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Recommended Books and Resources

This lecture course covers three topics: kinetic theory, stochastic processes and linear

response. Most decent books on statistical mechanics will have a section covering non-

equilibrium topics in general. However, if you’re looking for details beyond the basics,

you’ll probably need a di↵erent book for each topic. Some good general purpose books

are:

• Huang, Statistical Mechanics

• Kardar, Statistical Physics of Particles

• Reif, Fundamentals of Statistical and Thermal Physics

Both Huang and Kardar treat kinetic theory and the Boltzmann equation before they

move onto statistical mechanics. Much of Section 2 of these notes follows the path laid

down in these books. Reif ends with a much wider ranging discussion of kinetic theory,

transport and stochastic processes.

For more details on kinetic theory:

• Chapman and Cowling, The Mathematical Theory of Non-Uniform Gases

• Lifshitz and Pitaevskii, Physical Kinetics

Both of these are old school. The first was published in 1939 although the latest edition,

written in 1970, is modern enough to cover all the developments that we touch upon

in this course. The last volume of the course by Landau and Lifshitz covers kinetic

theory. This book was written substantially later than the earlier volumes, decades

after Landau’s death.

For more details on stochastic processes:

• Van Kampen, Stochastic Processes in Physics and Chemistry

The topic of linear response is usually covered in books on many body theory or more

general condensed matter. Two excellent modern books, both with a chapter on re-

sponse theory, are

• Altland and Simons, Condensed Matter Field Theory

• Chaikin and Lubensky, Principles of Condensed Matter Physics

Finally, there are a number of good lecture notes and resources on the web, collated at

http://www.damtp.cam.ac.uk/user/tong/kinetic.html
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1. Things Bumping Into Other Things

1.1 Introduction

The purpose of this course is to describe a number of basic topics in non-equilibrium

statistical mechanics.

If you’ve taken a first course in Statistical Mechanics, you’ll know that the whole

machinery of ensembles and partition functions only works when applied to systems

in equilibrium. Equilibrium is defined to be a state in which, at least on the coarse

grained level, things don’t change. Of course, if you have a hot system and you look

closely enough, everything is flying around on the atomic level. But if you focus only

on macroscopic variables then, in equilibrium, all is calm.

At first, the restriction to equilibrium sounds rather limiting. But it’s not. This is

because the state of equilibrium is very special: if you take any system and wait long

enough then it will eventually relax down to equilibrium. (This is sometimes said to

be the �1th law of thermodynamics).

Of course, this begs the question of why equilibrium is special. Why do all systems

eventually reach this state. How do they approach this state? How does such irre-

versible behaviour arise from the fundamental laws of physics which are, for all intents

and purposes, invariant under time reversal? Moreover, what if you’re not happy to

just sit back and watch an equilibrium system? Suppose you want to stir it or splash

it or attach a couple of crocodile clips and zap it. How will it respond? These are the

kind of questions that we will begin to answer in this course.

While there is typically only a single equilibrium state, for a system with 1023 par-

ticles, there are many many ways to be out-of-equilibrium. Most of these states are

uninteresting in the sense that they will be so complicated that no general features will

emerge. Moreover, such states will be fleeting, rapidly changing to another complicated

configuration. If we’re to have any chance of making progress, we need to be careful

about the kind of states we discuss and the kind of questions that we ask. We would

like to identify features in the dynamics of 1023 particles that persist for long periods

of time. We will see that such features arise for systems that are close to equilibrium.

Indeed, throughout this course, the dramatic sounding “non-equilibrium” will really

mean “almost-equilibrium”.

Each of the four sections in these lecture notes can be read more or less independently.

In the rest of this introductory section, we will introduce a few basic tools to describe

how quantities change in a gas. This will really be a baby version of kinetic theory, with

– 1 –



nothing more sophisticated than Newtonian thinking applied to a bunch of billiard balls.

But it will allow us to develop some basic intuition for the rudiments of the subject.

While many of the formulae we derive in this section are rather heuristic, all will be

revisited Section 2 where we use the Boltzmann equation to give a more rigorous view

on the subject, understanding transport phenomena and deriving the equations of fluid

mechanics starting from first principles. Section 3 introduces the subject of random

jittery motion, usually called stochastic processes. Finally, in Section 4 we turn the

stir-it-splash-it-zap-it question and develop the machinery necessary to describe how

systems respond when prodded.

1.2 Basics of Collisions

Let’s start by considering N molecules in a gas of volume V . We will begin by ignoring

all interactions between particles. Instead, we will treat the molecules as spheres of a

finite size which will allow collisions to occur. For the most part, we won’t rely on the

results of earlier courses on statistical mechanics. There is, however, one exception: in

the rest of this section, we will need the Maxwell-Boltzmann probability distribution

for the velocities in a gas1.

f(~v) d3v =

✓
m

2⇡kBT

◆3/2

e
�mv

2
/2kBT

d
3
v (1.1)

The distribution f(~v)d3v is the probability that a molecule has velocity within a small

volume d
3
v in the neighbourhood of ~v.

We denote the diameter of the particle as d. Obviously its radius is d/2. Viewed

head on, the particle appears as a disc with area ⇡(d/2)2. However, more relevant for

our purposes is the e↵ective cross-sectional area of the particle, ⇡d2. To see why this is,

focus on a single particle as it makes its way through the gas. If it travels a distance l,

it will sweep out a volume ⇡d2l as shown in Figure 1 and collide with any other particle

whose centre lies within this volume.

The mean free path is defined to be the average distance travelled by the molecule

between each collision. This is given by ⇡d
2
l = V/N , or

l =
V

N

1

⇡d2
=

1

n⇡d2
(1.2)

where n = N/V is the particle density.

1This result will be re-derived in Section 2 when we discuss the Boltzmann equation. You can also
find a simple derivation in the lectures on Statistical Physics.
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2d

l

Figure 1: A particle of radius d/2 travels, on average, a length l between each collision. In

this time it sweeps out a volume ⇡d2l.

In what follows, we’ll assume that our gas is dilute, meaning l � d. For typical gases

d ⇠ 10�10
m while, at atmospheric pressure, l ⇠ 10�7

m.

1.2.1 Relaxation Time

The average time between collisions is called the scattering time or relaxation time,

⌧ =
l

v̄rel

You might think that v̄rel is the average speed of a given particle. This isn’t quite true.

Since we’re interested in the rate of collisions, the speed of other particles approaching

is just as important as the speed of the particle you’re looking at. So we should take

vrel to be the average relative speed of the molecules. For two particles with velocities

~v and ~v
0, the average relative speed is

v̄
2
rel = h(~v � ~v

0)2i =

Z
d
3
~v

Z
d
3
~v

0 (~v � ~v
0)2f(~v)f(~v 0)

= hv
2
i+ hv

0 2
i � 2h~v · ~v 0

i (1.3)

where f(~v) in the first line is the Maxwell-Boltzmann distribution (1.1). The fact that

we have multiplied the distributions f(~v)f(~v0) together in the first line means that

we are assuming that the velocities of the two particles are uncorrelated. This is an

assumption that we shall return to in Section 2.

The last term in (1.3) vanishes: h~v · ~v
0
i = 0. This follows on rotational grounds.

Because the velocity of each particle is independent, it’s enough to know that the

average velocity (not speed!) in, say, the x-direction vanishes: hvxi = 0. Meanwhile,

hv
2
i = hv

0 2
i which means that v̄2rel = 2hv2i. It is a simple exercise to compute hv2i from

the Maxwell-Boltzmann distribution (1.1) and the answer is the same as you would get
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by simply appealing to the equipartition of energy: hv2i = 3kBT/m. We have

v̄
2
rel =

6kBT

m

and the relaxation time is given by

⌧ =
1

n⇡d2

r
m

6kBT

Notice that as the temperature drops, the mean free path remains unchanged. However,

the time between collisions increases.

There is a slightly di↵erent interpretation of the relaxation time that it is useful

to have in hand. Suppose that the probability that a molecule undergoes a collision

between time t and time t + dt is given by wdt, for some constant w, known as the

collision rate. Notice that in stating this, we have made more assumptions about the

nature of the collisions. In particular, the fact that w is a constant means that no

memory of previous collisions is kept: the chances of being hit again are not a↵ected

just because you already were hit a short time ago.

If P (t) is the probability that the molecule makes it to time t unharmed, then the

probability that it further makes it to time t+ dt without collision is

P (t+ dt) = P (t)(1� wdt)

Writing this as a di↵erential equation, we have

dP

dt
= �wP ) P (t) = e

�wt

where we’ve chosen the normalisation so that P (0) = 1 and P (1) = 0. With this

in hand, we can compute the average time between collisions. But this is exactly the

quantity that we called the relaxation time above. It is

⌧ =

Z 1

0

P (t)dt =
1

w

We learn that 1/⌧ is the collision rate.

1.3 Basics of Transport

We now turn to the question of how things move. Of course, in a thermal system,

the microscopic constituents are always moving, even in equilibrium. Our goal here

is to understand how certain macroscopic properties move when out of equilibrium.

The properties that we will look at are all associated to a conserved quantity: particle

number, energy or momentum. Processes in which these quantities change over time

are usually referred to as transport. As we will see, all of these quantities typically flow

in such a way as to reach the equilibrium state.
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1.3.1 Di↵usion

Drop a blob of ink into a glass of water. How does it spread? More generally, we are

interested in the motion of a particular kind of particle – one with a nice colour, or

funny smell – as it makes its way through a generic background of liquid or gas. The

true dynamics of any particle is, as you might expect, somewhat jittery. Here we’ll look

at a simple model that captures this physics.

Random Walk

Consider a lattice which, for now, we take to be one dimensional. The spacing between

the lattice sites is set by the mean free path, l, and after a time, ⌧ , the particle jumps

either left or right. The direction of the jump is entirely random: 50% of the time it

goes left, 50% right. This model is known as a random walk.

The particle starts at the origin and we want to know the probability P (x, t) that it

sits at x = ml at time t = N⌧ . (Here m is an integer; it’s not the mass of the particle!).

We’ll start by giving a simple combinatoric derivation of the answer. For simplicity,

we’ll take N to be even and we’ll look at m ⌧ N . To get to x = ml, the particle must

have made 1
2(N +m) forward jumps and 1

2(N �m) backwards jumps. The probability

is just the number of di↵erent ways we can do this, divided by 2N , the total number of

possible combinations.

P (x, t) =
2�N

N !

[12(N +m)]![12(N �m)]!
⇡

r
2

⇡N
e
�m

2
/2N =

r
2⌧

⇡t
e
�x

2
⌧/2l2t (1.4)

where, in the second step, the factorials have been replaced by Stirling’s approximation

and we’ve also expanded to leading order in m/N . (To get the prefactor, we need to

go to the third order in the Stirling expansion).

The probability distribution of the particle is an ever-spreading Gaussian ensemble.

The mean is simply hxi = 0, reflecting the fact that the particle is equally likely to

travel forwards as backwards. The variance is

h x
2
i =

l
2

⌧
t (1.5)

The root-mean-square (rms) distance travelled by the particle grows as
p
hx2i ⇠

p
t.

This is characteristic behaviour of random walks.

It is simple to repeat our analysis of the random walk to three dimensions. For a

cubic lattice, we assume that the motion in each of the directions is independent and

equally likely. On average, the particle moves in the x-direction only every 3⌧ , so (1.5)
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should be replaced by hx
2
i = l

2
t/3⌧ . But this means that the total rms distance covered

remains unchanged

h~x
2
i = hx

2
i+ hy

2
i+ hz

2
i =

l
2

⌧
t

The Di↵usion Equation

We can recast the above discussion in terms of a di↵erential equation for the density

of particles, n = N/V . Away from equilibrium, the density is not a constant. It is, in

general, a function of time and space. We expect any gradient, rn, in the density of

particles to lead to a flow, from the high density region to the low.

We’ll again restrict first to the case of one-dimension. Consider the density at some

fixed time: n = n(x, t). We’d like to derive an expression for the density at the point

x a short time �t later. Of course, some particles will leave, but others will come in

to replace them. Any particle which is at x at time t +�t must have been sitting at

some other position x��x at time t. Here �x should be viewed as a random variable

since some move one way, some the other. This means that we can write an expression

for the density at time t+�t as an average over all the di↵erent �x,

n(t+�t, x) = hn(t, x��x)i

= n(t, x)�
@n

@x
h�xi+

1

2

@
2
n

@x2
h�x

2
i+ . . .

The term with the first order derivative vanishes because, on average, particles are

equally likely to go either way, meaning h�xi = 0. Taylor expanding the left-hand-

side, we arrive at the di↵usion equation

@n

@t
= D

@
2
n

@x2

where the di↵usion constant is D = h�x
2
i/2�t. We expect this to be related to our

two quantities, the mean free path l and scattering time ⌧ . On dimensional grounds,

we must have

D ⇠
l
2

⌧

Solutions to the di↵usion equation evolve so as to iron out any inhomogeneities in

particle density. As an example, suppose that all N particles start out life sitting at

the origin, giving us the initial condition n(x, t = 0) = N�(x). The solution to the

di↵usion equation with this initial condition is an ever-spreading Gaussian,

n(x, t) = N

r
1

4⇡Dt
e
�x

2
/4Dt
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This reproduces the discretised result (1.4). Viewing the average distance travelled as

the width of the cloud of particles, we again have the result

hx
2
i = 2Dt

It is simple to extend the derivation above to three dimensions. Going through the

same steps, we now find the 3d di↵usion equation,

@n

@t
= Dr

2
n

This is also known as Fick’s (second) law. We again expect that D ⇠ l
2
/⌧ . (Although

the overall numerical factor is not necessarily the same as the 1d case. In fact, in simple

analysis it is a factor of 3 less). The Gaussian again provides a solution, now with

h~x
2
i = 6Dt

As we will now show, a number of other processes also follow this general di↵usive

form.

1.3.2 Viscosity

Viscosity is a form of internal friction experienced by

d

u

Figure 2:

a fluid. It can be measured by placing a fluid between

two plates, a distance d apart in the z direction. Holding

the lower plate stationary, the top plate is moved at a

constant speed, u, in the x direction. But you don’t get

to do this for free: the fluid pushes back. If you want to

keep the plate moving at a constant speed, you have to

apply a force F .

Near the upper plate, a friction force causes the fluid to be dragged along with the

same speed u. However, near the lower plate, the fluid remains stationary. This sets up

a velocity gradient, ux(z), with ux(d) = u and ux(0) = 0. Experimentally, it is found

that the force per unit area which must be exerted on the upper plate is proportional

to this velocity gradient,

F

A
= ⌘

dux

dz
⇡ ⌘

u

d
(1.6)

where the second equality holds for small distances d. The coe�cient of proportionality,

⌘, is called the viscosity. (Or, more correctly, the dynamic viscosity).
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We would like to derive both the force law (1.6) and the viscosity ⌘ from first princi-

ples. It’s simple to get an intuition for what’s happening on the atomic level: when the

molecules collide with the upper plate, they pick up some x-momentum. They then

collide with other molecules lower down, imparting some of this x-momentum to new

molecules, which then collide with other molecules lower down, and so on. In this way,

we set up the velocity gradient in the z direction.

We’ll think of a slab of gas at some fixed value of z. To figure out the force acting on

this slab, we need to work out two things: the number of particles moving through the

slab per unit of time; and the extra momentum in the x-direction that each particle

imparts to the molecules in the slab.

Let’s first deal with the number of particles. The density of particles in the fluid is

n = N/V . How many of these pass through a slab in the z-direction in a given length

of time depends on how fast they’re travelling in the z-direction (obv!). But we know

how many particles there are with each speed: this is given by the Maxwell-Boltzmann

distribution (1.1). The net result is that the number of particles, per unit time, per

unit area, whose velocity is lies close to ~v (in a box of size d
3
~v), passing through a

horizontal slab is

# of particles per unit time per unit area = nvz f(~v) d
3
v (1.7)

Now let’s figure out the momentum that each of these molecules imparts. Consider a

particle at some position z. It gets hit from below, it gets hit from above. The hits

from above are likely to give it more momentum in the x direction; those from below,

less. Let’s consider those ariving from above. If they arrive from a position z + �z,

then they impart x-momentum

�p = m(ux(z +�z)� ux(z)) ⇡ m
dux

dz
�z (1.8)

What is the distance �z here? Well, this depends

l cosθl
θ

Figure 3:

on the angle the particles come in at. They have

travelled the mean free path l, so if they arrive at

angle ✓ then we must have

�z = l cos ✓

Here ✓ 2 [0, ⇡/2) for particles arriving from above. But the same argument also holds

for particles coming in from below. These have ✓ 2 (⇡/2, ⇡] and, correspondingly,
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�z < 0 which, from (1.8), tells us that these particles typically absorb momentum

from the layer at z.

Our goal is to work out the force per unit area acting on any z slice. This is given

by the rate of change of momentum

F

A
= �

1

A

�p

�t

where the minus sign arises because F defined in (1.6) is the force you need to apply to

keep the flow moving (while �p/�t is the force of the fluid pushing back). The rate of

change of momentum per unit area is simply the product of our two expressions (1.7)

and (1.8). We have

F

A
= �n

Z
d
3
v�p vz f(~v)

= �mn
dux

dz

Z
d
3
v vz

✓
m

2⇡kBT

◆3/2

e
�mv

2
/2kBT

l cos ✓

We’ve actually done something sly in this second line which is not really justified.

We’re assuming that the fluid has an average velocity hvxi = ux in the x-direction.

Yet, at the same time we’ve used the Maxwell-Boltzmann distribution for the velocity

of the particles which has hvxi = 0. Presumably this is not too bad if the speed of the

flow u ⌧ hvi, the average speed of the particles in the fluid, but we really should be

more careful in quantifying this. Nonetheless, the spirit of this section is just to get a

heuristic feel for the physics, so let’s push on regardless. Writing the velocity integral

in polar coordinates, we have

F

A
= �mn

dux

dz

Z
dv v

2

Z
⇡

0

d✓ sin ✓

Z 2⇡

0

d� (�v cos ✓)l cos ✓

✓
m

2⇡kBT

◆3/2

e
� mv2

2kBT (1.9)

At this stage we can trivially do the
R
d� integral and

R
⇡

0 d✓ cos2 ✓ sin ✓ = 2/3. We’re

left with

F

A
=

mnl

3

dux

dz

Z
dv 4⇡ v

3

✓
m

2⇡kBT

◆3/2

e
��mv

2
/2 (1.10)

But the integral
R
dv is simply the expression for the average speed hvi in the gas. We

have our final expression,

F

A
=

1

3
mnlhvi

dux

dz
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Comparing with (1.6), our expression for the viscosity is

⌘ =
1

3
mnlhvi (1.11)

There is something surprising about the viscosity: it is independent of the density

n = N/V of the gas. At first sight that looks like a wrong statement because, obvi-

ously, there is a factor of n sitting in (1.11). But remember that the mean free path

depends inversely on the density, l ⇠ 1/n, as we can see from (1.2). The fact that the

viscosity does not depend on the fluid density is rather counterintuitive. You might

think that denser gasses should be more viscous. But the derivation above provides

the explanation for this behaviour: if you halve the density, there are half as many

molecules moving down. But each travels twice as far and therefore imparts twice the

momentum kick �p when they finally hit.

The expression (1.11) holds a special place in the history of physics. It was first

derived by Maxwell and is arguably the first truly novel prediction that was made

using kinetic theory, providing important evidence for the existence of atoms which, at

the time, were not universally believed. Indeed, Maxwell himself was surprised by the

fact that ⌘ is independent of the density of the gas, writing at the time

“Such a consequence of the mathematical theory is very startling and the

only experiment I have met with on the subject does not seem to confirm

it”.

Maxwell rose to the challenge, building the apparatus and performing the experiment

that confirmed his own prediction.

1.3.3 Thermal Conductivity

The next transport process we will look at is the conduction of heat. Place a fluid

between two plates, each held at a di↵erent temperature. Empirically, one finds a flow

of energy in the fluid. This is described by the heat flow vector, ~q, defined by the energy

per unit time passing through a unit area (which is perpendicular to ~q). Empirically,

the flow of heat is proportional to the temperature gradient,

~q = �rT (1.12)

where  is called the thermal conductivity. Once again, we would like to derive both

this empirical law, as well as an expression for .
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Our calculation follows the same path that we took to determine the viscosity. Let’s

set up a temperature gradient in the z-direction. The number of particles with velocity

~v that pass through a slab at position z per unit time per unit area is again given

by (1.7). We’ll use equipartition and assume that the average energy of a particle at

position z is given by

E(z) =
3

2
kBT (z)

We also need to know how particles deposit or gain energy when they reach the slab. If

a particle came from a hot place with temperature T (z+�z), we’ll assume the particle

deposits the di↵erence in energy. Similarly, if the particle arrives from a colder place,

we’ll assume it absorbs the di↵erence. This means

�E = E(z +�z)� E(z) =
3

2
kB

dT

dz
�z

Recall that the height �z from which the particle arrives depends on both the mean

free path and the angle at which it comes in: �z = l cos ✓.

As in the derivation of the viscosity, there is something a little dodgy in what we’ve

written above. We’ve equated the energy deposited or gained by a particle with the

average energy. But this energy transfer will certainly depend on the velocity of the

particle and which is dictated by the Maxwell-Boltzmann distribution in (1.7). As in

the derivation of the viscosity, we will simply ignore this fact and proceed. We’ll do

better in the next section.

Modulo the concerns above, we now have enough information to compute the heat

flow. It is

|~q| = n

Z
d
3
v �Evzf(v)

Doing the integrals
R
d
3
v using the same steps that took us from (1.9) to (1.10), we

derive the law of heat flow (1.12)

|~q| = �
1

2
kBnlhvi

dT

dz

The thermal conductivity is the proportionality constant. It is usually expressed in

terms of the specific heat, cV , of the ideal gas

 =
1

3
cV lhvi (1.13)

where

cV =
3

2
nkB
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1.3.4 Conservation Means Di↵usion

Thermal conductivity is all about the transport of energy; viscosity is about the trans-

port of momentum. But both energy and momentum have a very special property:

they are conserved.

What’s more, because physics is local, we can make a stronger statement than just

“the total energy doesn’t change”. If the energy in some region of space, E(~x), changes

then it must show up in a neighbouring region of space. But that’s exactly what the

heat flow ~q is telling us: how energy is moving from one point to the next. This local

conservation law is captured by the equation.

dE

dt
+r · ~q = 0

Once again equating energy with the thermal energy, E(~x) = 3
2kBT (~x), the continuity

equation reads

dT

dt
= �

1

cV
r · ~q =



cV
r

2
T (1.14)

This is the heat equation. It tells us that any inhomogeneities in temperature are

smoothed out through di↵usion with di↵usion constant D = /cV = 1
3 lhvi ⇠ l

2
/⌧ .

There is a similar story for momentum, pi where i = 1, 2, 3 labels the three directions

of space. The continuity equation reads

dp
i

dt
+

@P
ji

@xj
= 0

where P
ji is the pressure tensor which describes the flux of i-momentum in the j-

direction.

But looking back at our derivation of the viscosity in Section 1.3.2, this is precisely

what we equated to the force F/A: the flux of x-momentum in the z-direction. (Ac-

tually there’s an extra minus sign that follows from our previous definition of F ).

Combining the continuity equation with our earlier expression for the viscosity, we find

dp
x

dt
= mn

dux

dt
= ⌘

d
2
ux

dz2

where, as in Section 1.3.2, we’ve restricted to situations with no velocity gradients in the

x and y directions. The result is once again a di↵usion equation, this time for gradients

in velocity. And, once again, the di↵usion constant given by D = ⌘/mn = 1
3 lhvi ⇠ l

2
/⌧ .
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We learn that all roads lead to di↵usion. For any conserved quantity – whether par-

ticle number, energy or momentum – any inhomogeneities in the system are smoothed

away through the di↵usion equation.

The equations that we’ve written down in this final section are rather hand-waving

and, in cases, missing some interesting physics. The proper equations are those of

hydrodynamics. The goal of the next section is to do a better job in deriving these.
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