to meet the star of the show. There is one object that we can place on a

manifold whose importance dwarfs all others, at least when it comes to understanding

gravity. This is the metric.

The existence of a metric brings a whole host of new concepts to the table which,

collectively, are called Riemannian geometry. In fact, strictly speaking we will need a

slightly different kind of metric for our study of gravity, one which, like the Minkowski

metric, has some strange minus signs. This is referred to as Lorentzian Geometry

and a slightly better name for this section would be “Introducing Riemannian and

Lorentzian Geometry”. However, for our immediate purposes the differences are minor.

The novelties of Lorentzian geometry will become more pronounced later in the course

when we explore some of the physical consequences such as horizons.

3.1 The Metric

In Section 1, we informally introduced the metric as a way to measure distances between

points. It does, indeed, provide this service but it is not its initial purpose. Instead,

the metric is an inner product on each vector space Tp(M).

Definition: A metric g is a (0, 2) tensor field that is:

• Symmetric: g(X, Y ) = g(Y,X).

• Non-Degenerate: If, for any p ∈M , g(X, Y )
∣∣
p
= 0 for all Y ∈ Tp(M) thenXp = 0.

With a choice of coordinates, we can write the metric as

g = gµν(x) dx
µ ⊗ dxν

The object g is often written as a line element ds2 and this expression is abbreviated

as

ds2 = gµν(x) dx
µdxν

This is the form that we saw previously in (1.4). The metric components can be

extracted by evaluating the metric on a pair of basis elements,

gµν(x) = g

(
∂

∂xµ
,
∂

∂xν

)
The metric gµν is a symmetric matrix. We can always pick a basis eµ of each Tp(M) so

that this matrix is diagonal. The non-degeneracy condition above ensures that none of
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these diagonal elements vanish. Some are positive, some are negative. Sylvester’s law

of inertia is a theorem in algebra which states that the number of positive and negative

entries is independent of the choice of basis. (This theorem has nothing to do with

inertia. But Sylvester thought that if Newton could have a law of inertia, there should

be no reason he couldn’t.) The number of negative entries is called the signature of the

metric.

3.1.1 Riemannian Manifolds

For most applications of differential geometry, we are interested in manifolds in which

all diagonal entries of the metric are positive. A manifold equipped with such a metric

is called a Riemannian manifold. The simplest example is Euclidean space Rn which,

in Cartesian coordinates, is equipped with the metric

g = dx1 ⊗ dx1 + . . .+ dxn ⊗ dxn

The components of this metric are simply gµν = δµν .

A general Riemannian metric gives us a way to measure the length of a vector X at

each point,

|X| =
√
g(X,X)

It also allows us to measure the angle between any two vectors X and Y at each point,

using

g(X, Y ) = |X||Y | cos θ

The metric also gives us a way to measure the distance between two points p and q

along a curve in M . The curve is parameterised by σ : [a, b] → M , with σ(a) = p and

σ(b) = q. The distance is then

distance =

∫ b

a

dt
√
g(X,X)

∣∣
σ(t)

where X is a vector field that is tangent to the curve. If the curve has coordinates

xµ(t), the tangent vector is Xµ = dxµ/dt, and the distance is

distance =

∫ b

a

dt

√
gµν(x)

dxµ

dt

dxν

dt

Importantly, this distance does not depend on the choice of parameterisation of the

curve; this is essentially the same calculation that we did in Section 1.2 when showing

the reparameterisation invariance of the action for a particle.
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3.1.2 Lorentzian Manifolds

For the purposes of general relativity, we will be working with a manifold in which

one of the diagonal entries of the metric is negative. A manifold equipped with such a

metric is called Lorentzian.

The simplest example of a Lorentzian metric isMinkowski space. This isRn equipped

with the metric

η = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + . . .+ dxn−1 ⊗ dxn−1

The components of the Minkowski metric are ηµν = diag(−1,+1, . . . ,+1). As this

example shows, on a Lorentzian manifold we usually take the coordinate index xµ to

run from 0, 1, . . . , n− 1.

At any point p on a general Lorentzian manifold, it is always possible to find an

orthonormal basis {eµ} of Tp(M) such that, locally, the metric looks like the Minkowski

metric

gµν
∣∣
p
= ηµν (3.1)

This fact is closely related to the equivalence principle; we’ll describe the coordinates

that allow us to do this in Section 3.3.2.

In fact, if we find one set of coordinates in which the metric looks like Minkowski

space at p, it is simple to exhibit other coordinates. Consider a different basis of vector

fields related by

ẽµ = Λν
µeν

Then, in this basis the components of the metric are

g̃µν = Λρ
µΛ

σ
νgρσ

This leaves the metric in Minkowski form at p if

ηµν = Λρ
µ(p)Λ

σ
ν(p)ηρσ (3.2)

This is the defining equation for a Lorentz transformation that we saw previously in

(1.14). We see that viewed locally – which here means at a point p – we recover some

basic features of special relativity. Note, however, that if we choose coordinates so that

the metric takes the form (3.1) at some point p, it will likely differ from the Minkowski

metric as we move away from p.
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p

null

spacelike

timelike

Figure 21: The lightcone at a point p, with three different types of tangent vectors.

The fact that, locally, the metric looks like the Minkowski metric means that we can

import some ideas from special relativity. At any point p, a vector Xp ∈ Tp(M) is said

to be timelike if g(Xp, Xp) < 0, null if g(Xp, Xp) = 0, and spacelike if g(Xp, Xp) > 0.

At each point on M , we can then draw lightcones, which are the null tangent vectors

at that point. There are both past-directed and future-directed lightcones at each

point, as shown in Figure 21. The novelty is that the directions of these lightcones can

vary smoothly as we move around the manifold. This specifies the causal structure of

spacetime, which determines who can be friends with whom. We’ll see more of this

later in the lectures.

We can again use the metric to determine the length of curves. The nature of a

curve at a point is inherited from the nature of its tangent vector. A curve is called

timelike if its tangent vector is everywhere timelike. In this case, we can again use the

metric to measure the distance along the curve between two points p and q. Given a

parametrisation xµ(t), this distance is,

τ =

∫ b

a

dt

√
−gµν

dxµ

dt

dxν

dt

This is called the proper time. It is, in fact, something we’ve met before: it is precisely

the action (1.27) for a point particle moving in the spacetime with metric gµν .

3.1.3 The Joys of a Metric

Whether we’re on a Riemannian or Lorentzian manifold, there are a number of bounties

that the metric brings.
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The Metric as an Isomophism

First, the metric gives us a natural isomorphism between vectors and covectors, g :

Tp(M) → T ∗
p (M) for each p, with the one-form constructed from the contraction of g

and a vector field X.

In a coordinate basis, we write X = Xµ∂µ. This is mapped to a one-form which,

because this is a natural isomorphism, we also call X. This notation is less annoying

than you might think; in components the one-form is written is as X = Xµdx
µ. The

components are then related by

Xµ = gµνX
ν

Physicists usually say that we use the metric to lower the index from Xµ to Xµ. But

in their heart, they mean “the metric provides a natural isomorphism between a vector

space and its dual”.

Because g is non-degenerate, the matrix gµν is invertible. We denote the inverse as

gµν , with gµνgνρ = δµρ . Here gµν can be thought of as the components of a symmetric

(2, 0) tensor ĝ = gµν∂µ ⊗ ∂ν . More importantly, the inverse metric allows us to raise

the index on a one-form to give us back the original tangent vector,

Xµ = gµνXν

In Euclidean space, with Cartesian coordinates, the metric is simply gµν = δµν which

is so simple it hides the distinction between vectors and one-forms. This is the reason

we didn’t notice the difference between these spaces when we were five.

The Volume Form

The metric also gives us a natural volume form on the manifold M . On a Riemannian

manifold, this is defined as

v =
√

detgµν dx
1 ∧ . . . ∧ dxn

The determinant is usually simply written as
√
g =

√
det gµν . On a Lorentzian mani-

fold, the determinant is negative and we instead have

v =
√
−g dx0 ∧ . . . ∧ dxn−1 (3.3)

As defined, the volume form looks coordinate dependent. Importantly, it is not. To

see this, introduce some rival coordinates x̃µ, with

dxµ = Aµ
νdx̃

ν where Aµ
ν =

∂xµ

∂x̃ν
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In the new coordinates, the wedgey part of the volume form becomes

dx1 ∧ . . . ∧ dxn = A1
µ1
. . . An

µn
dx̃µ1 ∧ . . . ∧ dx̃µn

We can rearrange the one-forms into the order dx̃1 ∧ . . . ∧ dx̃n. We pay a price of +

or −1 depending on whether {µ1, . . . , µn} is an even or odd permutation of {1, . . . , n}.
Since we’re summing over all indices, this is the same as summing over all permutations

π of {1, . . . , n}, and we have

dx1 ∧ . . . ∧ dxn =
∑

perms π
sign(π)A1

π(1) . . . A
n
π(n)dx̃

1 ∧ . . . ∧ dx̃n

= det(A) dx̃1 ∧ . . . ∧ dx̃n

where det(A) > 0 if the change of coordinates preserves the orientation. This factor

of det(A) is the usual Jacobian factor that one finds when changing the measure in an

integral.

Meanwhile, the metric components transform as

gµν =
∂x̃ρ

∂xµ
∂x̃σ

∂xν
g̃ρσ = (A−1)ρµ(A

−1)σν g̃ρσ

and so the determinant becomes

det gµν = (det A−1)2 det g̃µν =
det g̃µν
(detA)2

We see that the factors of detA cancel, and we can equally write the volume form as

v =
√
|g̃| dx̃1 ∧ . . . ∧ dx̃n

The volume form (3.3) may look more familiar if we write it as

v =
1

n!
vµ1...µndx

µ1 ∧ . . . ∧ dxµn

Here the components vµ1...µn are given in terms of the totally anti-symmetric object

ϵµ1...µn with ϵ1...n = +1 and other components determined by the sign of the permuta-

tion,

vµ1...µn =
√
|g| ϵµ1...µn (3.4)

Note that vµ1...µn is a tensor, which means that ϵµ1...µn can’t quite be a tensor: instead,

it is a tensor divided by
√

|g|. It is sometimes said to be a tensor density. The anti-

symmetric tensor density arises in many places in physics. In all cases, it should be

viewed as a volume form on the manifold. (In nearly all cases, this volume form arises

from a metric as here.)
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As with other tensors, we can use the metric to raise the indices and construct the

volume form with all indices up

vµ1...µn = gµ1ν1 . . . gµnνnvν1...νn = ± 1√
|g|
ϵµ1...µn

where we get a + sign for a Riemannian manifold, and a − sign for a Lorentzian

manifold. Here ϵµ1...µn is again a totally anti-symmetric tensor density with ϵ1...n = +1.

Note, however, that while we raise the indices on vµ1...µn using the metric, this statement

doesn’t quite hold for ϵµ1...µn which takes values 1 or 0 regardless of whether the indices

are all down or all up. This reflects the fact that it is a tensor density, rather than a

genuine tensor.

The existence of a natural volume form means that, given a metric, we can integrate

any function f over the manifold. We will sometimes write this as∫
M

fv =

∫
M

dnx
√
±gf

The metric
√
±g provides a measure on the manifold that tells us what regions of the

manifold are weighted more strongly than the others in the integral.

The Hodge Dual

On an oriented manifold M , we can use the totally anti-symmetric tensor ϵµ1,...,µn to

define a map which takes a p-form ω ∈ Λp(M) to an (n − p)-form, denoted (⋆ ω) ∈
Λn−p(M), defined by

(⋆ ω)µ1...µn−p =
1

p!

√
|g| ϵµ1...µn−pν1...νpω

ν1...νp (3.5)

This map is called the Hodge dual. It is independent of the choice of coordinates.

It’s not hard to check that,

⋆ (⋆ ω) = ±(−1)p(n−p)ω (3.6)

where the + sign holds for Riemannian manifolds and the − sign for Lorentzian

manifolds. (To prove this, it’s useful to first show that vµ1...µpρ1...ρn−pvν1...νpρ1...ρn−p =

±p!(n− p)!δµ1

[ν1
. . . δ

µp

νp]
, again with the ± sign for Riemannian/Lorentzian manifolds.)
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It’s worth returning to some high school physics and viewing it through the lens of

our new tools. We are very used to taking two vectors in R3, say a and b, and taking

the cross-product to find a third vector

a× b = c

In fact, we really have objects that live in three different spaces here, related by the

Euclidean metric δµν . First we use this metric to relate the vectors to one-forms. The

cross-product is then really a wedge product which gives us back a 2-form. We then

use the metric twice more, once to turn the two-form back into a one-form using the

Hodge dual, and again to turn the one-form into a vector. Of course, none of these

subtleties bothered us when we were 15. But when we start thinking about curved

manifolds, with a non-trivial metric, these distinctions become important.

The Hodge dual allows us to define an inner product on each Λp(M). If ω, η ∈ Λp(M),

we define

⟨η, ω⟩ =
∫
M

η ∧ ⋆ ω

which makes sense because ⋆ ω ∈ Λn−p(M) and so η ∧ ⋆ ω is a top form that can be

integrated over the manifold.

With such an inner product in place, we can also start to play the kind of games

that are familiar from quantum mechanics and look at operators on Λp(M) and their

adjoints. The one operator that we have introduced on the space of forms is the exterior

derivative, defined in Section 2.4.1. Its adjoint is defined by the following result:

Claim: For ω ∈ Λp(M) and α ∈ Λp−1(M),

⟨dα, ω⟩ = ⟨α, d†ω⟩ (3.7)

where the adjoint operator d† : Λp(M) → Λp−1(M) is given by

d† = ±(−1)np+n−1 ⋆ d ⋆

with, again, the ± sign for Riemannian/Lorentzian manifolds respectively.

Proof: This is simply the statement of integration-by-parts for forms. On a closed

manifold M , Stokes’ theorem tells us that

0 =

∫
M

d(α ∧ ⋆ ω) =
∫
M

dα ∧ ⋆ ω + (−1)p−1α ∧ d ⋆ ω
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The first term is simply ⟨dα, ω⟩. The second term also takes the form of an inner

product which, up to a sign, is proportional to ⟨α, ⋆ d ⋆ ω⟩. To determine the sign, note

that d ⋆ ω ∈ Λn−p+1(M) so, using (3.6), we have ⋆ ⋆ d ⋆ ω = ±(−1)(n−p+1)(p−1)d ⋆ ω.

Putting this together gives

⟨dα, ω⟩ = ±(−1)np+n−1⟨α, ⋆ d ⋆ ω⟩

as promised. □

3.1.4 A Sniff of Hodge Theory

We can combine d and d† to construct the Laplacian, △ : Λp(M) → Λp(M), defined as

△ = (d+ d†)2 = dd† + d†d

where the second equality follows because d2 = d† 2 = 0. The Laplacian can be defined

on both Riemannian manifolds, where it is positive definite, and Lorentzian manifolds.

Here we restrict our discussion to Riemannian manifolds.

Acting on functions f , we have d†f = 0 (because ⋆ f is a top form so d ⋆ f = 0).

That leaves us with,

△(f) = − ⋆ d ⋆ (∂µf dx
µ)

= − 1

(n− 1)!
⋆ d

(
(∂µf)g

µν
√

|g| ϵνρ1...ρn−1dx
ρ1 ∧ . . . ∧ dxρn−1

)
= − 1

(n− 1)!
⋆ ∂σ

(√
|g|gµν∂µf

)
ϵνρ1...ρn−1dx

σ ∧ dxρ1 ∧ . . . ∧ dxρn−1

= − ⋆ ∂ν

(√
|g|gµν∂µf

)
dx1 ∧ . . . ∧ dxn

= − 1√
|g|
∂ν

(√
|g|gµν∂µf

)
This form of the Laplacian, acting on functions, appears fairly often in applications of

differential geometry.

There is a particularly nice story involving p-forms γ that obey

△γ = 0

Such forms are said to be harmonic. An harmonic form is necessarily closed, meaning

dγ = 0, and co-closed, meaning d†γ = 0. This follows by writing

⟨γ,△γ⟩ = ⟨dγ, dγ⟩+ ⟨d†γ, d†γ⟩ = 0

and noting that the inner product is positive-definite.
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There are some rather pretty facts that relate the existence of harmonic forms to

de Rham cohomology. The space of harmonic p-forms on a manifold M is denoted

Harmp(M). First, the Hodge decomposition theorem, which we state without proof:

any p-form ω on a compact, Riemannian manifold can be uniquely decomposed as

ω = dα + d†β + γ

where α ∈ Λp−1(M) and β ∈ Λp+1(M) and γ ∈ Harmp(M). This result can then be

used to prove:

Hodge’s Theorem: There is an isomorphism

Harmp(M) ∼= Hp(M)

whereHp(M) is the de Rham cohomology group introduced in Section 2.4.3. In particu-

lar, the Betti numbers can be computed by counting the number of linearly independent

harmonic forms,

Bp = dim Harmp(M)

Proof: First, let’s show that any harmonic form γ provides a representative of Hp(M).

As we saw above, any harmonic p-form is closed, dγ = 0, so γ ∈ Zp(M). But the

unique nature of the Hodge decomposition tells us that γ ̸= dβ for some β.

Next, we need to show that any equivalence class [ω] ∈ Hp(M) can be represented

by a harmonic form. We decompose ω = dα + d†β + γ. By definition [ω] ∈ Hp(M)

means that dω = 0 so we have

0 = ⟨dω, β⟩ = ⟨ω, d†β⟩ = ⟨dα + d†β + γ, d†β⟩ = ⟨d†β, d†β⟩

where, in the final step, we “integrated by parts” and used the fact that ddα = dγ = 0.

Because the inner product is positive definite, we must have d†β = 0 and, hence,

ω = γ+ dα. Any other representative ω̃ ∼ ω of [ω] ∈ Hp(M) differs by ω̃ = ω+ dη and

so, by the Hodge decomposition, is associated to the same harmonic form γ. □

3.2 Connections and Curvature

We’ve already met one version of differentiation in these lectures. A vector field X is,

at heart, a differential operator and provides a way to differentiate a function f . We

write this simply as X(f).
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As we saw previously, differentiating higher tensor fields is a little more tricky because

it requires us to subtract tensor fields at different points. Yet tensors evaluated at

different points live in different vector spaces, and it only makes sense to subtract these

objects if we can first find a way to map one vector space into the other. In Section

2.2.4, we used the flow generated by X as a way to perform this mapping, resulting in

the idea of the Lie derivative LX .

There is, however, a different way to take derivatives, one which ultimately will prove

more useful. The derivative is again associated to a vector field X. However, this time

we introduce a different object, known as a connection to map the vector spaces at one

point to the vector spaces at another. The result is an object, distinct from the Lie

derivative, called the covariant derivative.

3.2.1 The Covariant Derivative

A connection is a map∇ : X(M)×X(M) → X(M). We usually write this as∇(X, Y ) =

∇XY and the object ∇X is called the covariant derivative. It satisfies the following

properties for all vector fields X, Y and Z,

• ∇X(Y + Z) = ∇XY +∇XZ

• ∇(fX+gY )Z = f∇XZ + g∇YZ for all functions f, g.

• ∇X(fY ) = f∇XY + (∇Xf)Y where we define ∇Xf = X(f)

The covariant derivative endows the manifold with more structure. To elucidate this,

we can evaluate the connection in a basis {eµ} of X(M). We can always express this as

∇eρeν = Γµ
ρνeµ (3.8)

with Γµ
ρν the components of the connection. It is no coincidence that these are denoted

by the same greek letter that we used for the Christoffel symbols in Section 1. However,

for now, you should not conflate the two; we’ll see the relationship between them in

Section 3.2.3.

The name “connection” suggests that ∇, or its components Γµ
νρ, connect things.

Indeed they do. We will show in Section 3.3 that the connection provides a map from

the tangent space Tp(M) to the tangent space at any other point Tq(M). This is what

allows the connection to act as a derivative.
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We will use the notation

∇µ = ∇eµ

This makes the covariant derivative ∇µ look similar to a partial derivative. Using the

properties of the connection, we can write a general covariant derivative of a vector

field as

∇XY = ∇X(Y
µeµ)

= X(Y µ)eµ + Y µ∇Xeµ

= Xνeν(Y
µ)eµ +XνY µ∇νeµ

= Xν
(
eν(Y

µ) + Γµ
νρY

ρ
)
eµ

The fact that we can strip off the overall factor of Xν means that it makes sense to

write the components of the covariant derivative as

∇νY = (eν(Y
µ) + Γµ

νρY
ρ)eµ

Or, in components,

(∇νY )µ = eν(Y
µ) + Γµ

νρY
ρ (3.9)

Note that the covariant derivative coincides with the Lie derivative on functions,∇Xf =

LXf = X(f). It also coincides with the old-fashioned partial derivative: ∇µf = ∂µf .

However, its action on vector fields differs. In particular, the Lie derivative LXY =

[X, Y ] depends on both X and the first derivative of X while, as we have seen above,

the covariant derivative depends only on X. This is the property that allows us to

write ∇X = Xν∇ν and think of ∇µ as an operator in its own right. In contrast, there

is no way to write “LX = XµLµ”. While the Lie derivative has its uses, the ability to

define ∇µ means that this is best viewed as the natural generalisation of the partial

derivative to curved space.

Differentiation as Punctuation

In a coordinate basis, in which eµ = ∂µ, the covariant derivative (3.9) becomes

(∇νY )µ = ∂νY
µ + Γµ

νρY
ρ (3.10)

We will differentiate often. To save ink, we use the sloppy, and sometimes confusing,

notation

(∇νY )µ = ∇νY
µ

This means, in particular, that ∇νY
µ is the µth component of ∇νY , rather than the

differentiation of the function Y µ.
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Covariant differentiation is sometimes denoted using a semi-colon

∇νY
µ = Y µ

;ν

In this convention, the partial derivative is denoted using a mere comma, ∂µY
ν = Y ν

,µ.

The expression (3.10) then reads

Y µ
;ν = Y µ

,ν + Γµ
νρY

ρ

I’m proud to say that we won’t adopt the “semi-colon = differentiation” notation in

these lectures. Because it’s stupid.

The Connection is Not a Tensor

The Γµ
ρν defining the connection are not components of a tensor. We can see this

immediately from the definition ∇(X, fY ) = ∇X(fY ) = f∇XY + (X(f))Y . This is

not linear in the second argument, which is one of the requirements of a tensor.

To illustrate this, we can ask what the connection looks like in a different basis,

ẽν = Aµ
νeµ (3.11)

for some invertible matrix A. If eµ and ẽµ are both coordinate bases, then

Aµ
ν =

∂xµ

∂x̃ν

We know from (2.23) that the components of a (1, 2) tensor transform as

T̃ µ
νρ = (A−1)µτA

λ
νA

σ
ρT

τ
λσ (3.12)

We can now compare this to the transformation of the connection components Γµ
ρν . In

the basis ẽµ, we have

∇ẽρ ẽν = Γ̃µ
ρν ẽµ

Substituting in the transformation (3.11), we have

Γ̃µ
ρν ẽµ = ∇(Aσ

ρeσ)(A
λ
νeλ) = Aσ

ρ∇eσ(A
λ
νeλ) = Aσ

ρA
λ
νΓ

τ
σλeτ + Aσ

ρeλ∂σA
λ
ν

We can write this as

Γ̃µ
ρν ẽµ =

(
Aσ

ρA
λ
νΓ

τ
σλ + Aσ

ρ∂σA
τ
ν

)
eτ

=
(
Aσ

ρA
λ
νΓ

τ
σλ + Aσ

ρ∂σA
τ
ν

)
(A−1)µτ ẽµ
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Stripping off the basis vectors ẽµ, we see that the components of the connection trans-

form as

Γ̃µ
ρν = (A−1)µτA

σ
ρA

λ
νΓ

τ
σλ + (A−1)µτA

σ
ρ∂σA

τ
ν (3.13)

The first term coincides with the transformation of a tensor (3.12). But the second

term, which is independent of Γ, but instead depends on ∂A, is novel. This is the

characteristic transformation property of a connection.

Differentiating Other Tensors

We can use the Leibniz property of the covariant derivative to extend its action to any

tensor field. It’s best to illustrate this with an example.

Consider a one-form ω. If we differentiate ω, we will get another one-form ∇Xω

which, like any one-form, is defined by its action on vector fields Y ∈ X(M). To

construct this, we will insist that the connection obeys Leibniz in the modified sense

that

∇X(ω(Y )) = (∇Xω)(Y ) + ω(∇XY )

But ω(Y ) is simply a function, which means that we can also write this as

∇X(ω(Y )) = X(ω(Y ))

Putting these together gives

(∇Xω)(Y ) = X(ω(Y ))− ω(∇XY )

In coordinates, we have

Xµ(∇µω)νY
ν = Xµ∂µ(ωνY

ν)− ωνX
µ(∂µY

ν + Γν
µρY

ρ)

= Xµ(∂µωρ − Γν
µρων)Y

ρ

where, crucially, the ∂Y terms cancel in going from the first to the second line. This

means that the overall result is linear in Y and we may define ∇Xω without reference

to the vector field Y on which is acts. In components, we have

(∇µω)ρ = ∂µωρ − Γν
µρων

As for vector fields, we also write this as

(∇µω)ρ ≡ ∇µωρ ≡ ωρ;µ = ωρ,µ − Γν
µρων

– 104 –



This kind of argument can be extended to a general tensor field of rank (p, q), where

the covariant derivative is defined by,

T µ1...µp
ν1...νq ;ρ = T µ1...µp

ν1...νq ,ρ + Γµ1
ρσT

σµ2...µp
ν1...νq + . . .+ Γµp

ρσT
µ1...µp−1σ

ν1...νq

−Γσ
ρν1
T µ1...µp

σν2...νq − . . .− Γσ
ρνqT

µ1...µp
ν1...νq−1σ

The pattern is clear: for every upper index µ we get a +ΓT term, while for every lower

index we get a −ΓT term.

Now that we can differentiate tensors, we will also need to extend our punctuation

notation slightly. If more than two subscripts follow a semi-colon (or, indeed, a comma)

then we differentiate respect to both, doing the one on the left first. So, for example,

Xµ
;νρ = ∇ρ∇νX

µ.

3.2.2 Torsion and Curvature

Even though the connection is not a tensor, we can use it to construct two tensors. The

first is a rank (1, 2) tensor T known as torsion. It is defined to act on X, Y ∈ X(M)

and ω ∈ Λ1(M) by

T (ω;X, Y ) = ω(∇XY −∇YX − [X, Y ])

The other is a rank (1, 3) tensor R, known as curvature. It acts on X, Y, Z ∈ X(M)

and ω ∈ Λ1(M) by

R(ω;X, Y, Z) = ω(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z)

The curvature tensor is also called the Riemann tensor.

Alternatively, we could think of torsion as a map T : X(M)×X(M) → X(M), defined

by

T (X, Y ) = ∇XY −∇YX − [X, Y ]

Similarly, the curvature R can be viewed as a map from X(M)×X(M) to a differential

operator acting on X(M),

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] (3.14)
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Checking Linearity

To demonstrate that T and R are indeed tensors, we need to show that they are linear

in all arguments. Linearity in ω is straightforward. For the others, there are some small

calculations to do. For example, we must show that T (ω; fX, Y ) = fT (ω;X, Y ). To

see this, we just run through the definitions of the various objects,

T (ω; fX, Y ) = ω(∇fXY −∇Y (fX)− [fX, Y ])

We then use∇fXY = f∇XY and∇Y (fX) = f∇YX+Y (f)X and [fX, Y ] = f [X, Y ]−
Y (f)X. The two Y (f)X terms cancel, leaving us with

T (ω; fX, Y ) = fω(∇XY −∇YX − [X, Y ])

= fT (ω;X, Y )

Similarly, for the curvature tensor we have

R(ω; fX, Y, Z) = ω(∇fX∇YZ −∇Y∇fXZ −∇[fX,Y ]Z

= ω(f∇X∇YZ −∇Y (f∇XZ)−∇(f [X,Y ]−Y (f)X)Z)

= ω(f∇X∇YZ − f∇Y∇XZ − Y (f)∇XZ −∇f [X,Y ]Z +∇Y (f)XZ)

= ω(f∇X∇YZ − f∇Y∇XZ − Y (f)∇XZ − f∇[X,Y ]Z + Y (f)∇XZ)

= fω(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z)

= fR(ω;X, Y, Z)

Linearity in Y follows from linearity in X. But we still need to check linearity in Z,

R(ω;X, Y, fZ) = ω(∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ))

= ω(∇X(f∇YZ + Y (f)Z)−∇Y (f∇XZ +X(f)Z)

−f∇[X,Y ]Z − [X, Y ](f)Z)

= ω(f∇X∇Y +X(f)∇YZ + Y (f)∇XZ +X(Y (f))Z

−f∇Y∇XZ − Y (f)∇XZ −X(f)∇YZ − Y (X(f))Z

−f∇[X,Y ]Z − [X, Y ](f)Z)

= fR(ω;X, Y, Z)

Thus, both torsion and curvature define new tensors on our manifold.
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Components

We can evaluate these tensors in a coordinate basis {eµ} = {∂µ}, with the dual basis

{fµ} = {dxµ}. The components of the torsion are

T ρ
µν = T (fρ; eµ, eν)

= fρ(∇µeν −∇νeµ − [eµ, eν ])

= fρ(Γσ
µνeσ − Γσ

νµeσ)

= Γρ
µν − Γρ

νµ

where we’ve used the fact that, in a coordinate basis, [eµ, eν ] = [∂µ, ∂ν ] = 0. We learn

that, even though Γρ
µν is not a tensor, the anti-symmetric part Γρ

[µν] does form a tensor.

Clearly the torsion tensor is anti-symmetric in the lower two indices

T ρ
µν = −T ρ

νµ

Connections which are symmetric in the lower indices, so Γρ
µν = Γρ

νµ have T ρ
µν = 0.

Such connections are said to be torsion-free.

The components of the curvature tensor are given by

Rσ
ρµν = R(fσ; eµ, eν , eρ)

Note the slightly counterintuitive, but standard ordering of the indices; the indices µ

and ν that are associated to covariant derivatives ∇µ and ∇ν go at the end. We have

Rσ
ρµν = fσ(∇µ∇νeρ −∇ν∇µeρ −∇[eµ,eν ]eρ)

= fσ(∇µ∇νeρ −∇ν∇µeρ)

= fσ(∇µ(Γ
λ
νρeλ)−∇ν(Γ

λ
µρeλ))

= fσ((∂µΓ
λ
νρ)eλ + Γλ

νρΓ
τ
µλeτ − (∂νΓ

λ
µρ)eλ − Γλ

µρΓ
τ
νλeτ )

= ∂µΓ
σ
νρ − ∂νΓ

σ
µρ + Γλ

νρΓ
σ
µλ − Γλ

µρΓ
σ
νλ (3.15)

Clearly the Riemann tensor is anti-symmetric in its last two indices

Rσ
ρµν = −Rσ

ρνµ

Equivalently, Rσ
ρµν = Rσ

ρ[µν]. There are a number of further identities of the Riemann

tensor of this kind. We postpone this discussion to Section 3.4.
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The Ricci Identity

There is a closely related calculation in which both the torsion and Riemann tensors

appears. We look at the commutator of covariant derivatives acting on vector fields.

Written in an orgy of anti-symmetrised notation, this calculation gives

∇[µ∇ν]Z
σ = ∂[µ(∇ν]Z

σ) + Γσ
[µ|λ|∇ν]Z

λ − Γρ
[µν]∇ρZ

σ

= ∂[µ∂ν]Z
σ + (∂[µΓ

σ
ν]ρ)Z

ρ + (∂[µZ
ρ)Γσ

ν]ρ + Γσ
[µ|λ|∂ν]Z

λ

+Γσ
[µ|λ|Γ

λ
ν]ρZ

ρ − Γρ
[µν]∇ρZ

σ

The first term vanishes, while the third and fourth terms cancel against each other.

We’re left with

2∇[µ∇ν]Z
σ = Rσ

ρµνZ
ρ − T ρ

µν∇ρZ
σ (3.16)

where the torsion tensor is T ρ
µν = 2Γρ

[µν] and the Riemann tensor appears as

Rσ
ρµν = 2∂[µΓ

σ
ν]ρ + 2Γσ

[µ|λ|Γ
λ
ν]ρ

which coincides with (3.15). The expression (3.16) is known as the Ricci identity.

3.2.3 The Levi-Civita Connection

So far, our discussion of the connection ∇ has been entirely independent of the metric.

However, something nice happens if we have both a connection and a metric. This

something nice is called the fundamental theorem of Riemannian geometry. (Happily,

it’s also true for Lorentzian geometries.)

Theorem: There exists a unique, torsion free, connection that is compatible with a

metric g, in the sense that

∇Xg = 0

for all vector fields X.

Proof: We start by showing uniqueness. Suppose that such a connection exists. Then,

by Leibniz

X(g(Y, Z)) = ∇X(g(Y, Z)) = (∇Xg)(Y, Z) + g(∇XY, Z) + g(Y,∇XZ)

Since ∇Xg = 0, this becomes

X(g(Y, Z)) = g(∇XY, Z) + g(∇XZ, Y )
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By cyclic permutation of X, Y and Z, we also have

Y (g(Z,X)) = g(∇YZ,X) + g(∇YX,Z)

Z(g(X, Y )) = g(∇ZX, Y ) + g(∇ZY,X)

Since the torsion vanishes, we have

∇XY −∇YX = [X, Y ]

We can use this to write the cyclically permuted equations as

X(g(Y, Z)) = g(∇YX,Z) + g(∇XZ, Y ) + g([X, Y ], Z)

Y (g(Z,X)) = g(∇ZY,X) + g(∇YX,Z) + g([Y, Z], X)

Z(g(X, Y )) = g(∇XZ, Y ) + g(∇ZY,X) + g([Z,X], Y )

Add the first two of these equations, and subtract the third. We find

g(∇YX,Z) =
1

2

[
X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

− g([X, Y ], Z)− g([Y, Z], X) + g([Z,X], Y )
]

(3.17)

But with a non-degenerate metric, this specifies the connection uniquely. We’ll give an

expression in terms of components in (3.18) below.

It remains to show that the object ∇ defined this way does indeed satisfy the prop-

erties expected of a connection. The tricky one turns out to be the requirement that

∇fXY = f∇XY . We can see that this is indeed the case as follows:

g(∇fYX,Z) =
1

2

[
X(g(fY, Z)) + fY (g(Z,X))− Z(g(X, fY ))

− g([X, fY ], Z)− g([fY, Z], X) + g([Z,X], fY )
]

=
1

2

[
fX(g(Y, Z)) +X(f)g(Y, Z) + fY (g(Z,X))− fZ(g(X, Y ))

− Z(f)g(X, Y )− fg([X, Y ], Z)−X(f)g(Y, Z)− fg([Y, Z], X)

+ Z(f)g(Y,X) + fg([Z,X], Y )
]

= g(f∇YX,Z)

The other properties of the connection follow similarly. □
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The connection (3.17), compatible with the metric, is called the Levi-Civita connec-

tion. We can compute its components in a coordinate basis {eµ} = {∂µ}. This is

particularly simple because [∂µ, ∂ν ] = 0, leaving us with

g(∇νeµ, eρ) = Γλ
νµgλρ =

1

2
(∂µgνρ + ∂νgµρ − ∂ρgµν)

Multiplying by the inverse metric gives

Γλ
µν =

1

2
gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν) (3.18)

The components of the Levi-Civita connection are called the Christoffel symbols. They

are the objects (1.31) we met already in Section 1 when discussing geodesics in space-

time. For the rest of these lectures, when discussing a connection we will always mean

the Levi-Civita connection.

An Example: Flat Space

In flat space Rd, endowed with either Euclidean or Minkowski metric, we can always

pick Cartesian coordinates, in which case the Christoffel symbols vanish. However, in

other coordinates this need not be the case. For example, in Section 1.1.1, we computed

the flat space Christoffel symbols in polar coordinates (1.10). They don’t vanish. But

because the Riemann tensor is a genuine tensor, if it vanishes in one coordinate system

then it must vanishes in all of them. Given some horrible coordinate system, with

Γρ
µν ̸= 0, we can always compute the corresponding Riemann tensor to see if the space

is actually flat after all.

Another Example: The Sphere S2

Consider S2 with radius r and the round metric

ds2 = r2(dθ2 + sin2 θ dϕ2)

We can extract the Christoffel symbols from those of flat space in polar coordinates

(1.10). The non-zero components are

Γθ
ϕϕ = − sin θ cos θ , Γϕ

θϕ = Γϕ
ϕθ =

cos θ

sin θ
(3.19)

From these, it is straightforward to compute the components of the Riemann tensor.

They are most simply expressed as Rσρµν = gσλR
λ
ρµν and are given by

Rθϕθϕ = Rϕθϕθ = −Rθϕϕθ = −Rϕθθϕ = r2 sin2 θ (3.20)

with the other components vanishing.

– 110 –



3.2.4 The Divergence Theorem

Gauss’ Theorem, also known as the divergence theorem, states that if you integrate a

total derivative, you get a boundary term. There is a particular version of this theorem

in curved space that we will need for later applications.

As a warm-up, we have the following result:

Lemma: The contraction of the Christoffel symbols can be written as

Γµ
µν =

1
√
g
∂ν
√
g (3.21)

On Lorentzian manifolds, we should replace
√
g with

√
|g|.

Proof: From (3.18), we have

Γµ
µν =

1

2
gµρ∂νgµρ =

1

2
tr(g−1∂νg) =

1

2
tr(∂ν log g)

However, there’s a useful identity for the log of any diagonalisable matrix: they obey

tr logA = log detA

This is clearly true for a diagonal matrix, since the determinant is the product of

eigenvalues while the trace is the sum. But both trace and determinant are invariant

under conjugation, so this is also true for diagonalisable matrices. Applying it to our

metric formula above, we have

Γµ
µν =

1

2
tr(∂ν log g) =

1

2
∂ν log det g =

1

2

1

det g
∂ν det g =

1√
det g

∂ν
√
det g

which is the claimed result. □

With this in hand, we can now prove the following:

Divergence Theorem: Consider a region of a manifold M with boundary ∂M . Let

nµ be an outward-pointing, unit vector orthogonal to ∂M . Then, for any vector field

Xµ on M , we have ∫
M

dnx
√
g∇µX

µ =

∫
∂M

dn−1x
√
γ nµX

µ

where γij is the pull-back of the metric to ∂M , and γ = det γij. On a Lorentzian man-

ifold, a version of this formula holds only if ∂M is purely timelike or purely spacelike,

which ensures that γ ̸= 0 at any point.
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Proof: Using the lemma above, the integrand is

√
g∇µX

µ =
√
g
(
∂µX

µ + Γµ
µνX

ν
)
=

√
g

(
∂µX

µ +Xν 1
√
g
∂ν
√
g

)
= ∂µ (

√
gXµ)

The integral is then ∫
M

dnx
√
g∇µX

µ =

∫
M

dnx ∂µ (
√
gXµ)

which now is an integral of an ordinary partial derivative, so we can apply the usual

divergence theorem that we are familiar with. It remains only to evaluate what’s

happening at the boundary ∂M . For this, it is useful to pick coordinates so that the

boundary ∂M is a surface of constant xn. Furthermore, we will restrict to metrics of

the form

gµν =

(
γij 0

0 N2

)

Then by our usual rules of integration, we have∫
M

dnx ∂µ (
√
gXµ) =

∫
∂M

dn−1x
√
γN2Xn

The unit normal vector nµ is given by nµ = (0, 0, . . . , 1/N), which satisfies gµνn
µnν = 1

as it should. We then have nµ = gµνn
ν = (0, 0, . . . , N), so we can write∫

M

dnx
√
g∇µX

µ =

∫
∂M

dn−1x
√
γ nµX

µ

which is the result we need. As the final expression is a covariant quantity, it is true

in general. □

In Section 2.4.5, we advertised Stokes’ theorem as the mother of all integral theorems.

It’s perhaps not surprising to hear that the divergence theorem is a special case of

Stokes’ theorem. To see this, here’s an alternative proof that uses the language of

forms.

Another Proof: Given the volume form v onM , and a vector field X, we can contract

the two to define an n−1 form ω = ιXv. (This is the interior product that we previously

met in (2.30).) It has components

ωµ1...µn−1 =
√
g Xνϵνµ1...µn−1
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If we now take the exterior derivative, dω, we have a top-form. Since the top form is

unique up to multiplication, dω must be proportional to the volume form. Indeed, it’s

not hard to show that

(dω)µ1...µn =
√
g ϵµ1...µn∇νX

ν

This means that, in form language, the integral over M that we wish to consider can

be written as ∫
M

dnx
√
g∇µX

µ =

∫
M

dω

Now we invoke Stokes’ theorem, to write∫
M

dω =

∫
∂M

ω

We now need to massage ω into the form needed. First, we introduce a volume form v̂

on ∂M , with components

v̂µ1...µn−1 =
√
γϵµ1...µn−1

This is related to the volume form on M by

1

n
vµ1...µn−1ν = v̂[µ1...µn−1nν]

where nµ is the orthonormal vector that we introduced previously. We then have

ωµ1...µn−1 =
√
γ (nνX

ν)ϵ̃µ1...µn−1

The divergence theorem then follows from Stokes’ theorem. □

3.2.5 The Maxwell Action

Let’s briefly turn to some physics. We take the manifoldM to be spacetime. In classical

field theory, the dynamical degrees of freedom are objects that take values at each point

in M . We call these objects fields. The simplest such object is just a function which,

in physics, we call a scalar field.

As we described in Section 2.4.2, the theory of electromagnetism is described by a

one-form field A. In fact, there is a little more structure because we ask that the theory

is invariant under gauge transformations

A→ A+ dα

To achieve this, we construct a field strength F = dA which is indeed invariant under

gauge transformations. The next question to ask is: what are the dynamics of these

fields?
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The most elegant and powerful way to describe the dynamics of classical fields is

provided by the action principle. The action is a functional of the fields, constructed by

integrating over the manifold. The differential geometric language that we’ve developed

in these lectures tells us that there are, in fact, very few actions one can write down.

To see this, suppose that our manifold has only the 2-form F but is not equipped

with a metric. If spacetime has dimension dim(M) = 4 (it does!) then we need to

construct a 4-form to integrate over M . There is only one of these at our disposal,

suggesting the action

Stop = −1

2

∫
F ∧ F

If we expand this out in the electric and magnetic fields using (2.32), we find

Stop =

∫
dx0dx1dx2dx3 E ·B

Actions of this kind, which are independent of the metric, are called topological. They

are typically unimportant in classical physics. Indeed, we can locally write F ∧ F =

d(A ∧ F ), so the action is a total derivative and does not affect the classical equations

of motion. Nonetheless, topological actions often play subtle and interesting roles in

quantum physics. For example, the action Stop underlies the theory of topological

insulators. You can read more about this in Section 1 of the lectures on Gauge Theory.

To construct an action that gives rise to interesting classical dynamics, we need to

introduce a metric. The existence of a metric allows us to introduce a second two-form,

⋆F , and construct the action

SMaxwell = −1

2

∫
F ∧ ⋆F = −1

4

∫
d4x

√
−ggµνgρσFµρFνσ = −1

4

∫
d4x

√
−g F µνFµν

This is the Maxwell action, now generalised to a curved spacetime. If we restrict to flat

Minkowski space, the components are F µνFµν = 2(B2−E2). As we saw in our lectures

on Electromagnetism, varying this action gives the remaining two Maxwell equations.

In the elegant language of differential geometry, these take the simple form

d ⋆ F = 0

We can also couple the gauge field to an electric current. This is described by a one-form

J , and we write the action

S =

∫
−1

2
F ∧ ⋆F + A ∧ ⋆J
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We require that this action is invariant under gauge transformations A→ A+dα. The

action transforms as

S → S +

∫
dα ∧ ⋆J

After an integration by parts, the second term vanishes provided that

d ⋆ J = 0

which is the requirement of current conservation expressed in the language of forms.

The Maxwell equations now have a source term, and read

d ⋆ F = ⋆J (3.22)

We see that the rigid structure of differential geometry leads us by the hand to the

theories that govern our world. We’ll see this again in Section 4 when we discuss

gravity.

Electric and Magnetic Charges

To define electric and magnetic charges, we integrate over submanifolds. For example,

consider a three-dimensional spatial submanifold Σ. The electric charge in Σ is defined

to be

Qe =

∫
Σ

⋆J

It’s simple to check that this agrees with our usual definition Qe =
∫
d3x J0 in flat

Minkowski space. Using the equation of motion (3.22), we can translate this into an

integral of the field strength

Qe =

∫
Σ

d ⋆ F =

∫
∂Σ

⋆F (3.23)

where we have used Stokes’ theorem to write this as an integral over the boundary ∂Σ.

The result is the general form of Gauss’ law, relating the electric charge in a region

to the electric field piercing the boundary of the region. Similarly, we can define the

magnetic charge

Qm =

∫
∂Σ

F

When we first meet Maxwell theory, we learn that magnetic charges do not exist,

courtesy of the identity dF = 0. However, this can be evaded in topologically more

interesting spaces. We’ll see a simple example in Section 6.2.1 when we discuss charged

black holes.
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The statement of current conservation d ⋆ J = 0

B

Σ2

Σ1

V

Figure 22:

means that the electric chargeQe in a region cannot change

unless current flows in or out of that region. This fact,

familiar from Electromagnetism, also has a nice expres-

sion in terms of forms. Consider a cylindrical region of

spacetime V , ending on two spatial hypersurfaces Σ1 and

Σ2 as shown in the figure. The boundary of V is then

∂V = Σ1 ∪ Σ2 ∪B

where B is the cylindrical timelike hypersurface.

We require that J = 0 on B, which is the statement that no current flows in or out

of the region. Then we have

Qe(Σ1)−Qe(Σ2) =

∫
Σ1

⋆J −
∫
Σ2

⋆J =

∫
∂V

⋆J =

∫
V

d ⋆ J = 0

which tells us that the electric charge remains constant in time.

Maxwell Equations Using Connections

The form of the Maxwell equations given above makes no reference to a connection. It

does, however, use the metric, buried in the definition of the Hodge ⋆.

There is an equivalent formulation of the Maxwell equation using the covariant deriva-

tive. This will also serve to highlight the relationship between the covariant and exte-

rior derivatives. First note that, given a one-form A ∈ Λ1(M), we can define the field

strength as

Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ

where the Christoffel symbols have cancelled out by virtue of the anti-symmetry. This

is what allowed us to define the exterior derivative without the need for a connection.

Next, consider the current one-form J . We can recast the statement of current

conservation as follows:

Claim:

d ⋆ J = 0 ⇔ ∇µJ
µ = 0
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Proof: We have

∇µJ
µ = ∂µJ

µ + Γµ
µρJ

ρ =
1√
−g

∂µ
(√

−gJµ
)

where, in the second equality, we have used our previous result (3.21): Γµ
µν = ∂ν log

√
|g|.

But this final form is proportional to d ⋆ J , with the Hodge dual defined in (3.5). □

As an aside, in Riemannian signature the formula

∇µJ
µ =

1
√
g
∂µ(

√
gJµ)

provides a quick way of computing the divergence in different coordinate systems (if

you don’t have the inside cover of Jackson to hand). For example, in spherical polar

coordinates on R3, we have g = r4 sin2 θ. Plug this into the expression above to

immediately find

∇ · J =
1

r2
∂r(r

2Jr) +
1

sin θ
∂θ(sin θ J

θ) + ∂ϕJ
ϕ

The Maxwell equation (3.22) can also be written in terms of the covariant derivative

Claim:

d ⋆ F = ⋆J ⇔ ∇µF
µν = Jν (3.24)

Proof: We have

∇µF
µν = ∂µF

µν + Γµ
µρF

ρν + Γν
µρF

µρ

=
1√
−g

∂µ
(√

−gF µν
)
+ Γν

µρF
µρ =

1√
−g

∂µ
(√

−gF µν
)

where, in the second equality, we’ve again used (3.21) and in the final equality we’ve

used the fact that Γν
µρ is symmetric while F µρ is anti-symmetric. To complete the

proof, you need to chase down the definitions of the Hodge dual (3.5) and the exterior

derivative (2.26). (If you’re struggling to match factors of
√
−g, then remember that

the volume form v =
√
−gϵ is a tensor, while the epsilon symbol ϵµ1...µ4 is a tensor

density.) □
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3.3 Parallel Transport

Although we have now met a number of properties of the connection, we have not yet

explained its name. What does it connect?

The answer is that the connection connects tangent spaces, or more generally any

tensor vector space, at different points of the manifold. This map is called parallel

transport. As we stressed earlier, such a map is necessary to define differentiation.

Take a vector fieldX and consider some associated integral curve C, with coordinates

xµ(τ), such that

Xµ
∣∣∣
C
=
dxµ(τ)

dτ
(3.25)

We say that a tensor field T is parallely transported along C if

∇XT = 0 (3.26)

Suppose that the curve C connects two points, p ∈ M and q ∈ M . The requirement

(3.26) provides a map from the vector space defined at p to the vector space defined at

q.

To illustrate this, consider the parallel transport of a second vector field Y . In

components, the condition (3.26) reads

Xν
(
∂νY

µ + Γµ
νρY

ρ
)
= 0

If we now evaluate this on the curve C, we can think of Y µ = Y µ(x(τ)), which obeys

dY µ

dτ
+XνΓµ

νρY
ρ = 0 (3.27)

These are a set of coupled, ordinary differential equations. Given an initial condition

at, say τ = 0, corresponding to point p, these equations can be solved to find a unique

vector at each point along the curve.

Parallel transport is path dependent. It depends on both the connection, and the

underlying path which, in this case, is characterised by the vector field X.

This is the second time we’ve used a vector field X to construct maps between

tensors at different points in the manifold. In Section 2.2.2, we used X to generate a

flow σt : M → M , which we could then use to pull-back or push-forward tensors from

one point to another. This was the basis of the Lie derivative. This is not the same as

the present map. Here, we’re using X only to define the curve, while the connection

does the work of relating vector spaces along the curve.
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3.3.1 Geodesics Revisited

A geodesic is a curve tangent to a vector field X that obeys

∇XX = 0 (3.28)

Along the curve C, we can substitute the expression (3.25) into (3.27) to find

d2xµ

dτ 2
+ Γµ

ρν
dxρ

dτ

dxν

dτ
= 0 (3.29)

This is precisely the geodesic equation (1.30) that we derived in Section 1 by considering

the action for a particle moving in spacetime. In fact, we find that the condition (3.28)

results in geodesics with affine parameterisation.

For the Levi-Civita connection, we have ∇Xg = 0. This ensures that for any vector

field Y parallely transported along a geodesic X, so ∇XY = ∇XX = 0, we have

d

dτ
g(X, Y ) = 0

This tells us that the vector field Y makes the same angle with the tangent vector along

each point of the geodesic.

3.3.2 Normal Coordinates

Geodesics lend themselves to the construction of a particularly useful coordinate sys-

tem. On a Riemannian manifold, in the neighbourhood of a point p ∈ M , we can

always find coordinates such that

gµν(p) = δµν and gµν,ρ(p) = 0 (3.30)

The same holds for Lorentzian manifolds, now with gµν(p) = ηµν . These are referred

to as normal coordinates. Because the first derivative of the metric vanishes, normal

coordinates have the property that, at the point p, the Christoffel symbols vanish:

Γµ
νρ(p) = 0. Generally, away from p we will have Γµ

νρ ̸= 0. Note, however, that it is

not generally possible to ensure that the second derivatives of the metric also vanish.

This, in turn, means that it’s not possible to pick coordinates such that the Riemann

tensor vanishes at a given point.

There are a number of ways to demonstrate the existence of coordinates (3.30). The

brute force way is to start with some metric g̃µν in coordinates x̃µ and try to find a

change of coordinates to xµ(x̃) which does the trick. In the new coordinates,

∂x̃ρ

∂xµ
∂x̃σ

∂xν
g̃ρσ = gµν (3.31)
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We’ll take the point p to be the origin in both sets of coordinates. Then we can Taylor

expand

x̃ρ =
∂x̃ρ

∂xµ

∣∣∣∣
x=0

xµ +
1

2

∂2x̃ρ

∂xµ∂xν

∣∣∣∣
x=0

xµxν + . . .

We insert this into (3.31), together with a Taylor expansion of g̃ρσ, and try to solve the

resulting partial differential equations to find the coefficients ∂x̃/∂x and ∂2x̃/∂x2 that

do the job. For example, the first requirement is

∂x̃ρ

∂xµ

∣∣∣∣
x=0

∂x̃σ

∂xν

∣∣∣∣
x=0

g̃ρσ(p) = δµν

Given any g̃ρσ(p), it’s always possible to find ∂x̃/∂x so that this is satisfied. In fact, a

little counting shows that there are many such choices. If dimM = n, then there are

n2 independent coefficients in the matrix ∂x̃/∂x. The equation above puts 1
2
n(n + 1)

conditions on these. That still leaves 1
2
n(n− 1) parameters unaccounted for. But this

is to be expected: this is precisely the dimension of the rotational group SO(n) (or the

Lorentz group SO(1, n− 1)) that leaves the flat metric unchanged.

We can do a similar counting at the next order. There are 1
2
n2(n + 1) independent

elements in the coefficients ∂2x̃ρ/∂xµ∂xν . This is exactly the same number of conditions

in the requirement gµν,ρ(p) = 0.

We can also see why we shouldn’t expect to set the second derivative of the metric

to zero. Requiring gµν,ρσ = 0 is 1
4
n2(n + 1)2 constraints. Meanwhile, the next term

in the Taylor expansion is ∂3x̃ρ/∂xµ∂xν∂xλ which has 1
6
n2(n + 1)(n + 2) independent

coefficients. We see that the numbers no longer match. This time we fall short, leaving

1

4
n2(n+ 1)2 − 1

6
n2(n+ 1)(n+ 2) =

1

12
n2(n2 − 1)

unaccounted for. This, therefore, is the number of ways to characterise the second

derivative of the metric in a manner that cannot be undone by coordinate transforma-

tions. Indeed, it is not hard to show that this is precisely the number of independent

coefficients in the Riemann tensor. (For n = 4, there are 20 coefficients of the Riemann

tensor.)

The Exponential Map

There is a rather pretty, direct way to construct the coordinates (3.30). This uses

geodesics. The rough idea is that, given a tangent vector Xp ∈ Tp(M), there is a

unique affinely parameterised geodesic through p with tangent vector Xp at p. We then
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p

q

Figure 23: Start with a tangent vector, and follow the resulting geodesic to get the expo-

nential map.

label any point q in the neighbourhood of p by the coordinates of the geodesic that take

us to q in some fixed amount of time. It’s like throwing a ball in all possible directions,

and labelling points by the initial velocity needed for the ball to reach that point in,

say, 1 second.

Let’s put some flesh on this. We introduce any coordinate system (not necessarily

normal coordinates) x̃µ in the neighbourhood of p. Then the geodesic we want solves

the equation (3.29) subject to the requirements

dx̃µ

dτ

∣∣∣∣
τ=0

= X̃µ
p with x̃µ(τ = 0) = 0

There is a unique solution.

This observation means that we can define a map,

Exp : Tp(M) →M

Given Xp ∈ Tp(M), construct the appropriate geodesic and the follow it for some affine

distance which we take to be τ = 1. This gives a point q ∈ M . This is known as the

exponential map and is illustrated in the Figure 23.

There is no reason that the exponential map covers all of the manifold M . It could

well be that there are points which cannot be reached from p by geodesics. Moreover, it

may be that there are tangent vectors Xp for which the exponential map is ill-defined.

In general relativity, this occurs if the spacetime has singularities. Neither of these

issues are relevant for our current purpose.

Now pick a basis {eµ} of Tp(M). The exponential map means that tangent vector

Xp = Xµeµ defines a point q in the neighbourhood of p. We simply assign this point

coordinates

xµ(q) = Xµ

These are the normal coordinates.
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If we pick the initial basis {eµ} to be orthonormal, then the geodesics will point in

orthogonal directions which ensures that the metric takes the form gµν(p) = δµν .

To see that the first derivative of the metric also vanishes, we first fix a point q

associated to a given tangent vector X ∈ Tp(M). This tells us that the point q sits a

distance τ = 1 along the geodesic. We can now ask: what tangent vector will take us

a different distance along this same geodesic? Because the geodesic equation (3.29) is

homogeneous in τ , if we halve the length of X then we will travel only half the distance

along the geodesic, i.e. to τ = 1/2. In general, the tangent vector τX will take us a

distance τ along the geodesic

Exp : τXp → xµ(τ) = τXµ

This means that the geodesics in these coordinates take the particularly simply form

xµ(τ) = τXµ

Since these are geodesics, they must solve the geodesic equation (3.29). But, for tra-

jectories that vary linearly in time, this is just

Γµ
ρν(x(τ))X

ρXν = 0

This holds at any point along the geodesic. At most points x(τ), this equation only

holds for those choices of Xρ which take us along the geodesic in the first place. How-

ever, at x(τ) = 0, corresponding to the point p of interest, this equation must hold

for any tangent vector Xµ. This means that Γµ
(ρν)(p) = 0 which, for a torsion free

connection, ensures that Γµ
ρν(p) = 0.

Vanishing Christoffel symbols means that the derivative of the metric vanishes. This

follows for the Levi-Civita connection by writing 2gµσΓ
σ
ρν = gµρ,ν + gµν,ρ − gρν,µ. Sym-

metrising over (µρ) means that the last two terms cancel, leaving us with gµρ,ν = 0

when evaluated at p.

The Equivalence Principle

Normal coordinates play an important conceptual role in general relativity. Any ob-

server at point p who parameterises her immediate surroundings using coordinates

constructed by geodesics will experience a locally flat metric, in the sense of (3.30).
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This is the mathematics underlying the Einstein equivalence principle. This principle

states that any freely falling observer, performing local experiments, will not experience

a gravitational field. Here “freely falling” means the observer follows geodesics, as

we saw in Section 1 and will naturally use normal coordinates. In this context, the

coordinates are called a local inertial frame. The lack of gravitational field is the

statement that gµν(p) = ηµν .

Key to understanding the meaning and limitations of the equivalence principle is

the word “local”. There is a way to distinguish whether there is a gravitational field

at p: we compute the Riemann tensor. This depends on the second derivative of the

metric and, in general, will be non-vanishing. However, to measure the effects of the

Riemann tensor, one typically has to compare the result of an experiment at p with an

experiment at a nearby point q: this is considered a “non-local” observation as far as

the equivalence principle goes. In the next two subsections, we give examples of physics

that depends on the Riemann tensor.

3.3.3 Path Dependence: Curvature and Torsion

Take a tangent vector Zp ∈ Tp(M), and parallel transport it along a curve C to some

point r ∈M . Now parallel transport it along a different curve C ′ to the same point r.

How do the resulting vectors differ?

To answer this, we construct each of our curves C and C ′ from two segments, gener-

ated by linearly independent vector fields, X and Y satisfying [X, Y ] = 0 as shown in

Figure 24. To make life easy, we’ll take the point r to be close to the original point p.

We pick normal coordinates xµ = (τ, σ, 0, . . .) so that the starting point is at xµ(p) = 0

while the tangent vectors are aligned along the coordinates, X = ∂/∂τ and Y = ∂/∂σ.

The other corner points are then xµ(q) = (δτ, 0, 0, . . .), xµ(r) = (δτ, δσ, 0, . . .) and

xµ(s) = (0, δσ, 0, . . .) where δτ and δσ are taken to be small. This set-up is shown in

Figure 24.

First we parallel transport Zp along X to Zq. Along the curve, Zµ solves (3.27)

dZµ

dτ
+XνΓµ

ρνZ
ρ = 0 (3.32)

We Taylor expand the solution as

Zµ
q = Zµ

p +
dZµ

dτ

∣∣∣∣
τ=0

δτ +
1

2

d2Zµ

dτ 2

∣∣∣∣
τ=0

δτ 2 +O(δτ 3)
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r: (δτ,δσ)

Z p Z q

Z r
Z r

Z s

s: (0,δσ)

p: (0,0)
q: (δτ,0)

X

X

Y Y

Figure 24: Parallel transporting a vector Zp along two different paths does not give the

same answer.

From (3.32), we have dZµ/dτ
∣∣
0
= 0 because, in normal coordinates, Γµ

ρν(p) = 0. We

can calculate the second derivative by differentiating (3.32) to find

d2Zµ

dτ 2

∣∣∣∣
τ=0

= −
(
XνZρ

dΓµ
ρν

dτ
+
dXν

dτ
ZρΓµ

ρν +Xν dZ
ρ

dτ
Γµ
ρν

)∣∣∣∣
p

(3.33)

= − XνZρ
dΓµ

ρν

dτ

∣∣∣∣
p

= −(XνXσZρΓµ
ρν,σ)p

Here the second line follows because we’re working in normal coordinates at p, and the

final line because τ is the parameter along the integral curve of X, so d/dτ = Xσ∂σ.

We therefore have

Zµ
q = Zµ

p − 1

2
(XνXσZρΓµ

ρν,σ)p δτ
2 + . . . (3.34)

Now we parallel transport once more, this time along Y to Zµ
r . The Taylor expansion

now takes the form

Zµ
r = Zµ

q +
dZµ

dσ

∣∣∣∣
q

δσ +
1

2

d2Zµ

dσ2

∣∣∣∣
q

δσ2 +O(δσ3) (3.35)

We can again evaluate the first derivative dZµ/dσ|q using the analog of the parallel

transport equation (3.32),

dZµ

dσ

∣∣∣∣
q

= −(Y νZρΓµ
ρν)q
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Since we’re working in normal coordinates about p and not q, we no longer get to argue

that this term vanishes. Instead we Taylor expand about p to get

(Y νZρΓµ
ρν)q = (Y νZρXσΓµ

ρν,σ)p δτ + . . .

Note that in principle we should also Taylor expand Y ν and Zρ but, at leading order,

these will multiply Γµ
ρν(p) = 0, so they only contribute at next order. The second order

term in the Taylor expansion (3.35) involves d2Zµ/dσ2|q and there is an expression

similar to (3.33). To leading order the dXν/dσ and dZρ/dσ terms are again absent

because they are multiplied by Γµ
ρν(q) = dΓµ

ρν/dτ |p δτ . We therefore have

d2Zµ

dσ2

∣∣∣∣
q

= −(Y νY σZρΓµ
ρν,σ)q + . . .

= −(Y νY σZρΓµ
ρν,σ)p + . . .

where we replaced the point q with point p because they differ only subleading terms

proportional to δτ . The upshot is that this time the difference between Zµ
r and Zµ

q

involves two terms,

Zµ
r = Zµ

q − (Y νZρXσΓµ
ρν,σ)p δτδσ − 1

2
(Y νY σZρΓµ

ρν,σ)p δσ
2 + . . .

Finally, we can relate Zµ
q to Zµ

p using the expression (3.34) that we derived previously.

We end up with

Zµ
r = Zµ

p − 1

2
(Γµ

ρν,σ)p
[
XνXσZρ δτ 2 + 2Y νZρXσ δσδτ + Y νY σZρ δσ2

]
p
+ . . .

where . . . denotes any terms cubic or higher in small quantities.

Now suppose we go along the path C ′, first visiting point s and then making our way

to r. We can read the answer off directly from the result above, simply by swapping X

and Y and σ and τ ; only the middle term changes,

Z ′µ
r = Zµ

p − 1

2
(Γµ

ρν,σ)p
[
XνXσZρ δτ 2 + 2XνZρY σ δσδτ + Y νY σZρ δσ2

]
p
+ . . .

We find that

∆Zµ
r = Zµ

r − Z ′µ
r = −(Γµ

ρν,σ − Γµ
ρσ,ν)p(Y

νZρXσ)p δσδτ + . . .

= (Rµ
ρσνY

νZρXσ)p δσδτ + . . .

where, in the final equality, we’ve used the expression for the Riemann tensor in com-

ponents (3.15), which simplifies in normal coordinates as Γµ
ρσ(p) = 0. Note that, to the

order we’re working, we could equally as well evaluate Rµ
ρσνX

νZρY σ at the point r;

the two differ only by higher order terms.
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Although our calculation was performed with a particular choice of coordinates,

the end result is written as an equality between tensors and must, therefore, hold in

any coordinate system. This is a trick that we will use frequently throughout these

lectures: calculations are considerably easier in normal coordinates. But if the resulting

expression relate tensors then the final result must be true in any coordinate system.

We have discovered a rather nice interpretation of the Riemann tensor: it tells us

the path dependence of parallel transport. The calculation above is closely related

to the idea of holonomy. Here, one transports a vector around a closed curve C and

asks how the resulting vector compares to the original. This too is captured by the

Riemann tensor. A particularly simple example of non-trivial holonomy comes from

parallel transport of a vector on a sphere: the direction that you end up pointing in

depends on the path you take.

The Meaning of Torsion

We discarded torsion almost as soon as we met it, choosing to work with the Levi-

Civita connection which has vanishing torsion, Γρ
µν = Γρ

νµ. Moreover, as we will see

in Section 4, torsion plays no role in the theory of general relativity which makes use

of the Levi-Civita connection. Nonetheless, it is natural to ask: what is the geometric

meaning of torsion? There is an answer to this that makes use of the kind of parallel

transport arguments we used above.

This time, we start with two vectors X, Y ∈ Tp(M). We

Y

X
x

s

r

q

t

X

Y

/

/

Figure 25:

pick coordinates xµ and write these vectors as X = Xµ∂µ
and Y = Y µ∂µ. Starting from p ∈ M , we can use these two

vectors to construct two points infinitesimally close to p. We

call these points r and s respectively: they have coordinates

r : xµ +Xµϵ and s : xµ + Y µϵ

where ϵ is some infinitesimal parameter.

We now parallel transport the vector X ∈ Tp(M) along the direction of Y to give a

new vector X ′ ∈ Ts(M). Similarly, we parallel transport Y along the direction of X to

get a new vector Y ′ ∈ Tr(M). These new vectors have components

X ′ = (Xµ − ϵΓµ
νρY

νXρ)∂µ and Y ′ = (Y µ − ϵΓµ
νρX

νY ρ)∂µ

Each of these tangent vectors now defines a new point. Starting from point s, and

moving in the direction of X ′, we see that we get a new point q with coordinates

q : xµ + (Xµ + Y µ)ϵ− ϵ2Γµ
νρY

νXρ
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Meanwhile, if we sit at point r and move in the direction of Y ′, we get to a typically

different point, t, with coordinates

t : xµ + (Xµ + Y µ)ϵ− ϵ2Γµ
νρX

νY ρ

We see that if the connection has torsion, so Γµ
νρ ̸= Γµ

ρν , then the two points q and t do

not coincide. In other words, torsion measures the failure of the parallelogram shown

in figure to close.

3.3.4 Geodesic Deviation

Consider now a one-parameter family of geodesics, with coordinates xµ(τ ; s). Here τ

is the affine parameter along the geodesics, all of which are tangent to the vector field

X so that, along the surface spanned by xµ(τ, s), we have

Xµ =
∂xµ

∂τ

∣∣∣∣
s

Meanwhile, s labels the different geodesics, as shown in Figure 26. We take the tangent

vector in the s direction to be generated by a second vector field S so that,

Sµ =
∂xµ

∂s

∣∣∣∣
τ

The tangent vector Sµ is sometimes called the deviation vector; it takes us from one

geodesic to a nearby geodesic with the same affine parameter τ .

The family of geodesics sweeps out a surface embedded in the manifold. This gives

us some freedom in the way we assign coordinates s and τ . In fact, we can always pick

coordinates s and t on the surface such that S = ∂/∂s and X = ∂/∂t, ensuring that

[S,X] = 0

Roughly speaking, we can do this if we use τ and s as coordinates on some submanifold

of M . Then the vector fields can be written simply as X = ∂/∂τ and S = ∂/∂s and

[X,S] = 0.

We can ask how neighbouring geodesics behave. Do they converge? Or do they

move further apart? Now consider a connection Γ with vanishing torsion, so that

∇XS −∇SX = [X,S]. Since [X,S] = 0, we have

∇X∇XS = ∇X∇SX = ∇S∇XX +R(X,S)X
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= constant

= constant

s

τ

X X X

S

S

Figure 26: The black lines are geodesics generated by X. The red lines label constant τ and

are generated by S, with [X,S] = 0.

where, in the second equality, we’ve used the expression (3.14) for the Riemann tensor

as a differential operator. But ∇XX = 0 because X is tangent to geodesics, and we

have

∇X∇XS = R(X,S)X

In index notation, this is

Xν∇ν(X
ρ∇ρS

µ) = Rµ
νρσX

νXρSσ

If we further restrict to an integral curve C associated to the vector field X, as in

(3.25), this equation is sometimes written as

D2Sµ

Dτ 2
= Rµ

νρσX
νXρSσ (3.36)

where D/Dτ is the covariant derivative along the curve C, defined by D/Dτ = ∂xµ

∂τ
∇µ.

The left-hand-side tells us how the deviation vector Sµ changes as we move along the

geodesic. In other words, it is the relative acceleration of neighbouring geodesics. We

learn that this relative acceleration is controlled by the Riemann tensor.

Experimentally, such geodesic deviations are called tidal forces. We met a simple

example in Section 1.2.4.

An Example: the Sphere S2 Again

It is simple to determine the geodesics on the sphere S2 of radius r. Using the Christoffel

symbols (3.19), the geodesic equations are

d2θ

dτ 2
= sin θ cos θ

(
dϕ

dτ

)2

and
d2ϕ

dτ 2
= −2

cos θ

sin θ

dϕ

dτ

dθ

dτ
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The solutions are great circles. The general solution is a little awkward in these coor-

dinates, but there are two simple solutions.

• We can set θ = π/2 with θ̇ = 0 and ϕ̇ = constant. This is a solution in which

the particle moves around the equator. Note that this solution doesn’t work for

other values of θ.

• We can set ϕ̇ = 0 and θ̇ = constant. These are paths of constant longitude and

are geodesics for any constant value of ϕ. Note, however, that our coordinates go

a little screwy at the poles θ = 0 and θ = π.

To illustrate geodesic deviation, we’ll look at the second class of solutions; the particle

moves along θ = vτ , with the angle ϕ specifying the geodesic. This set-up is simple

enough that we don’t need to use any fancy Riemann tensor techniques: we can just

understand the geodesic deviation using simple geometry. The distance between the

geodesic at ϕ = 0 and the geodesic at some other longitude ϕ is

s(τ) = rϕ sin θ = rϕ sin(vτ) (3.37)

Now let’s re-derive this result using our fancy technology. The geodesics are generated

by the vector field Xθ = v. Meanwhile, the separation between geodesics at a fixed τ

is Sϕ = s(τ). The geodesic deviation equation in the form (3.36) is

d2s

dτ 2
= v2Rϕ

θθϕ s(τ)

We computed the Riemann tensor for S2 in (3.20); the relevant component is

Rϕθθϕ = −r2 sin2 θ ⇒ Rϕ
θθϕ = gϕϕRϕθθϕ = −1 (3.38)

and the geodesic deviation equation becomes simply

d2s

dτ 2
= −v2s

which is indeed solved by (3.37).

3.4 More on the Riemann Tensor and its Friends

Recall that the components of the Riemann tensor are given by (3.15),

Rσ
ρµν = ∂µΓ

σ
νρ − ∂νΓ

σ
µρ + Γλ

νρΓ
σ
µλ − Γλ

µρΓ
σ
νλ (3.39)
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We can immediately see that the Riemann tensor is anti-symmetric in the final two

indices

Rσ
ρµν = −Rσ

ρνµ

However, there are also a number of more subtle symmetric properties satisfied by the

Riemann tensor when we use the Levi-Civita connection. Logically, we could have

discussed this back in Section 3.2. However, it turns out that a number of statements

are substantially simpler to prove using normal coordinates introduced in Section 3.3.2.

Claim: If we lower an index on the Riemann tensor, and write Rσρµν = gσλR
λ
ρµν then

the resulting object also obeys the following identities

• Rσρµν = −Rσρνµ.

• Rσρµν = −Rρσµν .

• Rσρµν = Rµνσρ.

• Rσ[ρµν] = 0.

Proof: We work in normal coordinates, with Γλ
µν = 0 at a point. The Riemann tensor

can then be written as

Rσρµν = gσλ
(
∂µΓ

λ
νρ − ∂νΓ

λ
µρ

)
=

1

2
(∂µ(∂νgσρ + ∂ρgνσ − ∂σgνρ)− ∂ν(∂µgσρ + ∂ρgµσ − ∂σgµρ))

=
1

2
(∂µ∂ρgνσ − ∂µ∂σgνρ − ∂ν∂ρgµσ + ∂ν∂σgµρ)

where, in going to the second line, we used the fact that ∂µg
λσ = 0 in normal coor-

dinates. The first three symmetries are manifest; the final one follows from a little

playing. (It is perhaps quicker to see the final symmetry if we return to the Christoffel

symbols where, in normal coordinates, we have Rσ
ρµν = ∂µΓ

σ
ρν − ∂νΓ

σ
ρµ.) But since

the symmetry equations are tensor equations, they must hold in all coordinate systems.

□

Claim: The Riemann tensor also obeys the Bianchi identity

∇[λRσρ]µν = 0 (3.40)

Alternatively, we can anti-symmetrise on the final two indices, in which case this can

be written as Rσ
ρ[µν;λ] = 0.
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Proof: We again use normal coordinates, where ∇λRσρµν = ∂λRσρµν at the point p.

Schematically, we have R = ∂Γ + ΓΓ, so ∂R = ∂2Γ + Γ∂Γ and the final Γ∂Γ term is

absent in normal coordinates. This means that we just have ∂R = ∂2Γ which, in its

full coordinated glory, is

∂λRσρµν =
1

2
∂λ (∂µ∂ρgνσ − ∂µ∂σgνρ − ∂ν∂ρgµσ + ∂ν∂σgµρ)

Now anti-symmetrise on the three appropriate indices to get the result. □

For completeness, we should mention that the identities Rσ[ρµν] = 0 and ∇[λRσρ]µν =

0 (sometimes called the first and second Bianchi identities respectively) are more gen-

eral, in the sense that they hold for an arbitrary torsion free connection. In contrast, the

other two identities, Rσρµν = −Rρσµν and Rσρµν = Rµνσρ hold only for the Levi-Civita

connection.

3.4.1 The Ricci and Einstein Tensors

There are a number of further tensors that we can build from the Riemann tensor.

First, given a rank (1, 3) tensor, we can always construct a rank (0, 2) tensor by

contraction. If we start with the Riemann tensor, the resulting object is called the

Ricci tensor. It is defined by

Rµν = Rρ
µρν

The Ricci tensor inherits its symmetry from the Riemann tensor. We write Rµν =

gσρRσµρν = gρσRρνσµ, giving us

Rµν = Rνµ

We can go one step further and create a function R over the manifold. This is the Ricci

scalar,

R = gµνRµν

The Bianchi identity (3.40) has a nice implication for the Ricci tensor. If we write the

Bianchi identity out in full, we have

∇λRσρµν +∇σRρλµν +∇ρRλσµν = 0

× gµλgρν ⇒ ∇µRµσ −∇σR +∇νRνσ = 0

which means that

∇µRµν =
1

2
∇νR
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This motivates us to introduce the Einstein tensor,

Gµν = Rµν −
1

2
Rgµν

which has the property that it is covariantly constant, meaning

∇µGµν = 0 (3.41)

We’ll be seeing much more of the Ricci and Einstein tensors in the next section.

3.4.2 Connection 1-forms and Curvature 2-forms

Calculating the components of the Riemann tensor is straightforward but extremely

tedious. It turns out that there is a slightly different way of repackaging the connection

and the torsion and curvature tensors using the language of forms. This not only

provides a simple way to actually compute the Riemann tensor, but also offers some

useful conceptual insight.

Vielbeins

Until now, we have typically worked with a coordinate basis {eµ} = {∂µ}. However, we
could always pick a basis of vector fields that has no such interpretation. For example,

a linear combination of a coordinate basis, say

êa = ea
µ ∂µ

will not, in general, be a coordinate basis itself.

Given a metric, there is a non-coordinate basis that will prove particularly useful for

computing the curvature tensor. This is the basis such that, on a Riemannian manifold,

g(êa, êb) = gµνea
µeb

ν = δab

Alternatively, on a Lorentzian manifold we take

g(êa, êb) = gµνea
µeb

ν = ηab (3.42)

The components ea
µ are called vielbeins or tetrads. (On an n-dimensional mani-

fold, these objects are usually called “German word for n”-beins. For example, one-

dimensional manifolds have einbeins; four-dimensional manifolds have vierbeins.)
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The is reminiscent of our discussion in Section 3.1.2 where we mentioned that we can

always find coordinates so that any metric will look flat at a point. In (3.42), we’ve

succeeded in making the manifold look flat everywhere (at least in a patch covered by

a chart). There are no coordinates that do this, but there’s nothing to stop us picking

a basis of vector fields that does the job. In what follows, µν indices are raised/lowered

with the metric gµν while a, b indices are raised/lowered with the flat metric δab or ηab.

We will phrase our discussion in the context of Lorentzian manifolds, with an eye to

later applications to general relativity.

The vielbeins aren’t unique. Given a set of vielbeins, we can always find another set

related by

ẽa
µ = eb

µ(Λ−1)ba with Λ c
a Λ

d
b ηcd = ηab (3.43)

These are Lorentz transformations. However now they are local Lorentz transformation,

because Λ can vary over the manifold. These local Lorentz transformations are a

redundancy in the definition of the vielbeins in (3.42).

The dual basis of one-forms {θ̂a} is defined by θ̂a(êb) = δab . They are related to the

coordinate basis by

θ̂a = eaµdx
µ

Note the different placement of indices: eaµ is the inverse of ea
µ, meaning it satisfies

eaµeb
µ = δab and eaµea

ν = δνµ. In the non-coordinate basis, the metric on a Lorentzian

manifold takes the form

g = gµνdx
µ ⊗ dxν = ηabθ̂

a ⊗ θ̂b ⇒ gµν = eaµe
b
νηab

For Riemannian manifolds, we replace ηab with δab.

The Connection One-Form

Given a non-coordinate basis {êa}, we can define the components of a connection in

the usual way (3.8)

∇êc êb = Γa
cb êa

Note that, annoyingly, these are not the same functions as Γµ
ρν , which are the compo-

nents of the connection computed in the coordinate basis! You need to pay attention to

whether the components are Greek µ, ν etc which tells you that we’re in the coordinate

basis, or Roman a, b etc which tells you we’re in the vielbein basis.
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We then define the matrix-valued connection one-form as

ωa
b = Γa

cb θ̂
c (3.44)

This is sometimes referred to as the spin connection because of the role it plays in

defining spinors on curved spacetime. We’ll describe this in Section 4.5.6.

The connection one-forms don’t transform covariantly under local Lorentz transfor-

mations (3.43). Instead, in the new basis, the components of the connection one-form

are defined as ∇ ˆ̃eb
ˆ̃ec = Γ̃a

bc
ˆ̃ea. You can check that the connection one-form transforms

as

ω̃a
b = Λa

c ω
c
d(Λ

−1)db + Λa
c(dΛ

−1)cb (3.45)

The second term reflects the fact that the original connection components Γµ
νρ do not

transform as a tensor, but with an extra term involving the derivative of the coordinate

transformation (3.13). This now shows up as an extra term involving the derivative of

the local Lorentz transformation.

There is a rather simple way to compute the connection one-forms, at least for a

torsion free connection. This follows from the first of two Cartan structure relations:

Claim: For a torsion free connection,

dθ̂a + ωa
b ∧ θ̂b = 0 (3.46)

Proof: We first look at the second term,

ωa
b ∧ θ̂b = Γa

cb (e
c
µdx

µ) ∧ (ebνdx
ν)

The components Γa
cb are related to the coordinate basis components by

Γa
cb = eaρe

µ
c

(
∂µe

ρ
b + e ν

b Γρ
µν

)
= eaρec

µ∇µeb
ρ (3.47)

So

ωa
b ∧ θ̂b = eaρe

λ
c e

c
µe

b
ν (∂λe

ρ
b + e σ

b Γρ
λσ) dx

µ ∧ dxν

= eaρe
b
ν∂µe

ρ
b dxµ ∧ dxν

where, in the second line we’ve used ec
λecµ = δλµ and the fact that the connection is

torsion free so Γρ
[µν] = 0. Now we use the fact that ebνeb

ρ = δρν , so e
b
ν∂µeb

ρ = −ebρ∂µebν .
We have

ωa
b ∧ θ̂b = −eaρe ρ

b ∂µe
b
ν dx

µ ∧ dxν

= −∂µeaν dxµ ∧ dxν = −dθ̂a

which completes the proof. □
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The discussion above was for a general connection. For the Levi-Civita connection,

we have a stronger result

Claim: For the Levi-Civita connection, the connection one-form is anti-symmetric

ωab = −ωba (3.48)

Proof: This follows from the explicit expression (3.47) for the components Γa
bc. Low-

ering an index, we have

Γabc = ηad e
d
ρeb

µ∇µec
ρ = −ηad ecρebµ∇µe

d
ρ = −ηcfef σebµ∇µ(ηadg

ρσedρ)

where, in the final equality, we’ve used the fact that the connection is compatible with

the metric to raise the indices of edρ inside the covariant derivative. Finishing off the

derivation, we then have

Γabc = −ηcf ef ρebµ∇µea
ρ = −Γcba

The result then follows from the definition ωab = Γacbθ̂
c. □

The Cartan structure equation (3.46), together with the anti-symmetry condition

(3.48), gives a quick way to compute the spin connection. It’s instructive to do some

counting to see how these two equations uniquely define ωa
b. In particular, since ωab is

anti-symmetric, one might think that it has 1
2
n(n − 1) independent components, and

these can’t possibly be fixed by the n Cartan structure equations (3.46). But this is

missing the fact that ωab are not numbers, but are one-forms. So the true number of

components in ωab is n× 1
2
n(n− 1). Furthermore, the Cartan structure equation is an

equation relating 2-forms, each of which has 1
2
n(n − 1) components. This means that

it’s really n × 1
2
n(n − 1) equations. We see that the counting does work, and the two

fix the spin connection uniquely.

The Curvature Two-Form

We can compute the components of the Riemann tensor in our non-coordinate basis,

Ra
bcd = R(θ̂a; êc, êd, êb)

The anti-symmetry of the last two indices, Ra
bcd = −Ra

bdc, makes this ripe for turning

into a matrix of two-forms,

Ra
b =

1

2
Ra

bcd θ̂
c ∧ θ̂d (3.49)
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The second of the two Cartan structure relations states that this can be written in

terms of the curvature one-form as

Ra
b = dωa

b + ωa
c ∧ ωc

b (3.50)

The proof of this is mechanical and somewhat tedious. It’s helpful to define the quan-

tities [êa, êb] = fab
c êc along the way, since they appear on both left and right-hand

sides.

3.4.3 An Example: the Schwarzschild Metric

The connection one-form and curvature two-form provide a slick way to compute the

curvature tensor associated to a metric. The reason for this is that computing exterior

derivatives takes significantly less effort than computing covariant derivatives. We will

illustrate this for metrics of the form,

ds2 = −f(r)2dt2 + f(r)−2dr2 + r2(dθ2 + sin2 θ dϕ2) (3.51)

For later applications, it will prove useful to compute the Riemann tensor for this metric

with general f(r). However, if we want to restrict to the Schwarzschild metric we can

take

f(r) =

√
1− 2GM

r
(3.52)

The basis of non-coordinate one-forms is

θ̂0 = f dt , θ̂1 = f−1 dr , θ̂2 = r dθ , θ̂3 = r sin θ dϕ (3.53)

Note that the one-forms θ̂ should not be confused with the angular coordinate θ! In

this basis, the metric takes the simple form

ds2 = ηabθ̂
a ⊗ θ̂b

We now compute dθ̂a. Calculationally, this is straightforward. In particular, it’s sub-

stantially easier than computing the covariant derivative because there’s no messy

connection to worry about. The exterior derivatives are simply

dθ̂0 = f ′ dr ∧ dt , dθ̂1 = 0 , dθ̂2 = dr ∧ dθ , dθ̂3 = sin θ dr ∧ dϕ+ r cos θ dθ ∧ dϕ

The first Cartan structure relation, dθ̂a = −ωa
b ∧ θ̂b, can then be used to read off the

connection one-form. The first equation tells us that ω0
1 = f ′fdt = f ′ θ̂0. We then

use the anti-symmetry (3.48), together with raising and lowering by the Minkowski

metric η = diag(−1,+1,+1,+1) to get ω1
0 = ω10 = −ω01 = ω0

1. The Cartan structure

equation then gives dθ̂1 = −ω1
0∧ θ̂0+ . . . and the ω1

0∧ θ̂0 contribution happily vanishes

because it is proportional to θ̂0 ∧ θ̂0 = 0.
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Next, we take ω2
1 = fdθ = (f/r)θ̂2 to solve the dθ̂2 structure equation. The anti-

symmetry (3.48) gives ω1
2 = −ω2

1 = −(f/r)θ̂2 and this again gives a vanishing contri-

bution to the dθ̂1 structure equation.

Finally, the dθ̂3 equation suggests that we take ω3
1 = f sin θdϕ = (f/r)θ̂3 and ω3

2 =

cos θdϕ = (1/r) cot θ θ̂3. These anti-symmetric partners ω1
3 = −ω3

1 and ω2
3 = −ω3

2

do nothing to spoil the dθ̂1 and dθ̂2 structure equations, so we’re home dry. The final

result is

ω0
1 = ω1

0 = f ′ θ̂0 , ω2
1 = −ω1

2 =
f

r
θ̂2

ω3
1 = −ω1

3 =
f

r
θ̂3 , ω3

2 = −ω2
3 =

cot θ

r
θ̂3

Now we can use this to compute the curvature two-form. We will focus on

R0
1 = dω0

1 + ω0
c ∧ ωc

1

We have

dω0
1 = f ′dθ̂0 + f ′′dr ∧ θ̂0 =

(
(f ′)2 + f ′′f

)
dr ∧ dt

The second term in the curvature 2-form is ω0
c ∧ ωc

1 = ω0
1 ∧ ω1

1 = 0. So we’re left

with

R0
1 =

(
(f ′)2 + f ′′f

)
dr ∧ dt =

(
(f ′)2 + f ′′f

)
θ̂1 ∧ θ̂0

The other curvature 2-forms can be computed in a similar fashion. We can now read

off the components of the Riemann tensor in the non-coordinate basis using (3.49).

(We should remember that we get a contribution from both R0
101 and R

0
110 = −R0

101,

which cancels the factor of 1/2 in (3.49).) After lowering an index, we find that the

non-vanishing components of the Riemann tensor are

R0101 = ff ′′ + (f ′)2

R0202 =
ff ′

r

R0303 =
ff ′

r

R1212 = −ff
′

r

R1313 = −ff
′

r

R2323 =
1− f 2

r2
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We can also convert this back to the coordinates xµ = (t, r, θ, ϕ) using

Rµνρσ = eaµe
b
νe

c
ρe

d
σRabcd

This is particularly easy in this case because the matrices e µ
a defining the one-forms

(3.53) are diagonal. We then have

Rtrtr = ff ′′ + (f ′)2

Rtθtθ = f 3f ′r

Rtϕtϕ = f 3f ′r sin2 θ

Rrθrθ = −f
′r

f
(3.54)

Rrϕrϕ = −f
′r

f
sin2 θ

Rθϕθϕ = (1− f 2)r2 sin2 θ

Finally, if we want to specialise to the Schwarzschild metric with f(r) given by (3.52),

we have

Rtrtr = −2GM

r3

Rtθtθ =
GM(r − 2GM)

r2

Rtϕtϕ =
GM(r − 2GM)

r2
sin2 θ

Rrθrθ = − GM

r − 2GM

Rrϕrϕ = −GM sin2 θ

r − 2GM

Rθϕθϕ = 2GMr sin2 θ

Although the calculation is a little lengthy, it turns out to be considerably quicker than

first computing the Levi-Civita connection and subsequently motoring through to get

the Riemann tensor components.

3.4.4 The Relation to Yang-Mills Theory

It is no secret that the force of gravity is geometrical. However, the other forces are

equally as geometrical. The underlying geometry is something called a fibre bundle,

rather than the geometry of spacetime.
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We won’t describe fibre bundles in this course, but we can exhibit a clear similarity

between the structures that arise in general relativity and the structures that arise

in the other forces, which are described by Maxwell theory and its generalisation to

Yang-Mills theory.

Yang-Mills theory is based on a Lie group G which, for this discussion, we will take

to be SU(N) or U(N). If we take G = U(1), then Yang-Mills theory reduces to

Maxwell theory. The theory is described in terms of an object that physicists call a

gauge potential. This is a spacetime “vector” Aµ which lives in the Lie algebra of G. In

more down to earth terms, each component is an anti-Hermitian N×N matrix, (Aµ)
a
b,

with a, b = 1, . . . , N . In fact, as we saw above, this “vector” is really a one-form. The

novelty is that it’s a Lie algebra-valued one-form.

Mathematicians don’t refer to Aµ as a gauge potential. Instead, they call it a con-

nection (on a fibre bundle). This relationship becomes clearer if we look at how Aµ

changes under a gauge transformation

Ãµ = ΩAµΩ
−1 + Ω∂µΩ

−1

where Ω(x) ∈ G. This is identical to the transformation property (3.45) of the one-form

connection under local Lorentz transformations.

In Yang-Mills, as in Maxwell theory, we construct a field strength. In components,

this is given by

(Fµν)
a
b = ∂µ(Aν)

a
b − ∂ν(Aµ)

a
b + [Aµ, Aν ]

a
b

Alternatively, in the language of forms, the field strength becomes

F a
b = dAa

b + Aa
c ∧ Ac

b

Again, there is an obvious similarity with the curvature 2-form introduced in (3.50).

Mathematicians refer to the Yang-Mills field strength the “curvature”.

A particularly quick way to construct the Yang-Mills field strength is to take the

commutator of two covariant derivatives. It is simple to check that

[Dµ,Dν ] = Fµν

where I’ve suppressed the a, b indices on both sides. This is the gauge theory version

of the Ricci identity (3.16): for a torsion free connection,

[∇µ,∇ν ]Z
σ = Rσ

ρµνZ
ρ
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4. The Einstein Equations

It is now time to do some physics. The force of gravity is mediated by a gravitational

field. The glory of general relativity is that this field is identified with a metric gµν(x)

on a 4d Lorentzian manifold that we call spacetime.

This metric is not something fixed; it is, like all other fields in Nature, a dynamical

object. This means that there are rules which govern how this field evolves in time.

The purpose of this section is to explore these rules and some of their consequences.

We will start by understanding the dynamics of the gravitational field in the absence

of any matter. We will then turn to understand how the gravitational field responds

to matter – or, more precisely, to energy and momentum – in Section 4.5.

4.1 The Einstein-Hilbert Action

All our fundamental theories of physics are described by action principles. Gravity is

no different. Furthermore, the straight-jacket of differential geometry places enormous

restrictions on the kind of actions that we can write down. These restrictions ensure

that the action is something intrinsic to the metric itself, rather than depending on our

choice of coordinates.

Spacetime is a manifold M , equipped with a metric of Lorentzian signature. An

action is an integral over M . We know from Section 2.4.4 that we need a volume-form

to integrate over a manifold. Happily, as we have seen, the metric provides a canonical

volume form, which we can then multiply by any scalar function. Given that we only

have the metric to play with, the simplest such (non-trivial) function is the Ricci scalar

R. This motivates us to consider the wonderfully concise action

S =

∫
d4x

√
−gR (4.1)

This is the Einstein-Hilbert action. Note that the minus sign under the square-root

arises because we are in a Lorentzian spacetime: the metric has a single negative

eigenvalue and so its determinant, g = det gµν , is negative.

As a quick sanity check, recall that the Ricci tensor takes the schematic form (3.39)

R ∼ ∂Γ + ΓΓ while the Levi-Civita connection itself is Γ ∼ ∂g. This means that the

Einstein-Hilbert action is second order in derivatives, just like most other actions we

consider in physics.
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Varying the Einstein-Hilbert Action

We would like to determine the Euler-Lagrange equations arising from the action (4.1).

We do this in the usual way, by starting with some fixed metric gµν(x) and seeing how

the action changes when we shift

gµν(x) → gµν(x) + δgµν(x)

Writing the Ricci scalar as R = gµνRµν , the Einstein-Hilbert action clearly changes as

δS =

∫
d4x

(
(δ
√
−g)gµνRµν +

√
−g(δgµν)Rµν +

√
−ggµνδRµν

)
(4.2)

It turns out that it’s slightly easier to think of the variation in terms of the inverse

metric δgµν . This is equivalent to the variation of the metric δgµν ; the two are related

by

gρµg
µν = δνρ ⇒ (δgρµ)g

µν + gρµδg
µν = 0 ⇒ δgµν = −gµρgνσδgρσ

The middle term in (4.2) is already proportional to δgµν . We now deal with the first

and third terms in turn. We will need the following result:

Claim: The variation of
√
−g is given by

δ
√
−g = −1

2

√
−g gµν δgµν

Proof: We use the fact that any diagonalisable matrix A obeys the identity

log detA = tr logA

This is obviously true for diagonal matrices. (The determinant is the product of eigen-

values while the trace is the sum of eigenvalues.) But because both the determinant

and the trace are invariant under conjugation, it is also true for a diagonalisable matrix.

Using this, we have,

1

detA
δ(detA) = tr(A−1δA)

Applying this to the metric, we have

δ
√
−g = 1

2

1√
−g

(−g) gµν δgµν =
1

2

√
−g gµν δgµν

Using gµνδgµν = −gµνδgµν then gives the result. □
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So far, we have managed to write the variation of the action (4.2) as

δS =

∫
d4x

√
−g

(
Rµν −

1

2
Rgµν

)
δgµν +

√
−ggµνδRµν

We now need only worry about the final term. For this, we use:

Claim: The variation of the Ricci tensor is a total derivative

δRµν = ∇ρ δΓ
ρ
µν −∇ν δΓ

ρ
µρ

where

δΓρ
µν =

1

2
gρσ (∇µδgσν +∇νδgσµ −∇σδgµν)

Proof: We start by looking at the variation of the Christoffel symbols, Γρ
µν . First

note that, although the Christoffel symbol itself is not a tensor, the variation δΓρ
µν is a

tensor. This is because it is the difference of Christoffel symbols, one computed using

gµν and the other using gµν + δgµν . But the extra derivative term in the transformation

of Γρ
µν is independent of the metric and so cancels out when we take the difference,

leaving us with an object which transforms nicely as a tensor.

This is a useful observation. At any point p ∈ M we can choose to work in normal

coordinates such that ∂ρgµν = 0 and, correspondingly, Γρ
µν = 0. Then, to linear order

in the variation, the change in the Christoffel symbol evaluated at p is

δΓρ
µν =

1

2
gρσ (∂µδgσν + ∂νδgσµ − ∂σδgµν)

=
1

2
gρσ (∇µδgσν +∇νδgσµ −∇σδgµν)

where we’re at liberty to replace the partial derivatives with covariant derivatives be-

cause they differ only by the Christoffel symbols Γρ
µν which, in normal coordinates,

vanish at p. However, both the left and right-hand sides of this equation are tensors

which means that although we derived this expression using normal coordinates, it

must hold in any coordinate system. Moreover, the point p was arbitrary so the final

expression holds generally.

Next we look at the variation of the Riemann tensor. In normal coordinates, the

expression (3.39) becomes

Rσ
ρµν = ∂µΓ

σ
νρ − ∂νΓ

σ
µρ
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and the variation is

δRσ
ρµν = ∂µ δΓ

σ
νρ − ∂ν δΓ

σ
µρ = ∇µ δΓ

σ
νρ −∇ν δΓ

σ
µρ

where, as before, we replace partial derivatives with covariant derivatives as we are

working in normal coordinates where the Christoffel symbols vanish. Once again, our

final expression relates two tensors and must, therefore, hold in any coordinate system.

Contracting indices (and working to leading order), we have

δRρν = ∇µ δΓ
µ
νρ −∇ν δΓ

µ
ρµ

as claimed. □

The upshot of these calculations is that

gµνδRµν = ∇µX
µ with Xµ = gρν δΓµ

ρν − gµν δΓρ
νρ

The variation of the action (4.2) can then be written as

δS =

∫
d4x

√
−g
[(
Rµν −

1

2
Rgµν

)
δgµν +∇µX

µ

]
(4.3)

This final term is a total derivative and, by the divergence theorem of Section 3.2.4, we

ignore it. Requiring that the action is extremised, so δS = 0, we have the equations of

motion

Gµν := Rµν −
1

2
Rgµν = 0 (4.4)

where Gµν is the Einstein tensor defined in Section 3.4.1. These are the Einstein field

equations in the absence of any matter. In fact they simplify somewhat: if we contract

(4.4) with gµν , we find that we must have R = 0. Substituting this back in, the vacuum

Einstein equations are simply the requirement that the metric is Ricci flat,

Rµν = 0 (4.5)

These deceptively simple equations hold a myriad of surprises. We will meet some of

the solutions as we go along, notably gravitational waves in Section 5.2 and black holes

in Section 6.

Before we proceed, a small comment. We happily discarded the boundary term in

(4.3), a standard practice whenever we invoke the variational principle. It turns out

that there are some situations in general relativity where we should not be quite so

cavalier. In such circumstances, one can be more careful by invoking the so-called

Gibbons-Hawking boundary term.

– 143 –



4.1.1 An Aside on Dimensional Analysis

As it stands, there’s something a little fishy about the action (4.1): it doesn’t have

the right dimensions. This isn’t such an issue since we have just a single term in the

action and multiplying the action by a constant doesn’t change the classical equations

of motion. Nonetheless, it will prove useful to get it right at this stage.

If we take the coordinates xµ to have dimension of length, then the metric gµν is neces-

sarily dimensionless. The Ricci scalar involves two spatial derivatives so has dimension

[R] = L−2. Including the integration measure, the action (4.1) then has dimensions

[S] = L2. However, actions should have dimensions of energy× time (it’s the same di-

mensions as ℏ), or [S] =ML2T−1. This means that the Einstein-Hilbert action should

be multiplied by a constant with the appropriate dimensions. We take

S =
c3

16πG

∫
d4x

√
−gR

where c is the speed of light and G is Newton’s constant,

G ≈ 6.67× 10−11 m3 kg−1s−2

This factor doesn’t change the equation of motion in vacuum, but we will see in Section

4.5 that it determines the strength of the coupling between the gravitational field and

matter, as we might expect.

It’s no fun carrying around a morass of fundamental constants in all our equations.

For this reason, we often work in “natural units” in which various constants are set

equal to 1. From now on, we will set c = 1. (Any other choice of c, including 3× 108,

is simply dumb.) This means that units of length and time are equated.

However, different communities have different conventions when it comes to G. Rel-

ativists will typically set G = 1. Since we have already set c = 1, we have [G] = LM−1.

Setting G = 1 then equates mass with length. This is useful when discussing gravita-

tional phenomenon where the mass is often directly related to the length. For example,

the Schwarzschild radius of black hole is Rs = 2GM/c2 which becomes simply Rs = 2M

once we set G = c = 1.

However, if you’re interested in phenomena other than gravity, then it’s no more

sensible to set G = 1 than to set, say, the Fermi coupling for the weak force GF = 1.

Instead, it is more useful to choose the convention where ℏ = 1, a choice which equates

energy with inverse time (also known as frequency). With this convention, Newton’s
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constant has dimension [G] = M−2. The corresponding energy scale is known as the

(reduced) Planck mass; it is given by

M2
pl =

ℏc
8πG

It is around 1018 GeV. This is a very high energy scale, way beyond anything we have

probed in experiment. This can be traced to the weakness of the gravitational force.

With c = ℏ = 1, we can equally well write the Einstein-Hilbert action as

S =
1

2
M2

pl

∫
d4x

√
−gR

You might be tempted to set c = ℏ = G = 1. This leaves us with no remaining

dimensional quantities. It is typically a bad idea, not least because dimensional analysis

is a powerful tool and one we do not want to lose. In these lectures, we will focus only

on gravitational physics. Nonetheless, we will retain G in all equations.

4.1.2 The Cosmological Constant

We motivated the Einstein-Hilbert action as the simplest term we could write down.

While it’s true that it’s the simplest term that results in interesting dynamics for the

gravitational field, there is in fact a simpler term which we could add to the action.

This comes from multiplying the volume form by a constant. The resulting action is

S =
1

16πG

∫
d4x

√
−g (R− 2Λ)

Here Λ is referred to as the cosmological constant. It has dimension [Λ] = L−2. The

minus sign in the action comes from thinking of the Lagrangian as “T − V ”: the

cosmological constant is like the potential energy V .

Varying the action as before now yields the Einstein equations,

Rµν −
1

2
Rgµν = −Λgµν

This time, if we contract with gµν , we get R = 4Λ. Substituting this back in, the

vacuum Einstein equations in the presence of a cosmological constant become

Rµν = Λgµν

We will solve these shortly in Section 4.2.
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Higher Derivative Terms

The Einstein-Hilbert action (with cosmological constant) is the simplest thing we can

write down but it is not the only possibility, at least if we allow for higher derivative

terms. For example, there are three terms that contain four derivatives of the metric,

S4−deriv =

∫
d4x

√
−g
(
c1R

2 + c2RµνR
µν + c3RµνρσR

µνρσ
)

with c1, c2 and c3 dimensionless constants. General choices of these constants will

result in higher order equations of motion which do not have a well-defined initial value

problem. Nonetheless, it turns out that one can find certain combinations of these

terms which conspire to keep the equations of motion second order. This is known

as Lovelock’s theorem. In d = 4 dimensions, this combination has a rather special

topological property: a generalisation of the Gauss-Bonnet theorem states that

1

8π2

∫
M

d4x
√
g
(
R2 − 4RµνR

µν +RµνρσR
µνρσ

)
= χ(M)

where χ(M) ∈ Z is the Euler character of M that we previously defined in (2.35). In

Lorentzian signature, this combination of curvature terms is also a total derivative and

does not affect the classical equations of motion.

As in any field theory, higher derivative terms in the action only become relevant

for fast varying fields. In General Relativity, they are unimportant for all observed

physical phenomena and we will not discuss them further in this course.

4.1.3 Diffeomorphisms Revisited

Here’s a simple question: how many degrees of freedom are there in the metric gµν?

Since this is a symmetric 4× 4 matrix, our first guess is 1
2
× 4× 5 = 10.

However, not all the components of the metric gµν are physical. Two metrics which

are related by a change of coordinates, xµ → x̃µ(x) describe the same physical space-

time. This means that there is a redundancy in any given representation of the metric,

which removes precisely 4 of the 10 degrees of freedom, leaving just 6 behind.

Mathematically, this redundancy is implemented by diffeomorphisms. (We defined

diffeomorphisms in Section 2.1.3.) Given a diffeomorphism, ϕ : M → M , we can use

this to map all fields, including the metric, on M to a new set of fields on M . The

end result is physically indistinguishable from where we started: it describes the same

system, but in different coordinates. Such diffeomorphisms are analogous to the gauge

symmetries that are familiar in Maxwell and Yang-Mills theory.
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Let’s look more closely at the implication of these diffeomorphisms for the path

integral. We’ll consider a diffeomorphism that takes a point with coordinates xµ to a

nearby point with coordinates

xµ → x̃µ(x) = xµ + δxµ

We could view this either as an “active change”, in which one point with coordinates

xµ is mapped to another point with coordinates xµ + δxµ, or as a “passive” change,

in which we use two different coordinate charts to label the same point. Ultimately,

the two views lead to the same place. We’ll adopt the passive perspective here, simply

because we have a lot of experience of changing coordinates. Later we’ll revert to the

active picture.

We can think of the change of coordinates as being generated by an infinitesimal

vector field X,

δxµ = −Xµ(x)

The metric transforms as

gµν(x) → g̃µν(x̃) =
∂xρ

∂x̃µ
∂xσ

∂x̃ν
gρσ(x)

With our change of coordinate x̃µ = xµ −Xµ(x), with infinitesimal Xµ, we can invert

the Jacobian matrix to get

∂x̃µ

∂xρ
= δµρ − ∂ρX

µ ⇒ ∂xρ

∂x̃µ
= δρµ + ∂µX

ρ

where the inverse holds to leading order in the variation X. Continuing to work in-

finitesimally, we then have

g̃µν(x̃) =
(
δρµ + ∂µX

ρ
)
(δσν + ∂νX

σ) gρσ(x)

= gµν(x) + gµρ(x)∂νX
ρ + gνρ(x)∂µX

ρ

Meanwhile, we can Taylor expand the left-hand side

g̃µν(x̃) = g̃µν(x+ δx) = g̃µν(x)−Xλ∂λg̃µν(x)

Comparing the the different metrics at the same point x, we find that the metric

undergoes the infinitesimal change

δgµν(x) = g̃µν(x)− gµν(x) = Xλ∂λgµν + gµρ∂νX
ρ + gνρ∂µX

ρ (4.6)

But this is something we’ve seen before: it is the Lie derivative of the metric. In other

words, if we act with an infinitesimal diffeomorphism along X, the metric changes as

δgµν = (LXg)µν

This makes sense: it’s like the leading term in a Taylor expansion along X.

– 147 –



In fact, we can also massage (4.6) into a slightly different form. We lower the index

on Xρ in the last two ∂Xρ terms by taking the metric inside the derivative. This

results in two further terms in which the derivative hits the metric, and these must be

cancelled off. We’re left with

δgµν = ∂µXν + ∂νXµ +Xρ (∂ρgµν − ∂µgρν − ∂νgµρ)

But the terms in the brackets are the Christoffel symbols, 2gρσΓ
σ
µν . We learn that the

infinitesimal change in the metric can be written as

δgµν = ∇µXν +∇νXµ (4.7)

Let’s now see what this means for the path integral. Under a general change of the

metric, the Einstein-Hilbert action changes as (4.3)

δS =

∫
d4x

√
−g Gµν δgµν

where we have discarded the boundary term. Insisting that δS = 0 for any variation

δgµν gives the equation of motion Gµν = 0. In contrast, symmetries of the action are

those variations δgµν for which δS = 0 for any choice of metric. Since diffeomorphisms

are (gauge) symmetries, we know that the action is invariant under changes of the form

(4.7). Using the fact that Gµν is symmetric, we must have

δS = 2

∫
d4x

√
−g Gµν∇µXν = 0 for all Xµ(x)

After integrating by parts, we find that this results in something familiar: the Bianchi

identity

∇µG
µν = 0

We already know that the Bianchi identity holds from our work in Section 3.4, but

the derivation there was a little fiddly. Here we learn that, from the path integral

perspective, the Bianchi identity is a result of diffeomorphism invariance.

In fact it makes sense that the two are connected. Naively, the Einstein equation

Gµν = 0 comprises ten independent equations. But, as we’ve seen, diffeomorphism

invariance means that there aren’t ten independent components of the metric, so one

might worry that the Einstein equations are overdetermined. Happily, diffeomorphisms

also ensure that not all the Einstein equations are independent either; they are related

by the four Bianchi constraints. We see that, in fact, the Einstein equations give only

six independent conditions on the six independent degrees of freedom in the metric.
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4.2 Some Simple Solutions

We will now look for some simple solutions to the Einstein equations

Rµν = Λgµν

As we will see, the solutions take a very different form depending on whether Λ is zero,

positive or negative.

Minkowski Space

Let’s start with Λ = 0. Here the vacuum Einstein equations reduce to Rµν = 0. If

we’re looking for the simplest solution to this equation, it’s tempting to suggest gµν = 0.

Needless to say, this isn’t allowed! The tensor field gµν is a metric and, as defined in

Section 3, must be non-degenerate. Indeed, the existence of the inverse gµν was assumed

in the derivation of the Einstein equations from the action.

While this restriction is natural geometrically, it is rather unusual from the perspec-

tive of a physical theory. It is not a holonomic constraint on the physical degrees of

freedom: instead it is an inequality det gµν < 0 (together with the requirement that gµν
has one, rather than three, negative eigenvalues). Other fields in the Standard Model

don’t come with such restrictions. Instead, it is reminiscent of fluid mechanics where

one has to insist that matter density obeys ρ(x, t) > 0. Ultimately, it seems likely that

this restriction is telling us that the gravitational field is not fundamental and should

be replaced by something else in regimes where det gµν is getting small.

The restriction that det gµν ̸= 0 means that the simplest Ricci flat metric is Minkowski

space, with

ds2 = −dt2 + dx2

Of course, this is far from the only metric obeying Rµν = 0. Another example is

provided by the Schwarzschild metric,

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2) (4.8)

which we will discuss further in Section 6. We will meet more solutions as the course

progresses.
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4.2.1 de Sitter Space

We now turn to the Einstein equations with Λ > 0. Once again, there are many

solutions. Since it’s a pain to solve the Einstein equations, let’s work with an ansatz

that we’ve already seen. Suppose that we look for solutions of the form

ds2 = −f(r)2dt2 + f(r)−2dr2 + r2(dθ2 + sin2 θ dϕ2) (4.9)

We already computed the components of the Riemann tensor for such a metric in

Section 3.4.3 using the technology of curvature 2-forms. From the result, given in

(3.54), we can easily check that the Ricci tensor is diagonal with components

Rtt = −f 4Rrr = f 3

(
f ′′ +

2f ′

r
+
f ′ 2

f

)
and

Rϕϕ = sin2 θRθθ =
(
1− f 2 − 2ff ′r

)
sin2 θ

The resulting Ricci tensor can indeed be made to be proportional to the metric, with

Rµν = Λgµν . Comparing to (4.9), we see that the function f(r) must satisfy two

constraints. The first comes from the tt and rr components,

f ′′ +
2f ′

r
+
f ′ 2

f
= −Λ

f
(4.10)

The second comes from the θθ and ϕϕ components,

1− 2ff ′r − f 2 = Λr2 (4.11)

It’s simple to see that both conditions are satisfied by the choice

f(r) =

√
1− r2

R2
with R2 =

3

Λ

The resulting metric takes the form

ds2 = −
(
1− r2

R2

)
dt2 +

(
1− r2

R2

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2) (4.12)

This is de Sitter space. Or, more precisely, it is the static patch of de Sitter space; we’ll

see what this latter statement means shortly.
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Geodesics in de Sitter

To interpret this metric, it’s useful to understand the behaviour of geodesics. We can

see immediately that the presence of the non-trivial gtt(r) term means that a particle

won’t sit still at constant r ̸= 0; instead it is pushed to smaller values of gtt(r), or larger

values of r.

We can put some more flesh on this. Because the metric (4.12) has a similar form to

the Schwarzschild metric, we simply need to follow the steps that we already took in

Section 1.3. First we write down the action for a particle in de Sitter space. We denote

the proper time of the particle as σ. (In Section 1.3, we used τ to denote proper time,

but we’ll need this for a different time coordinate defined below.) Working with the

more general metric (4.9), the action is

SdS =

∫
dσ
[
− f(r)2ṫ2 + f(r)−2ṙ2 + r2(θ̇2 + sin2 θ ϕ̇2)

]
(4.13)

where ẋµ = dxµ/dσ.

Any degree of freedom which appears only with time derivatives in the Lagrangian

is called ignorable. They lead to conserved quantities. The Lagrangian above has two

ignorable degrees of freedom: ϕ(σ) and t(σ). The first leads to the conserved quantity

that we call angular momentum,

l =
1

2

dL

dϕ̇
= r2 sin2 θ ϕ̇

where the factor of 1/2 in front of dL/dϕ̇ arises because the kinetic terms in (4.13)

don’t come with the usual factor of 1/2. Meanwhile, the conserved quantity associated

to t(σ) is usually referred to as the energy

E = −1

2

dL

dṫ
= f(r)2ṫ (4.14)

The equations of motion arising from the action (4.13) should be supplemented with

the constraint that tells us whether we’re dealing with a massive or massless particle.

For a massive particle, the constraint ensures that the trajectory is timelike,

−f(r)2ṫ2 + f(r)−2ṙ2 + r2(θ̇2 + sin2 θϕ̇2) = −1

Without loss of generality, we can restrict to geodesics that lie in the θ = π/2 plane,

so θ̇ = 0 and sin2 θ = 1. Replacing ṫ and ϕ̇ with E and l respectively, the constraint

becomes

ṙ2 + Veff(r) = E2
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r

Veff (r)

r

Veff (r)

Figure 27: The effective potential for a

massive particle in de Sitter with angular

momentum..

Figure 28: ...and with no angular mo-

mentum.

where the effective potential is given by

Veff(r) =

(
1 +

l2

r2

)
f(r)2

For geodesics in de Sitter, we therefore have

Veff(r) =

(
1 +

l2

r2

)(
1− r2

R2

)
This is shown in the figures for l ̸= 0 and for l = 0. We can immediately see the key

physics: the potential pushes the particle out to larger values of r.

We focus on geodesics with vanishing angular momentum, l = 0. In this case, the

potential is an inverted harmonic oscillator. A particle sitting stationary at r = 0 is a

geodesic, but it is unstable: if it has some initial velocity then it will move away from

the origin, following the trajectory

r(σ) = R
√
E2 − 1 sinh

( σ
R

)
(4.15)

The metric (4.12) is singular at r = R, which might make us suspect that something

fishy is going on there. But whatever this fishiness is, it’s not visible in the solution

(4.15) which shows that any observer reaches r = R in finite proper time σ.

The fishiness reveals itself if we look at the coordinate time t. This also has the

interpretation of the time experienced by someone sitting at the point r = 0. Using

(4.14), the trajectory (4.15) evolves as

dt

dσ
= E

(
1− r2

R2

)−1
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It is simple to check that t(σ) → ∞ as r(σ) → R. (For example, suppose that we

have r(σ) = R at some value σ = σ⋆ of proper time. Then look at what happens just

before this time by expanding σ = σ⋆ − ϵ with ϵ small. The equation above becomes

dt/dϵ = −α/ϵ for some constant α, telling us that t(ϵ) ∼ − log(ϵ/R) and we indeed find

that t→ ∞ as ϵ→ 0.) This means that while a guy on the trajectory (4.15) sails right

through the point r = R in finite proper time, according to his companion waiting at

r = 0 this will take infinite time.

This strange behaviour is, it turns out, similar to what happens at the horizon of a

black hole, which is the surface r = 2GM in the metric (4.8). (We will look at more

closely at this in Section 6.) However, the Schwarzschild metic also has a singularity

at r = 0, whereas the de Sitter metric looks just like flat space at r = 0. (To see

this, simply Taylor expand the coefficients of the metric around r = 0.) Instead, de

Sitter space seems like an inverted black hole in which particles are pushed outwards

to r = R. But how should we interpret this radius? We will get more intuition for this

as we proceed.

de Sitter Embeddings

We will have to wait until Section 4.4.2 to get a full understanding of the physics

behind this. But we can make some progress by writing the de Sitter metric in different

coordinates. In fact, it turns out that there’s a rather nice way of embedding de Sitter

space as a sub-manifold of R1,4, with metric

ds2 = −(dX0)2 +
4∑

i=1

(dX i)2 (4.16)

We will now show that the de Sitter space metric (4.12) is a metric on the sub-manifold

in R1,4 defined by the timelike hyperboloid

−(X0)2 +
4∑

i=1

(X i)2 = R2 (4.17)

There are a number of different ways to parameterise solutions to this constraint.

Suppose that we choose to treat X4 as a special coordinate. We define the sum of the

first three spatial coordinates to be

r2 = (X1)2 + (X2)2 + (X3)2 (4.18)

so the constraint (4.17) becomes

R2 − r2 = −(X0)2 + (X4)2
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We can parameterise solutions to this equation as

X0 =
√
R2 − r2 sinh(t/R) and X4 =

√
R2 − r2 cosh(t/R) (4.19)

The variation is then

dX0 =

√
1− r2

R2
cosh(t/R)dt− r√

R2 − r2
sinh(t/R)dr

dX4 =

√
1− r2

R2
sinh(t/R)dt− r√

R2 − r2
cosh(t/R)dr

Meanwhile the variation of X i, with i = 1, 2, 3, is just the familiar line element for R3:∑3
i=1(dX

i)2 = dr2 + r2dΩ2
2 where dΩ2

2 is the metric on the unit 2-sphere. A two line

calculation then shows that the pull-back of the 5d Minkowski metric (4.16) onto the

hypersurface (4.17) gives the de Sitter metric in the static patch coordinates (4.12).

The choice of coordinates (4.18) and (4.19) are not the most intuitive. First, they

single out X4 as special, when the constraint (4.17) does no such thing. This hides

some of the symmetry of de Sitter space. Moreover, the coordinates do not cover the

whole of the hyperboloid, since they restrict only to X4 ≥ 0.

We can do better. Consider instead the solution to the constraint (4.17)

X0 = R sinh(τ/R) and X i = R cosh(τ/R)yi (4.20)

where the yi, with i = 1, 2, 3, 4, obey
∑

i(y
i)2 = 1 and so parameterise a unit 3-sphere.

These coordinates have the advantage that they retain (more of) the symmetry of de

Sitter space, and cover the whole space. Substituting this into the 5d Minkowski metric

(4.16) gives a rather different metric on de Sitter space,

ds2 = −dτ 2 +R2 cosh2(τ/R) dΩ2
3 (4.21)

where dΩ2
3 denotes the metric on the unit 3-sphere. These are known as global coordi-

nates, since they cover the whole space. (Admittedly, any choice of coordinates on S3

will suffer from the familiar problem of coordinate singularities at the poles.) Since this

metric is related to (4.12) by a change of coordinates, it too must obey the Einstein

equation. (We’ll check this explicitly in Section 4.6 where we discuss a class of metrics

of this form.)

These coordinates provide a much clearer intuition for the physics of de Sitter space:

it is a time-dependent solution in which a spatial S3 first shrinks to a minimal radius

R, and subsequently expands. This is shown in the figure. The expansionary phase is

a fairly good approximation to our current universe on large scales; you can learn more

about this in the lectures on Cosmology.
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The cosmological interpretation of an expanding universe is much

3
S

τ

Figure 29:

harder to glean from the static patch coordinates (4.12) in which the

space appears to be unchanging in time. Indeed, de Sitter himself

originally discovered the metric in the static patch coordinates. He

noticed that light is redshifted in this metric, which then caused all

sorts of confusion when trying to understand whether the redshift

of galaxies (then known as the de Sitter effect!) should be viewed

as evidence for an expanding universe. There is a lesson here: it

can be difficult to stare at a metric and get a sense for what you’re

looking at.

The global coordinates clearly show that there is nothing fishy

happening when X4 = 0, the surface which corresponds to r = R in (4.12). This is

telling us that this is nothing but a coordinate singularity. (As, indeed, is the r = 2GM

singularity in the Schwarzschild metric.) Nonetheless, there is still some physics lurking

in this coordinate singularity, which we will extract over the next few sections.

4.2.2 Anti-de Sitter Space

We again look for solutions to the Einstein equations,

Rµν = Λgµν

now with a negative cosmological constant Λ < 0. We can again use the ansatz (4.9)

and again find the constraints (4.10) and (4.11). The fact that Λ is now negative means

that our previous version of f(r) no longer works, but it’s not hard to find the tweak:

the resulting metric takes the form

ds2 = −
(
1 +

r2

R2

)
dt2 +

(
1 +

r2

R2

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2) (4.22)

with R2 = −3/Λ. This is the metric of anti-de Sitter space, also known simply as AdS.

Sometimes this metric is written by introducing the coordinate r = R sinh ρ, after

which it takes the form

ds2 = − cosh2ρ dt2 +R2dρ2 +R2 sinh2 ρ
(
dθ2 + sin2 θdϕ2

)
(4.23)

Now there’s no mysterious coordinate singularity in the r direction and, indeed, we will

see shortly that these coordinates now cover the entire space.
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Figure 30: The effective potential for a

massive particle in anti-de Sitter with an-

gular momentum..

Figure 31: ...and with no angular mo-

mentum.

Geodesics in Anti-de Sitter

Because the anti-de Sitter metric (4.22) falls in the general class (4.9), we can import

the geodesic equations that we derived for de Sitter space. The radial trajectory of a

massive particle moving in the θ = π/2 plane is again governed by

ṙ2 + Veff(r) = E2 (4.24)

but this time with the effective potential

Veff(r) =

(
1 +

l2

r2

)(
1 +

r2

R2

)
Again, l = r2ϕ̇ is the angular momentum of the particle. This potential is shown in the

figures for l ̸= 0 and l = 0. From this, we can immediately see how geodesics behave.

If there is no angular momentum, so l = 0, anti-de Sitter space acts like a harmonic

potential, pushing the particle towards the origin r = 0. Geodesics oscillate backwards

and forwards around r = 0.

In contrast, if the particle also has angular momentum then the potential has a

minimum at r2⋆ = Rl. This geodesic is like a motorcycle wall-of-death trick, with the

angular momentum keeping the particle pinned up the potential. Other geodsics spin

in the same fashion, while oscillating about r⋆. Importantly, particles with finite energy

E cannot escape to r → ∞: they are trapped by the spacetime to live within some

finite distance of the origin.

The picture that emerges from this analysis is that AdS is like a harmonic trap,

pushing particles to the origin. This comes with something of a puzzle however because,

as we will see below (and more in Section 4.3), AdS is a homogeneous space which,

roughly speaking, means that all points are the same. How is it possible that AdS acts

like a harmonic trap, pushing particles to r = 0, yet is also a homogeneous space?!
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Figure 32: The potential experienced by massless particles in AdS.

To answer this question, consider a guy sitting stationary at the origin r = 0. This is

a geodesic. From his perspective, intrepid AdS explorers on other geodesics (with, say,

l = 0) will oscillate backwards and forwards about the origin r = 0, just like a particle

in a harmonic trap. However, since these explorers will themselves be travelling on

a geodesic, they are perfectly entitled to view themselves as sedentary, stay-at-home

types, sitting perfectly still at their ‘origin’, watching the other folk fly around them.

In this way, just as everyone in de Sitter can view themselves at the centre of the

universe, with other observers moving away from them, everyone in anti-de Sitter can

view themselves in the centre of the universe, with other observers flying around them.

We can also look at the fate of massless particles. This time the action is supple-

mented by the constraint

−f(r)2ṫ2 + f(r)−2ṙ2 + r2(θ̇2 + sin2 θϕ̇2) = 0

This tells us that the particle follows a null geodesic. The equation (4.24) gets replaced

by

ṙ2 + Vnull(r) = E2

with the effective potential now given by

Vnull(r) =
l2

r2

(
1 +

r2

R2

)
This potential is again shown in Figure 32. This time the potential is finite as r → ∞,

which tells us that there is no obstacle to light travelling as far as it likes: it suffers

only the usual gravitational redshift. We learn that AdS spacetime confines massive

particles, but not massless ones.

– 157 –



To solve the equations for a massless particle, it’s simplest to work in the coordi-

nates r = R sinh ρ that we introduced in (4.23). If we restrict to vanishing angular

momentum, l = 0, the equation above becomes

Rρ̇ = ± E

cosh ρ
⇒ R sinh ρ = E(σ − σ0)

where σ is the affine geodesic parameter. We see that ρ → ∞ only in infinite affine

time, σ → ∞. However, it’s more interesting to see what happens in coordinate time.

This follows by recalling the definition of E in (4.14),

E = cosh2ρ ṫ

(Equivalently, you can see this by dint of the fact that we have a null geodesic, with

coshρ ṫ = ±Rρ̇.) We then find

R tan(t/R) = E(σ − σ0)

So as σ → ∞, the coordinate time tends to t→ πR/2. We learn that not only do light

rays escape to ρ = ∞, but they do so in a finite coordinate time t. This means that to

make sense of dynamics in AdS, we must specify some boundary conditions at infinity

to dictate what happens to massless particles or fields when they reach it.

Anti-de Sitter space does not appear to have any cosmological applications. However,

it turns out to be the place where we best understand quantum gravity, and so has

been the object of a great deal of study.

Anti-de Sitter Embeddings

Like its Λ > 0 cousin, anti-de Sitter spacetime also has a natural embedding in a 5d

spacetime. This time, it sits within R2,3, with metric

ds2 = −(dX0)2 − (dX4)2 +
3∑

i=1

(dX i)2 (4.25)

where it lives as the hyperboloid,

−(X0)2 − (X4)2 +
3∑

i=1

(X i)2 = −R2 (4.26)

We can solve this constraint by

X0 = R cosh ρ sin(t/R) , X4 = R cosh ρ cos(t/R) , X i = Ryi sinh ρ (4.27)

where the yi, with i = 1, 2, 3, obey
∑

i(y
i)2 = 1 and so parameterise a unit 2-sphere.

Substituting this into the metric (4.25) gives the anti-de Sitter metric in the coordinates

(4.23).
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In fact there is one small subtlety: the embedding hyperboloid has topology S1 ×
R3, with S1 corresponding to a compact time direction. This can be seen in the

parameterisation (4.27), where the time coordinate takes values t ∈ [0, 2πR). However,

the AdS metrics (4.22) or (4.23) have no such restriction, with t ∈ (−∞,+∞). They

are the universal covering of the hyperboloid (4.26).

There is another parameterisation of the hyperboloid that is also useful. It takes the

rather convoluted form

X i =
r

R
xi for i = 0, 1, 2 , X4 −X3 = r , X4 +X3 =

R2

r
+

r

R2
ηijx

ixj

with r ∈ [0,∞). Although the change of coordinates is tricky, the metric is very

straightforward, taking the form

ds2 = R2 dr
2

r2
+
r2

R2
ηijdx

idxj (4.28)

These coordinates don’t cover the whole of AdS; instead they cover only one-half of

the hyperboloid, restricted to X4 − X3 > 0. This is known as the Poincaré patch of

AdS. Moreover, the time coordinate, which already extends over the full range x0 ∈
(−∞,+∞), cannot be further extended. This means that as x0 goes from −∞ to +∞
in (4.28), in global coordinates (4.22), the time coordinate t goes only from 0 to 2πR.

Two other choices of coordinates are also commonly used to describe the Poincaré

patch. If we set z = R2/r, then we have

ds2 =
R2

z2
(
dz2 + ηijdx

idxj
)

Alternatively, if we set r = Reρ, we have

ds2 = R2dρ2 + e2ρηijdx
idxj

In each case, massive particles fall towards r = 0, or z = ∞, or ρ = −∞.

4.3 Symmetries

We introduced the three spacetimes – Minkowski, de Sitter and anti-de Sitter – as

simple examples of solutions to the Einstein equations. In fact, what makes them

special are their symmetries.

The symmetries of Minkowski space are very familiar: they consist of translations

and rotations in space and time, the latter splitting into genuine rotations and Lorentz

boosts. It’s hard to overstate the importance of these symmetries: on a fixed Minkowski

background they are responsible for the existence of energy, momentum and angular

momentum.
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The purpose of this section is to find a way to characterise the symmetries of a

general metric.

4.3.1 Isometries

Intuitively, the notion of symmetry is clear. If you hold up a round sphere, it looks

the same no matter what way you rotate it. In contrast, if the sphere has dimples and

bumps, then the rotational symmetry is broken. The distinction between these two

should be captured by the metric. Roughly speaking, the metric on a round sphere

looks the same at all points, while the metric on a dimpled sphere will depend on where

you sit. We want a way to state this mathematically.

To do this, we need the concept of a flow that we introduced in Section 2.2.3. Recall

that a flow on a manifoldM is a one-parameter family of diffeomorphisms σt :M →M .

A flow can be identified with a vector field K ∈ X(M) which, at each point inM , points

along tangent vectors to the flow

Kµ =
dxµ

dt

This flow is said to be an isometry, if the metric looks the same at each point along a

given flow line. Mathematically, this means that an isometry satisfies

LKg = 0 ⇔ ∇µKν +∇νKµ = 0 (4.29)

where the equivalence of the two expressions was shown in Section 4.1.3. This is the

Killing equation and any K satisfying this equation is known as a Killing vector field.

Sometimes it is possible to stare at a metric and immediately write down a Killing

vector. Suppose that the metric components gµν(x) do not depend on one particular

coordinate, say y ≡ x1. Then the vector field X = ∂/∂y is a Killing vector, since

(L∂yg)µν =
∂gµν
∂y

= 0

However, we have met coordinates like y before: they become the ignorable coordinates

in the Lagrangian for a particle moving in the metric gµν , resulting in conserved quanti-

ties. We once again see the familiar link between symmetries and conserved quantities.

We’ll explore this more in Section 4.3.2 and again later in the lectures.
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There is a group structure underlying these symmetries. Or, more precisely, a Lie

algebra structure. This follows from the result (2.15)

LXLY − LYLX = L[X,Y ]

(Strictly speaking, we showed this in (2.15) only for Lie derivatives acting on vector

fields, but it can be checked that it holds on arbitrary tensor fields.) This means that

Killing vectors too form a Lie algebra. This is the Lie algebra of the isometry group of

the manifold.

An Example: Minkowski Space

As a particularly simple example, consider Minkowski spacetime with gµν = ηµν . The

Killing equation is

∂µKν + ∂νKµ = 0

There are two forms of solutions. We can take

Kµ = cµ

for any constant vector cµ. These generate translations in Minkowski space. Alterna-

tively, we can take

Kµ = ωµνx
ν

with ωµν = −ωνµ. These generate rotations and Lorentz boosts in Minkowski space.

We can see the emergence of the algebra structure more clearly. We define Killing

vectors

Pµ = ∂µ and Mµν = ηµρx
ρ∂ν − ηνρx

ρ∂µ (4.30)

There are 10 such Killing vectors in total; 4 from translations and six from rotations

and boosts. A short calculation shows that they obey

[Pµ, Pν ] = 0 , [Mµν , Pσ] = −ηµσPν + ησνPµ

[Mµν ,Mρσ] = ηµσMνρ + ηνρMµσ − ηµρMνσ − ηνσMµρ

which we recognise as the Lie algebra of the Poincaré group R4 × SO(1, 3).
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More Examples: de Sitter and anti-de Sitter

The isometries of de Sitter and anti-de Sitter are simplest to see from their embeddings.

The constraint (4.17) that defines de Sitter space is invariant under the rotations ofR1,4,

and so de Sitter inherits the SO(1, 4) isometry group. Similarly, the constraint (4.26)

that defines anti-de Sitter is invariant under the rotations ofR2,3. Correspondingly, AdS

has the isometry group SO(2, 3). Note that both of these groups are 10 dimensional:

in terms of counting, these spaces are just as symmetric as Minkowski space.

It is simple to write down the 10 Killing spinors in the parent 5d spacetime: they are

MAB = ηACX
C∂B − ηBCX

C∂A

where XA, A = 0, 1, 2, 3, 4 are coordinates in 5d and ηAB is the appropriate Minkowski

metric, with signature (− + + + +) for de Sitter and (− − + + +) for anti-de Sitter.

In either case, the Lie algebra is that of the appropriate Lorentz group,

[MAB,MCD] = ηADMBC + ηBCMAD − ηACMBD − ηBDMAC

Importantly, the embedding hyperbolae (4.17) and (4.26) are both invariant under these

Killing vectors, in the sense that the flows generated by MAB take us from one point

on the hyperbolae to another. This means that the Killing vectors are inherited by de

Sitter and anti-de Sitter spaces respectively.

For example, we can consider de Sitter space in the static patch with r2 = (X1)2 +

(X2)2 + (X3)2 and (4.19)

X0 =
√
R2 − r2 sinh(t/R) and X4 =

√
R2 − r2 cosh(t/R)

We know that the metric in the static patch (4.12) is independent of time. This means

that K = ∂t is a Killing vector. Pushed forwards to the 5d space, this becomes

∂

∂t
=
∂XA

∂t

∂

∂XA
=

1

R

(
X4 ∂

∂X0
+X0 ∂

∂X4

)
(4.31)

In fact, this Killing vector highlights a rather important subtlety with de Sitter space.

As we go on, we will see that timelike Killing vectors – those obeying gµνK
µKν < 0

everywhere – play a rather special role because we can use them to define energy. (We’ll

describe this for particles in the next section.)

In anti-de Sitter space, there is no problem in finding a timelike Killing vector.

Indeed, we can see it by eye in the global coordinates (4.22), where it is simply K = ∂t.

But de Sitter is another story.
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If we work in the static patch (4.12), then the Killing vector (4.31) is a timelike

Killing vector. Indeed, we used this to derive the conserved energy E when discussing

geodesics in de Sitter in Section 4.2.1. But we know that the static patch does not

cover all of de Sitter spacetime.

Indeed, if we extend the Killing vector (4.31) over the entire space, it is not timelike

everywhere. To see this, note that when X4 > 0 and X0 = 0, the Killing vector pushes

us forwards in the X0 direction, but when X4 < 0 and X0 = 0 it pushes us backwards

in the X0 direction. This means that the Killing vector field points to the future in

some parts of space and to the past in others! Correspondingly, if we try to define

an energy using this Killing vector it will be positive in some parts of the space and

negative in others. Relatedly, in parts of the space where X4 = 0 and X0 ̸= 0, the

Killing vector pushes us in the X4 direction, and so is spacelike.

The upshot of this discussion is an important feature of de Sitter space: there is

no global, positive conserved energy. This tallies with our metric in global coordinates

(4.21) which is time dependent and so does not obviously have a timelike Killing vector.

The lack of a globally defined energy is one of several puzzling aspects of de Sitter space:

we’ll meet more as we proceed.

4.3.2 A First Look at Conserved Quantities

Emmy Noether taught us that symmetries are closely related to conserved quantities.

In the present context, this means that any dynamics taking place in a spacetime with

an isometry will have a conserved quantity.

There are a number of different scenarios in which we can ask about conserved

quantities. We could look at particles moving in a fixed background; these are the

kinds of calculations that we did in Section 1. Alternatively, we could ask about fields

moving in a fixed background; we will address this in Section 4.5.5. Finally, we could

ask about the energy stored in the spacetime itself. We will provide a formula for this

in Section 4.3.3, and also make some further comments in Section 4.5.5.

Here, we consider a massive particle moving in a spacetime with metric g. The

particle will follow some trajectory xµ(τ), with τ the proper time. If the spacetime

admits a Killing vector K, then we can construct the quantity that is conserved along

the geodesic,

Q = Kµ
dxµ

dτ
(4.32)
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To see that Q is indeed unchanging, we compute

dQ

dτ
= ∂νKµ

dxν

dτ

dxµ

dτ
+Kµ

d2xµ

dτ 2

= ∂νKµ
dxν

dτ

dxµ

dτ
−KµΓ

µ
ρσ

dxρ

dτ

dxσ

dτ

= ∇νKµ
dxν

dτ

dxµ

dτ
= 0

where in the second line we’ve used the geodesic equation and, in the final equality,

we’ve used the symmetry of the Killing equation.

The derivation above looks rather different from our usual formulation of Noether’s

theorem. For this reason, it’s useful to re-derive the Killing equation and corresponding

conserved charge by playing the usual Noether games. We can do this by looking at

the action for a massive particle (in the form (1.32))

S =

∫
dτ gµν(x)

dxµ

dτ

dxν

dτ

Now consider the infinitesimal transformation

δxµ = Kµ(x)

The action transforms as

δS =

∫
dτ ∂ρgµν

dxµ

dτ

dxν

dτ
Kρ + 2gµν

dxµ

dτ

dKν

dτ

=

∫
dτ ∂ρgµν

dxµ

dτ

dxν

dτ
Kρ + 2

dxµ

dτ

(
dKµ

dτ
−Kν dgµν

dτ

)
=

∫
dτ (∂ρgµνK

ρ − 2Kρ∂νgµρ + 2∂νKµ)
dxµ

dτ

dxν

dτ

=

∫
dτ 2∇νKµ

dxµ

dτ

dxν

dτ

The transformation is a symmetry of the action if δS = 0. From the symmetry of the
dxµ

dτ
dxν

dτ
terms, this is true provided that Kµ obeys the Killing equation

∇(νKµ) = 0

Noether’s theorem then identifies the charge Q defined in (4.32) as the conserved quan-

tity arising from this symmetry.
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Wemet examples of these conserved quantities in Section 4.2 when discussing geodesics

in de Sitter and anti-de Sitter spacetimes. (And, indeed, in Section 1.3 when discussing

the geodesic orbits around a black hole). Both the energy E and the angular momentum

l are Noether charges of this form.

Killing vectors have further roles to play in identifying conserved quantities. In Sec-

tion 4.5.5, we’ll describe how we can use Killing vectors to define energy and momentum

of fields in a background spacetime.

4.3.3 Komar Integrals

If we have a Killing vector, there is a rather pretty way of associating a conserved

quantity to the spacetime itself.

Given a Killing vector K = Kµ∂µ, we can construct the 1-form K = Kµdx
µ. From

this 1-form, we can then construct a 2-form

F = dK

Alternatively, in components, we have F = 1
2
Fµνdx

µ ∧ dxν with

Fµν = ∇µKν −∇νKµ

We’ve called this 2-form F , in analogy with the electromagnetic 2-form. Indeed, the key

idea of the Komar integral is that we can think of F very much like the electromagnetic

field strength. Indeed, we claim the following is true:

Claim: If the vacuum Einstein equations are obeyed, so Rµν = 0, then F obeys the

vacuum Maxwell equations

d ⋆ F = 0

Alternatively, as shown in (3.24), we can write this as

∇µFµν = 0

Proof: To see this, we start with the Ricci identity (3.16) which, applied to the Killing

vector Kσ, reads

(∇µ∇ν −∇ν∇µ)K
σ = Rσ

ρµνK
ρ

Contracting the µ and σ indices then gives

(∇µ∇ν −∇ν∇µ)K
µ = RρνK

ρ
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But Kµ is a Killing vector and so obeys the Killing equation ∇(µKν) = 0 and so

∇µK
µ = 0. This means that the Ricci identity simplifies to

∇µ∇νK
µ = RρνK

ρ (4.33)

With this in hand, we now look at ∇µFµν . We have

∇µFµν = ∇µ∇µKν −∇µ∇νKµ = −2∇µ∇νKµ = −2RρνK
ρ

where we’ve used the Killing equation in the second equality and the Ricci identity

(4.33) in the third. This then gives the promised result: d ⋆ F = 0 provided that the

Einstein equations Rρν = 0 hold. □

Since the 2-form F obeys the vacuum Maxwell equations, we can use it to construct

the Komar charge, or Komar integral. We integrate over some three-dimensional spatial

submanifold Σ,

QKomar = − 1

8πG

∫
Σ

d ⋆ F = − 1

8πG

∫
∂Σ

⋆F = − 1

8πG

∫
∂Σ

⋆dK

Here the factor of 1/8πG is for later convenience. Because d ⋆ F = 0, the same kind of

argument that we met in Section 3.2.5 then tells us that QKomar is conserved.

Just as for the point particle discussed previously, the interpretation of the Komar

integrals depends on the Killing vector at hand. For example, if Kµ is everywhere

timelike, meaning gµνK
µKν < 0 at all points, then the Komar integral can be identified

with the energy, or equivalently, the mass of the spacetime

MKomar = − 1

8πG

∫
∂Σ

⋆dK

In particular, we’ll later see how the Komar charge can be non-vanishing, even though

d ⋆ F = 0 when the vacuum Einstein equations are obeyed. Relatedly, if the Killing

vector is related to rotations, the conserved charge is identified with the angular mo-

mentum of the spacetime.

At this point, it would obviously be nice to give some examples of Komar integrals.

Sadly, we don’t yet have any useful examples at our disposal! However, we will use this

technology throughout Section 6 to identify the mass and angular momentum of black

holes.
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As an aside: later in Section 4.5, we will look at what happens if we couple matter

to gravity. There we will learn that the Einstein equations are no longer Rµν = 0, but

instead the right-hand side gets altered by the energy and momentum of the matter.

In this case, we can again form the field strength F , but now it obeys the Maxwell

equation with a source, d ⋆ F = ⋆J , where the current J can be related to the energy-

momentum tensor. However, it turns out that for our applications in Section 6 the case

of the vacuum Einstein equations Rµν = 0 is all we’ll need.

4.4 Asymptotics of Spacetime

The three solutions – Minkowski, de Sitter, and anti-de Sitter – have different spacetime

curvature and differ in their symmetries. But there is a more fundamental distinction:

they have different behaviour at infinity.

This is important because we will ultimately want to look at more complicated

solutions. These may have reduced symmetries, or no symmetries at all. But, providing

fields are suitably localised, they will asymptote to one of the three symmetric spaces

described above. This gives us a way to characterise whether physics is happening “in

Minkowski spacetime”, “in de Sitter”, or “in anti-de Sitter”.

It turns out that “infinity” in Lorentzian spacetimes is more interesting than you

might have thought. One can go to infinity along spatial, timelike or null directions,

and each of these may have a different structure. It will be useful to introduce a tool

to visualise infinity of spacetime.

4.4.1 Conformal Transformations

Given a spacetimeM with metric gµν , we may construct a new metric g̃µν by a conformal

transformation,

g̃µν(x) = Ω2(x)gµν(x) (4.34)

with Ω(x) a smooth, non-vanishing function.

Typically gµν and g̃µν describe very different spacetimes, with distances in the two

considerably warped. However, the conformal transformation preserves angles. In par-

ticular, in a Lorentzian spacetime, this means that two metrics related by a conformal

transformation have the same causal structure. A vector field X which is everywhere-

null with respect to the metric gµν will also be everywhere-null with respect to g̃µν ,

gµνX
µXν = 0 ⇔ g̃µνX

µXν = 0

Similarly, vectors that are timelike/spacelike with respect to gµν will continue to be

timelike/spacelike separated with respect to g̃µν .
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A conformal transformation of the metric does not change the causal structure. How-

ever, any other change of the metric does. This fact is sometimes summarised in the

slogan “the causal structure is 9/10th of the metric”. Although, taking into account

diffeomorphism invariance, a better slogan would be “the causal structure is around

5/6th of the metric”.

Conformal Transformations and Geodesics

A particle trajectory which is timelike with respect to gµν will necessarily also be

timelike with respect to g̃µν . But because distances get screwed up under a conformal

transformation, there is no reason to expect that a timelike geodesic will map to a

timelike geodesic. However, it turns out that null geodesics do map to null geodesics,

although the affine parameterisation gets messed up along the way.

To see this, we first compute the Christoffel symbols in the new metric. They are

Γµ
ρσ[g̃] =

1

2
g̃µν (∂ρg̃νσ + ∂σg̃ρν − ∂ν g̃ρσ)

=
1

2
Ω−2gµν

(
∂ρ(Ω

2gνσ) + ∂σ(Ω
2gρν)− ∂ν(Ω

2gρσ)
)

= Γµ
ρσ[g] + Ω−1

(
δµσ∇ρΩ + δµρ∇σΩ− gρσ∇µΩ

)
where, in the final line, we’ve replaced ∂ with ∇ on the grounds that the derivatives

are hitting a scalar function Ω(x) so it makes no difference.

If we have an affinely parameterised geodesic in the metric g

d2xµ

dτ 2
+ Γµ

ρσ[g]
dxρ

dτ

dxσ

dτ
= 0

then in the metric g̃ we have

d2xµ

dτ 2
+ Γµ

ρσ[g̃]
dxρ

dτ

dxσ

dτ
= Ω−1

(
δµσ∇ρΩ + δµρ∇σΩ− gρσ∇νΩ

) dxρ
dτ

dxσ

dτ

The right-hand side looks like a mess. And for timelike or spacelike geodesics, it is.

But for null geodesics we have

gρσ
dxρ

dτ

dxσ

dτ
= 0

so at least one term on the right-hand side vanishes. The others can be written as

d2xµ

dτ 2
+ Γµ

ρσ[g̃]
dxρ

dτ

dxσ

dτ
= 2

dxµ

dτ

1

Ω

dΩ

dτ

But this is the equation for a geodesic that is not affinely parameterised, as in (1.28).

So a conformal transformation does map null geodesics to null geodesics as claimed.
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The Weyl Tensor

Our favourite curvature tensors are not invariant under conformal transformations.

However, it turns out that there is a combination of curvature tensors that does not

change under conformal transformations. This is the Weyl tensor. In a manifold of

dimension n, it is defined as

Cµνρσ = Rµνρσ −
2

n− 2

(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+

2

(n− 1)(n− 2)
Rgµ[ρgσ]ν

The Weyl tensor has all the symmetry properties of the Riemann tensor, but with

the additional property that if you contract any pair of indices with a metric then it

vanishes. In this sense, it can be viewed as the “trace-free” part of the Riemann tensor.

4.4.2 Penrose Diagrams

There are a number of interesting and deep stories associated to conformal transfor-

mations (4.34). For example, there are a class of theories that are invariant under

conformal transformations of Minkowski space; these so-called conformal field theories

describe physics at a second order phase transition. But here we want to use conformal

transformations to understand what happens at infinity of spacetime.

The main idea is to perform a conformal transformation that pulls infinity to some

more manageable, finite distance. Obviously this transformation will mangle distances,

but it will retain the causal structure of the original spacetime. We can then draw this

causal structure on a very finite piece of paper (e.g. A4). The resulting picture is called

a Penrose diagram, named after its discoverers, Roger Penrose and Brandon Carter.

We will illustrate this with a series of examples.

Minkowski Space

We start with Minkowski space. It turns out that, even here, infinity is rather subtle.

It will be simplest if we first work in d = 1 + 1 dimensions, where the Minkowski

metric takes the form

ds2 = −dt2 + dx2 (4.35)

The first thing we do is introduce light-cone coordinates,

u = t− x and v = t+ x

In these coordinates, the Minkowski metric is even simpler

ds2 = −du dv
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Both of these light-cone coordinates take values over the full range of R: u, v ∈
(−∞,∞). In an attempt to make things more finite, we will introduce another co-

ordinate that traverses the full range of u and v over a finite interval. A convenient

choice is

u = tan ũ and v = tan ṽ (4.36)

where we now cover the whole of Minkowski space as ũ, ṽ ∈ (−π/2,+π/2). Note that,

strictly speaking, we shouldn’t include the points ũ, ṽ = ±π/2 since these correspond

to u, v = ±∞.

In the new coordinates, the metric takes the form

ds2 = − 1

cos2 ũ cos2 ṽ
dũ dṽ

Notice that the metric diverges as we approach the boundary of Minkowski space, where

ũ or ṽ → ±π/2. However, we can now do our conformal transformation. We define the

new metric

ds̃2 = (cos2 ũ cos2 ṽ) ds2 = −dũ dṽ

After the conformal map, nothing bad happens as we approach ũ, ṽ → ±π/2. It

is customary to now add in the “points at infinity”, ũ = ±π/2 and ṽ = ±π/2, an
operation that goes by the name of conformal compactification.

The Penrose diagram is a pictorial representation of this space. As in other relativistic

diagrams, we insist that light-rays go at 45◦. We take time to be in the vertical direction,

and space in the horizontal. This means that we draw the lightcone ũ and ṽ coordinates

at 45◦. The resulting diagram is shown with the ũ and ṽ axes on the left-hand side of

Figure 33.

We can also dress our Penrose diagram in various ways. For example, we could draw

geodesics with respect to the original metric (4.35). These are shown in the right-hand

side of Figure 33; the verticalish blue lines are timelike geodesics of constant x; the

horizontalish red lines are spacelike geodesics of constant t. We have also listed the

different kinds of “infinity” for Minkowski space. They are

• All timelike geodesics start at the point labelled i−, with (ũ, ṽ) = (−π/2,−π/2)
and end at the point labelled i+ with (ũ, ṽ) = (+π/2,+π/2). In other words, this

is the origin and fate of all massive particles. These points are referred to as past

and future timelike infinity respectively.
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Figure 33: The Penrose diagram for d = 1 + 1 Minkowski space.

• All spacelike geodesics begin or end at one of the two points labelled i0, either

(ũ, ṽ) = (−π/2,+π/2) or (ũ, ṽ) = (+π/2,−π/2). These points are spacelike

infinity.

• All null curves start on the boundary labelled I−, with ũ = −π/2 and arbitrary

ṽ, or ṽ = −π/2 and arbitrary ũ. This boundary is pronounced “scri-minus” and

known, more formally, as past null infinity. Such null curves end on the boundary

labelled I+, with ũ = +π/2 and arbitrary ṽ, or ṽ = +π/2 and arbitrary ũ. This

is pronounced “scri-plus” and known as future null infinity.

We see from the picture that there are more ways to “go to infinity” in a null

direction than in a timelike or spacelike direction. This is one of the characteristic

features of Minkowski space.

The Penrose diagram allows us to immediately visualise the causal structure of

Minkowski space. For example, as timelike curves approach i+, their past lightcone

encompasses more and more of the spacetime, as shown in the left-hand side of Figure

34. This means that an observer in Minkowski space can see everything (in principle)

as long as they wait long enough. Relatedly, given any two points in Minkowski space,

they are causally connected in both the past and future, meaning that their past and

future lightcones necessarily intersect, as shown in the Mondrian painting on the right-

hand side of Figure 34. This means that there was always an event in the past that

could influence both points, and always an event in the future that can be influenced
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Figure 34: On the left: you will eventually see everything. On the right: every two points

share some of their causal past and some of their causal future.

by both. These comments may seem trivial, but we will soon see that they don’t hold

in other spacetimes, including the one we call home.

Let’s now repeat the analysis for Minkowski space in d = 3+ 1 dimensions, with the

metric

ds2 = −dt2 + dr2 + r2 dΩ2
2

where dΩ2
2 = dθ2 + sin2 θdϕ2 is the round metric on S2 (and is not to be confused with

the conformal factor Ω(x) that we introduced earlier). Again we introduce lightcone

coordinates

u = t− r and v = t+ r

and write this metric as

ds2 = −du dv + 1

4
(u− v)2dΩ2

2

In the finite-range coordinates (4.36), the metric becomes

ds2 =
1

4 cos2 ũ cos2 ṽ

(
−4dũ dṽ + sin2(ũ− ṽ)dΩ2

2

)
Finally, we do the conformal transformation to the new metric

ds̃2 = −4dũ dṽ + sin2(ũ− ṽ)dΩ2
2 (4.37)
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Figure 35: The Penrose diagram for 4d Minkowski spacetime.

There is an additional requirement that didn’t arise in 2d: we must insist that v ≥ u

so that r ≥ 0, as befits a radial coordinate. This means that, after a conformal

compactification, ũ and ṽ take values in

−π
2
≤ ũ ≤ ṽ ≤ π

2

To draw a diagram corresponding to the spacetime (4.37), we’re going to have to ditch

some dimensions. We chose not to depict the S2, and only show the ũ and ṽ directions.

The resulting Penrose diagram for d = 3+ 1 dimensional Minkowski space is shown in

Figure 35.

Every point in the diagram corresponds to an S2 of radius sin(ũ − ṽ), except for

the left-hand line which sits at ũ = ṽ where this S2 shrinks to a point. This is not a

boundary of Minkowski space; it is simply the origin r = 0. To illustrate this, we’ve

drawn a null geodesic in red in the figure; it starts at I− and and when it hits the r = 0

vertical line, it simply bounces off and ends up at I+.

The need to draw a 4d space on a 2d piece of paper is something of a limitation of

Penrose diagrams. It means that they’re only really useful for spacetimes that have

an obvious S2 sitting inside them that we can drop. Or, to state it more precisely,

spacetimes that have an SO(3) isometry. But these spacetimes are the simplest and

tend to be the most important.

We have seen that Minkowski space has a null boundary, together with a couple of

points at spatial and temporal infinity. This naturally lends itself to asking questions

about scattering of massless fields: we set up some initial data on I−, let it evolve, and
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Figure 36: The Penrose diagram for de Sitter.

read off its fate at I+. In quantum field theory, this is closely related to the object we

call the S-matrix.

de Sitter Space

The global coordinates for de Sitter space are (4.21),

ds2 = −dτ 2 +R2 cosh2(τ/R) dΩ2
3

To construct the Penrose diagram we work with conformal time, defined by

dη

dτ
=

1

R cosh(τ/R)

The solution is

cos η =
1

cosh(τ/R)
(4.38)

with η ∈ (−π/2,+π/2) as τ ∈ (−∞,+∞). In conformal time, de Sitter space has the

metric

ds2 =
R2

cos2 η

(
−dη2 + dΩ2

3

)
We write the metric on the S3 as

dΩ2
3 = dχ2 + sin2 χdΩ2

2 (4.39)

with χ ∈ [0, π]. The de Sitter metric is conformally equivalent to

ds̃2 = −dη2 + dχ2 + sin2 χdΩ2
2

After a conformal compactification, η ∈ [−π/2,+π/2] and χ ∈ [0, π]. The Penrose

diagram is shown in Figure 36.
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horizon
event

particle

horizon

Figure 37: On the left: an observer at the north pole does not see everything. She has an

event horizon. In the middle: Nor can she influence everything: she has a particle horizon.

On the right: the causal diamond for an observer at the north pole (in red) and at the south

pole (in blue).

The two vertical lines are not boundaries of the spacetime; they are simply the north

and south poles of the S3. The boundaries are the horizontal lines at the top and

bottom: they are labelled both as i± and I±, reflecting the fact that they are where

both timelike and null geodesics originate and terminate.

We learn that de Sitter spacetime has a spacelike S3 boundary. (The normal to this

boundary is timelike.)

The causal structure of de Sitter spacetime is very different from Minkowski. It is

not true that if an observer waits long enough then she will be able to see everything

that’s happening. For example, an observer who sits at the north pole (the left-hand

side of the figure) will ultimately be able to see exactly half the spacetime, as shown

in the left-hand side of Figure 37. The boundary of this space (the diagonal line in the

figure) is her event horizon. It is similar to the event horizon of a black hole in the

sense that signals from beyond the horizon cannot reach her. However, as is clear from

the picture, it is an observer-dependent horizon: someone else will have an entirely

different event horizon. In this context, these are sometimes referred to as cosmological

horizons.

Furthermore, the observer at the north pole will only be able to communicate with

another half of the spacetime, as shown in the middle of Figure 37. The boundary of

the region of influence is known as the particle horizon. You should think of it as the

furthest distance light can travel since the beginning of time. The intersection of these

two regimes is called the (northern) causal diamond and is shown as the red triangle

in the right-hand figure. An observer sitting at the southern pole also has a causal
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diamond, shown in blue in the right-hand side of Figure 37. It is causally disconnected

from the northern diamond.

This state of affairs was nicely summarised by Schrödinger who, in 1956, wrote

“It does seem rather odd that two or more observers, even such as sat on

the same school bench in the remote past, should in future, when they

have followed different paths in life, experience different worlds, so that

eventually certain parts of the experienced world of one of them should

remain by principle inaccessible to the other and vice versa.”

In asymptotically de Sitter spacetimes, it would appear that the natural questions

involve setting some initial conditions on spacelike I−, letting it evolve, and reading off

the data on I+. One of the lessons of the development of quantum mechanics is that

we shouldn’t talk about things that cannot, even in principle, be measured. Yet in de

Sitter space we see that no single observer has an overview of the whole space. This

causes a number of headaches and, as yet, unresolved conceptual issues when we try to

discuss quantum gravity in de Sitter space.

Finally, we can use the Penrose diagram to answer a lingering puzzle about the static

patch of de Sitter, in which the metric takes the form (4.12)

ds2 = −
(
1− r2

R2

)
dt2 +

(
1− r2

R2

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2) (4.40)

The question is: how should we interpret the divergence at r = R?

To answer this, we will look at where the surface r = R sits in the Penrose diagram.

First, we look at the embedding of the static patch in R1,4, given in (4.19)

X0 =
√
R2 − r2 sinh(t/R) and X4 =

√
R2 − r2 cosh(t/R)

Naively the surface r = R corresponds to X0 = X4 = 0. But that’s a little too quick.

To see this, we consider what happens as we approach r → R by writing r = R(1−ϵ2/2),
with ϵ≪ 1. We then have

X0 ≈ Rϵ sinh(t/R) and X4 ≈ Rϵ cosh(t/R)

We can now send ϵ→ 0, keeping X0 and X4 finite provided that we also send t→ ±∞.

To do this, we must ensure that we keep the combination ϵ e±t/R finite. This means

that we can identify the surface r = R with the lines X0 = ±X4.
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Now we translate this into global coordinates. These were given in (4.20),

X0 = R sinh(τ/R) and X4 = R cosh(τ/R) cosχ

where χ is the polar angle on S3 that we introduced in (4.39). After one further map

to conformal time (4.38), we find that the lines X0 = ±X4 become

sin η = ± cosχ ⇒ χ = ±(η − π/2)

But these are precisely the diagonal lines in the Penrose diagram that appear as horizons

for people living on the poles.

It’s also simple to check that the point r = 0 in the static patch corresponds to the

north pole χ = 0 in global coordinates and, furthermore, t = τ along this line.

The upshot is that the static patch of de Sitter (4.40) provides coordinates that cover

only the northern causal diamond of de Sitter, with the coordinate singularity at r = R

coinciding with the past and future observer-dependent horizons.

One advantage of the static patch coordinates is that

r=0

Figure 38: Killing vec-

tors in de Sitter

they clearly exhibit a timelike Killing vector, K = ∂t. This

moves us from a surface of constant t to another surface of

constant t. But we argued in Section 4.3.1 that there was no

global timelike Killing vector field in de Sitter since, in R1,4,

the Killing vector is given by (4.31). The Penrose diagram

makes this simpler to visualise. If we extend the Killing vector

beyond the static patch, it acts as shown in the figure. It

is timelike and future pointing only in the northern causal

diamond. It is also timelike in the southern causal diamond,

but points towards the past. Meanwhile it is a spacelike Killing

vector in both the upper and lower quadrants.
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Anti-de Sitter Space

The global coordinates for anti-de Sitter space are (4.23),

ds2 = − cosh2ρ dt2 +R2dρ2 +R2 sinh2ρ dΩ2
2

with ρ ∈ [0,+∞). To construct the Penrose diagram, this time we introduce a “con-

formal radial coordinate” ψ, defined by

dψ

dρ
=

1

cosh ρ

This is very similar to the conformal map of de Sitter space, but with time replaced by

space. The solution is

cosψ =
1

cosh ρ

One difference from the de Sitter analysis is that since ρ ∈ [0,∞), the conformal

coordinate lives in ψ ∈ [0, π/2). The metric on anti-de Sitter becomes

ds2 =
R2

cos2 ψ

(
−dt̃ 2 + dψ2 + sin2 ψ dΩ2

2

)
=

R2

cos2 ψ

(
−dt̃ 2 + dΩ2

3

)
(4.41)

where we’ve introduced the dimensionless time coordinates t̃ = t/R. We learn that the

anti-de Sitter metric is conformally equivalent to

ds̃2 = −dt̃ 2 + dψ2 + sin2 ψ dΩ2
2

where, after a conformal compactification, t̃ ∈ (−∞,+∞) and ψ ∈ [0, π/2]. The

resulting Penrose diagram is shown in the left-hand of Figure 39. It is an infinite strip.

The left-hand edge at ψ = 0 is not a boundary: it is the spatial origin where the S2

shrinks to zero size. In contrast, the right-hand edge at ψ = π/2 is the boundary of

spacetime.

The boundary is labelled I. In terms of our previous notation, it should be viewed

as a combination of I−, I+ and i0, since null paths begin and end here, as do spacelike

paths. The boundary is now timelike (it has spacelike normal vector), and has topology

I = R× S2

with R the time factor.
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Figure 39: Penrose diagrams for AdS. On the left, we still have an infinite time coordinate;

on the right this too has been conformally compactified.

The Penrose diagram allows us to immediately see that light rays hit the boundary

in finite conformal time, confirming the calculation that we did in Section 4.2.2. If we

want to specify physics in AdS, we need to say something about what happens at the

boundary. For example, in the figure we have shown a light ray simply emerging from

the boundary at one time and absorbed at some later time. Another choice would be

to impose reflecting boundary conditions, so that the light ray bounces back and forth

for ever. In this way, anti-de Sitter space is very much like a box, with massive particles

trapped in the interior and massless particles able to bounce off the boundary.

In field theoretic language, we could start with initial data on some d = 3 dimensional

spacelike hypersurface Σ and try to evolve it in time. This is what we usually do in

physics. But in AdS, this information is not sufficient. This is because we can find

points to the future of Σ which are in causal contact with the boundary. This means

that what happens there depends on the choices we make on the boundary. It’s not

particularly difficult to specify what happens on the boundary: for example, we could

impose a version of reflecting boundary conditions, so that everything bounces back.

But this doesn’t change the fact that we have to specify something and, for this reason,

the dynamical evolution is not determined by the initial data alone. In fancy language,

we say that AdS is not globally hyperbolic: there exists no Cauchy surface on which we

can specify initial data .

AdS is the setting for our best-understood theories of quantum gravity. It turns out

that gravitational dynamics in asymptotically AdS spacetimes is entirely equivalent
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to a quantum field theory living on the boundary I. This idea goes by many names,

including the AdS/CFT correspondence, gauge-gravity duality, or simply holography.

Unlike our other Penrose diagrams, our diagram for AdS still stretches to infinity.

We can do better. We play our usual trick of introducing a coordinate which runs over

finite values, now for time

t̃ = tan τ ⇒ dt̃ =
dτ

cos2 τ

The metric (4.41) then becomes

ds2 =
R2

cos2 ψ cos4 τ

(
−dτ 2 + cos4 τ dΩ2

3

)
where τ ∈ (−π/2,+π/2). Now we see that AdS is conformally equivalent to

ds̃2 = −dτ 2 + cos4 τ
(
dψ2 + sin2 ψ dΩ2

2

)
Ignoring the spatial S2, we can draw the resulting Penrose diagram as shown in the

right-hand side of Figure 39. Now the spatial S3 grows and shrinks with time, giving

the strange almond-shape to the Penrose diagram. Again, we see that there is a timelike

boundary I, although now we can also show the future and past timelike infinity, i±.

The diagram again makes it clear that a lightray bounces back and forth an infinite

number of times in AdS.

4.5 Coupling Matter

Until now, we’ve only discussed the dynamics of vacuum spacetime, with matter con-

signed to test particles moving on geodesics. But matter is not merely an actor on the

spacetime stage: instead it backreacts, and affects the dynamics of spacetime itself.

4.5.1 Field Theories in Curved Spacetime

The first question we should ask is: how does matter couple to the spacetime metric?

This is simplest to describe when matter takes the form of fields which themselves are

governed by a Lagrangian. (We will look at what happens when matter is made of

particles, albeit ones that form fluids, in Section 4.5.4.)

Scalar Fields

As a simple example, consider a scalar field ϕ(x). In flat space, the action takes the

form

Sscalar =

∫
d4x

(
−1

2
ηµν∂µϕ ∂νϕ− V (ϕ)

)
(4.42)
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with ηµν the Minkowski metric. The minus sign in front of the derivative terms follows

from the choice of signature (−+++). This differs from, say, the lectures on quantum

field theory, but ensures that the action takes the form “kinetic energy minus potential

energy”, with the spatial gradient terms counting towards the potential energy.

It is straightforward to generalise this to describe a field moving in curved spacetime:

we simply need to replace the Minkowski metric with the curved metric, and ensure

that we’re integrating over a multiple of the volume form. In practice, this means that

we have

Sscalar =

∫
d4x

√
−g
(
−1

2
gµν∇µϕ∇νϕ− V (ϕ)

)
(4.43)

Note that we’ve upgraded the derivatives from ∂µ to ∇µ, although in this case it’s

redundant because, on a scalar field, ∇µϕ = ∂µϕ. Nonetheless, it will prove useful

shortly.

Note, however, that curved spacetime also introduces new possibilities for us to add

to the action. For example, we could equally well consider the theory

Sscalar =

∫
d4x

√
−g
(
−1

2
gµν∇µϕ∇νϕ− V (ϕ)− 1

2
ξRϕ2

)
(4.44)

for some constant ξ. This reduces to the flat space action (4.42) when we take gµν = ηµν
since the Ricci scalar is then R = 0, but it gives different dynamics for each choice of

ξ. To derive the equation of motion for ϕ, we vary the action (4.44) with respect to ϕ,

keeping gµν fixed for now

δSscalar =

∫
d4x

√
−g
(
−gµν∇µδϕ∇νϕ− ∂V

∂ϕ
δϕ− ξRϕδϕ

)
=

∫
d4x

√
−g
[(
gµν∇µ∇νϕ− ∂V

∂ϕ
− ξRϕ

)
δϕ−∇µ (δϕ∇µϕ)

]
Notice that although the covariant derivatives ∇µ could be replaced by ∂µ on the first

line, they’re crucially important on the second where we needed the fact that∇µgρσ = 0

to do the integration by parts. The final term is a boundary term (using the divergence

theorem proven in Section 3.2.4) and can be discarded. This leaves us with the equation

of motion for a scalar field in curved spacetime,

gµν∇µ∇νϕ− ∂V

∂ϕ
− ξRϕ = 0

Again, the covariant derivatives are needed here: we could write ∇µ∇νϕ = ∇µ∂νϕ

except it looks stupid. But ∇µ∇νϕ ̸= ∂µ∂νϕ.

– 181 –

http://www.damtp.cam.ac.uk/user/tong/qft.html
http://www.damtp.cam.ac.uk/user/tong/qft.html


Maxwell Theory

We already met the action for Maxwell theory in Section 3.2.5 as an example of inte-

grating forms over manifolds. It is given by

SMaxwell = −1

2

∫
F ∧ ⋆F = −1

4

∫
d4x

√
−g gµρgνσFµνFρσ (4.45)

with Fµν = ∂µAν − ∂νAµ = ∇µAν −∇νAµ. (The equivalence of these two expressions

follows because of anti-symmetry, with the Levi-Civita connections in the final term

cancelling.) This time, the equations of motion are

∇µF
µν = 0

Indeed, this is the only covariant tensor that we can write down that generalises the

flat space result ∂µF
µν = 0.

4.5.2 The Einstein Equations with Matter

To understand how fields backreact on spacetime, we just need to consider the combined

action

S =
1

16πG

∫
d4x

√
−g(R− 2Λ) + SM

where SM is the action for matter fields which, as we have seen above, depends on

both the matter fields and the metric. We know what happens when we vary the

Einstein-Hilbert action with respect to the metric. Now we care about SM . We define

the energy-momentum tensor to be

Tµν = − 2√
−g

δSM

δgµν
(4.46)

Notice that Tµν is symmetric, a property that it inherits from the metric gµν . If we

vary the full action with respect to the metric, we have

δS =
1

16πG

∫
d4x

√
−g (Gµν + Λgµν) δg

µν − 1

2

∫
d4x

√
−g Tµν δgµν

From this we can read off the equations of motion,

Gµν + Λgµν = 8πGTµν (4.47)

These are the full Einstein equations, describing gravity coupled to matter.
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There are a number of different ways of writing this. First, the cosmological constant

is sometimes absorbed as just another component of the energy-momentum tensor,

(Tµν)Λ = − Λ

8πG
gµν (4.48)

One reason for this is that the matter fields can often mimic a cosmological constant

and it makes sense to bundle all such terms together. (For example, a scalar field sitting

at an extremal point of a potential is indistinguishable from a cosmological constant.)

In this case, we just have

Gµν = 8πGTµν

where Tµν now includes the cosmological term.

Taking the trace (i.e. contracting with gµν) then gives

−R = 8πGT

with T = gµνTµν . We can use this to directly relate the Ricci tensor to the energy

momentum

Rµν = 8πG

(
Tµν −

1

2
Tgµν

)
(4.49)

This form will also have its uses in what follows.

4.5.3 The Energy-Momentum Tensor

The action SM is constructed to be diffeomorphism invariant. This means that we can

replay the argument of Section 4.1.3 that led us to the Bianchi identity: if we vary the

metric by a diffeomorphism δgµν = (LXg)µν = 2∇(µXν), then we have

δSM = −2

∫
d4x

√
−gTµν∇µXν = 0 for all Xµ

This tells us that the energy momentum tensor is necessarily covariantly conserved,

∇µT
µν = 0 (4.50)

Of course, this was necessary to make the Einstein equation (4.47) consistent, since

we know that ∇µG
µν = 0. Indeed, viewed from the action principle, both the Bianchi

identity and ∇µT
µν = 0 have the same origin.
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Although we’ve introduced the energy-momentum tensor as something arising from

curved spacetime, it is also an important object in theories in flat space that have

nothing to do with gravity. In that setting, the energy-momentum tensor arises as the

Noether currents associated to translational invariance in space and time.

A hint of this is already apparent in (4.50) which, restricted to flat space, gives the

expected conservation law enjoyed by Noether currents, ∂µT
µν = 0. However, there is

a rather slick argument that makes the link to Noether’s theorem tighter.

In flat space, the energy-momentum tensor comes from invariance under translations

xµ → xµ + Xµ, with constant Xµ. There’s a standard trick to compute the Noether

current associated to any symmetry which involves promoting the symmetry parameters

to be functions of the spacetime coordinates, so δxµ = Xµ(x). The action restricted

to flat space is not invariant under such a shift. But it’s simple to construct an action

that is invariant: we simply couple the fields to a background metric and allow that to

also vary. This is precisely the kind of action we’ve been considering in this section.

The change of the action in flat space where we don’t let the metric vary must be equal

and opposite to the change of the action where we let the metric vary but don’t change

xµ (because the combination of the two vanishes). We must have

δSflat = −
∫
d4x

δSM

δgµν

∣∣∣∣
gµν=ηµν

δgµν

But the variation of the metric without changing the point xµ is δgµν = ∂µXµ + ∂νXµ.

(The Christoffel symbols in the more familiar expression with ∇µ come from the ∂gµν
term in (4.7), and this is precisely the term we neglect.) We have

δSflat = −2

∫
d4x

δSM

δgµν

∣∣∣∣
gµν=ηµν

∂µXν = −2

∫
d4x ∂µ

(
δSM

δgµν

∣∣∣∣
gµν=ηµν

)
Xν

But we know that δSflat = 0 whenever Xµ = constant, since this is precisely what

it means for the theory to be translationally invariant. We learn that the conserved

Noether current in flat space is

Tµν

∣∣∣
flat

= −2
δSM

δgµν

∣∣∣∣
gµν=ηµν

which is the flat space version of (4.46).
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Examples of the Energy-Momentum Tensor

It is straightforward to compute the energy-momentum tensor for a scalar field. We

take the action (4.43) and vary with respect to the metric. We will need the result

δ
√
−g = −1

2

√
−g gµν δgµν from Section 4.1. We then find

δSscalar =

∫
d4x

√
−g
(
1

4
gµν∇ρϕ∇ρϕ+

1

2
gµνV (ϕ)− 1

2
∇µϕ∇νϕ

)
δgµν

where the first two terms come from varying
√
−g and the third comes from varying

the metic in the gradient term. This gives us the energy momentum tensor

Tµν = ∇µϕ∇νϕ− gµν

(
1

2
∇ρϕ∇ρϕ+ V (ϕ)

)
(4.51)

If we now restrict to flat space, with gµν = ηµν , we find, for example,

T00 =
1

2
ϕ̇2 +

1

2
(∇ϕ)2 + V (ϕ)

where ∇ is the usual 3d spatial derivative. We recognise this as the energy density of

a scalar field.

We can play the same game with the Maxwell action (4.45). Varying with respect

to the metric, we have

δSMaxwell = −1

4

∫
d4x

√
−g
(
−1

2
gµνF

ρσFρσ + 2gρσFµρFνσ

)
δgµν

So the energy momentum tensor is given by

Tµν = gρσFµρFνσ −
1

4
gµνF

ρσFρσ (4.52)

In flat space, with gµν = ηµν ,

T00 =
1

2
E2 +

1

2
B2

with F0i = −Ei, the electric field, and Fij = ϵijkBk the magnetic field. Again, we

recognise this as the energy density in the electric and magnetic fields. You can read

more about the properties of the Maxwell energy-momentum tensor in the lecture on

Electromagnetism.

4.5.4 Perfect Fluids

Take any kind of object in the universe. Throw a bunch of them together, heat them

up, and gently splash. The resulting physics will be described by the equations of fluid

dynamics.
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A perfect fluid is described by its energy density ρ(x, t), pressure P (x, t) and a velocity

4-vector uµ(x, t) such that uµuµ = −1. The pressure and energy density are not

unrelated: there is an identity between them that is usually called the equation of

state,

P = P (ρ)

Common examples include dust, which consists of massive particles floating around,

moving very slowly so that the pressure is P = 0, and radiation, which is a fluid made

of many photons for which P = ρ/3.

The energy-momentum tensor for a perfect fluid is given by

T µν = (ρ+ P )uµuν + Pgµν (4.53)

If we are in Minkowski space, so gµν = ηµν and the fluid is at rest, so uµ = (1, 0, 0, 0),

then the energy momentum tensor is

T µν = diag(ρ, P, P, P )

We see that T 00 = ρ, as expected for the energy density. More generally, for a moving

fluid we have Tµνu
µuν = ρ, which means that ρ is the energy density measured by an

observer co-moving with the fluid.

The energy-momentum tensor must obey

∇µT
µν = 0

A short calculation shows that this is equivalent to two relations between the fluid

variables. The first is

uµ∇µρ+ (ρ+ P )∇µu
µ = 0 (4.54)

This is the relativistic generalisation of mass conservation for a fluid. Here “mass”

has been replaced by energy density ρ. The first term, uµ∇µρ calculates how fast the

energy density is changing as we move along uµ. The second term tells us the answer:

it depends on ∇µu
µ, the rate of flow of fluid out of a region.

The second constraint is

(ρ+ P )uµ∇µu
ν = −(gµν + uµuν)∇µP (4.55)

This is the relativistic generalisation of the Euler equation, the fluid version of Newton’s

second law “F=ma”. The left-hand side of the equation should be viewed as “mass

× acceleration”, the right-hand side is the force which, in a fluid, is due to pressure

differences. You can learn more about these equations in the relativistic context and

their solutions in chapter 3 of the lectures on Cosmology.
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Figure 40: Charge conservation in flat

spacetime...

Figure 41: ...and in curved spacetime.

4.5.5 The Slippery Business of Energy Conservation

In flat space, the existence of an energy-momentum tensor ensures that we can define

the conserved quantities, energy and momentum. In curved spacetime, things are

significantly more subtle.

To see this, it’s useful to compare the energy-momentum tensor T µν with a current

Jµ which arises from a global symmetry (such as, for example, the phase rotation of a

complex scalar field). In flat space, both obey current conservation

∂µJ
µ = 0 and ∂µT

µν = 0 (4.56)

From these, we can construct conserved charge by integrating over a spatial volume Σ

Q(Σ) =

∫
Σ

d3x J0 and P µ(Σ) =

∫
Σ

d3x T 0µ

To see that these are indeed conserved, we simply need to integrate over a spacetime

volume V , bounded by Σ at past and future times t1 and t2. We then have

0 =

∫
V

d4x ∂µJ
µ = ∆Q(Σ) +

∫
B

d3x niJ
i

where ∆Q(Σ) = [Q(Σ)](t2)−[Q(Σ)](t1) and n
i is the outward-pointing normal to B, the

timelike boundary of V , as shown in the left-hand figure. Provided that no current flows

out of the region, meaning Ji = 0 when evaluated on B, we have ∆Q(Σ) = 0. (Often,

we take Σ = R3 so that B = S2
∞ × I with I an interval, and we only have to require

that there are no currents at infinity.) This is the statement of charge conservation.
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In Minkowski space, this same argument works just as well for P µ(Σ), meaning

that we are able to assign conserved energy and momentum to fields in some region,

providing that no currents leak out through the boundary.

Let’s now contrast this to the situation in curved spacetime. The conservation laws

(4.56) are replaced by their covariant versions

∇µJ
µ = 0 and ∇µT

µν = 0

We can replay the argument above, now invoking the divergence theorem from Section

3.2.4

0 =

∫
V

d4x
√
−g∇µJ

µ =

∫
∂V

d3x
√

|γ|nµJ
µ

with γij the pull-back of the metric to ∂V and nµ the normal vector. We consider a

spacetime volume V with boundary

∂V = Σ1 ∪ Σ2 ∪B

Here Σ1 and Σ2 are past and future spacelike boundaries, while B is the timelike

boundary as shown in the right-hand figure. If we again insist that no current flows

out of the region by requiring that Jµnµ = 0 when evaluated on B, then the expression

above becomes

Q(Σ2) = Q(Σ1)

where the charge Q(Σ) evaluated on a spacelike hypersurface Σ is defined by

Q(Σ) =

∫
Σ

d3x
√
γ nµJ

µ

This means that, for a vector field, covariant conservation is the same thing as actual

conservation. The story above is a repeat of the one we told using differential forms in

Section 3.2.5.

Now let’s try to tell a similar story for the energy-momentum tensor. In analogy to

the derivation above, it’s clear that we should try to manipulate the integral

0 =

∫
V

d4x
√
−g∇µT

µν

The problem is that we don’t have a divergence theorem for integrals of this kind

because of the hanging ν index on the energy momentum tensor. The key to deriving

the divergence theorem for Jµ was the expression

∇µJ
µ = ∂µJ

µ + Γµ
µρJ

ρ =
1√
−g

∂µ
(√

−gJµ
)
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This allows us to turn a covariant derivative into a normal derivative which gives a

boundary term in the integral. However, the same expression for the energy-momentum

tensor reads

∇µT
µν = ∂µT

µν + Γµ
µρT

ρν + Γν
µρT

µρ =
1√
−g

∂µ
(√

−gT µν
)
+ Γν

µρT
µρ

That extra term involving the Christoffel symbol stops us converting the integral of

∇µT
µν into a boundary term. Indeed, we can rewrite ∇µT

µν = 0 as

∂µ
(√

−gT µν
)
= −

√
−gΓν

µρT
µρ (4.57)

then the right-hand side looks like a driving force which destroys conservation of energy

and momentum. We learn that, for a higher tensor like T µν , covariant conservation is

not the same thing as actual conservation!

Conserved Energy from a Killing Vector

We can make progress by introducing one further ingredient. If our spacetime has a

Killing vector field K, we can construct a current from the energy-momentum tensor

by writing

Jν
T = −KµT

µν

Taking the covariant divergence of the current gives

−∇νJ
ν
T = (∇νKµ)T

µν +Kµ∇νT
µν = 0

where the first term vanishes by virtue of the Killing equation, with T µν imprinting its

symmetric indices on ∇νKµ, and the second term vanishes by (4.50).

Now we’re in business. We can construct conserved charges from the current Jµ
T as

explained above,

QT (Σ) =

∫
Σ

d3x
√
γ nµJ

µ
T

The interpretation of these charges depends on the properties of the Killing vector. If

Kµ is everywhere timelike, meaning gµνK
µKν < 0 at all points, then the charge can

be identified with the energy of the matter

E = QT (Σ)

If the Killing vector is everywhere spacelike, meaning gµνK
µKν > 0 at all points, then

the charge can be identified with the momentum of the matter.
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Conserved Energy Without a Killing Vector?

There are situations where spacetime does not have a Killing vector yet, intuitively, we

would still like to associate something analogous to energy. This is where things start

to get subtle.

A simple situation where this arises is two orbiting stars. It turns out that the

resulting spacetime does not admit a timelike Killing vector. As we will describe in

some detail in Section 5.3, as the stars orbit they emit gravitational waves, losing

energy, which causes them to slowly spiral towards each other. This fits nicely with the

lack of a timelike Killing vector, since we wouldn’t expect to define a conserved energy

for the stars.

However, it certainly feels like we should be able to define a conserved energy for the

total system which, in this case, means stars together with the gravitational waves. In

particular, we would like to quantify the amount of energy lost by the stars and carried

away by the gravitational waves. But this requires us to define something new, namely

the energy density in the gravitational field. And this is where the trouble starts!

There’s an obvious way to proceed, one that starts by returning to our original

definition of the energy-momentum tensor (4.46)

Tµν = − 2√
−g

δSM

δgµν

A naive guess would be to include the action for both matter and gravity in this

definition, giving an energy momentum tensor which includes both matter and gravity

T total
µν = − 2√

−g

(
1

16πGN

δSEH

δgµν
+
δSM

δgµν

)
But this gives

T total
µν = − 1

8πGN

Gµν + Tµν = 0

which vanishes by the Einstein field equations. The idea that the total energy of the

universe vanishes, with negative gravitational energy cancelling the positive energy

from matter sounds like it might be something important. It turns out to be very good

for selling pseudo-scientific books designed to make the world think you’re having deep

thoughts. It’s not, however, particularly good for anything to do with physics. For

example, it’s not as if electrons and positrons are suddenly materialising everywhere

in space, their mass energy cancelled by the gravitational energy. That’s not the way

the universe works. Instead the right way to think about this equation is to simply

appreciate that energy in general relativity is subtle.
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Clearly, we should try to do better to understand the energy carried in the gravi-

tational field. Unfortunately, it turns out that doing better is challenging. There are

compelling arguments that show there is no tensor that can be thought of as the local

energy density of the gravitational field. Roughly speaking, these arguments start from

the observation that the energy in the Newtonian gravitational field is proportional to

(∇Φ)2. We should therefore expect that the relativistic version of energy density is

proportional to the first derivative of the metric. Yet the equivalence principle tells us

that we can always find coordinates – those experienced by a freely falling observer –

which ensure that the first derivative of the metric vanish at any given point. But a

tensor that vanishes in one coordinate system also vanishes in another.

We’ll confront these issues again in Section 5.3 when we try to answer the question

of how much energy is emitted in gravitational waves by a binary star system. We’ll

see there that, for this case, there are simplifications that mean we can converge on a

sensible answer.

4.5.6 Spinors

In flat space, fermions transform in the spinor representation of the SO(1, 3) Lorentz

group. Recall from the lectures on Quantum Field Theory that we first introduce

gamma matrices obeying the Clifford algebra

{γa, γb} = 2ηab (4.58)

Notice that we’ve put indices a, b = 0, 1, 2, 3 on the gamma matrices, rather than the

more familiar µ, ν. This is deliberate. In d = 3+1 dimensions, each of the γa is a 4× 4

matrix.

We can use these gamma matrices to construct generators of the Lorentz group,

Sab =
1

4
[γa, γb]

These define the spinor representation of the Lorentz group. We write a Lorentz trans-

formation Λ as

Λ = exp

(
1

2
λabMab

)
with Mab the usual Lorentz generators (defined, for example, in (4.30)) and λab a

choice of 6 numbers that specify the particular Lorentz transformation. Then the

corresponding transformation in the spinor representation is given by

S[Λ] = exp

(
1

2
λabSab

)
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A Dirac spinor field ψα(x) is then a 4-component complex vector that, under a Lorentz

transformation, changes as

ψ(x) → S[Λ]ψ(Λ−1x) (4.59)

In Minkowski space, the action for the spinor is

SDirac =

∫
d4x i

(
ψ̄γa∂aψ +mψ̄ψ

)
with ψ̄ = ψ†γ0. The magic of gamma matrices ensures that this action is invariant

under Lorentz transformations, despite having just a single derivative. Our task in this

section is to generalise this action to curved spacetime.

We can already see some obstacles. The gamma matrices (4.58) are defined in

Minkowski space and it’s not clear that they would retain their magic if generalised to

curved space. Furthermore, what should we do with the derivative? We might suspect

that it gets replaced by a covariant derivative, but what connection do we choose?

To answer these questions, we will need to invoke the vierbeins and connection one-

form that we met in Section 3.4.2. Recall that the vierbeins êa = e µ
a ∂µ are a collection

of 4 vector fields, that allow us “diagonalise” the metric. We define eaµ to be the inverse

of ea
µ, meaning it satisfies eaµeb

µ = δab and eaµea
ν = δνµ. The metric can then be written

gµν = eaµe
b
νηab

These formulae are really telling us that we should raise/lower the µ, ν indices using

the metric gµν but raise/lower the a, b indices using the Minkowski metric ηab.

The formalism of vierbeins allowed us to introduce the idea of a local Lorentz trans-

formation Λ(x), defined in (3.43), which acts on the vierbeins as

ea
ν → ẽa

ν = eb
ν(Λ−1)ba with Λ c

a Λ
d
b ηcd = ηab

This local Lorentz transformation can now be promoted to act on a spinor field as

(4.59), again with S[Λ] depending on the coordinate x.

We want our action to be invariant under these local Lorentz transformations. In

particular, we might expect to run into difficulties with the derivative which, after a

Lorentz transformation, now hits Λ(x) as well as ψ(x). But this is exactly the kind of

problem that we’ve met before when writing down actions for gauge theories, and we

know very well how to solve it: we simply need to include a connection in the action

– 192 –



that transforms accordingly. To this end, we construct the covariant derivative acting

on a spinor field

∇µψ = ∂µψ +
1

2
ωab
µ Sabψ

with ωab
µ the appropriate connection. But what is it?

The right choice is the connection one-form, also known as the spin connection, that

we met in Section 3.4.2. From (3.44) and (3.47), we have

(ωa
b)µ = Γa

cbe
c
µ = eaρ∇µeb

ρ

This does the trick because of its inhomogeneous transformation (3.45)

(ωa
b)µ → Λa

c (ω
c
d)µ(Λ

−1)db + Λa
c(∂µΛ

−1)cb

This cancels the contribution from the derivative in the same way as the covariant

derivative in a non-Abelian gauge theory. The generalisation of the Dirac action to

curved space is then simply

SDirac =

∫
d4x

√
−gi

(
ψ̄γaea

µ∇µψ +mψ̄ψ
)

There are a number of reasons to be interested in coupling fermions to gravity. First,

and most obviously, both are constituents of our universe and its important to un-

derstand how they fit together. Second, they are important for more formal aspects

of mathematical physics: they are the key component in Witten’s simple proof of the

positive mass theorem, and there are reasons to suspect that the quantisation of gravity

ultimately requires supersymmetry at a high energy scale.

However, there is one thing that you probably shouldn’t do with them, which is put

them on the right-hand side of the Einstein equation and solve them. This is because

fermions are quantum fields and do not have a macroscopic, classical analog.

Of course, all fields are, at heart, quantum. But for bosonic fields, it makes sense

to think of them classically where they can be viewed as quantum fields with high

occupation number. This is familiar in electromagnetism, where the classical electric

and magnetic field can be thought of containing many photons. This means that it

makes sense to find spacetimes which solve the Einstein equations Gµν = 8πGTµν where

the curvature is supported by a profile for scalar fields on the right-hand-side.
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In contrast, there is no classical limit of fermionic fields. This is because the Pauli

exclusion principle prohibits a large occupation number. If you therefore attempt to

find a spacetime supported by a fermionic Tµν , you are really looking for a gravitational

solution sourced by precisely one quantum excitation. Given the feebleness of gravity

on the microscopic scale, this is unlikely to be interesting.

This is not to say that fermions don’t affect gravity. Important examples for gravitat-

ing fermionic systems include white dwarfs and neutron stars. But in each of these cases

there is a separation of scales where one can first neglect gravity and find an effective

equation of state for the fermions, and subsequently understand how this backreacts on

spacetime. If you want to understand the spacetime directly from the Dirac equation

than you have a complicated many-body problem on your hands.

4.5.7 Energy Conditions

If we know the kind of matter that fills spacetime, then we can just go ahead and solve

the Einstein equations. However, we will often want to make more general statements

about the allowed properties of spacetime without reference to any specific matter

content. In this case, it is useful to place certain restrictions on the kinds of energy-

momentum tensor that we consider physical.

These restrictions, known as energy conditions, capture the rough idea that energy

should be positive. A number of classic results in general relativity, such as the singu-

larity theorems, rely on these energy conditions as assumptions.

There are a bewildering number of these energy conditions. Moreover, it is not

difficult to find examples of matter which violate most of them! We now describe a

number of the most important energy conditions, together with their limitations.

• Weak Energy Condition: This states that, for any timelike vector field X,

TµνX
µXν ≥ 0 for all X with XµX

µ < 0

The idea is that this quantity is the energy seen by an observer moving along

the timelike integral curves of X, and this should be non-negative. A timelike

curve can get arbitrarily close to a null curve so, by continuity, the weak energy

condition can be extended to timelike and null curves

TµνX
µXν ≥ 0 for all X with XµX

µ ≤ 0 (4.60)

To get a feel for this requirement, let’s first impose it on the energy-momentum

tensor for a perfect fluid (4.53). We will consider timelike vectors X normalised
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to X ·X = −1. We then have

TµνX
µXν = (ρ+ P )(u ·X)2 − P ≥ 0

We work in the rest frame of the fluid, so uµ = (1, 0, 0, 0) and consider constant

timelike vector fields, Xµ = (coshφ, sinhφ, 0, 0). These describe the worldlines

of observers boosted with rapidity φ with respect to the fluid. The weak energy

condition then gives us

(ρ+ P ) cosh2 φ− P ≥ 0 ⇒

{
ρ ≥ 0 when φ = 0

P ≥ −ρ as φ→ ∞

The first condition ρ ≥ 0 is what we expect from the weak energy condition: it

ensures that the energy density is positive. The second condition P ≥ −ρ says

that negative pressure is acceptable, just as long as it’s not too negative.

There are, however, situations in which negative energy density makes physical

sense. Indeed, we’ve met one already: if we view the cosmological constant as

part of the energy momentum tensor, as in (4.48), then any Λ < 0 violates the

weak energy condition. Viewed this way, anti-de Sitter spacetime violates the

weak energy condition.

We can also look at how this condition fares for scalar fields. From the energy-

momentum tensor (4.51), we have

(Xµ∂µϕ)
2 +

1

2
∂µϕ∂

µϕ+ V (ϕ) ≥ 0 (4.61)

The first term is positive, but the second term can have either sign. In fact, it

turns out that the first and second term combined are always positive. To see

this, define the vector Y orthogonal to X

Yµ = ∂µϕ+Xµ(X
ν∂νϕ)

This satisfies XµY
µ = 0: it is the projection of ∂µϕ onto directions orthogonal to

X. Because X is timelike, Y must be spacelike (or null) and so obeys YµY
µ ≥ 0.

The weak energy condition (4.61) can be rewritten as

1

2
(Xµ∂µϕ)

2 +
1

2
YµY

µ + V (ϕ) ≥ 0

Now the first two terms are positive. We see that the weak energy condition is

satisfied provided that V (ϕ) ≥ 0. However, it is violated in any classical theory

with V (ϕ) ≤ 0 and there’s no reason to forbid such negative potentials for a scalar

field.
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• Strong Energy Condition: There is a different, less immediately intuitive,

energy condition. This is the requirement that, for any timelike vector field X,

RµνX
µXν ≥ 0

This is the strong energy condition. It is poorly named. The strong energy

condition is neither stronger nor weaker than the weak energy condition: it is

simply different. It turns out that the strong energy condition ensures that time-

like geodesics converge, which can be viewed as the statement that gravity is

attractive. (This connection is made using something called the Raychaudhuri

equation.)

Using the form of the Einstein equations (4.49), the strong energy condition

requires (
Tµν −

1

2
Tgµν

)
XµXν ≥ 0

for all timelike vector fields X. As before, continuity ensures that we can extend

this to timelike and null vector fields, X ·X ≤ 0.

If we take X ·X = −1 then, applied to a perfect fluid (4.53), the strong energy

condition requires

(ρ+ P )(u ·X)2 − P +
1

2
(3P − ρ) ≥ 0

As before, we consider the fluid in its rest frame with uµ = (1, 0, 0, 0) and look at

this condition for boosted observers with Xµ = (coshφ, sinhφ, 0, 0). We have

(ρ+ P ) cosh2 φ+
1

2
(P − ρ) ≥ 0 ⇒

{
P ≥ −ρ/3 φ = 0

P ≥ −ρ φ→ ∞

Once again, it is not difficult to find situations where the strong energy condition

is violated. Most strikingly, a cosmological constant Λ > 0 is not compatible with

the strong energy condition. In fact, we may have suspected this because neigh-

bouring, timelike geodesics in de Sitter space are pulled apart by the expansion of

space. In fact, the strong energy condition forbids any FRW universe with ä > 0,

but there are at least two periods when our own universe underwent accelerated

expansion: during inflation, and now.
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Finally, it’s not hard to show that any classical scalar field with a positive

potential energy will violate the strong energy condition.

• Null Energy Condition: The null energy condition

TµνX
µXν ≥ 0 for all X with X ·X = 0

This is implied by both weak and strong energy conditions, but the converse is

not true: the null energy condition is strictly weaker than both the weak and

strong conditions. This, of course, means that it is less powerful if we wield it to

prove various statements. However, the null energy condition has the advantage

that it is satisfied by any sensible classical field theory and any perfect fluid that

obeys ρ+ P ≥ 0.

• Dominant Energy Condition: There is also an energy condition which is

stronger than the weak condition. For any future-directed timelike vector X, we

can define the current

Jµ = −T µνXν (4.62)

This is energy density current as seen by an observer following the lines of X.

The dominant energy condition requires that, in addition to the weak energy

condition (4.60), the current is either timelike or null, so

JµJ
µ ≤ 0

This is the reasonable statement that energy doesn’t flow faster than light.

One can check that the extra condition (4.62) is satisfied for a scalar field. For

a perfect fluid we have

Jµ = −(ρ+ P )(u ·X)uµ − PXµ

It’s simple to check that the requirement JµJ
µ ≤ 0 is simply ρ2 ≥ P 2.

The validity of the various energy conditions becomes murkier still in the quantum

world. We can consider quantum matter coupled to a classical yet dynamical spacetime

through the equation

Gµν + Λgµν = 8πG ⟨Tµν⟩

where ⟨Tµν⟩ is the expectation value of the energy-momentum tensor. Each of the

energy conditions listed above is violated by fairly standard quantum field theories.
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There is, however, a somewhat weaker statement that holds true in general. This is

the averaged null energy condition. It can be proven that, along an infinite, achronal

null geodesic, any reasonable quantum field theory obeys∫ +∞

−∞
dλ ⟨Tµν⟩XµXν ≥ 0

Here λ is an affine parameter along the null geodesic and the vector Xµ points along

the geodesic and is normalised to Xµ∂µλ = 1. Here the word “achronal” means that no

two points on the geodesic can be connected by a timelike curve. (As a counterexample,

consider an infinite null ray on M = R×S1 which continually orbits the spatial circle.

This geodesic is not achronal and the averaged null energy condition is not, in general,

obeyed along this geodesic.)

4.6 A Taste of Cosmology

There are surprisingly few phenomena in Nature where we need to solve the Einstein

equations sourced by matter,

Gµν + Λgµν = 8πGTµν

However there is one situation where the role of Tµν on the right-hand side is crucial:

this is cosmology, the study of the universe as a whole.

4.6.1 The FRW Metric

The key assumption of cosmology is that the universe is spatially homogeneous and

isotropic. This restricts the our choices of spatial geometry to one of three: these are

• Euclidean Space R3: This space has vanishing curvature and the familiar metric

ds2 = dr2 + r2(dθ2 + sin2 θ dϕ2)

• Sphere S3: This space has uniform positive curvature and metric

ds2 =
1

1− r2
dr2 + r2(dθ2 + sin2 θ dϕ2)

With this choice of coordinates, we have implicitly set the radius of the sphere to

1.

• Hyperboloid H3: This space has uniform negative curvature and metric

ds2 =
1

1 + r2
dr2 + r2(dθ2 + sin2 θ dϕ2)
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The existence of three symmetric spaces is entirely analogous to the the three different

solutions we discussed in Section 4.2. de Sitter and anti-de Sitter both have constant

spacetime curvature, supplied by the cosmological constant. The metrics above have

constant spatial curvature. Note, however, that the metric on S3 coincides with the spa-

tial part of the de Sitter metric in coordinates (4.12), while the metric on H3 coincides

with the spatial part of the anti-de Sitter metric in coordinates (4.22)

We write these spatial metrics in unified form,

ds2 = γijdx
idxj =

dr2

1− kr2
+ r2(dθ2 + sin2 θ dϕ2) with k =


+1 S3

0 R3

−1 H3

In cosmology, we wish to describe a spacetime in which space expands as the universe

evolves. We do this with metrics of the form

ds2 = −dt2 + a2(t)γijdx
idxj (4.63)

This is the Friedmann-Robertson-Walker, or FRW metric. (It is also known as the

FLRW metric, with Lemâıtre’s name a worthy addition to the list.) The dimensionless

scale factor a(t) should be viewed as the “size” of the spatial dimensions (a name which

makes more sense for the compact S3 than the non-compact R3, but is mathematically

sensible for both.) Note that de Sitter space in global coordinates (4.21) is an example

of an FRW metric with k = +1.

Curvature Tensors

We wish to solve the Einstein equations for metrics that take the FRW form. Our

first task is to compute the Ricci tensor. We start with the Christoffel symbols: it is

straightforward to find Γµ
00 = Γ0

i0 = 0 and

Γ0
ij = aȧγij , Γi

0j =
ȧ

a
δij , Γi

jk =
1

2
γil (∂jγkl + ∂kγjl − ∂lγjk)

To compute the Ricci tensor, we use the expression

Rµν = ∂ρΓ
ρ
νµ − ∂νΓ

ρ
ρµ + Γλ

νµΓ
ρ
ρλ − Γλ

ρµΓ
ρ
νλ (4.64)

which we get from contracting indices on the similar expression (3.39) for the Riemann

tensor
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It’s not hard to see that R0i = 0. The quick argument is that there’s no covariant

3-vector that could possibly sit on the right-hand side. The other components need a

little more work.

Claim:

R00 = −3
ä

a

Proof: Using the non-vanishing Christoffel symbols listed above, we have

R00 = −∂0Γi
i0 − Γj

i0Γ
i
j0 = −3

d

dt

(
ȧ

a

)
− 3

(
ȧ

a

)2

which gives the claimed result □

Claim:

Rij =

(
ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2

)
gij

Proof: This is straightforward to show for k = 0 FRW metrics where the spatial metric

is flat. It’s a little more annoying for the k = ±1 metrics. A trick that simplifies life is

to compute the components of Rij at the spatial origin x = 0 where the spatial metric

is γij = δij, and then use covariance to argue that the right result must have Rij ∼ γij.

In doing this, we just have to remember not to set x = 0 too soon, since we will first

need to differentiate the Christoffel symbols and then evaluate them at x = 0.

We start by writing the spatial metric in Cartesian coordinates, on the grounds that

it’s easier to differentiate in this form

γij = δij +
kxixj

1− kx · x

The Christoffel symbols depend on ∂γij and the Ricci tensor on ∂2γij. This means that

if we want to evaluate the Ricci tensor at the origin x = 0, we only need to work with

the metric to quadratic order in x. This simplifies things tremendously since

γij = δij + kxixj +O(x4)

Similarly, we have

γij = δij − kxixj +O(x4)
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where i, j indices are raised and lowered using δij. Plugging these forms into the

expression for the Christoffel symbols gives

Γi
jk = kxiδjk +O(x3)

With this in hand, we can compute the Ricci tensor

Rij = ∂ρΓ
ρ
ij − ∂jΓ

ρ
ρi + Γλ

ijΓ
ρ
ρλ − Γλ

ρiΓ
ρ
jλ

= (∂0Γ
0
ij + ∂kΓ

k
ij)− ∂jΓ

k
ki + (Γ0

ijΓ
k
k0 + Γk

ijΓ
l
lk)− (Γ0

kiΓ
k
j0 + Γk

0iΓ
0
jk + Γk

liΓ
l
jk)

We can drop the Γk
ijΓ

l
lk term since it vanishes at x = 0. Furthermore, we can now safely

replace any undifferentiated γij in the Christoffel symbols with δij. What’s left gives

Rij =
(
∂0(aȧ) + 3k − k + 3ȧ2 − ȧ2 − ȧ2

)
δij +O(x2)

=
(
aä+ 2ȧ2 + 2k

)
δij +O(x2)

We now invoke the covariance argument to write

Rij =
(
aä+ 2ȧ2 + 2k

)
γij =

1

a2
(
aä+ 2ȧ2 + 2k

)
gij

as promised □

With these results, we can now compute the Ricci scalar: it is

R = 6

(
ä

a
+

(
ȧ

a

)2

+
k

a2

)

Finally, the Einstein tensor has components

G00 = 3

((
ȧ

a

)2

+
k

a2

)
and Gij = −

(
2
ä

a
+

(
ȧ

a

)2

+
k

a2

)
gij

Our next task is to understand the matter content in the universe.

4.6.2 The Friedmann Equations

We take the universe to be filled with perfect fluids of the kind that we introduced in

Section 4.5.4. The energy momentum tensor is

T µν = (ρ+ P )uµuν + Pgµν
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But we assume that the fluid is at rest in the preferred frame of the universe, meaning

that uµ = (1, 0, 0, 0) in the FRW coordinates (4.63). As we saw in Section 4.5.4, the

constraint ∇µT
µν = 0 gives the condition (4.54)

uµ∇µρ+ (ρ+ P )∇µu
µ = 0 ⇒ ρ̇+

3ȧ

a
(ρ+ P ) = 0

where we’ve used ∇µu
µ = ∂µu

µ + Γµ
µρu

ρ = Γi
i0u

0, and the expression (4.64) for the

Christoffel symbols. This is known as the continuity equation: it expresses the conser-

vation of energy in an expanding universe. You can check that the second constraint

(4.55) is trivial when applied to homogeneous and isotropic fluids. (It plays a role when

we consider the propagation of sound waves in the universe.)

To make progress, we also need the equation of state. The fluids of interest have

rather simple equations of state, taking the form

P = wρ

with constant w. Of particular interest are the cases w = 0, corresponding to pressure-

less dust, and w = 1/3 corresponding to radiation.

For a given equation of state, the continuity equation becomes

ρ̇

ρ
= −3(1 + w)

ȧ

a

So we learn that the energy density ρ dilutes as the universe expands, with

ρ =
ρ0

a3(1+w)
(4.65)

with ρ0 an integration constant. For pressureless dust, we have ρ ∼ 1/a3 which is the

expected scaling of energy density with volume. For radiation we have ρ ∼ 1/a4, which

is due to the scaling with volume together with an extra factor from redshift.

Now we can look at the Einstein equations. The temporal component is

G00 + Λg00 = 8πGT00 ⇒
(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− k

a2
(4.66)

This is the Friedmann equation. In conjunction with (4.65), it tells us how the universe

expands.
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We also have the spatial components of the Einstein equation,

Gij + Λgij = 8πGTij ⇒ 2
ä

a
+

(
ȧ

a

)2

+
k

a2
− Λ = −8πGP

⇒ ä

a
− Λ

3
= −4πG

3
(ρ+ 3P ) (4.67)

This is the acceleration equation, also known as the Raychaudhuri equation. It is not

independent of the Friedmann equation; if you differentiate (4.66) with respect to time,

you can derive Raychaudhuri.

There is plenty of physics hiding in these equations. Some particularly simple solu-

tions can be found by setting k = Λ = 0 and looking at a universe dominated by a

single fluid with energy density scaling as (4.65). The Friedmann equation becomes(
ȧ

a

)2

∼ 1

a3(1+w)
⇒ a(t) =

(
t

t0

)2/(3+3w)

Picking w = 1/3 we have a(t) ∼ t1/2 which describes the expansion of our universe

when it was dominated by radiation (roughly the first 50,000 years). Picking w = 0 we

have a(t) ∼ t2/3 which describes the expansion of our universe when it was dominated

by matter (roughly the following 10 billion years). You can find many more solutions

of the Friedmann equations and a discussion of the relevant physics in the lectures on

Cosmology.
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5. When Gravity is Weak

The elegance of the Einstein field equations ensures that they hold a special place in the

hearts of many physicists. However, any fondness you may feel for these equations will

be severely tested if you ever try to solve them. The Einstein equations comprise ten,

coupled partial differential equations. While a number of important solutions which

exhibit large amounts symmetry are known, the general solution remains a formidable

challenge.

We can make progress by considering situations in which the metric is almost flat.

We work with Λ = 0 and consider metrics which, in so-called almost-inertial coordinates

xµ, takes the form

gµν = ηµν + hµν (5.1)

Here ηµν = diag(−1,+1,+1,+1) is the Minkowski metric. The components hµν are

assumed to be small perturbation of this metric: hµν ≪ 1.

Our strategy is to expand the Einstein equations to linear order in the small pertur-

bation hµν . At this order, we can think of gravity as a symmetric “spin 2” field hµν
propagating in flat Minkowski space ηµν . To this end, all indices will now be raised and

lowered with ηµν rather than gµν . For example, we have

hµν = ηµρηνσhρσ

Our theory will exhibit a Lorentz invariance, under which xµ → Λµ
νx

ν and the gravi-

tational field transforms as

hµν(x) → Λµ
ρΛ

ν
σ h

ρσ(Λ−1x)

In this way, we construct a theory around flat space that starts to look very much like

the other field theories that we meet in physics.

5.1 Linearised Theory

To proceed, we need to construct the various curvature tensors from the metric (5.1).

For each, we work at linear order in h. To leading order, the inverse metric is

gµν = ηµν − hµν

The Christoffel symbols are then

Γσ
νρ =

1

2
ησλ (∂νhλρ + ∂ρhνλ − ∂λhνρ) (5.2)
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The Riemann tensor is

Rσ
ρµν = ∂µΓ

σ
νρ − ∂νΓ

σ
µρ + Γλ

νρΓ
σ
µλ − Γλ

µρΓ
σ
νλ

The ΓΓ terms are second order in h, so to linear order we have

Rσ
ρµν = ∂µΓ

σ
νρ − ∂νΓ

σ
µρ

=
1

2
ησλ (∂µ∂ρhνλ − ∂µ∂λhνρ − ∂ν∂ρhµλ + ∂ν∂λhµρ) (5.3)

The Ricci tensor is then

Rµν =
1

2
(∂ρ∂µhνρ + ∂ρ∂νhµρ −□hµν − ∂µ∂νh)

with h = hµµ the trace of hµν and □ = ∂µ∂µ. The Ricci scalar is

R = ∂µ∂νhµν −□h (5.4)

By the time we get to the Einstein tensor, we’ve amassed quite a collection of terms

Gµν =
1

2

[
∂ρ∂µhνρ + ∂ρ∂νhµρ −□hµν − ∂µ∂νh− (∂ρ∂σhρσ −□h) ηµν

]
(5.5)

The Bianchi identity for the full Einstein tensor is ∇µGµν = 0. For the linearised

Einstein tensor, this reduces to

∂µGµν = 0 (5.6)

It’s simple to check explicitly that this is indeed obeyed by (5.5).

The Einstein equations then become the linear, but somewhat complicated, set of

partial differential equations

∂ρ∂µhνρ + ∂ρ∂νhµρ −□hµν − ∂µ∂νh− (∂ρ∂σhρσ −□h) ηµν = 16πGTµν (5.7)

where, for consistency, the source Tµν must also be suitably small. The left-hand side

of this equation should be viewed as a second order, linear differential operator acting

on hµν . This is known as the Lichnerowicz operator.

The Fierz-Pauli Action

The linearised equations of motion can be derived from an action principle, first written

down by Fierz and Pauli,

SFP =
1

8πG

∫
d4x

[
−1

4
∂ρhµν∂

ρhµν +
1

2
∂ρhµν∂

νhρµ +
1

4
∂µh∂

µh− 1

2
∂νh

µν∂µh

]
(5.8)

This is the expansion of the Einstein-Hilbert action to quadratic order in h (after some

integration by parts). (At linear order, the expansion of the Lagrangian is equal to the

linearised Ricci scalar (5.4) which is a total derivative.)
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Varying the Fierz-Pauli action, and performing some integration by parts, we have

δSFP =
1

8πG

∫
d4x

[
1

2
∂ρ∂

ρhµν − ∂ρ∂νhρµ −
1

2
∂ρ∂ρhηµν +

1

2
∂ν∂µh+

1

2
∂ρ∂σh

ρσηµν

]
δhµν

=
1

8πG

∫
d4x

[
−Gµν δh

µν
]

(5.9)

We see that the Fierz-Pauli action does indeed give the vacuum Einstein equations

Gµν = 0. We can then couple matter by adding Tµνh
µν to the action.

5.1.1 Gauge Symmetry

Linearised gravity has a rather pretty gauge symmetry. This is inherited from the dif-

feomorphisms of the full theory. To see this, we repeat our consideration of infinitesimal

diffeomorphisms from Section 4.1.3. Under an infinitesimal change of coordinates

xµ → xµ − ξµ(x)

with ξ assumed to be small. The metric changes by (4.6)

δgµν = (Lξg)µν = ∇µξν +∇νξµ

When the metric takes the form (5.1), this can be viewed as a transformation of the

linearised field hµν . Because both ξ and h are small, the covariant derivative should be

taken using the vanishing connection of Minkowski space. We then have

hµν → hµν + (Lξη)µν = hµν + ∂µξν + ∂νξµ (5.10)

This looks very similar to the gauge transformation of Maxwell theory, where the

gauge potential shifts as Aµ → Aµ + ∂µα. Just as the electromagnetic field strength

Fµν = 2∂[µAν] is gauge invariant, so is the linearised Riemann tensor Rσ
ρµν .

We can quickly check that the Fierz-Pauli action is invariant under the gauge sym-

metry (5.10). From (5.9), we have

δSFP = − 1

8πG

∫
d4x 2Gµν∂

µξν = +
1

8πG

∫
d4x 2(∂µGµν)ξ

ν = 0

where, in the second equality, we’ve integrated by parts (and discarded the boundary

term) and in the third equality we’ve invoked the linearised Bianchi identity (5.6). In

fact, this is just the same argument that we used to derive the Bianchi identity in

Section 4.1.3, now played backwards.
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When doing calculations in electromagnetism, it’s often useful to pick a gauge. One

of the most commonly used is Lorentz gauge,

∂µAµ = 0

Once we impose this condition, the Maxwell equations ∂µFµν = jν reduce to the wave

equations

□Aν = jν

We solved these equations in detail in the lectures on Electromagnetism.

We can impose a similar gauge fixing condition in linearised gravity. In this case,

the analog of Lorentz gauge is called de Donder gauge

∂µhµν −
1

2
∂νh = 0 (5.11)

To see that this is always possible, suppose that you are handed a metric that doesn’t

obey the de Donder condition but instead satisfies ∂µhµν− 1
2
∂νh = fν for some functions

fν . Then do a gauge transformation (5.10). Your new gauge potential will satisfy

∂µhµν− 1
2
∂νh+□ξν = fν . So if you pick a gauge transformation ξµ that obeys □ξµ = fµ

then your new metric will be in de Donder gauge.

There is a version of de Donder gauge condition (5.11) that we can write down in

the full non-linear theory. We won’t need it in this course, but it’s useful to know it

exists. It is

gµνΓρ
µν = 0 (5.12)

This isn’t a tensor equation because the connection Γρ
µν is not a tensor. Indeed, if a

tensor vanishes in one choice of coordinates then it vanishes for all choices while the

whole point of a gauge fixing condition is to pick out a preferred choice of coordinates.

If we substitute in the linearised Christoffel symbols (5.2), this reduces to the de Donder

gauge condition.

The non-linear gauge condition (5.12) has a number of nice features. For example,

in general the wave operator (or, on a Riemannian manifold, the Laplacian △) is

□ = ∇µ∇µ = gµν(∂ν∂µ − Γρ
νµ∂ρ). If we fix the gauge (5.12), the annoying connection

term vanishes and we simply have □ = gµν∂µ∂ν . A similar simplification happens if

we compute the covariant divergence of a one-form in this gauge: ∇µωµ = gµν∇µων =

gµν(∂µων − Γρ
µνωρ) = ∂µωµ.
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Back in our linearised world, de Donder gauge greatly simplifies the Einstein equation

(5.7), which now become

□hµν −
1

2
□hηµν = −16πGTµν (5.13)

It is useful to define

h̄µν = hµν −
1

2
hηµν

Taking the trace of both sides gives h̄ = ηµν h̄µν = −h so, given h̄µν we can trivially

reconstruct hµν as

hµν = h̄µν −
1

2
h̄ηµν (5.14)

Written in terms of h̄µν , the linearised Einstein equations in de Donder gauge (5.13)

then reduce once again to a bunch of wave equations

□h̄µν = −16πGTµν (5.15)

and we can simply import the solutions from electromagnetism to learn something

about gravity. We’ll look at some examples shortly.

5.1.2 The Newtonian Limit

Under certain circumstances, the linearised equations of general relativity reduce to

the familiar Newtonian theory of gravity. These circumstances occur when we have a

low-density, slowly moving distribution of matter.

For simplicity, we’ll look at a stationary matter configuration. This means that we

take

T00 = ρ(x)

with the other components vanishing. Since nothing depends on time, we can replace

the wave operator by the Laplacian inR3: □ = −∂2t +∇2 = ∇2. The Einstein equations

are then simply

∇2h̄00 = −16πGρ(x) and ∇2h̄0i = ∇2h̄ij = 0

With suitable boundary conditions, the solutions to these equations are

h̄00 = −4Φ(x) and h̄0i = h̄ij = 0 (5.16)
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where the field Φ is identified with the Newtonian gravitational potential, obeying (0.1)

∇2Φ = 4πGρ

Translating this back to hµν using (5.14), we use h̄ = +4Φ to find

h00 = −2Φ , hij = −2Φδij , h0i = 0

Putting this back into the full metric gµν = ηµν + hµν , we have

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)dx · dx

If we take a Φ = −GM/r as expected for a point mass, we find that this coincides with

the leading expansion of the Schwarzschild metric (4.8). (The g00 term turns out to be

exact; the gij term is the leading order Taylor expansion of (1 + 2Φ)−1.)

Way back in Section 1.2, we gave a naive, intuitive discussion of curved spacetime.

There we already anticipated that the Newtonian potential Φ would appear in the

g00 component of the metric (1.26). However, in solving the Einstein equations, we

learn that this is necessarily accompanied by an appearance of Φ in the gij component.

Ultimately, this is the reason for the factor of 2 discrepancy between the Newtonian

and relativistic predictions for light bending that we met in Section 1.3

5.2 Gravitational Waves

A long time ago, in a galaxy far far away, two black holes collided. Here a “long time

ago” means 1.3 billion years ago. And “far far away” means a distance of about 1.3

billion light years.

To say that this was a violent event is something of an understatement. One of

the black holes was roughly 35 times heavier than the Sun, the other about 30 times

heavier. When they collided they merged to form a black hole whose mass was about

62 times heavier than the Sun. Now 30 + 35 ̸= 62. This means that some mass, or

equivalently energy, went missing during the collision. In a tiny fraction of a second,

this pair of black holes emitted an energy equivalent to three times the mass of the

Sun.

That, it turns out, is quite a lot of energy. For example, nuclear bombs convert the

mass of a handful of atoms into energy. But here we’re talking about solar masses, not

atomic masses. In fact, for that tiny fraction of a second, these colliding black holes

released more energy than all the stars in all the galaxies in the visible universe put

together.
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But the most astonishing part of the story is how we know this collision happened.

It’s because, on September 14th, 2015, at 9.30 in the morning UK time, we felt it.

The collision of the black holes was so violent that it caused an enormous perturbation

of spacetime. Like dropping a stone in a pond, these ripples propagated outwards as

gravitational waves. The ripples started 1.3 billion years ago, roughly at the time that

multi-cellular life was forming here on Earth. They then travelled through the cosmos at

the speed of light. The ripples hit the outer edge of our galaxy about 50,000 years ago,

at a time when humans were hanging out with neanderthals. The intervening 50,000

years gave us just enough time to join together into hunter-gatherer tribes, develop

cohesive societies bound by false religions, invent sophisticated language and writing,

discover mathematics, understand the theory that governs the spacetime continuum

and, finally, build a machine that is capable of detecting the ripples, turning it on just

in time for the gravitational wave to hit the south pole and pass, up through the Earth,

triggering the detector.

The purpose of this section is to tell the story above in equations.

5.2.1 Solving the Wave Equation

Gravitational waves propagate in vacuum, in the absence of any sources. This means

that we need to solve the linearised equation

□h̄µν = 0 (5.17)

One solution is provided by the gravitational wave

h̄µν = Re
(
Hµν e

ikρxρ)
(5.18)

Here Hµν is a complex, symmetric polarisation matrix and the wavevector kµ is a real

4-vector. Usually when writing these solutions we are lazy and drop the Re on the

right-hand side, leaving it implicit that one takes the real part. This plane wave ansatz

solves the linearised Einstein equation (5.17) provided that the wavevector is null,

kµk
µ = 0

This tells us that gravitational waves, like light waves, travel at the speed of light. If we

write the wavevector as kµ = (ω,k), with ω the frequency, then this condition becomes

ω = ±|k|.

Because the wave equation is linear, we may superpose as many different waves of

the form (5.18) as we wish. In this way, we build up the most general solution to the

wave equation.
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Naively, the polarisation matrix Hµν has 10 components. But we still have to worry

about gauge issues. The ansatz (5.18) satisfies the de Donder gauge condition ∂µh̄µν = 0

only if

kµHµν = 0 (5.19)

This tells us that the polarisation is transverse to the direction of propagation. Fur-

thermore, the choice of de Donder gauge does not exhaust our ability to make gauge

transformations. If we make a further gauge transformation hµν → hµν + ∂µξν + ∂νξµ,

then

h̄µν → h̄µν + ∂µξν + ∂νξµ − ∂ρξρηµν

This transformation leaves the solution in de Donder gauge ∂µh̄µν = 0 provided that

□ξν = 0

In particular, we can take

ξµ = λµ e
ikρxρ

which obeys □ξµ = 0 because kρk
ρ = 0. A gauge transformation of this type shifts the

polarisation matrix to

Hµν → Hµν + i (kµλν + kνλµ − kρλρηµν) (5.20)

Polarisation matrices that differ in this way describe the same gravitational wave. We

now choose the gauge transformation λµ in order to further set

H0µ = 0 and Hµ
µ = 0 (5.21)

These conditions, in conjunction with (5.19), are known as transverse traceless gauge.

Because H is traceless, this choice of gauge has the advantage that hµν = h̄µν .

At this stage we can do some counting. The polarisation matrix Hµν has 10 com-

ponents. The de Donder condition (5.19) gives 4 constraints, and there are 4 residual

gauge transformations (5.20). The upshot is that there are just 10 − 4 − 4 = 2 inde-

pendent polarisations in Hµν .

(There is a similar counting in Maxwell theory. The polarisation of Aµ seemingly has

4 components. The Lorentz gauge ∂µAµ = 0 kills one of them, and a residual gauge

transformation kills another, leaving the 2 familiar polarisation states of light.)
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An Example

Consider a wave propagating in the z direction. The wavevector is

kµ = (ω, 0, 0, ω)

The condition (5.19) sets H0ν +H3ν = 0. The additional constraint (5.21) restricts the

polarisation matrix to be

Hµν =


0 0 0 0

0 H+ HX 0

0 HX −H+ 0

0 0 0 0

 (5.22)

Both H+ and HX can be complex; we take the real part when computing the metric in

(5.18). Here we see explicitly the two polarisation states H+ and HX . We’ll see below

how to interpret these two polarisations.

5.2.2 Bobbing on the Waves

What do you feel if a gravitational wave passes you by? Well, if you’re happy to be

modelled as a pointlike particle, moving along a geodesic, then the answer is simple:

you feel nothing at all. This follows from the equivalence principle. Instead, it’s all

about your standing relative to your neighbours.

This relative physics is captured by the geodesic deviation equation that we met in

Section 3.3.4. Consider a family of geodesics xµ(τ, s), with s labelling the different

geodesics, and τ the affine parameter along any geodesic. The vector field tangent to

these geodesics is the velocity 4-vector

uµ =
∂xµ

∂τ

∣∣∣∣
s

Meanwhile, the displacement vector Sµ takes us between neighbouring geodesics,

Sµ =
∂xµ

∂s

∣∣∣∣
τ

We previously derived the geodesic deviation equation (3.36).

D2Sµ

Dτ 2
= Rµ

ρσνu
ρuσSν
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We’ll consider the situation where, in the absence of the gravitational wave, our family

of geodesics are sitting happily in a rest frame, with uµ = (1, 0, 0, 0). As the gravita-

tional wave passes, the geodesics will change as

uµ = (1, 0, 0, 0) +O(h)

Fortunately, we won’t need to compute the details of this. We will compute the devia-

tion to leading order in the metric perturbation h, but the Riemann tensor is already

O(h), which means that we can neglect the corrections in the other terms. Similarly,

we can replace the proper time τ for the coordinate time t. We then have

d2Sµ

dt2
= Rµ

00νS
ν

The Riemann tensor in the linearised regime was previously computed in (5.3)

Rµ
ρσν =

1

2
ηµλ (∂σ∂ρhνλ − ∂σ∂λhνρ − ∂ν∂ρhσλ + ∂ν∂λhσρ)

Using hµ0 = 0, the component we need is simply

Rµ
00ν =

1

2
∂20h

µ
ν

Our geodesic deviation equation is then

d2Sµ

dt2
=

1

2

d2hµν
dt2

Sν (5.23)

We see that the gravitational wave propagating in, say, the z direction with polarisation

vector (5.22) affects neither S0 nor S3. The only effect on the geodesics is in the (x, y)-

plane, transverse to the direction of propagation. For simplicity, we will solve this

equation in the z = 0 plane.

H+ Polarisation: If we set HX = 0 in (5.22), then the geodesic deviation equation (5.23)

becomes

d2S1

dt2
= −ω

2

2
H+e

iωtS1 and
d2S2

dt2
= +

ω2

2
H+e

iωtS2

We can solve these perturbatively in H+. Keeping terms of order O(h) only, we have

S1(t) = S1(0)

(
1 +

1

2
H+e

iωt + . . .

)
and S2(t) = S2(0)

(
1− 1

2
H+e

iωt + . . .

)
(5.24)

where, as we mentioned previously, we should take the real part of the right-hand-side.

(Recall that H+ can also be complex.)
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From these solutions, we can determine the way in which geodesics are affected

by a passing wave. Think of the displacement vector Sµ as the distance from the

origin to a neighbouring geodesic. We will consider a family of neighbouring geodesics

corresponding to a collection of particles which, at time t = 0, are arranged around

a circle of radius R. This means that we have initial conditions Sa(t = 0) satisfying

S1(0)2 + S2(0)2 = R2.

The solutions (5.24) tell us how these geodesics evolve. The relative minus sign

between the two equations means that when geodesics move outwards in, say, the

x1 = x direction, they move inwards in the x2 = y direction, and vice-versa. The net

result is that, as time goes on, these particles will evolve from a circle to an ellipse and

back again, displaced like this:

HX Polarisation: If we set H+ = 0 in (5.22), then the geodesic deviation equation (5.23)

becomes

d2S1

dt2
= −ω

2

2
HXe

iωtS2 and
d2S2

dt2
= −ω

2

2
HXe

iωtS1

Again, we solve these perturbatively in HX . We have

S1(t) = S1(0) +
1

2
S2(0)HXe

iωt + . . . and S2(t) = S2(0) +
1

2
S1(0)HXe

iωt + . . .

The displacement is the same as previously, but rotated by 45◦. (To see this, note that

the displacements S1(t)± S2(t) have the same functional form as (5.24).) This means

that this time the displacement of geodesics looks like this:
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Figure 42: The discovery of gravitational waves by the LIGO detectors.

We can also take linear combinations of the polarisation states. Adding the two

polarisations above gives an elliptic displacement whose axis rotates. This is analogous

to the circular polarisation of light.

The displacements due to gravitational waves are invariant under rotations by π.

This contrasts with polarisation of light which is described by a vector, and so is only

invariant under 2π rotations. This reflects the fact that graviton has spin 2, while the

photon has spin 1.

Gravitational Wave Detectors

Gravitational wave detectors are interferometers. They bounce light back and forth

between two arms, with the mirrors at either end playing the role of test masses.

If the gravitational wave travels perpendicular to the plane of the detector, it will

shorten one arm and lengthen the other. With the arms aligned along the x and y

axes, the maximum change in length can be read from (5.24),

L′ = L

(
1± H+

2

)
⇒ δL

L
=
H+

2

To get a ballpark figure for this, we need to understand how large we expect H+ to be

from any plausible astrophysical source. We’ll do this in Section 5.3.2. It turns out it’s

not really very large at all: typical sources have H+ ∼ 10−21. The lengths of each arm

in the LIGO detectors is around L ∼ 3 km, meaning that we have to detect a change

in length of δL ∼ 10−18 m. This seems like a crazy small number: it’s smaller than the

radius of a proton, and around 1012 times smaller than the wavelength of the light used

in the interferometer. Nonetheless, the sensitivity of the detectors is up to the task and

the LIGO observatories detected gravitational waves for the first time in 2015. For this,

three members of the collaboration were awarded the 2017 Nobel prize. Subsequently,
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the LIGO and VIRGO detectors have observed a large number of mergers involving

black holes and neutron stars.

5.2.3 Exact Solutions

We have found a wave-like solution to the linearised Einstein equations. The metric

for a wave moving in, say, the positive z direction takes the form

ds2 = −dt2 + (δab + hab(z − t))dxadxb + dz2 (5.25)

where the a, b = 1, 2 indices run over the spatial directions transverse to the direction

of the wave. Because the wave equation is linear, any function hab(z− t) is a solution to

the linearised Einstein equations; the form that we gave in (5.18) is simply the Fourier

decomposition of the general solution.

Because gravitational waves are so weak, the linearised metric is entirely adequate

for any properties of gravitational waves that we wish to calcuate. Nonetheless, it’s

natural to ask if this solution has an extension to the full non-linear Einstein equations.

Rather surprisingly, it turns out that it does.

For a wave propagating in the positive z direction, we first introduce lightcone coor-

dinates

u = t− z , v = t+ z

Then we consider the plane wave ansatz, sometimes called the Brinkmann metric

ds2 = −dudv + dxadxa +Hab(u)x
axbdu2

Note that our linearised gravitational wave (5.25) is not of this form; there is some

(slightly fiddly) change of coordinates that takes us between the two metrics. One can

show that the Brinkmann metric is Ricci flat, and hence solves the vacuum Einstein

equations, for any traceless metric Hab

Rµν = 0 ⇔ Ha
a(u) = 0

The general metric again has two independent polarisation states,

Hab(u) =

(
H11(u) H12(u)

H12(u) −H11(u)

)

It is unusual to find solutions on non-linear PDEs which depend on arbitrary functions,

like H11(u) and H12(u). The Brinkmann metrics are a rather special exception.
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5.3 Making Waves

The gravitational wave solutions described in the previous section are plane waves.

They come in from infinity, and go out to infinity. In reality however, gravitational

waves start at some point and radiate out.

As we will see, the story is entirely analogous to what we saw in our earlier course

on Electromagnetism. There, you generate electromagnetic waves by shaking electric

charges. Similarly, we generate gravitational waves by shaking masses. The purpose of

this section is to make this precise.

5.3.1 The Green’s Function for the Wave Equation

Our starting point is the linearised Einstein equation (5.15),

□h̄µν = −16πGTµν (5.26)

which assumes that both the source, in the guise of the energy momentum tensor Tµν ,

and the perturbed metric h̄µν are small. This is simply a bunch of decoupled wave

equations. We already solved these in Section 6 of the lectures on Electromagnetism,

and our discussion here will parallel the presentation there.

We will consider a situation in which matter fields are localised to some spatial region

Σ. In this region, there is a time-dependent source of energy and momentum Tµν(x
′, t),

such as two orbiting black holes. Outside of this region, the energy-momentum tensor

vanishes: Tµν(x
′, t) = 0 for x′ /∈ Σ. We want to know what the metric hµν looks like a

long way from the region Σ. The solution to (5.26) outside of Σ can be given using the

(retarded) Green’s function; it is

h̄µν(x, t) = 4G

∫
Σ

d3x′
Tµν(x

′, tret)

|x− x′|
(5.27)

here tret is the retarded time, given by

tret = t− |x− x′|

It’s not too hard to show that this solution satisfies the de Donder gauge condition

∂µh̄µν = 0 provided that the energy momentum tensor is conserved, ∂µTµν = 0. The

solution does not, however, automatically satisfy the temporal and traceless conditions

(5.21). The solution (5.27) captures the causality of the wave equation: the gravita-

tional field h̄µν(x, t) is influenced by the matter at position x′ at the earlier time tret,

so that there is time for this influence to propagate from x′ to x.
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We denote the size of the region Σ as d. We’re interested in what’s happening at a

point x which is a distance r = |x| away. If |x − x′| ≫ d for all x′ ∈ Σ then we can

approximate

|x− x′| = r − x · x′

r
+ . . .⇒ 1

|x− x′|
=

1

r
+

x · x′

r3
+ . . . (5.28)

We also have a factor of |x− x′| that sits inside tret = t− |x− x′|. This means that we

should also Taylor expand the argument of the energy-momentum tensor

Tµν(x
′, tret) = Tµν(x

′, t− r + x · x′/r + . . .)

Now we’d like to further expand out this argument. But, to do that, we need to know

something about what the source is doing. We will assume that the motion of matter

is non-relativistic, so that the energy momentum tensor doesn’t change very much over

the time τ ∼ d that it takes light to cross the region Σ. For example, if we have a

system comprised of two objects (say, neutron starts or black holes) orbiting each other

with characteristic frequency ω then Tµν ∼ e−iωt and the requirement that the motion

is non-relativistic becomes d ≪ 1/ω. Then we can further Taylor expand the current

to write

Tµν(x
′, tret) = Tµν(x

′, t− r) + Ṫµν(x
′, t− r)

x · x′

r
+ . . . (5.29)

We have two Taylor expansions, (5.28) and (5.29). At leading order in d/r we take the

first term from both these expansions to find

h̄µν(x, t) ≈
4G

r

∫
Σ

d3x′ Tµν(x
′, t− r)

We first look at the expressions for h̄00 and h̄0i. The first of these is

h̄00(x, t) ≈
4G

r
E with E =

∫
Σ

d3x′ T00(x
′, t− r) (5.30)

This is simply a recapitulation of the Newtonian limit (5.16), with the long distance

gravitational potential given by Φ = −GE/r where E is the total energy inside the

region Σ. At the linear order to which we’re working, current conservation ∂µTµν = 0

ensures that the energy E inside Σ is constant, so the time dependence drops out.

Similarly, we have

h̄0i(x, t) ≈ −4G

r
Pi with Pi = −

∫
Σ

d3x′ T0i(x
′, t− r) (5.31)

Here Pi is the total momentum of the matter inside Σ which, again, is conserved. We

can always go to a rest frame where this matter is stationary in which case Pi = 0 and

hence h̄0i = 0. This was the choice we implicitly made in describing the Newtonian

limit (5.16).
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Neither the expression for h̄00 nor h̄0j captures the physics that we are interested in.

The results only know about the conserved quantities inside the region Σ, not about

how they’re moving. However, things become more interesting when we look at the

spatial components of the metric,

h̄ij(x, t) ≈
4G

r

∫
Σ

d3x′ Tij(x
′, t− r)

with i, j = 1, 2, 3. Now the integral on the right-hand side is not a conserved quantity.

However, it is possible to relate it to certain properties of the energy distribution inside

Σ.

Claim: ∫
Σ

d3x′ Tij(x
′, t) =

1

2
Ïij(t)

where Iij is the quadrupole moment of the energy,

Iij(t) =

∫
Σ

d3x T 00(x, t)xixj (5.32)

Proof: We start by writing

T ij = ∂k(T
ikxj)− (∂kT

ik)xj = ∂k(T
ikxj) + ∂0T

0ixj

where, in the second equality, we’ve used current conservation ∂µT
µν = 0. (Note that

current conservation in the full theory is ∇µT
µν = 0, but in our linearised analysis this

reduces to ∂µT
µν = 0.) For the T 0i term, we play the same trick again. Symmetrising

over (ij), we have

T 0(ixj) =
1

2
∂k(T

0kxixj)− 1

2
(∂kT

0k)xixj =
1

2
∂k(T

0kxixj) +
1

2
∂0T

00xixj

When we integrate this over Σ, we drop the terms that are total spatial derivatives.

We’re left with ∫
Σ

d3x′ T ij(x′, t) =
1

2
∂20

∫
Σ

d3x′ T 00(x′, t)x′ix′j

which is the claimed result. □
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We learn that, far from the source, the metric takes the form

h̄ij(x, t) ≈
2G

r
Ïij(t− r) (5.33)

This is the physics that we want: if we shake the matter distribution in some way

then, once the signal has had time to propagate, this will affect the metric. Because

the equations are linear, if the matter shakes at some frequency ω the spacetime will

respond by creating waves at parametrically same frequency. (In fact, we’ll see a factor

of 2 arises in the example of a binary system (5.36).)

In fact, we can now revisit the other components h̄00 and h̄0i. The gauge condition

∂µh̄µν = 0 tells us that

∂0h̄0i = ∂jh̄ji and ∂0h̄00 = ∂ih̄i0

The first of these equations gives

∂0h̄0i ≈ ∂j

(
2G

r
Ïij(t− r)

)
= −2Gx̂j

r2
Ïij(t− r)− 2Gx̂j

r

...
I ij(t− r) (5.34)

where we’ve used the fact that ∂jr = xj/r = x̂j. Which of these two terms in (5.34) is

bigger? As we get further from the source, we would expect the second, 1/r, term to

dominate over the first, 1/r2 term. But the second term has an extra time derivative,

which means an extra factor of the characteristic frequency of the source, ω. This

means that the second term dominates provided that r ≫ 1/ω or, in terms of the

wavelength λ of the emitted gravitational wave, r ≫ λ. This is known as the far-field

zone or, sometimes, the radiation zone. In this regime, we have

h̄0i ≈ −2Gx̂j
r

Ïij(t− r)

where we’ve integrated (5.34). In general, the integration constant is given by the Pi

term that we previously saw in (5.31). In the answer above, we’ve set this integration

constant to zero by choosing coordinates in which Pi = 0, meaning that the centre of

mass of the source doesn’t move. We can now repeat this to determine h̄00. The same

argument means that we discard one term, and retain

h̄00 =
4G

r
E +

2Gx̂ix̂j
r

Ïij(t− r)

If we tried to compute these Ï terms in h̄00 and h̄0i directly from (5.27), we would have

to go to higher order in the expansion. Implementing the gauge condition, as above,

saves us this work.
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5.3.2 An Example: Binary Systems

As an example, consider two stars (or neutron stars, or black holes) each with mass

M , separated by distance R, orbiting in the (x, y) plane. Using Newtonian gravity, the

stars orbit with frequency

ω2 =
2GM

R3
(5.35)

If we treat these stars as point particles, then the energy density is simply a product

of delta-functions

T 00(x, t) =Mδ(z)

[
δ

(
x− R

2
cosωt

)
δ

(
y − R

2
sinωt

)
+ δ

(
x+

R

2
cosωt

)
δ

(
y +

R

2
sinωt

)]
The quadrupole (5.32) is then easily evaluated

Iij(t) =
MR2

2


cos2 ωt cosωt sinωt 0

cosωt sinωt sin2 ωt 0

0 0 0



=
MR2

4


1 + cos 2ωt sin 2ωt 0

sin 2ωt 1− cos 2ωt 0

0 0 0

 (5.36)

The resulting metric perturbation is then

h̄ij ≈ −2GMR2ω2

r


cos 2ωtret sin 2ωtret 0

sin 2ωtret − cos 2ωtret 0

0 0 0


where tret = t− r is the retarded time.

This gravitational wave propagates out more or less radially. If we look along the z-

axis, then the wave takes the same form as the plane wave (5.22) that we saw previously,

now with combination of H+ and HX polarisations, π/2 out of phase, also known as

circular polarisation.

We can use this to give us a ballpark figure for the expected strength of gravitational

waves. Using (5.35) to replace the frequency, we have

|hij| ∼
G2M2

Rr
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Clearly the signal is largest for large masses M , orbiting as close as possible so R is

small. The densest objects are black holes whose size is given by the Schwarzschild

radius Rs = 2GM . As the black holes come close, we take R ≈ Rs to get

|hij| ∼
GM

r

A black hole weighing a few solar masses has Schwarzschild radius Rs ∼ 10 km. Now it’s

a question of how far away these black holes are. If two such black holes were orbiting in,

say, the Andromeda galaxy which, at 2.5 million light years, has r ≈ 1018 km, we would

get h ∼ 10−17. At a distance of a billion light-years, we’re looking at h ∼ 10−20. These

are small numbers. Nonetheless, as we mentioned previously, this is the sensitivity that

has been achieved by gravitational wave detectors.

5.3.3 Comparison to Electromagnetism

For both electromagnetic and gravitational waves, there is a multipole expansion that

determines the long distance wave behaviour in terms of the source. (Full details of the

calculations in Maxwell theory can be found in the lectures on Electromagnetism.) In

electromagnetism, the multipoles of the charge distribution ρ(x) are the charge

Q =

∫
Σ

d3x ρ(x)

the dipole

p =

∫
Σ

d3x ρ(x)x

the quadrupole

Qij =

∫
Σ

d3x ρ(x)
(
3xixj − δijx

2
)

and so on. Charge conservation tells us that Q̇ = 0: the total charge cannot change

which means that there is no monopole contribution to electromagnetic waves. Instead

the leading order contribution comes from the dipole. Indeed, repeating the calculation

that we saw above in the context of Maxwell theory shows that the leading order

contribution to electromagnetic waves

A(x, t) ≈ µ0

4πr
ṗ(t− r) (5.37)

We can compare this to the situation in gravity. The multipoles of the energy distri-

bution T00(x) are the total energy

E =

∫
Σ

d3x T00(x)

– 222 –

http://www.damtp.cam.ac.uk/user/tong/em.html


the dipole which, in this context, is related to the centre of mass of the distribution

X =
1

E

∫
Σ

d3x T00(x)x

the quadrupole

Iij(t) =

∫
d3x T00(x, t)xixj

The conservation of energy, Ė = 0, is responsible for the lack of a monopole contribution

to gravitational radiation. But, as we saw above, in contrast to electromagnetism, the

dipole contribution also vanishes. This too can be traced to a conservation law: we

have

EẊi =

∫
Σ

d3x (∂0T00)xi =

∫
Σ

d3x (∂jTj0)xi = −
∫
Σ

d3x Ti0 = Pi

where, in the penultimate equality, we have integrated by parts and, in the final equal-

ity, we have used the definition of the total momentum Pi defined in (5.31). But

conservation of momentum P means that the second time derivative of the dipole van-

ishes

EẌ = Ṗ = 0

This is the physical reason that there’s no gravitational dipole: it would violate the

conservation of momentum.

In electromagnetism, there is another dipole contribution to the gauge potential: this

is

AMD(x, t) = − µ0

4πr
x̂× ṁ(t− r)

where the magnetic dipole m is defined by

m =
1

2

∫
Σ

d3x x× J(x)

In our gravity, the analogous term comes from the Ṫij in the expansion (5.29). The

analog of the magnetic dipole in gravity is

Ji =

∫
Σ

d3x ϵijkxjT0k

But this is again something familiar: it is the angular momentum of the system. This

too is conserved, J̇ = 0, which means that, again, the dipole contribution vanishes in

gravity. The leading order effect is the quadrupole.
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5.3.4 Power Radiated: The Quadrupole Formula

A source which emits gravitational waves will lose energy. We’d like to know how much

energy is emitted. In other words, we’d like to understand how much energy is carried

by the gravitational waves.

In the context of electromagnetism, it is fairly easy to calculate the analogous quan-

tity. The energy current in electromagnetic waves is described by the T 0i components

of the energy-momentum tensor, better known as the Poynting vector

S =
1

µ0

E×B

To compute the power P emitted by an electromagnetic source, we simply integrate

this energy flux over a sphere S2 that surrounds the source,

P =

∫
S2

d2r · S

Evaluating this using the dipole approximation for electromagnetic waves (5.37), and

doing a suitable average, we find the Larmor formula

P =
µ0

6πc
|p̈|2

Our task in this section is to perform the same calculations for gravitational waves.

This is not as easy as it sounds. The problem is the one we addressed in Section

4.5.5: there is no local energy-momentum tensor for gravitational fields. This means

that there is no analog of the Poynting vector for gravitational waves. It looks like

we’re scuppered.

There is, however, a way forward. The idea is that we will attempt to define an

energy-momentum tensor tµν for gravitational waves which, in the linearised theory,

obeys

∂µtµν = 0

The problem is that, as we mentioned in Section 4.5.5, there is no way to achieve this

in a diffeomorphism invariant way. In the full non-linear theory, this mean that tµν is

not actually a tensor. In our linearised theory, it means that tµν will not be invariant

under the gauge transformations (5.10). Nonetheless, we’ll first define an appropriate

tµν , and then worry about the lack of gauge invariance later.
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A Quick and Dirty Approach: the Fierz-Pauli Action

When asked to construct an energy-momentum tensor for the metric perturbations, the

first thing that springs to mind is to return to the Fierz-Pauli action (5.8). Viewed as

an action describing a spin 2 field propagating in Minkowski space, we can then treat

it as any other classical field theory and compute the energy-momentum tensor in the

usual ways.

For example if we work in transverse traceless gauge, with h = 0 and ∂µhµν = 0

then, after an integration by parts, the Fierz-Pauli action becomes

SFP = − 1

8πG

∫
d4x

1

4
∂ρhµν∂

ρhµν

which looks like the action for a bunch of massless scalar fields. The energy density

then takes the schematic form

t00 ∼ 1

G
ḣµν ḣ

µν

There are also gradient terms but, for wave equations, these contribute in the same

way as time derivatives. Strictly speaking, we should be working with the momentum

t0i, but this scales in the same way and the calculation is somewhat easier if we work

with t00. Our previous expression (5.33) for the emitted gravitational wave wasn’t in

transverse-traceless gauge. If we were to massage it into this form, we have

hij(x, t) ∼
G

r
Q̈ij(t− r)

where Qij is the traceless part of the quadrupole moment,

Qij = Iij −
1

3
Ikkδij

Putting this together suggests that the energy density carried in gravitational waves is

schematically of the form

t00 ∼ G

r2
...
Q2

ij

Integrating over a sphere at a large distance, suggests that the energy lost in gravita-

tional waves should depend on the square of the third derivative of the quadrupole,

P ∼ G
...
Q2

ij

It turns out that this is indeed correct. A better treatment gives

P =
G

5

...
Q ij

...
Q ij

(5.38)

where, as in all previous formulae,
...
Q ij should be evaluated in retarded time tret = t−r.

This is the quadrupole formula, the gravitational equivalent of the Larmor formula.

– 225 –



Before the direct detection of gravitational waves, the quadrupole formula gave us

the best observational evidence of their existence. The Hulse-Taylor pulsar is a binary

neutron star system, discovered in 1974. One of these neutron stars is a pulsar, emitting

a sharp beam every 59 ms. This can be used to very accurately track the orbit of the

stars and show that the period – which is about 7.75 hours – is getting shorter by

around 10 µs each year. This is in agreement with the quadrupole formula (5.38).

Hulse and Taylor were awarded the 1993 Nobel prize for this discovery.

Looking for a Better Approach

Any attempt to improve on the discussion above opens up a can of worms. The calcu-

lation needed to nail the factor of 1/5 is rather arduous. More importantly, however,

there are also a number of conceptual issues that we need to overcome. Rather than

explaining the detailed integrals that give the factor of 1/5, we’ll instead focus on some

of these conceptual ideas.

Our first task is to do a better job of defining tµν . There are a number of ways to

proceed.

• First, we could try to do a less shoddy job of computing the energy-momentum

tensor tµν from the Fierz-Pauli action (5.8). This, it turns out, suffers a number

of ambiguities. If, for example, we attempted to compute tµν as the Noether

currents associated to spacetime translations, then we would find that the result

is neither symmetric in µ and ν, nor gauge invariant. That’s not such a surprise

as it’s also true for Maxwell theory. We can then try to add an “improvement”

term

tµν → tµν + ∂ρΘρµν

where Θρµν = −Θµρν which ensures that ∂µ∂ρΘρµν = 0 and the extra term doesn’t

ruin conservation of the current. In Maxwell theory, such a term can be added to

make the resulting energy-momentum tensor both symmetric and gauge invariant.

For the Fierz-Pauli action, we can make it symmetric but not gauge invariant.

A similar approach is to forget the origin of the Fierz-Pauli action and then at-

tempt to write a generalisation of the action in “curved spacetime” by contracting

indices with a metric gµν and replacing derivatives with ∇µ. We could then eval-

uate the energy-momentum tensor using the usual formula (4.46), subsequently

restricting to flat space. Here too there are ambiguities which now arise from the

possibility of including terms like Rµνh
µρhνρ or Rµνρσh

µρhνσ in the action. These

vanish in Minkowski space, but give different energy-momentum tensors. For any

choice, the result is again symmetric but not gauge invariant.
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• Another approach is to take the lack of energy-conservation of the matter fields

seriously, and try to interpret this as energy transferred into the gravitational

field. To this end, let’s look again at the covariant conservation ∇µT
µν = 0. As

we stressed in Section 4.5.5, covariant conservation is not the same thing as actual

conservation. In particular, we can rewrite the covariant conservation equation

as

∇µT
µ
ν =

1√
−g

∂µ
(√

−gT µ
ν

)
− Γρ

µνT
µ
ρ

=
1√
−g

∂µ
(√

−gT µ
ν

)
− 1

2
∂νgµρT

µρ = 0

where, to get the second line, we’ve invoked the symmetry of T µρ. Note that

the simplification of the Christoffel symbol to gµρ,ν only happens when the ν

index is down; this reflects the fact we’re writing the equations in a non-covariant

way. Next, we use the Einstein equation to replace T µρ on the right-hand side by
1

8πG
Gµρ. This gives

∂µ
(√

−gT µ
ν

)
=

1

16πG

√
−g ∂νgµρ

(
Rµρ − 1

2
Rgµρ

)
=

1

16πG

√
−g ∂νgµρRµρ

The idea is to massage the right-hand side so that this expression becomes

∂µ(
√
−gT µ

ν) = −∂µ(
√
−gtµν)

for some tµν which is referred to as the Landau-Lifshitz pseudotensor. This equa-

tion suggests that the sum of the matter energy T µ
ν and the gravitational energy

tµν is conserved. However, this statement should be treated with suspicion be-

cause it’s coordinate dependent: the pseudotensor tµν is not a real tensor: its

expression is long and horrible involving many terms, each of which is quadratic

in Γ and quadratic in g. (You can find it in (101.6) of Landau and Lifshitz, vol-

ume 2 but it’s unlikely to give you a sense of enlightenment.) The expression for

the pseudo-tensor is slightly nicer in the linearised theory, but only slightly.

• The final approach is perhaps the least intuitive, but has the advantage that it

gives a straightforward and unambiguous path to find an appropriate non-tensor

tµν . Motivated by the expectation that any putative tµν will be quadratic in hµν ,

we expand the Einstein equations to the next order. We keep gµν = ηµν + hµν .

Expanding to second order, the Einstein equations becomes[
Rµν −

1

2
Rgµν

](1)
+

[
Rµν −

1

2
Rgµν

](2)
= 8πGTµν
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where the subscript (n) means restrict to terms of order hn. We rewrite this as[
Rµν −

1

2
Rgµν

](1)
= 8πG (Tµν + tµν) (5.39)

with the second order expansion of the Einstein tensor now sitting suggestively on

the right-hand side where it is interpreted as the gravitational energy-momentum

non-tensor

tµν = − 1

8πG

[
Rµν −

1

2
Rgµν

](2)
= − 1

8πG

[
R(2)

µν − 1

2
R(2)ηµν −

1

2
R(1)hµν

]
If we’re far from the source then we can neglect the term R(1) since it vanishes by

the equation of motion. (More precisely, it vanishes at linear order and so fails

to contribute at the quadratic order that we care about.) We end up with the

seemingly simple expression

tµν = − 1

8πG

[
R(2)

µν − 1

2
R(2)ηµν

]
(5.40)

The linearised Bianchi identity is ∂µ
[
Rµν − 1

2
Rgµν

](1)
= 0. But this means that if

we are far from sources, so T µν = 0, and the equation of motion (5.39) is satisfied,

then we necessarily have ∂µtµν = 0 as befits a conserved current. All that’s left

is to evaluate the Ricci tensor to second order in the perturbation hµν . This is

painful. The answer turns out to be

R(2)
µν [h] =

1

2
hρσ∂µ∂νhρσ − hρσ∂ρ∂(µhν)σ +

1

4
∂µhρσ∂νh

ρσ + ∂σhρν∂[σhρ]µ

+
1

2
∂σ (h

σρ∂ρhµν)−
1

4
∂ρh∂ρhµν −

(
∂σh

ρσ − 1

2
∂ρh

)
∂(µhν)ρ

Pretty huh? Substituting this into the expression (5.40) gives an equally pretty

expression for tµν . Once again however, tµν is not gauge invariant.

We see that there are a number of different ways to construct an energy-momentum

tensor tµν for gravitational waves. But none are gauge invariant. In order to relate this

to something physical, we clearly have to construct something which is gauge invariant.

It is possible to extract something gauge invariant from tµν provided that our space-

time is asymptotically Minkowski. We could, for example, integrate t00 over an infinite

spatial hypersurface. This defines the so-called ADM energy which can be shown to be

constant in time.
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Alternatively, we could integrate t0i over a sphere at I+. This too gives a gauge

invariant quantity, which is the time dependence of the so-called Bondi energy. This

too can be defined in the full non-linear theory.

Here we give a less rigorous but slightly simpler construction. The gravitational

wave, like any wave, varies over some typical length scale λ. We average over these

oscillations by introducing a coarse-grained energy tensor

⟨tµν⟩ =
∫
V

d4x W (x− y)tµν(y)

where the integral is over some region V of typical size a. The weighting function

W (x) has the property that it varies smoothly over V with
∫
V
d4x W (x) = 1 and

W (x) = 0 on ∂V . The coarse graining means that averages of total derivatives scale as

⟨∂X⟩ ∼ 1/a. For large a, we can neglect such terms. Similarly, we can “integrate by

parts” inside averages, so that ⟨X∂Y ⟩ = −⟨(∂X)Y ⟩+O(1/a). A fairly straightforward

calculation shows that, in transverse-traceless gauge, the averaged energy-momentum

tensor is simply

⟨tµν⟩ =
1

32πG
⟨∂µhρσ∂νhρσ⟩

where we neglect total derivatives. We can check that this is indeed conserved,

∂µ⟨tµν⟩ =
1

32πG
⟨(□hρσ)∂νhρσ +

1

2
∂ν (∂µhρσ∂

µhρσ)⟩ = 0

The first term vanishes by the equation of motion, while the second is a total derivative

and so can be neglected. More importantly, under a gauge transformation

δ⟨tµν⟩ =
1

16πG
⟨∂µhρσ∂ν(∂ρξσ + ∂σξρ)⟩

But now we can integrate by parts and use the de Donder gauge condition ∂ρhρσ = 0.

We see that the averaged ⟨tµν⟩ is gauge invariant, with δ⟨tµν⟩ = 0 up to total derivative

term of order O(1/a). In other words, ⟨tµν⟩ is almost gauge invariant. A better way of

saying “almost gauge invariant” is “not gauge invariant”. If we really want something

gauge invariant, which we do, we must take a→ ∞, meaning that we average over all

of spacetime.

Finally, we can compute the power emitted by a gravitational wave at infinity by

P =

∫
S2

d2x n̂i⟨t0i⟩

with n̂i a normal vector to S2
∞. With some tedious integrals, we then find the answer

(5.38).
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5.3.5 Gravitational Wave Sources on the Q

We can do some quick, back-of-the-envelope calculations to get a sense for how much

energy is emitted by a gravitational wave source. Assuming Newtonian gravity is a good

approximation, two masses M , separated by a distance R, will orbit with frequency

ω2R ∼ GM

R2

The quadrupole is Q ∼ MR2 and so
...
Q ∼ ω3MR2. We learn that the power emitted

scales as (5.38)

P ∼ G
...
Q2 ∼ G4M5

R5
(5.41)

To get numbers out of this, we need to put the factors of c back in. Recall that the

Schwarzschild radius of an object is Rs = 2GM/c2 and the dimensions of Newton’s

constant are [G] =M−1L3T−2. So we can write this as

P =

(
Rs

R

)5

LPlanck (5.42)

where the Planck luminosity is

LPlanck =
c5

G
≈ 3.6× 1052 J s−1

This is a silly luminosity. The luminosity of the Sun is L⊙ ≈ 10−26LPlanck. With 1011

stars, the luminosity of the galaxy is Lgalaxy ≈ 10−15LPlanck. There are roughly 1010

galaxies in the visible universe, which means that all the stars in all the galaxies shine

with a luminosity ≈ 10−5LPlanck.

Yet, when two black holes orbit and spiral towards each other, at the point where

their separation is comparable to their Schwarzschild radius, the formula (5.42) tells

us that the power they emit in gravitational waves is approximately LPlanck. For that

brief moment before they collide, spiralling black holes emit more energy than all the

stars in the visible universe.

Since the power emitted by colliding black holes is so ridiculously large, we might

harbour some hope that we will still get a significant energy from more mundane

systems. We could, for example, look at our solar system. The formula (5.42) assumes

that the orbiting objects have the same mass. If two objects with masses M1 ≫ M2

are in orbit, then (5.41) is replaced by

P ∼ G4M3
1M

2
2

R5
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(A derivation of this can be found on Examples Sheet 4.) Jupiter has a mass 10−3M⊙

and orbits at a distance ≈ 109 km from the Sun. Using the fact that the Schwarzschild

radius of the Sun is Rs ≈ 3 km, we find that the power emitted in gravitational waves

by Jupiter is

P ≈ 10−50LPlanck ≈ 10−24L⊙

This is completely negligible. We can trace this to the power of 5 in (5.42) which means

the fall-off in power is quick: extreme events in the universe emit a ridiculous amount

of energy in gravitational waves. Events involving objects that are merely heavy emit

essentially zero.

Of course, the question that we all really want to ask is: how much gravitational

radiation can we emit by shaking our arms around? Suppose that we go really crazy,

doing jumping jacks and generally acting like a loon. For once, SI units are useful. The

mass of our arms is few kg, moving a distance of around a metre, with a frequency

around a second. So Q ≈ 1 kgm2 and
...
Q ≈ 1 kgm2 s−3. The power is then

P ∼ G
...
Q

2

c5
≈ 10−52 J s−1

To put this in perspective, let’s remind ourselves that ultimately the world is quantum

and although we have no hope of detecting individual gravitons it is surely the case

that gravitational waves come in quanta with energy E = ℏω. So we could ask: how

long do we have to wave our arms before we emit a single graviton? The energy of a

graviton with frequency ω ≈ 1 s−1 is E ≈ 10−34 J . So the calculation above tells us

that we can expect to emit a single graviton if we wave our hands around for

T = 1018 s

This is more or less the age of the universe. You may be many things, but you are not

a factory for making gravitons.
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6. Black Holes

Black holes are among the most enigmatic objects in the universe. They are described

by deceptively simple solutions to the Einstein equations, yet hold a host of insights

and surprises, from the meaning of causal structure, to connections to thermodynamics

and, ultimately, quantum gravity. The purpose of this section is to begin to uncover

some of the mysteries of these wonderful objects.

6.1 The Schwarzschild Solution

We have already met the simplest black hole solution back in Section 1.3: this is the

Schwarzschild solution, with metric

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2) (6.1)

It is not hard to show that this solves the vacuum Einstein equations Rµν = 0. Indeed,

the calculations can be found in Section 4.2 where we first met de Sitter space. The

Schwarzschild solution is a special case of the more general metric (4.9) with f(r)2 =

1 − 2GM/r and it’s simple to check that this obeys the Einstein equation which, as

we’ve seen, reduces to the simple differential equations (4.10) and (4.11).

M is for Mass

The Schwarzschild solution depends on a single parameter,M , which should be thought

of as the mass of the black hole. This interpretation already follows from the relation to

Newtonian gravity that we first discussed way back in Section 1.2 where we anticipated

that the g00 component of the metric should be (1.26)

g00 = − (1 + 2Φ)

with Φ the Newtonian potential. We made this intuition more precise in Section 5.1.2

where we discussed the Newtonian limit. For the Schwarzschild metric, we clearly have

Φ = −GM
r

which is indeed the Newtonian potential for a point mass M at the origin.

The black hole also provides an opportunity to roadtest the technology of Komar

integrals developed in Section 4.3.3. The Schwarzschild spacetime admits a timelike

Killing vector K = ∂t. The dual one-form is then

K = g00dt = −
(
1− 2GM

r

)
dt
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Following the steps described in Section 4.3.3, we can then construct the 2-form

F = dK = −2GM

r2
dr ∧ dt

which takes a form similar to that of an electric field, with the characteristic 1/r2

fall-off. The Komar integral instructs us to compute the mass by integrating

MKomar = − 1

8πG

∫
S2

⋆F

where S2 is any sphere with radius larger than the horizon r = 2GM . It doesn’t matter

which radius we choose; they all give the same answer, just like all Gaussian surfaces

outside a charge distribution give the same answer in electromagnetism. Since the area

of a sphere at radius r is 4πr2, the integral gives

MKomar =M

for the Schwarzschild black hole.

There’s something a little strange about the Komar mass integral. As we saw in

Section 4.3.3, the 2-form F = dK obeys something very similar to the Maxwell equa-

tions, d ⋆ F = 0. But these are the vacuum Maxwell equations in the absence of any

current, so we would expect any “electric charge” to vanish. Yet this “electric charge”

is precisely the mass MKomar which, as we have seen, is distinctly not zero. What’s

happening is that, for the black hole, the mass is all localised at the origin r = 0, where

the field strength F diverges.

We might expect that the Schwarzschild solution only describes something physically

sensible when M ≥ 0. (The M = 0 Schwarzschild solution is simply Minkowski space-

time.) However, the metric (6.1) is a solution of the Einstein equations for all values

of M . As we proceed, we’ll see that the M < 0 solution does indeed have some rather

screwy features that make it unphysical.

6.1.1 Birkhoff’s Theorem

The Schwarzschild solution (6.1) is, it turns out, the unique spherically symmetric,

asymptotically flat solution to the vacuum Einstein equations. This is known as the

Birkhoff theorem. In particular, this means that the Schwarzschild solution does not

just describe a black hole, but it describes the spacetime outside any non-rotating,

spherically symmetric object, like a star.
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Here we provide a sketch of the proof. The first half of the proof involves setting

up a useful set of coordinates. First, we make use of the statement that the metric is

spherically symmetric, which means that it has an SO(3) isometry. One of the more

fiddly parts of the proof is to show that any metric with such an isometry can be written

in coordinates that make this isometry manifest,

ds2 = gττ (τ, ρ)dτ
2 + 2gτρ(τ, ρ)dτ dρ+ gρρ(τ, ρ) dρ

2 + r2(τ, ρ) dΩ2
2

Here τ and ρ are some coordinates and dΩ2
2 is the familiar metric on S2

dΩ2
2 = dθ2 + sin2 θ dϕ2

The SO(3) isometry then acts on this S2 in the usual way, leaving τ and ρ untouched.

This is said to be a foliation of the space by the spheres S2.

The size of the sphere is determined by the function r(τ, ρ) in the above metric. The

next step in the proof is to change coordinates so that we work with τ and r, rather

than τ and ρ. We’re then left with the metric

ds2 = gττ (τ, r)dτ
2 + 2gτr(τ, r)dτ dr + grr(τ, r) dr

2 + r2 dΩ2
2

In fact there’s a subtlety in the argument above: for some functions r(τ, ρ), it’s not

possible to exchange ρ for r. Examples of such functions include r = constant and

r = τ . We can rule out such counter-examples by insisting that asymptotically the

spacetime looks like Minkowski space.

Our next step is to introduce a new coordinate that gets rid of the cross-term gτr.

To this end, consider the a coordinate t̃(τ, r). Then

dt̃2 =

(
∂t̃

∂τ

)2

dτ 2 + 2
∂t̃

∂τ

∂t̃

∂r
dτ dr +

(
∂t̃

∂r

)2

dr2

We can always pick a choice of t̃(τ, r) so that the cross-term gτr vanishes in the new

coordinates. We’re then left with the simpler looking metric,

ds2 = −f(t̃, r) dt̃2 + g(t̃, r) dr2 + r2 dΩ2
2

Where we’ve now included the expected minus sign in the temporal part of the metric,

reflecting our chosen signature. This is as far as we can go making useful coordinate

choices. To proceed, we need to use the Einstein equations. As always, this involves

sitting down and doing a fiddly calculation. Here we present only the (somewhat

surprising) conclusion: the vacuum Einstein equations require that

f(r, t̃) = f(r)h(t̃) and g(r, t̃) = g(r)
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In other words, the metric takes the form

ds2 = −f(r)h(t̃)dt̃2 + g(r)dr2 + r2 dΩ2
2

But we can always absorb that h(t̃) factor by redefining the time coordinate, so that

h(t̃)dt̃2 = dt2. Finally, we’re left with the a metric of the form

ds2 = −f(r)dt2 + g(r)dr2 + r2 dΩ2
2 (6.2)

This is important. We assumed that the metric was spherically symmetric, but made

no such assumption about the lack of time dependence. Yet the Einstein equations

have forced this upon us, and the final metric (6.2) has two sets of Killing vectors. The

first arises from the SO(3) isometry that we originally assumed, but the second is the

timelike Killing vector K = ∂t that has emerged from the calculation.

At this point we need to finish solving the Einstein equations. It turns out that they

require f(r) = g(r)−1, so the metric (6.2) reduces to the simple ansatz (4.9) that we

considered previously. The Schwarzschild solution (6.1) is the most general solution to

the Einstein equations with vanishing cosmological constant.

The fact that we assumed only spherical symmetry, and not time independence,

means that the Schwarzschild solution not only describes the spacetime outside a time-

independent star, but also outside a collapsing star, providing that the collapse is

spherically symmetric.

A Closer Look at Time Independence

There are actually two, different meanings to “time independence” in general relativity.

A spacetime is said to be stationary if it admits an everywhere timelike Kililng vector

field K. In asymptotically flat spacetimes, we usually normalise this so that K2 → −1

asymptotically.

A spacetime is said to be static if it is stationary and, in addition, is invariant under

t→ −t, where t is a coordinate along the integral curves of K. In particular, this rules

out dt dX cross-terms in the metric, with X some other coordinate.

Birkhoff’s theorem tells us that spherical symmetry implies that the spacetime is

necessarily static. In Section 6.3, we’ll come across spacetimes that are stationary but

not static.
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6.1.2 A First Look at the Horizon

There are two values of r where the Schwarzschild metric goes bad: r = 0 and r = 2GM .

At each of these values, one of the components of the metric diverges but, as we will

see, the interpretation of this divergence is rather different in the two cases. We will

learn that the divergence at the point r = 0 is because the spacetime is sick: this point

is called the singularity. The theory of general relativity breaks down as we get close

to the singularity and to make sense of what’s happening there we need to turn to a

quantum theory of spacetime.

In contrast, nothing so dramatic happens at the surface r = 2GM and the divergence

in the metric is merely because we’ve made a poor choice of coordinates: this surface

is referred to as the event horizon, usually called simply the horizon. Many of the

surprising properties of black holes lie in interpreting the event horizon.

There is a simple diagnostic to determine whether a divergence in the metric is due

to a true singularity of the spacetime, or to a poor choice of coordinates. We build a

scalar quantity that does not depend on the choice of coordinates. If this too diverges

then it’s telling us that the spacetime itself is indeed sick at that point. If it does not

diverge, we can’t necessarily conclude that the spacetime isn’t sick because there may

be some other scalar quantity that signifies there is a problem. Nonetheless, we might

start to wonder if perhaps nothing very bad happens.

The simplest scalar is, of course, the Ricci scalar. But this is necessarily R = 0 for

any vacuum solution to the Einstein equation so it is not helpful in detecting the nature

of singularities. The same is true for RµνR
µν . For this reason, the simplest curvature

diagnostic is the Kretschmann scalar, RµνρσRµνρσ. For the Schwarzschild solution it is

given by

RµνρσRµνρσ =
48G2M2

r6
(6.3)

We see that the Kretschmann scalar exhibits no pathology at the surface r = 2GM ,

where RµνρσRµνρσ ∼ 1/(GM)4. This suggests that perhaps this divergence in the

metric isn’t as worrisome as it may have first appeared. Note, moreover, that, perhaps

counter-intuitively, heavier black holes have smaller curvature at the horizon. We see

that this arises because such black holes are bigger and the 1/r6 factor beats the M2

factor.

In contrast, the curvature indeed diverges at the origin r = 0, telling us that the

spacetime is problematic at this point. Of course, given that we have still to understand
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the horizon at r = 2GM , it’s not entirely clear that we can trust the Schwarzschild

metric for values r < 2GM . As we will proceed, we will see that the singularity at

r = 0 is a genuine feature of the (classical) black hole.

The Near Horizon Limit: Rindler Space

To understand what’s happening near the horizon r = 2GM , we can zoom in and look

at the metric in the vicinity of the horizon. To do this, we write

r = 2GM + η

where we take η ≪ 2GM . We further take η > 0 which means that we’re looking at

the region of spacetime just outside the horizon. We then approximate the components

of the metric as

1− 2GM

r
≈ η

2GM
and r2 = (2GM + η)2 ≈ (2GM)2

To this order, the Schwarzschild metric becomes

ds2 = − η

2GM
dt2 +

2GM

η
dη2 + (2GM)2dΩ2

2

The first thing that we see is that the metric has decomposed into a direct product of

an S2 of radius 2GM , and a d = 1 + 1 dimensional Lorentzian geometry. We’ll focus

on this 2d Lorentzian geometry. We make the change of variables

ρ2 = 8GMη

after which the 2d metric becomes

ds2 = −
( ρ

4GM

)2
dt2 + dρ2

This rather simple metric is known as Rindler space. It is, in fact, just Minkowski space

in disguise. The disguise is the transformation

T = ρ sinh

(
t

4GM

)
and X = ρ cosh

(
t

4GM

)
(6.4)

after which the metric becomes

ds2 = −dT 2 + dX2 (6.5)

We’ve met something very similar to the coordinates (6.4) previously: they are the

coordinates experienced by an observer undergoing constant acceleration a = 1/4GM ,

where t is the proper time of this observer. (We saw such coordinates earlier in (1.25)

which differ only by a constant offset to the spatial variable ρ.) This makes sense:

an observer who sits at a constant ρ value, corresponding to a constant r value, must

accelerate in order to avoid falling into the black hole.
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X

T

r=2GM

r=2GM

Figure 43: The near horizon limit of a black hole is Rindler spacetime, with the null lines

X = ±T corresponding to the horizon at r = 2GM . Also shown in red is a line of constant

r > 2GM outside the black hole.

We can now start to map out what part of Minkowski space (6.5) corresponds to the

outside of the black hole horizon. This is ρ > 0 and t ∈ (−∞,+∞). From the change

of variables (6.4), we see that this corresponds the region X > |T |.

We can also see what becomes of the horizon itself. This sits at r = 2GM , or ρ = 0.

For any finite t, the horizon ρ = 0 gets mapped to the origin of Minkowski space,

X = T = 0. However, the time coordinate is degenerate at the horizon since g00 = 0.

If we scale t → ∞, and ρ → 0 keeping the combination ρe±t/4GM fixed, then we see

that the horizon actually corresponds to the lines:

r = 2GM ⇒ X = ±T

This is our first lesson. The event horizon of a black hole is not a timelike surface, like

the surface of a star. Instead it is a null surface. This is depicted in Figure 43.

Although our starting point was restricted to coordinates X and T given by (6.4),

once we get to the Minkowski space metric (6.5) there’s no reason to retain this re-

striction. Indeed, clearly the metric makes perfect sense if we extend the range of the

coordinates to X,T ∈ R. Moreover, this metric makes it clear that nothing fishy is

happening at the horizon X = ±|T |. We see that if we zoom in on the horizon, then

it’s no different from any other part of spacetime. Nonetheless, as we go on we will

learn that the horizon does have some rather special properties, but you only get to

see them if you look at things from a more global perspective.

6.1.3 Eddington-Finkelstein Coordinates

Above we saw that, in the near-horizon limit, a clever change of variables allows us
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to remove the coordinate singularity at the horizon and extend the spacetime beyond.

Our goal in this section is to play the same game, but now for the full black hole metric.

Before we proceed, it’s worth commenting on the logic here. When we first met

differential geometry in Section 2, we made a big deal of the fact that a single set of

coordinates need not cover the entire manifold. Instead, one typically needs different

coordinates in different patches, together with transition functions that relate the co-

ordinates where the patches overlap. The situation with the black hole is similar, but

not quite the same. It’s true that the coordinates of the Schwarzschild metric (6.1)

do not cover the entire spacetime: they break down at r = 2GM and it’s not clear

that we should trust the metric for r < 2GM . But rather than finding a new set of

coordinates in the region beyond the horizon, and trying to patch this together with

our old coordinates, we’re instead going to find a new set of coordinates that works

everywhere.

Our first step is to introduce a new radial coordinate, r⋆, defined by

dr2⋆ =

(
1− 2GM

r

)−2

dr2 (6.6)

The solution to this differential equation is straightforward to find: it is

r⋆ = r + 2GM log

(
r − 2GM

2GM

)
(6.7)

We see that the region outside the horizon 2GM < r <∞ maps to −∞ < r⋆ < +∞ in

the new coordinate. As we approach the horizon, the change in r is increasingly slow

as we vary r⋆ (since dr/dr⋆ → 0 as r → 2GM .) For this reason it is called the tortoise

coordinate. (It is also sometimes called the Regge-Wheeler radial coordinate.)

The tortoise coordinate is well adapted to describe the path of light rays travelling

in the radial direction. Such light rays follow curves satisfying

ds2 = 0 ⇒ dr

dt
= ±

(
1− 2GM

r

)
⇒ dr⋆

dt
= ±1

We see that null, radial geodesics are given by

t± r⋆ = constant

where the plus sign corresponds to ingoing geodesics (as t increases, r⋆ must decrease)

and the negative sign to outgoing geodesics.
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Next, we introduce a pair of null coordinates

v = t+ r⋆ and u = t− r⋆

In what follows we will consider the Schwarzschild metric written first in coordinates

(v, r), then in coordinates (u, r) and finally, in Section 6.1.4, in coordinates (u, v).

Ingoing Eddington-Finkelstein Coordinates

As a first attempt to extend the Schwarzschild solution beyond the horizon, we replace

t with t = v − r⋆(r). We have

dt = dv − dr⋆ = dv −
(
1− 2GM

r

)−1

dr

Making this substitution in the Schwarzschild metric (6.1), we find the new metric

ds2 = −
(
1− 2GM

r

)
dv2 + 2dv dr + r2 dΩ2

2 (6.8)

This is the Schwarzschild black hole in ingoing Eddington-Finkelstein coordinates. We

see that the dr2 terms have now disappeared, and so there is no singularity in the

metric at r = 2GM . However, the dv2 term vanishes at r = 2GM and, moreover, flips

sign for r < 2GM . You might worry that this means that the coordinates still go bad

there, or even that the signature of the metric changes as we cross the horizon. To

allay such worries, we need only compute the determinant of the metric

det(g) = det


−(1− 2GM

r
) 1 0 0

1 0 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

 = −r4 sin2 θ

We see that the dv dr cross-term stops the metric becoming degenerate at the horizon

and the signature remains Lorentzian for all values of r. (The metric is still degenerate

at the θ = 0, π but these are simply the poles of the S2 and we know how to deal with

that.)

This, then, is the advantage of the ingoing Eddington-Finkelstein coordinates: the r

coordinate can be continued past the horizon, all the way down to the singularity at

r = 0.
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The original Schwarchild metric (6.1) was time independent. Mathematically, this

follows from the statement that the metric exhibits a timelike Killing vector K = ∂t.

This Killing vector also exists in the Eddington-Finkelstein extension, where it is now

K = ∂v. The novelty is that this Killing vector is no longer everywhere timelike.

Instead, it remains timelike outside the horizon where gvv < 0, but becomes spacelike

inside the horizon where gvv > 0. In other words, the full black hole geometry is not

time independent! We’ll learn more about this feature as we progress.

The Finkelstein Diagram

To build further intuition for the geometry, we can look at the behaviour of light rays

coming out of the black hole. These follow paths given by

u = t− r⋆ = constant

Eliminating t, in preference of the null coordinate v = t + r⋆, outgoing null geodesics

satisfy v = 2r⋆ + constant. The solutions to this equation have a different nature

depending on whether we are outside or inside the horizon. For r > 2GM , we can use

the original definition (6.7) of the tortoise coordinate r⋆ to get

v = 2r + 4GM log

(
r − 2GM

2GM

)
+ constant

Clearly the log term goes bad for r < 2GM . However, it is straightforward to write

down a tortoise coordinate that obeys (6.6) on either side of the horizon: we simply

need to take the modulus of the argument

r⋆ = r + 2GM log

∣∣∣∣r − 2GM

2GM

∣∣∣∣
This means that r⋆ is multi-valued: it sits in the range r⋆ ∈ (−∞,+∞) outside the

horizon, and in the range r⋆ ∈ (−∞, 0) inside the horizon, with the singularity at

r⋆ = 0. Outgoing geodesics inside the horizon then obey

v = 2r + 4GM log

(
2GM − r

2GM

)
+ constant (6.9)

It remains to find the outgoing null geodesic at the horizon r = 2GM . Here the dv2

term in the metric (6.8) vanishes, and one can check that the surface r = 2GM is itself

a null geodesic. This agrees with our expectation from Section 6.1.2 where we saw that

the horizon is a null surface.
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t =v−r
*

r

r=2GM

Figure 44: The Finkelstein diagram in ingoing coordinates. Ingoing null geodesics and

shown in red, outgoing in blue. Inside the horizon at r = 2GM , outgoing geodesics do not go

out.

We can capture this information in a Finkelstein diagram. This is designed so that

ingoing null rays travel at 45 degrees. This is simple to do if we label the coordinates

of the diagram by t and r⋆. However, as we’ve seen, r⋆ isn’t single valued everywhere

in the black hole. For this reason, we will label the spatial coordinate by the original

r. We then define a new temporal coordinate t⋆ by the requirement

v = t+ r⋆ = t⋆ + r

So ingoing null rays travel at 45 degrees in the (t⋆, r) plane, where t⋆ = v−r. These are
shown as the red lines in Figure 44. Meanwhile, the outgoing null geodesics are shown

in blue. Now we can clearly see how the behaviour changes depending on whether the

geodesics are inside or outside the horizon. The outgoing geodesics that sit outside

the horizon do what their name suggests: they move out. In particular, as t → ∞ (so

t⋆ → ∞), the geodesics escape to r → ∞.

The outgoing geodesics that sit inside the horizon are not so lucky. Now as t increases,

the geodesics described by (6.9) don’t go “out” at all: instead the “outgoing” light rays

move inexorably towards the curvature singularity at r = 0. Each of them hits the

singularity at some finite t⋆.

Bounding these two regions are the null geodesics which simply run along the horizon

r = 2GM : this is the vertical blue line in the figure.
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We can also draw light-cones on the Finkelstein diagram. These are the regions

bounded by the ingoing and outgoing, future-pointing null geodesics, as shown in the

figure. Any massive particle must follow a timelike path, and hence its trajectory must

sit within these lightcones. We see immediately one of the key features of black holes: if

you venture into past the horizon, you’re not getting back out again. This is forbidden

by the causal structure of the spacetime. The term black hole really refers to the region

r < 2GM inside the horizon. Any observer who remains outside the horizon can know

nothing about what’s happening inside.

We can also use the Finkelstein diagram to tell us what an observer will see if they

push their friend into a black hole. The hapless companion sails through the horizon,

quite possibly without realising anything is wrong. However, any light signals that are

sent back take longer and longer to reach an observer sitting at some fixed radial value

r > 2GM . This means that the actions of the in-falling friend become increasingly

slowed down as they approach the horizon. In this way, the observer/villain sitting

outside continues to see their friend forever, but knows nothing of their action after

they cross the horizon. Furthermore, since the light is now emerging from a deeper and

deeper gravitational well, it will appear increasingly redshifted to the outside observer.

Outgoing Eddington-Finkelstein Coordinates

There is a different extension of the exterior of the Schwarzschild black hole, in which

we replace the time coordinate t with the null coordinate

u = t− r⋆

Recall the surfaces of constant u correspond to outgoing, radial, null geodesics.

As before, it is straightforward to make this change of variable. We have t = u+ r⋆,

so

dt = du+ dr⋆ = du+

(
1− 2GM

r

)−1

dr

Making this substitution in the Schwarzschild metric (6.1), we now find the metric

ds2 = −
(
1− 2GM

r

)
du2 − 2du dr + r2 dΩ2

2 (6.10)

This is the Schwarzschild solution in outgoing Eddington-Finkelstein coordinates. The

only difference with the ingoing coordinates (6.8) is the sign of the cross-term. However,

as we now explain, this seemingly trivial difference greatly changes the interpretation

of the metric.
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*

r

r=2GM

Figure 45: The Finkelstein diagram in outgoing coordinates. Ingoing null geodesics are

shown in red, outgoing in blue. Inside the horizon at r = 2GM , ingoing geodesics do not go

in.

Once again, the metric is smooth (and non-degenerate) at the horizon so we can

happily continue the metric down to the singularity at r = 0. However, the region

r < 2GM now describes a different part of spacetime from the analogous region in

ingoing Eddington-Finkelstein coordinates!

To see this, we can again look at the ingoing and outgoing geodesics, as seen in the

Finkelstein diagram in Figure 45. This time, we pick coordinates so that the outgoing

geodesics travel at 45 degrees. This means that we take r and t⋆ = u+r. The outgoing

geodesics are drawn in red as before. But this time we see that they do what their

name suggests: they go always go out, regardless of whether they start life behind the

horizon.

This time, it is the ingoing null geodesics that have the interesting property. Those

that start life outside are unable to reach the singularity. Instead, they pile up at

the horizon. Those that start life behind the horizon have an even stranger property:

the ingoing geodesics do not go in. Instead they too move towards the horizon, again

unable to cross it.

We can also ask what becomes of massive particles that sit inside the horizon. As

before, their trajectories must lie within future-pointing light cones. We see that they

cannot linger inside the horizon for long. The causal structure of the spacetime ulti-

mately ejects them into the region outside the horizon.
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Figure 46: Ingoing coordinates cover this

part of Rindler space.

Figure 47: Outgoing coordinates cover

this part.

This is clearly very different physics from a black hole. Instead, the solution (6.10) is

that of a white hole, an object which expels any matter inside. This is the time reversal

of a black hole, a fact which can be traced to the relative minus sign between the two

metrics (6.8) and (6.10). This time reversal is also manifest in the diagrams: turn the

white hole of Figure 45 upside down and you get the black hole of Figure 44.

White holes are perfectly acceptable solutions to the Einstein equations. Indeed,

given the existence of black holes from which nothing can escape, the time reversal

invariance of the Einstein equations tells us that there had to be a corresponding

solution which nothing can enter. Nonetheless, white holes are not physically relevant

since, in contrast to black holes, one cannot form them from collapsing matter.

6.1.4 Kruskal Spacetime

It may be somewhat surprising to learn that we can extend the r ∈ (2GM,∞) coordi-

nate of the Schwarzschild solution in two different ways, so what we gain — the region

parameterised by r ∈ (0, 2GM ] — corresponds to two different parts of spacetime! We

can gain some intuition for this by returning to the near horizon limit of Rindler space.

The region outside the black hole, covered by the Schwarzschild metric, corresponds

to the right-hand quadrant of Rindler space. The ingoing Eddington-Finkelstein coor-

dinates extend this to the upper quadrant, while the outgoing Eddington-Finkelstein

coordinates extend it to the lower quadrant, as shown in the figures above. The pur-

pose of this section is to understand this better. We will achieve this by introducing

coordinates which cover the entire spacetime, including both black and white holes.

It is simple to write the Schwarzschild metric using both null coordinates v = t+ r⋆
and u = t− r⋆. It becomes

ds2 = −
(
1− 2GM

r

)
du dv + r2dΩ2

2 (6.11)
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where we should now view r2 as a function r2(u− v). In these coordinates, the metric

is degenerate at r = 2GM so we need to do somewhat better. This can be achieved by

introducing the Kruskal-Szekeres coordinates,

U = − exp
(
− u

4GM

)
and V = exp

( v

4GM

)
(6.12)

Both U and V are null coordinates. As defined above, the exterior of the Schwarzschild

black hole is parameterised by U < 0 and V > 0. They have the further property that,

outside the horizon,

UV = − exp
( r⋆
2GM

)
=

2GM − r

2GM
exp

( r

2GM

)
(6.13)

where, in the second equality, we’ve used the definition (6.7) of the tortoise coordinate.

Similarly,

U

V
= − exp

(
− t

2GM

)
(6.14)

A quick calculation shows that the metric (6.11) becomes

ds2 = −32(GM)3

r
e−r/2GMdU dV + r2dΩ2

2 (6.15)

where r(U, V ) is the function defined by inverting (6.13).

The original Schwarzschild metric covers only the region of spacetime with U < 0

and V > 0. But now we can happily extend the range to U, V ∈ R, with the function

r(U, V ) again defined by (6.13). We see that now nothing bad happens at r = 2GM :

the metric is smooth and non-degenerate.

Analytic Extensions

Given the amount of games we’ve played above, jumping between different coordinate

systems, one may wonder if there are further games in which the Kruskal spacetime

can be extended yet further. This turns out not to be the case: the Kruskal spacetime

is the maximal extension of the Schwarzschild solution.

Here is the way to check whether a given spacetime can be extended: look at all

geodesics and see where they end up. If you can follow geodesics for infinite affine

parameter, then they escape to infinity. If, on the other hand, geodesics come to an

end at some finite affine parameter then something is going on: either they run into

a genuine singularity, or they run into a coordinate singularity. In the former case

there’s nothing you can do about it. In the latter case, you can extend the spacetime

as we have above. You have the maximally extended spacetime when any geodesics

that come to an abrupt halt do so at genuine singularities.
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Figure 48: The Kruskal diagram for the Schwarzschild black hole. The U and V axes are

the horizons at r = 2GM and the red lines are the singularities at r = 0. Also shown are

lines of constant r in green, and lines of constant t in blue.

There is something a little magical about the extension process. We start off with

a solution to the Einstein equations in some region of spacetime. Yet this is sufficient

to determine the metric throughout the entire, extended spacetime. In particular,

once we’ve extended, we don’t have to solve the Einstein equations from scratch. This

magic follows from the fact that the metric components are real, analytic functions.

This means that knowledge of the metric in any open set is sufficient to determine it

everywhere.

The Kruskal Diagram

We can see what becomes of the horizon in the new coordinates by using (6.13). We

have

r = 2GM ⇒ U = 0 or V = 0

This tells us that the horizon is not one null surface, but two null surfaces, intersecting

at the point U = V = 0. This agrees with what we learned from taking the near horizon

limit where we encountered Rindler space. The null surface U = 0 is the horizon of the

black hole; it is called the future horizon. The null surface V = 0 is the horizon of the

white hole; it is the past horizon.

We can also see what becomes of the singularity. This now sits at

r = 0 ⇒ UV = 1
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The hyperbola UV = 1 has two disconnected components. One of these, with U, V > 0,

corresponds to the singularity of the black hole. The other, with U, V < 0 corresponds

to the singularity of the white hole.

These facts can be depicted on a Kruskal diagram, shown in Figure 48. The U and

V axes are drawn at 45 degrees, reflecting the fact that they are null lines. These are

the two horizons. In this diagram, the vertical direction can be viewed as the time

T = 1
2
(V +U) while the horizontal spatial direction is X = 1

2
(V −U). The singularities

UV = 1 are drawn in red. This diagram makes it clear how the black hole and white

hole cohabit in the same spacetime.

The diagram also shows lines of constant r, drawn in green, and lines of constant t

drawn in blue. From (6.13), we see that lines of constant r are given by UV = constant.

Meanwhile, from (6.14), lines of constant t are linear, given by U/V = constant.

The diagram contains some important lessons. You might have naively thought that

the singularity of the black hole was a point that traced a timelike worldline, similar

to any other particle. The diagram makes it clear that this is not the case: instead,

the singularity is spacelike. Once you pass through the horizon, the singularity isn’t

something that sits to your left or to your right: it is something that lies in your future.

This makes it clear why you cannot avoid the singularity when inside a black hole. It

is your fate. Similarly, the singularity of the white hole lies in the past. It is similar to

the singularity of the Big Bang.

We can frame this in terms of the Killing vector of the Schwarzschild solutionK = ∂t.

This is timelike outside the horizon and, indeed, gives rise to the conserved energy of

geodesics outside the black hole that we met in Section 1.3. In the Kruskal coordinates,

we can use (6.12) to find

K =
∂

∂t
=
∂V

∂t

∂

∂V
+
∂U

∂t

∂

∂U
=

1

4GM

(
V

∂

∂V
− U

∂

∂U

)
Evaluating the norm of this Killing vector in the Kruskal metric (6.15), we have

gµνK
µKν = −

(
1− 2GM

r

)
We see that outside the horizon, the Killing vector is timelike as expected. But inside

the horizon, with r < 2GM , the Killing vector is spacelike. (We saw similar behaviour

when discussing the isometries of de Sitter space in Section 4.3.1.) When we say that a

spacetime is time independent, we mean that there exists a timelike Killing vector. We

learn that the full black hole spacetime is not time independent. But this only becomes

apparent once you cross the horizon.
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Figure 49: The Einstein-Rosen Bridge

A hint of this, albeit one that cannot be trusted, can be seen in the original Schwarzschild

solution (6.1). If we were to take this at face value for 0 < r < 2GM , we see that the

change of sign in (1 − 2GM/r) means that the vector ∂t becomes spacelike and the

vector ∂r timelike. This again suggests that the singularity lies in the future or the

past. All the hard work in changing coordinates above shows that this naive result is,

in fact, true.

The Einstein-Rosen Bridge

We now understand three of the four quadrants of the Kruskal diagram. The right-

hand quadrant is the exterior of the black hole, which is the spacetime covered by the

original Schwarzschild coordinates. The upper quadrant is the interior of the black

hole and the lower quadrant is the interior of the white hole. This leaves the left-hand

quadrant. This is a surprise: it is another copy of the exterior of the black hole, now

covered by U > 0 and V < 0. To see this, we can write

U = +exp
(
− u

4GM

)
and V = − exp

( v

4GM

)
Going back through the various coordinate transformations then shows that the left-

hand quadrant is again described by the Schwarchild metric.

What are we to make of this? Our final spacetime contains two asymptotically flat

regions joined together by a black hole! That sounds rather wild. Note that it’s not

possible for an observer in one region to send a signal to an observer in another because

the causal structure of the spacetime does not allow this. Nonetheless, we could ask:

what is the spatial geometry that connects the two regions?

– 249 –



To elucidate this spatial geometry, we look at the t = 0 slice of Kruskal spacetime.

This is a straight, horizontal line passing through U = V = 0. If we return to our

original Schwarzschild metric then, at t = 0, the spatial geometry is given by

ds2 =

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2) (6.16)

which is valid for r > 2GM . This describes the geometry in the right-hand quadrant.

There is another copy of the same geometry in the left-hand quadrant. We then glue

these together at r = 2GM , to give a wormhole-like geometry as shown in Figure 49.

This wormhole is called the Einstein-Rosen bridge. It’s not a wormhole that you can

travel through because the paths are spacelike, not timelike.

It’s possible to write down a metric that in-

1

2

ρ

r

2GM

GM

Figure 50:

cludes both sides of the wormhole. To do this we

introduce a new radial coordinate ρ, defined by

r = ρ

(
1 +

GM

2ρ

)2

= ρ+GM +
G2M2

4ρ
(6.17)

This is plotted in the figure. It has the property

that there are two values of ρ for each value of

r > 2GM . At the horizon, r = 2GM , there is

just a single value: ρ = GM/2. The idea is that

ρ > GM/2 parameterises one side of the wormhole

while ρ < GM/2 parameterises the other. Substituting r for ρ in (6.16) gives the metric

ds2 =

(
1 +

GM

2ρ

)4 [
dρ2 + ρ2(dθ2 + sin2 θ dϕ2)

]
(6.18)

(To show this, it’s useful to first show that (1−2GM/r) = (1−GM/2ρ)2(1+2GM/ρ)−2.)

Clearly this metric looks like flat R3 as ρ → ∞ since we can drop the overall factor.

Less obviously, it also looks like flat R3 as ρ → 0. To see this, note that there is a

symmetry of (6.17) under ρ→ G2M2/4ρ, which swaps the two asymptotic spacetimes,

leaving the meeting point at ρ = GM/2 invariant. In this way, the metric (6.18)

describes the two-sided Einstein-Rosen bridge shown in Figure 49.

The radius of the S2 is 2GM in the middle of the wormhole at ρ = GM/2, and then

grows as we move away in either direction. This middle point is where the two horizons

U = 0 and V = 0 meet. In fancy language, it is called the bifurcation sphere.
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ER = EPR?

Although there is no way that an observer in the left-most quadrant can signal to an

observer in the right-most quadrant, there is one way in which they can communicate:

both need to be brave and jump into the black hole. Then they can both meet behind

the horizons and share their stories.

This sounds like a rather wild idea! Is it physically meaningful? After all, the white

hole that sits in the bottom quadrant is thought to have no physical manifestation.

Similarly, it seems likely that for generic black holes the other universe that appeared

in the left quadrant of the Kruskal diagram is also a mathematical artefact. Nonethe-

less, there is one rather speculative proposal in which such communication behind the

horizon may be possible.

First, we can dispel the idea that the two asymptotic regimes necessarily corre-

spond to different universes. One could patch together the asymptotic parts of the two

Minkowski spaces so that the Kruskal diagram gives an approximate description of two,

far separated black holes in the same universe. This would be an approximate solution

to the field equations since, no matter how far, the two black holes would attract.

Viewed in this way, the Kruskal diagram suggests that two observers, potentially

living billions of light years apart, could jump into these far flung black holes and meet

behind the horizon. They could then have a nice chat before their inevitable demise in

the singularity. Is this outlandish idea possible? And, if so, which pairs of black holes

in the universe are connected in this way?

A proposal, emerging from ideas in quantum gravity, suggests that two black holes

are connected in this way if they have some measure of quantum entanglement. This

proposal goes by the cute name of ER = EPR, with ER denoting the Einstein-Rosen

bridge characterising a geometric connection, and EPR denoting the entanglement of

the Einstein-Podolosky-Rosen paradox. (More details of entanglement can be found in

the lectures on Topics in Quantum Mechanics.) It is far from clear that the ER=EPR

proposal is correct, but it is certainly a tantalising idea.

The Penrose Diagram

As we explained in Section 4.4.2, the best way to exhibit the causal structure of a

spacetime is to draw the Penrose diagram. For the black hole, this is very similar to

the Kruskal diagram: we simply straighten out a few lines.
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Figure 51: The Penrose diagram for the Schwarzschild black hole. The right quadrant

describes the asympotically flat region external to the black hole. The upper quadrant is the

black hole and the lower quadrant a white hole, each with spacelike singularities shown as

jagged lines. The left quadrant is another asymptotically flat region spacetime.

The first step is to introduce new coordinates which cover the entire space in a finite

range. We use the same kind of transformation that we saw in many examples in

Section 4.4.2, namely

U = tan Ũ and V = tan Ṽ

The new coordinates have finite range Ũ , Ṽ ∈ (−π/2,+π/2). The Kruskal metric (6.15)

is then

ds2 =
1

cos2 Ũ cos2 Ṽ

[
−32(GM)3

r
e−r/2GMdŨ dṼ + r2 cos2 Ũ cos2 Ṽ dΩ2

2

]
This metric is then conformal to the (slightly!) simpler metric

ds̃2 = −32(GM)3

r
e−r/2GMdŨ dṼ + r2 cos2 Ũ cos2 Ṽ dΩ2

2

However, we must remember the singularity. This sits at r = 0 or UV = 1. In the

finite range coordinates this means

tan Ũ tan Ṽ = 1 ⇒ sin Ũ sin Ṽ − cos Ũ cos Ṽ = 0 ⇒ cos(Ũ + Ṽ ) = 0

In other words, the singularities sits at Ũ + Ṽ = ±π/2. These are straight, horizontal

lines in the Penrose diagram.
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In the absence of the singularities, Ũ and Ṽ would have a diamond-shaped Pen-

rose diagram, like that of 2d Minkowski space. The presence of the singularities mean

that the top and bottom are chopped off, resulting in the Penrose diagram for the

Schwarzschild black hole shown in Figure 51. This diagram contains the same infor-

mation as the Kruskal diagram that we saw previously.

The Penrose diagram allows us to give a more rigorous definition of a black hole.

Here we’ll eschew any pretense at rigour, but give a flavour of the definition. We

restrict attention to asymptotically flat spacetimes, meaning that far away they look

like Minkowski space. This means, in particular, the asymptotic region includes both

two null infinities, I+ and I−. (We will further require that the metric looks like

Minkowski space near I± although we’ll be sloppy about specifying what we mean by

this.) The black hole region is then defined to be the set of points that cannot send a

signal to I+. The boundary of the black hole region is the future event horizon, H+.

Equivalently, the future event horizon H+ is the boundary of the causal past of I+.

In the Penrose diagram of Figure 51, the black hole region associated to I+ is the

upper quadrant and the left quadrant. The black hole associated to I ′+ is the upper

quadrant and the right quadrant.

Importantly, to define a black hole you need to know the whole of the spacetime: you

run lightrays backwards from I+ and the boundary of these light rays defines the event

horizon. There is no definition of the black hole region that refers only to a spacelike

slice Σ at some moment in (a suitably defined) time. This means that an observer can’t

really know if they’re inside a black hole unless they know the entire future evolution

of the spacetime.

Relatedly, we can also define the white hole region to be that part of spacetime that

cannot receive signals from I−. The boundary of the white hole region is the past event

horizon, H−.

6.1.5 Forming a Black Hole: Weak Cosmic Censorship

The Kruskal spacetime that we have discussed so far is unphysical in a number of ways.

In reality, black holes do not emerge from white holes! Instead, they are formed by

collapsing stars. The causal structure of such realistic black holes looks rather different

from the Penrose diagram of figure 51.

We could try to write down solutions corresponding to collapsing stars. In fact, this is

not too difficult. However, our main interest here is to understand the causal structure

of the spacetime and we can do this by patching together things that we already know.
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Figure 52: Joining two Penrose diagrams

Things are conceptually most straightforward if we consider the unrealistic situation

of the spherically symmetric collapse of a shell of matter. Inside the shell, space-

time is flat. Outside the shell, spacetime is described by the Schwarzschild geometry

(6.1). Birkhoff’s theorem tells us that this latter statement remains true even for time-

dependent collapsing shells. If we further make the (again, unrealistic) assumption

that the shell is travelling at the speed of light, then we can glue together the Penrose

diagrams for Minkowski spacetime and the black hole spacetime, as shown in Figure

52. This gives the Penrose diagram for a collapsing black hole.

Although we made a number of assumptions in the above

Figure 53:

paragraph, the Penrose diagram that we derived also describes

the spherical collapse of realistic stars. In this case, the surface

of the star follows a timelike trajectory, as shown in the figure to

the right. The unphysical parts of the Kruskal diagram have now

disappeared: there is no white hole and no mirror universe.

Cosmic Censorship

One important feature of the black hole remains: the singularity

is shrouded behind the horizon. This means that the effects of the

singularity cannot be felt by an asymptotic observer. We can ask:

is this always the case? Or could we end up with a singularity

which is not hidden by a horizon. Such singularities are called naked singularities

Naked singularities are commonplace in solutions to Einstein’s equations. The white

hole of the full Kruskal spacetime provides one example; the Big Bang singularity

provides another. Yet another is provided by the Schwarzschild metric. This solves the

Einstein equations for all M , but is only physical for M ≥ 0. With M < 0, we can
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Figure 54: On the left: the Penrose diagram for a negative mass black hole. On the right:

this kind of collapsing star scenario is forbidden by weak cosmic censorship.

write the Schwarzschild metric as

ds2 = −
(
1 +

2G|M |
r

)
dt2 +

(
1 +

2G|M |
r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2)

Now there is no coordinate singularity at r = 2G|M | and, correspondingly, no horizon.

We can construct the Penrose diagram for this spacetime in the same way that we did

for Minkowski space, now using null coordinates u = t − r and v = t + r. The final

result is exactly the same as Minkowski space, with one difference: there is a curvature

singularity at r = 0. The Penrose diagram is shown in the left-hand figure above. The

singularity of the M < 0 black hole is not shielded behind a horizon. It is a naked

singularity whose effects can be observed from I+.

Despite the ubiquity of naked singularities in solutions to the Einstein equations,

there is a general belief that they are unphysical. (The Big Bang singularity is an

important exception to this and we will comment further on this case below.) A deep

conjecture in general relativity, known as weak cosmic censorship, says that naked sin-

gularities cannot form. To phrase the cosmic censorship conjectures precisely, we would

need to discuss the initial value problem in general relativity. The initial conditions are

specified on a spatial hypersurface and are subsequently evolved through the equations

of motion. The weak cosmic censorship conjecture states the following

The Weak Cosmic Censorship Conjecture: Given matter which obeys the dom-

inant energy condition (described in Section 4.5.7), generic, smooth initial conditions

for both the metric and matter fields in an asymptotically flat spacetime will not evolve

to form naked singularities.
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There are a whole bunch of caveats in this statement. Each of them is important.

It turns out that it is possible to construct finely tuned initial conditions (of measure

zero in the space of all initial conditions) that result in naked singularities; hence the

need for the word “generic”. It turns out that it is also possible to violate weak cosmic

censorship in asymptotically AdS spacetimes. Finally, the naked singularity of the

M < 0 black hole gives some intuition for why we need the energy of the matter fields

to obey some positivity condition.

If weak cosmic censorship is true, then it rules out dynamical evolution such as that

shown in right hand figure. In fact, this diagram is somewhat misleading. Once the

singularity forms, we can no longer evolve the fields beyond the light-ray shown as a

dotted red line in the figure. This means that, strictly speaking, the dynamical evolution

stops at the red line and can’t be extended beyond. A more precise statement of the

weak cosmic censorship conjecture hinges on this idea and, in particular, the statement

that I+ doesn’t just come to an abrupt end.

There is no proof of weak cosmic censorship: indeed, it is arguably the biggest open

question in mathematical relativity. Nonetheless, a wealth of numerical and circum-

stantial evidence supports the claim.

What should we make of cosmic censorship? At a practical level, it is a boon for

those who work on numerical relativity, since it means that the simulations can proceed

without worrying about how to cope with singularities. But for the rest of us, cosmic

censorship is rather disappointing. This is because singularities – or, more generally,

regions of high curvature – are where we expect quantum gravity effects to become

important. Cosmic censorship means that it is unlikely we will have observational

access to such behaviour. It is both striking and surprising that classical gravity finds

a way to protect us from the ravages of quantum gravity.

There is one naked singularity that does appear to be physical: this is the Big Bang

singularity. Since this lives in the far past, it certainly doesn’t violate the cosmic

censorship conjecture. It’s tempting to think that we may ultimately be able to see

the effects of quantum gravity here. Sadly, this hope too seems to be quashed, with

inflation washing away the details of the very early universe. Quantum gravity is, it

seems, a difficult observational science.

6.1.6 Black Holes in (Anti) de Sitter

Throughout this section we have focussed on black holes in asymptotically Minkowski

spacetime. It is not hard to find solutions corresponding to Schwarzschild black holes
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in de Sitter and anti-de Sitter spacetimes, solving the Einstein equations

Rµν = Λgµν

We have already done the hard work. We take the ansatz

ds2 = −f(r)2dt2 + f(r)−2dr2 + r2(dθ2 + sin2 θ dϕ2)

We saw in Section 4.2 that this obeys the Einstein equations provided that

f ′′ +
2f ′

r
+
f ′ 2

f
= −Λ

f
and 1− 2ff ′r − f 2 = Λr2

These equations have the solution

f 2 = 1− 2GM

r
∓ r2

R2

with R2 = 3/|Λ|. Here the minus sign solves the equation with Λ > 0 and the plus

sign with Λ < 0. They correspond to black holes in de Sitter and anti-de Sitter

spacetimes respectively. To see that this is the right interpretation, consider the metric

with 2MG ≪ R2, so that the Schwarzschild radius is much less than the curvature of

spacetime. Then, for r ≪ R, the metric looks like that of a Schwarzschild black hole

in flat space. We will not have anything more to say about these solutions in these

lectures.

6.2 Charged Black Holes

In this section, we describe a solution to the Einstein-Maxwell equation corresponding

to a black hole carrying electric or magnetic charge.

Black holes with large amounts of electric charge do not arise in Nature. (Such

black holes would attract the opposite charge and neutralise.) Nonetheless, there are

a number of theoretical reasons for studying these black holes. In particular, charged

black holes exhibit a rather different causal structure from the Schwarzschild solution

and, for our purposes, this will provide a warm-up for the rotating black holes that

we will study in Section 6.3. Moving beyond these lectures, it turns out that charged

black holes provide a laboratory in which we can address certain questions about the

quantum make-up of black holes.
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6.2.1 The Reissner-Nordström Solution

Charged black holes arise as a solution to Einstein-Maxwell theory, with action

S =

∫
d4x

√
−g
[

1

16πG
R− 1

4
F µνFµν

]
(6.19)

The equations of motion are the Maxwell equation

∇µFµν = 0

together with the Einstein-Maxwell equation

Rµν −
1

2
Rgµν = 8πG

(
Fµ

ρFνρ −
1

4
gµνF

ρσFρσ

)
where the right-hand side is the Maxwell stress-energy tensor that we calculated in

(4.52).

These equations of motion admit a spherically symmetric solution with gauge field

A = − Qe

4πr
dt− Qm

4π
cos θ dϕ

The metric takes the familiar spherically symmetric form

ds2 = −f(r)2 dt2 + f(r)−2dr2 + r2dΩ2
2

where, this time,

f(r)2 = 1− 2GM

r
+
e2

r2
with e2 =

G

4π
(Q2

e +Q2
m)

This is the Reissner-Nordström solution, discovered over a period of years from 1916

to 1921.

An analog of Birkhoff’s theorem says that the Reissner-Nordström solution is almost

the unique spherically symmetric solution of the Einstein-Maxwell equations. There

is one exception: there is a solution with geometry AdS2 × S2, threaded with electric

flux; we’ll see how this emerges a special limit of the Reissner-Nordström solution in

Section 6.2.5.
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The dt term in the gauge field describes a radial electric field. Meanwhile, the dϕ

term is the gauge field for a magnetic monopole; it is only rotationally invariant up

to a gauge transformation. (See, for example, the lectures on Gauge Theory for more

discussion.) Both of these charges can be measured asympotically as explained in 3.2.5.

One can check that

Qe =

∫
S2

⋆F and Qm =

∫
S2

F

The solution has non-vanishing electric and magnetic charge, even though the theory

(6.19) has no charge matter. The electric and magnetic charges can be viewed as lurking

in the singularity.

To get some intuition for the Reissner-Nordström black hole, we write the metric

factor as

f(r)2 =
1

r2
(r − r+)(r − r−)

Here the two roots are given by

r± = GM ±
√
G2M2 − e2 (6.20)

In the limit where e → 0, the smaller root merges with the singularity, r− → 0 while

the larger root coincides with the Schwarzschild radius r+ → 2GM . The physical

interpretation of the metric depends on the roots of this polynomial. We deal with

these cases in turn.

6.2.2 Super-Extremal Black Holes

Super-extremal black holes have |e| > GM . This means that f(r)2 has no zero,

and so the metric has no horizon. This situation is analogous to the negative mass

Schwarzschild solution. It has a naked singularity. It is unphysical.

If we take, for example, an electrically charged black hole, the super-extremal con-

dition e2 > G2M2 translates to the requirement that Q2
e/4π > GM2. But this ensures

that the electromagnetic repulsion between two such black holes beats the gravitational

attraction. For this reason, it is hard to see how such objects could form in the first

place.

Of course, all charged sub-atomic particles are super-extremal in the sense that the

electrical repulsion beats the gravitational attraction. There is no contradiction here:

sub-atomic particles simply are not black holes! For example, a particle with mass m
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has Compton wavelength λ = ℏ/2πmc. (For once we’ve put the factor of c back in this

equation.) The requirement that the Compton wavelength is always larger than the

Schwarzschild radius is

ℏ
2πmc

>
2Gm

c2
⇒ m2 <

ℏc
4πG

= 2M2
pl

This conclusion should not be surprising: it tells us that quantum effects are more

important than gravitational effects for any sub-atomic particle that weighs less than

the Planck mass, which itself is a whopping 1018GeV. This is roughly the mass of a

grain of sand.

6.2.3 Sub-Extremal Black Holes

Reissner-Nordström black holes with |e| < GM are called sub-extremal. These are the

physically relevant solutions.

There are now two roots, r±, of the metric function f(r)2. The Kretschmann scalar

diverges at neither of these roots, suggesting that both are horizons. So charged black

holes have two horizons: an outer one at r+ and an inner one at r−.

The presence of two roots changes the role played by the singularity. This is because

the grr metric component flips sign twice so that r is again a spatial coordinate by

the time we get to r < r−. This suggests that r = 0 is now a timelike singularity,

as opposed to the spacelike singularity that we saw in the Schwarzschild case. The

purpose of this section is to understand these points in some detail.

We will follow the same path that we took to understand the Schwarzschild solution.

We start by introducing a tortoise coordinate, analogous to (6.6), now defined by

dr2⋆ =
1

f(r)4
dr2

The solution to this differential equation is

r⋆ = r +
1

2κ+
log

∣∣∣∣r − r+
r+

∣∣∣∣+ 1

2κ−
log

∣∣∣∣r − r−
r−

∣∣∣∣ (6.21)

with

κ± =
r± − r∓
2r2±

We will see later that κ± have the interpretation of the surface gravity on the two

horizons.
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The tortoise coordinate r⋆ takes values in r⋆ ∈ (−∞,+∞) as r ∈ (r+,∞). We

introduce a pair of null coordinates, just as for the Schwarzschild black hole

v = t+ r⋆ and u = t− r⋆

Exchanging t in favour of the null coordinate v, we get the Reissner-Nordström black

hole in ingoing Eddington-Finkelstein coordinates

ds2 = −f(r)2dv2 + 2dv dr + r2 dΩ2
2 (6.22)

This metric is smooth for all r > 0, and has a coordinate singularity at r = 0. This

ensures that we can extend the Reissner-Nordström black hole to all r > 0. The same

kind of arguments that we used for the Schwarzschild black hole again tell us that

r = r+ is a null surface, and no signal from r < r+ can reach I+. In other words,

r = r+ is a future event horizon.

Similarly, we could extend the Reissner-Nordström solution using outgoing Eddington-

Finkelstein coordinates, to reveal a white hole region.

Kruskal Spacetime

We have still to understand the role played by the inner horizon at r = r− and, relatedly,

the global structure of the spacetime. To make progress, we introduce two different

kinds of Kruskal-like coordinates

U± = −e−κ±u and V± = ±eκ±v (6.23)

In the limit e→ 0, we have κ+ → 4GM and the coordiantes U+ and V+ coincide with

the Kruskal-Szekeres coordinates (6.12).

To start, we work with the coordinates U+ and V+. These null coordinates have the

property that

U+V+ = −e2κ+r⋆ = −
(
r − r+
r+

)(
r−

r − r−

)r2−/r2+

e2κ+r (6.24)

The Reissner-Nordström metric is now,

ds2 = −f(r)2du dv + r2dΩ2
2

= −r+r−
κ2+r

2

(
r − r−
r−

)1+r2−/r2+

e−2κ+rdU+dV+ + r2dΩ2
2

where, as usual, we should now view r = r(U+, V+), this time using (6.24). The metric

has started to get a little ugly, but the exact form won’t bother us. More interesting is

what the various regimes of U+ and V+ coordinates correspond to.
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Figure 55:

The exterior of the Reissner-Nordström black hole is the region r > r+. From (6.23)

and (6.24), we see that this corresponds to U+ < 0 and V+ > 0. But, just as for

the Schwarzschild-Kruskal spacetime, we can now extend the Kruskal coordinates to

U+, V+ ∈ R. This gives the now-familiar spacetime diagram, split into four quadrants

depending on the sign of U+ and V+. This is shown in the left-hand diagram of Figure

55; the region outside the horizon is the right-hand quadrant and is shaded blue; the

region r− < r < r+ is the upper quadrant and is shaded pink.

At this point, however, the story diverges from that of Schwarzschild. This is because

the Kruskal-type coordinates U+ and V+ do not extend down to the singularity at r = 0.

Instead, from (6.24), we see that as r → r−, we have U+V+ → ∞. This means that the

coordinates U+ and V+ only extend down to the inner horizon r = r−.

There was no such obstacle in the Eddington-Finkelstein coordinates (6.22), which

happily extended down to the singularity at r = 0. This means that the Kruskal

coordinates U+ and V+ are not the final extension: we can do better.

This is where the other coordinates U− and V− in (6.23) come in. The regime

between the horizons with r− < r < r+ (in ingoing Eddington-Finkelstein coordinates)

corresponds to U−, V− < 0. We then have

U−V− = e2κ−r⋆ =

(
r − r−
r−

)(
r+

r+ − r

)r2+/r2−

e2κ−r

These coordinates have the property that U−V− → ∞ as r → r+ from below. In

other words, they cover the region inside the black hole, but not outside. We can now
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extend the U−, V− coordinates, as shown in the right-hand diagram of Figure 55, where

the lower-most quadrant is shaded pink, to show that it should be identified with the

upper-most quadrant of the first figure.

The U−, V− coordinates cover the singularity at r = 0. In fact, there are two such

singularities, one in each of the left and right-quadrants as shown as red lines in the

figure. Spacetime does not extend beyond the singularity. Importantly, and in contrast

to the Schwarzschild black hole, the singularities are timelike. This is the kind of

singularity that you might have imagined black holes to have: it is like the worldline of

a particle. However, this means that there is nothing inevitable about the singularity of

the Reissner-Nordström black hole: there exist timelike worldlines that a test particle

could follow that miss the singularity completely.

Such fortunate worldliners will ultimately end up in the upper-most quadrant of the

right-hand diagram of Figure 55, where U−, V− > 0. This is a new, unanticipated part

of spacetime. One finds that geodesics hit the boundary of this region at a finite value

of the affine parameter. This means that our spacetime must be extended yet further!

In fact, the upper-most region of the right-hand diagram is isomorphic to the lower-

most region of the left-hand diagram. These regions are shaded in the same colour,

but with different stripes to show that the metrics are isomorphic, but they should not

be identified. (Doing so would lead to a closed timelike curve.) Instead, we introduce

yet a third set of coordinates, U ′
+ and V ′

+. This gives rise to a new part of spacetime,

isomorphic to the left-hand diagram. The whole procedure then repeats ad infinitum.

The Kruskal diagrams can be patched together to give the Penrose diagram for

the Reissner-Nordström black hole. Perhaps surprisingly, it is an infinitely repeating

pattern, both to the past and to the future, as shown in Figure 56, where the conformal

factor has been chosen so the singularity appears as a vertical line.

6.2.4 Cauchy Horizons: Strong Cosmic Censorship

The Penrose diagram reveals the meaning of the inner horizon r = r−. Consider some

initial data specified on a spatial surface Σ, like that shown in Figure 57. Such a surface

is referred to as as Cauchy surface. We then evolve this initial data forward using the

equations of motion.

Sadly, once we encounter a timelike singularity, such evolution is no longer possible,

because we need information about what the fields are doing at the singularity. We see

that the data on Σ can only be evolved as far as the inner horizon r = r−. The null

surface r = r− is called a Cauchy horizon.
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Figure 56: The Penrose diagram for the Reissner-Nordström black hole.

The Cauchy horizon is believed to be unstable. To get some intuition for this, consider

the two observers shown in Figure 57. Observer A stays sensibly away from the black

hole, sending signals with some constant frequency – say, 1 second – into the black hole

for all eternity. Meanwhile, adventurous but foolish observer B ventures into the black

hole where he receives the signals. But the signals get closer and closer together as he

approaches r = r−, an eternities worth of signals arriving in a finite amount of time,

like emails on the first day back after vacation. These signals are therefore infinitely

blue shifted, meaning that a small perturbation in the asymptotic region results in a

divergent perturbation on the Cauchy horizon.

This instability means that much of the Penrose diagram of the Reissner-Nordström

black hole, including the timelike singularity, is unphysical. It is unclear what the end

point of the perturbation will be. But, whatever the outcome, you should probably

take the Penrose diagram inside the horizon with something of a pinch of salt: if you

make it into a black hole interior, your very presence means that it’s very unlikely to

look like that depicted in this simple idealised case. One possibility is that the Cauchy

horizon r = r− becomes a singularity.
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Σ A

B

Figure 57: Initial data is specified on Σ, a spatial hypersurface. But this can’t be evolved

past the Cauchy horizon, r = r−, shown as the red line in the figure. The extended geometry

for the Reissner-Nordström black hole includes both a future Cauchy horizon, and a past

Cauchy horizon.

The instability of the Cauchy horizon is a consequence of a second cosmic censorship

conjecture:

The Strong Cosmic Censorship Conjecture: For matter obeying a suitable

energy condition, generic initial conditions do not result in a Cauchy horizon. Relatedly,

timelike singularities do not form.

Strong cosmic censorship is the statement that general relativity is, generically, a

deterministic theory. It is neither stronger nor weaker than weak cosmic censorship

and the two, while clearly related, are logically independent. (There is a tradition in

general relativity of naming two things “weak” and “strong” even though strong is not

stronger than weak.)

6.2.5 Extremal Black Holes

It remains to describe the extremal Reissner-Nordström black hole, with

|e| = GM

In this case, the inner and outer horizon coalesce and the metric takes the form

ds2 = −
(
1− GM

r

)2

dt2 +

(
1− GM

r

)−2

dr2 + r2dΩ2
2 (6.25)
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r=GM

r=GM

Figure 58: The Penrose diagram for the extremal Reissner-Nordström black hole.

There is a just a single coordinate singularity at r = GM , but it is now a double pole.

As before, one can use Eddington-Finkelstein coordinates to show that the spacetime

can be extended to all r > 0, and Kruskal-like coordinates to construct the global causal

structure. The resulting penrose diagram is shown in Figure 58.

The extremal black hole has a number of cu-

Figure 59:

rious features. First, we can look at the spatial

distance from a point r = R to the horizon. For a

sub-extremal black hole, with an inner and outer

horizon, this is given by

s =

∫ R

r+

dr√
(1− r+/r)(1− r−/r)

<∞

However, for the extremal black hole, with r+ =

r− = GM , this becomes

s =

∫ R

GM

dr

(
1− GM

r

)−1

= ∞

So the horizon of an extremal black hole lies at infinite spatial distance. In contrast,

timelike and null geodesics have no difficulty in reaching the horizon in finite affine

parameter.
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We should think of the horizon of the black hole as developing an infinite throat as

shown in figure; this is what becomes of the Einstein-Rosen bridge, now restricted to

just one side.

To understand what the extremal geometry looks like deep within the throat, we can

take the near horizon limit. We write

r = r+ + η

For η ≪ GM , the metric (6.25) takes the form

ds2 = − η2

r2+
dt2 + r2+

dη2

η2
+ r2+dΩ

2
2

The first two terms are the metric for the Poincaré patch of two-dimensional anti-de

Sitter spacetime (4.28). The final term is just a two-sphere of constant radius. In this

way, we see that the near horizon limit of the extremal Reissner-Nordström black hole is

AdS2 × S2; this is sometimes called the Robinson-Bertotti metric. Similar calculations

to this play an important role in motivating the AdS/CFT correspondence from the

dynamics of branes in string theory.

Multi-Black Hole Solutions

If we take, for example, electrically charged black holes, the extremality condition |e| =
GM means that Q2

e/4π = GM2. Viewed from a somewhat 17th century perspective,

this says that the repulsive Coulomb force between two black holes exactly cancels

the attractive Newtonian gravitational force. We may then wonder if it’s possible to

construct two or more black holes sitting in equilibrium.

The considerations above by no means guarantee the existence of such solutions. It

should be clear by now that there’s much more to general relativity than a simple 1/r2

Newtonian force law, and we still have the seemingly formidable task of solving the

non-linear Einstein equations without the crutch of spherical symmetry. Nonetheless,

it’s at least possible that there exist time independent solutions. This is in contrast

to Schwarzschild or sub-extremal Reissner-Nordström black holes, where the attractive

force means that two black holes must be orbiting each other, emitting gravitational

waves in the process.

Given the complexity of the Einstein equations, it is perhaps surprising that there

is not only a time-independent multi-black hole solution, but one that is remarkably

simple. To motivate this, we first introduce a new radial coordinate

ρ = r −GM
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Clearly the singularity sits at ρ = 0. In this coordinate, the extremal Reissner-

Nordström metric (6.25) takes the form

ds2 = −H(ρ)−2dt2 +H(ρ)2
(
dρ2 + ρ2dΩ2

2

)
with H(ρ) = 1 +

GM

ρ

This form now admits a simple generalisation to

ds2 = −H(x)−2dt2 +H(x)2dx · dx

where x is the usual Cartesian coordinate on R3. We further make the ansatz for the

gauge field A = H−1dt, corresponding to electrically charged black holes. (There is a

simple generalisation to black holes carrying both electric and magnetic charge.) Then

the non-linear Einstein-Maxwell equations reduce to a very simple linear condition on

H(x),

∇2H = 0

where ∇2 is the Laplacian on flat R3. Subject to certain asymptotic boundary condi-

tions this is solved by

H(x) = 1 +
N∑
i=1

1

|x− xi|

This is the Majumdar-Papapetrou solution, discovered in 1947. It describes N black

holes sitting at arbitrary positions xi.

6.3 Rotating Black Holes

In this section, we turn to rotating black holes. These are the appropriate solutions to

describe all black holes observed in the universe.

6.3.1 The Kerr Solution

Rotating objects have an axis of rotation, and this necessarily breaks the rotational

symmetry. This makes the solution for rotating black holes considerably more compli-

cated than the spherically symmetric solutions that we have discussed so far.

The solution is written in so-called Boyer-Lindquist coordinates (t, r, θ, ϕ). It takes

the form

ds2 = −∆

ρ2
(
dt− a sin2 θdϕ

)2
+

sin2 θ

ρ2
[
(r2 + a2)dϕ− adt

]2
+
ρ2

∆
dr2 + ρ2dθ2 (6.26)
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where ∆(r) and ρ2(r, θ) are the following functions

∆ = r2 − 2GMr + a2 and ρ2 = r2 + a2 cos2 θ

This is the Kerr solution, written down in 1963. It’s also useful to have an expression

for the metric from which we can immediately read off the gtt, gtϕ and gϕϕ metric

components,

ds2 = −
(
1− 2GMr

ρ2

)
dt2 − 4GMar sin2 θ

ρ2
dt dϕ+

ρ2

∆
dr2

+
sin2 θ

ρ2
[
(r2 + a2)2 −∆a2 sin2 θ

]
dϕ2 + ρ2dθ2 (6.27)

After ploughing through some algebra, you can convince yourself that the Kerr solution

has the rather non-obvious property

g2tϕ − gttgϕϕ = ∆ sin2 θ (6.28)

We’ll make use of this below.

The Kerr solution depends on two parameters: M and a. A quick inspection of the

metric shows that a has dimension of length. When a = 0, the Kerr solution reduces

to the Schwarzschild solution.

Far from the black hole, r ≫ GM, a, the metric reduces to flat Minkowski spacetime,

with (t, r, θ, ϕ) the usual coordinates, with θ ∈ [0, π] and ϕ ∈ [0, 2π).

There are two continuous isometries of the Kerr metric. These are

K =
∂

∂t
and L =

∂

∂ϕ

We can compute Komar integrals for each of these, giving the mass and angular mo-

mentum of the black hole respectively. Unsurprisingly, it turns out that the mass isM .

The Komar integral of the rotational Killing vector L gives the angular momentum

J = aM

Flipping the sign of a changes the direction of the spin. In what follows, we take a > 0

without loss of generality.

The Schwarzschild solution was also invariant under the discrete symmetries t→ −t
and ϕ → −ϕ. The Kerr solution is invariant only under the combination (t, ϕ) →
(−t,−ϕ), as appropriate for a spinning object.
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Black Hole Uniqueness

There are a bunch of theorems, each with slightly different assumptions, that collec-

tively can be summarised as: any time-independent, asymptotically flat black hole

solution, lies within the Kerr family. In other words, black holes are characterised by

only two numbers: mass M and angular momentum J . (If we are in Einstein-Maxwell

theory, these theorems are extended to allow for electric and magnetic charges as well;

we’ll briefly discuss this in Section 6.3.4.)

These theorems are not as strong as Birkhoff’s theorem. There we needed only

to assume spherical symmetry to land on the Schwarzschild solution. This ensured

that the Schwarzschild metric describes the spacetime outside a star, even one that is

undergoing spherical collapse.

In contrast, the wider set of theorems make explicit use of the event horizon. This

means that the Kerr solution does not necessarily describe the spacetime outside a

rotating star, although it seems plausible that it is a good approximation far from the

surface of the star.

Nonetheless, these theorems tell us that the end point of gravitational collapse is

generically the Kerr black hole. This is rather surprising. General relativity is a

classical theory that can be derived from an action principle. In fact, it turns out that

it is a Hamiltonian theory. Basic properties of Hamiltonian systems — like Liouville’s

theorem — say that the end point of generic evolution can’t be a single point in phase

space. Instead, that kind of behaviour is what we expect from a non-Hamiltonian

systems with friction. In many ways, black holes act like systems with friction. These

kinds of issues become even sharper when we bring quantum mechanics into the mix,

where they reappear as the information paradox.

6.3.2 The Global Structure

When ∆ = 0, the grr component of the metric diverges. Our previous experience

with the Schwarzschild and Reissner-Nordström black holes suggests that these are

coordinate singularities, and this turns out to be correct. We write the roots of ∆ as

∆ = (r − r+)(r − r−)

with

r± = GM ±
√
G2M2 − a2

This has the same structure as the Reissner-Nordström black hole, and we can imme-

diately import some lessons from there. In particular, if the black hole spins too fast,
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so a > GM , then the Kerr solution exhibits a naked singularity and is disallowed. The

fastest spinning black hole has a = GM and, correspondingly, J = (GM)2. This is the

extremal Kerr black hole. More generally, the allowed values of spin are a/GM ≤ 1.

To show that r = r± are coordinate singularities, we can do something akin to the

Eddington-Finkelstein trick. This time things are a little trickier. We introduce the

Kerr coordinates (v, r, θ, χ) where v = t+ r⋆ and r⋆ and χ defined by

dr⋆ =
r2 + a2

∆
dr and dχ = dϕ+

a

∆
dr (6.29)

The idea, once again, is that these coordinates are adapted to null, in-falling geodesics.

However, now there are no radial geodesics: instead they get twisted round by the

rotation of the black hole. These geodesics don’t, therefore, sit at constant ϕ but

instead sit at constant χ. To see this, we exchange t and ϕ in favour of v and χ in

(6.26) to find

ds2 = −∆

ρ2
[
dv − a sin2 θ dχ

]2
+

sin2 θ

ρ2
[
a dv − (r2 + a2)dχ

]2
+ (dv − a sin2 θdχ)dr + ρ2dθ2

First, note that null geodesics follow dv = dχ = dθ = 0 as promised (since this ensures

that ds2 = 0.) Second, as with Eddington-Finkelstein coordinates, there is no longer a

factor of ∆ in the denominator. This ensures that we can now extend the r coordinate

down to r > 0 without hitting any singularity. We learn that r = r± in the original

Kerr metric (6.26) were indeed coordinate singularities as advertised.

To build up the full causal structure, we need Kruskal-like coordinates, analogous to

the U± and V± coordinates (6.23) that we introduced for the Reissner-Nordström black

hole. The procedure is now the same. The U+ and V+ coordinates allow us to extend

the spacetime past the outer horizon at r+, down to the inner horizon at r−. We then

need to switch to the U− and V− coordinates to get down to the singularity. This then

repeats itself. The resulting Penrose diagram again repeats ad infinitum, as shown in

Figure 60.

The Singularity

There are a number of ways in which the global structure of the Kerr solution differs

from Reissner-Nordström . One is the singularity. The gtt component of the Kerr

metric diverges when

ρ2 = 0 ⇒ r = 0 and θ =
π

2
From our experience with the Schwarzschild and Reissner-Nordström black holes, we

might expect that this is a true curvature singularity. This is confirmed by an analysis

of the Kretschmann scalar.
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r=r
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Figure 60: The Penrose diagram for the Kerr black hole.

However, in the previous cases the singularity arose at r = 0. There was no need to

also specify the angular coordinates on the S2 because the S2 degenerated at r = 0,

just like at the origin of flat space. In contrast, the singularity in Kerr occurs only

when θ = π/2. To better understand this, we can look at the Kerr metric (6.26) at

r = 0, with constant t: it is

ds2 = a2 sin2 θ dϕ2 + a2 cos2 θ dθ2

We see that the S2 has not degenerated at this point, but nor does it have the round

metric. This is to be expected, since the Kerr solution did not have rotational sym-

metry. The restriction to θ = π/2 puts us on the “equator”: this is a ring of radius

a, parameterised by ϕ ∈ [0, 2π). Thus we learn that the singularity of the Kerr black

hole has a ring structure! The singularity is again timelike, as shown in the Penrose

diagram.

Strictly speaking, Penrose diagrams can only be drawn for rotationally invariant

spacetimes, since we suppress the S2. For Kerr, we compromise and draw the singularity

as the jagged, broken line in Figure 60, reflecting the fact that the singularity only occur

when θ = π/2 and not for other angles on the S2.
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Closed Timelike Curves

In the Reissner-Nordström black hole, the spacetime ended at the timelike singularity.

But because the S2 doesn’t degenerate for Kerr, spacetime continues past the singularity

(i.e. to the right and left of the timelike singularities shown in Figure 60).

This region can be accessed by observers following a timelike geodesic that passes

through r = 0 at θ ̸= π/2. This corresponds to r < 0 in the original coordinates of

(6.26).

This new region has a weird property: it acts as a time machine! To see this,

consider a curve which sits at constant t and r and θ = π/2. In other words, the curve

is parameterised by ϕ. From (6.26), the metric for this curve is

ds2 =

(
−a

2∆

r2
+

(r2 + a2)2

r2

)
dϕ2 =

(
r2 + a2 +

2GMa2

r

)
dϕ2

For r < 0 and suitably small, this term in brackets is negative, This means that ϕ is a

timelike direction close to the singularity. But ϕ is a periodic coordinate, with ϕ and

ϕ + 2π identified. This means that if you move along this curve, you get back to the

same point in time that you started from. This is a closed timelike curve.

Having a time machine tucked away inside a black hole is not going to allow you

to play Johnny B. Goode at the Enchantment Under the Sea dance. Nonetheless, the

idea that time machines arise in the laws of physics is a tantalising one. Sadly, the

time machine inside the Kerr black hole is most likely unphysical: it is hidden behind

a Cauchy horizon and, as we discussed previously such horizons are unstable to generic

perturbations.

Closed timelike curves are not uncommon, and arise in several other solutions to

the Einstein equations. Nonetheless, like naked singularities, there is a general belief

that they should not form from any sensible initial conditions, a fact referred to the

chronology protection conjecture.

6.3.3 The Ergoregion

There is also something special about the Kerr black hole outside the horizon. To see

this, consider the Killing vector

K =
∂

∂t

Far from the black hole, this is a timelike Killing vector. Indeed, asymptotically, at

r → ∞, K generates the geodesics of an observer stationary with respect to the black
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φ
ergoregion

Figure 61: The ergoregion outside the Kerr black hole.

hole. As we move closer to the black hole, with finite r, the integral curves of K are

no longer geodesics since they sit at constant r (as well as constant θ and ϕ), but it’s

always possible to follow these curves by turning on the thrusters on our rocket ship.

At some point, however, this ceases to be true.

To see this, we look at the norm of K,

gµνK
µKν = gtt = − 1

ρ2
(
r2 − 2GMr + a2 cos2 θ

)
This is negative, and hence K is timelike, for large r. However, K becomes null when

r2 − 2GMr − a2 cos2 θ = 0 ⇒ r = GM ±
√
G2M2 − a2 cos2 θ (6.30)

We should compare this to the horizons, which sit at r± = GM ±
√
G2M2 − a2. The

smaller root in (6.30) sits inside the horizon, but the larger root sits outside the horizon,

except at the poles θ = 0, π where it touches. We learn that K becomes spacelike in a

region outside the horizon,

GM +
√
G2M2 − a2 < r < GM +

√
G2M2 − a2 cos2 θ

This is called the ergoregion. It is sketched in Figure 61. The outer boundary of the

ergoregion is called the ergosurface.

Inside the ergoregion, an observer cannot follow integral curves of K because these

curves are no longer timelike. This means that, no matter how hard you fire your rocket

thrusters, you cannot sit at constant r, θ and ϕ. To see what’s happening, let’s look

again at the Kerr metric

ds2 = −∆

ρ2
(
dt− a sin2 θdϕ

)2
+

sin2 θ

ρ2
[
(r2 + a2)dϕ− adt

]2
+
ρ2

∆
dr2 + ρ2dθ2
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We want to find a timelike curve, with ds2 < 0. Moving in the r and θ directions do

not help, since grr and gθθ are both positive. In fact, the only negative term comes

from gtϕ. This means that any timelike trajectory in the ergoregion necessarily requires

movement in ϕ.

This is an example of frame dragging, albeit an extreme one. In the ergoregion,

observers are necessarily swept around by the rotation of the black hole. They can

still escape the black hole’s clutches should they wish, since they have not yet crossed

the outer horizon, but as long as they remain in ergoregion they rotate relative to

asymptotic observers.

The Penrose Process

A clever idea, due to Penrose, allows us to extract energy from a rotating black hole.

To motive this, consider again the Killing vector K = ∂t. As we explained in Section

4.3.2, we can use K to assign an energy to any observer with 4-momentum P µ,

E = −KµP
µ

The 4-momentum is necessarily timelike. If K is also timelike, then the negative sign

in the definition above ensures that E is positive. This is because the inner product of

two timelike vectors is always negative. However, in the ergoregion K is spacelike, so

it is possible for the energy to be negative.

Here, then, is the mechanism to extract energy from a black hole. We send in an

object along a geodesic, with 4-momentum P µ. Because it travels along a geodesic, the

energy E = −K · P is conserved and so remains positive even when the object enters

the ergoregion.

Once in the ergoregion, we arrange for the object to split into two. (In terms of

particle physics, you could imagine a particle decaying although it’s rather harder to

arrange the details of this before hand.) Conservation of energy and momentum require

P = P1 + P2

and, correspondingly,

E = E1 + E2

But inside the ergoregion, it is possible to arrange things so that E1 < 0. Clearly we

must then have E2 > 0. Each of these smaller objects then follows their own geodesic.

Because E1 < 0 it is not possible for the first particle to escape the ergoregion; typically,
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it will instead fall into the black hole. However, there is no such restriction on the second

particle with E2 and it is possible to arrange things so that this escapes the black hole

and comes back to the asymptotic region, now with E2 > E. In other words, the object

returns with more energy than it started.

Extracting energy from the black hole means that its mass decreases. (This back-

reaction is not included in the calculation above which is done in a fixed background.) If

you decrease the mass sufficiently, you might wonder if you can violate the extremality

bound to get J > GM2, revealing a naked singularity. Fortunately, this can’t happen:

a decrease of the mass must be accompanied by a corresponding decrease in the angular

momentum.

To see this, consider the combination of Killing vectors

ξ = K + ΩL =
∂

∂t
+ Ω

∂

∂ϕ
(6.31)

This is also a Killing vector for any constant Ω. We know that K is mostly spacelike

on the horizon r = r+. (The exception is at θ = 0, π where the horizon intercepts the

ergosurface so K is null.) The angular momentum vector L is also spacelike on the

horizon. However, there is a special choice of Ω so that ξ becomes null everywhere on

the horizon.

To see this, note that the norm of ξ is

ξ2 = gtt + 2Ωgtϕ + Ω2gϕϕ

We can make ξ2 = 0 at a general r and θ by taking

Ω(r, θ) =
−gtϕ ±

√
g2tϕ − gttgϕϕ

gϕϕ

If we restrict to the horizon, r = r+ then ∆ = 0 and the identity (6.28) tells us that

g2tϕ = gttgϕϕ, and we get Ω = −gtϕ/gϕϕ. A quick look at the metric (6.27) then shows

us that the θ dependence drops out, leaving us with the constant

Ω =
a

r2+ + a2

With this choice of Ω, the Killing vector ξ generates null geodesics on the horizon. The

frame dragging now means that these geodesics necessarily rotate in the ϕ direction.

We interpret Ω as the angular velocity of the black hole.
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We can use ξ to place a restriction on the amount of energy that can be extracted

by the Penrose process. The Killing vector ξ is future-pointing, which means that, for

any 4-momentum P ,

ξµP
µ ≤ 0 ⇒ −E + Ωj ≤ 0

where j = LµP
µ is the angular momentum of the particle. Applying this to the particle

with E1 < 0 that falls into the black hole, we have

E1 ≥ Ωj1 (6.32)

In this sense, we necessarily extract more angular momentum than energy from the

black hole. To see that this bound does indeed prohibit the formation of super-extremal

rotating black holes, consider the following combination

A = 8π
[
G2M2 +G

√
G2M4 − J2

]
= 8πGM

[
GM +

√
G2M2 − a2

]
If the black hole loses both mass δM and angular momentum δJ , the quantity A

changes as

δA

16π
= G2MδM +

G3M3δM − 1
2
GJδJ

√
G2M4 − J2

=
GJ

2
√
G2M4 − J2

[
δM

Ω
− δJ

]
where, in the second equality, we’ve used the expression r+ = GM +

√
G2M2 − a2,

which means that r2+ + a2 = 2GM(GM +
√
G2M2 − a2). A few lines of algebra then

gives the result.

The particle plunging beyond the event horizon results in a reduction of the mass

δM = E1 of the black hole and a change in the angular momentum δJ = j1. The

inequality (6.32) tells us that δM ≥ ΩδJ and so

δA ≥ 0

In other words, A is a quantity which is monotonically increasing in the Penrose process.

In particular, this ensures that it’s not possible to turn a sub-extremal Kerr black hole

into a super-extremal black hole with a naked singularity through the Penrose process.

A Hint of the Area Theorem

The quantity A has a rather special geometric meaning: it is the area of the event

horizon of the black hole

A =

∫ π

0

dθ

∫ 2π

0

dϕ
√
gθθgϕϕ

∣∣∣
r=r+

= 4π(r2+ + a2) = 8π
[
G2M2 +G

√
G2M4 − J2

]
where we have evaluated the integral at r = r+, which means that ∆ = 0. Our analysis

above shows that the area of the black hole always increases.

– 277 –



This is a baby version of a much deeper theorem, proved by Hawking, which says

that the area of a black hole increases under all physical processes. Indeed, there is a

deep reason behind this: the area of the black hole has the interpretation of entropy,

through the famous Bekenstein-Hawking formula

SBH =
c3A

4Gℏ
The fact that the area necessarily increases is then part of the generalised second law

of thermodynamics.

Superradiance

There is a grown-up version of the Penrose process in which fields scatter off a Kerr

black hole, and return amplified. This effect is known as superradiance.

Here we sketch this phenomenon for a massless scalar field Φ. The energy-momentum

tensor is (4.51)

Tµν = ∇µΦ∇νΦ− 1

2
gµν∇ρΦ∇ρΦ

We know from Section 4.5.5 that we can form a conserved current by contracting T µν

with a suitable Killing vector. In particular, we can measure energy by contracting

with K = ∂t to give the current

Jν = −KµT
µν = −(Kµ∇µΦ)∇νΦ +

1

2
(∇ρΦ∇ρΦ)K

ν

This obeys ∇µJ
µ = 0.

We now repeat the kind of calculation that we saw in Section 4.5.5. The energy in

the field on a spatial hypersurface outside the black hole is

E(Σ) =

∫
Σ

d3x
√
γnµ J

µ

with γij the pull-back of the metric onto Σ, and nµ the future-pointing normal. We

now integrate ∇µJ
µ over the shaded region in Figure 62. Assuming that ∇Φ = 0 at

spatial infinity, i0, we have

0 =

∫
V

d4x
√
−g∇µJ

µ =

∫
Σ2

d3x
√
γ2n

2
µ J

µ −
∫
Σ1

d3x
√
γ1n

1
µ J

µ +

∫
N
d3SµJ

µ

with N the appropriate part of the horizon. Rearranging, we have

E(Σ2)− E(Σ1) = −
∫
d2Adv ξµJ

µ

where v is the null Kerr coordinate, ξ is the null Killing vector (6.31) along the horizon,

and d2A is the spatial cross-section of the horizon.
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Figure 62: Integrating over a spatial region outside a black hole.

The power absorbed by the black hole per unit null time is then

P = −
∫
d2A ξµJ

µ

with

ξµJ
µ = −(Kµ∇µΦ)(ξ

ν∇νΦ) +
1

2
(∇ρΦ∇ρΦ)(ξµK

µ)

The final term vanishes because, when evaluated on the horizon, ξ ·K = 0. To see this,

we evaluate

ξµK
µ = gtt + Ωgtϕ ⇒ ξµK

µ
∣∣∣
r+

=

(
gtt −

g2tϕ
gϕϕ

)
r=r+

But evaluated on the horizon, where ∆ = 0, the identity (6.28), tells us that g2tϕ = gttgϕϕ
and so ξµK

µ = 0. This means that we can write the power as

P =

∫
d2A (Kµ∇µΦ)(ξ

ν∇νΦ) =

∫
d2A

∂Φ

∂v

(
∂Φ

∂v
+ Ω

∂Φ

∂χ

)
We can expand the scalar field in angular momentum modes. In terms of the Kerr

coordinates (6.29),

Φ = Φ0(r, θ) cos(ωv + νχ)

We take the frequency to be positive: ω > 0. Periodicity of χ requires that the angular

momentum is quantised, with ν ∈ Z. The time averaged power absorbed by the black

hole is

P̄ =
1

2

[∫
d2A Φ2

0(r+, θ)

]
ω(ω − Ων)
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For high frequency waves, this power is always positive, telling us that the black hole

absorbs energy as expected. However, for frequencies small compared to the angular

momentum of the ingoing wave,

ω < Ων

the power absorbed is negative. This is the field theoretic version of the Penrose process.

6.3.4 The No Hair Theorem

Uniqueness theorems tell us that the Kerr metric is the most general black hole solution

to the vacuum Einstein equations. But what if we add further fields to the action?

We’ve already seen in Section 6.2 that adding a Maxwell field to the action opens up

a new possibility: a black hole solution that carries electric or magnetic charge. There

is a generalisation that describes a black hole with both charge and rotation. This

amalgam of the Reissner-Nordström and Kerr solutions has metric

ds2 = −
(
1− 2GMr

ρ2
+
e2

ρ2

)
dt2 − 2a sin2 θ

ρ2
[
2GMr − e2

]
dt dϕ+

ρ2

∆
dr2

+
sin2 θ

ρ2
[
(r2 + a2)2 −∆a2 sin2 θ

]
dϕ2 + ρ2dθ2

where ∆(r) and ρ2(r, θ) now take the form

∆ = r2 − 2GMr + a2 + e2

ρ2 = r2 + a2 cos2 θ

e2 =
G

4π

√
Q2

e +Q2
m

Meanwhile, the gauge field is given by

A = − Qer

4πρ2
(dt− a sin2 θ dϕ)− Qm cos θ

4πρ2
(a dt− (r2 + a2)dϕ)

This is the Kerr-Newman solution.

This is the most general black hole solution of the Einstein-Maxwell equations: the

black holes are characterised by mass, M , angular momentum J , and electric and

magnetic charges Qe and Qm. Note that all of these are familiar conserved quantities

of classical systems.
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What about other fields? It turns out that these cannot take on other time-independent

profiles in the presence of a black hole. This is known as the no hair theorem. (It is a

statement about black holes in asymptotically flat spacetimes; the story is different for

black holes in AdS.)

Here we sketch the no hair theorem for a free, massive scalar field Φ. The fact that

we’re looking for time-independent solutions means that

Kµ∇µΦ = 0 (6.33)

where Kµ is a Killing vector that is timelike outside the horizon. (It is K = ∂t in the

usual coordinates.) The action for the scalar field is

Sscalar =

∫
d4x

√
−g 1

2

(
−gµν∇µΦ∇νΦ−m2Φ2

)
=

∫
d4x

√
−g 1

2

(
−gtt∂tΦ∂tΦ− 2gti∂tΦ∂iΦ− gij∂iΦ∂jΦ−m2Φ2

)
The fact that we are working in a mixed-signature metric means that the gradient terms

come with a mix of signs. However, restricting to time independent configurations

(6.33) means that the time derivatives vanish and so gµν∇µΦ∇νΦ ≥ 0. In particular,

this means that the action is the sum of two terms, each of which is non-positive.

The proof of the no hair theorem in this case proceeds in a similar way to our

demonstration of superradiance. We integrate over the spacetime region V outside a

black hole, as shown in Figure 62. This region is bounded by two spatial hypersurfaces,

Σ1 and Σ2, with normal nµ ∼ Kµ, the horizon and an asymptotic region. Integrating

by parts we have

Sscalar =

∫
V

d4x
√
−g 1

2
Φ
(
+gµν∇µ∇νΦ−m2Φ

)
−
∫
∂V

d3x
√
−γnµΦ∇µΦ

The first, bulk, term vanishes for any Φ that solves the equation of motion. That leaves

the second, boundary, term. This vanishes on the two spatial hypersurfaces by dint of

(6.33). It also vanishes on the horizon for the same reason, since the normal to the

horizon is Kµ the timelike Kiling vector. That just leaves the asymptotic region. For

asymptotically flat spacetimes, it’s not too hard to show that Φ ∼ 1/r as r → ∞,

which is fast enough to ensure that there’s no contribution from infinity.

The upshot of this argument is that, when evaluated on a time-independent solution

to the equation of motion, we have Sscalar = 0 when integrated over any region V of a

black hole spacetime. Furthermore, Sscalar is the sum of two non-positive terms, so each
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of these terms must individually vanish. When m ̸= 0, we have m2Φ2 = 0 so the only

solution is the trivial one Φ = 0. (When m2 = 0, we have ∂iΦ = 0, so any Φ = constant

is allowed.) This is the no hair theorem: the field Φ cannot develop a static profile in

the presence of a black hole.
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