
Part III General Relativity Preparatory Workshop

João Melo, David Tong

This workshop will gradually build up the machinery necessary to describe some simple
examples of the physics behind General Relativity. The objective is getting some physical
intuition to ground the mathematical discussion in the main lecture course. We shall start
by reviewing Euler-Lagrange equations and index notation in the case of the dynamics of
non-relativistic particles; then we move to the relativistic case, sticking to special relativity;
finally we discuss the equivalence principle which sets the stage for GR; we end with a dis-
cussion of some simple predictions from General Relativity (that have been experimentally
tested!).

This will mostly consist of exercises intercut with just the necessary information to be
able to proceed to the next exercise. For more details consult the notes provided on the
course webpage. Starred exercises will be covered in class, non-starred exercises will only
be covered if time allows.

1. Non-Relativistic Particles

Our tool of choice throughout these lectures is the action. The advantage of the action
is that it makes various symmetries manifest. And, as we shall see, there are some deep
symmetries in the theory of general relativity that must be maintained. This greatly limits
the kinds of equations which we can consider and, ultimately, will lead us inexorably to the
Einstein equations.

Therefore, we start by reviewing this principle in the simple case of a non-relativistic
particle. We describe the position of a particle by coordinates xi where, for now, we take
i = 1, 2, 3 for a particle moving in 3-dim space. Importantly, there is no need to identify
the coordinates xi with the (x, y, z) axes of Euclidean space; they could be any coordinate
system of your choice.

We shall also use the Einstein summation convention, which amounts to saying that if
an index is repeated twice (we usually call that a dummy index ) we sum over all values
that index can take; if it only appears once, it is implied that that expression is valid,
independently, for all possible values of the index (these are free indices); and, if an index
appears more than twice, you have made a mistake.

We want a way to describe how the particle moves between fixed initial and final posi-
tions,

xi(t1) = xiinitial, and, xi(t2) = xifinal (1.1)

To do this, we consider all possible paths xi(t) subject to the boundary conditions above.
To each of these paths, we assign a number called the action S. This is defined as

S[xi(t)] =

∫ t2

t1

dt L(xi(t), ẋi(t)) (1.2)
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where the function L(xi, ẋi) is the Lagrangian which specifies the dynamics of the sys-
tem. The action is a functional; this means that you hand it an entire function worth of
information, xi(t), and it spits back only a single number.

The principle of least action is the statement that the true path taken by the particle
is an extremum of S. Although this is a statement about the path as a whole, it is entirely
equivalent to a set of differential equations which govern the dynamics. These are known
as the Euler-Lagrange equations.

Problem 1.1.* Take the action evaluated on a given path xi(t), vary that path
slightly xi(t) + δxi (t), and, by imposing that xi(t) is an extremum of the action,
derive the Euler-Lagrange equations,

∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
= 0 (1.3)

We shall first consider the non-relativistic motion of a particle of mass m in flat Eu-
clidean space R3. For once, the coordinates xi = (x, y, z) actually are the usual Cartesian
coordinates. The Lagrangian that describes the motion is simply the kinetic energy,

L =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
(1.4)

The Euler-Lagrange equations (1.3) applied to this Lagrangian simply tell us that ẍi = 0,
which is the statement that free particles move at constant velocity in straight lines.

Imagine we want to use some funky coordinate system. In that case, the infinitesimal
distance between any two points, xi and xi + dxi, called the line element, will no longer be
given by Pythagoras’s theorem ds2 = dxi dxi, instead, it will, in general, take the form

ds2 = gij(x) dxi dxj (1.5)

Where the 3 × 3 matrix gij is called the metric. The metric is symmetric: gij = gji since
the anti-symmetric part drops out of the distance when contracted with dxi dxj . Further
it is positive definite and non-degenerate, so its inverse exists.

Now imagine, we’re simply given some coordinate system and a line element as in (1.5).
Is this necessarily just flat space on some funky coordinate system, or can it be that some
metrics are in essence distinct from the flat space metric? It turns out the answer is no, as
in, not all metrics correspond just flat space in a different coordinate system. Those metrics
are what we use to describe curved space. How to make these notions more rigorous, and
tell whether a given metric describes flat or curved space will be covered in more detail in
the course of the main lectures.

Before we proceed, a quick comment: it matters in this subject whether the indices i, j
are up or down. Once again, the details will be left for the main lectures, but for now,
remember that coordinates have superscripts while the metric has two subscripts.

The Lagrangian with an arbitrary metric is the obvious generalisation of (1.4),

L =
1

2
mgij(x)ẋiẋj (1.6)

Problem 1.2.* Prove that the Euler-Lagrange equations arising from (1.6) can be
written as

ẍi + Γ ijkẋ
j ẋk = 0 (1.7)
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where
Γ ijk(x) =

1

2
gil(∂kglj + ∂jglk − ∂lgjk) (1.8)

are called the Christoffel symbols, where ∂i ≡ ∂
∂xi

, and gij is the inverse matrix of gij .

This equation is called the geodesic equation and solutions to this equation are known
as geodesics.

Problem 1.3. Starting from the standard flat space metric ds2 = dx2 + dy2 + dz2,
find the metric in polar coordinates, which are given by,

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

Then compute the Christoffel symbols by directly applying (1.8). Finally, compute
the equations of motion arising from the Lagrangian (1.6) (substituting the metric
you found) by directly varying the action. Deduce the Chirstoffel symbols from those
equations. Which method was quicker?

2. Special Relativity

On our path to full General Relativity we shall first briefly do a pit stop at Special Relativity
to set the stage. Therefore we consider a particle moving in Minkowski spacetime R1,3. We
will work with Cartesian coordinates xµ = (ct, x, y, z), where now µ, ν = 0, 1, 2, 3. The
metric on this spacetime is

ηµν = diag(−1,+1,+1,+1) (2.1)

so that the distance between two neighbouring points labelled by xµ and xµ + dxµ is

ds2 = ηµν dxµ dxν (2.2)

Pairs of points with ds2 < 0 are said to be timelike separated ; those for which ds2 > 0 are
spacelike separated ; and those for which ds2 = 0 are said to be lighlike separated or, more
commonly null.

Consider the path of a particle through spacetime. In the previous section, we labelled
the positions along the path using the time coordinate t for some inertial observer. But, to
build a relativistic description of the particle motion, we want time to sit on much the same
footing as the spatial coordinates. For this reason, we will introduce a new parameter - let’s
call it σ - which labels where we are along the worldline of the trajectory. For now it doesn’t
matter what parametrisation we choose; we will only ask that σ increases monotonically
along the trajectory. We’ll label the start and end points of the trajectory by σ1 and σ2
respectively, with xµ(σ1) = xµinitial and x

µ(σ2) = xµfinal.
The action for a relativistic particle has a nice geometric interpretation: it extremises

the distance between the starting and end points in Minkowski space. A particle with rest
mass m follows a timelike trajectory, for which any two points on the curve have ds2 < 0.
We therefore take the action to be
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S = −mc
∫ xfinal

xinitial

√
−ds2 =

= −mc
∫ σ2

σ1

dσ

√
−ηµν

dxµ

dσ

dxν

dσ
(2.3)

The coefficients in front ensure that the action has dimensions [S] = Energy × Time as it
should.

Problem 2.1.* Prove that the action is Lorentz invariant. That is, that it is invariant
under xµ → Λµ ρxρ where Λµ ρηµνΛν σ = ηρσ (i.e. Λ ∈ O(1, 3))

Problem 2.2.* Prove that the action is reparametrisation invariant. That is, it is
invariant under the change σ → σ̃(σ).

These two symmetries are of rather different character. The first one is a true symmetry
in the sense that if we find a solution to the equations of motion, then we can act with a
Lorentz transformation to generate a new solution. The second one is not really a symmetry,
in the sense it does not generate new solutions from old ones. Instead, it is a redundancy
in the way we describe the system. It is similar to the gauge "symmetry" of Maxwell and
Yang-Mills theory which, despite the name, is also a redundancy rather than a symmetry.

It is hard to overstate the importance of the concept of reparametrisation invariance.
A major theme of the lectures is that our theories of physics should not depend on the
way we choose to parametrise them. We’ll see this again when we come to describe the
field equations of general relativity. For now, we’ll look at a couple of implications of
reparametrisation on the worldline.

First off, because the action is independent of the parametrisation of the worldline, the
value of the action evaluated between two points on a given path has an intrinsic meaning.
We call this value proper time. For a given path xµ(σ′), the proper time between two points,
say σ = 0 and σ′ = σ, is

τ(σ) =
1

c

∫ σ

0
dσ′

√
−ηµν

dxµ

dσ′
dxν

dσ′
(2.4)

We recognise this as the time experienced by the particle itself.

Problem 2.3. What does extremising the action mean for the proper time? In
Minkowski space, what is the trajectory that maximises proper time? If you have
two twins, one stays at rest, and the other goes to a different planet and comes back,
what is their relative age when they meet?

Secondly, there’s a crucial difference between moving in Euclidean space and moving
in Minkowski spacetime. You’re not obliged to move in Euclidean space. You can just
stop if you want to. In contrast, you can never stop moving in a timelike direction in
Minkowski spacetime. You will, sadly, always be dragged inexorably towards the future.
Any relativistic formulation of particle mechanics must capture this basic fact.

Before you begin the next exercise just a brief detour into common notation. Even
though each object intrinsically has their indices either up or down, it is commonplace to
raise and lower indices using the metric. E.g. from some vector in Minkowski spacetime
V µ we define Vµ = ηµνV

ν , and similarly from ωµ we define ωµ = ηµνων . This only makes
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a difference for the µ = 0 component, but the minus sign is extremely important. In some
sense, it is the whole content of special relativity. We will see later similar definitions for
the general relativistic case of curved spacetime. Further, it is commonplace to denote an
index free Minkowski vector without the boldface, just V , to distinguish from Euclidean
space. So, for instance, V 2 = (V · V ) = ηµνV

µV ν = V µVµ.

Problem 2.4.* Compute the momentum conjugate to xµ,

pµ =
∂L

∂ẋµ
(2.5)

with ẋµ = dxµ/dσ , for the action (2.3). How is this equivalent to the usual definition
of 4-momentum?

pµ = m
dxµ

dτ
(2.6)

Compute the square of the 4-momentum, p2. What does this imply for the number
of degrees of freedom of a relativistic particle? How can we reconcile this with the
non-relativistic action (1.6)?

Using the results above, compute (p0)
2? What does this mean for our allowed

trajectories in Minkowski spacetime?

3. The Equivalence Principle

It is finally time to put gravity into the mix. We won’t very rigorous, the proper discussion
will be given in the main lectures, this is just to give you a taste of what’s to come.

In Newtonian physics, gravity is described by a potential Φ(x) that obeys the Poisson
equation

∇2Φ = 4πGρ (3.1)

where ρ is the mass density. Such that the force on a particle is

F = −m∇Φ (3.2)

This can also be introduced by adding a term −mΦ(x) to the Lagrangian (1.6).
This construction has a well known accident. The quantity that controls the strength of

interaction, called the gravitational mass, coincides with the usual inertial mass appearing
in the kinetic term of the action. This is a priori not necessary, for instance, the elec-
trostatic interaction obeys very similar laws to these, but the electric charge is completely
independent from the inertial mass. However this coincidence in the case of gravity has
been experimentally verified to an astounding accuracy (around 10−13) therefore we give it
a name, it’s the weak equivalence principle.

This leads to a famous thought experiment due to Einstein. Imagine you one day wake
up to find yourself trapped inside a box that looks like an elevator. This coincidence tells
you that you wouldn’t be able to figure out by doing some (local) mechanical experiment
whether you’re on an elevator in Earth, or in some alien spaceship disguised as an elevator
which is undergoing constant acceleration with the precise value of the acceleration due to
gravity on Earth.

Now there are maybe three possible ways you may be thinking of how to really decide
what is your situation. The first one is, well, Newtonian physics only states that the masses
are the same, couldn’t you do some other kind of experiment, like with electromagnetism,
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or maybe quantum physics to help you decide? Well, usual everyday objects that were
used to verify the weak equivalence principle are made of quantum stuff and are held
together by electromagnetic interactions so it would be quite bizarre if these disciplines
could tell the difference. This reasoning is also considered to be quite important, so we
give it a name Einstein equivalence principle, it states that under no (local) experiment,
mechanical or otherwise, can you tell the difference between constant acceleration and
constant gravitational field.

The second way you could conceivably tell the difference is by doing a non-local experi-
ment. Say, instead of dropping one ball you drop two. If you are indeed on Earth there will
be tidal forces that pull these balls closer together. This is not ruled out by any experiment
(in fact it is confirmed!) and is a legitimate method to distinguish between the two cases.
The final method is common sense. Aliens, really?

There is another consequence of these thought experiments and equivalence principles.
Any body will take the same trajectory under gravitational interaction regardless of it’s
composition (also sometimes called the strong equivalence principle). We all know this fact
here on Earth, all objects fall with the same speed (neglecting friction) be it a hammer or a
piece of paper. This suggests that perhaps gravity could be described not by some potential
as in electromagnetism but by the geometry of spacetime itself. That is, the whole content
of gravity is in allowing the spacetime to have a curved metric,

ds2 = gµν(x) dxµ dxν (3.3)

and we generalise the action (2.3) to

S = −mc
∫ σ2

σ1

dσ

√
−gµν(x)

dxµ

dσ

dxν

dσ
(3.4)

This is quite a big jump in reasoning. This is because there is no real way to derive that
gravity is just the curvature of spacetime, you can only motivate that it could conceivably
be the case, and then test it’s predictions. And, so far, it has passed every test we throw
at it with flying colours.

For example, we can easily recover the equivalence principle in this formulation. It
will be entirely equivalent to saying that for any metric we can always find some set of
coordinates such that locally it will look just like Minkowski space. This turns out to be
true, and you’ll see it in the main lectures.

Problem 3.1.* Show that if you pick gµν to be equal to ηµν except for the 00-
component, which we choose to be,

g00 = 1 +
2Φ(x)

c2
(3.5)

and then you take the non-relativistic limit c → ∞. you recover precisely the correct
Newtonian gravity interaction.

Problem 3.2.* Assume the results from problem 3.1. Take the Newtonian potential
that arises from a spherical object of mass M ,

Φ(r) = −GM
r

(3.6)

and consider two observers. The first, Alice, is relaxing with a picnic on the ground at
radius rA. The second, Bob, is enjoying a romantic trip for one in a hot air balloon,
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a distance rB = rA + ∆r higher. If a time interval ∆TA elapses for Alice, how much
time elapses for Bob?

4. General Relativistic Geodesics

The idea of this section is to go a bit beyond what we can by just using the Newtonian limit
and the equivalence principle and actually do some GR. It may seem like we’re jumping
steps but the point is to get some idea of how actual calculations in GR will look like, and
derive the original experimental tests that confirmed we were on the right track.

Problem 4.1.* Prove that the equations of motion arising from the action (3.4) can
be written as

ẍµ + Γµνρẋ
ν ẋρ =

1

L

dL

dσ
ẋµ (4.1)

Prove that the RHS of this equation is zero if we choose the parameter σ = aτ + b,
where τ is the proper time, defined by (2.4) where we substitute ηµν → gµν(x). These
are called affine parameters.

Conclude that the equations of motion arising from the action (3.4) are the same
as the ones arising from

S =

∫
dτ gµν(x)

dxµ

dτ

dxν

dτ
(4.2)

so long as we supplement them with the constraint

gµν(x)
dxµ

dτ

dxν

dτ
= −c2 (4.3)

Although the original action was only defined for massive particles, nowhere in the
derivation was the value of m needed. This is in accordance with the equivalence principle.
Further (4.2) makes perfect sense for massless particles as well, so long as the constrain
imposed is

gµν(x)
dxµ

dτ

dxν

dτ
= 0 (4.4)

Now consider that the metric takes the form,

ds2 = −
(

1− 2GM

rc2

)
dt2 +

(
1− 2GM

rc2

)−1
dr2 + r2(dθ2 + sin2 θ dφ2) (4.5)

This is the Schwarzschild metric and it describes the spacetime geometry outside a perfectly
spherical object such as a star or a black hole. The coordinates θ and φ are the usual
spherical polar coordinates, with θ ∈ [0, π) and φ ∈ [0, 2π).

For simplicity of notation we usually define the Schwarszschild radius

RS =
2GM

c2
(4.6)

and the function A(r) = 1− 2GM
rc2

, such that the metric now looks like,

ds2 = −A(r) dt2 +A(r)−1 dr2 + r2(dθ2 + sin2 θ dφ2) (4.7)

7



Problem 4.2.* Derive the θ equation of motion arising from (4.7). Check that if
θ = π/2 initially it will remain at that point for all time.

Prove that the angular momentum and the energy of system, defined, respectively
by,

2l =
∂L

∂φ̇
− 2E =

∂L

∂ṫ
(4.8)

are conserved quantities.
Imposing θ̇ = 0, the constraint (4.3), and the conservation of energy and angular

momentum write the equations of motion in the form

1

2
ṙ2 + Veff(r) =

1

2

E2

c2
(4.9)

where the effective potential is given by

Veff(r) =
1

2

(
c2 +

l2

r2

)(
1− 2GM

rc2

)
(4.10)

Prove that, for massless particles, the equation of motion is of the same form, except
the effective potential is now

Vnull(r) =
l2

2r2

(
1− 2GM

rc2

)
(4.11)

Now let’s examine some consequences of these equations. Firstly for massive particles.

Problem 4.3. Take the equation for massive particles (4.9) with (4.10), make the
substitution u = 1/r, and, assuming du/dφ 6= 0, show that it implies

d2u

dφ2
+ u− GM

l2
= β

l2u2

GM
(4.12)

where

β =
3G2M2

l2c2
(4.13)

(Hint: Use the definition of l when going from derivatives wrt to τ to derivatives wrt
φ)

Now assume β � 1 and expand in powers of β,

u = u0 + βu1 + . . . (4.14)

Show that, at 0th order, the equation of motion is

d2u0
dφ2

+ u0 −
GM

l2
= 0 (4.15)

which is solved by

u0(φ) =
GM

l2
(1 + e cosφ) (4.16)

where e is the eccentricity, a free parameter. This is the Newtonian prediction for the
motion of the particle. Note that it is periodic in φ.

Now show that, at 1st order, the equation of motion is
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d2u1
dφ2

+ u1 =
l2

GM
u20 (4.17)

which is solved by

u1(φ) =
GM

l2

[(
1 +

e2

2

)
+ eφ sinφ− e2

6
cos(2φ)

]
(4.18)

Interestingly, the GR correction to the Newtonian prediction is no longer periodic
in φ due to the φ sinφ term. This means that the angular value at which the particle
is closest to the origin, called the perihelion, will change with time.

These points will be extrema of u(φ). Check that both at φ = 0 and at φ = 2π+ δ
u(φ) has an extremum, calculating the value of δ and neglecting δ2 and βδ terms.

This is called the precession of the perihelion and it was famously measured for
Mercury, verifying the general relativistic prediction.

And finally, for massless particles,

Problem 4.4. By once again making the substitution u = 1/r show that the equation
of motion for a massless particle is

d2u

dφ2
+ u =

3GM

c2
u2 (4.19)

Show that, ignoring the RHS, the solution can be written as

u =
1

b
sinφ (4.20)

for constant b. What is the interpretation of b? (Hint: write the solution in terms of
r).

Now work perturbatively in

β̃ =
GM

c2b
(4.21)

by defining
u = u0 + β̃u1 + . . . (4.22)

By starting with u0 = 1
b sinφ at 0th order show that the equation for u1 at 1st order

is

d2u1
dφ2

+ u1 =
3 sin2 φ

b
(4.23)

which is solved by

u1 =
1

2b
(3 + 4 cosφ+ cos(2φ)) (4.24)

Show that the angle at which the particle escapes to r =∞ is now, approximately,

φ ≈ −4GM

bc2
(4.25)
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