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Recommended Books and Resources

There are many decent text books on general relativity. Here are a handful that I like:

• Sean Carroll, “Spacetime and Geometry”

A straightforward and clear introduction to the subject.

• Bob Wald, “General Relativity”

The go-to relativity book for relativists.

• Steven Weinberg, “Gravitation and Cosmology”

The go-to relativity book for particle physicists.

• Misner, Thorne and Wheeler, “Gravitation”

Extraordinary and ridiculous in equal measure, this book covers an insane amount of

material but with genuinely excellent explanations. Now, is that track 1 or track 2?

• Tony Zee, “Einstein Gravity in a Nutshell”

Professor Zee likes a bit of a chat. So settle down, prepare yourself for more tangents

than Tp(M), and enjoy this entertaining, but not particularly concise, meander through

the subject.

• Nakahara, “Geometry, Topology and Physics”

A really excellent book that will satisfy your geometrical and topological needs for this

course and much beyond. It is particularly useful for Sections 2 and 3 of these lectures

where we cover di↵erential geometry.

A number of excellent lecture notes are available on the web, including an

early version of Sean Carroll’s book. Links can be found on the course webpage:

http://www.damtp.cam.ac.uk/user/tong/gr.html.
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the lecture notes on Cosmology and on String Theory. There is some mild logic behind

this choice. When thinking about geometry, the choice (� + ++) is preferable as it

ensures that spatial distances are positive; when thinking about quantum physics, the

choice (+���) is preferable as it ensures that frequencies and energies are positive1.

Ultimately you just need to get used to both conventions.

When dealing with physics, spacetime indices are greek µ, ⌫ = 0, 1, 2, 3, spatial indices

are roman i, j = 1, 2, 3.

1Professor Gary Gibbons assures me that there is no excuse to ever use the mostly minus signature
and the argument about positive frequencies conflates two di↵erent meanings of i.
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0. Introduction

General relativity is the theory of space and time and gravity. The essence of the

theory is simple: gravity is geometry. The e↵ects that we attribute to the force of

gravity are due to the bending and warping of spacetime, from falling cats, to orbiting

spinning planets, to the motion of the cosmos on the grandest scale. The purpose of

these lectures is to explain this.

Before we jump into a description of curved spacetime, we should first explain why

Newton’s theory of gravity, a theory which served us well for 250 years, needs replac-

ing. The problems arise when we think about disturbances in the gravitational field.

Suppose, for example, that the Sun was to explode. What would we see? Well, for 8

glorious minutes – the time that it takes light to reach us from the Sun – we would

continue to bathe in the Sun’s light, completely oblivious to the fate that awaits us.

But what about the motion of the Earth? If the Sun’s mass distribution changed dra-

matically, one might think that the Earth would start to deviate from its elliptic orbit.

But when does this happen? Does it occur immediately, or does the Earth continue in

its orbit for 8 minutes before it notices the change?

Of course, the theory of special relativity tells us the answer. Since no signal can

propagate faster than the speed of light, the Earth must continue on its orbit for 8

minutes. But how is the information that the Sun has exploded then transmitted?

Does the information also travel at the speed of light? What is the medium that

carries this information? As we will see throughout these lectures, the answers to these

questions forces us to revisit some of our most basic notions about the meaning of space

and time and opens the to door to some of the greatest ideas in modern physics such

as cosmology and black holes.

A Field Theory of Gravity

There is a well trodden path in physics when trying to understand how objects can

influence other objects far away. We introduce the concept of a field. This is a physical

quantity which exists everywhere in space and time; the most familiar examples are

the electric and magnetic fields. When a charge moves, it creates a disturbance in the

electromagnetic field, ripples of which propagate through space until they reach other

charges. To develop a causal theory of gravity, we must introduce a gravitational field

that responds to mass in some way.
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It’s a simple matter to cast Newtonian gravity in terms of a field theory. A particle

of mass m experiences a force that can be written as

F = �mr�

The gravitational field �(r, t) is determined by the surrounding matter distribution

which is described by the mass density ⇢(r, t). If the matter density is static, so that

⇢(r) is independent of time, then the gravitational field obeys

r2� = 4⇡G⇢ (0.1)

with Newton’s constant G given by

G ⇡ 6.67⇥ 10�11 m3 kg�1 s�2

This equation is simply a rewriting of the usual inverse square law of Newton. For

example, if a mass M is concentrated at a single point we have

⇢(r) = M�3(r) ) � = �GM

r

which is the familiar gravitational field for a point mass.

The question that we would like to answer is: how should we modify (0.1) when the

mass distribution ⇢(r, t) changes with time? Of course, we could simply postulate that

(0.1) continues to hold even in this case. A change in ⇢ would then immediately result

in a change of � throughout all of space. Such a theory clearly isn’t consistent with

the requirement that no signal can travel faster than light. Our goal is to figure out

how to generalise (0.1) in a manner that is compatible with the postulates of special

relativity. The end result of this goal will be a theory of gravity that is compatible

with special relativity: this is the general theory of relativity.

The Analogy with Electromagnetism

The goal that we’ve set ourselves above looks very similar to the problem of finding a

relativistic generalization of electrostatics. After all, we learn very early in our physics

lives that when objects are stationary, the force due to gravity takes exactly the same

inverse-square form as the force due to electric charge. It’s worth pausing to see why

this analogy does not continue when objects move and the resulting Einstein equations

of general relativity are considerably more complicated than the Maxwell equations of

electromagnetism.
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Let’s start by considering the situation of electrostatics. A particle of charge q

experiences a force

F = �qr�

where the electric potential � is determined by the surrounding charge distribution.

Let’s call the charge density ⇢e(r), with the subscript e to distinguish it from the

matter distribution. Then the electric potential is given by

r2�e = �⇢e
✏0

Apart from a minus sign and a relabelling of the coupling constant (G ! 1/4⇡✏0), this

formulation looks identical to the Newtonian gravitational potential (0.1). Yet there

is a crucial di↵erence that is all important when it comes to making these equations

consistent with special relativity. This di↵erence lies in the objects which source the

potential.

For electromagnetism, the source is the charge density ⇢e. By definition, this is the

electric charge per spatial volume, ⇢e ⇠ Q/Vol. The electric charge Q is something all

observers can agree on. But observers moving at di↵erent speeds will measure di↵erent

spatial volumes due to Lorentz contraction. This means that ⇢e is not itself a Lorentz

invariant object. Indeed, in the full Maxwell equations ⇢e appears as the component in

a 4-vector, accompanied by the charge density current je,

Jµ =

 
⇢ec

je

!

If you want a heuristic argument for why the charge density ⇢e is the temporal compo-

nent of the 4-vector, you could think of spatial volume as a four-dimensional volume

divided by time: Vol3 ⇠ Vol4/Time. The four-dimensional volume is a Lorentz invari-

ant which means that under a Lorentz transformation, ⇢e should change in the same

way as time.

The fact that the source Jµ is a 4-vector is directly related to the fact that the

fundamental field in electromagnetism is also a 4-vector

Aµ =

 
�/c

A

!

whereA is the 3-vector potential. From this we can go on to construct the familiar elec-

tric and magnetic fields. More details can be found in the lectures on Electromagnetism.
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Now let’s see what’s di↵erent in the case of gravity. The gravitational field is sourced

by the mass density ⇢. But we know that in special relativity mass is just a form

of energy. This suggests, correctly, that the gravitational field should be sourced by

energy density. However, in contrast to electric charge, energy is not something that all

observers can agree on. Instead, energy is itself the temporal component of a 4-vector

which also includes momentum. This means that if energy sources the gravitational

field, then momentum must too.

Yet now we have to also take into account that it is the energy density and momentum

density which are important. So each of these four components must itself be the

temporal component of a four-vector! The energy density ⇢ is accompanied by an

energy density current that we’ll call j. Meanwhile, the momentum density in the ith

direction – let’s call it pi – has an associated current Ti. These i = 1, 2, 3 vectors Ti

can also be written as a 3⇥ 3 matrix T ij. The end result is that if we want a theory of

gravity consistent with special relativity, then the object that sources the gravitational

field must be a 4⇥ 4 matrix,

T µ⌫ ⇠
 
⇢c pc

j T

!

Happily, a matrix of this form is something that arises naturally in classical physics. It

has di↵erent names depending on how lazy people are feeling. It is sometimes known

as the energy-momentum tensor, sometimes as the energy-momentum-stress tensor or

sometimes just the stress tensor. We will describe some properties of this tensor in

Section 4.5.

In some sense, all the beautiful complications that arise in general relativity can

be traced back to the fact that the source for gravity is a matrix T µ⌫ . In analogy

with electromagnetism, we may expect that the associated gravitational field is also a

matrix, hµ⌫ , and this is indeed the case. The Newtonian gravitational field � is merely

the upper-left component of this matrix, h00 ⇠ �.

However, not all of general relativity follows from such simple considerations. The

wonderful surprise awaiting us is that the matrix hµ⌫ is, at heart, a geometrical object:

it describes the curvature of spacetime.

When is a Relativistic Theory of Gravity Important

We can simply estimate the size of relativistic e↵ects in gravity. What follows is really

nothing more than dimensional analysis, with a small story attached to make it sound
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more compelling. Consider a planet in orbit around a star of mass M . If we assume a

circular orbit, the speed of the planet is easily computed by equating the gravitational

force with the centripetal force,

v2

r
=

GM

r2

Relativistic e↵ects become important when v2/c2 gets close to one. This tells us that

the relevant, dimensionless parameter that governs relativistic corrections to Newton’s

law of gravity is ⇠ GM/rc2.

A slightly better way of saying this is as follows: the fundamental constants G and

c2 allow us to take any mass M and convert it into a distance scale. As we will see

later, it is convenient to define this to be

Rs =
2GM

c2

This is known as the Schwarzschild radius. Relativistic corrections to gravity are then

governed by Rs/r.

In most situations, relativistic corrections to the gravitational force are very small.

We can, for example, look at how big we expect relativistic e↵ects to be for the Earth

or for the Sun:

• For our planet Earth, Rs ⇡ 10�2 m. The radius of the Earth is around 6000 km,

which means that relativistic e↵ects give corrections to Newtonian gravity on the

surface of Earth of order 10�8. Satellites orbit at Rs/r ⇡ 10�9. These are small

numbers.

• For the Sun, Rs ⇡ 3 km. At the surface of the Sun, r ⇡ 7 ⇥ 105 km, and

Rs/r ⇡ 10�6. Meanwhile, the typical distance of the inner planets is ⇠ 108 km,

giving Rs/r ⇡ 10�8. Again, these are small numbers.

Nonetheless, in both cases there are beautiful experiments that confirm the relativistic

theory of gravity. We shall meet some of these as we proceed.

There are, however, places in Nature where large relativistic e↵ects are important.

One of the most striking is the phenomenon of black holes and, as observational tech-

niques improve, we are gaining increasingly more information about these most extreme

of environments.
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1. Geodesics in Spacetime

Classical theories of physics involve two di↵erent objects: particles and fields. The

fields tell the particles how to move, and the particles tell the fields how to sway. For

each of these, we need a set of equations.

In the theory of electromagnetism, the swaying of the fields is governed by the

Maxwell equations, while the motion of test particles is dictated by the Lorentz force

law. Similarly, for gravity we have two di↵erent sets of equations. The swaying of the

fields is governed by the Einstein equations, which describe the bending and curving

of spacetime. We will need to develop some mathematical machinery before we can

describe these equations; we will finally see them in Section 4.

Our goal in this section is to develop the analog of the Lorentz force law for gravity. As

we will see, this is the question of how test particles move in a fixed, curved spacetime.

Along the way, we will start to develop some language to describe curved spacetime.

This will sow some intuition which we will then make mathematically precise in later

sections.

The Principle of Least Action

Our tool of choice throughout these lectures is the action. The advantage of the action

is that it makes various symmetries manifest. And, as we shall see, there are some

deep symmetries in the theory of general relativity that must be maintained. This

greatly limits the kinds of equations which we can consider and, ultimately, will lead

us inexorably to the Einstein equations.

We start here with a lightening review of the principle of least action. (A more

detailed discussion can be found in the lectures on Classical Dynamics.) We describe

the position of a particle by coordinates xi where, for now, we take i = 1, 2, 3 for a

particle moving in three-dimensional space. Importantly, there is no need to identify the

coordinates xi with the (x, y, z) axes of Euclidean space; they could be any coordinate

system of your choice.

We want a way to describe how the particle moves between fixed initial and final

positions,

xi(t1) = xi

initial
and xi(t2) = xi

final
(1.1)

To do this, we consider all possible paths xi(t), subject to the boundary conditions

above. To each of these paths, we assign a number called the action S. This is defined
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as

S[xi(t)] =

Z
t2

t1

dt L(xi(t), ẋi(t))

where the function L(xi, ẋi) is the Lagrangian which specifies the dynamics of the

system. The action is a functional; this means that you hand it an entire function

worth of information, xi(t), and it spits back only a single number.

The principle of least action is the statement that the true path taken by the particle

is an extremum of S. Although this is a statement about the path as a whole, it is

entirely equivalent to a set of di↵erential equations which govern the dynamics. These

are known as the Euler-Lagrange equations.

To derive the Euler-Lagrange equations, we think about how the action changes if

we take a given path and vary it slightly,

xi(t) ! xi(t) + �xi(t)

We need to keep the end points of the path fixed, so we demand that �xi(t1) = �xi(t2) =

0. The change in the action is then

�S =

Z
t2

t1

dt �L =

Z
t2

t1

dt

✓
@L

@xi
�xi +

@L

@ẋi
�ẋi

◆

=

Z
t2

t1

dt

✓
@L

@xi
� d

dt

✓
@L

@ẋi

◆◆
�xi +


@L

@ẋi
�xi

�t2

t1

where we have integrated by parts to go to the second line. The final term vanishes

because we have fixed the end points of the path. A path xi(t) is an extremum of the

action if and only if �S = 0 for all variations �xi(t). We see that this is equivalent to

the Euler-Lagrange equations

@L

@xi
� d

dt

✓
@L

@ẋi

◆
= 0 (1.2)

Our goal in this section is to write down the Lagrangian and action which govern

particles moving in curved space and, ultimately, curved spacetime.

1.1 Non-Relativistic Particles

Let’s start by forgetting about special relativity and spacetime and focus instead on the

non-relativistic motion of a particle in curved space. Mathematically, these spaces are

known as manifolds, and the study of curved manifolds is known as Riemannian geom-

etry. However, for much of this section we will dispense with any formal mathematical

definitions and instead focus attention on the physics.
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1.1.1 The Geodesic Equation

We begin with something very familiar: the non-relativistic motion of a particle of mass

m in flat Euclidean space R3. For once, the coordinates xi = (x, y, z) actually are the

usual Cartesian coordinates. The Lagrangian that describes the motion is simply the

kinetic energy,

L =
1

2
m(ẋ2 + ẏ2 + ż2) (1.3)

The Euler-Lagrange equations (1.2) applied to this Lagrangian simply tell us that

ẍi = 0, which is the statement that free particles move at constant velocity in straight

lines.

Now we want to generalise this discussion to particles moving on a curved space.

First, we need a way to describe curved space. We will develop the relevant mathematics

in Sections 2 and 3 but here we o↵er a simple perspective. We describe curved spaces

by specifying the infinitesimal distance between any two points, xi and xi+dxi, known

as the line element. The most general form is

ds2 = gij(x) dx
idxj (1.4)

where the 3 ⇥ 3 matrix gij is called the metric. The metric is symmetric: gij = gji
since the anti-symmetric part drops out of the distance when contracted with dxidxj.

We further assume that the metric is positive definite and non-degenerate, so that its

inverse exists. The fact that gij is a function of the coordinates x simply tells us that

the distance between the two points xi and xi + dxi depends on where you are.

Before we proceed, a quick comment: it matters in this subject whether the indices

i, j are up or down. We’ll understand this better in Section 2 but, for now, remember

that coordinates have superscripts while the metric has two subscripts.

We’ll see plenty of examples of metrics in this course. Before we introduce some

of the simpler metrics, let’s first push on and understand how a particle moves in the

presence of a metric. The Lagrangian governing the motion of the particle is the obvious

generalization of (1.3)

L =
m

2
gij(x)ẋ

iẋj (1.5)

It is a simple matter to compute the Euler-Lagrange equations (1.2) that arise from

this action. It is really just an exercise in index notation and, in particular, making
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sure that we don’t inadvertently use the same index twice. Since it’s important, we

proceed slowly. We have

@L

@xi
=

m

2

@gjk
@xi

ẋjẋk

where we’ve been careful to relabel the indices on the metric so that the i index matches

on both sides. Similarly, we have

@L

@ẋi
= mgikẋ

k ) d

dt

✓
@L

@ẋi

◆
= m

@gik
@xj

ẋjẋk +mgikẍ
k

Putting these together, the Euler-Lagrange equation (1.2) becomes

gikẍ
k +

✓
@gik
@xj

� 1

2

@gjk
@xi

◆
ẋjẋk = 0

Because the term in brackets is contracted with ẋjẋk, only the symmetric part con-

tributes. We can make this obvious by rewriting this equation as

gikẍ
k +

1

2

✓
@gik
@xj

+
@gij
@xk

� @gjk
@xi

◆
ẋjẋk = 0 (1.6)

Finally, there’s one last manoeuvre: we multiply the whole equation by the inverse

metric, g�1, so that we get an equation of the form ẍk = . . .. We denote the inverse

metric g�1 simply by raising the indices on the metric, from subscripts to superscripts.

This means that the inverse metric is denoted gij. By definition, it satisfies

gijgjk = �i
k

Finally, taking the opportunity to relabel some of the indices, the equation of motion

for the particle is written as

ẍi + �i

jk
ẋjẋk = 0 (1.7)

where

�i

jk
(x) =

1

2
gil
✓
@glj
@xk

+
@glk
@xj

� @gjk
@xl

◆
(1.8)

These coe�cients are called the Christo↵el symbols. By construction, they are symmet-

ric in their lower indicies: �i

jk
= �i

kj
. They will play a very important role in everything

that follows. The equation of motion (1.7) is the geodesic equation and solutions to this

equation are known as geodesics.
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A Trivial Example: Flat Space Again

Let’s start by considering flat spaceR3. Pythagoras taught us how to measure distances

using his friend, Descartes’ coordinates,

ds2 = dx2 + dy2 + dz2 (1.9)

Suppose that we work in polar coordinates rather than Cartestian coordinates. The

relationship between the two is given by

x = r sin ✓ cos�

y = r sin ✓ sin�

z = r cos ✓

In polar coordinates, the infinitesimal distance between two points can be simply de-

rived by substituting the above relations into (1.9). A little algebra yields,

ds2 = dr2 + r2d✓2 + r2 sin2 ✓ d�2

In this case, the metric (and therefore also its inverse) are diagonal. They are

gij =

0

BB@

1 0 0

0 r2 0

0 0 r2 sin2 ✓

1

CCA and gij =

0

BB@

1 0 0

0 r�2 0

0 0 (r2 sin2 ✓)�1

1

CCA

where the matrix components run over i, j = r, ✓,�. From this we can easily compute

the Christo↵el symbols. The non-vanishing components are

�r

✓✓
= �r , �r

��
= �r sin2 ✓ , �✓

✓r
= �✓

r✓
=

1

r

�✓

��
= � sin ✓ cos ✓ , ��

�r
= ��

r�
=

1

r
, ��

✓�
= ��

�✓
=

cos ✓

sin ✓
(1.10)

There are some important lessons here. First, � 6= 0 does not necessarily mean that

the space is curved. Non-vanishing Christo↵el symbols can arise, as here, simply from

a change of coordinates. As the course progresses, we will develop a diagnostic to

determine whether space is really curved or whether it’s an artefact of the coordinates

we’re using.

The second lesson is that it’s often a royal pain to compute the Christo↵el symbols

using (1.8). If we wished, we could substitute the Christo↵el symbols into the geodesic

equation (1.7) to determine the equations of motion. However, it’s typically easier to
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revert back to the original action and determine the equations of motion directly. In

the present case, we have

S =
m

2

Z
dt
⇣
ṙ2 + r2✓̇2 + r2 sin2 ✓ �̇2

⌘
(1.11)

and the resulting Euler-Lagrange equations are

r̈ = r✓̇2 + r sin2 ✓�̇2 ,
d

dt
(r2✓̇) = r2 sin ✓ cos ✓�̇2 ,

d

dt
(r2 sin2 ✓�̇) = 0 (1.12)

These are nothing more than the equations for a straight line described in polar coor-

dinates. The quickest way to extract the Christo↵el symbols is usually to compute the

equations of motion from the action, and then compare them to the geodesic equation

(1.7), taking care of the symmetry properties along the way.

A Slightly Less Trivial Example: S2

The above description of R3 in polar coordinates allows us to immediately describe a

situation in which the space is truly curved: motion on the two-dimensional sphere S2.

This is achieved simply by setting the radial coordinate r to some constant value, say

r = R. We can substitute this constraint into the action (1.11) to get the action for a

particle moving on the sphere,

S =
mR2

2

Z
dt
⇣
✓̇2 + sin2 ✓ �̇2

⌘

Similarly, the equations of motion are given by (1.12), with the restriction r = R and

ṙ = 0. The solutions are great circles, which are geodesics on the sphere. To see this in

general is a little complicated, but we can use the rotational invariance to aid us. We

rotate the sphere to ensure that the starting point is ✓0 = ⇡/2 and the initial velocity

is ✓̇ = 0. In this case, it is simple to check that solutions take the form ✓ = ⇡/2 and

� = ⌦t for some ⌦, which are great circles running around the equator.

1.2 Relativistic Particles

Having developed the tools to describe motion in curved space, our next step is to

consider the relativistic generalization to curved spacetime. But before we get to this,

we first need to see how to extend the Lagrangian method to be compatible with

special relativity. An introduction to special relativity can be found in the lectures on

Dynamics and Relativity.
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1.2.1 A Particle in Minkowski Spacetime

Let’s start by considering a particle moving in Minkowski spacetime R1,3. We’ll work

with Cartestian coordinates xµ = (ct, x, y, z) and the Minkowski metric

⌘µ⌫ = diag(�1,+1,+1,+1)

The distance between two neighbouring points labelled by xµ and xµ + dxµ is then

given by

ds2 = ⌘µ⌫dx
µdx⌫

Pairs of points with ds2 < 0 are said to be timelike separated; those for which ds2 > 0

are spacelike separated; and those for which ds2 = 0 are said to be lightlike separated

or, more commonly, null.

Consider the path of a particle through spacetime. In the previous section, we

labelled positions along the path using the time coordinate t for some inertial observer.

But to build a relativistic description of the particle motion, we want time to sit on

much the same footing as the spatial coordinates. For this reason, we will introduce

a new parameter – let’s call it � – which labels where we are along the worldline of

the trajectory. For now it doesn’t matter what parameterisation we choose; we will

only ask that � increases monotonically along the trajectory. We’ll label the start

and end points of the trajectory by �1 and �2 respectively, with xµ(�1) = xµ

initial
and

xµ(�2) = xµ

final
.

The action for a relativistic particle has a nice geometric interpretation: it extremises

the distance between the starting and end points in Minkowski space. A particle with

rest mass m follows a timelike trajectory, for which any two points on the curve have

ds2 < 0. We therefore take the action to be

S = �mc

Z
xfinal

xinitial

p
�ds2

= �mc

Z
�2

�1

d�

r
�⌘µ⌫

dxµ

d�

dx⌫

d�
(1.13)

The coe�cients in front ensure that the action has dimensions [S] = Energy⇥Time as

it should. (The action always has the same dimensions as ~. If you work in units with

~ = 1 then the action should be dimensionless.)
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The action (1.13) has two di↵erent symmetries, with rather di↵erent interpretations.

• Lorentz Invariance: Recall that a Lorentz transformation is a rotation in space-

time. This acts as

xµ ! ⇤µ

⇢
x⇢ (1.14)

where the matrix ⇤µ

⌫
obeys ⇤µ

⇢
⌘µ⌫⇤⌫

�
= ⌘⇢�, which is the definition of a Lorentz

transformation, encompassing both rotations in space and boosts. Equivalently,

⇤ 2 O(1, 3). This is a symmetry in the sense that if we find a solution to the

equations of motion, then we can act with a Lorentz transformation to generate

a new solution.

• Reparameterisation invariance: We introduced � as an arbitrary parameterisation

of the path. But we don’t want the equations of motion to depend on this choice.

Thankfully all is good, because the action itself does not depend on the choice of

parameterisation. To see this, suppose that we picked a di↵erent parameterisation

of the path, �̃, related to the first parameterisation by a monotonic function �̃(�).

Then we could equally as well construct an action S̃ using this new parameter,

given by

S̃ = �mc

Z
�̃2

�̃1

d�̃

r
�⌘µ⌫

dxµ

d�̃

dx⌫

d�̃

= �mc

Z
�2

�1

d�
d�̃

d�

s

�⌘µ⌫
dxµ

d�

dx⌫

d�

✓
d�

d�̃

◆2

= S

As promised, the action takes the same form regardless of whether we choose to

parameterise the path in terms of � or �̃. This is reparameterisation invariance.

This is not a symmetry, in the sense that it does not generate new solutions

from old ones. Instead, it is a redundancy in the way we describe the system.

It is similar to the gauge “symmetry” of Maxwell and Yang-Mills theory which,

despite the name, is also a redundancy rather than a symmetry.

It is hard to overstate the importance of the concept of reparameterisation invari-

ance. A major theme of these lectures is that our theories of physics should not depend

on the way we choose to parameterise them. We’ll see this again when we come to

describe the field equations of general relativity. For now, we’ll look at a couple of

implications of reparameterisation on the worldline.
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Proper Time

Because the action is independent of the parameterisation of the worldline, the value

of the action evaluated between two points on a given path has an intrinsic meaning.

We call this value proper time. For a given path xµ(�0), the proper time between two

points, say �0 = 0 and �0 = �, is

⌧(�) =
1

c

Z
�

0

d�0

r
�gµ⌫(x)

dxµ

d�0

dx⌫

d�0
(1.15)

From our first foray into Special Relativity, we recognise this as the time experienced

by the particle itself.

Identifying the action with the proper time means that the particle takes a path

that extremises the proper time. In Minkowski space, it is simple to check that the

proper time between two timelike-separated points is maximised by a straight line, a

fact known as the twin paradox.

1.2.2 Why You Get Old

There’s a crucial di↵erence between moving in Euclidean space and moving in Minkowski

spacetime. You’re not obliged to move in Euclidean space. You can just stop if you

want to. In contrast, you can never stop moving in a timelike direction in Minkowski

spacetime. You will, sadly, always be dragged inexorably towards the future.

Any relativistic formulation of particle mechanics must capture this basic fact. To

see how it arises from the action (1.13), we can compute the momentum conjugate to

xµ,

pµ =
dL

dẋµ
(1.16)

with ẋµ = dxµ/d�. For the action L = �mc
p
�⌘µ⌫ ẋµẋ⌫ , we have

pµ = mc
⌘µ⌫ ẋ⌫

p
�⌘⇢�ẋ⇢ẋ�

= �m2c2

L
⌘µ⌫ ẋ

⌫ (1.17)

But not all four components of the momentum are independent. To see this, we need

only compute the square of the 4-momentum to find

p · p ⌘ ⌘µ⌫p
µp⌫ =

m4c4

L2
⌘µ⌫ ẋ

µẋ⌫ = �m2c2 (1.18)

Rearranging gives

(p0)2 = p2 +m2c2

In particular, we see that we must have p0 6= 0: the particle is obliged to move in the

time direction.
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Part of this story is familiar. The condition (1.18) is closely related to the usual

condition on the 4-momentum that we met in our earlier lectures on Special Relativity.

There, we defined the 4-velocity Uµ and 4-momentum P µ as

Uµ =
dxµ

d⌧
and P µ = m

dxµ

d⌧

This is a special case of (1.16), where we choose to parameterise the worldline by the

proper time ⌧ itself. The definition of the proper time (1.15) means that d⌧/d� =

�L/mc2. Comparing to the canonical momentum (1.17), we see that it coincides with

the older definition above: P µ ⌘ pµ.

However, part of this story is likely unfamiliar. Viewed from the perspective of

classical dynamics, it is perhaps surprising to see that the momenta pµ are not all

independent. After all, this didn’t arise in any of the examples of Lagrangians that we

met in our previous course on Classical Dynamics. This novel feature can be traced to

the existence of reparameterisation invariance, meaning that there was a redundancy

in our original description. Indeed, whenever theories have such a redundancy there

will be some constraint analogous to (1.18). (In the context of electromagnetism, this

constraint is called Gauss law.)

There is another way to view this. The relativistic action (1.13) appears to have four

dynamical degrees of freedom, xµ(�). This should be contrasted with the three degrees

of freedom xi(t) in the non-relativistic action (1.5). Yet the number of degrees of free-

dom is one of the most basic ways to characterise a system, with physical consequences

such as the heat capacity of gases. Why should we suddenly increase the number of

degrees of freedom just because we want our description to be compatible with special

relativity? The answer is that, because of reparameterisation invariance, not all four

degrees of freedom xµ are physical. To see this, suppose that you solve the equations of

motion to find the path xµ(�) (as we will do shortly). In most dynamical systems, each

of these four functions would tell you something about the physical trajectory. But,

for us, reparameterisation invariance means that there is no actual information in the

value of �. To find the physical path, we should eliminate � to find the relationship

between the xµ. The net result is that the relativistic system only has three physical

degrees of freedom after all.

As an example, we are perfectly at liberty to choose the parameterisation of the path

to coincide with the time t for some inertial observer: � = t. The action (1.13) then

becomes

S = �mc2
Z

t2

t1

dt

r
1� ẋ2

c2
(1.19)
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where here ẋ = dx/dt. This is the action for a relativistic particle in some particular

inertial frame, which exhibits the famous factor

� =
1p

1� ẋ2/c2

that is omnipresent in formulae in special relativity. We now see clearly that the action

has only three degrees of freedom, x(t). However, the price we’ve paid is that the

Lorentz invariance (1.14) is now rather hidden, since space x and time t sit on very

di↵erent footing.

1.2.3 Rediscovering the Forces of Nature

So far, we’ve only succeeded in writing down the action for a free relativistic particle

(1.13). We would now like to add some extra terms to the action to describe a force

acting on the particle. In the non-relativistic context, we do this by adding a potential

Snon�rel =

Z
dt
hm
2
ẋ2 � V (x)

i

However, now we want to write down an action for a relativistic particle that depends

on xµ(�). But it’s crucial that we retain reparameterisation invariance, since we want

to keep the features that this brings. This greatly limits the kind of terms that we can

add to the action. It turns out that there are two, di↵erent ways to introduce forces

that preserve our precious reparameterisations.

Rediscovering Electromagnetism

Rather than jumping straight into the reparameterisation invariant action (1.13), we in-

stead start by modifying the action (1.19). We’ll then try to guess a reparameterisation

invariant form which gives the answer we want. To this end, we consider

S1 =

Z
t2

t1

dt

"
�mc2

r
1� ẋ2

c2
� V (x)

#

and ask: how can this come from a reparameterisation invariant action?

We can’t just add a term
R
d� V (x) to the relativistic action (1.13); this is not

invariant under reparameterisations. To get something that works, we have to find

a way to cancel the Jacobian factor that comes from reparameterisations of the d�

measure. One option that we could explore is to introduce a term linear in ẋµ. But

then, to preserve Lorentz invariance, we need to contract the µ index on ẋµ with
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something. This motivates us to introduce four functions of the spacetime coordinates

Aµ(x). We then write the action

S1 =

Z
�2

�1

d�

"
�mc

r
�⌘µ⌫

dxµ

d�

dx⌫

d�
� qAµ(x)ẋ

µ

#
(1.20)

where q is some number, associated to the particle, that characterises the strength with

which it couples to the new term Aµ(x). It’s simple to check that the action (1.20)

does indeed have reparameterisation invariance.

To understand the physics of this new term, we again pick the worldline parameter

to coincide with the time of some inertial observer, � = t so that dx0/d� = c. If we

write Aµ(x) = (�(x)/c,A(x)), then we find

S1 =

Z
�2

�1

d�

"
�mc2

r
1� ẋ2

c2
� q�(x)� qA(x) · ẋ

#

We see that the A0 term gives us a potential V (x) = q�(x) of the kind we wanted.

But Lorentz invariance means that this is accompanied by an additional A · ẋ term.

We have, of course, met both of these terms previously: they describe a particle of

electric charge q moving in the background of an electromagnetic field described by

gauge potentials �(x) and A(x). In other words, we have rediscovered the Lorentz

force law of electromagnetism.

There is a slight generalisation of this argument, in which the particle carries some

extra internal degrees of freedom, that results in the mathematical structure of Yang-

Mills, the theory that underlies the weak and strong nuclear force. You can read more

about this in the lecture notes on Gauge Theory.

Rediscovering Gravity

To describe the force of gravity, we must make a rather di↵erent modification to our

action. This time we consider the generalisation of (1.19) given by the action

S2 =

Z
t2

t1

dt

"
�mc2

r
1 +

2�(x)

c2
� ẋ2

c2

#
(1.21)

If we Taylor expand the square-root, assuming that |ẋ| ⌧ c2 and that 2�(x) ⌧ c2,

then the leading terms give

S2 =

Z
t2

t1

dt
h
�mc2 +

m

2
ẋ2 �m�(x) + . . .

i
(1.22)
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The first term is an irrelevant constant. (It is the rest mass energy of the particle.)

But the next two terms describe the non-relativistic motion of a particle moving in a

potential V (x) = m�(x).

Why should we identify this potential with the force of gravity, rather than some

other random force? It’s because the strength of the force is necessarily proportional

to the mass m of the particle, which shows up as the coe�cient in the m�(x) term.

This is the defining property of gravity.

In fact, something important but subtle has emerged from our simple discussion:

the same mass m appears in both the kinetic term and the potential term. In the

framework of Newtonian mechanics there is no reason that these coe�cients should be

the same. Indeed, careful treatments refer to the coe�cient of the kinetic term as the

inertial mass mI and the coe�cient of the potential term as the gravitational mass mG.

It is then an experimentally observed fact that

mI = mG (1.23)

to astonishing accuracy (around 10�13). This is known as the equivalence principle.

But our simple-minded discussion above has o↵ered a putative explanation for the

equivalence principle, since the mass m sits in front of the entire action (1.21), ensuring

that both terms have the same origin.

An aside: you might wonder why the function �(x) does not scale as, say, 1/m, in

which case the potential that arises in (1.22) would appear to be independent of m.

This is not allowed. This is because the mass m is a property of the test particle whose

motion we’re describing. Meanwhile the potential �(x) is some field set up by the

background sources, and should be independent of m, just as Aµ(x) is independent of

the charge q of the test particle.

The equality (1.23) is sometimes called the weak equivalence principle. A stronger

version, known as the Einstein equivalence principle says that in any metric there exist

local inertial frames. This is the statement that you can always find coordinates so

that, in some small patch, the metric looks like Minkowski space, and there is no way

to detect the e↵ects of the gravitational field. We will describe this more below and

again in Section 3.3.2.

Finally, we ask: how can we write down a reparameterisation invariant form of the

action (1.21)? To answer this, note that the 1 in
p
1 + . . . came from the ⌘00 term in

the action. If we want to turn this into 1 + 2�(x)/c2, then we should promote ⌘00 to

a function of x. But if we’re going to promote ⌘00 to a function, we should surely do
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the same to all metric components. This means that we introduce a curved spacetime

metric

ds2 = gµ⌫(x)dx
µdx⌫

The metric is a symmetric 4⇥4 matrix, which means that it is specified by 10 functions.

We can then write down the reparameterisation invariant action

S2 = �mc

Z
�2

�1

d�

r
�gµ⌫(x)

dxµ

d�

dx⌫

d�

This describes a particle moving in curved spacetime.

In general, the components of the metric will be determined by the Einstein field

equations. This is entirely analogous to the way in which the gauge potential Aµ(x) in

(1.20) is determined by the Maxwell equation. We will describe the Einstein equations

in Section 4. However, even before we get to the Einstein equations, the story above

tells us that, for weak gravitational fields where the Newtonian picture is valid, we

should identify

g00(x) ⇡ �
✓
1 +

2�(x)

c2

◆
(1.24)

where �(x) is the Newtonian gravitational field.

1.2.4 The Equivalence Principle

A consequence of the weak equivalence principle (1.23) is that it’s not possible to tell the

di↵erence between constant acceleration and a constant gravitational field. Suppose,

for example, that you one day wake up to find yourself trapped inside a box that looks

like an elevator. The equivalence principle says that there’s no way tell whether you

are indeed inside an elevator on Earth, or have been captured by aliens and are now

in the far flung reaches of the cosmos in a spaceship, disguised as an elevator, and

undergoing constant acceleration. (Actually there are two ways to distinguish between

these possibilities. One is common sense. The other is known as tidal forces and will

be described below.)

Conversely, if you wake in the elevator to find yourself weightless, the equivalence

principle says that there is no way to tell whether the engines on your spaceship have

turned themselves o↵, leaving you floating in space, or whether you are still on Earth,

plummeting towards certain death. Both of these are examples of inertial frames.
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We can see how the equivalence principle plays out in more detail in the framework

of spacetime metrics. We will construct a set of coordinates adapted to a uniformly

accelerating observer. We’ll see that, in these coordinates, the metric takes the form

(1.24) but with a linear gravitational potential � of the kind that we would invoke for

a constant gravitational force.

First we need to determine the trajectory of a constantly accelerating observer. This

was a problem that we addressed already in our first lectures on Special Relativity

(see Section 7.4.6 of those notes). Here we give a di↵erent, and somewhat quicker,

derivation.

We will view things from the perspective of an inertial frame, with coordinates

(ct, x, y, z). The elevator will experience a constant acceleration a in the x direction.

We want to know what this looks like in the inertial frame; clearly the trajectory is not

just x = 1

2
at2 since this would soon exceed the speed of light. Instead we need to be

more careful.

Recall that if we do a boost by v1, followed by a boost by v2, the resulting velocity is

v =
v1 + v2

1 + v1v2/c2

This motivates us to define the rapidity ', defined in terms of the velocity v by

v = c tanh'

The rapidity has the nice property that is adds linearly under successive boosts: a

boost '1 followed by a boost '2 is the same as a boost ' = '1 + '2.

A constant acceleration means that the rapidity increases linearly in time, where

here “time” is the accelerating observer’s time, ⌧ . We have ' = a⌧/c and so, from the

perspective of the inertial frame, the velocity of the constantly-accelerating elevator

v(⌧) =
dx

dt
= c tanh

⇣a⌧
c

⌘

To determine the relationship between the observer’s time and the time t in the inertial

frame, we use

dt

d⌧
= �(⌧) =

s
1

1� v2/c2
= cosh

⇣a⌧
c

⌘
) t =

c

a
sinh

⇣a⌧
c

⌘
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Figure 1: A coordinate system for a uniformly accelerating observer.

where we’ve chosen the integration constant so that ⌧ = 0 corresponds to t = 0. Then,

to determine the distance travelled in the inertial frame, we use

v(⌧) =
dx

dt
=

dx

d⌧

d⌧

dt
) dx

d⌧
= c sinh

⇣a⌧
c

⌘
) x =

c2

a
cosh

⇣a⌧
c

⌘
� c2

a

where this time we’ve chosen the integration constant so that the trajectory passes

through the origin. The resulting trajectory is a hyperbola in spacetime, given by

✓
x+

c2

a

◆2

� c2t2 =
c4

a2

This trajectory is shown in red in Figure 1. As ⌧ ! ±1, the trajectory asymptotes to

the straight lines ct = ±(x+ c2/a). These are the dotted lines shown in the figure.

Now let’s consider life from the perspective of guy in the accelerating elevator. What

are the natural coordinates that such an observer would use to describe events elsewhere

in spacetime? Obviously, for events that happen on his own worldline, we can use the

proper time ⌧ . But we would like to extend the definition to assign a time to points in

the whole space. Furthermore, we would like to introduce a spatial coordinate, ⇢, so

that the elevator sits at ⇢ = 0. How to do this?

There is, it turns out, a natural choice of coordinates. First, we draw straight lines

connecting the point (ct, x) = (0,�c2/a) to the point on the trajectory labelled by ⌧

and declare that these are lines of constant ⌧ ; these are the pink lines shown in the
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figure. Next we note that, for any given ⌧ , there is a Lorentz transformation that

maps the x-axis to the pink line of constant ⌧ . We can use this to define the spatial

coordinate ⇢. The upshot is that we have a map between coordinates (ct, x) in the

inertial frame and coordinates (c⌧, ⇢) in the accelerating frame given by

ct =

✓
⇢+

c2

a

◆
sinh

⇣a⌧
c

⌘

x =

✓
⇢+

c2

a

◆
cosh

⇣a⌧
c

⌘
� c2

a
(1.25)

As promised, the line ⇢ = 0 coincides with the trajectory of the accelerating observer.

Moreover, lines of constant ⇢ 6= 0 are also hyperbolae.

The coordinates (c⌧, ⇢) do not cover all of Minkowski space, but only the right-hand

quadrant as shown in Figure 1. This reflects the fact that signals from some regions

will never reach the guy in the elevator. This is closely related to the idea of horizons

in general relativity, a topic we’ll look explore more closely in later sections.

Finally, we can look at the metric experienced by the accelerating observer, using

coordinates ⇢ and ⌧ . We simply substitute the transformation (1.25) into the Minkowski

metric to find

ds2 = �c2dt2 + dx2 + dy2 + dz2 = �
⇣
1 +

a⇢

c2

⌘2
c2d⌧ 2 + d⇢2 + dy2 + dz2

This is the metric of (some part of ) Minkowski space, now in coordinates adapted to

an accelerating observer. These are known as Kottler-Möller coordinates. (They are

closely related to the better known Rindler coordinates. We’ll see Rindler space again

in Section 6.1.2 when we study the horizon of black holes. ) The spatial part of the

metric remains flat, but the temporal component is given by

g00 = �
⇣
1 +

a⇢

c2

⌘2
= �

✓
1 +

2a⇢

c2
+ . . .

◆

where the . . . is simply a2⇢2/c4, but we’ve hidden it because it is sub-leading in 1/c2.

If we compare this metric with the expectation (1.24), we see that the accelerated

observer feels an e↵ective gravitational potential given by

�(⇢) = a⇢

This is the promised manifestation of the equivalence principle: from the perspective

of an uniformly accelerating observer, the acceleration feels indistinguishable from a

linearly increasing gravitational field, corresponding to a constant gravitational force.
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Earth Lab frame

Figure 2: The bad news is that you were, in fact, plummeting to your death after all. This

is shown on the left (not to scale). The good news is that you get to measure a tidal force on

the way down. This is shown on the right.

The Einstein Equivalence Principle

The weak equivalence principle tells us that uniform acceleration is indistinguishable

from a uniform gravitational field. In particular, there is a choice of inertial frame

(i.e. free-fall) in which the e↵ect of the gravitational field vanishes. But what if the

gravitational field is non-uniform?

The Einstein equivalence principle states that there exist local inertial frames, in

which the e↵ects of any gravitational field vanish. Mathematically, this means that

there is always a choice of coordinates — essentially those experienced by a freely

falling observer – which ensures that the metric gµ⌫ looks like Minkowski space about

a given point. (We will exhibit these coordinates and be more precise about their

properties in Section 3.3.2.) The twist to the story is that if the metric looks like

Minkowski space about one point, then it probably won’t look like Minkowski space

about a di↵erent point. This means that if you can do experiments over an extended

region of space, then you can detect the presence of non-uniform gravitational field.

To illustrate this, let’s return to the situation in which you wake, weightless in an

elevator, trying to figure out if you’re floating in space or plummeting to your death.

How can you tell?

Well, you could wait and find out. But suppose you’re impatient. The equivalence

principle says that there is no local experiment you can do that will distinguish between

these two possibilities. But there is a very simple “non-local” experiment: just drop two

test masses separated by some distance. If you’re floating in space, the test masses will

simply float there with you. Similarly, if you’re plummeting towards your death then
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the test masses will plummet with you. However, they will each be attracted to the

centre of the Earth which, for two displaced particles, is in a slightly di↵erent direction

as shown in Figure 2. This means that the trajectories followed by the particles will

slightly converge. From your perspective, this will mean that the two test masses

will get closer. This is not due to their mutual gravitational attraction. (The fact

they’re test masses means we’re ignoring this). Instead, it is an example of a tidal

force that signifies you’re sitting in a non-uniform gravitational field. We will meet the

mathematics behind these tidal forces in Section 3.3.4.

1.2.5 Gravitational Time Dilation

Even before we solve the Einstein equations, we can still build some intuition for the

spacetime metric. As we’ve seen, for weak gravitational fields �(x), we should identify

the temporal component of the metric as

g00(x) = 1 +
2�(x)

c2
(1.26)

This is telling us something profound: there is a connection between time and gravity.

To be concrete, we’ll take the Newtonian potential that arises from a spherical object

of mass M ,

�(r) = �GM

r

The resulting shift in the spacetime metric g00 means that an observer sitting at a fixed

distance r will measure a time interval,

d⌧ 2 = g00 dt
2 =

✓
1� 2GM

rc2

◆
dt2

This means that if an asymptotic observer, at r ! 1, measures time t, then an observer

at distance r will measure time T given by

T (r) = t

r
1� 2GM

rc2

We learn that time goes slower in the presence of a massive, gravitating object.

We can make this more quantitative. Consider two observers. The first, Alice, is

relaxing with a picnic on the ground at radius rA. The second, Bob, is enjoying a

– 24 –



romantic trip for one in a hot air balloon, a distance rB = rA +�r higher. The time

measured by Bob is

TB = t

s

1� 2GM

(rA +�r)c2
⇡ t

s

1� 2GM

rAc2
+

2GM�r

r2
A
c2

⇡ t

r
1� 2GM

rAc2

✓
1 +

GM�r

r2
A
c2

◆
= TA

✓
1 +

GM�r

r2
A
c2

◆

where we’ve done a double expansion, assuming both �r ⌧ rA and 2GM/rAc2 ⌧ 1.

If the hot air balloon flies a distance �r = 1000 m above the ground then, taking the

radius of the Earth to be rA ⇡ 6000 km, the di↵erence in times is of order 10�12. This

means that, over the course of a day, Bob ages by an extra 10�8 seconds or so.

This e↵ect was first measured by Hafele and Keating in the 1970s by flying atomic

clocks around the world on commercial airlines, and has since been repeated a number

of times with improved accuracy. In all cases the resultant time delay, which in the

experiments includes e↵ects from both special and general relativity, was in agreement

with theoretical expectations.

The e↵ect is more pronounced in the vicinity of a black hole. We will see in Section 1.3

that the closest distance that an orbiting planet can come to a black hole is r = 3GM/c2.

(Such orbits are necessarily highly elliptical.) In this case, someone on the planet

experiences time at the rate T =
p
1/3t ⇡ 0.6t, compared to an asymptotic observer

at t ! 1. This e↵ect, while impressive, is unlikely to make a really compelling science

fiction story. For more dramatic results, our bold hero would have to fly her spaceship

close to the Schwarzschild radius Rs = 2GM/c2, later returning to r ! 1 to find

herself substantially younger than the friends and family she left behind.

Gravitational Redshift

There is another measurable consequence of the gravitational time dilation. To see

this, let’s return to Alice on the ground and Bob, above, in his hot air balloon. Bob

is kind of annoying and starts throwing peanuts at Alice. He throws peanuts at time

intervals �TB. Alice receives these peanuts (now travelling at considerable speed) at

time intervals �TA where, as above,

�TA =

s
1 + 2�(rA)/c2

1 + 2�(rB)/c2
�TB ⇡

✓
1 +

�(rA)

c2
� �(rB)

c2

◆
�TB

We have rA < rB, so �(rA) < �(rB) < 0 and, hence, �TA < �TB. In other words,

Alice receives the peanuts at a higher frequency than Bob threw them.
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The story above doesn’t only hold for peanuts. If Bob shines light down at Alice

with frequency !B ⇠ 1/�TB, then Alice will receive it at frequency !A given by

!A ⇡
✓
1 +

�(rA)

c2
� �(rB)

c2

◆�1

!B

This is a higher frequency, !A > !B, or shorter wavelength. We say that the light

has been blueshifted. In contrast, if Alice shines light up at Bob, then the frequency

decreases, and the wavelength is stretched. In this case, we say that the light has been

redshifted as it escapes the gravitational pull. This e↵ect was measured for the first time

by Pound and Rebka in 1959, providing the first earthbound precision test of general

relativity.

There is a cosmological counterpart of this result, in which light is redshifted in

a background expanding space. You can read more about this in the lectures on

Cosmology.

1.2.6 Geodesics in Spacetime

So far, we have focussed entirely on the actions describing particles, and have have yet

to write down an equation of motion, let alone solve one. Now it’s time to address this.

We work with the relativistic action for a particle moving in spacetime

S = �mc

Z
�2

�1

d� L with L =
q
�gµ⌫(x)ẋµẋ⌫ (1.27)

with ẋµ = dxµ/d�. This is similar to the non-relativistic action that we used in Section

1.1.1 when we first introduced geodesics. It di↵ers by the square-root factor. As we

now see, this introduces a minor complication.

To write down Euler-Lagrange equations, we first compute

@L

@x⇢
= � 1

2L

@gµ⌫
@x⇢

ẋµẋ⌫ and
@L

@ẋ⇢
= � 1

L
g⇢⌫ ẋ

⌫

The equations of motion are then

d

d�

✓
@L

@ẋ⇢

◆
� @L

@x⇢
= 0 ) d

d�

✓
1

L
g⇢⌫ ẋ

⌫

◆
� 1

2L

@gµ⌫
@x⇢

ẋµẋ⌫ = 0

This is almost the same as the equations that led us to the geodesics in Section 1.1.1.

There is just one di↵erence: the di↵erentiation d/d� can hit the 1/L, giving an extra

term beyond what we found previously. This can be traced directly to the fact we have

a square-root in our original action.
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Following the same steps that we saw in Section 1.1.1, and relabelling the indices,

the equation of motion can be written as

gµ⇢ẍ
⇢ +

1

2

✓
@gµ⇢
@x⌫

+
@gµ⌫
@x⇢

� @g⌫⇢
@xµ

◆
ẋ⌫ ẋ⇢ =

1

L

dL

d�
gµ⇢ẋ

⇢ (1.28)

This is the relativistic version of the geodesic equation (1.6). We see that the square-

root factor in the action results in the extra term on the right-hand side.

Life would be much nicer if there was some way to ignore this extra term. This would

be true if, for some reason, we could set

dL

d�
?
= 0

Happily, this is within our power. We simply need to pick a choice of parameterisation

of the worldline to make it hold! All we have to do is figure out what parameterisation

makes this work.

In fact, we’ve already met the right choice. Recall that the proper time ⌧(�) is

defined as (1.15)

c⌧(�) =

Z
�

0

d�0 L(�0) =

Z
�

0

d�0

r
�gµ⌫(x)

dxµ

d�0

dx⌫

d�0
(1.29)

This means that, by construction,

c
d⌧

d�
= L(�)

If we then choose to parameterise the path by ⌧ itself, the Lagrangian is

L(⌧) =

r
�gµ⌫(x)

dxµ

d⌧

dx⌫

d⌧
=

d�

d⌧

r
�gµ⌫(x)

dxµ

d�

dx⌫

d�
= c

The upshot of this discussion is that if we parameterise the worldline by proper time

then L = c is a constant and, in particular, dL/d⌧ = 0. In fact this holds for any

parameter related to proper time by

⌧̃ = a⌧ + b

with a and b constants. These are said to be a�ne parameters of the worldline.
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Whenever we pick such an a�ne parameter to label the worldline of a particle, the

right-hand side of the equation of motion (1.28) vanishes. In this case, we are left with

the obvious extension of the geodesic equation (1.7) to curved spacetime

d2xµ

d⌧̃ 2
+ �µ

⌫⇢

dx⌫

d⌧̃

dx⇢

d⌧̃
= 0 (1.30)

where the Christo↵el symbols are given, as in (1.8), by

�µ

⌫⇢
(x) =

1

2
gµ�
✓
@g�⌫
@x⇢

+
@g�⇢
@x⌫

� @g⌫⇢
@x�

◆
(1.31)

A Useful Trick

We’ve gone on something of a roundabout journey. We started in Section 1.1.1 with a

non-relativistic action

S =

Z
dt

m

2
gij(x)ẋ

iẋj

and found that it gives rise to the geodesic equation (1.7).

However, to describe relativistic physics in spacetime, we’ve learned that we need to

incorporate reparameterisation invariance into our formalism resulting in the action

S = �mc

Z
d�

r
�gµ⌫(x)

dxµ

d�

dx⌫

d�

Nonetheless, when we restrict to a very particular parameterisation – the proper time ⌧

– we find exactly the same geodesic equation (1.30) that we met in the non-relativistic

case.

This suggests something of a shortcut. If all we want to do is derive the geodesic

equation for some metric, then we can ignore all the shenanigans and simply work with

the action

Suseful =

Z
d⌧ gµ⌫(x)

dxµ

d⌧

dx⌫

d⌧
(1.32)

This will give the equations of motion that we want, provided that they are supple-

mented with the constraint

gµ⌫
dxµ

d⌧

dx⌫

d⌧
= �c2 (1.33)

This is the requirement that the geodesic is timelike, with ⌧ the proper time. This

constraint now drags the particle into the future. Note that neither (1.32) nor (1.33)

depend on the mass m of the particle. This reflects the equivalence principle, which

tells us that each particle, regardless of its mass, follows a geodesic.
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Moreover, we can also use (1.32) to calculate the geodesic motion of light, or any

other massless particle. These follow null geodesics, which means that we simply need

to replace (1.33) with

gµ⌫
dxµ

d⌧

dx⌫

d⌧
= 0 (1.34)

While the action Suseful is, as the name suggests, useful, you should be cautious in how

you wield it. It doesn’t, as written, have the right dimensions for an action. Moreover,

if you try to use it to do quantum mechanics, or statistical mechanics, then it might

lead you astray unless you are careful in how you implement the constraint.

1.3 A First Look at the Schwarzschild Metric

Physics was born from our attempts to understand the motion of the planets. The

problem was largely solved by Newton, who was able to derive Kepler’s laws of planetary

motion from the gravitational force law. This was described in some detail in our first

lecture course on Dynamics and Relativity.

Newton’s laws are not the end of the story. There are relativistic corrections to

the orbits of the planets that can be understood by computing the geodesics in the

background of a star.

To do this, we first need to understand the metric created by a star. This will be

derived in Section 6. For now, we simply state the result: a star of mass M gives rise

to a curved spacetime given by

ds2 = �
✓
1� 2GM

rc2

◆
dt2 +

✓
1� 2GM

rc2

◆�1

dr2 + r2(d✓2 + sin2 ✓ d�2)

This is the Schwarzschild metric. The coordinates ✓ and � are the usual spherical polar

coordinates, with ✓ 2 [0, ⇡] and � 2 [0, 2⇡).

We will have to be patient to fully understand all the lessons hiding within this

metric. But we can already perform a few sanity checks. First, note that far from the

star, as r ! 1, it coincides with the Minkowski metric as it should. Secondly, the g00
component is given by

g00 = �
✓
1 +

2�

c2

◆
with �(r) = �GM

r

which agrees with our expectation (1.24) with � = �GM/r the usual Newtonian

potential for an object of mass M .
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The Schwarzschild metric also has some strange things going on. In particular, the

grr component diverges at r = Rs where

Rs =
2GM

c2

is called the Schwarzschild radius. This is the event horizon of a black hole and will

be explored more fully in Section 6. However, it turns out that space around any

spherically symmetric object, such as a star, is described by the Schwarzschild metric,

now restricted to r > Rstar, with Rstar the radius of the star.

In what follows we will mostly view the Schwarzschild metric as describing the space-

time outside a star, and treat the planets as test particles moving along geodesics in this

metric. We will also encounter a number of phenomena that happen close to r = Rs;

these are relevant only for black holes, since Rstar � Rs. However we will, for now,

avoid any discussion of what happens if you venture past the event horizon.

1.3.1 The Geodesic Equations

Our first task is to derive the equations for a geodesic in the Schwarzschild background.

To do this, we use the quick and easy method of looking at the action (1.32) for a particle

moving in the Schwarzschild spacetime,

Suseful =

Z
d⌧ L =

Z
d⌧ gµ⌫(x)ẋ

µẋ⌫

=

Z
d⌧
h
� A(r)c2ṫ2 + A�1(r)ṙ2 + r2(✓̇2 + sin2 ✓ �̇2)

i
(1.35)

with A(r) = 1�Rs/r and ẋµ = dxµ/d⌧ .

When we solved the Kepler problem in Newtonian mechanics, we started by using

the conservation of angular momentum to restrict the problem to a plane. We can use

the same trick here. We first look at the equation of motion for ✓,

d

d⌧

✓
dL

d✓̇

◆
� dL

d✓
= 0 ) d

d⌧
(r2✓̇) = r2 sin ✓ cos ✓ �̇2

This tells us that if we kick the particle o↵ in the ✓ = ⇡/2 plane, with ✓̇ = 0, then it

will remain there for all time. This is the choice we make.

We still have to compute the magnitude of the angular momentum. Like many

conserved quantities, this follows naturally by identifying the appropriate ignorable
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coordinate. Recall that if the Lagrangian is independent of some specific coordinate x

then the Euler-Lagrange equations immediately give us a conserved quantity,

dL

dx
= 0 ) d

d⌧

✓
dL

dẋ

◆
= 0

This is a baby version of Noether’s theorem.

The action (1.35) has two such ignorable coordinates, t and �. The conserved quan-

tity associated to � is the magnitude of the angular momentum, l. (Strictly, the angular

momentum per unit mass.) Restricting to the ✓ = ⇡/2 plane, we define this to be

2l =
dL

d�̇
= 2r2�̇ (1.36)

where the factor of 2 on the left-hand side arises because the kinetic terms in (1.35)

don’t come with the usual factor of 1/2. Meanwhile, the conserved quantity associated

to t(⌧) is

�2E =
dL

dṫ
= �2A(r)c2ṫ (1.37)

The label E is not coincidence: it should be interpreted as the energy of the particle

(or, strictly, the energy divided by the rest mass). To see this, we look far away: as

r ! 1 we have A(r) ⇡ 1 and we return to Minkowski space. Here, we know from our

lectures on Special Relativity that dt/d⌧ = �. We then have E ! �c2 as r ! 1. But

this is precisely the energy per unit rest mass of a particle in special relativity.

We should add to these conservation laws the constraint (1.33) which tells us that

the geodesic is parameterised by proper time. Restricting to ✓ = ⇡/2 and ✓̇ = 0, this

becomes

�A(r)c2ṫ2 + A�1(r)ṙ2 + r2�̇2 = �c2 (1.38)

If we now substitute in the expressions for the conserved quantities l and E, this

constraint can be rewritten as

1

2
ṙ2 + Ve↵(r) =

1

2

E2

c2
(1.39)

The e↵ective potential Ve↵(r) includes the factor A(r) which we now write out in full,

Ve↵(r) =
1

2

✓
c2 +

l2

r2

◆✓
1� 2GM

rc2

◆
(1.40)

Our goal is to solve for the radial motion (1.39). We subsequently use the expression

(1.36) to solve for the angular motion and, in this way, determine the orbit.
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r

VN (r)

Figure 3: The e↵ective potential for Newtonian gravity.

1.3.2 Planetary Orbits in Newtonian Mechanics

Before we solve the full geodesic equations, it is useful to first understand how they

di↵er from the equations of Newtonian gravity. To see this, we write

Ve↵(r) =
c2

2
� GM

r
+

l2

2r2
� l2GM

r3c2

The non-relativistic limit is, roughly, c2 ! 1. This means that we drop the final term

in the potential that scales as 1/r3. (Since c is dimensionful, it is more accurate to

say that we restrict to situations with l2GM/r3 ⌧ c2.) Meanwhile, we expand the

relativistic energy per unit mass in powers of 1/c2,

E = c2 + EN + . . .

where EN is the non-relativistic energy and . . . are terms suppressed by 1/c2. Substi-

tuting these expressions into (1.39), we find

1

2
ṙ2 + VN(r) = EN

where VN is the non-relativistic potential which includes both the Newtonian gravita-

tional potential and the angular momentum barrier,

VN(r) = �GM

r
+

l2

2r2

These are precisely the equations that we solved in our first course on classical mechan-

ics. (See Section 4.3 of the lectures on Dynamics and Relativity.) The only di↵erence is

that r(⌧) is parameterised by proper time ⌧ rather than the observers time t. However,

these coincide in the non-relativistic limit that we care about.
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We can build a lot of intuition for the orbits by looking at the potential VN(r),

as shown in Figure 3. At large distances, the attractive �1/r gravitational potential

dominates, while the angular momentum prohibits the particles from getting too close

to the origin, as seen in the +1/r2 term which dominates at short distances. The

potential has a minimum at

V 0(r?) =
GM

r2
?

� l2

r3
?

= 0 ) r? =
l2

GM

A particle can happily sit at r = r? for all time. This circular orbit always has energy

EN < 0, reflecting the fact that VN(r?) < 0.

Alternatively, the particle could oscillate back and forth about the minima. This

happens provided that EN < 0 so that the particle is unable to escape to r ! 1. This

motion describes an orbit in which the distance to the origin varies; we’ll see below

that the shape of the orbit is an ellipse. Finally, trajectories with EN � 0 describe

fly-bys, in which the particle approaches the star, but gets only so close before flying

away never to be seen again.

The discussion above only tells us about the radial motion. To determine the full

orbit, we need to use the angular momentum equation �̇ = l/r2. Let’s remind ourselves

how we solve these coupled equations. We start by employing a standard trick of

working with the new coordinate

u =
1

r

We then view this inverse radial coordinate as a function of the angular variable: u =

u(�). This works out nicely, since we have

u̇ =
du

d�
�̇ = lu2

du

d�

where in the last equality, we’ve used angular momentum conservation (1.36) to write

�̇ = lu2. Using this, we have

ṙ = � 1

u2
u̇ = �l

du

d�
(1.41)

The equation giving conservation of energy is then

✓
du

d�

◆2

+

✓
u� GM

l2

◆2

=
2EN

l2
+

G2M2

l4
(1.42)
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But this is now straightforward to solve. We choose to write the solution as

u(�) =
GM

l2
(1 + e cos�) (1.43)

Back in our original radial variable, we have

r(�) =
l2

GM

1

1 + e cos�
(1.44)

This is the equation for a conic section, with the eccentricity given by

e =

r
1 +

2EN l2

G2M2

The shape of the orbit depends on e. A particle with EN � 0 is not in a bound orbit,

and traces out a hyperbola for e > 1 and a parabola for e = 1. Planets, in contrast,

have energy EN < 0 and, correspondingly, eccentricity e < 1. In this case, the orbits

are ellipses.

To compare with the relativistic result later, we note an important feature of the

Newtonian orbit: it does not precess. To see this, note that for our solution (1.44) the

point at which the planet is closest to the origin – known as the perihelion – always

occurs at the same point � = 0 in the orbit.

1.3.3 Planetary Orbits in General Relativity

We now repeat this analysis for the full relativistic motion of a massive particle moving

along a geodesic in the Schwarzschild metric. We have seen that the e↵ective potential

takes the form (1.40)

Ve↵(r) =
c2

2
� GM

r
+

l2

2r2
� GMl2

r3c2

The relativistic correction scales as�1/r3 and changes the Newtonian story at short dis-

tances, since it ensures that the potential Ve↵(r) ! �1 as r ! 0. Indeed, the potential

always vanishes at the Schwarzschild radius r = Rs = 2GM/c2, with Ve↵(Rs) = 0.

The potential takes di↵erent shapes, depending on the size of the angular momentum.

To see this, we compute the critical points

V 0

e↵
(r) =

GM

r2
� l2

r3
+

3GMl2

r4c2
= 0 ) GMr2 � l2r +

3GMl2

c2
= 0 (1.45)
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Figure 4: The e↵ective potential for a

massive particle when l2c2 > 12G2M2.
Figure 5: . . . and when l2c2 < 12G2M2.

If the discriminant is positive, then this quadratic equation has two solutions. This

occurs when the angular momentum is suitably large.

l2 >
12G2M2

c2

In this case, the potential looks like the figure shown on the left. We call the two

solutions to the quadratic equation (1.45), r+ and r� with r+ > r�. The outermost

solution r+ is a minimum of the potential and corresponds to a stable circular orbit; the

innermost solution r� is a maximum of the potential and corresponds to an unstable

circular orbit.

As in the Newtonian setting, there are also non-circular orbits in which the particle

oscillates around the minimum. However, there is no reason to think these will, in

general, remain elliptical. We will study some of their properties below.

Note also that, in contrast to the Newtonian case, the angular momentum barrier is

now finite: no matter how large the angular momentum, a particle with enough energy

(in the form of ingoing radial velocity) will always be able to cross the barrier, at which

point it plummets towards r = 0. We will say more about this in Section 6 when we

discuss black holes.

If the angular momentum is not large enough,

l2 <
12G2M2

c2

then the potential Ve↵(r) has no turning points and looks like the right-hand figure. In

this case, there are no stable orbits; all particles will ultimately fall towards the origin.
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The borderline case is l2 = 12G2M2/c2. In this case the turning point is a saddle at

rISCO =
6GM

c2
(1.46)

This is the innermost stable circular orbit. There can be no circular orbits at distances

r < rISCO, although it is possible for the non-circular orbits to extend into distances

r < rISCO.

The innermost stable orbit plays an important role in

Figure 6:

black hole astrophysics, where it marks the inner edge of the

accretion disc which surrounds the black hole. Roughly speak-

ing, this is seen in the famous photograph captured by the

Event Horizon Telescope. Here, the “roughly speaking” is

partly because the light really emerges from the so-called pho-

ton sphere, which is similar to the ISCO, but for light, and

partly because the light emitted from the accretion disc is

warped in a dramatic fashion, so what we see is very di↵erent

from what is there! (Furthermore, the black hole in the pic-

ture almost certainly rotating. This makes rISCO smaller than 6GM/c2 and the picture

significantly harder to interpret.)

We could also ask: how close can a non-circular orbit get? This occurs in the

limit l ! 1, where a quick calculation shows that the maximum of Ve↵ tends to

r� ! 3GM/c2. This is the closest that any timelike geodesic can get if it wishes to

return.

Perihelion Precession

To understand the orbits in more detail, we can attempt to solve the equations of

motion. We follow our Newtonian analysis, introducing the inverse parameter u = 1/r

and converting ṙ into du/d�. Our equation (1.39) becomes

✓
du

d�

◆2

+ u2 � 2GM

l2
u� 2GM

c2
u3 =

E2

l2c2
� c2

l2

This equation is considerably harder than our Newtonian orbit equation (1.42). To

proceed, it’s simplest to first di↵erentiate again with respect to �. This gives

d2u

d�2
+ u� GM

l2
� 3GM

c2
u2 = 0
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δ

Figure 7: The precession of the perihelion (or aphelion) of an almost elliptical orbit.

where we have assumed that du/d� 6= 0, which means that we are neglecting the simple

circular solution. The equation above di↵ers from the analogous Newtonian equation

by the final term (which indeed vanishes if we take c2 ! 1). There is no closed-form

solution to this equation, but we can make progress by working perturbatively. To this

end, we define the dimensionless parameter

� =
3G2M2

l2c2

and write the orbit equation as

d2u

d�2
+ u� GM

l2
= �

l2u2

GM
(1.47)

We will assume � ⌧ 1 and look for series solutions of the form

u = u0 + �u1 + �2u2 + . . .

To leading order, we can ignore the terms proportional to � on the right-hand-side of

(1.47). This gives us an equation for u0 which is identical to the Newtonian orbit

d2u0

d�2
+ u0 �

GM

l2
= 0 ) u0(�) =

GM

l2
(1 + e cos�)

We now feed this back into the equation (1.47) to get an equation for u1,

d2u1

d�2
+ u1 =

l2

GM
u2

0
=

GM

l2

✓
1 +

e2

2

◆
+ 2e cos�+

e2

2
cos 2�

�

You can check that this is solved by

u1 =
GM

l2

✓
1 +

e2

2

◆
+ e� sin�� e2

6
cos 2�

�

We could proceed to next order in �, but the first correction u1 will be su�cient for

our purposes.
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The interesting term is the � sin� in u1. This is not periodic in � and it means that

the orbit no longer closes: it sits at a di↵erent radial value at � = 0 and � = 2⇡. To

illustrate this, we ask: when is the particle closest to origin? This is the perihelion of

the orbit. It occurs when

du

d�
⇡ d(u0 + �u1)

d�
= 0 ) �e sin�+ �

✓
e sin�+ e� cos�+

e2

3
sin 2�

◆
= 0

Clearly this is solved by � = 0. The next solution is at � = 2⇡ + � where, due to our

perturbative expansion, � will be small. Expanding our expression above, and dropping

terms of order �2 and ��, we find the precession of the perihelion given by

� = 2⇡� = 6⇡
G2M2

l2c2
(1.48)

For planets orbiting the Sun, the perihelion shift depends only on the angular mo-

mentum l of the planet and the mass of the Sun, denoted M�. The latter is M� ⇡
2⇥ 1030 kg, corresponding to the length scale

GM�

c2
⇡ 1.5⇥ 103 m

If a planet on an almost-circular orbit of radius r orbits the sun in a time T , then the

angular momentum (1.36) is

l =
2⇡r2

T

Recall that Kepler’s third law (which follows from the inverse square law) tells us that

T / r3/2. This means that l / r1/2 and, correspondingly, the perihelion shift (1.48)

is proportional to � / 1/r. We learn that the e↵ect should be more pronounced for

planets closest to the Sun.

The closest planet to the Sun is Mercury which, happily, is also the only planet whose

orbit di↵ers significantly from a circle; it has eccentricity e ⇡ 0.2, the radius varying

from 4.6 to 7⇥1010 m. Mercury orbits the Sun once every 88 days but, in fact, we don’t

need to use this to compute the angular momentum and precession. Instead, we can

invoke the elliptic formula (1.44) which tells us that the minimum r� and maximum

distance r+ is given by

r± =
l2

GM

1

1⌥ e
) l2 = GMr+(1� e) (1.49)

from which we get the precession

� =
6⇡GM

c2
1

r+(1� e)
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Plugging in the numbers gives � ⇡ 5.0 ⇥ 10�7. This is rather small. However, the

perihelion precession is cumulative. Over a century, Mercury completes 415 orbits,

giving the precession of 2.1⇥ 10�4 per century.

The result above is quoted in radians. Astronomers prefer units of arcseconds, with

3600 arcseconds (denoted as 360000) in a degree and, of course, 360 degrees in 2⇡ radians.

This means that 100 ⇡ 4.8⇥ 10�6 radians. Our calculation from general relativity gives

4300 per century as the shift in the perihelion. This was one of the first successful

predictions of the theory. Subsequently, the perihelion shift of Venus and Earth has

been measured and is in agreement with the predictions of general relativity.

1.3.4 The Pull of Other Planets

The general relativistic contribution of 4300 per century is not the full story. In fact the

observed perihelion shift of Mercury is much larger, at around 57500. The vast majority

of this is due to the gravitational force of other planets and can be understood entirely

within the framework of Newtonian gravity. For completeness, we now give an estimate

of these e↵ects.

We start be considering the e↵ect of single, heavy planet with mass M 0, orbiting

at a distance R from the Sun. Of course, the 3-body problem in Newtonian gravity

is famously hard. However, there is an approximation which simplifies the problem

tremendously: we consider the outer planet to be a circular ring, with mass per unit

length given by M 0/2⇡R.

It’s not obvious that this is a good approximation. Each of the outer planets takes

significantly longer to orbit the Sun than Mercury. This suggests for any given orbit

of Mercury, it would be more appropriate to treat the position of the outer planets to

be fixed. (For example, it takes Jupiter 12 years to orbit the Sun, during which time

Mercury has completed 50 orbits.) This means that the perihelion shift of Mercury

depends on the position of these outer planets and that’s a complicated detail that we’re

happy to ignore. Instead, we want only to compute the total perihelion shift of Mercury

averaged over a century. And for this, we may hope that the ring approximation, in

which we average over the orbit of the outer planet first, su�ces.

In fact, as we will see, the ring approximation is not particularly good: the calculation

is non-linear and averaging over the position of the outer planet first does not commute

with averaging over the orbits of Mercury. This means that we will get a ballpark figure

for the perihelion precession of Mercury but, sadly, not one that is accurate enough to

test relativity.
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We would like to determine the Newtonian potential felt

r

R
x

θ

Figure 8:

by a planet which orbits a star of mass M and is surrounded,

in the same plane, by a ring of density M 0/2⇡R. The geometry

is shown in the figure. Obviously, the potential (per unit mass)

from the star is

Vstar(r) = �GM

r

We need to calculate the potential (per unit mass) from the

ring. This is

Vring(r) = �GM 0

2⇡

Z
2⇡

0

d✓
1

x(✓)
with x2 = R2 + r2 � 2Rr cos ✓ (1.50)

We use the fact that Mercury is much closer to the Sun than the other planets and

Taylor expand the integral in r2/R2. To leading order we have

Vring(r) = �GM 0

R


1 +

1

4

⇣ r

R

⌘2
+ . . .

�

Dropping constant terms, we learn that the e↵ective potential (per unit mass) experi-

enced by Mercury is, to leading order,

Ve↵(r) = �GM

r
+

l2

2r2
�
X

i

GM 0

i

4

r2

R3

i

+ . . .

where we’ve included the angular momentum barrier and the sum is over all the outer

planets. In what follows, we must assume that the r2 correction term is suitably small

so that it doesn’t destabilise the existence of orbits. Obviously, this is indeed the case

for Mercury.

Now we can follow our calculation for the perihelion precession in general relativity.

Conservation of energy tells us

1

2
ṙ2 + Ve↵(r) = E

Working with everyone’s favourite orbit variable, u = 1/r, viewed as u = u(�), the

general relativistic equation (1.47) is replaced by

d2u

d�2
+ u� GM

l2
= �↵

(GM)4

l8u3
(1.51)
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where this time our small dimensionless parameter is

↵ =
l6

2G3M4

X

i

M 0

i

R3

i

=
(1� e)3

2

X

i

M 0

i

M

✓
r+
Ri

◆3

where, in the second equality, we’ve used (1.49); here M is the mass of the Sun, r+ is

the outermost radius of Mercury’s orbit, and e ⇡ 0.2 is the eccentricity of Mercury’s

orbit. We safely have ↵ ⌧ 1 and so we look for series solutions of the form

u = u0 + ↵u1 + ↵2u2 + . . .

We’ve already met the leading order solution, u0(�) = (GM/l2)(1 + e cos�) with e the

eccentricity of the planet’s orbit. Feeding this into (1.51), we get an equation for the

first correction

d2u1

d�2
+ u1 = �(GM)4

l8
1

u3

0

= �GM

l2
1

(1 + e cos�)3

This equation is somewhat harder to solve than the general relativistic counterpart. To

proceed, we will assume that the eccentricity is small, e ⌧ 1, and solve the equation

to leading order in e. Then this equation becomes

d2u1

d�2
+ u1 = �GM

l2
(1� 3e cos�)

which has the solution

u1 =
GM

l2

✓
�1 +

3e

2
� sin�

◆

The precession of the perihelion occurs when

du

d�
= 0 ) �e sin�+

3e↵

2
(sin�+ � cos�) = 0

As in the relativistic computation, this is solved by � = 0 and by � = 2⇡+ � where, to

leading order, the shift of the perihelion is given by

� = 3⇡↵ =
3⇡

2

X

i

M 0

i

M

✓
r0
Ri

◆3

with r0 = (1 � e)r+. Once again, we can put the numbers in. The mass of the Sun is

M = M� ⇡ 2⇥ 1030 kg. The formula is very sensitive to the radius of Mercury’s orbit:

we use r0 ⇡ 5.64⇥ 1010 m. The relevant data for the other planets is then
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Planet Mass (1024 kg) Distance (1011 m) M

M�

�
r0
R

�3

Venus 4.9 1.1 3.6⇥ 10�7

Earth 6.0 1.5 1.7⇥ 10�7

Mars 0.64 2.3 5.1⇥ 10�9

Jupiter 1900 7.8 3.9⇥ 10�7

Saturn 570 14 2.0⇥ 10�8

A quick glance at this table shows that the largest contributions come from Jupiter

(because of its mass) and Venus (because of it proximity), with the Earth in third place.

(The contributions from Uranus, Neptune and Pluto are negligible.)

Adding these contributions, we find � ⇡ 40⇥10�7 radians per orbit. This corresponds

to 34400 per century, significantly larger than the 4300 per century arising from general

relativity but not close to the correct Newtonian value of 53200.

Higher Order Contributions

Our analysis above gave us a result of 38000 per century for the perihelion shift of

Mercury. A more precise analysis gives 53200 coming from the Newtonian pull of the

other planets.

We made a number of di↵erent approximations in the discussion above. But the one

that introduced the biggest error turns out to be truncating the ring potential (1.50)

at leading order in r/R. This, it turns out, is particularly bad for Venus since its orbit

compared to Mercury is only (r0/R) ⇡ 0.5. To do better, we can expand the potential

(1.50) to higher orders. We have

Vring(r) = �GM 0

2⇡R

Z
2⇡

0

d✓
1p

R2 + r2 � 2Rr cos ✓

= �GM 0

R


1 +

1

4

⇣ r

R

⌘2
+

9

64

⇣ r

R

⌘4
+

25

256

⇣ r

R

⌘6
+ . . .

�

An identical calculation to the one above now gives a corresponding perturbative ex-

pansion for the perihelion shift,

� = ⇡
X

i

M 0

i

M

"
3

2

✓
r0
Ri

◆3

+
45

16

✓
r0
Ri

◆5

+
525

128

✓
r0
Ri

◆7

+ . . .

#

with r0 = (1 � e)r+ the mean orbit of Mercury. The extra terms give significant

contributions for Venus, and smaller for Earth. Using the value of r0 ⇡ 5.64⇥1010 m and
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r

Vnull (r)

Figure 9: The e↵ective potential for null geodesics in the Schwarzschild metric.

the slightly more accurate R0 ⇡ 10.6⇥ 1010 m for Venus, the sum of the contributions

gives � ⇡ 59 ⇥ 10�7 radians per orbit, or 50700 per century, somewhat closer to the

recognised value of 53200 per century but still rather short.

1.3.5 Light Bending

It is straightforward to extend the results above to determine the null geodesics in the

Schwarzschild metric. We continue to use the equations of motion derived from Suseful

in (1.35). But this time we replace the constraint (1.38) with the null version (1.34),

which reads

�A(r)c2ṫ2 + A�1(r)ṙ2 + r2�̇2 = 0

The upshot is that we can again reduce the problem to radial motion,

1

2
ṙ2 + Vnull(r) =

1

2

E2

c2
(1.52)

but now with the e↵ective potential (1.40) replaced by

Vnull(r) =
l2

2r2

✓
1� 2GM

rc2

◆

A typical potential is shown in Figure 9. Note that, as r ! 1, the potential asymptotes

to zero from above, while Vnull ! �1 as r ! 0. The potential has a single maximum

at

V 0

null
(r?) = � l2

r3
?

+
3GMl2

r4
?
c2

= 0 ) r? =
3GM

c2
(1.53)

We learn that there is a distance, r?, at which light can orbit a black hole. This is

known as the photon sphere. The fact that this sits on a maximum of the potential
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means that this orbit is unstable. In principle, focussing e↵ects mean that much of the

light emitted from an accretion disc around a non-rotating black hole emerges from

the photon sphere. In practice, it seems likely that photograph of the Event Horizon

Telescope does not have the resolution to see this.

The fate of other light rays depends on the relative value of their energy E and

angular momentum l. To see this, note that the maximum value of the potential is

Vnull(r?) =
l2

54

c4

G2M2

The physics depends on how this compares to the right-hand side of (1.52), E2/2c2.

There are two possibilities

• E < lc3/
p
27GM : In this case, the energy of light is lower than the angular

momentum barrier. This means that light emitted from r < r? cannot escape

to infinity; it will orbit the star, before falling back towards the origin. The flip

side is that light coming from infinity will not fall into the star; instead it will

bounce o↵ the angular momentum barrier and return to infinity. In other words,

the light will be scattered. We will compute this in more detail below.

• E > lc3/
p
27GM : Now the energy of the light is greater than the angular mo-

mentum barrier. This means that light emitted from r < r? can escape to infinity.

(We will see in Section 6 that this is only true for light in the region Rs < r < r?.)

Meanwhile, light coming in from infinity is captured by the black hole and asymp-

totes to r ! 0.

To understand the trajectories of light-rays in more detail, we again adopt the inverse

parameter u = 1/r. The equation of motion (1.52) then becomes
✓
du

d�

◆2

+ u2

✓
1� 2GM

c2
u

◆
=

E2

l2c2

If we now di↵erentiate again, we get

d2u

d�2
+ u =

3GM

c2
u2 (1.54)

We will again work perturbatively. First, suppose that we ignore the GM term on the

right-hand side. We have

d2u

d�2
+ u = 0 ) u =

1

b
sin�

for constant b. The meaning of this solution becomes clearer if we write it as r sin� = b:

this is the equation of a horizontal straight line, a distance b above the origin as shown

by the dotted line in Figure 10. The distance b is called the impact parameter.
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Figure 10: Light bending in the Schwarzschild metric.

We will solve the full equation (1.54) perturbatively in the small parameter

�̃ =
GM

c2b

We then look for solutions of the form

u = u0 + �̃u1 + . . .

We start with the straight line solution u0 = (1/b) sin�. At leading order, we then

have

d2u1

d�2
+ u1 =

3 sin2 �

b
=

3(1� cos 2�)

2b

The general solution is

u1 = A cos�+B sin�+
1

2b
(3 + cos 2�)

where the first two terms are the complimentary solution, with A and B integration

constants. We pick them so that the initial trajectory at � = ⇡ agrees with the straight

line u0. This holds if we choose B = 0 and A = 2/b, so that u1 ! 0 as � ! ⇡. To

leading order in �̃, the solution is then

u =
1

b
sin�+

GM

2b2c2
(3 + 4 cos�+ cos 2�)

The question now is: at what angle does the particle escape to r = 1 or, equivalently,

u = 0? Before we made the correction this happened at � = 0. Within our perturbative

approach, we can approximate sin� ⇡ � and cos� ⇡ 1 to find that the particle escapes

at

� ⇡ �4GM

bc2
(1.55)

This light bending is known as gravitational lensing.
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Figure 11: Gravitational lensing, as seen

by Eddington’s 1919 eclipse expedition

Figure 12: Gravitational lensing, as seen

by the Hubble space telescope.

For the Sun, GM�/c2 ⇡ 1.5 km. If light rays just graze the surface, then the impact

parameter b coincides with the radius of the Sun, R� ⇡ 7 ⇥ 105 km. This gives a

scattering angle of � ⇡ 8.6⇥ 10�5 radians, or � ⇡ 1.800.

There is a di�culty in testing this prediction: things behind the Sun are rarely

visible. However, Nature is kind to us because the size of the moon as seen in the sky

is more or less the same as the size of the Sun. (This random coincidence would surely

make our planet a popular tourist destination for alien hippies if only it wasn’t such

a long way to travel.) This means that during a solar eclipse the light from the Sun

is blocked, allowing us to measure the positions of stars whose light passes nearby the

Sun. This can then be compared to the usual positions of these stars.

This measurement was first carried out in May 1919, soon after cessation of war, in

two expeditions led by Arthur Eddington, one to the island of Principe and the other

to Brazil. The data is shown in the figure above. In the intervening century, we have

much more impressive evidence of light bending, in which clusters of galaxies distort

the light from a background source, often revealing a distinctive ring-like pattern as

shown in the right-hand figure.

Newtonian Scattering of Light

Before we claim success, we should check to see if the relativistic result (1.55) di↵ers

from the Newtonian prediction for light bending. Strictly speaking, there’s an ambi-

guity in the Newtonian prediction for the gravitational force on a massless particle.

However, we can invoke the principle of equivalence which tells us that trajectories are

independent of the mass. We then extrapolate this result, strictly derived for massive

particles, to the massless case.
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φ δφ

Figure 13: The scattering of light using Newtonian gravity.

Scattering under Newtonian gravity follows a hyperbola (1.43)

1

r
=

GM

l2
(1 + e cos�)

with e > 1. The parameterisation of the trajectory is a little di↵erent from the rel-

ativistic result, as the light ray asymptotes to infinity at cos� = �1/e. For e � 1,

where the trajectory is close to a straight line, the asymptotes occur at � = ±(⇡+ ��)

as shown in Figure 13. The scattering angle is then 2��. This is what we wish to

compute.

Using (1.41), the speed of light along the trajectory is

ṙ = �l
du

d�
=

GM

l
e sin�

This is one of the pitfalls of applying Newtonian methods to light bending: we will

necessarily find that the speed of light changes as it moves in a gravitational field. The

best we can do is ensure that light travels at speed c asymptotically, when cos� = �1/e

and sin� =
p

1� 1/e2. This gives

c2 =
G2M2

l2
(e2 � 1)

Meanwhile the angular momentum is l = bc, with b the impact parameter. Rearranging,

we have

e2 =
b2c4

G2M2
+ 1 ) e ⇡ bc2

GM
where, in the second equation, we have used the fact that we are interested in tra-

jectories close to a straight line with e � 1. As we mentioned above, the trajectory

asymptotes to infinity at cos� = �1/e. This occurs at � = ⇡/2+�� and � = �⇡/2���

with

�� ⇡ 1

e
⇡ GM

bc2

The resulting scattering angle is

2�� ⇡ 2GM

bc2

We see that this is a factor of 2 smaller than the relativistic prediction (1.55)
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The fact that relativistic light bending is twice as large as the Newtonian answer can

be traced to the fact that both g00 and grr components of the Schwarzschild metric are

non-vanishing. In some sense, the Newtonian result comes from the g00 term, while the

contribution from grr is new. We’ll discuss this more in Section 5.1 where we explain

how to derive Newtonian gravity from general relativity.
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