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Recommended Books and Resources

Here are a bunch of books that I’ve found useful while preparing for this course:

• J.D. Murray, Mathematical Biology, Volumes 1 and 2

This is the default reference for practitioner’s in the field. It’s a remarkably easy read

and explains things with clarity without holding your hand. The material that we need

for the first part of the course can be found in volume 1, but you’ll need to open volume

2 when we get to spatially organised systems.

• Dick Neal, Introduction to Population Biology

The mathematics is straightforward and, at times, might come across a little laboured.

But the explanations of the underlying biology are well written and the book is peppered

with many interesting examples.

• Steven Strogatz, Nonlinear Dynamics and Chaos

Not a biology book per se, but a spectacularly good introduction to the dynamical

systems that underlie much of this course. It has a number of biologically leaning

examples.

In addition, there are many online lecture notes, including ones by past lecturers of

this course that I have freely taken from. You can find links to these on the course

webpage.

http://www.damtp.cam.ac.uk/user/tong/mathbio.html
http://www.damtp.cam.ac.uk/user/tong/mathbio.html


Contents

0 Introduction 1

1 Population Dynamics and Other Stories 3

1.1 First You’re Born, Then You Die 4

1.1.1 Exponential Growth 4

1.1.2 The Logistic Equation 6

1.1.3 Fixed Points 10

1.1.4 In Praise of Parsimony 13

1.2 Delay 14

1.2.1 The Linear Delay Differential Equation 16

1.2.2 Blowflies 20

1.2.3 And. . . Breathe 22

1.3 Age Concern 26

1.3.1 Separable Solutions 28

1.3.2 More General Solutions 29

1.4 Interacting Species 32

1.4.1 Predator-Prey: The Lotka-Volterra Equations 33

1.4.2 Predator-Prey: A Logistic Twist 40

1.4.3 Predator-Prey: I’m Full Now 42

1.4.4 Competition 45

1.4.5 Dengue Fever 49

1.4.6 The Large Diversity Limit 52

1.5 Epidemiology 54

1.5.1 The SIR Model 54

1.5.2 Just When You Thought It Was Safe. . . 57

1.6 Chemical Reactions 60

1.6.1 The Law of Mass Action 60

1.6.2 Michaelis-Menten Enzyme Kinetics 63

1.6.3 Asymptotic Behaviour 65

1.7 Neuron Excitations 67

1.7.1 FitzHugh-Nagumo Model 68

– i –



2 Discrete Time 73

2.1 Linear Examples 73

2.1.1 Hello Poppy 73

2.1.2 Breathe Again 74

2.2 The Logistic Map 76

2.2.1 The Fixed Points 77

2.2.2 Bifurcation 78

2.2.3 And Then. . . Chaos 81

2.2.4 The Logistic Map in Ecology 83

2.3 Universality 84

2.3.1 Zooming in on Bifurcations 86

2.3.2 Renormalisation 88

2.3.3 The Feigenbaum constant α 90

2.3.4 The Feigenbaum Constant δ 92

3 Spatial Variations 97

3.1 Diffusion 100

3.1.1 Diffusion on a Finite Interval 100

3.1.2 How to Cook a Turkey 103

3.1.3 A First Look at Diffusion With Growth 105

3.1.4 Diffusion on the Line 106

3.1.5 Non-Linear Diffusion 110

3.2 Travelling Waves 113

3.2.1 The KPP-Fisher Equation 114

3.2.2 Front Propagation in Bistable Systems 120

3.2.3 Wave Propagation in Neurons 125

3.3 Turing Instability 129

3.3.1 Pattern Formation 133

3.3.2 An Example 134

3.4 Chemotaxis 135

3.4.1 An Example 137

4 Random Variations 140

4.1 Discrete Outcomes 140

4.1.1 Two Outcomes 140

4.1.2 Discrete Population Size 142

4.1.3 Birth and Death Again 145

4.1.4 Extinction 151

– ii –



4.1.5 Multiple Populations: Wildebeest and Flies 152

4.2 Meet the Fokker-Planck Equation 154

4.2.1 Constant Drift and Diffusion 157

4.2.2 Birth and Death Once More 158

4.2.3 Fokker-Planck With More Variables 159

4.2.4 Wildebeest and Flies Again 161

4.3 An Invitation to Fluctuation and Dissipation 164

– 1 –



“I write about biology from the point of view of a physicist. Some physi-

cists are arrogant and some are humble. I prefer to be humble. Arrogant

physicists say that biology needs better concepts; since physicists are good

at concepts, our job is to tell biologists how to think. Humble physicists say

that biology needs better hardware; since physicists are good at hardware,

our job is to invent new tools for biologists to use. With the exception of

Max Delbruck and Francis Crick and a few other pioneers in the heroic age

of molecular biology, physicists who tried to teach biologists how to think

have failed dismally.”

Freeman Dyson (being very Freeman Dyson).
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0 Introduction

“This process of “model building”, essentially that of discarding all but the

essentials and focusing on a model simple enough to do the job but not too

hard to see all the way through, is possibly the least understood – and often

the most dangerous – of all the functions of a theoretical physicist.”

Philip Anderson

Imagine that you possess the following superpower. When presented with a new object,

you pick up a pen and write down a description of it. Maybe you just jot down a few

words. Maybe the muse takes hold and you become expansive, filling many paragraphs.

Now comes the superpower. When your description is finished, you stare at the

page and have a little think before rearranging the words in a different order, following

arcane rules known only to those who possess the superpower. You shuffle an adjective

here and a verb there until a feeling of calm comes over you and the words form a

pattern that, incredibly, when read, reveals something new about the original object,

something that you didn’t know before, something that must have been hiding there all

along yet only emerges after you play this game. For those imbued with real skill, this

superpower can be used to reveal things that no one on the planet previously knew.

This superpower sounds like magic. And yet it’s a power that each of you can wield

and the purpose of these lectures is merely to hone it. The trick, of course, is that

you must describe the original object in the language of mathematics. The existence

of such a superpower is the reason why mathematics is special. It is why mathematics

is a greater form of expression than, say, poetry: partly because it’s more useful, but

mostly because it’s more magical.

There are many stories about the world written in the language of mathematics. One

of the mysteries of this enterprise is that, at the most fundamental level – at the level

of quantum field theory and general relativity – the laws of physics are fully described

in terms of the most simple equations. But that’s not our interest here. Instead, we

want to turn to topics in biology: population dynamics and the spread of disease and

the interactions of enzymes and many others besides. These topics, like everything in

biology, tend to be complicated. And this gives us an immediate headache because,

for the kind of systems that we’re interested in, no equation with fewer than, say, 1023

terms is likely to capture the full complexity of the situation. What to do?
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Figure 1. A good model.

One option is to aim for realism. We could continue to add more and more terms

to our equations, hoping to match the intricate details of the system, perhaps inspired

by results elsewhere in physics where theoretical calculations agree with experiment to

many decimal places. This is not the approach we will take here.

Instead, we will strive to create mathematical caricatures of biological systems. We

will strip away the complexity and focus on the key principles that lie underneath.

The result will be equations that are akin to Picasso’s line drawings of animals: they

capture the spirit of the beast, but they may not be particularly useful if you’re a vet

learning how to do surgery. The idea is that, with a few strokes of the pen, we can

construct equations that describe the essence of a thing and then solve these equations

to learn more about what it does and how it does it.

Throughout these lectures we will solve many such equations. However, one of the

things that we will not do is to explain how to construct such models in the first place.

This is an important skill, but it’s typically a skill that first requires a deep knowledge

of a particular topic – say, the migratory patterns of monarch butterflies, or the human

respiratory system – before you then try to extract from the wealth of information

the important features that can be profitably distilled into equations. We won’t go

through this long and complicated process in what follows, focussing instead on the

end product: some simple examples of mathematical models. We will look at many

such examples. The hope is that by exploring a wide range of mathematical models,

and learning what sorts of behaviour you might expect to emerge, you will be better

placed to construct your own models when you finally learn all there is to know about

those monarch butterflies.
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1 Population Dynamics and Other Stories

People are born. People die. People move on. This, in a nutshell, is population dynam-

ics. Our goal in this section is to drape equations around these words to understand

how the population of various species changes over time.

The general approach that we will take will be mirrored throughout these lectures:

first we try to isolate the relevant dynamical degree of freedom; then we introduce

models of increasing complexity to capture some basic idea about life or death or

movement. Each of the complications will usually (but not always) change the form of

our equations in some way and a large part of this chapter will be devoted to describing

the techniques needed to solve the resulting equations.

The basic question that we have to address when building any mathematical model

of the world is: what are the dynamical degrees of freedom? In other words, what

are the right variables to use? For our immediate purposes, the answer would seem to

be blindingly obvious: we want to understand the size of the population and how it

changes with time. We denote this as N(t).

Even here, however, there are subtleties and we may well need to further refine our

dynamical variable or add more. Does it matter if we treat N(t) as a continuous

variable or should we insist that it’s something discrete? Does the age profile of the

population matter, in which case we should work with n(a, t), the number of people

with a particular age a. Does the way the population is distributed spatially matter,

in which case we should work with a population density n(x, t). Does it matter if the

population is interacting with some other species? Are there other things that we’ve

just completely, perhaps even unintentionally, ignored?

The answer to all of these question is: it depends. And even if you devote your life

to the study of some particular population, it still may not be obvious. The art of

mathematical modelling is largely in realising what you should include and what you

can safely ignore. The way to proceed is to start simple and then introduce each of the

potential complications above to see what qualitative and quantitative effect they have

on the dynamics. Indeed, it’s often only by comparing the data to the mathematical

models that we can start to understand which complexities are important and which

can be discarded.

As this section progresses, we will be increasingly flexible about what we think of

as a “population”. Later, we will look at “populations” of viruses, chemicals and

electrical signals in the brain. The thing that links these different phenomena is that
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they can all be described by coupled, first order differential equations. Indeed, the

real purpose of this whole section is to see a few things that can be modelled by these

simple dynamical systems. Unlike in other courses, we will not develop the mathematics

systematically but, instead, work our way through various examples, most of which will

exhibit different mathematical features. As we proceed, we will build up a toolkit of

results that allow us to examine these kinds of systems more generally.

1.1 First You’re Born, Then You Die

We’re going to start by writing down the simplest models for population growth. These

describe just the single variable N(t) and we will take both the population N and time

t to be continuous. This seems reasonable in the case of time, less so for the population

which is, in reality, an integer. But we can justify this approximation if we’re dealing

with situation in which N is suitably large so that the difference between N and N +1

doesn’t make any material difference to the situation.

In what follows, we will ignore both immigration and emigration. This means that

population change is determined by birth and death rates alone.

1.1.1 Exponential Growth

For our first attempt at writing down a model, we will assume that the population has

some fixed birth and death rates. Each person is the population has some probability

of giving birth and some probability of dying. We’re not distinguishing population by

age and so this probability is the same for everyone.

Suppose that in some time ∆t, the number of births is bN∆t and the number of

deaths is dN∆t with b and d constant. We call b and d the birth and death rates,

respectively. More precisely, they are the number of births/deaths per individual (or

per capita) per unit time.

In the time ∆t, the change in the population will be

N(t+∆t) ≈ N(t) + (b− d)N(t)∆t . (1.1)

Dividing by ∆t, and taking the limit ∆t→ 0, we get the first order differential equation

dN

dt
= (b− d)N . (1.2)

This equation only depends on the difference of b and d, not their individual values.

(As we will see in Section 4, this conclusion will change when we look at random

fluctuations.) The equation is easily solved and we have

N = N0 e
rt with r = b− d . (1.3)
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Figure 2. The growth of the world’s population, taken from the Our World in Data website.

The purple line shows the percentage increase each year, so a constant purple line would

correspond to exponential growth.

Here N0 is the initial population at time t = 0. We learn that populations will grow

exponentially if the birth rate is higher than the death rate, and shrink exponentially

if it’s the other way around.

The idea of exponential population growth is often attributed to an essay by Thomas

Malthus in 1798. He writes

“This [increase of population] constantly tends to subject the lower classes

of the society to distress and to prevent any great permanent amelioration

of their condition”

He was not the last person to deduce wide-sweeping, moralising conclusions about the

state of society based on flimsy mathematical underpinnings.

So does this exponential growth hold up in practice? Well, like many things in this

course, the answer is: to an extent. But often you have to seek out specific examples

where it works. An obvious place to look is the global population of humans. The

data is shown in Figure 2. For much of the past 300 years, the population growth

has been super-exponential, with the exponent r growing over time. (This exponent is

roughly what is plotted on the purple line.) But, since 1963, the exponent r has been

decreasing. Current projections suggest that r will become negative before the year

2100, with the world’s population peaking at around 10 billion.
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1.1.2 The Logistic Equation

In an attempt to be more realistic, we could envisage that the birth and death rates

themselves depend on the size of the population. That leads us to the general class of

models

dN

dt
= [b(N)− d(N)]N (1.4)

with general functions b(N) and d(N) that encode whatever features of population

growth you think are important.

As we’re treading slowly, an obvious guess for the right-hand side is to replace the

linear function that led to exponential growth with a quadratic function. This suggests

that we examine solutions to the equation

dN

dt
= rN − λN2 . (1.5)

This is a famous differential equation, known as the logistic equation. It was first written

down in 1838 by the Belgian mathematician Pierre Francois Velhurst. The idea of the

extra term is that growth rates become smaller as resources become scarce, perhaps

due to lack of food or to overcrowding. The logistic equation comes with a natural

maximum population that can be supported. This is most easily seen if we rewrite the

equation as

dN

dt
= r

(
1− N

K

)
N with K =

r

λ
. (1.6)

Here K is referred to as the carrying capacity.

If r, λ > 0, then small populations with N < K will have an increasing population

with dN/dt > 0. Meanwhile, larger populations with N > K will have a decreasing

population with dN/dt < 0. In this way, the logistic equation captures the idea that

there is a natural ceiling to the size of a population.

It’s straightforward to solve the logistic equation. We have∫
dN

K

(K −N)N
=

∫
dN

(
1

N
+

1

K −N

)
= log

∣∣∣∣ N

K −N

∣∣∣∣− log

∣∣∣∣ N0

K −N0

∣∣∣∣ = rt . (1.7)

Here we’ve introduced the integration constant N0 which is designed so that N(t =

0) = N0. We’ve taken the modulus sign in the logarithms because we don’t know if
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Figure 3. Solutions to the logistic equation. On the right, the curves are plotted with (from

top to bottom) N0 = 2K, N0 = 3
4K, N0 = 1

2K and N0 = 1
2K. On the right, the curve is

plotted with N = 1
100K where it exhibits the kind of characteristic tanh-like squashed s-shape

that is sometimes called a sigmoidal.

N > K or N < K. But if N(t) > K at one time, then it remains so at all times (and

similar for N < K.) This means that once we combine the two logs we can remove the

modulus signs and write

log

(
N

K −N

K −N0

N0

)
= rt . (1.8)

Rearranging, we have

N =
N0Kert

K +N0(ert − 1)
. (1.9)

This general form f(x) = a/(b + e−x) is known as the logistic function. The function

is plotted in Figure 3 for various values of N0. Regardless of the initial value of the

population N0, the curves converge on N → K at late times. The logistic function is

well approximated by our earlier exponential function for times such that N0(e
rt−1)≪

K

There are other ways to write the solutions to the logistic equation that highlight

the difference between the two cases N > K and N < K. To see this, it’s perhaps

simplest to return to the integral solution (1.7) and write it as

log

∣∣∣∣ N

K −N

∣∣∣∣ = r(t− t0) . (1.10)

Now we have the integration constant t0 and we retain the modulus signs. Rearranging

with N < K, we find

N =
Ker(t−t0)

1 + er(t−t0)
=

K

2

[
1 + tanh

(
1

2
r(t− t0)

)]
. (1.11)
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Figure 4. On the left: the population of a single celled organism over time. This picture is

taken from the classic, and wonderfully named, 1934 book A Struggle for Existence by G.F.

Gause. (In addition, here is a more recent paper showing how to fit Gause’s data statistically.)

On the right: the percentage of the total corn planted with hybrid seed in different US states,

between 1932 and 1956, taken from the 1957 paper Hybrid Corn: An Exploration in the

Economics of Technological Change by Griliches.

Meanwhile, for N > K, the same manipulations give

N =
Ker(t−t0)

er(t−t0) − 1
=

K

2

[
1 + coth

(
1

2
r(t− t0)

)]
. (1.12)

Again, we can ask: how well does the logistic curve do in modelling real world pop-

ulations? It by no means a universal curve, but it certainly is more ubiquitous than

exponential growth and you can find the characteristic s-shape curve appearing in many

different places. One example is shown on the left of Figure 4 where the time evolu-

tion of the population of single celled organisms known as “paramecium caudatum” is

plotted. (Unsurprisingly, when comparing data to equations, things tend to look better

when the population in question lives in a bottle in controlled conditions, rather than

in the wild.)

The Spread of Beneficial Mutation

There are many other situations where data seems to fit the logistic equation1, notably

when there is a natural ceiling in place. In particular, the equation arises when de-

scribing the fraction of a population that has adapted in some advantageous way. One

1You can find claims that the growth of children’s vocabulary can be well fitted by the logistic

function. You can see the data here and make up your own mind. It’s worth mentioning that the

logistic function (1.9) coincides with the Fermi-Dirac distribution in theoretical physics, although I

don’t know of a way to view that distribution as a solution to the logistic equation. (You can read

more about the way this distribution arises in the lectures on Statistical Physics.)
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famous example is the percentage of farmers who adopted a particular breed of hybrid

corn, as shown on the right of Figure 4.

For example, the fraction p(t) of a population which carry a gene with a beneficial

mutation is described by the logistic equation. To derive this, let N(t) be the total

population. A mutation is beneficial if it increases the rate at which individuals have

offspring. Suppose that, in the absence of the mutation, the population grows at a rate

r but that, with the mutation present, this is increased to r + s. At time t,

Nmutant(t) = p(t)N(t) and Nnormal(t) = (1− p(t))N(t) . (1.13)

At time t+ δt, these numbers are

Nmutant(t+ δt) =
(
1 + (r + s)δt

)
pN

Nnormal(t+ δt) = (1 + rδt) (1− p)N (1.14)

where both p and N on the right-hand side are evaluated at time t and, here and below,

we’re dropping terms of order O(δt2). This means that the total population at time

t+ δt is

N(t+ δt) = Nmutant(t+ δt) +Nnormal(t+ δt)

= (1 + r δt+ sp(t) δt)N(t) . (1.15)

Meanwhile, the fraction of mutants at time t+ δt is

p(t+ δt) =
Nmutant(t+ δt)

N(t+ δt)

=
(1 + (r + s)δt)

1 + r δt+ sp(t) δt
p(t) . (1.16)

We now Taylor expand the denominator, again throwing away terms of order O(δt2),
to get

p(t+ δt) = (1 + (r + s)δt) (1− r δt− sp(t) δt) p(t)

= (1 + s(1− p(t))δt) p(t) . (1.17)

We then have

dp

dt
= lim

δt→0

p(t+ δt)− p(t)

δt
= sp(t)(1− p(t)) (1.18)

which is the promised logistic equation.
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Nondimensionalisation

Applied mathematicians have invented one of the ugliest words in the English lan-

guage and then they go around saying it like it’s completely normal. That word is

nondimensionalisation.

The idea is to work with dimensionless variables. To achieve this, we absorb some

of the constants in the equations into the dynamical variables. For example, for the

logistic equation (1.6), we define

x =
N

K
and τ = rt (1.19)

so that the equation becomes

dx

dτ
= x(1− x) . (1.20)

Correspondingly, the solution (1.9) is

x =
x0e

τ

1 + x0(eτ − 1)
. (1.21)

Nondimensionalisation has the advantage that it allows us to see the wood for the

trees, stripping away anything that is inconsequential for the analysis. Of course, it’s

straightforward to put the constants back in by reverting to the original variables.

You will often see the practice of rescaling certain variables to make them nondimen-

sional, but then retaining their original names. We will also be guilty of this at times,

but will flag when we’re doing it.

1.1.3 Fixed Points

In general, the class of population models that we’re considering take the nondimen-

sionalised form

dx

dt
= f(x) (1.22)

for some function f(x). One particularly simple question that we can ask is: what are

the steady state solutions, such that dx/dt = 0?
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Clearly, the steady state solutions are the roots of the function, meaning those values

x = x⋆ such that f(x⋆) = 0. Given such a fixed point, we can further ask: is it stable?

If the population deviates a little from x = x⋆, does it move towards x⋆ or away? The

answer to this follows from some simple analysis. We write

x(t) = x⋆ + ϵ(t) (1.23)

with ϵ(t)≪ 1. Taylor expanding, we then have

dx

dt
= f ′(x⋆)ϵ(t) +O(ϵ2) . (1.24)

We see that the fixed point x = x⋆ is stable if f ′(x⋆) < 0 and is unstable if f ′(x⋆) > 0.

In practice, we can just plot the function

f(x) and see whether the graph crosses the

axis with positive or negative slope. For exam-

ple, for the logistic equation we have f(x) =

x(1 − x) which is plotted on the right. The

fixed point at x⋆ = 0 has f ′(0) > 0 and is un-

stable, while the other fixed point at x⋆ = 1

has f ′(1) < 0 and is stable.

An Example: Adding Predation

Here’s a more intricate example. Suppose that

we add an extra term to the logistic equation, so that it reads

dN

dt
= r

(
1− N

K

)
N − BN2

A2 +N2
. (1.25)

This additional term represents the effects of predators, which increases monotonically

as the population increases but reaches a maximum value as N →∞.

The are different ways to nondimensionalise this equation. We could define x = N/K

as before. But we will instead make the different choice

x =
N

A
, τ =

Bt

A
and α =

Ar

B
, β =

K

A
. (1.26)

Here α and β are dimensionless parameters. With this rescaling, the equation becomes

dx

dτ
= f(x) = α

(
1− x

β

)
x− x2

1 + x2
. (1.27)

– 11 –



Figure 5. One the left: graphic solutions to equation (1.28). the dashed lines are plotted for

a fixed value of β and varying α. On the right, the function f(x) defined in (1.27) for values

of the parameters where there are four roots.

There’s one obvious fixed point at x = 0. The others are more complicated as we need

to solve

α

(
1− x

β

)
=

x2

1 + x2
. (1.28)

Multiplying this out gives us an unwieldy cubic. It has either one root or three depend-

ing on the parameters. To see this, we can look for solutions graphically. On the left

of Figure 5, the function x2/(1 + x2) is plotted as a solid line, while the linear function

α(1− x/β) is plotted for a fixed value of β and varying α. We see that for α large and

small, there is just a single intersection point, while there is a window of values of α

where there are three intersections.

If there is just a single additional root of f(x), other than x = 0, then it is necessarily

the stable point. If there are three additional roots, then two of them are stable and

one is unstable. Indeed, a plot of f(x) for a choice of α and β where there there are

four roots is shown on the right of Figure 5. You can see that, for any function f(x),

the fixed points have to alternate between unstable and stable. The solutions to (1.22)

always sit between two fixed points and flow, asymptotically, to the stable one.

The equation (1.27), is thought to be a decent model for a class of tree-eating bugs,

with the predation term arising because birds like bugs. These kind of models can

inform the strategy that you take to reduce the infection by varying any parameters

in the model that may be under your control. For example, you could spray the trees

with something unpleasant to reduce the carrying capacity K of the bug. Or you could

deliberately increase the population of predators, increasing the value of B.
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1.1.4 In Praise of Parsimony

Throughout these lectures, we will typically start with some very simple model to

describe a particular phenomenon. It will capture some aspect of what’s going on but,

when compared to data, we will usually find that things are more complicated. The

obvious thing to do is to return to our original equations and improve them by, say,

adding an extra term. That’s what we did above when including the effect of predation.

It might be tempting to continue to add extra terms and parameters until the mathe-

matical model agrees more closely with the data. We’re going to resist this temptation.

Mathematical biology doesn’t, for the most part, have the precision of more funda-

mental areas of physics. We’re never going to find the biological analog of, say, the

blackbody radiation curve that we met in the Statistical Physics lectures and matches

the light from the Big Bang to an accuracy of 10−5. That’s because humans and rabbits

and bugs and viruses are all more complicated than atoms and photons. And including

more and more terms in an attempt to match what you see runs the risk that you

aren’t adding any kind of insight beyond data fitting.

-50 50

-50

50

Instead our goal is more modest in scope.

We would like to understand the qualitative

features of a biological system, distilling its

essence into a few simple equations.

For those who would prefer to see a closer

match between predictions and data, it’s worth

recalling von Neumann’s famous words to

Fermi (all the more appropriate for a course

on mathematical biology)

“ With four parameters I can fit an

elephant, and with five I can make

him wiggle his trunk.”

An almost-realisation of this can be achieved by the parametric plot2

x(t) = −60 cos t+ 30 sin t− 8 sin 2t+ 10 sin 3t

y(t) = 50 sin t+ 18 sin 2t− 12 cos 3t+ 14 cos 5t .

2This is taken from the paper “Drawing an Elephant with Four Complex Parameters” by Jürgen

Mayer, Khaled Khairy, and Jonathon Howard.
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The result is shown in the figure. If you count only the amplitudes as parameters then

you’ve got 8. The authors, somewhat cheekily, paired the parameters together in a

random way and declared success with 4 complex numbers. (Presumably they could

have equally argued that they did it with just 2 quaternions.)

1.2 Delay

The class of models (1.22) includes an arbitrary function f(x), designed to capture the

intricacies of population interactions. But the kind of solutions that we get are always

going to be the same: the population will evolve monotonically towards a fixed point.

This means that any population that exhibits different behaviour – say oscillations –

must have something else going on.

In this section, we explore the mathematics of a different class of models. These

have the property that the change in the population depends on its size evaluated at

a previous time. This might be argued to be more realistic. For example, it takes

time for eggs to hatch. And it takes time for babies to grow into fully functioning, and

reproducing, members of society.

We will look at the delayed logistic equation, also known as the Hutchinson-Wright

equation. In nondimensionalised variables, it is

dx(t)

dt
= αx(t)

[
1− x(t− T )

]
. (1.29)

As promised, the change in population depends on the current population both at the

current time t and at a previous time t− T .

As we will see, the delayed logistic equation (1.29) exhibits interesting behaviour and

is used widely to model various biological phenomena. But the equation doesn’t match

the words that we’ve used to motivate it: the delay isn’t in the birth term, but instead

it is in the carrying capacity term. This means that it is the resources available at

the earlier time that affect the growth rate3. For example, you might think of animals

3This is the insight of Hutchinson in his 1948 paper “ Circular Causal Systems in Ecology”. (He

has a cute footnote saying that he turned to his friend, Lars Onsager, for help in solving the equation.

Onsager has a formidable reputation as one of the greatest, and least comprehensible, physicists of

the mid-20th century.) In contrast, Wright’s 1955 paper “A non-linear difference-differential equation”

discusses the equation where the delay is in the birth rate

dx(t)

dt
= αx(t− T )

[
1− x(t)

]
.

We’ll look at an equation in a similar spirit below when we discusses delay models applied to blowfly

populations.
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Figure 6. Numerical solutions to the delayed logistic equation, with x(t) plotted vertically

and t plotted horizontally. These were produced with T = 1 and α given by the value of αT

specified in the graph. The initial history was taken to be x(t) = 1
2 for −1 ≤ t ≤ 0.

storing nutrients, or hoarding resources, like squirrels and nuts, or humans and toilet

paper.

The delayed logistic equation is an example of a general class of delay differential

equations. These kind of equations are rare in theoretical physics, where things tend

to happen locally in time, so are likely unfamiliar. Usually a first order differential

equation needs just a single initial condition, say x(t = 0). Here we need a functions

worth of initial conditions, telling us the history x(t) for −T ≤ t ≤ 0, before we can

find a solution.

Even before we try to solve (1.29), we can get a feel for what will happen. In the

original logistic equation, the population is capped above at x = 1 (in dimensionless

variables). But the delay means that the population at time t can exceed x = 1 and

continue to grow provided that the past population x(t − T ) is less than one. The

population then stops growing only at a time T after it first hits the would-be ceiling

at x = 1. Then the population will decrease. This story then repeats, resulting in

oscillations around the x = 1 fixed point.
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Numerical Results

Delay differential equations like (1.29) typically don’t have closed form solutions. We

will make some analytic progress shortly, but first we can study the solutions numeri-

cally. The equation has two parameters: α and T . But, after rescaling time, there is

really just a single dimensionless parameter αT . We want to understand how solutions

depend on this parameter.

The results are shown in Figure 6, plotted for various values of αT . We do indeed

see the observed oscillations when αT is suitably large. But when αT is small, they die

away. And by the time that αT ≲ 0.5, the oscillations are pretty much invisible. Our

goal is to understand this behaviour.

1.2.1 The Linear Delay Differential Equation

The solution x = 1 is still a fixed point of the delayed logistic equation (1.29). We will

make progress by looking at small deviations away from this fixed point. To this end,

we write

x(t) = 1 + ϵ(t) . (1.30)

Substituting this into delayed logistic equation and dropping terms of order ϵ2, we find

dϵ(t)

dt
= −α ϵ(t− T ) . (1.31)

This is still a delayed differential equation, but it’s one of the few that we can solve

analytically. These solutions take the form

ϵ(t) = ϵ0e
st (1.32)

for some constant s. There’s a standard trick that we use when solving linear equations

of this kind: we take s ∈ C. At first this looks slightly odd because ϵ is a (rescaled)

measure of the population and when you’re driving past those road signs that state the

population of a town, they very rarely give a complex number. But because (1.31) is

linear, if we’ve got a complex solution then we can simply take the real and imaginary

parts to find real solutions.

At heart, the trick of taking s ∈ C is simply so that we can write things like eit

rather than cos t and sin t. This means that any imaginary part of s is telling us that

the solution oscillates about the fixed point. Meanwhile, a real part of s is telling us

that the solution converges to the fixed point (if Re(s) < 0) or moves away from the

fixed point (if Re(s) > 0).

– 16 –



The ansatz (1.32) solves our delay differential equation (1.31) provided that

sesT = −α . (1.33)

If we rescale and define the variable z = sT , this becomes

zez = −αT . (1.34)

The solutions to this equation are somewhat subtle. We will proceed slowly.

First, we can look for purely real solutions.

This is straightforward. We plot the curve

f(z) = zez in the figure. The right-hand side of

(1.34) is negative so we see immediately that

solutions must have z < 0. In other words,

these are stable. The function has a minimum

at z = −1 where f(−1) = −e−1. This means

that there are only purely real solutions pro-

vided that the decay time is suitably short,

αT ≤ 1

e
≈ 0.37 . (1.35)

This agrees with what we saw numerically: for low values of αT , there are no oscilla-

tions. If αT ≪ 1, then we can zoom into the origin of the graph where f(z) = zez ≈ z.

We see that the solution for very small αT is just s = −α, which coincides with the

solution to the logistic equation near the fixed point.

When αT > e−1, the solutions to (1.34) become complex. The general class of

solutions are known as Lambert W functions. Once we allow complex values of z,

there isn’t a unique solution because of the branch cut inherent in taking the log of a

complex number. Instead, the different branches of solutions are labelled by k ∈ Z and

are written as

z = Wk(−αT ) . (1.36)

Here Wk(x) are the Lambert W functions. There are no closed form expressions, but

their properties are very well studied. (In particular, there is an inbuilt Mathematica

function LambertW[k, x] that will do the job for you.)
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Figure 7. The real and imaginary parts of the Lambert W function W0(−x).

The purely real solutions that we have found above are part of the Lambert W

function W0(x). The real and imaginary parts of this solution are plotted in Figure 7.

We see that the imaginary part vanishes for αT < 1/e, agreeing with what we found

above. Meanwhile, the real part has a sharp kink at that point. For our immediate

purposes, the important thing is that the real part is negative for αT < π/2, and then

becomes positive.

It’s straightforward to reproduce these two key features with a little thought. First

note that when we take z = πi/2, we have

z =
πi

2
=⇒ zez = −π

2
(1.37)

So this is indeed a purely imaginary solution when αT = π/2.

Next, write z = σ + iω. If we rewrite (1.34) as z = −αTe−z, we have

σ + iω = −αTe−σ(cosω − i sinω) =⇒

{
σ = −αTe−σ cosω

ω = +αTe−σ sinω
(1.38)

where we have simply decomposed the first equation into real and imaginary parts.

When αT = π/2, we know that these equations are solved when we have σ = 0 and

ω = π/2. We want to show that when αT < π/2, we necessarily have σ < 0.

To see this, it’s simplest to consider two separate cases. First, if |ω| > αT then the

second equation in (1.38) tells us that ω = αTe−σ sinω < αTe−σ so we must have

σ < 0. Second, if |ω| < αT < π/2 then cosω > 0 and so the first equation in (1.38)

tells immediately that σ < 0.
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The upshot of this argument is there are three distinct regimes, in which solutions

to the delayed logistic equation have the following behaviour close to the stable fixed

point at x = 1:

• For 0 < αT < 1/e, solutions monotonically approach the stable fixed point.

• For 1/e < αT < π/2, solutions oscillate about the stable, with the oscillations

decaying exponentially.

• For αT > π/2, the unstable fixed point is unstable. This is a more general lesson:

too much delay causes instability. Our linear analysis isn’t sufficient to tell us

what actually happens but, from last of the numerical solution shown in Figure

6, with αT = 2, we see that the solution oscillates about x = 1 without decay.

We can, however, use our analysis to estimate the frequency of oscillations. For

αT slightly greater than π/2, we have Im(z) ≈ π/2 so the oscillations should be

close to eiπt/2T , meaning that they have approximate period 2T/π. That’s indeed

what is seen numerically.

The discussion above relates only to the first branch of solutions, with z = W0(−αT ).
There are also other branches with z = Wk(−αT ). For example, it’s simple to check

that there exists purely imaginary solutions whenever

z = (2k + 1)
πi

2
=⇒ zez = −(2k + 1)

π

2
. (1.39)

This is where Re
[
Wk(−z)

]
= 0 and this particular branch turns from stable to unstable.

Importantly, however, higher branches only become unstable at larger values of αT .

This ensures that, for 0 < αT < π/2, the fixed point x = 1 is stable.

You might then wonder whether it’s possible to find stable solutions for larger values

of αT , which use only these higher branches with k ̸= 0. The answer is “yes”, but such

solutions are finely tuned. In general, the solution to the linearised equation (1.32) will

be

x(t) =
∑
k∈Z

Ake
zkt/T for − T ≤ t ≤ 0 . (1.40)

Here zk = Wk(−αT ) are the exponents from the different branches of the Lambert

W function. The coefficients Ak are determined by the initial conditions. Recall, in

particular, that for delay equations of this type we don’t have a single initial condition,

but a whole history’s worth x(t) for−T ≤ t ≤ 0: that’s why there are an infinite number

of coefficients Ak. As we have seen, the k = 0 solution is unstable for αT > π/2. If
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Figure 8. Data of blowfly population. The solid line is the adult population, the dotted line

the eggs.

the initial conditions mean that A0 = 0 then we can discard this solution and extend

the regime of stability further, with the k = 1 solution the first to turn unstable at

αT = 5π/2.

1.2.2 Blowflies

If you’re a sheep farmer, then you really care about blowflies (little bastards). The flies

lay their eggs in the fleece, often attracted by open wounds. This doesn’t do the sheep

much good: mortality rates are around 2 to 3%.

In a famous experiment in the 1950s, the British-Australian zoologist Nicholson kept

blowfly as pets in the lab, regulating their supply of food for both the adult and larval

population. Nicholson observed wild fluctuations in the blowfly population. His results

are reproduced in Figure 8. These oscillations were subsequently explained by the kind

of delay differential equation that we’re considering here4.

This time we will construct a model in which the birth rate is delayed. We assume

that the egg production per capita is given by P0e
−N/N0 . The total egg production is

then

P (N) = P0Ne−N/N0 . (1.41)

We take a constant death rate µ. Our delay differential equation is then

dN(t)

dt
= P (t− T )− µN(t) . (1.42)

4Nicholson’s classical study was An Outline of the Dynamics of Animal Population. The model

below was first propose by Gurney, Blythe, and Nisbet in Nicholson’s blowflies revisited.

– 20 –

https://www.publish.csiro.au/ZO/ZO9540009
https://www.nature.com/articles/287017a0


We have four constant parameters in this equation: P0, N0, µ and the delay time T .

As a first step, we nondimensionalise our variables and parameters. We write

x =
N

N0

, τ = µt , and a = µT , b = P0T (1.43)

This leaves us with the following equation that depends on just two dimensionless

parameters, a and b, with a appearing as the delay time,

dx

dτ
=

b

a
x(τ − a) e−x(τ−a) − x(τ) . (1.44)

First, we look at the equilibrium point x = x⋆, obeying

b

a
x⋆e

−x⋆ = x⋆ =⇒ x⋆ = log
b

a
. (1.45)

This is a physical equilibrium point with x⋆ > 0 only if b > a. We will assume this in

what follows.

Next, we look at small perturbations about the fixed point. We write

x(τ) = log
b

a
+ ϵ(τ) . (1.46)

Substituting into our delay equation (1.44), we have

dϵ(τ)

dτ
=

b

a

(
x⋆ + ϵ(τ − a)

)
e−x⋆e−ϵ(τ−a) − x⋆ − ϵ(τ)

=
(
x⋆ + ϵ(τ − a)

)(
1− ϵ(τ − a)

)
− x⋆ − ϵ(τ)

= (1− x⋆)ϵ(τ − a)− ϵ(τ) . (1.47)

Now we follow our previous analysis. We look for solutions of the form

ϵ(τ) = ϵ0e
sτ . (1.48)

These obey (1.47) if

s = (1− x⋆)e
−sa − 1 . (1.49)

Again, we can look for (typically) complex solutions to this equation. This time the

solutions are harder to come by. But it’s rather straightforward to prove the following

result:

Claim: The fixed point x⋆ = log(b/a) is stable if b/a < e2.
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Figure 9. A typical oscillatory solution from the delay differential equation with b≫ a.

Proof: To see this, we decompose the equation (1.49) into real and imaginary parts

by writing s = σ + iω. We have

σ = (1− x⋆)e
−σa cos(ωa)− 1 and ω = −(1− x⋆)e

−σa sin(ωa) . (1.50)

If b/a < e2 then |1−x⋆| < 1. Suppose that the system is unstable, so that σ > 0. Then

the right we have |(1− x⋆)e
−σa cos(ωa)| < 1 and hence the right-hand side of the first

equation above is necessarily negative. However the left-hand side is just σ which, by

assumption, is positive. Hence we must have σ < 0 in this regime. □

Note that we haven’t proven that the system is unstable for b/a > e2 and, indeed,

this isn’t always the case. But it is true that, for suitably large b/a, the system is

unstable and again exhibits oscillations. A typical numerical solution with b≫ a, with

pretty funky oscillations, is shown in Figure 9.

1.2.3 And. . . Breathe

While our primary focus in this section is to understand the evolution of populations,

the techniques that we’re introducing are useful in many other contexts. Here we take

a slight detour to explain how delay models can be used to model breathing.

There are two reasons that you breathe: one is to bring oxygen into your body, the

other is to send carbon dioxide out. Because your body is good at keeping you alive,

there is a feedback mechanism at play, and the volume V of the breath that you take

depends on the concentration C of CO2 in your blood. The relation between the two

can be modelled by an equation of the form

V (C) = Vmax
Cm

Am + Cm
(1.51)
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Figure 10. The Hill function plotted for m = 1
2 , for m = 1, and for m = 2.

for some constants A and m. Curves of this kind are sometimes called Hill functions.

A variety of such curves, for fixed A and varying m, are plotted in Figure 10.

The concentration of CO2 depends on time, so we have C(t). Suppose that you take

in CO2 at a constant rate α. The amount that you exhale is proportional to both C(t)

and to the volume of your breath. But the feedback mechanism isn’t entirely efficient,

and the breath that you take at time t depends on the concentration at an earlier time

t− T for some delay T . The upshot is that we have a delay differential equation,

dC(t)

dt
= α− bC(t)V (t)

= α− bC(t)V (C(t− T )

= α− bVmaxC(t)
C(t− T )m

Am + C(t− T )m
. (1.52)

Here b is a constant that specifies how good your breathing is at removing CO2.

We can do our usual nondimensionalisation. We define

C ′ =
C

A
, t′ =

αt

A
and β =

AbVmax

α
, T ′ =

αT

A
. (1.53)

This gives us a delay equation for C ′(t′) but, to keep our equations cleaner, we then

just relabel C ′ → C and t′ → t and also T ′ → T . The upshot is that we get the delay

differential equation

dC(t)

dt
= 1− βC(t)

C(t− T )m

1 + C(t− T )m
. (1.54)
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First, we look for the equilibrium solution C⋆, which sits at

Cm+1
⋆

1 + Cm
⋆

=
1

β
. (1.55)

There is a unique solution C⋆ to this equation. This corresponds to a regular breathing

pattern. That is generally regarded as good. The question we would like to ask is:

when is this breathing pattern stable?

The idea here is that something might change to alter your breathing pattern. In

particular there is a famous irregularity in breathing known as Cheynes-Stokes respira-

tion. If you get it, it’s most likely that you have only days to live or you’re on the top

of a mountain (or possibly both). While it might not be much comfort, it’s thought

that this can be traced to some complicated physiology which results in a change of

the coefficient m in the Hill function (1.51).

We look at small perturbations of form

C(t) = C⋆ + ϵ(t) . (1.56)

By now, the path should be familiar. We substitute this into (1.54) to derive the

linearised delay differential equation. A little algebra gives

dϵ(t)

dt
= − 1

C⋆

ϵ(t)− m

C⋆

(
1− Cm

⋆

1 + Cm
⋆

)
ϵ(t− T )

= −pϵ(t)− qϵ(t− T ) . (1.57)

In the second line we’ve defined the positive constants p = 1/C⋆ and q = m/C⋆(1+Cm
⋆ ).

To solve this linear equation, we make the usual ansatz

ϵ(t) = ϵ0e
st . (1.58)

This leaves us with the algebraic equation

s = −p− qe−sT . (1.59)

We decompose this into real and imaginary parts by writing s = σ + iω to get

σ = −p− qe−σT cos(ωT )

ω = qe−σT sin(ωT ) . (1.60)

We can immediately read off some results.
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First, when T = 0 so there is no delay, we have σ = −(p + q) < 0 so the system is

stable.

Second, ω = 0 is always a solution but there will be a second solution with ω ̸= 0

whenever qe−σT > 1

Third, the system is stable whenever p > q. To see this, note that we have (σ+p)2+

ω2 = q2e−2σT , so qe−σT > |σ + p|. Suppose that the system is unstable, so that σ > 0.

In this case, q > qe−σT > |σ + p| > p. So instability necessarily implies q > p. That

isn’t to say that all systems with q > p are necessarily unstable; some may be stable.

But all those with q < p are definitely stable.

This suggests that, if we want to look for

when instability occurs, we should start with

p > q, fix p and then increase q. The point of

marginal stability occurs when σ = 0 and we

have

p = −q cos(ωT )
ω = q sin(ωT )

=⇒
p tan(ωT ) = −ω
p2 + ω2 = q2

.

We can always find solutions to the first of

these equations in the region ωT ∈ (π/2, π), as shown in the figure on the right where

we plot tanx and −x. Call this intersection point ω⋆(p, T ). The second equation above

then gives a necessary relationship between p, q and T for marginal stability:

q2 = p2 + ω2
⋆ . (1.61)

For q less than this value, breathing is stable. For q greater than this value, you’re in

trouble.

There’s a lot of objects above that we’ve only defined implicitly – like C⋆ and ω⋆ –

but, given particular values of the parameters you could easily find these numerically.

Nonetheless, the implicit nature of these constants makes it a little tricky to determine,

say, the critical value of m in the function (1.51) in terms of T and β (or equivalently

C⋆). We can make some minor progress if we substitute p = 1/C⋆ and q = m/C⋆(1+Cm
⋆ )

into (1.61). Using the fact that π/2T < ω⋆ < π/T , we get that the critical value of m

lies between

1 +
C⋆π

2

4T 2
<

m2

(1 + Cm
⋆ )2

< 1 +
C2

⋆π
2

T 2
. (1.62)
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Figure 11. A numerical solution corresponding to an unstable breathing pattern.

The left-hand inequality immediately tells us that instability only kicks for some value

of m > 1. A numerical solution to the original delay differential equation (1.52) in the

unstable regime is shown in Figure 11.

1.3 Age Concern

Until now, we’ve treated the population N as just a single number. But, for many

questions, we may want to be more discerning. Here we want to take into account one

particularly important variable: age.

To this end, we consider the population density n(a, t). Here t is time, as before, while

a is the age of individuals. Roughly speaking, n(a, t) counts the number of individuals

of age a. More precisely, we should think of n(a, t) da as the number of individual with

age between a and a+ da. The total population at time t is

N(t) =

∫ ∞

0

da n(a, t) . (1.63)

For mortals, we can reduce the upper limit of

this integral to the lifespan of the species: a few

weeks for blowfly, somewhat longer for humans.

It’s reasonable to expect both the birth rate

b(a) and the death rate µ(a) to depend on the

age of the population: the young are fertile,

the old vulnerable. We might expect typical

functions to look something like those shown

on the right.
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We now want to think about how the population ages. Suppose that your age is a

at time t. It is a sad fact of life that at a short time δt later, you have only two options

open to you: either your age is a+ δt, or you’re dead. In equations, this translates to

n(a+ δt, t+ δt) = n(a, t)− µ(a)n(a, t)δt (1.64)

where we’re dropping terms of order δt2. We can Taylor expand the left-hand side and

divide through by δt to get the partial differential equation

∂n

∂t
+

∂n

∂a
= −µ(a)n(a, t) . (1.65)

This is sometimes called the von Foerster equation.

So far this equation only captures death. To inject a level of joy into the proceedings,

we also need to talk about births. It’s hard to be born at any age other than a = 0

and so the birth rates arise as a boundary condition on the function n(a, t) at a = 0:

n(0, t) =

∫ ∞

0

da b(a)n(a, t) . (1.66)

In any realistic situation, we don’t have any problem with convergence: both the

population and birth rate will vanish for some a > aancient.

A Cute Analogy with Fluid Mechanics

For a one-dimensional fluid with velocity u, we usually define the material derivative,

D

Dt
=

∂

∂t
+ u

∂

∂x
. (1.67)

This tells us how any quantity changes as we drift along with the fluid. For our

population with age structure, we have the corresponding material derivative

D

Dt
=

∂

∂t
+

∂

∂a
. (1.68)

The analog of the fluid velocity in this equation is just u = 1, corresponding to the

fact that we get older by one year per year. In this case, the material derivative tells

us how things change if we’re aging with the population (which we are!).

The fluid analogy is nice enough, but it breaks down when it comes to the initial

boundary condition (1.66) dictated by the birth rates. This is because, from the per-

spective of fluid mechanics, this is a “non-local” boundary condition: what happens at

a = 0 depends on the value of the dynamical field n(a, t) at all values of a.
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1.3.1 Separable Solutions

Inspired by the Malthusian growth that we saw earlier, we will look for separable

solutions of (1.65) of the form

n(a, t) = ñ(a)ert (1.69)

for some function ñ(a) and some r ∈ R. This means that some age profile ñ(a) remains

unchanged, growing (or shrinking) exponentially. We substitute this into (1.65) to get

∂ñ

∂a
= −

[
r + µ(a)

]
ñ(a) =⇒ ñ(a) = n0e

−ra exp

(
−
∫ a

0

ds µ(s)

)
. (1.70)

We see that the age profile is determined only by the death rate. That exponentiated

integral e−
∫ a
0 ds µ(s) has the interpretation of the probability of surviving to age a.

We still have to impose the birthing condition (1.66) which leaves us with the fol-

lowing, slightly unusual expression

ϕ(r) :=

∫ ∞

0

da b(a)e−ra exp

(
−
∫ a

0

ds µ(s)

)
= 1 . (1.71)

Here that double integral defines the function ϕ(r) which, you can see by inspection,

is a monotonically decreasing function of r. The birthing condition requires ϕ(r) = 1

which we view as determining the exponent r.

The population may grow or shrink depending on the sign of r. To get a handle on

r, we can look at ϕ(0). Because ϕ(r) is monotonically decreasing, we can immediately

say that

• If ϕ(0) > 1 then r > 0 and the population grows in size.

• If ϕ(0) < 1 then r < 0 and the population shrinks.

In this sense, ϕ(0) can be viewed as the average number of offspring per individual.

Note that adding age structure hasn’t changed the overall story of exponential

growth. In particular, it doesn’t open up the possibility for oscillations in the way

that delay equations did.

As a sanity check, we can look at what this model gives us in the case that birth and

death rates are constant, so b(a) = b and µ(a) = d. Then the function ϕ(r) defined in

(1.71) becomes

ϕ(r) =

∫ ∞

0

da be−(r+d)a =
b

r + d
. (1.72)

Evaluated at r = 0, we have ϕ(0) = b/d, reproducing our old Malthusian result: if b > d

then the population increases exponentially, while if b < d it shrinks exponentially.
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1.3.2 More General Solutions

There is a more general class of solutions to the equation (1.65). To motivate this, note

that the left-hand-side takes the form of a wave equation. If we could somehow banish

death, so that µ(a) = 0, then the solutions would be

∂n

∂a
+

∂n

∂t
= 0 =⇒ n(a, t) = f(a− t) (1.73)

for any function f(a− t). This is telling us that there is some initial population profile

f(a) and it just propagates forward in the “age”-direction as people get older. Sadly,

death is unavoidable but, at least in this context, is easily dealt with and (1.65) has

the solution

n(a, t) = f(a− t) exp

(
−
∫ a

0

ds µ(s)

)
. (1.74)

This is the same age profile propagating forward, but now you lose a few as you go.

If we start with some initial age distribution

n(a, 0) = n0(a), then that’s enough to tell us what

happens for all a > t. We have

n0(a) = f(a) exp

(
−
∫ a

0

ds µ(s)

)
=⇒ n(a, t) = n0(a− t) exp

(
−
∫ a

a−t

ds µ(s)

)
.

But this form of the solution holds only when a >

t, which is the shaded region in the diagram. This

is the region where it’s sufficient to know the initial

population profile. For the other region, with t > a, we need to take the births into

account. For this, we need the boundary condition that specifies the birth rate (1.66).

Substituting the wave-like solution (1.74) into this boundary condition gives

n(0, t) = f(−t) =
∫ ∞

0

da b(a)n(a, t) . (1.75)

We have the solution for n(a, t) when a > t, but not when a < t. We can make use of

this by splitting the integral above into two pieces and writing

f(−t) =
∫ t

0

da b(a)n(a, t) +

∫ ∞

t

da b(a)n(a, t)

=

∫ t

0

da b(a) f(a− t)e−
∫ a
0 ds µ(s) +

∫ ∞

t

da b(a)n0(a− t)e−
∫ a
a−t ds µ(s) . (1.76)
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This is a really horrible equation! In principle, it should be used to determine the

function f(−t) for t > 0 by integrating f(−t′) from t′ = 0 to t′ = t. We then use this

expression for f(−t) in (1.74) to determine the population at times t > a. In practice,

this is easier said that done.

There is one minor simplification that we can make. The second term in (1.76) gives

the contribution from the offspring of the original population n0(a). The exponential

suppression is telling us that must they survive from age a−t to age a. At late times, we

expect that the number of these offspring will tend to zero as the old fail to reproduce,

and the resulting population profile will be independent of the initial condition. Indeed,

the separable solution didn’t give us the opportunity to impose an initial condition. In

this case, we have to solve the integral equation

f(−t) ≈
∫ t

0

da b(a) f(a− t) exp

(
−
∫ a

0

ds µ(s)

)
. (1.77)

It’s still not a pleasant equation to solve.

An Example

We can illustrate these ideas with a simple example. We take a constant death rate,

µ(a) = d, and a birth rate that is a step function, where you can only give birth if

you’re younger than some fixed age A,

b(a) =

{
b 0 < a < A

0 a > A
. (1.78)

To keep things simple, we’ll take our initial population to be n0(a) = 1 for all ages a.

Admittedly, this isn’t particularly realistic (even Methuselah didn’t make it past 1000)

but, as we saw above, we expect that the initial population will soon be unimportant.

We now need to solve for the population in two different regimes: a > t and a < t. For

a > t, we have simply

n(a, t) = e−dt for a > t . (1.79)

The other regime a < t is the trickier one. Here we must treat the regimes t < A and

t > A separately. For t < A, the integral equation (1.76) becomes

f(−t) = b

∫ t

0

da f(a− t)e−ad + b

∫ A

t

da e−dt

= b

∫ t

0

dτ
(
f(−τ)e−d(t−τ)

)
+ b(A− t)e−dt for a < t < A (1.80)
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where, in the second line, we changed the integration coordinate to τ = t− a. This is

actually an equation we can solve. To do this, it’s simplest to define ñ(t) = n(0, t) =

f(−t). We have

ñ(t) = b

∫ t

0

dτ
(
ñ(τ)e−d(t−τ)

)
+ b(A− t)e−dt for a < t < A . (1.81)

We can turn this into a more familiar differential equation simply by differentiating

with respect to t. We have

dñ

dt
= bñ(t)− bd

∫ t

0

dτ ñ(τ)e−d(t−τ) − b(1 + d(A− t))e−dt

= (b− d)ñ(t)− be−dt for a < t < A (1.82)

where, to get to the second line, we’ve substituted in the integral expression in (1.81).

But this equation is easily solved. We have

ñ(t) = N̂e(b−d)t + e−dt for a < t < A . (1.83)

Putting this together, we get the following solution

n(a, t) =

{
e−dt for t < a

e−dt
[
N̂eb(t−a) + 1

]
for a < t < A

. (1.84)

A non-vanishing N̂ can be viewed as an injection of births and leads to a discontinuity

in n(a, t) along the line a = t.

We’re left with understanding what happens for A > 0. Here we can follow the same

steps and derive an integral equation for ñ(t) = n(0, t) = f(−t).

ñ(t) = b

∫ t

t−A

dτ ñ(τ)e−d(t−τ) for t > a,A . (1.85)

This time, when we differentiate with respect to time, this becomes a delay differential

equation

dñ(t)

dt
= (b− d)ñ(t)− ñ(t− A)e−dA . (1.86)

We saw how to deal with linear delay differential equations of this kind in Section 1.2.

We can look for solutions of the form ñ(t) ∼ est where the exponent s must obey

s = (b− d)− be−(d+s)A . (1.87)
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As usual, the population grows if Re(s) > 0 and shrinks if Re(s) = 0. The population

is stable if s = 0, which, from (1.87), requires a fine tuning between birth and death

rates, now given by

b =
d

1− e−dA
. (1.88)

We see that we must have b > d to maintain a stable population. This is because, in

this model, only the young in the population can reproduce while anyone can die.

1.4 Interacting Species

So far we’ve discussed the evolution of just a single population. At times there was

a different species lurking in the background, like when we included terms describing

predation, but this other species was very much an NPC in the story.

Things become significantly more interesting when there are two or more populations

that interact with each other. This allows for a much richer collection of dynamics.

For much of this section, we will restrict ourselves to just two independent species.

But the basis mathematical formalism is just as easy to state regardless of the number.

Suppose that we have n different dynamical variables, ui(t) with i = 1, . . . , n. We will

study a class of first order dynamical systems that takes the form

dui

dt
= fi(u1, . . . , un) . (1.89)

A fixed point of this system is a steady state solution ui = u⋆
i obeying

fi(u
⋆
1, . . . , u

⋆
n) = 0 for each i = 1, . . . , n . (1.90)

Given a fixed point, we would like to know whether it is stable or unstable. It’s quite

possible that it will be stable in some directions and unstable in others. To determine

this, we expand

ui(t) = u⋆
i + ξi(t) (1.91)

where ξi(t) is taken to be a small perturbation. We then expand (1.89) to linear order

in ξ:

dξi
dt

= fi(u
⋆) +

∂fi
∂uj

∣∣∣∣
u⋆

ξj + . . . (1.92)
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The constant term vanishes precisely because we’re at a fixed point. We’re left with

dξi
dt

= Jij ξj with Jij =
∂fi
∂uj

∣∣∣∣
u⋆

. (1.93)

The matrix J is called the Jacobian. The stability of a fixed point is determined by the

eigenvalues of this matrix. Suppose that we have an eigenvalue λ with corresponding

eigenvector x,

Jx = λx . (1.94)

In general, λ could be real or complex. If Re(λ) < 0, then the fixed point is stable

in the x direction, while if Re(λ) > 0 the dynamics will be unstable. If λ includes a

complex part, then the trajectories will typically spiral towards or away from the fixed

point.

In general, we will also want to plot the trajectories in the space Rn parameterised by

ui. We will gain plenty of experience in doing this as we go through various examples.

In much of what follows, we will consider situations with n = 2 species. In this case

J is a 2×2 matrix with eigenvalues λ1 and λ2 and it’s usually easiest to compute them

by considering

Tr J = λ1 + λ2 and det J = λ1λ2 . (1.95)

In particular, if Tr J < 0 and det J > 0 then both eigenvalues must be negative and

the fixed point is stable.

1.4.1 Predator-Prey: The Lotka-Volterra Equations

The poster child for mathematical biology is the Lotka-Volterra model. It’s a simple

and instructive model for two species interacting. But, as we will see, the results it

gives are far from generic.

Here’s the setting. There are two species. The first is the prey and has population

N(t). These are the cute things that you are most likely rooting for. The other is the

predator with population P (t). These are the villains of the piece. Their dynamics is

governed by the set of equations

dN

dt
= N(a− bP ) and

dP

dt
= P (dN − c) (1.96)

with a, b, c and d are all positive numbers. These are the Lotka-Volterra equations
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Figure 12. Solutions to the Lotka-Volterra equations plotted in the phase plane on the left,

and as a function of time on the right. Both of these were plotted with α = 0.5.

The physics behind the various terms and minus signs is straightforward. The +aN

term is telling us that, in the absence of predators, the prey prospers (because it eats

grass, or because it preys on something even more helpless that doesn’t even get a

mention in the equations). Meanwhile, the −cP term tells us that, in the absence of

prey, the predators die out. Each equation also contains an NP term that captures

what happens when the two populations interact. The ± signs tell us that the result

is good for one, less good for the other.

As usual, we can do some rescaling. We write u = dN/c and v = bP/a and t′ = at

and then, annoyingly, relabel t′ as t. The end result is the set of non-dimensionalised

equations

du

dt
= u(1− v) and

dv

dt
= αv(u− 1) . (1.97)

These equations depend on the single dimensionless parameter α = c/a > 0.

Rather unusually, it’s straightforward to find exact solutions to these equations. We

can think of P = P (N) or, equivalently, v = v(u) to get a direct relationship between

the two populations. Dividing the two equations in (1.97) gives

dv

du
=

αv(u− 1)

u(1− v)
. (1.98)

This differential equation is separable and we have∫
dv

1− v

v
= α

∫
du

u− 1

u
=⇒ log v − v + α(log u− u) = constant . (1.99)
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Figure 13. Sales of hare and lynx pelts, taken from Murray’s book on Mathematical Biology.

We can plot these orbits in (u, v)-plane which, in this context, is also known as the

phase plane. The resulting orbits are shown on the left of Figure 12. The trajectories

all exhibit the same essential behaviour: they orbit the fixed point (u, v) = (1, 1).

This is telling us that the populations of both species oscillate in time. It’s more

difficult to extract information about the time dependence, and this typically needs to

be done numerically. An example is shown on the right of Figure 12.

We can also compute the average population ⟨u⟩ and ⟨v⟩. We take, for example, the

first equation in (1.97) and write it as u̇/u = 1− v. Integrating the left-hand side over

a single period T gives∫ T

0

dt
u̇

u
=

∫ ufinish

ustart

du
1

u
=
[
log u

]ufinish

ustart

= 0 . (1.100)

This vanishes because the orbits are closed, so ustart = ufinish. Integrating the right-hand

side over a single period must similarly vanish: we have∫ T

0

dt (1− v) = T − T ⟨v⟩ = 0 =⇒ ⟨v⟩ = 1 . (1.101)

We see that the average sits at the fixed point which, back in our original variables, is

⟨P ⟩ = a/b. A similar argument shows that ⟨u⟩ = 1.

From either of the plots in Figure 12, we can extract a story about the underlying

ecology. First, the number of prey increases. After a short time, this results in a

corresponding increase in the number of predators. This decreases the prey, resulting

in less to eat and a decrease in predators which then allows the prey to thrive and so

the cycle of life repeats.
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Figure 14. The population of prey plankton (in green) and predator algae (in red), both

normalised to one, together with the trajectories in the phase plane. This data is taken from

the paper Long-term cyclic persistence in an experimental predator-prey system by Blasius

et al.

An obvious question is: does this match what is seen in the wild? The answer

is: sometimes but not often. As we will soon see, the mathematical structure of the

Lotka-Volterra equations is rather special and doesn’t survive most perturbations. For

that reason, we should be suspicious about its applicability. Nonetheless, there is a

famous and rather wonderful story that seems to give support to this model. For

many decades, the Hudson Bay Trading Company kept records of the numbers of pelts

they sold. These include pelts of hares which are natural prey, and lynx which are

natural predators. The results are shown in Figure 13 and are closely resemble the

Lotka-Volterra oscillations. Clearly there are many other factors at play here, and so

it’s unsurprising that the data is rather messy. One puzzle is that, around 1885, it

looks like the lynx population rises before the hare population, which prompted many

theories, the best of which can be viewed here.

Cleaner data can be found for populations in bottles, rather than in the wild. The

population of rotifer, which is a kind of plankton, and their algae prey are shown in

Figure 14, clearly exhibiting predator-prey cycles.

The Hamiltonian Structure of Lotka-Volterra

We see from (1.99) that there is a conserved quantity in the Lotka-Volterra equations,

H = v − log v + α(u− log u) . (1.102)

The value of H determines the chosen orbit. It takes its minimum value at the fixed

point, where Hmin = (1 + α). Orbits that are further out have larger values of H.

The existence of a conserved quantity is reminiscent of the conserved energy in clas-

sical mechanics and you might wonder if there’s a deeper connection. It turns out that
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the Lotka-Volterra system is an example of a Hamiltonian system of the kind that we

met in the course on Classical Dynamics. Specifically, we can view the coordinates

q = log v and p = log u as position and momenta, and the Lotka-Volterra equations

can then be written a

dq

dt
=

∂H

∂p
and

dp

dt
= −∂H

∂q
with H = eq − q + α(ep − p) . (1.103)

This Hamiltonian structure makes the Lotka-Volterra equations rather special and,

to some extent, unrealistic. In physics, the fundamental laws are all Hamiltonian, a

fact that can ultimately be traced to the quantum nature of reality. In mathematical

biology, there is no such reason that the underlying laws should be pretty. Indeed, we

will soon see more realistic generalisations of the Lotka-Volterra equations that do not

preserve this Hamiltonian structure.

Stability Analysis

While we can understand the solutions to Lotka-Volterra equations by direct integra-

tion, this won’t be true of the generalisations that we look at. To prepare ourselves,

it will be useful to look again at the Lotka-Volterra equations from other perspectives

which, although they are less powerful, will easily generalise to the more complicated

situations.

The first method is to do a stability analysis of the fixed point. In fact, there are

two fixed points at (u, v) = (0, 0) and (u, v) = (1, 1). The Jacobian matrix (1.93) takes

the general form

J =

(
1− v −u
αv α(u− 1)

)
. (1.104)

To understand the stability, we need to compute the eigenvalues λ of this matrix at

each of the fixed points. For the trivial fixed point we have

(u, v) = (0, 0) =⇒ λ = 1,−α . (1.105)

This means that the origin is a saddle point. This is fortunate, but unsurprising.

It’s fortunate because it means that our two species will not naturally be driven to

extinction. It’s unsurprising because we set things up such that the prey flourish in the

absence of predators, while the predators suffer in the absence of prey.
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The second fixed point is more interesting. We have

(u, v) = (1, 1) =⇒ λ = ±i
√
α . (1.106)

So in this case, the eigenvalues are pure imaginary. Taken at face value, this tells us

that the trajectories in the phase plane orbit the fixed point. To see this, note that the

eigenvectors of the Jacobian are x± = (±i,
√
α). The most general linearised solution

is then

(u, v) = (1, 1) + A+x+e
i
√
αt + A−x−e

−i
√
αt (1.107)

where A+ and A− can be viewed as initial conditions and should be chosen so that

(u, v) is real. For example, we could take A+ = A− = 1
2
, in which case we have the

trajectory

(u, v) = (1, 1) +
(
− sin(

√
αt),
√
α cos(

√
αt)
)
. (1.108)

As we have seen, the trajectories in the Lotka-Volterra model do, in fact, orbit the

fixed point but the linear analysis shown here isn’t enough to demonstrate it. That’s

because, in general, a fixed point with purely imaginary eigenvalues could be rendered

stable or unstable from higher order effects.

Nullclines

The second method to analyse dynamical systems of this type is to search for the

nullclines. These are simply the curves

u̇ = 0 =⇒ u = 0 or v = 1

v̇ = 0 =⇒ v = 0 or u = 1 . (1.109)

These are plotted on the left of Figure 15. On the red nullclines, we have u̇ = 0, and

hence the flows are either left or right. On the blue nullclines we have have v̇ = 0

and hence the flows are up or down. We necessarily have a fixed point whenever

different nullclines meet because both u̇ = v̇ = 0. We see that the nullclines split the

phase plane into quadrants where flows point north-east, north-west, south-west, or

south-east. From this, we can surmise the general topology of the flows. The full flow

structure is shown on the right of Figure 15.

Gone Fishing

We will see several generalisations of the Lotka-Volterra equations shortly. But there

is one that is very straightforward and yet comes with a counterintuitive punchline.
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Figure 15. On the left, the nullclines divide the phase plane into four quadrants, where

the flows are up/down and left/right. The fixed point sits at the point where the different

nullclines meet. On the right, the full flow in the phase plane.

Suppose that there is an additional effect at play, where the one or both of the species

is hunted. This is usually phrased as “fishing” in the literature, as a nod to Volterra’s

initial motivation for writing down this system of equations. We could, for example,

add an additional term to capture the effect of hunting the prey. In this case, the

original equations (1.96) could be changed to

dN

dt
= N(a− bP )− hN and

dP

dt
= P (dN − c) . (1.110)

The additional hN term captures the effect of hunting. This is straightforward because

it doesn’t change the structure of the equations at all, at least if h < a. Everything

that we said above still holds, but the fixed point shifts to

(N,P ) =

(
c

d
,
a− h

b

)
. (1.111)

The surprise is that hunting the prey hasn’t changed the average prey population at

all. Instead, counterintuitively, it has reduced the average predator population!

This cute effect is the reason why biologists first studied the Lotka-Volterra equations.

(Lotka was the first to introduce the equation but that was in the context of chemical

reactions.) The Italian biologist Umberto D’Ancona noted that the proportion of sharks

and skates and other slightly dangerous predatory things dramatically increased in the

Adriatic during the First World War when fishing was largely curtailed. He spent a long
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time puzzling over this until finally doing the sensible thing and asking a mathematician

for help. Fortunately, his father-in-law was Vito Volterra, one of Italy’s great 20th

century mathematicians. This was the motivation for Volterra to write these equations

and show that, as observed, in the absence of hunting, the predator population should

increase.

1.4.2 Predator-Prey: A Logistic Twist

No set of equations is ever the last word in mathematical biology. There are always

ways to finesse the model, to include some extra factor that may, or may not, change the

qualitative behaviour. In this section and the next, we look at two such generalisations

of the Lotka-Volterra equations.

We already introduced the logistic equation back in Section 1.1: it includes an ad-

ditional term for a single species that limits the ability to reproduce as the population

grows. We can easily incorporate such terms into our predator-prey model, so that

they Lotka-Volterra equations (1.96) become

dN

dt
= N

(
a− bP − N

K1

)
and

dP

dt
= P

(
dN − c− P

K2

)
. (1.112)

Here we’ve introduced two carrying capacities, K1 and K2, for the two species. After

rescaling, the equations can be written as

du

dt
= u(1− v − µ1u) and

dv

dt
= αv(u− 1− µ2v) (1.113)

where the (inverse) carrying capacities are to be found in the positive constants µ1 and

µ2. We will take µi < 1.

These equations have three fixed points, provided that µ1 < 1. There is the trivial

fixed point (u, v) = (0, 0) and a new fixed point in which the predators are extinct while

the prey reach their logistic equilibrium: (u, v) = (1/µ1, 0). The coexistence fixed point

is now

(u⋆, v⋆) =
1

1 + µ1µ2

(1 + µ2, 1− µ1) . (1.114)

Note that we have v⋆ > 0 when µ1 < 1. Note also that u⋆ > 1 and v⋆ < 1, so the

additional terms have the effect of reducing the predator population while increasing

the prey population at the fixed point.
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Figure 16. On the left: the flow in phase plane. The nullclines are shown in red and blue

and determine where the flow is horizontal or vertical respectively. On the right, the time

dependence of u(t) and v(t). Both plots were made with α = 0.5, µ1 = 0.3 and µ2 = 0.5.

We can perform the usual stability analysis. About the fixed point (1.114), the

Jacobian is

J =

(
1− v⋆ − 2µ1u

⋆ −u⋆

αv⋆ α(u⋆ − 1− 2µ2v
⋆)

)
=

(
−µ1u

⋆ −u⋆

αv⋆ −αµ2v
⋆

)
(1.115)

where, to get to the second expression, we’ve used the fact that, for example, 1− v⋆ −
µ1u

⋆ = 0. At this point, we don’t need to use the explicit expressions in (1.114) for the

fixed point: it’s sufficient to stare at the signs of the terms. Recall that the determinant

of a 2 × 2 matrix is the product of eigenvalues while the trace is the sum. We have

det J > 0 and TrJ < 0 which means that both eigenvalues must be negative. We learn

that the fixed point is now stable.

The resulting flows in phase plane are shown in Figure 16, together with the nullclines

which now sit at an angle. Note that there is an additional fixed point on the u-axis,

where two different nullclines meet. On the right of Figure 16, the time-dependent solu-

tions are plotted. This makes the dynamics clear: after a number of mild oscillations,

the two populations settle down to an equilibrium with more (non-dimensionalised)

prey than predators.
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A Lyapunov Function

There is another way of seeing that all trajectories spiral into the fixed point. This

comes from looking at the “Hamiltonian” that was constant on Lotka-Volterra orbits

H = v − log v + α(u− log u) . (1.116)

For our new model, it will prove useful to introduce the slightly different function

H̃ = v − v⋆ log v + α(u− u⋆ log u) . (1.117)

This coincides with the Hamiltonian H when u⋆ = v⋆ = 1 for the Lotka-Volterra model.

The importance of this new function can be seen by taking its time derivative

dH̃

dt
=

(
1− v⋆

v

)
v̇ + α

(
1− u⋆

u

)
u̇

= α (v − v⋆) (u− 1− µ2v) + α (u− u⋆) (1− v − µ1u) . (1.118)

Now recall that 1 = v⋆ + µ1u
⋆ and 1 = u⋆ − µ2v

⋆. We use this to replace the 1’s in the

expression above to get

dH̃

dt
= α

[
(v − v⋆)(u− u⋆ − µ2(v − v⋆))− (u− u⋆)(v − v⋆ + µ1(u− u⋆)

]
= −α

[
µ2(v − v⋆)2 + µ1(u− u⋆)

2
]

≤ 0 . (1.119)

That’s rather nice. We’ve managed to construct a monotonically decreasing function

H̃(u, v) along the flow. Indeed, it stops changing only when we hit the fixed point

(u⋆, v⋆). This, again shows that all flows necessarily end up at the fixed point. This is

an example of a Lyapunov function.

1.4.3 Predator-Prey: I’m Full Now

In both the original Lotka-Volterra model, and the logistic generalisation above, there is

no end to the predator’s appetite: they continue to voraciously work their way through

the prey, like pac-man munching those dots.

A more realistic model might be to allow the predators to become sated at some

point, so that the amount of predation saturates as u → ∞, rather than continuously

increasing. Here is an example of a model that has this property,

du

dt
= u

(
1− u− bv

u+ d

)
and

dv

dt
= αv

(
1− v

u

)
. (1.120)
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We see that there is novelty in both equations. For the prey population u(t), the final

predation term has the promised effect that, while proportional to the predators, the

coefficient plateaus as u→∞. Meanwhile, the evolution of predators is different from

what we had before. Now the reproduction term is α > 0, but their carrying capacity

is equal to the prey population.

We can use the techniques that we developed above to see the behaviour of this

system. The non-trivial fixed point has v⋆ = u⋆ and

1− u⋆ =
bu⋆

u⋆ + d
=⇒ u⋆ =

1

2

[
1− b− d+

√
(1− b− d)2 + 4d

]
(1.121)

where we’ve picked the root that is positive. We can now check the stability. Here

there’s a short calculation to do in evaluating the Jacobian J at the fixed point. It’s

straightfortward to show that

det J = αu⋆

[
1 +

db

(u⋆ + d)2

]
> 0 . (1.122)

This tells us that the eigenvalues λ are either both positive, both negative or, come in

complex conjugate pairs. Stability is determined by whether Reλ is positive or negative

and we can see this by looking at the trace,

Tr J = u⋆

[
bu⋆

(u⋆ + d)2
− 1

]
− α . (1.123)

One way to read this is that for fixed b and d

(and hence fixed u⋆), there is a critical value of

α given by

αcrit = u⋆

[
bu⋆

(u⋆ + d)2
− 1

]
. (1.124)

For α > αcrit the fixed point is stable and for

α < αcrit the fixed point is unstable.

The space of parameters is somewhat more

interesting because for certain values of b and

d, we have αcrit < 0 so the system is stable for

all α > 0. An example of the resulting flows, together with the nullclines, is shown in

the figure to the right (plotted with b = 2 and d = 1 and α = 0.5).
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Figure 17. On the left: flows in the phase plane with an unstable fixed point, together

with the nullclines. On the right, a numerical solution to the equations of motion with initial

conditions that start close to the fixed point. Both of these plots were made with b = 1.5 and

d = 0.1 which gives αcrit ≈ 0.36. We have then chosen α = 0.1 to be in the unstable regime.

Things are more interesting when the fixed point is unstable. If we don’t end up at

the fixed point, then where do we end up? The answer is that the dynamics converges

towards a limit cycle, meaning a closed trajectory in the phase plane that attracts

nearby trajectories. The flows in the phase plane, together with a numerical solution

to the equations of motion are shown in Figure 17. We see that this model again gives

rise to the oscillations in populations that was characteristic of the original Lotka-

Volterra model, but with one important difference: all initial conditions converge to

the same cyclic behaviour.

The Poincaré-Bendixson Theorem

It’s natural to ask: is there a way to demonstrate the existence of a limit cycle without

resorting to numerics? There is a standard technique that can be applied to do this

which we sketch here.

The general idea is to find a closed, bounded region S ⊂ R2 for which all flows go

into S, and none come out. More precisely, we pick an outward pointing normal n on

the boundary ∂S of S and require that

n ·

(
u̇

v̇

)
< 0 everywhere on ∂S . (1.125)
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This is telling us that, once inside the region S, you’re trapped there forever. The

Poincaré-Bendixson theorem then states (roughly) that if there are no fixed points in

S then there will necessarily be a limit cycle.

Given this theorem, we can prove the exis-

tence of a limit cycle in our model if we can

find such a region S. For our particular model,

a sketch of the region S is shown shaded in the

figure. It has two boundaries. An inner bound-

ary consists of a small circle that excludes the

fixed point and the flows are necessarily into S

because the fixed point is unstable. The outer

boundary is constructed so that (1.125) holds.

This is straight forward to show for three of the

four sides because the nullclines dictate the di-

rection of the flow. The slightly tricky one is the left-hand boundary and one has to

work a little harder to show that this too can be made to obey (1.125).

1.4.4 Competition

For our next example, we turn to a slightly different scenario, albeit one that is modelled

by the same kind of equations. Rather than considering a populations of predators and

prey, we will try to even the playing field a little. Instead, we consider two species

competing for the same resources.

We call the populations N1 and N2 and describe their dynamics by the coupled

logisticesque equations

dN1

dt
= r1N1

(
1− N1

K1

− b1
N2

K2

)
dN2

dt
= r2N2

(
1− N2

K2

− b2
N1

K1

)
. (1.126)

We take r1, r2, b1, b1 > 0.

There are various rescalings that we can do to simplify this equation. An obvious

one is to remove the carrying capacities by defining N ′
i = Ni/Ki. We do this, then

rename N ′
i → Ni. There are further rescalings that we can do by absorbing one of the

reproduction rates ri into time, but they destroy the symmetry of the equations so we
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choose not to. We then have

dN1

dt
= r1N1 (1−N1 − b1N2)

dN2

dt
= r2N2 (1−N2 − b2N1) . (1.127)

If we set either N1 = 0 or N2 = 0, then the dynamics of the other is described by

the familiar logistic equation that we discussed in Section 1.1. Here, we would like to

understand how the two species interact with each other.

As we’ll see, this model is rather straightforward, certainly compared to some of the

predator-prey generalisations that we discussed above. To start, we can look at the

fixed points. There are four. One is (N1, N2) = 0 and is devoid of life. Two others

have one of the species extinct,

(N1, N2) = (1, 0) , (N1, N2) = (0, 1) (1.128)

while the third equilibrium point has the two species coexisting:

(N1, N2) =
1

1− b1b2
(1− b1 , 1− b2) . (1.129)

Populations have to be positive, so the last of these is a viable fixed point if either both

b1, b2 < 1 or if both b1, b2 > 1. But if one of these coefficients is greater than one and

the other less than one, then there is no coexistence.

What about stability? The Jacobian matrix takes the form

J =

(
r1(1− 2N1 − b1N2) −r1b1N1

−r2b2N2 r2(1− 2N2 − b2N1)

)
. (1.130)

We need to evaluate this on each of the four fixed points (assuming that all four exist)

and compute the eigenvalues λ. This is a straightforward exercise. We have:

(N1, N2) = (0, 0) =⇒ λ = r1, r2 . (1.131)

So this fixed point is unstable. The next two fixed points we get

(N1, N2) = (1, 0) =⇒ λ = −r1 , r2(1− b2)

(N1, N2) = (0, 1) =⇒ λ = −r2 , r1(1− b1) . (1.132)

Here we see a more interesting pattern: the first fixed point is stable if b2 > 1 and

the second is stable if b1 > 1. If either of these coefficients is less than one, then the

respective fixed point becomes a saddle. The flow in phase plane for two the cases

b1 < 1 < b2 and b2 < 1 < b1 are shown in Figure 18.
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Figure 18. The phase plane flows for two cases b2 < 1 < b1 (on the left) and b1 < 1 < b2 (on

the right) with the nullclines also shown. The fixed points are where a red and blue nullcline

meet. The gold star denotes the stable fixed point.

Finally, for the fixed point corresponding to coexistence, the eigenvalues are more

complicated. A little algebra gives

(N1, N2) =
1

1− b1b2
(1− b1 , 1− b2)

=⇒ λ =
1

2(1− b1b2)

[
r1(b1 − 1) + r2(b2 − 1) (1.133)

±
√

(r1(b1 − 1) + r2(b2 − 1))2 + 4(b1 − 1)(b2 − 1)(b1b2 − 1)
]
.

You can check that the number under the square root is always positive. Moreover,

both eigenvalues are negative provided that b1, b2 < 1, while one is negative and the

other positive if b1, b2 > 1.

The flows in the phase plane are plotted for these two cases in Figure 19. We can now

piece the full story together. The coefficient b1 is a measure of the disruption that the

second species has on the first. Similarly, b2 measures the disruption of the first species

on the second. If b1, b2 < 1, then there is a stable coexistence fixed point and the two

species share the resources, with the population of each lower due to the presence of

the other species.

Meanwhile if, say, b1 > 1 and b2 < 1 then this means that the second species is the

more disruptive and it’s game over for the first: the fixed point has N1 = 0.
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Figure 19. The phase plane flows for two two cases b1, b2 < 1 (on the left) and b1, b2 > 1 (on

the right) with the nullclines also shown. The fixed points are where a red and blue nullcline

meet and the stable fixed point(s) denoted by a gold star.

Finally, if both b1 > 1 and b2 > 1 then there are stable fixed points with one or

the other species extinct. Which fixed point you end up in depends on the initial

conditions. Increasing, say, b1 increases the basin of attraction for the second species

to become the winner.

There is a well known dictum in ecology known as the principle of competitive ex-

clusion. It says that two species which compete for the same limited resources cannot

coexist as one will have an advantage and will ultimately win out. This is indeed what

the simple model above predicts whenever b1 > 1 or b2 > 1. But, as we’ve seen, the

two species can certainly live in happy coexistence in this model when b1, b2 < 1. I’m

not an ecologist but it seems strange to me to take something that is not predicted by

equations and then elevate it to a “principle”.

Be Kind

It may be that our two species get along in some symbiotic way. In this case, we

can continue to describe their interactions through the equations (1.127), but we take

b1, b2 < 0.

As before, there are four fixed points: the trivial one, the two with one species extinct

(1.128), and the coexisting fixed point (1.129),

(N1, N2) =
1

1− b1b2
(1− b1 , 1− b2) .
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We see that this fixed point only exists if

b1b2 < 1. This fixed point is stable, and the

resulting flows are shown in the figure. This

time, the presence of each species enhances the

population of the other.

As b1b2 → 1 the two species are too benefi-

cial, and the populations run away to infinity!

Indeed, for any b1b2 > 1, the population runs

off to infinity.

1.4.5 Dengue Fever

In this section we will develop a slightly different competition model, this one designed

to describe attempts to mitigate a particularly unpleasant disease.

Dengue fever is transmitted by mosquitos in the tropics. It’s pretty unpleasant and

you don’t want to catch it. Happily, help is at hand in the form of a bacteria known as

Wolbachia. When mosquitos are infected with this bacteria, it blocks transmission of

the dengue virus. This brings hope that by introducing Wolbachia-infected mosquitos

into the wild, they may help reduce or eradicate the dengue virus.

We will assume that all mosquitos carry dengue, but those infected with Wolbachia

are harmless. At this point there’s something of a story to tell. Mosquitos can only

pass Wolbachia onto their offspring. (Just kissing is not enough.) And we have the

following complications:

• If a female is infected, all her eggs will be infected.

• An infected female lays fewer eggs than the uninfected.

• An infected female can mate with an infected male. But if an uninfected female

mates with an infected male, there will be no viable eggs.

• Infected mosquitos don’t live as long.

Our task is to translate these facts into equations. Indeed, the art of mathematical

modelling is constructing equations from words. We introduce the following variables

x = number of uninfected females

y = number of infected females . (1.134)
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We assume that the number of (un)infected males simply tracks the female population.

Then we model the facts above by the following equations,

dx

dt
= x

(
r

x

x+ y
− d− ϵ(x+ y)

)
dy

dt
= y

(
λr − µd− ϵ(x+ y)

)
. (1.135)

If we set either x = 0 or y = 0 then the other equation reduces to the logistic equation.

The various terms in the equations have the following interpretation:

• The proportion of uninfected males is x/(x+y). An uninfected female mating can

only mate with an uninfected male and this increases the uninfected proportional

to r.

• An infected female can mate with any male. This increases the rate of infected

mosquitos by λr, with λ < 1 because infected females lay fewer eggs.

• Uninfected mosquitos die off at a rate proportional to d. Infected mosquitos die

off at the quicker rate of µd with µ > 1.

• There is a logistic-like competition for resources, giving rise to the ϵ(x+y) terms.

This is the same for infected and uninfected.

With these equations in hand, we can now rescale to remove unnecessary constants,

with t→ rt and x→ ϵx/r and y → ϵy/r. We’re left with the pair of equations,

dx

dt
= x

(
x

x+ y
− d

r
− (x+ y)

)
and

dy

dt
= y

(
λ− µd

r
− (x+ y)

)
. (1.136)

It’s useful to collect the remaining constants together so we write

dx

dt
= x

(
x0 −

y

x+ y
− (x+ y)

)
and

dy

dt
= y (y0 − (x+ y)) . (1.137)

Here

x0 = 1− d

r
and y0 = λ− µd

r
. (1.138)

(Note that the extra 1 in x0 is what turns the x/(x + y) in (1.136) into y/(x + y) in

(1.137)). The uninfected mosquitos breed more than they die (sadly), so r > d and,

correspondingly, 0 < x0 < 1. There is no a priori bound on y0 but we will assume

that y0 > 0 so that populations of infected mosquitos also grow otherwise our goal of

eradicating dengue is hopeless. This means that we have 0 < y0 < x0 < 1.
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Figure 20. Flows in the phase plane have two stable fixed points shown with gold stars.

These correspond to all mosquitos infected (on the y-axis, or all mosquitos uninfected (on the

x-axis). Where you end up depends on the initial conditions. The basis of attraction to have

uninfected mosquitos is shown shaded. This is plotted with x0 = 0.5 and y0 = 0.2.

Now we’re in business. There are four fixed points: the trivial one (x, y) = (0, 0),

two where one of the populations is extinct, (x, y) = (x0, 0) and (x, y) = (0, y0) and

one where both infected and uninfected coexist (x⋆, y⋆), with

x⋆ = y0(1− x0 + y0) and y⋆ = y0(x0 − y0) . (1.139)

You can check that this is a saddle.

A plot of the flows in the phase plane, together with the nullclines, are shown in Figure

20. The two stable fixed points have either all mosquitos infected, or all uninfected.

If you want to end up solely with infected mosquitos, then you need to introduce a

sufficient number so that you sit in the basin of attraction of the fixed point (x, y) =

(0, y0). This is the unshaded region in Figure 20.

Suppose that your goal is to eradicate dengue fever. You might wonder if it’s possible

to change the parameters in our equations to work to our benefit. We see that the end

result ultimately depends on just two parameters: x0 and y0. There’s not much that

we can do about x0, which depends on the birth and death rates of the uninfected

mosquitos. In contrast, as shown in (1.138), y0 depends on λ, which is the drop in

egg production for infected mosquitos, and on µ which captures the reduced lifespan

of infected mosquitos, and you might optimistically hope that these can be changed by

altering the strain of Wolbachia. We could either try to increase λ, or to decrease µ.
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From (1.138), we see that µmultiplies d/r ≪
1, suggesting that it might be more profitable

to attempt to increase λ so that the number of

eggs produced by infected mosquitos is closer

to those produced by the uninfected. Either

way, if we increase y0 then the nullcline moves.

An example is shown in the right, where the

phase plane flow is plotted for x0 = 0.5 and

y0 = 0.4 (as opposed to y0 = 0.2 in Figure

20). Again the basin of attraction for unin-

fected mosquitos is shaded and is visibly smaller than that shown in Figure 20.

1.4.6 The Large Diversity Limit

Many systems in nature involve more than two interacting species. At the extreme

end, the human gut contains somewhere close to 1000 different kinds of microbes.

Some marine ecosystems contain a similar number of species. Can we fruitfully model

such complicated systems?

To start, we can proceed as before. If we have M different species, each with pop-

ulation Ni(t) with i = 1, . . . ,M , then we can describe the dynamics by the set of

equations

dNi

dt
= fi(N) . (1.140)

In general, this dynamics is likely to be complicated. But there’s one question that has

a rather nice answer: is it possible for multiple species to coexist?

Rephrasing this, is it possible to find a stable fixed point f(N⋆) = 0 when the number

of interacting species is very large, so M ≫ 1? Expanding about the fixed point, the

dynamics is

dNi

dt
= Jij(Nj −N⋆

j ) with Jij =
∂fi(N

⋆)

∂Nj

. (1.141)

This fixed point is stable if all the eigenvalues of Jij have negative real part.

Now, it is of course always possible to find functions fi such that all the eigenvalues

of Jij all have negative real part. But is it likely?
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There is an important branch of mathematics, known as random matrix theory, that

allows us to answer questions of this kind. Suppose that you have a matrix where each

element is chosen randomly, and independently, from some probability distribution. We

then ask: what is the probability distribution of the eigenvalues? Rather wonderfully,

it turns out that many features of the eigenvalue distribution are independent of the

original choice of probability distribution that you choose for the individual elements.

We won’t derive the key properties of ran-

dom matrices here, but instead just state the

key result. Suppose that you sample the indi-

vidual elements of the matrix from a Gaussian

distribution with zero mean and variance σ2.

Then, in the limit M → ∞, the eigenvalues

λ are uniformly distribution on the complex

plane in a disc of radius r =
√
Mσ2, as shown

in the figure.

How can we use this for our question of pop-

ulation stability? Here’s a simplified model. We will take the Jacobian matrix in

(1.141) to have the form

J = −1+ Jrandom . (1.142)

That is: in the absence of interactions, the fixed point is stable and all eigenvalues

have been scaled to λ = −1. But we then add to this random interactions with other

species, captured by the additional term Jrandom. Invoking the result from random

matrix theory, we see that, in the M → ∞ limit, the eigenvalue with the largest real

part has

Re(λmax) = −1 +
√
Mσ2 . (1.143)

In other words, a stable ecosystem where the interactions between different species have

variance σ2 can support at most

Mmax =
1

σ2
(1.144)

different species. This is known as May’s stability criterion.

The model above involves many simplifying assumptions but, nonetheless, the idea

that there is a trade-off between diversity and stability has been influential among

ecologists.
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1.5 Epidemiology

2020 was a weird year. For many of us, it’s a blur of Zoom calls and government

mandated daily walks and lots of talk about the number R0 and why it’s too big. The

purpose of this section is to re-live this experience, this time with equations.

1.5.1 The SIR Model

The classic epidemic model is named after its three variables,

S = number of people who are susceptible to the disease

I = number of people who are infected

R = number who have recovered or are dead.

One of the lessons that came out of the 2020 pandemic is that there is a tension

between the goals of scientists and those of politicians. This model highlights the

tension pretty clearly. If you’re a mathematical modeller then, at least at this basic

level, it doesn’t matter if someone recovers or dies from the disease: either way, they no

longer contribute to its spread. But I’ve been told that there are some politicians who

appreciate the distinction between these two outcomes. If you want to phrase things

more delicately, you could say R =“removed”.

The equations that model the spread of the disease are:

dS

dt
= −βIS ,

dI

dt
= +βIS − νI ,

dR

dt
= νI (1.145)

with positive constants β, ν > 0.

These equations have an intuitive underpinning. The susceptible turn into infected at

a rate that is proportional to IS. The idea is that this product captures the interaction

between the two groups, in way that is analogous to the NP terms that we met in the

predator-prey equations. Meanwhile, the infected either recover or die at a constant

rate. Whichever path they take, they are removed from the process and no longer

contribute to the dynamics.

The first thing to note is that the total number of people N = S+I+R is a constant.

That’s tautologically true if you still count people who die! Moreover, we don’t really

care about the recovered/dead at all as they don’t feed back into the other two. That

means that we can focus just on the first two equations in (1.145) and then reconstruct

R(t) = N − S(t)− I(t).
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The first question to ask is: are we in trouble? Is the number of infected people

going to increase? From the second equation in (1.145), we see that the answer doesn’t

depend on how many are already infected, as long as I ̸= 0: it depends only on how

many susceptible there are:

İ(0) > 0 ⇐⇒ βS(0) > ν . (1.146)

Here ν is the rate at which individuals recover, and β is the rate at which each suscep-

tible is infected. The epidemic starts if the rate at which total population is infected

is faster than the rate at which they recover.

Typically, a disease will start with just a few infected among a large population and

we can take S(0) ≈ N . This motivates us to define the reproductive ratio, pronounced

“R-naught” or “R-zero”,

R0 =
βN

ν
. (1.147)

Here 1/ν is the transmission period; β is the transmission rate per contact; and N is

the initial number of contacts. The epidemic grows if R0 > 1. For the original strain

of COVID-19, R0 was somewhere between 2 and 5. For polio, R0 ≈ 4− 6; for mumps

R0 ≈ 10− 12. For measles, R0 ≈ 16− 18.

Suppose that we are well prepared and vaccinate a fraction p of the population before

the disease hits. Then the number of susceptibles is reduced to (1 − p)N , lowering

the effective reproductive ratio to (1 − p)R0. Or, said differently, if the unvaccinated

population has a given R0, then we need to vaccinate a fraction p > (R0 − 1)/R0 to

stop the disease spreading. Crucially, we don’t need to vaccinate everyone, just enough

to reach herd immunity which protects the whole community.

This is a good point to pause and comment on a more philosophical aspect of math-

ematical modelling. All the mathematical models that we write down in this course

are, to put it bluntly, wrong. They are all, at best, caricatures of the underlying re-

ality. Most likely they omit many important details. All of which begs the question:

why should we trust them? This is particularly important when it comes to putting

in place mechanisms to counter disease. One answer to this question is that you can

search for things in the models that are robust: things that don’t change when you

add extra layers to the model and include further details. Crucially, it turns out that

in epidemiology, one such robust quantity is the threshold for vaccination that we have

computed above. And, indeed, it works well in practice.
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Figure 21. On the left, flows of the SIR model in the phase plane. On the right, a typical

time evolution of the susceptible and infected population.

We can solve for the trajectories in the phase plane in much the same way as the

Lotka-Volterra model. We view I = I(S) and, dividing the first two equations in

(1.145), we’re left with

dI

dS
=

ν

βS
− 1 =

N

R0S
− 1 . (1.148)

This is easily integrated to give

I(S) =
N

R0

logS − S + c (1.149)

with c the integration constant. Curves for different choices of c are plotted on the

left of Figure 21, adorned with arrows which show that the number of susceptibles are

always decreasing. The curves are plotted in the triangular region to reflect the fact

that S+R < N , the total population. An epidemic that starts with just a few infected

is described by the blue curve which intersects the corner of the triangle.

To get the time data, you need to solve the equations numerically. A typical example

is shown on the right of Figure 21. The number of infected grows and then shrinks to

zero, while the number of susceptibles falls to a constant value S∞.

From both graphs, we see that the number of infected reaches a maximum value.

From (1.148), we can easily see that the maximum number of infected occurs when

S = N/R0. An intuitive way to think about this comes from defining the effective

reproductive ratio Reff = βS/ν. The epidemic starts to recede when Reff = 1.
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Figure 22. The lucky ones, as a function of R0.

There’s one piece of good news hiding in this analysis: we’re not all going to die.

Or even become infected. The epidemic burns itself out and some number S∞ never

catch the disease. This occurs when I(S) = 0. From the left plot of Figure 21, we see

that there are two values of S when this happens: we call these S0 and S∞. Setting

I(S) = 0 in (1.149), we have

N

R0

logS0 − S0 =
N

R0

logS∞ − S∞ . (1.150)

It’s natural to assume that we start with very few infected and lots of susceptibles, so

I0 ≪ N and S0 ≈ N . We will denote the lucky fraction of the population as σ, so that

S∞ = σN . (1.151)

From (1.150), this lucky fraction satisfies

log σ = R0(σ − 1) . (1.152)

The result is plotted in Figure 22. For R0 < 1 there’s no need to panic: essentially 100%

of the population escapes unscathed. But we can see that things get more worrisome

as R0 increases. In particular, for R0 large we have σ ≈ e−R0 . So by the time you get

to R0 ≈ 10, that’s more or less everyone that’s going to get infected.

1.5.2 Just When You Thought It Was Safe. . .

I caught covid last month. So it’s certainly not gone away. Of course, what happened

is that my immunity wore off and I moved from the recovered R group back into the

susceptible S group.
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It’s straightforward to incorporate this, or other variations, into the SIR model.

Here we consider a different feature: people die (of something other than the disease

in question); and people are born. And all of those new born babies sit straight in the

susceptible camp. To capture this, we add various terms to our original SIR equations

(1.145), which now becomes

dS

dt
= −βIS + bN − µS

dI

dt
= βIS − νI − µI (1.153)

dR

dt
= νI − µR .

Here N = S+ I+R as before; b is the birth rate, and µ the death rate. We’ve assumed

that this disease doesn’t kill anyone, an assumption that manifests itself in the fact

that members of all groups contribute to the births. Moreover, we assume that the

death rate is constant regardless of whether you’ve had the disease or not. We see that

dN/dt = (b− µ)N like the Malthus model of Section 1.1.

To make things simple, let’s assume (perhaps unrealistically) that the population is

stable, with b = µ so that N is constant. Our reproductive ratio again comes from

looking at the İ equation when S = N ; it is

R0 =
βN

ν + µ
. (1.154)

At first glance, it looks like that’s good news: dying reduces R0! But some thought

suggests that the effect is minimal: for any disease in which you recover over a period

of time that’s much shorter than your lifetime, we necessarily have ν ≫ µ, and so

R0 ≈ βN/ν as before.

Since N is constant, the first two equations again decouple from the third. This time,

the influx of births means that there is a fixed point (S⋆, I⋆) with

S⋆ =
ν + µ

β
=

N

R0

and I⋆ = µ
N − S⋆

βS⋆
=

µ

β
(R0 − 1) . (1.155)

By now, we know what we’re doing. We determine the stability by computing the

Jacobian at the fixed point

J =

(
−µR0 −(ν + µ)

µ(R0 − 1) 0

)
. (1.156)
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Figure 23. On the left, flows of the modified SIR model in the phase plane. On the right, a

typical time evolution of the susceptible and infected population.

The eigenvalues are complex and given by

λ = −µR0

2
± 1

2

√
µ2(R0 − 2)2 − 4µν(R0 − 1) . (1.157)

If we’re in the realistic situation where recovery is not measured in a timescale less

than decades then µ≪ ν and we have

λ ≈ −µR0

2
± iω with ω =

√
µν(R0 − 1) . (1.158)

These eigenvalues tell us that we have a stable fixed point, which trajectories spiral

towards with a period The resulting dynamics is plotted, both in the phase plane, and

as a function of time, in Figure 23

This suggests that we will observe transient oscillations on a time period that is the

geometric mean of the lifetime and infection recovery time.

T =
2π

ω
=

2π√
µν(R0 − 1)

≈ 1
√
µν

. (1.159)

For example, measles has R0 ≈ 20 with a recovery rate of about 12 days. So putting

1/ν ≈ 12 days and setting a human lifetime at 1/µ ≈ 70 years, we expect to see

oscillations with a period of T ≈ 2.2 years. In fact, there’s an extra complication here,

namely schools. There is a delta-function injection of a susceptible population every

September when kids start school. This is sufficient to keep the measles outbreaks

occurring, but with an oscillation that is roughly 2 years rather than 1 year. Data of

measles outbreaks in the UK over the past decade is shown in Figure 24.
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Figure 24. Data from the UK government on measles outbreaks over the past decade.

1.6 Chemical Reactions

The kinds of dynamical system that we’ve been developing so far have many applica-

tions that removed from population dynamics. Here we give an example in which we

treat the population of chemicals in reactions.

1.6.1 The Law of Mass Action

The simplest chemical reaction is that two chemicals, A and B, form a product C,

A+B
k−−→ C . (1.160)

Here k is the rate constant of the reaction. It’s straightforward to model this in terms

of equations. We let A, B and C denote the concentration of the chemical and write

the equations

dA

dt
= −kAB ,

dB

dt
= −kAB ,

dC

dt
= +kAB . (1.161)

The fact that the time derivatives are proportional to the product of the concentrations

A× B is known as the law of mass action in chemistry. It’s the same conceptual idea

that we’ve invoked in both the predator-prey models and the epidemiology models

but without giving it a name. However, the law of mass action is on much firmer

footing in the context of chemical reactions where it can be derived using the kind of

technology that we introduced in the lectures on Statistical Physics. In contrast, in

population dynamics and epidemiology, the idea that we get the right phenomenology

by multiplying together the interacting variables is an assumption.
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It’s straightforward to solve these equations. First we note that A + C = A0 is

constant, as is B +C = B0. We can then use this to write the last equation in (1.161)

purely in terms of C,

dC

dt
= k(A0 − C)(B0 − C) . (1.162)

This has the solution

C(t) = A0B0
1− e(A0−B0)kt

B0 − A0e(A0−B0)kt
(1.163)

where we’ve chosen the integration constant so that C(0) = 0. This expression has

the nice property that limt→∞ C(t) = min(A0, B0), reflecting the fact that the reaction

stops whenever one of the chemicals is exhausted.

What is done can sometimes be undone. It may be that the reaction can also go in

the opposite direction, albeit at a different rate:

A+B
k1−−⇀↽−−
k2

C . (1.164)

Chemists often use the notation k−1 for the inverse reaction rate k2. In this case, the

third equation in (1.161) becomes

dC

dt
= k1AB − k2C (1.165)

with k1 and k2 the two reactions rates. We still have A + C = A0 constant and

B + C = B0 constant, so this equation becomes

dC

dt
= k1(A0 − C)(B0 − C)− k2C (1.166)

Now there is a fixed point, when the right-hand side vanishes. We define

κ =
k2
k1

. (1.167)

From (1.165), we see that, despite the similarity in their names, k2 and k1 actually have

different dimensions, so that κ has the dimensions of concentration. Indeed, the fixed

point obeys the quadratic

C2 − (A0 +B0 + κ)C + A0B0 = 0 (1.168)

together with the additional requirement that 0 < C < min(A0, B0).
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Lotka-Volterra Revisited

Here’s an interesting class of reactions: we have four different chemicals, A, B, C and

D which react as

A+B
k1−−→ 2B and B + C

k2−−→ 2C and C
k3−−→ D (1.169)

We take the reaction rates to be k1, k2, and k3 respectively. The dynamics is then given

by

dA

dt
= −k1AB

dB

dt
= +k1AB − k2BC (1.170)

dC

dt
= +k2BC − k3CD (1.171)

dD

dt
= +k3CD .

Suppose that we now intervene and ensure that there is a constant concentration of the

chemicals A and D. Then we can replace these variables with these constant values in

(1.170) and (1.171). These two equations then reduce to the Lotka-Volterra equations

that we studied in detail in Section 1.4 where we saw that the concentration of the

chemicals B and C will oscillate over time. Indeed, this was the context in which

Alfred Lotka first wrote down these equations.

Stoichiometry

Consider a reaction in which m molecules of type A combine with n molecules of type

B to produce a molecule of type C. If the reaction is reversible, then we write

mA+ nB
k1−−⇀↽−−
k2

C . (1.172)

This is modelled by the equations

dA

dt
= −mk1A

mBn +mk2C

dB

dt
= −nk1AmBn + nk2C (1.173)

dC

dt
= k1A

mBn − k2C .

Here the powers Am and Bn are a consequence of the law of mass action. Meanwhile,

the pre-factors of m and n are designed to ensure that A+mC and B + nC are both

constant, as they should be.
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1.6.2 Michaelis-Menten Enzyme Kinetics

Some biochemical reactions can be yawningly slow. They get a helping hand from

enzymes. These are proteins which give the chemicals a small hug, increasing the

reaction rate.

The original set of chemicals are called the substrate S. The end result is called the

product P . The reaction is helped on its way by a population of enzymes E. When

the enzymes bind with the substrate, they form a combination known as a complex C.

The reaction takes place through the Michaelis-Menten reaction:

S + E
k1−−⇀↽−−
k2

C
k3−−→ E + P . (1.174)

Note that the first reaction, with the enzymes binding to the substrate, can go both

ways. But the second, where the enzyme releases the final product, goes only in one

direction. The equations governing this reaction are

dS

dt
= −k1SE + k2C

dE

dt
= −k1SE + (k2 + k3)C

dC

dt
= +k1SE − (k2 + k3)C

dP

dt
= +k3C . (1.175)

We will assume that S(0) = S0 and E(0) = E0, while C(0) = P (0) = 0 as initial

conditions. We usually assume that S0 ≫ E0, meaning that the limit on the reaction

rate is set by the number of enzymes rather than the lack of substrate.

There are two conservation laws within these equations. These are

E + C = E0 and S + C + P = S0 . (1.176)

The first reflects the fact that the enzymes aren’t used up: they are either empty and

denoted as E or full and denoted as C. The second tells us that the end result is to

change substrate into product without losing any.

We can use the first of these to eliminate the enzyme concentration E, and focus on

equations just for S and C. (Note that the product P is just a dumping ground and

doesn’t affect the other variables.) We have

dS

dt
= −k1E0S + (k1S + k2)C

dC

dt
= k1E0S − (k1S + k2 + k3)C . (1.177)
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Figure 25. The flows in the (s, c) phase plane, plotted with ϵ = 0.1. We have also taken

µ = 1.5 and λ = 0.5.

We can clean these up a little by rescaling variables. We write s = S/S0 and

c = C/E0. This is the proportion of substrate and the proportion of occupied enzymes

respectively, with s(0) = 1 and c(0) = 0. If we also rescale time by defining τ = k1E0t

then the equations become

ds

dτ
= −s+ (s+ µ− λ)c

dc

dτ
=

1

ϵ

(
s− (s+ µ)c

)
(1.178)

where we’ve now got just three constants

λ =
k3
k1S0

and µ =
k2 + k3
k1S0

and ϵ =
E0

S0

. (1.179)

It’s straightforward to solve these equations numerically and the result is shown in

Figure 25 where, crucially, we have taken ϵ ≪ 1. The result is rather striking: all

trajectories head immediately to a common curve, which they then follow down to the

origin.

The key to understanding this feature is to appreciate that, with ϵ≪ 1, the enzyme

dynamics c(t) happens on a much faster time scale than the substrate dynamics s(t).

The system therefore relaxes quickly to the ċ = 0 curve, given by

c =
s

s+ µ
. (1.180)
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That’s the curve shown in red in Figure 25. There is then a much slower precession

along this curve which is captured by substituting (1.180) into the equation for ṡ,

ds

dτ
= − λs

s+ µ
. (1.181)

This tells us how the substrate is depleted towards s = 0. As the amount of substrate

changes, so too does the concentration of complexes, quickly adapting to remain in the

equilibrium given by (1.180).

Biochemists are often interested in the reaction velocity R, given by

R =
dP

dt
= k2C = k1k2E0

S

k1S + k2 + k3
. (1.182)

This is the Michaelis-Menten equation, often written in terms of the maximum reaction

velocity V = k2E0 and the so called Michaelis-Menten constant κ = (k2 + k3)/k1. You

can extract these constants by plotting the linear graph of R−1 against S−1.

1.6.3 Asymptotic Behaviour

It’s possible to make analytic progress by solving the equation perturbatively in the

small parameter ϵ. However, naively setting ϵ = 0 changes the character of the differ-

ential equation so we need to tread a little carefully.

Let’s start by being naive. If we set ϵ = 0 in (1.178) then we get the differential

equation (1.181). We’ll call the function that solves this s̃(t): it is easy to check that

this is given implicitly by

s̃+ µ log s̃ = −λτ + constant . (1.183)

We can fix the constant by requiring the initial condition s̃(τ = 0) = 1, which tells us

that

s̃+ µ log s̃ = −λτ + 1 . (1.184)

This should be viewed as an approximation to the late time behaviour of the system: it

holds after the fast dynamics has happened and we can impose the constraint (1.180).

We can also get an approximation for the short time behaviour. To do this, we

rescale the time coordinate and write

τ = ϵT . (1.185)
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The two equations of motion (1.178) become

ds

dT
= ϵ
(
− s+ (s+ µ− λ)c

)
and

dc

dT
= s− (s+ µ)c . (1.186)

Now the ϵ is sitting on the right-hand side of the equation, rather than the left-hand

side, and we can do a standard perturbative expansion, writing

s(T ) = s0(T ) + ϵs1(T ) + . . . and c(T ) = c0(T ) + ϵc1(T ) + . . . . (1.187)

This is a short time expansion. To leading order in ϵ, we have

ds0
dT

= 0 and
dc0
dT

= s0(T )− (s0(T ) + µ)c0(T ) (1.188)

subject to the initial conditions s(0) = 1 and c(0) = 0. The first of these equations

tells us that s0(T ) = 1, while the second is then solved by

c0(T ) =
1

1 + µ

[
1− e−(1+µ)T

]
=⇒ c0(τ) =

1

1 + µ

[
1− e−(1+µ)τ/ϵ

]
. (1.189)

We see that c0(τ) has the characteristic e
−τ/ϵ behaviour at short times. Famously, this

kind of function vanishes faster than any polynomial as ϵ→ 0.

For both s(τ) and c(τ), we now have two approximations to the solutions. The

short time solutions are s0(τ) (which, admittedly, is trivially constant) and c0(τ). The

long time solution, after the fast dynamics is exhausted, is s̃(τ) given implicitly by

(1.184) and, from (1.180), c̃(τ) = s̃(τ)/(s̃(τ) + µ). In the world of matched asymptotic

expansions, s0(τ) and c0(τ) are called inner solutions while s̃(τ) and c̃(τ) are called

outer solutions. Our next task is to patch these together.

This is straightforward for s(τ) because the short time solution is just a constant,

s0(τ) = 1 and, indeed, this matches the short time behaviour limτ→0 s̃(τ) = 1. You can

check that s̃(τ) is a good approximation to the true solution when ϵ≪ 1.

For c(τ), we have to be a little more careful. We have

lim
τ→∞

c0(τ) = lim
τ→0

c̃(τ) =
1

1 + µ
. (1.190)

This is telling us that they will patch nicely together. We do this by adding the

two solutions and subtracting their common piece, a process known as the uniform

approximation,

cuniform(τ) = c0(τ) + c̃(τ)− 1

1 + µ
. (1.191)

This function is still known only implicitly because s̃(τ) is given by the relation (1.184).

Nonetheless, you can check that cuniform(τ) gives good agreement to the numerical

solution for c(τ) when ϵ≪ 1.
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1.7 Neuron Excitations

One of the great advances of mathematical biophysics was a system of equations, first

written down in 1952 by Hodgkin and Huxley, to describe the way that neurons fire in

the brain. Neurons have a long sticky-out bit called an axon, which conducts pulses

of electricity known as action potentials and these mediate signalling from one neuron

to the next. These action potentials form from some external chemical prompt, but in

a way such that a reasonably small prompt is amplified to an unambiguous pulse of

electricity. The question is: how does this happen?

Rather than looking at the propagation of the signal along the axon, Huxley and

Hodgkin instead considered the easier situation in which the signal is constant in space

and focussed on how the signal fires in time. (We will rectify this omission and exam-

ine how the signal propagates in space in Section 3.2.3.) They wrote down a rather

complicated set of equations, in which there are three kinds of electric current, carried

by potassium ions, sodium ions, and other stuff that they called the “leakage current”.

These currents have to pass through gates and the probability that these gates are open

or closed depends in some complicated way on the voltage. We won’t go into the detail

of the Hodgkin-Huxley model, but the end result is four equations in four variables

which they were able to solve numerically.

The solutions matched well the experimental data from studies of squid giant axons.

(As opposed to giant squid axons; the squid in question was rather small by squid

standards, the axon rather large by axon standards.) The giant axon is the part of the

squid’s nervous system that is responsible for escaping danger by squirting out water

like a jet propulsion system; the large size of the axon means that it has lower resistivity

and so signals propagate faster, allowing quicker reaction times. It also means that it’s

big enough to stick an electrode down there and measure the voltage. You can read

about the Huxley-Hodgkin model in many places, including a fairly decent summary

on Wikipedia.

As an aside: Hodgkin and Huxley were successive masters of Trinity College Cam-

bridge in the 70s and 80s. Hodgkin was long before my time, but I did meet Andrew

Huxley a couple of years before he died. I sat down next to him at lunch, embar-

rassingly ignorant of who he was even though his portrait was hanging on the wall in

front of me. He asked me what I did and, when I told him I was a physicist, there

was a lovely pause before he said: “I met J.J. Thomson once”. (This is the same J.J.

Thomson who discovered the electron in 1897.)
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The key feature in the Hodgkin-Huxley model is that a small input gives rise to a big,

spiked response. There are many other biological situations where similar behaviour

is seen, including heart muscle cells and the blooms of plankton. The general class of

models are called excitable systems and in this section we explore the phenomenology

of the simplest.

1.7.1 FitzHugh-Nagumo Model

The FitzHugh-Nagumo model is the following pair of coupled differential equations,

du

dt
=

1

ϵ

(
u+ v − 1

3
u3 − z(t)

)
dv

dt
= −(u− a+ bv) . (1.192)

In the context of signal propagation by neurons, u(t) represents the voltage difference

across a membrane, while v(t) represents the ease with which sodium and potassium

ions can cross the membrane.

The model depends on three positive constants, a, b and ϵ. The first pair sit in the

regions

0 < b ≤ 1 , 1− 2b

3
< a < 1 . (1.193)

The remaining constant ϵ is arbitrary but, as the name suggests, we will soon take

ϵ ≪ 1 which ensures that the dynamics of u(t) is fast, while that of v(t) is slow. In

addition, there is an input function z(t) which we get to specify and it acts as a forcing

term in the first equation.

We start by setting z(t) = 0 and look at the dynamics of the equations. There is a

single fixed point (u⋆, v⋆) which is the intersection of the two nullclines

v = u

(
1

3
u2 − 1

)
=

a− u

b
. (1.194)

We have to solve a cubic which is a little awk-

ward, but we can extract the essential features

if we plot the two graphs together, as shown

in the figure. First note that the slope of the

cubic at the origin is −1, while the slope of

the line is −1/b which, by the first inequality

in (1.193), is necessarily steeper. This tells us

that there is only one intersection point.
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Figure 26. The phase plane dynamics of the FitzHugh-Nagumo model, plotted with a = 0.8,

b = 1 and ϵ = 0.2. Because ϵ is reasonably small, the dynamics separates into a fast mode,

which heads towards the cubic, and a much slower mode which traces the curve of the cubic

towards the fixed point where the nullclines meet. A close up of the flow near the fixed point

is shown on the right.

Second, the cubic has roots at u = 0 and u = ±
√
3. The minimum is at u = 1 where

we have v = −2/3. The slightly weird inequality in (1.193) ensures that the linear

graph sits above the cubic at its minimum, which means that they must meet later. In

other words, we have

u⋆ > 1 . (1.195)

Happily, this is all the information we need to determine the stability of the fixed point.

The Jacobian is

J =

(
(1− u⋆ 2)/ϵ 1/ϵ

−1 −b

)
. (1.196)

We have Tr J < 0 and det J > 0, ensuring that the real part of both eigenvalues is

negative and the fixed point is stable.

Now we assume that ϵ ≪ 1 so that the dynamics separates into a fast piece and

a slow piece. The u(t) variable is the fast piece, quickly tending almost horizontally

towards the cubic v = u3/3−u. (In the context of neurons, this happens on a time scale

of about 1 ms.) Then the v(t) dynamics is slower. The result is plotted numerically in

Figure 26. Note that the flow is unusual. If the flow hits the cubic to the right of the
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Figure 27. On the left: the phase plane motion, shown in red, after the perturbation.

The system starts at the original fixed point, where the lower cubic curve intersects the

straight line. It then goes on a long detour in phase space before ending up at the new fixed

point, where the upper cubic curve intersects the straight line. On the right: the resulting

time dependence of u(t) and v(t). These plots are made with the same values as Figure 26,

together with V0 = 0.3.

local minimum at u = 1, then the dynamics simply follows the cubic down towards the

fixed point. If, in contrast, it hits the cubic to the left of that local minimum then it

takes the long way round to the fixed point, moving up, before sweeping right as shown

in Figure 26. The fact that some paths take these long deviations will be important in

what follows.

Response to an External Input

Now we explore the role of the forcing term z(t) in the equations (1.192). Suppose that

by time t = 0, the system has happily settled down at the fixed point. Now we perturb

the system by turning on z(t), with the simple profile

z(t) =

{
0 for t < 0

V0 for t > 0
(1.197)

with V0 constant.

The effect of the perturbation V0 > 0 is to shift the cubic nullcline upwards, while

leaving the linear nullcline alone. This means that the fixed point also shifts up and to

the left. What happens next depends crucially on whether the new fixed point is stable

or unstable. We saw previously that the fixed point is stable provided that u⋆ > 1

which ensures that it sits to the right of the local minimum in the cubic. It’s simple to

check that this persists for our perturbed system provided that V0 < Vcrit with

Vcrit =
2

3
+

a− 1

b
. (1.198)
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Figure 28. On the left: the phase plane motion, shown in red, after the perturbation. Now

the new fixed point is unstable and the system performs indefinite loops. On the right: the

resulting time dependence of u(t) and v(t). These plots are made with the same values as

Figure 26, together with V0 = 0.5.

We start by looking at the situation with V0 < Vcrit. If the perturbation V0 is very

small, so that the old fixed point sits above the minimum of the new cubic, then

nothing dramatic happens: the system simply flows directly to the new fixed point.

But a slightly larger V0, still with V0 < Vcrit, has a much more dramatic effect. If the

old fixed point sits below the minimum of the new cubic then the system takes a large

diversion to reach the new fixed point. This is shown on the left of Figure 27 which

depicts both the original and the new nullclines, together with the trajectory in the

phase space shown in red. This trajectory starts at the original fixed point, where the

lower cubic curve intersects the line, and ends at the new fixed point at the intersection

of the upper cubic curve. Although the two fixed points are close to each in phase

space, the motion takes a huge detour to get from one to the other. The result is that a

small perturbation of the original system can lead to a large pulse in the variables u(t)

and v(t), before they settle down to equilibrium values that are close to their original

values. This is shown on the right of Figure 27. In the context of neurons, this pulse

in the voltage is what causes the neuron to fire.

The situation for V0 > Vcrit is shown in Figure 28. Once again, the system takes a

long detour to get from the old fixed point to the new. But now, once it arrives at the

new fixed point, it finds that it’s not particularly welcome as the fixed point is unstable

and it gets pushed away. It is now condemned to loop forever on the limit cycle. The

resulting dynamics for u(t) and v(t) are shown on the right of Figure 28 and exhibit

an infinite series of pulses.
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For both V0 < Vcrit and for V0 > Vcrit, we see how a small change in the equation can

lead to a large change in the resulting dynamics, either to initiate a single, transient

pulse or to send the system into a new limit cycle.
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2 Discrete Time

Sometimes it is more natural to model populations and other biological quantities using

discrete, rather than continuous, time. A species may give birth only in one particular

season. Or you may be interested in how some mutation evolves from one generation to

the next. Alternatively, it may be that you really do want to think of time as continuous

but you’re solving an equation numerically and want to know the pitfalls that could

arise when making time discrete.

Whatever the motivation, in this section we will study the behaviour of systems of

a single variable xn where the index n ∈ Z plays the role of time. In the simplest case,

the variable evolves through some function

xn+1 = f(xn) . (2.1)

We will learn that one dimensional systems of this kind can be significantly richer than

their differential equation counterparts.

2.1 Linear Examples

We start our discussion by looking at a couple of simple examples. These won’t bring

any substantially new dynamics to the table beyond what we’ve seen in continuous

systems. But they will allow us to get used to some features of discrete time dynamics.

2.1.1 Hello Poppy

Poppies are annual flowers, living for just one year. Their seeds sit in the ground over

winter. Some fraction of them germinate the following year, some the year after that,

and some not at all. We would like to model this mathematically.

We’ll introduce the following variable

• Let xn be the number of plants in season n.

• Let γ be the number of seeds produced by each plant.

• Let σ be the probability that a seed germinates after one year.

• Let τ be the probability that, having failed to germinate the first year, a seed is

successful the next.
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Now we’re in business and can write down the equation that describes the poppy

population: it is

xn = σγxn−1 + τ(1− σ)γxn−2 . (2.2)

What kind of solutions should we be looking for? We could look for a steady state, but

the only one is x⋆ = 0. And, because the equation is linear, any small perturbation

around this just brings us back to (2.2).

Instead, motivated by the form of the equation (2.2), we look for solutions of the

form

xn = pn (2.3)

for some p. If we substitute this into (2.2), we get a quadratic

p2 = σγp+ τ(1− σ)γ . (2.4)

This has roots

p± =
σγ

2
± 1

2

√
σ2γ2 + 4τ(1− σ)γ . (2.5)

We have p− < 0 < p+ and |p+| > |p−|. The general solution takes the form

xn = Apn− +Bpn+ . (2.6)

Because |p+| > |p−|, the second term will dominate at large n. The question is: does

the population grow or shrink?

This depends on the size of p+. If p+ > 1 then the population grows over time; if

p+ < 1 then it shrinks. The critical case is

p+ = 1 =⇒ γ[σ + τ(1− σ)] = 1 . (2.7)

This makes sense: the quantity [σ+ τ(1−σ)] is the probability that a seed germinates,

either in the first year or the second. So the quantity γ[σ + τ(1 − σ)] is the average

number of offspring that a given plant produces. If this number is greater than one,

then p+ > 1 and the poppies flourish. If this number is less than one, then p+ < 1 and

it’s goodbye poppy.

2.1.2 Breathe Again

In Section 1.2.3, we introduced a model of breathing in which the volume of the breath,

V , depends on the concentration of CO2 in your blood. Because breaths are things you

can count, it makes sense to construct such model using discrete time.
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We previously introduced the breathing model to illustrate delay equations. We’ll

keep this feature, with the volume of the nth breath Vn determined by the concentration

of CO2 k breaths previously,

Vn+1 = αCn−k . (2.8)

We will then model the change in the CO2 level by the equation

Cn+1 − Cn = M − βVn+1 . (2.9)

Here M,α, β > 0. Note that this model is not a straightforward discretisation of

our previous differential equation (1.52). Indeed, here we have a rather simple linear

system, contrasting with the more complicated non-linear delay differential equation

that we previously studied.

We can eliminate the volume Vn entirely, and focus just on the CO2 concentration,

Cn+1 = M + Cn − αβCn−k . (2.10)

There is a steady-state solution given by Cn = C⋆ with

C⋆ =
M

αβ
. (2.11)

Now we can look at perturbations away from this steady state. We will be particu-

larly interested in how the qualitative behaviour of the solutions depends on the delay

parameter k.

k = 0: To kick things off, let’s analyse (2.10) when k = 0 so there is no delay and the

volume of breath depends on the present concentration of CO2. We perturb around

the fixed point and write Cn = C⋆ + ϵn where, as the name suggests ϵn ≪ 1. Then we

have

ϵn+1 = (1− αβ)ϵn . (2.12)

We see that the steady state is stable provided that αβ < 2 and is unstable for αβ > 2.

k = 1: Now what happens if we introduce the smallest possible delay k = 1? Perturbing

around the fixed point, the equation (2.10) becomes

ϵn+1 = ϵn − αβϵn−1 . (2.13)

This time we’re going to look for solutions of the form ϵn = pn for some p. The equation

above then becomes a quadratic:

p2 − p+ αβ = 0 =⇒ p = p± =
1

2

(
−1±

√
1− 4αβ

)
. (2.14)
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For αβ < 1
4
, both p+ and p− are real and, moreover |p±| < 1. Then we have the general

solution

ϵn = Apn+ +Bpn− (2.15)

which decays as ϵ→ 0 as n→ 0. We see that, once again, the fixed point C⋆ is stable

for αβ small enough.

For αβ > 1
4
, the roots p± become complex. This means that the system now oscillates

about the fixed point but doesn’t otherwise change our approach. We still want to know

if |p±| is less than one, and hence the fixed point is stable, or greater than one and

hence unstable. We have

|p±|2 =
1

4
+

(
αβ − 1

4

)
= αβ . (2.16)

So we learn that, complex oscillations aside, the system is stable if αβ < 1 and unstable

if αβ > 1. The upshot of this is that the delay reduces the range of αβ over which the

system is stable.

We can look more closely what happens at αβ = 1 and the system becomes unstable.

Here we have

p± =
1

2

(
−1±

√
3i
)
= e±πi/3 . (2.17)

We see that the system has 6-fold periodicity at this point, with p6± = 1.

2.2 The Logistic Map

The fun with discrete maps really gets going when we look at non-linear maps. A great

deal of all that’s interesting and surprising about these maps can be found lurking

inside the deceptively simple example

xn+1 = f(xn) = rxn(1− xn) . (2.18)

This is the logistic map. Understanding the mysteries of the logistic map will occupy

us for the rest of this section.

We will take our parameter to lie in the range xn ∈ [0, 1]. The logistic map keep us

within this range provided that the parameter r is bounded by

0 ≤ r ≤ 4 . (2.19)

If r = 4, the maximum value of the logistic map (at xn = 1/2) gives xn+1 = 1. Much

of our interest will be focussed on how the dynamics of the logistic map changes as we

very r.
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Figure 29. Two plots of xn. On the left, we have taken r = 0.9 and x0 = 0.5. We see that

the map quickly tends to the origin. On the right, we have taken r = 2.9, close to the end

of the window of stability, and x0 = 0.1. The map now tends to x⋆, oscillating about it as it

goes.

The logistic map a discrete version of the logistic equation that we studied in section

1.1. However, after nondimensionalisation, the logistic equation has no free parameters.

That’s not true of the logistic map (2.18), which crucially depends on the parameter

r which can’t be absorbed into rescaling time because that’s now a discrete variable.

Indeed, if you discretise the logistic equation and rescale then you will end up with the

logistic map (2.18) with r = 1 + ϵ2 where ϵ ≪ 1 is related to the small time interval

that you choose. We will soon see that, for this value of r, the logistic map does indeed

recover the qualitative behaviour of the logistic equation. But, for other values of r,

wildly different things can happen.

2.2.1 The Fixed Points

The logistic map has two fixed points: one at x = 0 and the other at

x⋆ = 1− 1

r
. (2.20)

This is only a fixed point for r > 1.

What is the stability of these two fixed points? First we can look near the origin

where we write xn = ϵn ≪ 1. We then have

xn+1 = rϵn(1− ϵn) = rϵn +O(ϵ2n) . (2.21)

So the origin is a stable fixed point for r < 1, as each successive iteration takes us closer

to it. It is unstable for r > 1.
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Figure 30. Cobweb diagrams, made with the same parameters as Figure 29. On the left,

r < 1 and on the right 1 < r < 3.

Meanwhile, for the non-trivial fixed point (2.20), we write xn = x⋆ + ϵn and look at

xn+1 = x⋆ + f ′(x⋆)ϵn +O(ϵ2n) with f ′(x⋆) = 2− r . (2.22)

This fixed point is stable for 1 < r < 3 and is unstable for r > 3. Moreover, in the

stable regime 2 < r < 3, we see that f ′(x⋆) is negative and so successive terms will

jump either side of x⋆, while honing in to the fixed point.

We can see this analysis bearing out by simply plotting successive iterations of the

logistic map. This is shown in Figure 29 for r < 1 and for 2 < r < 3, where we see that

the results converge to the origin and to x⋆ respectively.

Cobweb Diagrams

There’s a nice graphical way to see how the map behaves. We plot y = f(x) together

with the line y = x. Start at some value of x and y = 0 and move up until you hit the

graph f(x). Then it’s simple to convince yourself that successive iterations of the map

are implemented by bouncing at right angles between the graph and the line.

For r < 1, the line sits above the graph f(x) and the bouncing takes you down to

the origin. This is shown in on the left of Figure 30. For r > 1, the line leaves the

origin below the graph f(x) and intersects it again at x⋆. For 1 < r < 3, the bouncing

zooms in to the fixed point as shown on the right of Figure 30.

2.2.2 Bifurcation

We’ve understood the behaviour of the logistic map for r < 3. But what happens for

r > 3 when the fixed point x⋆ is unstable? We can easily answer this by looking at
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Figure 31. The logistic map for r = 3.4 rapidly reaches a stable 2-cycle, bouncing between

two different points.

some numerics. Both the behaviour of xn and the cobweb diagram are shown in Figure

31 for r = 3.4. We see that the map starts by honing in on the fixed point x⋆, but

quickly realises that this is unstable and settles down to a periodic pattern, bouncing

between two different points. On the cobweb diagram, the trajectory repeatedly traces

out the rectangle as shown in the figure.

We will call a trajectory that bounces between p different points a p-cycle. What we

have on our hands in Figure 31 is a 2-cycle.

We can understand this behaviour analytically. We look at the map

f 2(x) = f(f(x))

= rf(x)(1− f(x))

= r2x(1− x)(x− rx(1− x)) . (2.23)

This has fixed points

x = f 2(x) =⇒ x(1− r + rx)(1 + r − r(1 + r)x+ r2x2) = 0. (2.24)

The first two factors give us our previous fixed points, x = 0 and x = x⋆. Now, however,

we see that f2 has two further fixed points, where the second factor vanishes. These

are given by

x± =
1

2r

(
1 + r ±

√
(r − 3)(r − 1)

)
. (2.25)

We see that these fixed points are only real when r > 3, which is what we wanted.

These are the two points that the system bounces between, as evident in the numerical

solution of Figure 31.
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Figure 32. The logistic map for r = 3.52 reaches a stable 4-cycle, bouncing between four

different points.

Next we should ask: are these fixed points of f 2(x) stable? Here, the standard

perturbation analysis prompts us to look at the derivative f 2 ′(x±) and see if its modulus

is bigger than one (in which case the fixed points are unstable) or less than one (in

which case they are stable). We have

df 2

dx
=

d

dx
f(f(x)) = f ′(f(x)) f ′(x) . (2.26)

If we put x = x+ then f(x+) = x− and so, rather cutely, we have

df 2

dx

∣∣∣∣
x+

= f ′(x−)f
′(x+) = r2(1− 2x−)(1− 2x+) = −r2 + 2r + 4 . (2.27)

You can check that, for r slightly greater than 3, the modulus of the right-hand side is

less than one and so the fixed points of f 2(x) are stable. This is the behaviour that we

see in the figure. But the fixed points turn unstable when

−r2 + 2r + 4 < −1 =⇒ r > 1 +
√
6 ≈ 3.449 (2.28)

where we’ve taken the positive root of the quadratic.

The net result is that the 2-cycle behaviour seen in Figure 31 only holds for the

regime 3 < r ≲ 3.45. Which begs the question: what happens for greater values of r?

Again, we can plot things numerically to get an idea. This is shown in Figure 32 for

r = 3.52 where we see that now the value of x bounces periodically between four fixed

points. Again, we could get an analytic handle on this by studying the fixed points

of f 4(x) although this will now be a polynomial of order 8 and somewhat harder to

analyse. (Actually, after factoring out the fixed points of f(x) and f 2(x), you’re left

with a quartic to deal with.)
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Figure 33. The long term behaviour of the logistic map as a function of r. We see the single

stable fixed point for 1 < r < 3 turning into the stable 2-cycle, then the stable 4-cycle, then

the stable 2n-cycle. For r > r∞, there is (typically, but not always) no stable cycles. But

occasionally, out of the murk, windows of order appear.

This story now repeats. The 4-cycle seen in Figure 32 does not persist forever but,

it turns out, becomes unstable for r ≳ 3.55, at which point we find ourselves with a

stable 8-cycle. And so on. As r increases, we find ourselves with the period of the cycle

constantly doubling in size.

2.2.3 And Then. . . Chaos

The period of cycles keep doubling and the

range over which this happens gets shorter and

shorter. Until we get to approximately

r > r∞ = 3.5699 . (2.29)

At this point, all hell breaks loose. For most

(but not all!) values of r above this value, there

is no discernible pattern in the long term be-

haviour, which bounces around seemingly at

random. The plot for r = 3.7 is shown in the figure to the right.

– 81 –



Figure 34. Plots of y = x, y = f(x) and y = f3(x). On the left, r = 3.8 and on, the right,

r = 3.835. In the latter case, there are solutions to x = f3(x), reflecting the emergence of a

stable 3-cycle.

We can get more insight into this by staring (for a long time!) at the iconic plot

shown in Figure 33. This depicts the long-time behaviour of the logistic map for

different values of r. For 1 < r < 3, there is the single fixed point that we found above.

At r ≈ 3.45, this bifurcates into the period 2-cycle and this later bifurcates into the

period 4-cycle and so on. For r > r∞, we see that a seeming continuum of values of x

appear. This is the regime of chaos.

But, perhaps most surprisingly, the chaos does not persist for all values of r > r∞.

Occasionally, we find windows of order. These are the white stripes that are apparent

in Figure 33 where we again find cycles of some order.

The most prominent of these is the white stripe around r = 3.88. Towards the left

of this stripe, you can see three points in the diagram. This reflects the fact that, in a

small window, there is a stable 3-cycle. This is something new, as all previous p-cycles

had p a power of 2.

We could try to repeat the story above to understand how this 3-cycle comes about,

looking for fixed points of f 3(x). But, as for all higher powers, this is tricky because it’s

a higher order polynomial and we don’t have analytic expressions for its values. But

we can plot the functions y = x, y = f(x) and y = f 3(x) to see where the fixed points

lie. These functions are plotted in Figure 34 for r = 3.8 (on the left) where there is no

3-cycle, and for r = 3.835 (on the right) which is in the window with the stable 3-cycle.

We can see that, as r changes, the dips in f 3(x) come down sufficiently to intersect the

straight line, revealing the fixed points. In fact, the straight line intersects the curve

f 3(x) twice each time: these are denoted with red and white dots. The stable 3-cycle
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corresponds to intersections where f 3(x) is shallower and these are coloured red. The

white dots are then an accompanying unstable 3-cycle.

The period doubling that we saw previously also takes place within these windows of

order. For example, the 3-cycle turns into a 6-cycle, which then turns into a 12-cycle,

and so on.

2.2.4 The Logistic Map in Ecology

The logistic map is certainly very pretty. But, so far, we haven’t really explained why

it might be useful in modelling population dynamics.

The potential utility of the logistic map, with its panoply of different behaviours,

was advertised in a famous paper by the mathematical ecologist Bob May5. The first

compelling evidence that period bifurcations and the ensuing chaos are at play in the

world of population dynamics was presented in a study from the 1990s on flour beetles6.

The population at discrete time n consists of larvae Ln, pupae Pn and adults An and

can be modelled as

Ln+1 = bAne
−c1An−c2Ln

Pn+1 = rLLn (2.30)

An+1 = Pne
−c3An + rAAn .

Here the constants b, rL and rA capture reproductive and death rates while the con-

stants c1, c2 and c3 are more gruesome, describing the cannibalistic tendencies of flour

beetles. This set of equations exhibits many of the features of the logistic map, in-

cluding a series of period bifurcations before descending into chaos as the parameters

are varied. The rates rL and rA were artificially varied in the experiment by simply

removing individuals from the population. There is then a feedback effect where the

constants ci, with i = 1, 2, 3, depend on rL and rA. In an experiment that took place

over many years, the authors observed both period doubling and chaotic behaviour in

the population.

The current consensus is that chaos is possible, but not common, in nature. However,

this has been challenged recently in work that suggests chaos may not be so rare after

5The paper is “Simple mathematical models with very complicated dynamics”, Nature 261 (1976)

and makes for an easy and fun read.
6The original paper is R.F. Constantino et al, “Chaotic Dynamics in an Insect Population”, Science,

vol 275 (1997).
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n 0 1 2 3 4 5 6

rn 3 3.44948974 3.54409035 3.56440726 3.56875941 3.56969160 3.56989125

δn 4.751 4.656 4.668 4.668 4.669 4.669

Table 1. Numerical values for rn and δn

all7. It’s hard to know for sure because it is challenging to collect the long time series

needed to estimate Lyapunov exponents and other tell tale signs of chaos.

There is something a little unnerving in finding chaos in population dynamics. One

might, quite reasonably, think that wild swings in population size are due to some

extreme event, say weather or famine. Moreover, if we can learn to control such events

then we could restore order to the universe. But chaotic systems exhibit wild swings

for no underlying reason other than the inherent dynamics itself. Chaos is a control

freak’s worst nightmare.

2.3 Universality

There’s something magical lurking in the discussion above. As we increase r, we get a

series of period doublings. We can ask: for what values of r does the period double?

We calculated the first two of these above. The single fixed point becomes unstable

and bifurcates into a 2-cycle at r = r0 with

r0 = 3 . (2.31)

The 2-cycle then bifurcates further into a 4-cycle at

r1 = 1 +
√
6 ≈ 3.44948974 . (2.32)

The value of rn for which the 2n cycle bifurcates into a 2n+1-cycle can be calculated

numerically and is shown in Table 2.3.

With these values in hand, we see that there is a pattern. We define the ratio of

differences

δn =
rn − rn−1

rn+1 − rn
. (2.33)

7See T. Rogers, B. Johnson, and S. Munch, “Chaos is not rare in natural ecosystems”, Nature

Ecology & Evolution, 6, (2022).
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Figure 35. The heights of successive bifurcations, measured relative to the line x = 1/2, are

dn.

These too are given in Table 2.3 where they are clearly converging to

δ = lim
n→∞

δn = 4.669 . . . . (2.34)

The magic is that this number appears in many other maps. For example, if you

consider the map

f(x) = r sin(πx) (2.35)

then, as you vary r ∈ [0, 1], you will again see period doubling at a rate that converges

towards the same value of δ. What we’re seeing here is that, hidden within the logistic

map, is a new mathematical constant, δ. This is known as the Feigenbaum constant.

Or, more precisely, it is one of two Feigenbaum constants.

The other Feigenbaum constant comes from noting that the heights of successive

bifurcations get smaller in Figure 33. We would like to find a way to characterise their

height. We do this, by measuring the height relative to the line x = 1/2 (corresponding

to the maximum of the function f(x)). We call successive heights dn, as shown in

the Figure 35. (As an aside, the kind of bifurcating diagrams shown in Figure 35 are

affectionately known as fig tree diagrams, not because they look particularly like fig

trees but because this is a direct translation of the German word “Feigenbaum”.)

The second Feigenbaum constant comes from noting that the ratio of heights also

converges to

α = lim
n→∞

dn
dn+1

= −2.5029 . . . (2.36)

Here the minus sign reflects the fact that, as shown above, the heights are measured

alternatey above and below the line x = 1/2. The value of α is another universal

constant, in the sense that the same number emerges for many different maps.
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Figure 36. Plots of y = x, f(x) and f2(x) for r = 2.9 (on the left) and for r = 3.2 (on the

right).

The Feigenbaum constants α and δ arise for many maps, but not for all maps. The

maps f(x) in question should be smooth and “unimodal”, which means that they go up,

then down with a single maximum. Moreover, the maximum should be quadratic. Any

map with these features will exhibit period doubling with the Feigenbaum constants α

and δ.

Of course, that begs the question: what about other maps? Here too there is an

interesting story. Suppose, for example, that we consider maps that have a quartic,

rather than quadratic, maximum. Then you’ll find the same kind of period doubling

but with different constants, α ≈ −1.7 and δ ≈ 7.3.

The Feigenbaum constants are reminiscent of other mathematical constants, known

as critical exponents, that arise in the theory of phase transitions. You can read more

about them in the lectures on Statistical Field Theory. Indeed, we will borrow some

ideas of “renormalisation” from the theory of phase transitions below when we describe

how to calculate the Feigenbaum constants.

2.3.1 Zooming in on Bifurcations

Let’s first get a sense for why this universality might be happening. We can go to the

very first bifurcation, in which the stable fixed point changes to the 2-cycle.

We can get some understanding of what’s going on by staring at Figure 36 where we

plot y = x, y = f(x) and y = f 2(x). On the left, these are plotted for r = 2.9 where

the only solutions to x = f 2(x) are also solutions to x = f(x). On the right, we plot

these same functions for r = 3.2. Now we see that there are additional solutions to

x = f 2(x) that are not solutions to x = f(x). This transition happens at r = 3, and

this is where the single stable fixed point of f(x) becomes unstable and is replaced by

the stable 2-cycle, corresponding to the new fixed points of f 2(x).
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Figure 37. Plots of y = x, f(x), f2(x) and, f4(x). This is plotted for r = 3.5, after the

2-cycle becomes unstable and there are new fixed points of f4(x). These can be shown in

the plot on the left and, more clearly, in the plot on the right where we’ve zoomed in to the

relevant piece of the graph.

So far, so good. Now what happens when we increase r further so that this 2-cycle

turns into a 4-cycle? This time, the fixed points of f 2(x) are becoming unstable. We

can see this happening in the same graphical manner as before, this time also plotting

f 4(x) to see how its fixed points emerge at some value of r. This is shown on the left

of Figure 37 where it’s all a little cluttered. But we can zoom in to the relevant part,

as shown on the right of 37.

Now comes the key observation. Take the zoomed in plot in Figure 37. Flip it upside

down and reflect it. It looks like this:

But that looks very much like the right-hand plot of Figure 36!

Now we can repeat this, looking at how the fixed points of f 4(x) become unstable

as new fixed points of f 8(x) appear, and then how these become unstable as new fixed

points of f 16(x) appear, and so on. At each stage, we zoom in and flip and what we’re

left with is always a figure that looks like the one above. The existence of the two

universal Feigenbaum constants suggests that, as we do this procedure over and over

again, we might converge on some universal function. Our task is to try to understand

some properties of this function and to extract the Feigenbaum constants from it.
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2.3.2 Renormalisation

We want to put the ideas above on a firmer footing. How do we implement the iter-

ated “taking f 2(x), zooming and flipping” procedure described above in more concrete

terms?

There are a number of steps that we need to take. First, we will describe the class of

functions that we care about. It’s convenient to rescale things slightly. We will consider

regular, unimodal functions such that

• xn+1 = f(xn) with x ∈ [−1,+1].

• The map is symmetric about the maximum at x = 0, with f(0) = 1

• The maximum is quadratic.

For example, after some rescaling the logistic map can be rewritten as

xn+1 = 1− rx2
n . (2.37)

This map exhibits all the universal features described above, including the two Feigen-

baum constants α and δ. But everything that we say below holds for any map obeying

the three criteria above.

Part of our iteration in going from f(x) to f 2(x) involves increasing the parameter

r, so that we get to the point where f 2n(x) develops fixed points. For example, Figure

36 is plotted with r = 2.9 while Figure 37 is plotted with r = 3.5. Let’s first look more

carefully at how we do this.

A map x→ f(x) has a fixed point x⋆ = f(x⋆). This fixed point is stable if f ′(x⋆) < 1

and is unstable if f ′(x⋆) > 1. The map fixed point is said to be superstable if

f ′(x⋆) = 0 . (2.38)

This is the most stable that a fixed point can be. In this case, the convergence towards

the fixed point is typically exponential rather than power-law.

It’s clear that a fixed point of our class of maps is superstable if x⋆ coincides with

the maximum of the map xmax which, by construction, we’ve taken to be xmax = 0.

Similarly, for the higher maps f 2(x) with two new fixed points x+ and x−, we saw in

(2.27) that df 2/dx(x+) = f ′(x+)f
′(x−), so this fixed point is superstable if either x+

or x− coincides with xmax.
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We will denote the value of r at which the fixed point of fn−1(x) is superstable as

Rn. These are shown in Figure 38. Note that rn < Rn < rn+1. It turns out that the

superstable points Rn converge in the same manner as the bifurcation points rn,

δ = lim
n→∞

Rn −Rn−1

Rn+1 −Rn

= 4.669 . . . (2.39)

In what follows, we will phrase everything in terms of maps evaluated at the superstable

points Rn.

The Renormalisation Map

Now we can start to put our iteration process in place. We start with a map f(x;R0)

which has a superstable fixed point. We then want to turn this into the appropriately

zoomed and flipped map f 2(x;R1) which, importantly, also has a superstable fixed

point. Moreover, we want the map f 2(x) to fall into our general class of maps, obeying

the various criteria listed above.

To achieve, this suppose that

f(1) = −a . (2.40)

Then, because f(0) = 1, we have f 2(0) = f(1) = −a. So to keep ourselves within

the class of maps with f(0) = 1, we should rescale f 2. This is the zooming described

above. We should also rescale x to ensure that the domain remains in x ∈ [−1,+1],

with a minus sign to give us the necessary reflection. The upshot is that the zooming

and flipping procedure is described by the following action on a map

f(x;R0) 7→ −
1

a
f 2 (−ax;R1) . (2.41)

Both the original map f(x) and the new map f 2(x) are evaluated at the appropriate

point r = Rn where they have a superstable fixed point. We say that the map f(x;R0)

has been renormalised, terminology stolen from quantum field theory.

The renormalisation map (2.41) can itself be viewed as a dynamical system, but not

one acting on a single variable x but now acting on a class of functions f(x). Said

differently, this is a dynamical system with an infinite number of degrees of freedom.

Nonetheless, we could push on and think of it like any other dynamical system. We

could, for example, reiterate the process n times

f(x,R0) 7→
(
−1

a

)n

f 2n ((−a)nx;Rn) . (2.42)
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Figure 38. The bifurcations happen at points r = rn; the fixed points are superstable at

r = Rn.

Then we can ask: does this process converge? In other words, is there some universal

function defined by

g(x) = lim
n→∞

(
−1

a

)2

f 2n ((−a)nx;Rn) ? (2.43)

It’s not at all obvious that such a function g(x) exists. But the universality observed in

the Feigenbaum constants suggests that, under the right circumstances, it might. But

what are these circumstances?

2.3.3 The Feigenbaum constant α

To get a sense for when universal function g(x) in (2.43) might exist, we need to

think more carefully about the meaning of that rescaling factor a. It is rescaling the

x coordinate by a, but we expect from our previous discussion that this is what the

Feigenbaum constant α is doing. This means that we should identify

α = −1

a
. (2.44)

Moreover, it suggests that the limit (2.43) should only exist if we take a very specific

value of α. We just need to compute this value.

Now we’re on the home straight. If there’s a universal function g(x) that is the limit

of the renormalisation map then, when we put it in the renormalisation map, nothing
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should happen. In other words, g(x) should be a fixed point of the renormalisation

map and satisfy

g(x) = α g2
(x
α

)
. (2.45)

This slightly strange, self-referential equation defines both the function g(x) and the

constant α. Indeed, as we’ve chosen g(0) = 1, we have

1 = αg(1) =⇒ α =
1

g(1)
. (2.46)

To make progress, we can simply Taylor expand g(x) around the origin. We know that

it is a symmetric function with a quadratic maximum, so we can Taylor expand

g(x) = 1 +
N∑

n=1

c2nx
2n . (2.47)

Substitute this into (2.45) and compare various terms. The constant terms give

1 = α(1 + c2 + c4 + . . .) (2.48)

which just reiterates the result (2.46). The x2 terms give

α = 2c2 + 4c4 + . . . .. (2.49)

The x2n terms are polynomials of degree 2n in the variables α and c2n. The upshot

is that we have N + 1 equations in N + 1 variables which we can solve numerically.

(Because these are higher order polynomials, there are several solutions and you have

to make sure that you get the right one.) The higher the value of N , the better the

accuracy. For low values we have:

N = 2 =⇒ c2 ≈ −1.52 , c4 ≈ 0.13 , α ≈ −2.53
N = 3 =⇒ c2 ≈ −1.52 , c4 ≈ 0.073 , c6 ≈ 0.046 , α ≈ −2.479 . (2.50)

By the time you get to N = 6, you have α ≈ −2.502897, which is correct to 1 part in

106.

You can see that our ansatz (2.47) assumes that the maximum is quadratic. You

could repeat the calculation setting c2 = 0 so that the maximum is quartic. Then you

get the different universal constant α ≈ −1.7 appropriate for such quartic maps.
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2.3.4 The Feigenbaum Constant δ

Computing the other Feigenbaum constant δ is a little more involved. We will be

somewhat heuristic in what follows, but still put together enough of the story to allow

us to compute δ.

To start, we define the renormalisation map to act on any function ϕ(x) as

Ren[ϕ(x)] = αϕ2
(x
α

)
. (2.51)

This is the same as our previous map (2.41), except we’re not changing the variable r

in any way: just iterating the map and rescaling. We take the constant α to be the

Feigenbaum constant.

Now consider the one-parameter family of functions f(x; r) that defines our original

map. We know that there are special values of r = Rn where this map has a superstable

2n-cycle. The claim of universality is that they converge as

Rn = R∞ −
A

δn
(2.52)

for some (non-universal) constant A and with δ the Feigenbaum constant (2.34). This

is what we would like to show. We will first need to develop some machinery to do this.

Expanding About the Universal Function

The renormalisation map Ren[ϕ(x)] has a “fixed point”, or more precisely a “fixed

function”, which is our universal function g(x),

Ren[g(x)] = αg2
(x
α

)
= g(x) . (2.53)

Usually, when presented with a dynamical system with a fixed point, our first inclination

is to linearise around the fixed point to see what happens in its vicinity. The same is

true here. We look at functions ϕ(x) that are close to the universal function, with

ϕ(x) = g(x) + ϵ θ(x) (2.54)

with ϵ≪ 1 and θ(x) some other arbitrary function. Now we act with the renormalisa-

tion map of f(x; r). The map isn’t linear so we have to tread slowly. We have

Ren[ϕ(x)] = αϕ
(
ϕ
(x
α

))
= αϕ

(
g
(x
α

)
+ ϵθ

(x
α

))
= α

[
ϕ
(
g
(x
α

))
+ ϵϕ′

(
g
(x
α

))
θ
(x
α

)]
= αg

(
g
(x
α

))
+ ϵα

[
θ
(
g
(x
α

))
+ g′

(
g
(x
α

))
θ
(x
α

)]
(2.55)
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where, in the third and fourth lines we’ve Taylor expanded and dropped terms of order

ϵ2.

When you Taylor expand a function, the first correction is the derivative. Here

we’ve Taylor expanded a functional Ren[ϕ(x)], which is a function of a function. The

term multiplying the ϵ parameter should be thought of as the functional derivative of

Ren[ϕ(x)]. In fancy maths words, it’s called the Fréchet derivative. We define

DReng[θ(x)] = α
[
θ
(
g
(x
α

))
+ g′

(
g
(x
α

))
θ
(x
α

)]
. (2.56)

We can then write

Ren[ϕ(x)] = g(x) + ϵDReng[θ(x)] . (2.57)

where we’ve used the fact that g(x) is a fixed point to get the first term.

How should we think of this? If this were a dynamical system with a finite number

of degrees of freedom then, when we linearise around a fixed point, we get a matrix.

And to understand the behaviour of the fixed point we have to look at the eigenvectors

and eigenvalues of that matrix. The same is true here, except that we should look for

eigenfunctions, θi(x) of the weird operator DRen. These obey

DReng[θi(x)] = λiθi(x) . (2.58)

Here λi is the corresponding eigenvalue and i is an (infinite) index that labels the

different eigenthings.

Our next step would be to solve for the different eigenvalues using (2.58). And we

will, eventually, do this. The trouble is that this is a hard equation to solve and it’s

useful to have some motivation for doing so! That’s where we’re going next. We will

argue that, out of the infinite number of eigenvalues, there is just single one λ0 that

has |λ0| > 1. And, rather wonderfully, this eigenvalue coincides with the Feigenbaum

constant δ.

Expanding About the Edge of Chaos

To extract the Feigenbaum constant, we need to look more carefully at the original

map f(x; r) and, in particular, this map evaluated at the superstable points r = Rn.
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To start, we look at the map when it sits at the edge of chaos at r = R∞. We define

F (x) = f(x;R∞) . (2.59)

At this point, we need to make an assumption: we assume that if you act with successive

iterations of the map Ren on the function F (x), then you will quickly converge towards

the universal function g(x) defined in (2.45),

Renn[F ](x) ≈ g(x) for n suitable large. (2.60)

Said in more sophisticated language, we assume that F (x) lies on the stable manifold

of the fixed point g(x). This assumption is, it turns out, true, but we will not prove it

here. It seems plausible because the renormalisation map Ren differs from our original

renormalisation by not changing the value of r, but we’ve already tuned the value of r

to its final resting place R∞ when considering F (x).

Next we ask: what if we act with the renormalisation map on f(x; r) with r close to

R∞? We write

f(x; r) = F (x) + ϵ
∂f(x; r)

∂r

∣∣∣∣
r=Rn

with ϵ = r −R∞ . (2.61)

Here we’ve dropped terms of order ϵ2 and higher. Acting with the renormalisation map

on f(x; r) is just a matter of repeating the calculation (2.55), with g(x) replaced by

F (x) and θ(x) replaced by ∂f/∂r. We can express the result in terms of our operator

DRen defined in (2.56),

Ren[f(x; r)] = αF
(
F
(x
α

))
+ ϵDRenF

[
∂f(x; r)

∂r

]
. (2.62)

Now we act with successive renormalisation maps on this function. We know that

F (x) tends towards the universal function g(x), as in (2.60). Acting successively on

the function f(x; r), with r close to R∞ then gives

Renn[f(x; r)] ≈ g(x) + (r −R∞)DRenn
g

[
∂f(x; r)

∂r

]
for suitable large n. (2.63)

Admittedly, that ≈ sign is doing some heavy lifting here. We’ve taken n iterations

of the map DReng, each of then evaluated around the function g(x) rather than the

function F (x) or some intermediate. That should really be justified. But we’re not

going to.
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To proceed, we expand the function ∂f/∂r in terms of eigenfunctions of the operator

DRen. We write

∂f(x; r)

∂r
=
∑
i

aiθi(x) . (2.64)

Clearly there’s yet another assumption here that the θi(x) form a complete basis of

functions. You may have guessed by now that it’s not an assumption we’re going to

justify. If we substitute this ansatz into the result (2.63), we have

Renn[f(x; r)] ≈ g(x) + (r −R∞)
∑
i

λn
i aiθi(x) . (2.65)

Now we’re in good shape to make the final argument.

The Feigenbaum Constant is an Eigenvalue

We make the following claim:

Claim: If there is just a single eigenvalue λ0 with |λ0| > 1, then

λ0 = δ (2.66)

with δ the Feigenbaum constant.

Proof: The key idea is to get different expressions for the renormalisation Renn[f(x; r)].

First, if the assumption is correct, and all eigenvalues other than λ0 have modulus

|λi| < 1, then the iterations in (2.65) quickly kill all but the θ0(x) eigenfunction,

Renn[f(x; r)] ≈ g(x) + (r −R∞)λn
0 a0 θ0(x) . (2.67)

Now we think about this result applied to the case with r = Rn. The nice thing about

the function f(x;Rn) is that it has a superstable n-cycle and, moreover, we know that

x = 0 is one of the points on this n cycle. In other words, if we act with f(x;Rn) a

total of 2n times, starting at x = 0, then we get back to x = 0,

f 2n(x = 0;Rn) = 0 . (2.68)

But this means that the left-hand side of (2.67) vanishes, with the extra scaling by α

in the renormalisation group map unimportant because 0/α = 0α = 0. So we have

Rn −R∞ = − g(0)

a0 θ0(0)

1

λn
0

=
constant

λn
0

. (2.69)

But this is precisely the geometric progression (2.52) seen in the bifurcations, with

λ0 = δ. □
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It remains to find the eigenvalue λ0 = δ. For this, we need to solve the eigenfunction

equation (2.58)

DReng[θ(x)] = α
[
θ
(
g
(x
α

))
+ g′

(
g
(x
α

))
θ
(x
α

)]
= δ θ(x) . (2.70)

This too can be found using a power series ansatz for θ(x), together with our previous

expansion for the universal function g(x). Expanding to order N = 6 is sufficient to

give δ ≈ 4.66914, accurate to one part in 105.
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3 Spatial Variations

In the past two sections, we considered the dynamics of functions that depend only on

time. But there are other dimensions in our universe and these too can be important

in biology. If, for example, you’re a rabbit then the location of a fox is important to

you. The purpose of this section is to include the effects of spatial localisation in our

models.

Mathematically, this means that our variables depend both on time t and on space

x. For example, instead of working with a total population N(t), we instead have a

population density n(x, t). If you integrate this density over some region V then it tells

you the total population inside that region

N(t) =

∫
V

d3x n(x, t) . (3.1)

The fact that we’re dealing with functions of space and time means that our system

will no longer be described by a system of ordinary differential equations. Instead, we

must embrace partial differential equations and all they have to offer.

The Continuity Equation

Many of the variables of interest in mathematical biology are counting things. And

these things are, by and large, conserved.

That sentence may seem strange given that everything we’ve done so far is devoted to

understanding the time evolution of these variables. If they were truly conserved then

they wouldn’t change! But, as a starting point, the conservation of things is important.

For example, it’s true that you were born and you will die but, if you’re lucky, there’s

a good 70 to 80 years in between in which neither of these things happens. This means

that the population is approximately conserved. We can then start to look at how birth

and death rates change this conclusion.

Crucially, when things are conserved in physics (and, indeed, in biology) they are

conserved locally. The amount of conserved quantity can change in one region of

space, but only because it moves to a neighbouring region. There is an important

and ubiquitous equation that captures this fact: the density of some stuff n(x, t) is

conserved if there exists a vector function J(x, t), known as a current density or flux,

that obeys

∂n

∂t
+∇ · J = 0 . (3.2)
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This is the continuity equation. We’ve met it previously in courses on Electromagnetism

(where electric charge is conserved), Fluid Mechanics (where mass is conserved), and

Quantum Mechanics (where probability is conserved).

To see why the continuity equation (3.2) implies conservation, we integrate both sides

over a region of space V with boundary S = ∂V and then invoke Gauss’ divergence

theorem,

dN

dt
=

∫
V

d3x
∂n

∂t
= −

∫
V

d3x ∇ · J = −
∫
S

d2S · J . (3.3)

We learn that the total population N(t) in some region V can change with time, but

only if there is a flux of the current J out of the boundary of the region. Often we will

be interested in some closed region V from which there is no escape.In this case we

have J = 0 on the boundary S and, correspondingly, N is constant. For convenience,

we may sometimes, unrealistically in the context of biology, take V = R3 and require

that J→ 0 suitably fast asymptotically.

Anything that is conserved obeys the continuity equation (3.2). But, as we have

stressed, our populations and other beasts are typically not fully conserved. In this case,

it’s straightforward to amend the continuity equation: we just include an additional

term on the right-hand side

∂n

∂t
+∇ · J = F (x, t) . (3.4)

This function F (x, t) captures any loss or creation of the quantity of interest. For

example, if n(x, t) is the population density then F (x, t) may describe the birth and

death rates, now allowed to vary in both space and time. The function F may itself

depend on n or (less commonly) J.

Local conservation means that it’s not enough to talk only about the density n(x, t):

we also need to introduce the current density J(x, t). In general, this could be an

independent variable. But there are two situations that arise most commonly:

• Diffusion: When the underlying density is subject to constant, random fluctua-

tions, the result is that the current is given by

J(x, t) = −D∇n(x, t) . (3.5)

This is known as Fick’s law and D is a constant known as the diffusivity. Fick’s

law is telling us that there is a current from high density regions to low density
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regions. We will get more intuition for this result in Section 4 when we discuss

the effects of randomness and, in particular, when we derive the Fokker-Planck

equation. For now, we will take this result as an assumption and see where it

takes us. With a current of this form, the continuity equation becomes

∂n

∂t
= D∇2n . (3.6)

This is the heat equation. Processes governed by this equation are said to undergo

diffusion. We will devote Section 3.1 to solving this equation. For now, note that

this equation makes it clear that the dimension of the diffusivity is [D] = L2/T .

• Advection: An alternative scenario is that the stuff we care about is sitting in

some moving, background medium and just going with the flow. In this case, the

current is given by

J(x, t) = n(x, t)u(x, t) (3.7)

where u(x, t) is the underlying velocity field. This kind of current typically arises

in fluid mechanics and is known as advection. In this case, you need to separately

specify the form of the velocity field or, if it’s a dynamical variable, introduce

more equations (such as the Euler or Navier-Stokes equations) that govern its

properties.

In general, it’s quite possible that the current has both a diffusive piece and an advective

piece.

In both the examples above, there can be no current J(x, t) if n(x, t) = 0. That’s in

contrast to what happens in electromagnetism where it’s quite possible to have J ≠= 0

even if the charge density n = 0. That’s because electromagnetism comes with both

positive and negative charges which cancel out. But if the negative charges move, while

the positive charges stay still – which is what happens in a wire conducting electricity

– then the current is non-zero. In contrast, the diffusion and advection described above

typically happens in situations where n(x, t) > 0. This, of course, is the situation for

populations.

There are other ways to generalise the ideas above, some of which we will meet later.

For example, the diffusivity D in (3.5) could depend on the function n(x, t). The same

is true of the forcing function F in (3.4). If we have standard diffusion, together with

a field-dependent forcing F (n), we are left with a class of equations that take the form

∂n

∂t
−D∇2n = F (n) . (3.8)
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These are known as reaction-diffusion equations, with the D∇2n term capturing diffu-

sion and the F (n) term said to be the “reaction”. This is the class of equations that

we will mostly focus on in this section.

3.1 Diffusion

We first study the solutions to the heat equation (3.6) in various situations. To keep

things simple, we will restrict ourselves to the one-dimensional case,

∂n

∂t
= D

∂2n

∂x2
. (3.9)

As we proceed, we’ll also look at some generalisations of this equation.

3.1.1 Diffusion on a Finite Interval

We start by placing our system on a finite interval x ∈ [0, L]. We will impose boundary

conditions on both ends

n(0, t) = n0 and n(L, t) = n1 . (3.10)

with n0 and n1 both constant. In the context of thermodynamics, we might think of

n(x, t) as the temperature along a one-dimensional rod with the two ends sitting in

some heat reservoir, held at fixed temperatures. In the context of biology, we could

think of n(x, t) as the population of something small (say, an ant or a bacterium) which

can move along a narrow tube. The ends of the tube are connected to two population

reservoirs, each held at constant population density. The heat equation (3.9) then tells

us how the temperature/population varies along the tube.

To start, we can look for a steady state solution with no time dependence. This is

straightforward. We have

∂2n

∂x2
= 0 =⇒ n(x, t) = n⋆(x) = n0 + (n1 − n0)

x

L
(3.11)

where we’ve implemented the boundary conditions (3.10). We’ve called this solution

n⋆(x) because it’s analogous to the fixed points that we found in the dynamical systems

of Section 1.

For this steady state, the flux is J = −D∂n/∂x = D(n0 − n1)/L is constant. If

n0 > n1 then J > 0. If n0 < n1 then J < 0. In both cases, there is a net flux from the

high density population to the low density population.
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As we mentioned briefly above (and will see more in Section 4), diffusion typically

happens where there is some underlying randomness in the situation. Having a net flux

J > 0 doesn’t mean that the ants are marching in lockstep from left to right. There

may be some ants wandering in one direction and some in the other. But there’s an

overall preference for them to travel left to right. Our diffusion model doesn’t capture

these microscopic fluctuations: only the overall trend of the flow.

Time Dependence

What happens when we deviate from the steady state? Now we need to specify the

initial value of the field at t = 0. The resulting solution takes the form

n(x, 0) = n⋆(x) + c(x, t) . (3.12)

where c(x, t) also solves the heat equation

∂c

∂t
= D

∂2c

∂x2
(3.13)

now with boundary conditions c(0, t) = c(L, t) = 0.

We can look for separable solutions of the form

c(x, t) = f(x) g(t) . (3.14)

Substituting this into the heat equation, we see that the two functions must obey

fġ = Dgf ′′ . (3.15)

Dividing through by fg, we have

ġ

g
= D

f ′′

f
. (3.16)

But the left-hand side is a function only of t, and the right-hand side is a function only

of x, which means that actually both sides must be constant. The solution for f(x) is

constrained by the boundary conditions f(0) = f(L) = 0 which tells us that solutions

must be of the form

f ′′(x) ∝ f(x) =⇒ f(x) = sin
(πnx

L

)
with n = 1, 2 . . . (3.17)

Now (3.16) fixes the form of g(t),

ġ = −λng =⇒ g = e−λnt with λn =
Dπ2n2

L2
. (3.18)
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Figure 39. Diffusion of an initial wiggly profile quickly settles down to the linear, steady

state.

Because the heat equation is linear, we can simply add together separable solutions for

different n. Moreover, the most general solution can be constructed in this way and

takes the form

c(x, t) =
∞∑
n=1

cne
−λnt sin

(πnx
L

)
. (3.19)

Here the cn are determined by the initial conditions where they are essentially Fourier

components of the initial profile at time t = 0. We now see the key feature of the heat

equations: all the higher Fourier modes die off exponentially quickly, tending towards

the steady state solution. The higher the Fourier mode, so the more wiggly the profile,

the faster it decays away. This is the characteristic behaviour of the heat equation:

it smooths things out. An example of the evolution of n(x, t), plotted for increasing

values of t is shown in Figure 39.

No Flux Boundary Condition

We can look at generalisations of this set-up. For example, instead of fixing the value

of n(x, t) on both ends, we could instead require that, say, n(0, t) = n0 on the far left,

but

J = −D∂n

∂x
= 0 . (3.20)

on the far right at x = L. Mathematically we say that we are imposing Dirichlet bound-

ary conditions on the left, and Neumann boundary conditions on the right. Physically,

we might have a tube connected to a population of ants but, having travelled all the

way down it, the ants are disappointed to find that the end is closed off, ensuring that

there is no flux.
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Now the steady state solution is simply n(x, t) = n0 and we can again write the most

general solution as n(x, t) = n0+c(x, t). We can proceed largely as before, looking first

for separable solutions of the form n(x, t) = f(x) g(t) which must obey (3.16). The

novelty now comes in the boundary conditions that are imposed on f(x) which hold if

we take

f(x) = sin

(
(2n− 1)πx

2L

)
. with n = 1, 2, . . . (3.21)

The most general solution is then

n(x, t) = n0 +
∞∑
n=1

cne
−λnt sin

(
(2n− 1)πx

2L

)
. with λn =

D(2n− 1)2π2

4L2
. (3.22)

Again, we see the key feature: the faster the wiggle, the faster they die out.

3.1.2 How to Cook a Turkey

If you buy a turkey, the instructions will typically tell you to cook it for 20 minutes

per kg, and then another 70 minutes for a 2-4 kg turkey, or another 90 minutes for a

4-10 kg turkey. These slightly convoluted rules arise because the relationship between

the cooking time and the weight is not linear. The correct relationship was suggested

by the particle physicist Pief Panofsky who pointed out that the cooking time τ scales

with the mass M by the relation

τ ∼M2/3 . (3.23)

We can derive this formula using the ideas of diffusion described above8.

The temperature T (x, t) of the turkey is described by the heat equation, now in 3d

∂T

∂t
= D∇2T . (3.24)

In fine tradition, we will assume that our turkey is spherical. (The analysis below also

holds for spherical cows.) Then, further assuming that the oven is also spherically

symmetric we can think of T = T (r, t) with r the radial coordinate and the heat

equation takes the form

∂T

∂t
=

D

r2
∂

∂r

(
r2
∂T

∂r

)
. (3.25)

8This is taken from the paper Physics in Turkey Cooking by Jin, Wang and Wang. I’m grateful to

Ray Goldstein for pointing me to this paper.
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At this point, we use a trick and write V (r, t) = rT (r, t). (We used a similar trick

in the lectures on Quantum Mechanics when solving the Schrödinger equation in 3d.)

Then we have T ′ = V ′/r − V/r2 and, rather wonderfully, the heat equation becomes

∂V

∂t
= D

∂2V

∂r2
. (3.26)

We see that, in this new variable V , we’re back solving the 1d diffusion equation. And

we know how to do that! A separable solution takes the form

V (r, t) = e−λDt
[
A cos(

√
λr) +B sin(

√
λr)
]
. (3.27)

for some λ > 0. The temperature T is given by T = V/r so if we want to avoid

a divergence at r = 0 then we need to set A = 0. Our solution will involve only

sin(
√
λr).

We can determine the allowed values of λ, together with the constants A and B,

by looking at the boundary conditions. If the turkey has radius R, then we have the

boundary condition

T (r, t) = Thot for all t and r ≥ R (3.28)

Here Thot is the temperature of the oven. This is telling us that we can deviate from the

uniform temperature only inside the turkey, r < R. We do this by taking
√
λ = nπ/R

with n ∈ Z+ and writing down the general solution

T (r, t) = Thot +
1

r

∞∑
n=1

[
Vn sin

(nπr
R

)
e−n2π2Dt/R2

]
. (3.29)

The coefficients Vn are set by the initial conditions. We’ll take this to be

T (r, 0) = T0 ≪ Thot for 0 ≤ r < R (3.30)

This initial data is discontinuous at r = R where the temperature jumps from T0 to

Thot, but it’s straightforward to implement this. We just need to pick the coefficients

Vn so that that it gives the Fourier decomposition of a linear function r, cancelling the

1/r in the denominator. It’s simple to check that this is achieved by the solution

T (r, t) = Thot −
2R

π2

(Thot − T0)

r

∞∑
n=1

[
(−1)n

n
sin
(nπr

R

)
e−n2π2Dt/R2

]
. (3.31)

These initial conditions decay away in characteristic time

τ =
R2

n2π2D
. (3.32)

When the lowest n = 1 mode has decayed away, the turkey is cooked, approaching the

steady state solution T (r, t) = Thot. Importantly, τ ∼ R2. This is the origin of the

Panofsky turkey rule (3.23), since the mass is proportional to volume M ∼ R3.
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To put some numbers of this, we need to know the diffusivity for heat in a turkey.

That can be easily measured to be D ≈ 2× 10−3 cm2s−1. Suppose that our turkey has

radius R ≈ 10 cm, then we find τ ≈ 5000 seconds, or about 80 minutes. You might

want to wait for, say 2× τ , to be convinced that you’re not going to get salmonella, so

pop it in for three hours and voilà. Don’t let anyone tell you that maths isn’t useful.

3.1.3 A First Look at Diffusion With Growth

In preparation for more interesting things to come (noticeably, the Turing instability)

we can look at what happens if we deform the heat equation. We will take our substance

to diffuse, but now with a linear growth term on the right-hand side

∂n

∂t
= D

∂2n

∂x2
+ λn (3.33)

with λ constant.

We’ll again take the system on an interval x ∈ [0, L] and we’ll take the simple

situation where we impose boundary condition n(0, t) = n(0, L) = 0. If there was no

growth term, then the system would settle down to the empty state n = 0. Conversely,

if there was no diffusion, so D = 0, then we know that the population n will grow

exponentially quickly. In combining the two terms we have introduced what story

tellers call narrative tension. Something interesting should now happen.

There is a trick to solving this equation. We define a new variable

ñ(x, t) = e−λtn(x, t) =⇒ ∂ñ

∂t
= D

∂2ñ

∂t2
. (3.34)

We see that this new variable solves our original heat equation. We can just import

our previous solution (3.19) to find

n(x, t) =
∞∑
n=1

cne
(λ−λn)t sin

(πnx
L

)
with λn =

Dπ2n2

L2
. (3.35)

Although the maths was straightforward, the resulting physics is novel. There is a

critical length of the interval

Lc =

√
Dπ2

λ
. (3.36)

For L < Lc, the system settles down to the boring steady state n = 0 where everything

diffuses out the end points. But for suitably long intervals, L > Lc, the system becomes

unstable with the lowest n = 1 mode the first to start growing. As we make L yet longer,

successive modes also become unstable.
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The idea that adding an additional term to the diffusion equation can lead to spatial

instability is something that we will see again shortly.

3.1.4 Diffusion on the Line

The boundary conditions played a crucial role in constructing the solutions above.

What happens if we want to solve the heat equation

∂n

∂t
= D

∂2n

∂x2
(3.37)

on an infinite line?

We will insist that our density is localised somewhere (say, near the origin) and,

moreover that J ∼ ∂n/∂x → 0 as x → ±∞. This then ensures that the total amount

of stuff

N =

∫ +∞

−∞
dx n(x, t) (3.38)

is constant, with

dN

dt
=

∫ +∞

−∞
dx

∂n

∂t
= D

∫ +∞

−∞
dx

∂2n

∂x2
= D

[
∂n

∂x

]+∞

−∞
= 0 . (3.39)

We won’t give the most general solution to the heat equation. Instead, we will find a

particular solution that is “self-similar”, meaning that after scaling space and time in

a certain way, it looks the same.

The essence of these self-similar solutions is that we can replace the partial differential

equation (3.37) with an appropriate ordinary differential equation, where the relevant

variable is a suitable combination of x and t. To figure out what linear combination

works, we do a little dimensional analysis.

We have two variables x and t and two constants with dimension [D] = L2T−1 and

[N ] = L. (Here we’re assuming that n(x, t) itself is dimensionless; you could assign it

a dimension of “people density” or “bugs density” or whatever, but this won’t change

the conclusions below). We then introduce the dimensionless combination

ξ =
x√
Dt

. (3.40)

Furthermore, we look for solutions of the form

n(x, t) =
N√
Dt

f(ξ) . (3.41)
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The idea here is that the constant N sets the overall scale of the solution and the factor

of (Dt)−1/2 ensures that the function f(ξ) is dimensionless. At this point we have to

roll up our sleeves and figure out what the heat equation looks like when written in

terms of ξ. We have

∂ξ

∂t
= −1

2

ξ

t
and

∂ξ

∂x
=

1√
Dt

=
ξ

x
. (3.42)

The time derivative of n(x, t) is then

∂n

∂t
= − 1

2t

N√
Dt

f +
N√
Dt

f ′(ξ)
∂ξ

∂t

= − 1

2t

N√
Dt

(f + ξf ′)

= − 1

2t

N√
Dt

d

dξ
(ξf) . (3.43)

Meanwhile, the spatial derivatives are

∂

∂x
=

1√
Dt

∂

∂ξ
and

∂2

∂x2
=

1

Dt

∂2

∂ξ2
. (3.44)

Putting this together, the heat equation (3.37) becomes the ordinary differential equa-

tion

d2f

dξ2
+

1

2

d

dξ
(ξf) . (3.45)

It’s simple to integrate this once:

df

dξ
+

1

2
ξf = constant . (3.46)

If we want a localised solution, with f, f ′ → 0 as ξ → ∞ then this constant must

vanish. We learn that we must solve

df

dξ
= −1

2
ξf =⇒ f(ξ) = Ae−ξ2/4 . (3.47)

The normalisation condition (3.38) translates to the requirement∫ +∞

−∞
dξ f(ξ) = 1 =⇒ A =

1√
4π

. (3.48)

The upshot of this analysis is that we have a self-similar solution to the heat equation

given by

n(x, t) =
N√
4πDt

e−x2/4Dt . (3.49)
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Figure 40. On the left: diffusion of a Gaussian wavepacket. On the right: diffusion of the

error function. In both cases, diffusion takes the edge off.

This is a Gaussian of ever-spreading width. If we trace it back to t→ 0−, it becomes a

delta-function localised at the origin. Again, we see the tendency of the heat equation

to take a solution and spread it out. The resulting profile for various values of t is

shown on the left of Figure 40.

Changing Boundary Conditions at Infinity

We can get solutions with different boundary conditions using a slight variation of this

argument. Suppose that we want a solution to the heat equation such that

n(x, t)→

{
+1 x→ +∞
−1 x→ −∞

. (3.50)

Now there’s no analog of the conserved quantity N because the spatial integral over

n(x, t) diverges. But, inspired by the approach above, we could look for solutions of

the form

n(x, t) = tαg(ξ) with ξ =
x√
Dt

(3.51)

and some constant α that we need to determine. The two sides of the heat equation

then become

∂n

∂t
= tα−1

(
α− 1

2
ξg′
)

and
∂2n

∂x2
=

tα

Dt
g′′ . (3.52)

This time, the factors of t work out on both sides. But if we want to impose the

boundary conditions n(x, t)→ ±1 on both sides, then we had better take α = 0. The

heat equation becomes

g′′ +
1

2
ξg′ = 0 . (3.53)
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Again, we can integrate to get

g′(ξ) = Ae−ξ2/4 =⇒ g(ξ) = B + A

∫ ξ

0

dη e−η2/4 (3.54)

with A and B both integration constants. This definite integral defines the so-called

error function

Erf(x) =
2√
π

∫ x

0

dy e−y2 . (3.55)

It has the property that Erf(x) ≈ 2x/
√
π for |x| ≪ 1 and Erf(x) → ±1 as x → ±∞.

The integration constants A and B are then fixed by the boundary conditions (3.50),

and we have the solution

n(x, t) = Erf

(
x√
4Dt

)
. (3.56)

The evolution of this function with t is shown on the right-hand side of Figure 40.

Growth Revisited

We saw in Section 3.1.3 that interesting things happen if we add linear growth to the

heat equation on the interval, so we have

∂n

∂t
= D

∂2n

∂x2
+ λn . (3.57)

Previously our interest in this came largely from the fact that there was a transition,

with the growth winning when L > Lc and dissipation winning when L < Lc. Now

with L effectively infinite, you might imagine that this crossover no longer happens and

growth always wins. And you would be right. For example, the dissipating Gaussian

wavepacket (3.49) now solves (3.57) with

n(x, t) =
N√
4πDt

eλte−x2/4Dt . (3.58)

For any fixed value of x, the height of the wavepacket grows exponentially in time for

λ > 0. It shrinks for λ < 0.

Note that our solution (3.58) doesn’t take the form n(x, t) = tαg(x/tβ) that we would

look for in a similarity solution. Indeed, you can check that no such solution of this

form exists. Repeating the steps that we took above, we would end up having to solve

tα−1(αg = βξg′) = tα−2βDg′′ + λtαg (3.59)

and there’s no way to pick α and β so that this holds for all t. This, it turns out,

is rather typical: similarity solutions rarely exist when we try to solve equations with

three of more terms.
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3.1.5 Non-Linear Diffusion

In all the examples above, we have taken the diffusivity D to be constant. But that’s

not necessarily the case. In general, we could have a current given by

J = −D(n;x, t)∇n (3.60)

where, as shown, D can vary over space and time or even depend on n(x, t) itself. Here

we look at the latter situation. We will consider a diffusivity given by

D = k n(x, t) (3.61)

with k > 0 constant. This means that diffusion is greater when the population density

is greater. It’s as if the individuals are keen to get away from each other.

We again restrict ourselves to one spatial dimension. The continuity equation now

gives the non-linear diffusion equation

∂n

∂t
= −∂J

∂x
= k

∂

∂x

(
n
∂n

∂x

)
. (3.62)

As before, we can look for self-similar solutions that depend only on a single dimension-

less combination of x and t. This time, however, the dimensions of our constants are

different. In addition to length L and time T , we’ll also need the dimension of n(x, t)

which, quite reasonably, we’ll denote as n.

The two constants in the game are k and, provided that J → 0 as x → ±∞, the

total population

N =

∫ +∞

−∞
n(x, t) . (3.63)

These have dimensions

[k] = L2T−1n−1 and [N ] = nL . (3.64)

From these, we see that to construct a dimensionless variable proportional to x, we

must take

ξ =
x

(Nkt)1/3
. (3.65)

We then take the ansatz

n(x, t) =
N

(Nkt)1/3
f(ξ) (3.66)

where the overall factor is designed so that f(ξ) is a dimensionless function.
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By now, the path should be a familiar one. We have

∂ξ

∂t
= −1

3

ξ

t
and

∂ξ

∂x
=

1

(Nkt)1/3
=

ξ

x
. (3.67)

The time derivative of n(x, t) is then

∂n

∂t
= − 1

3t

N

(Nkt)1/3
f +

N

(Nkt)1/3
f ′(ξ)

∂ξ

∂t

= − 1

3t

N

(Nkt)1/3
d

dξ
(ξf) . (3.68)

Meanwhile, the first spatial derivative is

∂n

∂x
=

N

(Nkt)2/3
f ′(ξ) (3.69)

and so the combination in (3.62) becomes

∂

∂x

(
n
∂n

∂x

)
=

1

(Nkt)1/3
∂

∂ξ

(
Nf

kt

df

dξ

)
=

1

kt

N

(Nkt)1/3
d

dξ
(ff ′) . (3.70)

Putting these together, the non-linear diffusion equation (3.62) becomes

d

dξ
(ff ′) = −1

3

d

dξ
(ξf) =⇒ ff ′ = −1

3
ξf (3.71)

where we’ve eliminated an integration constant by requiring that f, f ′ → 0 as x±∞.

We see that we have two different solutions. The first is f = 0, which is rather

boring. The second is

f ′ = −ξ

3
=⇒ f = −ξ2

6
+ constant . (3.72)

That looks more interesting but, sadly, it doesn’t satisfy our boundary conditions f → 0

as ξ → ±∞.

What’s going on?! We’ve got one nice quadratic solution that doesn’t satisfy the

boundary conditions, and one boring solution f = 0 that doesn’t satisfy the fact that

total population is a constant N . Indeed, it’s simple to check that the integral (3.63)

translates to an integral of f(ξ), ∫ +∞

−∞
dξ f(ξ) = 1 . (3.73)
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Figure 41. The non-linear diffusion equation results in this weird portion of a parabola

expanding outwards.

We can make progress by splicing together these two solutions. We take

f(ξ) =

{
A− ξ2/6 |ξ| < ξ0 =

√
6A

0 |ξ| ≥ ξ0
(3.74)

The crossover ξ0 is chosen so that the function is continuous (and, moreover, so that

f(ξ) is everywhere non-negative). The derivative of the f(ξ) is discontinuous at ξ0 and

we should really work a little harder to show that this kind of splicing is allowed. The

reason it’s acceptable can be traced to the condition f(f ′ − ξ/3) = 0 in (3.71) with,

roughly speaking, the f = 0 beating the fact that f ′ isn’t well-defined at the splice.

In particular, the current J ∼ ff ′ vanishes at the point ξ = ±ξ0. In the mathematics

literature, these are sometimes called weak solutions, which means that they can be

shown to satisfy the original equation in some well-defined sense.

The constant A is fixed by the normalisation condition (3.73),

1 =

∫ ξ0

−ξ0

dξ f(ξ) = 2Aξ0 −
1

9
ξ30 =

4
√
6

3
A3/2 . (3.75)

This gives A = (3/32)1/3 and ξ0 =
√
6A = (9/2)1/3. This then gives us our final result:

going back to the x and t variables, the density n(x, t) takes the shape of finite piece

of parabola, spreading out over time

n(x, t) =
1

6

N2/3

(kt)1/3

[(
9

2

)2/3

− x2

(Nkt)2/3

]
for x <

(
9

2
Nkt

)1/3

. (3.76)

with n(x, t) = 0 outside this region. The result is shown in Figure 41.
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The end result is slightly odd, not least because we have come to expect that sharp

edges are washed out by diffusion, but here the corner at n(x, t) = 0 persists for all

time. This is a novelty that comes from the non-linear aspect of diffusion. In particular,

we have D ∼ n so it’s not possible for the system to diffuse when n = 0. Instead, the

population piles up near the edges and, as it grows, diffuses faster.

3.2 Travelling Waves

Once we have both diffusion and some forcing term, interesting things can happen.

Before we get to the interesting things, let’s look at some boring things.

The one-dimensional reaction-diffusion equation takes the form

∂n

∂t
= D

∂2n

∂x2
+ F (n) (3.77)

for some “reaction” forcing function F (n). An obvious way to proceed is to look for

spatially homogeneous solutions, with n(x, t) = n(t). Then the equation becomes

∂n

∂t
= F (n) . (3.78)

But this is precisely the kind of equation that we started exploring in Section 1. And

with just a single variable n(t), there’s not a great deal that can happen. We look for

fixed points n⋆ that obey

F (n⋆) = 0 . (3.79)

Now we can look at perturbations around this fixed point. The novelty is that these

perturbations need not be spatially homogeneous: we write

n(x, t) = n⋆ + ϵ(x, t) . (3.80)

Substituting this into (3.77), we get a reaction-diffusion equation for ϵ(x, t),

∂ϵ

∂t
= D

∂2ϵ

∂x2
+ λϵ with λ =

∂F

∂n
(n⋆) . (3.81)

But this is the diffusion with linear growth that we already studied in Section 3.1.

If we’re studying the equation on the domain x ∈ R then things are particularly

straightforward: the perturbation grows if λ > 0 and decays if λ < 0. (If we’re instead

working on an interval then, as we saw in Section 3.1.3, there is a phase transition in

the behaviour as we vary the length of the interval.)
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The real interest occurs when the system is unstable because the perturbative analysis

above quickly breaks down and fails to tell us what really happens. In this section, we

will explore some important examples of reaction-diffusion equations and see some of

the novel things that can occur. A recurring lesson will be that non-linear PDEs like

(3.77) can offer a much richer experience than boring linear PDEs like (3.81).

3.2.1 The KPP-Fisher Equation

The first non-linear dynamical system that we explored in Section 1 was the logistic

equation. That too will be our first non-linear PDE. We will call the dimensionless

dynamical variable p(x, t) (rather than n(x, t)) and consider the 1d reaction-diffusion

equation

∂p

∂t
=

∂2p

∂x2
+ p(1− p) . (3.82)

This is the KPP-Fisher equation, with the initials reflecting the important work done

by Kolmogorov, Petrovsky and Piskunov.

Fisher originally introduced this equation in 1937 to describe the spread of advanta-

geous genes, with p(x, t) the percentage of the population that carries the gene9. We

already saw in Section 1.1.2 that the logistic equation describes the spread of a benefi-

cial mutation. The novelty here is the diffusion term which captures how this beneficial

mutation evolves in space.

The logistic equation has two fixed points: p = 0 and p = 1. The latter is stable,

the former unstable. The question that we would like to ask is: suppose that we start

at p = 0 and then perturb the system with a spatially localised disturbance, like the

alpha variation of COVID-19 kicking off in Kent. How does it subsequently propagate?

Here is a guess. Suppose that we start with a small disturbance, localised in a region

of size L around x = 0 at time t = 0. From what we’ve learned about diffusion and

growth, we might expect that this perturbation will grow in both height and width,

with the top plateauing at the fixed point p = 1. If we’re sitting at some distance

x≪ L from the initial perturbation, we have to wait some time until this perturbation

hits us. A cartoon of this dynamics is shown in Figure 42.

9The paper is “The wave of advance of advantageous genes”, published in the queasily named

Annals of Eugenics.
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Figure 42. A cartoon of the evolution of a small perturbation in the Fisher equation,

spreading out over time as a wavefront.

This suggests that we might look for wave-like solutions to the KPP-Fisher equation.

It’s worth pointing out that we’re not guaranteed that such solutions exist. Indeed,

the basic diffusion equation does not support wave-like solutions. But the addition of a

reaction term changes the story and, as we’ll now show, such waves typically do exist.

We don’t know how fast such a wave travels so we’ll leave this as arbitrary for now

and call it c. We will then look for solutions of the form

p(x, t) = f(ξ) with ξ = x− ct (3.83)

with c > 0 the as yet unknown wave speed. We don’t know if such a solution exists, but

it seems like a reasonable place to look. If we substitute this into the Fisher equation,

we get an ordinary differential equation

−cf ′ = f ′′ + f(1− f) . (3.84)

Our task is to analyse solutions to this equation. Here we offer a number of ways to

do this.

Phase Plane Analysis

To start, we can turn our second order differential equation into a pair of first order

differential equations,

f ′ = g and g′ = −cg − f(1− f) . (3.85)

This is the kind of system that we became adept at solving in Section 1 and we know

the drill by now. First we look for fixed points. There are two (f, g) = (0, 0) and

(f, g) = (1, 0).
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Figure 43. Numerical solutions with c = 1, both in the phase plane (on the left) and the

evolution of f(ξ). The red line shows the trajectory of a solution that starts close to the

unstable fixed point (f, g) = (1, 0).

Next we look at stability. The Jacobian is

J =

(
0 1

−1 + 2f −c

)
. (3.86)

For (f, g) = (1, 0), we have det J = −1 and Tr J = −c so this fixed point is necessarily

a saddle.

The other fixed point at (f, g) = (0, 0) is more interesting. The eigenvalues λ of the

Jacobian are

λ2 + cλ+ 1 = 0 =⇒ λ = − c

2
± 1

2

√
c2 − 4 . (3.87)

For c < 2, the eigenvalues are complex, with negative real part, so the fixed point is

a stable focus, with trajectories spiralling in. For c ≥ 2, the eigenvalues are real and

negative (strictly, one vanishes when c = 2) and so the fixed point is stable.

The fact that the flows in the phase plane have qualitatively different behaviour for

c < 2 and c > 2 is important. In particular, we can look at the kind of solutions we get

with c < 2. These are plotted numerically in Figure 43. While these are fine formal

solutions to the Fisher equation, because they spiral into the origin they necessarily

have a region of ξ for which f < 0. But if we’re thinking of f(ξ) as the fraction of a

population then we want f ≥ 0. This means that, for our present purpose, we discard

the solutions with c < 2.
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Figure 44. Numerical solutions with c = 2, both in the phase plane (on the left) and the

evolution of f(ξ). Again, the red line shows the trajectory of a solution that starts close to

the unstable fixed point (f, g) = (1, 0).

That leaves us with c ≥ 2. Here there is no such concern. A numerical plot of this

solution (shown with c = 2) is depicted in Figure 44. Now there is a solution that

starts near the unstable fixed point and heads directly towards the stable fixed point.

These are the class of solutions that we will be interested in.

It’s worth pointing out that something a little strange has happened here. We wanted

to find solutions where we start at f = 0 and then perturb slightly to see what happens.

Instead, our phase space analysis has resulted in solutions that seem to go the opposite

way, with

f(ξ)→ 1 and ξ → −∞ and f(ξ)→ 0 as ξ → +∞ . (3.88)

In fact, this is just because the ξ coordinate is defined as ξ = x−ct and that minus sign

is the cause for the strange behaviour. For fixed x, these same solutions obey f(t)→ 0

as t→ −∞ and f(t)→ 1 as t→ +∞.

A Mechanical Analogy

There’s a way to translate the story above into something familiar. The equation (3.84)

is the kind of thing that we studied in our course on Dynamics and Relativity. If we

write it as

f ′′ = f(f − 1)− cf ′ = −dV

df
− cf ′ (3.89)

with

V (f) =
1

2
f 2 − 1

3
f 3 . (3.90)
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then it looks like the equation of motion for a particle moving in potential V with a

friction term −cf ′.

The potential is plotted in the figure. It has

two critical points, at f = 0 and at f = 1. In

this analogy, as in the dynamical system, the

point f = 1 is unstable and the point f = 0

is stable. That’s compatible with what we saw

above: in the ξ = x− ct coordinate, we go flow

from f = 1 to f = 0 rather than the other way

around.

We’ve seen above that we get qualitatively different behaviour for c < 2 and for

c > 2. It’s simple to see why in this mechanical analogy, where c dictates the strength

of the friction force. For c < 2, the system is “underdamped”, meaning that, as it rolls

down the hill, it overshoots the minimum at f = 0, oscillating back and forth before

settling down. This is the behaviour seen in Figure 43.

In contrast, for c > 2 the system is overdamped, slowing enough so that it stops

when it ultimately reaches the minimum at f = 0. The phase plane analysis tells us

that the crossover between these two behaviours happens at c = 2 when the system

has critical damping.

Linearised Analysis

We can learn more about the travelling wave by looking at the leading edge of the

wave, where f ≈ 0. This means that we’re looking at the region of the f(ξ) graph in

Figure 44 where f(ξ) is approaching the ξ-axis. Here it’s appropriate to linearise the

equation (3.84) and work with

−cf ′ = f ′′ + f . (3.91)

We make the obvious ansatz f(ξ) = e−λξ, with

λ > 0 so that this solution decays towards f →
0 as ξ increases. We see that this solves the

equation if

λ2 − cλ+ 1 = 0 =⇒ c = λ+
1

λ
. (3.92)

This is plotted in the figure. We can think of

1/λ as the width of the wavefront. We learn

that the speed and shape of the wave are linked.
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Figure 45. The initial profile p(x, 0) that evolves through the full non-linear equation is

bounded above by the exponentially decaying profile p̂(x, 0) that will evolve through the

linearised Fisher equation.

The Speed of the Non-Linear Wave

So far, nothing has told us what speed c the wave travels at if we start with a given

initial, localised perturbation p(x, 0). We only know that this speed must be c ≥ 2.

The full non-linear analysis is complicated but the final result, proven by Kolomgorov,

is beautifully simple. If we start with some initial conditions that vanish outside of some

interval, i.e. p(x, 0) = 0 for all |x| > x0, the the system will ultimately settle down a

wave that travels with speed c = 2. In other words, the non-linear system travels at

the slowest possible speed of the linearised system.

We won’t prove this result here, but we can motivate it with the following argument.

First note that the non-linear speed must be one of the allowed linear speeds c ≥ 2 just

because the linearised analysis is valid at the wavefront. But, with suitably localised

initial conditions, we can show that the non-linear speed must be less than (or equal

to) that of a linear wave.

To see this, let’s take initial conditions that are strictly localised in some region

p(x, 0) = 0 for all |x| ≥ x0 . (3.93)

We’ll evolve this with the full non-linear Fisher equation (3.82).

Our strategy is to set this profile in a race against a wavefront with initial profile

p̂(x, 0) = Ae−λx . (3.94)
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We will pick A so that p(x, 0) < p̂(x, 0). It’s simple to check that this is always possible

to construct such a bounding profile for any choice of λ > 0 simply by picking a suitable

A. Crucially, we evolve the profile p̂(x, t) through the linearised Fisher equation

∂p̂

∂t
=

∂2p̂

∂x2
+ p̂ . (3.95)

Now we set these two profiles off. We will show that it’s not possible for the non-linear

p(x, t) to overtake the linearised p̂(x, t). At heart, this follows because the missing term

in the linearised equation is −p2 and, with the minus sign, this only serves to delay the

non-linear evolution.

We can put some meat on this argument by defining g(x, t) = p̂(x, t) − p(x, t). By

construction, we have g(x, 0) > 0. Watching this function evolve in time, we have

∂g

∂t
=

∂p̂

∂t
− ∂p

∂t
=

∂2g

∂x2
+ g + p2 ≥ ∂2g

∂x2
+ g . (3.96)

We learn that the evolution of g(x, t) is at least as fast as diffusion with linear growth.

And with g(x, 0) positive, the function g(x, t) can never go negative. This is telling

us that p(x, t) is bounded above by p̂(x, t) for all time. In other words, the non-linear

wave can never overtake the linear wave.

But the analysis above holds for any choice of λ and, in particular, for λ = 1 which

travels at the slowest speed c = 2. It tells us that the non-linear wave can travel no

faster than c = 2. But, as we’ve seen previously, the wave ansatz only makes sense for

c ≥ 2. Hence the non-linear wave must travel at the slowest possible speed c = 2.

3.2.2 Front Propagation in Bistable Systems

Here is a simple modification of the Fisher equation

∂p

∂t
=

∂2p

∂x2
− p(p− r)(p− 1) . (3.97)

We’ll take 0 < r < 1.

Now, in the homogeneous system, both p = 0 and p = 1 are stable fixed points.

The intermediate value of p = r is unstable. For this reason, systems of this type are

referred to as bistable.
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Figure 46. On the left: the potential V (f) plotted with r = 0.4. On the right: the potential

plotted with r = 0.6.

Suppose that we start in a system with p = 0

to the left, as x → −∞, and p = 1 to the

right, as x → +∞. In between there has to

be a transition, which we will call a “front”.

It looks something like the plot shown in the

figure. The question that we would like to ask

is: what happens next? Does the front advance

to the left, or to the right? Since both p = 0

and p = 1 are stable fixed points, it’s not immediately obvious which will win. We

could think of this as a model for how diseases, mutations, or chemicals spread or die

out.

We can use the kind of analysis that we developed for the Fisher equation to answer

this. We will again look for a travelling wave solution, with

p(x, t) = f(ξ) with ξ = x− ct (3.98)

for some velocity c. With this ansatz, the reaction-diffusion equation (3.97) becomes

−cf ′ = f ′′ − f(f − r)(f − 1) . (3.99)

This time we can get all the information we need from the mechanical analogy. We

write

f ′′ = −dV

df
− cf ′ with V (f) = −1

4
f 4 +

1

3
(1 + r)f 3 − 1

2
rf 2 . (3.100)

This potential has two maxima, at f = 0 and f = 1. But, crucially, the shape of the

potential depends on the value of r. For r < 0.5, the maximum at f = 1 is higher; for

r > 0.5, the maximum at f = 0 is higher. Two representative examples are shown in

Figure 46.
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When r < 0.5, the ball rolls down from f = 1. If the friction term, captured by −cf ′,

is large, then the ball will ultimately come to rest at the local minimum at f = r. if

the friction is low, then the ball will sail past the local maximum at f = 0 and into

oblivion. In both cases, there is a formal solution to the reaction-diffusion equation but

not one with the boundary conditions that we want. However, there is a special value

of c such that the friction is just right and the ball rolls down from f = 1 where it sat

at ξ → −∞, coming to rest at f = 0 at ξ → +∞. This is the velocity c that we want.

When r > 0.5, the heights of the two maxima are inverted, and now there is a critical

velocity where the ball rolls the other way: from f = 0 to f = 1.

But, as in the previous section, we have to remember that the mechanical analogy

reverses what actually happens because ξ = x− ct. This means that

• For r < 0.5 we have, for fixed x, p(x, t)→ 1 as t→∞ and so the front moves to

the left.

• For r > 0.5 we have, for fixed x, p(x, t)→ 0 as t→∞ and so the front moves to

the right.

In contrast to the Fisher equation, the mechanical analogy tells us that the front

must travel at a very specific velocity c. But what is it? We can make progress by

computing the analog of the work done in our mechanical system. We can take the

equation of motion (3.100), multiply by f ′, and integrate. We have∫ +∞

−∞
dξ f ′f ′′ =

∫ +∞

−∞
dξ

(
−f ′dV

df
− cf ′ 2

)
=

∫ +∞

−∞
dξ

(
−dV

dξ
− cf ′ 2

)
. (3.101)

The left-hand side is a total derivative of 1
2
f ′ 2 but our boundary conditions mean that

f ′ → 0 as ξ → ±∞. This leaves us with an expression for the velocity

c = − ∆V∫
dξ f ′ 2 . (3.102)

Here ∆V is the difference in energy between the two maxima,

∆V = V (f = 1)− V (f = 0) =
1

6

(
1

2
− r

)
. (3.103)

Note that if r < 0.5 then ∆V > 0 and so c < 0 and the front travels to the left.

Meanwhile, if r < 0.5 then c > 0 and the front travels to the right. This agrees with

what we saw above.
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Figure 47. Numerical solutions for r = 0.2. The plot on the left starts with the initial

condition p(x, 0) = e−x2
. The one on the right starts with the wider initial condition p(x, 0) =

e−x2/5. We see that the first flounders while the second flourishes.

To determine the actual speed c, we still need to do the integral
∫
dξ f ′ 2. And, for

this, we typically need to first figure out the solution f(ξ). That’s not so easy, but

there is one value of r for which we can solve the equation of motion exactly. This is

the value r = 0.5, when the local maxima of the potential have the same height and,

correspondingly, the front is static with c = 0 and doesn’t move. In this case, you can

check that the function f(ξ) is given by

f =
1

2

(
1− tanh

(
ξ

2
√
2

))
. (3.104)

If we are cheeky and use this as a proxy for the function f(ξ) in the integral, then we

get a speed

c = 2

(
r − 1

2

)
. (3.105)

Strictly, this calculation holds only when r = 0.5 where the speed vanishes! But we can

view this as a good approximation to the speed for r ≈ 0.5. Indeed, if we were more

careful we could set up a perturbation expansion in r− 0.5, with this the leading order

term.

Localised Perturbations

There’s a closely related question that we can ask of this system? Suppose that we

start in the p = 0 state but then introduce a small region of p = 1 state, localised

around the origin. What then happens? Does this p = 1 state expand to take over the

world? Or does the p = 0 state fight back and shrink it?
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The analysis that we’ve done above goes part way towards answering this. If r > 0.5

then the p = 0 state will win and the p = 1 insurgents will be crushed. Meanwhile,

r < 0.5 then there’s an opportunity for the p = 1 state to expand. But it’s not

guaranteed. That’s because our previous analysis assumed that the system settled down

to some wavelike behaviour with the fronts propagating at some constant speed. But the

question of when this happens depends on how wide the initial localised perturbation

is.

We won’t give any detailed analysis of this behaviour here, but instead exhibit some

simple numerical solutions. Figure 47 shows the time evolution of two different initial

perturbations, the one on the left narrower than the one on the right. You can see

clearly that the one on the left shrinks over time, while the one on the right thrives,

ultimately forming wavefronts that are described by the analysis we did previously.

Dengue Revisited

We can connect the analysis above to one of the stories that we met earlier in these

lectures. In Section 1.4.5, we described how Wolbachia bacteria could be introduced

to mosquitos to inhibit the spread of dengue fever. Our model of choice was the two-

dimensional dynamical system (1.137)

du

dt
= u

(
u0 −

v

u+ v
− (u+ v)

)
and

dv

dt
= v (v0 − (u+ v)) . (3.106)

Here u is the population of uninfected mosquitoes and v the infected. The two constants

are restricted to lie in 0 < v0 < u0 < 1. (We’ve switched variables from x and y in

(1.137) to u and v above to avoid confusion with the spatial coordinate x that we will

soon introduce.)

This is a two-dimensional dynamical system, but it has hidden within it a one-

dimensional system that governs the fraction of infected mosquitos

p =
v

u+ v
. (3.107)

You can check that the dynamics of p is governed by

dp

dt
= −p(p− r)(p− 1) (3.108)

with r = u0 − v0 ∈ (0, 1). This is precisely the homogeneous system that we discussed

above. We can upgrade it to a system that includes spatial localisations by promoting

p(t) to a function p(x, t). If we further assume that the population of infected mosquitos

diffuses then we are back to solving the equation (3.97). We learn that a localised

population of infected mosquitos will only spread if the parameter r = x0 − y0 < 0.5.
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Admittedly this analysis also assumed, perhaps unrealistically, that the mosquitos

fly only along a one-dimensional line. You might want to upgrade the system further

to allow for 2d diffusion and redo the analysis before you contact the WHO.

Waves in Higher Dimensions

It’s reasonably straightforward to extend the analysis above to waves in higher dimen-

sions. Indeed, for plane waves, the story is identical. But for axially symmetric (in 2d)

or spherically symmetric (in 3d) there’s an additional term that we have to deal with.

For example, a 2d axially symmetric system, the Fisher equation reads

∂p

∂t
=

∂2p

∂r2
+

1

r

∂p

∂r
+ p(1− p) . (3.109)

Now we get that extra ∂p/∂r term on the right-hand side. For waves with c > 0, on

the wavefront, ∂p/∂r < 0. You can see this in the plots in Figure 47 so this additional

term acts to slow the wave down. However, it also comes with a 1/r which means that

it plays less of a role as the spreading circle gets big and the boundary looks more like

a plane wave. The upshot is that the wave speed approaches c→ 2 as r →∞.

3.2.3 Wave Propagation in Neurons

We met a model for how neurons are excited in Section 1.7. Our slimmed-down model

of choice was due to FitzHugh and Nagumo and was described by the following pair of

ordinary differential equations (1.192)

ϵ
du

dt
= u+ v − 1

3
u3

dv

dt
= −(u− a+ bv) . (3.110)

Here u(t) represents the voltage difference across a membrane, while v(t) represents

the ease with which various ions can cross the membrane. The constants a and b sit in

the region

0 < b ≤ 1 , 1− 2b

3
< a < 1 . (3.111)

Meanwhile, we take ϵ ≪ 1 to ensure that the dynamics of u(t) is fast, while that of

v(t) is much slower. This separation into two times scales is, in part, responsible for

the interesting property of these equation: namely that a small stimulus gives rise to a

large response which, in the context of neurons, is known as the action potential.
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Now we extend (3.110) to include spatial propagation. First, we take both variables

to depend on space and time, so we have u(t, x) and v(t, x). The voltage difference u

diffuses, but v does not. Correspondingly, we extend the equations (3.110) to

ϵ
du

dt
= u+ v − 1

3
u3 + ϵ2

∂2u

∂x2

dv

dt
= −(u− a+ bv) . (3.112)

The diffusion term comes with a ϵ2 to ensure that the spatial and temporal variations

are both fast.

We will again search for travelling wave solutions of the form

u(x, t) = u(ξ) and v(x, t) = v(ξ) with ξ = x− ct . (3.113)

Substituting this ansatz into the equations (3.112), we arrive at the pair of ordinary

differential equations

−ϵcu′ = u+ v − 1

3
u3 + ϵ2u′′

−cv′ = −(u+ a+ bv) . (3.114)

We could eliminate v(ξ) from this pair of equations, but only at the expense of having

a third order differential equation for u(ξ). That makes the problem somewhat harder

to solve than the analogous equation (3.84) for the Fisher equation.

To proceed, we’re going to make use of the two different time scales in the problem,

encapsulated in the small ϵ≪ 1 factors in the equations. We know from our previous

analysis that the spatially homogeneous system undergoes a cycle as shown in Figure

48 (which is a repeat of Figure 27). We split this cycle into four distinct pieces, labelled

AB, BC, CD, andDA. (The beginning and final point are both labelled A even though

they are slightly separated.) From the figure, we can see that the transitions AB and

CD happed rapidly, while BC and DA are more leisurely. This gives us the motivation

to look at each in turn.

Fast from A to B: For the fast motion, it is appropriate to rescale the spacetime coor-

dinate and write

ξ = ϵζ . (3.115)

With this rescaling, the equations (3.114) become

−cu′ = u+ v − 1

3
u3 + u′′

−cv′ = −ϵ(u+ a+ bv) (3.116)
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Figure 48. The phase plane motion (on the left, in red) and time dependence (on the right)

for the spatially homogeneous model. These are now split into four distinct segments, labelled

AB, BC, CD and DA.

where the primes now denote differentiation with respect to ζ, rather than ξ. The

ϵ≪ 1 has now shifted to the right-hand side of the second equation, telling us that v is

approximately constant, and equal to its fixed point value v⋆, on this segment. Indeed,

this can also be seen in the plots of Figure 48 which confirms that the fixed point sits

in the region −1 < v⋆ < 0. This means that the dynamics is captured by the single,

second order differential equation

−cu′ = u+ v⋆ − 1

3
u3 + u′′ . (3.117)

Now we’re in business: this is the same kind of equation that we met previously and

we have various ways to think about it. For example, if we embrace the mechanical

analogy, we write

u′′ = −dV

dζ
− cu′ with V (u) = − 1

12
u4 +

1

2
u2 + v⋆u. (3.118)

The potential is plotted in the figure to the

right. We see that this is the same kind of

bistable system that we met in Section 3.2.2.

In the mechanical analogy, the ball rolls down

from the global maximum at B towards the

local maximum at A. (Recall that things run

from B to A, rather than A to B, in the me-

chanical analogy because our “time” is ξ =

x− ct with that minus sign in front of ct.) The

is a critical value of the friction coefficient c for
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which the ball miraculously ends up perched at the point A. This determines the speed

c of the propagating wave. An expression for this critical velocity can be derived using

(3.102).10

Slow from B to C: The next phase of the cycle, from B to C. For this, we should

return to our original unscaled variable ξ and drop the terms proportional to ϵ≪ 1 in

(3.114). We’re left with

v =
1

3
u3 − u and − cv′ = −(u+ a+ bv) . (3.119)

The first of these equations is telling us that the dynamics lies on the slow manifold,

which is the cubic shown on the left of Figure 48. The second equation is just a first

order system. We learn that the value of v slowly increases.

The question that we would like to ask is: at what value of v does the system exit

this slow motion? Let’s call this value v⋆⋆. You might naively think that this is the

same value of v⋆⋆ that appears in the spatially homogeneous system shown in Figure

48. But that turns out not to be the case. To see why, we need to turn to the next

phase of the cycle.

Fast from C to D: The transition from C to D

is again fast and we can use the same analysis

as we saw from A to B. We’re again left with

the equation (3.117), but now with the fixed

point v⋆ replaced by the new value v⋆⋆

−cu′ = u+ v⋆⋆ − 1

3
u3 + u′′ . (3.120)

We will have v⋆⋆ > 0 (which contrasts with

v⋆ < 0. This ensures that the effective potential in (3.118) has the positions of the local

and global maxima swapped, so that the dynamics goes the other way. An example of

such a potential is shown on the right. But what is the value of v⋆⋆?

At this point, we use a variant of our previous argument. In the mechanical analogy,

we want to roll from point D to point C with a critical value of the “friction” c so

10You can watch an experiment measuring the velocity of these action potentials in earthworms

in this Youtube video. (Be warned: it does involve sticking pins into an anesthetised earthworm,

although the author of the video promised that the worm was then released back into the garden

where it lived a long and rewarding life.)
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that we end up perched precisely at the local maximum C. Usually we would use this

argument to determine c. But, in the present case, we already know the value of c: it

was determined by our analysis of the AB part of the cycle. So now we replay this

argument, but now varying the value of v⋆⋆, so that the effective potential changes until

the two maxima are exactly the right height to allow a trajectory from D to C that

works for the chosen value of c. In that we, we find the value of v⋆⋆ that allows the

entire pulse – from A to B to C to D to A again – to all propagate at the same speed

c.

Slow from D to A: The final part of the story, from D to A, is again a gentle relaxation

along the slow manifold. This is described by the pair of equations (3.119). This

concludes the cycle. The end result is that all parts of the pulse propagate at the speed

c that was determined by the A→ B part of the analysis.

3.3 Turing Instability

As we have seen, diffusion encourages things to spread out, damping any wild spatial

variations. This makes it rather surprising that, in the right circumstances, diffusion

can render a system unstable giving rise to spatial variations. This is known as the

Turing instability.

For this to occur, we need multiple variables. We’ll consider the simplest such system

with just two variables. u(x, t) and v(x, t), subject to the reaction-diffusion equations

∂u

∂t
= f(u, v) +D1∇2u and

∂v

∂t
= g(u, v) +D2∇2v . (3.121)

We have two diffusion constants, D1 and D2, and two functions f(u, v) and g(u, v) that

determine the dynamics.

We will assume that, in the absence of diffusion, the dynamics admits a stable fixed

point (u⋆, v⋆) such that

f(u⋆, v⋆) = g(u⋆, v⋆) = 0 . (3.122)

The Jacobian is

J =

(
fu fv

gu gv

)
(u⋆,v⋆)

(3.123)

where we’re using the notation fu = ∂f/∂u and so on. The statement that the fixed

point is stable means that we have

Tr J = fu + gv < 0

det J = fugv − fvgu > 0 . (3.124)
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Now we consider perturbations that are not spatially homogeneous. We will write

u(x, t) = u⋆ + û(t)eik·x and v(x, t) = v⋆ + v̂(t)eik·x . (3.125)

This notation deserves some explanation because suddenly, without warning, our vari-

ables u(x, t) and v(x, t) appear to be complex! This is just a trick. We will work

with the form only when linearising about the fixed point, which means that we’re

always able to take real and imaginary parts at will. We could just as easily write

cos(k ·x) instead of eik·x. We prefer the latter because it’s typically easier to work with

exponentials than trigonometric functions.

What happens with such a perturbation? If we substitute this ansatz into (3.121)

and keep only terms linear in û and v̂, then we get the equations

dû

dt
= fuû+ fvv̂ −D1k

2û

dv̂

dt
= guû+ gvv̂ −D2k

2v̂ (3.126)

with k2 = k ·k and where fu and other partial derivatives are all evaluated at the fixed

point.

Your first inclination is to think that the diffusion terms only make the system more

stable. After all, they both appear with negative signs on the right-hand side! But

that’s not the way these things work! To check stability, we have to look at the modified

Jacobian,

Jnew =

(
fu −D1k

2 fv

gu gv −D2k
2

)
. (3.127)

This has

Tr Jnew = Tr J − (D1 +D2)k
2 < 0 . (3.128)

So the trace is indeed more negative. This is what our previous intuition was telling

us. However, the determinant is not so straightforward. It is

det Jnew = (fu −D1k
2)(gv −D2k

2)− fvgu

= det J − k2(D1gv +D2fu) +D1D2k
4 . (3.129)

The system is stable only if det Jnew > 0. But we see that this is not guaranteed!

There’s that middle term which could possibly turn the whole thing negative.
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To see if this happens, we write

det Jnew = Ak4 −Bk2 + C . (3.130)

This dips below zero for some region of k2 > 0 only if B > 0 and the quadratic has real

roots. This, in turn, requires that the discriminant B2 − 4AC is positive. Translated

back to the expression (3.129), we learn that the determinant can be negative for certain

values of k provided that

D1gv +D2fu >
√

4D1D2(fugv − fvgu) . (3.131)

This is the condition for Turing Instability.

Note that the system is stable to both long wavelength modes (with k ≪ 1) and short

wavelength modes (with k ≫ 1). The long wavelength modes are close to the homoge-

neous system which is known to be stable. The short wavelength modes are eliminated

quickly by diffusion. The instability occurs only in some intermediate regime,

k2
⋆ −∆ < k2 < k2

⋆ +∆ (3.132)

with

k⋆ =

√
B

2A
and ∆ =

√
B2 − 4AC

2A
. (3.133)

You could imagine starting with a system that does not exhibit the Turing instability,

and then slowly varying parameters until you reach the phase transition at B2 = 4AC.

At this point, the modes with wavenumber

k⋆ =

(
C

A

)1/4

=

(
det J

D1D2

)1/4

(3.134)

are the first to become unstable.

Instability Requires Different Diffusivities

The Turing instability feels counterintuitive. At heart, the idea is that the matrix J

has eigenvalues with negative real parts, but the matrix

Jnew = J − k2

(
D1 0

0 D2

)
(3.135)

does not. It feels like subtracting things off the diagonal should only decrease both

eigenvalues. But, as we have seen, it’s possible to decrease one and increase the other.

That’s the algebraic crutch on which the instability relies
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Figure 49. On the left: numerical simulations of various reaction-diffusion systems with a

Turing instability. On the right: Turing instabilities seen in chemical reactions.

For this to happen, however, it’s important that D1 ̸= D2. Indeed, if D1 = D2 = D

then we have Jnew = J − k2D1. If the eigenvalues of J are λi then the eigenvalues of

Jnew are λi − k2D and both decrease.

Another way of seeing this is to define the ratio of diffusivities

d =
D1

D2

. (3.136)

Then the condition for instability (3.131) becomes

fu + dgv > 2
√
d det J . (3.137)

The right-hand side is clearly greater than zero so we must have

fu + dgv > 0 . (3.138)

Meanwhile, we know that

Tr J = fu + gv < 0 . (3.139)

So clearly d = 1 does not do the job. For an instability to kick, the diffusivities must be

suitably different. Moreover, this simple algebra highlights what’s actually going on.

For the instability to occur, one of fu and gv must be positive and the other negative.

Suppose that we have fu > 0 and gv < 0. Then the variable u is called an activator
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Figure 50. This is Eddie, possibly Turing unstable, definitely not Turing complete.

because it wants to increase things while the variable v is called the inhibitor because

it wants to reduce things. The result (3.139) is telling us that, in the homogeneous

situation, the inhibitor wins. But if we take d≪ 1, so the inhibitor diffuses faster than

the activator, then the result (3.137) is telling us that, ultimately the activator can

triumph.

3.3.1 Pattern Formation

Our analysis above only finds the instability. Obviously the next question is: what

becomes of it? We know that the system will necessarily become inhomogeneous and

we might expect that this happens at a characteristic wavelength

λ⋆ ≈
2π

k⋆
(3.140)

To understand the resulting pattern, we need to study the full non-linear behaviour

of a system. And this typically means doing numerics. Some examples of patterns

from various numerical simulations, together with experimental results seen in certain

chemical reactions are shown in Figure 49.11

It is thought that other pattens seen in nature, including animals coats, can be traced

to a Turing diffusion instability of the kind described above.

11The numerical plots are taken from this blogpost which includes the script used to create them.

The experimental data is taken from the paper Transition from a uniform state to hexagonal and

striped Turing patterns, by Q. Ouyang and H. Swinney, Nature, 1991.
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Effects of a Boundary

In the above discussion, we took our perturbations (3.125) proportional to eik·x. This

is appropriate for an infinite domain. But it may be that we want to solve the reaction-

diffusion equation on some finite domain. Typically we would then impose Neumann

boundary conditions n · ∇u = n · ∇v = 0 on the boundary ∂V , where n is the vector

normal to the boundary. We should now take the perturbations to be eigenfunctions

of the Laplacian on this domain, rather than eik·x.

In a finite domain, the eigenvalues k2 will typically be discrete and we get an insta-

bility if one of them lies in the window (3.132). The lowest eigenvalue k0 is set by the

size L of the domain,

k0 ≈
2π

L
. (3.141)

If the system is suitably small, the we will have k2
0 > k2

⋆ + ∆ and no instability will

occur. This mimics what we saw in Section 3.1.3, where linear growth does not lead to

an instability for small system sizes.

Suppose, for example, that the domain consists of a rectangle with x ∈ [0, L1] and

y ∈ [0, L2]. Then the eigenvalues of the Laplacian are eik·x but with k quantised as

k1 =
mπ

L1

and k2 =
nπ

L2

m,n ∈ Z . (3.142)

If the rectangle is reasonably large and square, then one would expect to find k1 and k2
sitting within the window of instability (3.132). As we’ve stressed, it’s far from clear

what the resulting pattern would be but suppose that we end up with spots. Now

consider a narrower rectangle, say with L2 ≪ L1. Then we could have a situation in

which there is no instability in the y-direction, but only in the x-direction, resulting in

stripes rather than spots. This suggests that if the Turing instability is responsible for

animal patterns then we might expect to see animals with spotted coats, but striped

tails.

3.3.2 An Example

Our discussion above was rather abstract. It’s useful to have one example where we

can see this in practice. We take

∂u

∂t
= −u+ u2v +∇2u and

∂v

∂t
= b− u2v + d∇2v . (3.143)

The model depends on just two parameters, b and the ratio of diffusivities d. You can

think of this as modelling a chemical reaction, with two molecules u and v combining
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as 2u + v → 3u. In addition, the u molecule decays at a constant rate (hence the −u
term) and the v molecule is produced at a constant rate (the +b term). This is variant

of the so-called Gray-Scott model.

First we look at the homogeneous situation. There is a single fixed point (u⋆, v⋆) =

(b, 1/b) with Jacobian

J =

(
−1 + 2u⋆v⋆ u⋆ 2

−2u⋆v⋆ −u⋆ 2

)
=

(
1 b2

−2 −b2

)
. (3.144)

We have Tr J = 1 − b2. And we have det J = b2 > 0. So the fixed point is stable for

b > 1.

Now we include the diffusion term. Our modified Jacobian becomes

Jnew =

(
1− k2 b2

−2 −b2 − dk2

)
. (3.145)

The determinant is

det Jnew = dk4 − (d− b2)k2 + b2 . (3.146)

We require d > b2 > 1 for the roots to be posi-

tive. Indeed, we knew from our general discus-

sion that d = 1 wouldn’t do the job because the

diffusivities had to be different. This quadratic

(in k2) has roots provided that

d− b2 ≥ 2b
√
d . (3.147)

A little bit of algebra shows that this holds

provided d > (3 + 2
√
2)b2 (using the fact that

b > 1). The region of parameter space that

exhibits the Turing instability is shown in the

figure.

3.4 Chemotaxis

Bacteria and other single-celled organisms may be small, but they know what they like.

They will happily swim towards nutrients, or away from poison, following the gradients

of the chemical. This process is known as chemotaxis.
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We will model the situation with two variables: n(x, t) is the density of bacteria and

c(x, t) is the density of some chemical that they have developed a fondness for. For the

chemical, we will have the usual kind of reaction-diffusion equation

∂c

∂t
−Dc∇2c = G(n, c) (3.148)

where G(n, c) is some function that specifies the dynamics. However, for the bacteria

we will include an additional term in the equation that captures the fact they swim

towards the chemical. We have the general form

∂n

∂t
+∇ · J = F (n, c) (3.149)

where F (n, c) is a function that we will specify shortly, while the current is given by

the now-familiar diffusion term, plus something else:

J = −Dn∇n+ nv . (3.150)

Here v is the velocity of the bacteria. They swim in the direction in which the chemical

concentration is greatest, so we take

v = χ∇c (3.151)

with χ > 0 a constant.

Although the mathematical expression (3.151) is natural to write down, it’s worth

pausing to ask how it comes about physically. After all, bacteria are around 10−6 m

long. It seems unlikely that they come equipped with sensitive equipment to allow

them to detect the gradient of chemicals across such a small distance and then swim

towards the place it’s greatest! So what’s the physics that leads to (3.151)?

The answer is pretty cool. Single-celled organisms with flagella have two modes

of transport, called “runs” and “tumbling”. On a run, they point themselves in one

direction and motor along at a speed of around 10 - 50 µm per second. But every

second or so, they stop and do a tumble, reorienting themselves in a random direction,

before they head off again. The net effect is a random walk. The way they swim in the

direction of greater chemical concentration is by reducing the frequency of tumbling

when the concentration is higher, ensuring that they spend a longer time where the

climate is nice.
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The upshot is that our set of chemotaxis equations read

∂n

∂t
= Dn∇2n− χ∇ · (n∇c) + F (n, c)

∂c

∂t
= Dc∇2c+G(n, c) . (3.152)

The novelty is, of course, the chemotaxis term proportional to χ. Our goal is to

understand what qualitative effect this has on the dynamics., We will see that it provides

another avenue for the system to become unstable.

3.4.1 An Example

We will explore the chemotaxis equations by looking at an example. We take

F (n, c) = γ − δn and G(n, c) = αn− βc (3.153)

with α, β, γ, δ > 0. The idea here is the bacteria are being constantly injected into

the system, and then die at some rate δ. Meanwhile the bacteria are extreting their

favourite chemical at a rate α, which is subsequently decaying at a rate β.

To start, we again assume that the system is homogenous and look for a fixed point

(n⋆, c⋆) of the local dynamics such that F (n⋆, c⋆) = G(n⋆, c⋆) = 0. There’s a unique

fixed point

(n⋆, c⋆) =

(
γ

δ
,
αγ

βδ

)
. (3.154)

The Jacobian at this fixed point is

J =

(
−δ 0

α −β

)
. (3.155)

We see immediately that the two eigenvalues are −δ and −β and both are negative.

So our fixed point is stable.

Now we look at the effect of the gradient terms and, in particular, the chemotaxis

term. We will perturb about the fixed point but, as in the previous section, allow our

perturbations to vary in both space and time. We write

n(x, t) = n⋆ + u(t)eik·x and c(x, t) = c⋆ + v(t)eik·x . (3.156)
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We take both u(t) and v(t) to be small which means that, when substituting into the

chemotaxis equations (3.152), we drop all terms quadratic or higher in these variables.

We’re then left with the following pair of equations

∂u

∂t
= −Dnk

2u+ χn⋆k2v − δu

∂v

∂t
= −Dck

2 + αu− βv . (3.157)

Now we have a slightly different dynamical system, with a modified Jacobian matrix

Jnew = J − k2

(
Dn −χγ/δ
0 Dc

)
. (3.158)

If the system is to be stable against spatially varying perturbations, then this new

Jacobian Jnew must also have negative eigenvalues. But does it?

First note that, in the absence of chemotaxis, with χ = 0, the eigenvalues are again

negative. So this system does not exhibit a Turing instability. But what happens when

χ ̸= 0?

To compute the eigenvalues, we can look at

Tr Jnew = −(α + β)− k2(Dn +Dc) < 0 . (3.159)

So there’s certainly no problem there. But the determinant gives

det Jnew = (α + k2Dn)(α + k2Dc)−
αγχ

δ
k2 . (3.160)

The system is only stable if det Jnew > 0. But we see that the chemotaxis term con-

tributes with a minus sign. If you make χ big enough, then there is guaranteed to

a window of k values for which the system goes unstable. Indeed, the mode with

wavenumber k is unstable if

αγχ

β
>

(α + k2Dn)(α + k2Dc)

k2
. (3.161)

If we start with χ small and then slowly increase it, the first mode to go unstable is k⋆
which is the minimum of the function on the right-hand side above. A short calculation

shows that this is given by

k⋆ =

(
βδ

DnDc

)1/4

. (3.162)
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If we substitute this into (3.161), we find that the minimum value before the instability

kicks in is

χmin =
δ

αβ

(√
δDc +

√
βDn

)2
. (3.163)

For χ > χmin, the system will again settle down to some spatially inhomogeneous

configuration.
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4 Random Variations

The differential equations that we’ve worked with so far in these lectures are deter-

ministic. You set the initial conditions and what then follows is set in stone. I know

some people whose lives are like that, but most things in the biological world are not.

Instead, important features of our lives are dictated by randomness, the kind of event

that, to quote the classics, blindsides you at 4pm on an idle Tuesday.

The purpose of this section is to learn how to incorporate such random fluctuations

into our equations. We will do this by studying the evolution of probability distributions

over the space of outcomes. Throughout, we will take time to be continuous but the

outcomes themselves may be either discrete or continuous. In the latter case, the

probability distribution will be governed by the famous Fokker-Planck equation.

4.1 Discrete Outcomes

We start by considering the situation where the possible outcomes are discrete. We

will build up slowly, first considering just two possible outcomes, then ∞, then ∞2.

4.1.1 Two Outcomes

Suppose that there are just two possible states in our system, A and B. We would

like to understand the probability P (A, t) to be in state A and the related probability

P (B, t) = 1− P (A, t) to be in state B.

For this, we need to stipulate the underlying dynamics which tells us how the system

evolves between A and B. This too will be probabilistic. We will assume that we are

dealing with a Markov process, meaning that the probability to transition from one

state to the other depends only on the current state. For simplicity, we consider the

following rules.

• If in state A, the system has a probability per unit time λ to transition to state

B.

• Once in state B, the system stays there.

The real purpose of this warm-up example is to understand what we mean by “proba-

bility per unit time”. In a short time δt, the probability that we jump from A to B is

λ δt. Equivalently, in the same short time δt, the probability that we remain in state

A is 1− λ δt.
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From this information, we can write down a differential equation that governs the

probability. If we know P (A, t) at time t then, at time t+ δt, the probability is

P (A, t+ δt) = P (A, t)(1− λ δt) . (4.1)

If we now Taylor expand the left-hand side, we have

P (A, t) +
dP (A, t)

dt
δt = P (A, t)(1− λ δt) =⇒ dP (A, t)

dt
= −λP (A, t) . (4.2)

This is easily solved. If we start off most definitely in state A, so P (A, 0) = 1, then we

have

P (A, t) = e−λt . (4.3)

We see that a constant probability per unit time to jump from A to B means an

exponential depletion of A.

There are further questions that we can ask of this simple system. We could, for

example, ask for the probability distribution f(t) for the time t that we make the jump

from A to B. To get this, we first consider the probability that we made the jump at

some time t < T ,

Prob[t < T ] =

∫ T

0

f(t) dt . (4.4)

But this can be identified with the probability that we’re in state B at time T ,

Prob[t < T ] = P (B, T ) = 1− e−λT . (4.5)

Equating these two expressions and differentiating (and, perhaps confusingly, replacing

the dummy variable T with t), gives

f(t) =
dP (B, t)

dt
= λe−λt . (4.6)

This is the probability distribution. It obeys∫ ∞

0

f(t) dt = 1 (4.7)

as probability distributions should. From this, we can easily round up the usual statis-

tical suspects. The expected time to make the jump is

⟨t⟩ =
∫ ∞

0

tf(t) dt =
1

λ
. (4.8)
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Meanwhile, the variance is given by

Var(t) = ⟨t2⟩ − ⟨t⟩2 =
∫ ∞

0

t2f(t) dt− 1

λ2
=

1

λ2
. (4.9)

We see that the standard deviation σ(t) =
√
Var(t) = 1/λ is the same as the mean.

This is telling us that fluctuations are important in this system. If we knew only about

the average time to jump, this wouldn’t agree particularly well with observations in

any given case.

4.1.2 Discrete Population Size

With this simple example under our belts, let’s now turn to a situation where the

outcomes are labelled by n ∈ N = {0, 1, 2, . . .}. (As an aside: mathematicians can’t

make up their minds whether or not zero is a natural number. Here I have decided for

them.) We can think of n as labelling the population size.

Again, we need to specify the dynamics of the system. Here we take constant prob-

ability per unit time λ to jump from n to n+ 1. This is known as a Poisson process.

(You might reasonably argue that it is unrealistic for a population to jump from

n = 0 to n = 1. You might, for that matter, argue that it’s equally unrealistic for

most populations to jump from n = 1 to n = 2. If you’re worried, think “immigration”

rather than “birth”.)

Again, we can translate this statement into a differential equation. We have, for

n ≥ 1,

P (n, t+ δt) = (1− λ δt)P (n, t) + λδt P (n− 1, t) . (4.10)

Here the first term captures the probability that we remain in state n, while the second

captures the probability that we jump up from state n − 1. Taylor expanding the

left-hand side then gives us the differential equation

dP (n, t)

dt
= λ

[
P (n− 1, t)− P (n, t)

]
. (4.11)

Equations like (4.11) (or (4.2)) that govern the evolution of a probability distribution

are called, rather pompously, master equations. In the present case, it is a differential

equation in t and a difference equation in n.

– 142 –



The Generating Function

The most systematic way to solve the master equation (4.11) is to introduce the gen-

erating function

ϕ(s, t) =
∞∑
n=0

snP (n, t) = ⟨sn⟩ (4.12)

where we think of s ∈ [0, 1], ensuring convergence. The generating function is a lovely

object that cleanly captures many of the things we most care about in the distribution.

For example, the average population size is

⟨n(t)⟩ =
∞∑
n=0

nP (n, t) =
∂ϕ(s, t)

∂s

∣∣∣∣
s=1

. (4.13)

Similarly,

⟨n2(t)⟩ =
∞∑
n=0

n2P (n, t)

=
∞∑
n=0

n(n− 1)P (n, t) +
∞∑
n=0

nP (n, t)

=
∂2ϕ(s, t)

∂s2

∣∣∣∣
s=1

+
∂ϕ(s, t)

∂s

∣∣∣∣
s=1

. (4.14)

Combining these, we can extract the standard deviation.

If we know the generating function then we can easily reconstruct the probability

distribution by differentiating

P (n, t) =
1

n!

∂n

∂sn
ϕ(s, t)

∣∣∣∣
s=0

. (4.15)

Finally, the generating function satisfies a boundary condition at s = 1 that comes

from the observation that

ϕ(1, t) =
∞∑
n=0

P (n, t) = 1 . (4.16)

There may be an additional boundary condition at t = 0 coming from an initial condi-

tion on the probability distribution.
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With this in mind, let’s now return to our master equation (4.11) and use it to

construct a differential equation for the generating function. We have

∂ϕ(s, t)

∂t
=

∞∑
n=0

sn
∂P (n, t)

∂t

= λ

∞∑
n=0

sn
[
P (n− 1, t)− P (n, t)

]
= λ

∞∑
n=0

[
sn+1P (n, t)− snP (n, t)

]
= λ(s− 1)ϕ(s, t) . (4.17)

where, in the second line, we’ve used P (−1, t) = 0. This is a differential equation in t.

We can simply integrate it, treating s as a constant to get

ϕ(s, t) = ϕ(s, 0)eλ(s−1)t . (4.18)

The function ϕ(s, 0) is fixed by the initial probability distribution at time t = 0. We

will take this to be P (n, 0) = δn,0, meaning that everything kicks off at n = 0 and

P (0, 0) = 1. This gives ϕ(s, 0) = 1 and we have

ϕ(s, t) = eλ(s−1)t . (4.19)

The associated probability density is then given by, using (4.15), by

P (n, t) =
(λt)n

n!
e−λt . (4.20)

This is the Poisson distribution. The expecta-

tion and standard deviation can be computed

from (4.13) and (4.14) and are given by

⟨n(t)⟩ = λt and σ =
√
λt . (4.21)

We see that σ/⟨n⟩ = 1/
√
⟨n⟩, meaning that

fluctuations get less important over time as the

population grows. Two Poisson processes, one

with λ = 1.3 and the other with λ = 0.3, are shown in the figure.

A plot of the probability distribution for different times t is shown in Figure 51. We

can get an analytic handle on the evolution of the probability distribution if we invoke

Stirling’s approximation,

n! ≈
√
2πnnne−n . (4.22)
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Figure 51. The march of probability, plotted here (for λ = 1) for times t = 1 (in blue),

t = 10 (in orange), and t = 30 (in green).

This is proved, for example, in the lectures on Statistical Physics. With this approxi-

mation, the probability distribution (4.21) can be written as

P (n, t) ≈ 1√
2π

e−λteg(n,t) with g(n, t) = n+ n log(λt)− n log n− 1

2
log n . (4.23)

The function g(n, t) has a maximum at ∂g/∂n = 0 which, you can check, is given at

large n by n = n⋆ ≈ λt. Expanding about this maximum gives us an approximate

expression for the exponent

g(n, t) ≈ g(n⋆) +
1

2
(n− n⋆)2

∂2g

∂n2
+ . . .

= λt− (n− λt)2

2λt
− 1

2
log(λt) . (4.24)

This then translates into a late time, large n, expression for the probability distribution:

P (n, t) ≈ 1√
2πλt

e−(n−λt)2/2λt . (4.25)

We see that, at late times, the probability distribution settles down to a Gaussian

distribution, marching forwards with linear growth n ≈ λt.

4.1.3 Birth and Death Again

We find ourselves turning once again, like the great Russian novelists, to the grand

questions of life and death. This time, with a probabilistic slant.
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We’ll stick with our population model with states given by n ∈ N. Now the dynamics

includes the possibility for birth (or immigration) which increases n by one, and death

which decreases n by one. The probability per unit time for these is:

• For n→ n+ 1, we take a constant rate, λ.

• For n→ n− 1, we take a constant rate per capita, so that the rate is βn.

To avoid continually writing out these words, we summarise this in a reaction-like

diagram

n− 1
λ−−→←−−
βn

n
λ−−−−→←−−−−

β(n+1)
n+ 1 . (4.26)

We will skip the step of writing P (n, t+ δt) and just jump immediately to the master

equation for the probability distribution which is

dP (n, t)

dt
= −(λ+ βn)P (n, t) + λP (n− 1, t) + β(n+ 1)P (n+ 1, t) . (4.27)

You can trace the origin of each of these terms to the diagram above. We’ll take this

equation to hold for n ≥ 0, with the proviso that P (n = −1, t) = 0.

The generating function ϕ(s, t) is again defined by (4.12). It obeys

∂ϕ(s, t)

∂t
=

∞∑
n=0

sn
∂P (n, t)

∂t

=
∞∑
n=0

sn
[
− λP (n, t) + λP (n− 1, t)− βnP (n, t) + β(n+ 1)P (n+ 1, t)

]
=

∞∑
n=0

[
− snλ+ sn+1λ− snβn+ sn−1βn

]
P (n, t) (4.28)

where, in the final line, we’ve shifted the summation variable to gather all terms of

the form P (n, t). It’s simple to write the first two terms using the generating function:

they are proportional to ϕ(s, t) and sϕ(s, t) respectively. For the second two terms,

we have an extra factor of n in the sum. This arises by differentiating the generating

function

∂ϕ(s, t)

∂s
=

∞∑
n=0

nsn−1P (n, t) . (4.29)
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In this way, having transition rates that are proportional to n, like the β rates above,

leads to a partial differential equation for the generating function,

∂ϕ(s, t)

∂t
= (s− 1)

(
λϕ(s, t)− β

∂ϕ(s, t)

∂s

)
. (4.30)

Note that we have an overall factor of s−1. This should be expected because, as shown

in (4.16), we have ϕ(1, t) = 1 for all t, so ∂ϕ/∂t should vanish at s = 1.

We’re left with (4.30) to solve. To do this, we make the (not immediately obvious)

ansatz

ϕ(s, t) = exp
(
(s− 1)f(t)

)
(4.31)

for some to-be-determined function f(t). Our ansatz automatically obeys the constraint

ϕ(1, t) = 1. Substituting into (4.30), we see that all s-dependence happily drops out

and we are left with the a differential equation only for f(t):

df

dt
= λ− βf(t) . (4.32)

We take the initial condition P (0, 0) = 1 or, equivalently, ϕ(s, 0) = 1. This requires

f(0) = 1 and the equation above has solution

f(t) =
λ

β
(1− e−βt)) . (4.33)

So our generating function takes the double-exponential form

ϕ(s, t) = exp

(
λ

β
(s− 1)(1− e−βt)

)
. (4.34)

With this in hand, we can now compute various expectation values. The average

population size is

⟨n(t)⟩ = ∂ϕ

∂s

∣∣∣∣
s=1

=
λ

β

(
1− e−βt

)
. (4.35)

The variance can be computed from (4.14) to be

σ2(t) = ⟨n2⟩ − ⟨n⟩2

=
∂2ϕ

∂s2

∣∣∣∣
s=1

+
∂ϕ

∂s

∣∣∣∣
s=1

−
(
∂ϕ

∂s

∣∣∣∣
s=1

)2

=
λ

β

(
1− e−βt

)
. (4.36)

So, again we have σ/⟨n⟩ = 1/
√
⟨n⟩.
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In the limit t → ∞, the system settles down to a steady state. In the present case,

we can extract this straightforwardly from the generating function (4.34). However, it

is rare that we can find an exact expression for the generating function. Nonetheless,

it’s often possible to get the steady state by returning to the differential equation

that governs the generating function, in this case (4.30). In the steady state, we have

∂ϕ/∂t = 0 and so

∂ϕ

∂s
=

λ

β
ϕ =⇒ ϕ(s) = exp

(
λ

β
(s− 1)

)
(4.37)

where we’ve used the boundary condition ϕ(s = 1) = 1 to fix the overall normalisation.

Translated to a steady-state probability distribution, this is

P (n) =
1

n!

(
λ

β

)n

e−λ/β . (4.38)

This is again a Poisson distribution. Note that for these kinds of stochastic models,

the steady state means that we have a constant probability distribution, rather than a

constant n.

More Offspring Means More Variation

We can make a simple change to the model above, and suppose that a birth results in

M new individuals. In this case, the master equation (4.27) is replaced by

dP (n, t)

dt
= −(λ+ βn)P (n, t) + λP (n−M, t) + β(n+ 1)P (n+ 1, t) . (4.39)

You can rerun the steps above to find the new equation governing the generating

function,

∂ϕ(s, t)

∂t
= λ(sM − 1)ϕ(s, t)− β(s− 1)

∂ϕ(s, t)

∂s
. (4.40)

Now this equation is harder to solve. We could restrict ourselves to look for long-time

steady state solutions with ∂ϕ/∂t = 0, so that we have to solve

∂ϕ

∂s
=

λ

β

sM − 1

s− 1
ϕ(s) . (4.41)

This is somewhat easier to solve. For example, if M = 2, then we have

ϕ(s) = exp

(
λ

β

(
s+

s2

2
− 3

2

))
. (4.42)

And, from this, we can then reconstruct the steady state probability distribution.
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Alternatively, we could just jump immediately to what we’re most interested in:

the expectation ⟨n(t)⟩ and the variance, which follows from ⟨n2(t)⟩. We can derive

equations that govern both of these quantities. For the expectation, we have

d⟨n(t)⟩
dt

=
∞∑
n=0

n
dP (n, t)

dt

=
∞∑
n=0

n
[
− (λ+ βn)P (n, t) + λP (n−M, t) + β(n+ 1)P (n+ 1, t)

]
=

∞∑
n=0

[
− λn− βn2 + λ(n+M) + β(n− 1)n

]
P (n, t)

=
∞∑
n=0

[
λM − βn

]
P (n, t)

= λM − β⟨n(t)⟩ . (4.43)

We see that we get a simple differential equation for ⟨n(t)⟩ which we can now just solve.

Using the initial condition ⟨n(0)⟩ = 0, the solution is

⟨n(t)⟩ = λM

β

(
1− e−βt

)
. (4.44)

This takes the same functional form as our previous result (4.35), but with the birth

rate λ now increased to λM . That makes sense. However, there’s more to be seen if

we look at the variance. This too obeys its own differential equation,

d⟨n2(t)⟩
dt

=
∞∑
n=0

n2dP (n, t)

dt

=
∞∑
n=0

n2
[
− (λ+ βn)P (n, t) + λP (n−M, t) + β(n+ 1)P (n+ 1, t)

]
=

∞∑
n=0

[
− λn2 − βn3 + λ(n+M)2 + β(n− 1)2n

]
P (n, t)

=
∞∑
n=0

[
λM2 + (2λM + β)n− 2βn2

]
P (n, t)

= λM2 + (2λM + β)⟨n(t)⟩ − 2β⟨n2(t)⟩ . (4.45)

We already have an expression for ⟨n(t)⟩, so this is a differential equation for ⟨n2(t)⟩.
Things are easier if we look at the steady state distribution. Here we have ⟨n⟩ = λM/β

and so

⟨n2⟩ = 1

2β

(
λM2 +

λM

β
(2λM + β)

)
. (4.46)
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Note that there is anM2 term, as well as a term linear inM . ForM ≫ 1, this quadratic

term dominates and we have variance

var(n) ≈ λ

2β
M2 . (4.47)

While the average population scales as λM , the variation scales as λM2. This too

makes sense: a birth now gives a jump of M in the population, rather than just one,

and so the jumps around the mean value are larger.

Non-Linear Growth Rates

For the model above, we have birth and death rates that were either constant or

proportional to n. And this was reflected in the nice differential equation (4.43) that

we derived for the expectation ⟨n(t)⟩. We might wonder if the stochastic growth rates

that we enter into the master equation always arise in the equation for the expectation

value in this way. The answer, sadly, is no. Things are less pleasant when the rates

depend non-linearly on n.

For example, we might try to cook up something akin to the logistic equation by

taking a birth rate proportional to λn and a death rate proportional to βn2. It’s

straightforward to write down the corresponding master equation,

dP (n, t)

dt
= −(λn+ βn2)P (n, t) + λ(n− 1)P (n− 1, t) + β(n+ 1)2P (n+ 1, t) . (4.48)

We can then retrace our steps that led to (4.43). This time we have

d⟨n(t)⟩
dt

=
∞∑
n=0

n
dP (n, t)

dt

=
∞∑
n=0

[
− λn2 − βn3 + λn(n+ 1) + β(n− 1)n2

]
P (n, t)

=
∞∑
n=0

[
λn− βn2

]
P (n, t)

= λ⟨n(t)⟩ − β⟨n2(t)⟩ . (4.49)

But that’s not so useful: the equation for ⟨n⟩ requires us to know something about

⟨n2⟩. And the equation for ⟨n2⟩ will need us to know about ⟨n3⟩ and so on. The set

of equations doesn’t close and to make progress we need to make some approximation

about these higher order moments, or turn to numerical simulation. Nonetheless, al-

though we can’t solve such models completely, as we now show, there are some things

that we can say.
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4.1.4 Extinction

“Do one calculation every day that scares you.”

Eleanor Roosevelt.

In stochastic models, with populations fluctuating up and down, it’s quite possible that

the population fluctuates to zero and stays there. We would like to know the likelihood

of such an extinction event.

Extinction isn’t possible in the simple model above since, even if the population does

die down to zero, it can still grow again. (We suggested at the time that this may be

due to immigration rather than laziness when designing the model.) But we can make

things more realistic by considering a model where the birth and death rates depend on

the population size n. We write these as bn and dn respectively, and then take b0 = 0,

meaning that if the population hits n = 0 it stays there. That’s extinction. This is

summarised in the following reaction diagram:

0
0−−→←−−
d1

1
b1−−→←−−
d2

2 . . . n− 1
bn−1−−−→←−−−
dn

n
bn−−−→←−−−

dn+1

n+ 1 . . . (4.50)

Now we ask: what’s the probability of extinction? Or, more precisely: suppose that

the population sits at some healthy number n. Whats the probability Qn that it will

eventually become extinct? We will see that, under one further reasonable assumption,

this probability is necessarily one.

Our strategy is to set up a recurrence relation for Qn. The probability of extinction

for a population n can be related to

Qn = Prob(birth next)Qn+1 + Prob(death next)Qn−1

=
bn

bn + dn
Qn+1 +

dn
bn + dn

Qn−1 . (4.51)

Rearranging, gives the recurrence relation

Qn+1 −Qn =
dn
bn

(Qn −Qn−1) =

(
n∏

i=1

di
bi

)
(Q1 −Q0) . (4.52)

All the n dependence on the left-hand side sits in that product. The next question that

we want to ask is: does the product converge for large n? The answer, in any realistic

model, is no! Our requirement for realism is that as the population swells, the death
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rate exceeds the birth rate. Specifically, we require that there exist an integer N and

a number R > 1 such that

dn
bn
≥ R for all n > N . (4.53)

In this case, the product in (4.52) can get arbitrarily large as n gets large. But the

left-hand side is a difference of probabilities, so (Qn+1 − Qn) ∈ [−1,+1]. This means

that the only way (4.52) can be satisfied for very large n is if

Qn+1 −Qn = Q1 −Q0 = 0 (4.54)

for all n. In particular, we must have Qn = Q0 but if the population is at n = 0 then

it’s already extinct and so Q0 = 1. We learn that Qn = 1 for all n. Closed systems go

extinct under reasonable assumptions. All men must die.

There is one glimmer of light in this calculation: we didn’t yet compute how long

we’ve got left! Happily, it turns out that the expected lifetime of a species can be very

large.

4.1.5 Multiple Populations: Wildebeest and Flies

We can extend the ideas above to multiple populations. Here we describe a simple

system which, to add some colour, we will think of as a population m of wildebeest

and a population n of flies. The birth and death rates are taken to be

• The wildebeest have a birth rate λ1 and death rate β1m.

• The flies have a birth rate (or, said differently, an import rate) of λ2m and a

death rate of β2n. Note that the “birth rate” is proportional to the number of

wildebeest, which might sound slightly weird, but we should interpret this as

wildebeest attracting flies from elsewhere into the system.

We can capture this in two reaction diagrams (or, alternatively in one 2d reaction

diagram). The growth of the wildebeest population is described by

(m− 1, n)
λ1−−−→←−−−

β1 m
(m,n)

λ1−−−−−→←−−−−−
β1(m+1)

(m+ 1, n) . (4.55)

Meanwhile, the growth of the flies is described by

(m,n− 1)
λ2 m−−−→←−−−
β2 n

(m,n)
λ2 m−−−−−→←−−−−−

β2(n1+))
(m,n+ 1) . (4.56)

The system is slightly unusual in that the wildebeest population is unaffected by the

flies, but the flies care about the wildebeest. Note, also, that everything is linear which

will make the system tractable.
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To keep our equations looking vaguely reasonable, we will write the probability that

we are in the state (m,n) as pm,n(t). We can read off the master equation from the

reaction diagrams above:

dpm,n

dt
= λ1

[
pm−1,n − pm,n

]
+ β1

[
(m+ 1)pm+1,n −mpm,n

]
+ λ2

[
mpm,n−1 −mpm,n

]
+ β2

[
(n+ 1)pm,n+1 − npm,n

]
. (4.57)

From this, we can compute the evolution of the average population size. For wildebeest,

we have

d⟨m⟩
dt

=
∑
m,n

mpm,n

= λ1

[
⟨m+ 1⟩ − ⟨m⟩

]
+ β1

[
⟨(m− 1)m⟩ − ⟨m2⟩

]
+λ2

[
⟨m2⟩ − ⟨m2⟩

]
+ β2

[
⟨mn⟩ − ⟨mn⟩

]
= λ1 − β1⟨m⟩ . (4.58)

For the flies, we have

d⟨n⟩
dt

=
∑
m,n

npm,n

= λ1

[
⟨n⟩ − ⟨n⟩

]
+ β1

[
⟨mn⟩ − ⟨mn⟩

]
+λ2

[
⟨m(n+ 1)⟩ − ⟨mn⟩

]
+ β2

[
⟨(n− 1)n⟩ − ⟨n2⟩

]
= λ2⟨m⟩ − β2⟨n⟩ . (4.59)

We see again that the wildebeest population (4.58) doesn’t depend on the flies, while

the converse is not true. The steady state is given by

⟨m⟩ = λ1

β1

and ⟨n⟩ = λ2

β2

⟨m⟩ = λ1λ2

β1β2

. (4.60)

We can also look at the fluctuations, starting by computing quadratic expectations.

We’ve already computed ⟨m2⟩ in our previous birth/death model. (It’s given by (4.45)

after setting M = 1.) We have

d⟨m2⟩
dt

= λ1 + (2λ1 + 1)⟨m⟩ − 2β1⟨m2⟩ . (4.61)

We can similarly compute the evolution of ⟨n2⟩ and ⟨mn⟩. They are given by

d⟨n2⟩
dt

= λ2⟨m⟩+ β2⟨n⟩+ 2λ2⟨mn⟩ − 2β2⟨n2⟩

d⟨mn⟩
dt

= λ1⟨n⟩+ λ2⟨m2⟩ − (β1 + β2)⟨mn⟩ . (4.62)
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In the steady state (4.60), variance of the flies is then given by

var(n) = ⟨n2⟩ − ⟨n⟩2

=
1

2
⟨n⟩+ λ2

2β2

⟨m⟩+ λ2

β2

⟨mn⟩ − ⟨n⟩2

= ⟨n⟩+ λ2

β2

[
⟨mn⟩ − ⟨n⟩⟨m⟩

]
. (4.63)

The term in square brackets is the covariance between the variables m and n,

cov(m,n) = ⟨mn⟩ − ⟨m⟩⟨n⟩ . (4.64)

We learn that the fluctuations of the flies has two terms: an intrinsic fluctuation in the

birth and death rates of the flies, proportional to ⟨n⟩, and an additional fluctuation

proportional to cov(m,n) that tracks the fluctuations in wildebeest.

4.2 Meet the Fokker-Planck Equation

In the previous section, we studied various examples of the “master equation”, which

governs how a probability distribution over a discrete set of outcomes evolves. In this

section, we would like to generalise this idea to describe a probability distribution over a

continuous set of outcomes. The simplest example is a probability distribution P (x, t)

of some substance distributed spread over some spatial coordinate x. The resulting

equation is called the Fokker-Planck equation.

We’re going to derive the Fokker-Planck equation starting from our discrete master

equation. If the width of the probability distribution is much broader than then size

between the spacing, then it makes sense to approximate the discrete variable with a

continuous variable.

For all our examples above, we thought of the discrete variable n ∈ N as the popula-

tion size. There will be times when we want to keep that interpretation, but we might

also want to think of n as labelling the position of some object that is restricted to lie

on a lattice. (For example, such a set-up arises in Solid State Physics when we think of

an electron moving in a solid.) In this case, we could relabel n = x to denote position.

We will adopt this notation below.

Suppose that the hopping rate to jump from site n to site n+ r is given by W (n, r).

Here r ∈ Z can be positive or negative. Then the master equation for the probability

distribution over sites x = n is given by

∂P (x, t)

∂t
=
∑
r∈Z

[
W (x− r, r)P (x− r, t)−W (x, r)P (x, t)

]
. (4.65)
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Here the first term captures the fact that the particle could hop from any site to x,

while the second term captures the fact that it could hop away to any site. Typically,

this hopping rate will be “short range”, meaning that W (x, r) drops off quickly as r

gets large.

Now, the term in the square brackets looks like f(x − r) − f(x) where f(x) =

W (x, r)P (x, t). For r small, we Taylor expand

f(x− r) = f(x)− r
df

dx
+

r2

2

d2f

dx2
+ . . . (4.66)

We apply this Taylor expansion to the master equation (4.65) and drop the . . . terms.

The decision to truncate the Taylor expansion after the second derivative is important

and will have consequence below. We’re left with

∂P (x, t)

∂t
=
∑
r∈Z

[
− r

∂

∂x

(
W (x, r)P (x, t)

)
+

r2

2

∂2

∂x2

(
W (x, r)P (x, t)

)]
= − ∂

∂x

(
u(x)P (x, t)

)
+

∂2

∂x2

(
D(x)P (x, t)

)
. (4.67)

This is the Fokker-Planck equation12. It involves two functions, u(x) and D(x), given

by

u(x) =
∑
r∈Z

rW (x, r) and D(x) =
1

2

∑
r∈Z

r2W (x, r) . (4.69)

We assume that W (x, r) drops off quickly enough at large r so that both of these sums

converge. You can read more about the Fokker-Planck equation, viewed from a slightly

different perspective, in the lectures on Kinetic Theory.

The total probability is necessarily conserved, with
∫
dx P (x, t) = 1 for all time.

Things that are conserved obey a continuity equation, and probability is no exception.

We can recast the Fokker-Planck equation in this form, writing

∂P

∂t
+

∂J

∂x
= 0 with J = uP − ∂

∂x
(DP ) . (4.70)

12It’s not uncommon to see the Fokker-Planck equation written as

∂P

∂t
= − ∂

∂x

(
AP

)
+

1

2

∂2

∂x2

(
BP

)
(4.68)

with the obvious relation A(x) = u(x) and B(x) = 2D(x). But, as we’ll see soon, the variables u and

D are more evocative than A and B.

– 155 –

http://www.damtp.cam.ac.uk/user/tong/kinetic.html


Written in this way, we see that the current J takes the form that we anticipated in

Section 3. The first term corresponds to advection, with u(x) some background flow

that carries the probability with it. The second term gives rise to diffusion. We’ll see

these interpretations borne out in what follows.

From the definitions (4.69), we see that for positive rates W (x, r) > 0, it might be

possible for the advection u(x) to vanish, but it will never be possible for the diffusion

D(x) to vanish. In this sense, diffusion is really the essential element that arises from

stochastic processes.

Evolving Moment by Moment

We can look at how various expectation values change with the Fokker-Planck equation.

The average position ⟨x(t)⟩ evolves as

d⟨x⟩
dt

=

∫
dx x

∂P (x, t)

∂t
= −

∫
dx x

∂(uP )

∂x
+

∫
dx x

∂2(DP )

∂x2
. (4.71)

We integrate by parts, using the fact that any normalised probability distribution must

vanish asymptotically. For the second term, we can integrate by parts twice to get zero.

So only the first term contributes, giving

d⟨x⟩
dt

=

∫
dx uP = ⟨u(x)⟩ . (4.72)

We see that the time evolution of the mean depends on the average of u(x), and not

on the function D(x). This confirms what we said above: the function u(x) acts like

advection, governing the overall drift of the probability distribution.

For the variance, we first look at

d⟨x2⟩
dt

= −
∫

dx x2∂(uP )

∂x
+

∫
dx x2∂

2(DP )

∂x2
. (4.73)

Now both terms survive integration by parts. We have

d⟨x2⟩
dt

= 2⟨xu(x)⟩+ 2⟨D(x)⟩ . (4.74)

The variation is, as usual, var(x) = ⟨x2⟩ − ⟨x⟩2 and obeys the equation

d(var(x))

dt
=

d⟨x2⟩
dt
− 2⟨x⟩d⟨x⟩

dt
= 2⟨D(x)⟩+ 2 cov(x, u(x)) . (4.75)

We see the same kind of behaviour as for our wildebeest problem, with two terms

contributing to the variance. The first is the expectation value of D(x), the second a

covariance between x and u(x) given by cov(x, u(x)) = ⟨xu(x)⟩ − ⟨x⟩⟨u(x)⟩.
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4.2.1 Constant Drift and Diffusion

To illustrate these ideas, let’s return to the particularly simple model that marches

tentatively forward at a constant rate λ. In the discrete case, this gave rise to the

Poisson process, governed by the master equation (4.11)

dP (n, t)

dt
= λ

[
P (n− 1, t)− P (n, t)

]
. (4.76)

Comparing to (4.65), we have W (n, 1) = λ for all n, with W (n, r) = 0 for r ̸= 1. The

corresponding Fokker-Planck equation is

∂P

∂t
= −λ∂P

∂x
+

λ

2

∂2P

∂x2
. (4.77)

We can use our results above, with u = λ and D = 1
2
λ, to compute how the moments

evolve. We have

d⟨x⟩
dt

= λ =⇒ ⟨x⟩ = λt (4.78)

and

d⟨x2⟩
dt

= 2λ⟨x⟩+ λ =⇒ ⟨x2⟩ = λt+ (λt)2 . (4.79)

It’s worth pointing out that both of these agree with the corresponding discrete model,

where we also had

⟨n⟩ = λt and ⟨n2⟩ = λt+ (λt)2 . (4.80)

It’s natural to ask: does the Fokker-Planck equation coincide with the discrete Poisson

process? The answer is no: the first two moments coincide, but not higher moments.

You can check, for example, that

⟨x3⟩ = (λt)3 + 3(λt)2

⟨n3⟩ = (λt)3 + 3(λt)2 + λt . (4.81)

This is a typical feature of the Fokker-Planck equation when compared to a discrete

master equation. The fact that the two agree for the first two moments, and then dis-

agree, can be traced to our truncation of the Taylor expansion at the second derivative

in (4.67). Note, however, that the two agree for large time, which reflects the fact that

⟨x⟩ = λt and so ⟨x⟩ ≫ r for large time.
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In this simple case, it’s not difficult to solve the Fokker-Planck equation. Motivated

by the fact that we have a constant drift u = λ, we introduce the variable ξ = x − λt

and consider the ansatz

P (x, t) = G(ξ, t) . (4.82)

Then the Fokker-Planck equation (4.77) becomes the diffusion equation

∂G

∂t
=

λ

2

∂2G

∂ξ2
. (4.83)

We’ve already seen solutions to this equation in Section 3.1. If we start with a delta-

function initial condition, then the probability distribution is given by an ever-spreading

Gaussian, now with an overall drift set by u = λ,

P (x, t) =
1√
2πλt

e−(x−λt)2/2λt . (4.84)

Diffusion Revisited

It’s straightforward to cook up a situation in which the drift vanishes, but diffusion

remains. Suppose that we have a particle that lives on a line, with position n ∈ Z. This
time, it bounces back and forth at the same rate λ, so we haveW (n, 1) = W (n,−1) = λ.

Now we have A = 0 and D = λ and the Fokker-Planck equation coincides with the

heat equation that we studied in Section 3,

∂P

∂t
= D

∂2P

∂x2
. (4.85)

This illustrates how diffusion arises from underlying randomness. This is what happens,

for example, in Brownian motion in which small particles, suspended in a liquid, move

in an erratic motion as they are constantly bombarded by surrounding molecules.

4.2.2 Birth and Death Once More

We can also look at the Fokker-Planck equation for our birth and death model with

master equation (4.27)

dP (n, t)

dt
= −(λ+ βn)P (n, t) + λP (n− 1, t) + β(n+ 1)P (n+ 1, t) . (4.86)

We compare this to (4.65) to find W (n, 1) = λ and W (n,−1) = βn. We replace the

discrete n with the continuous x which, in this context, still measure the population.

The Fokker-Planck equation for P (x, t) then becomes

∂P

∂t
= −∂(uP )

∂x
+

∂2(DP )

∂x2
(4.87)
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with

u(x) = W (n, 1)−W (n,−1) = λ− βx

D(x) =
1

2
(W (n, 1) +W (n,−1)) = 1

2
(λ+ βx) . (4.88)

This is one of the simplest examples of the Fokker-Planck equation. Following our

expectations above, we have (4.72),

d⟨x⟩
dt

= λ− β⟨x⟩ =⇒ ⟨x⟩ = λ

β

(
1− e−βt

)
. (4.89)

This is identical to the discrete birth and death model that we met previously. (See,

for example, (4.44) with M = 1.) Similarly, we have from (4.74)

d⟨x2⟩
dt

= λ+ (2λ+ β)⟨x⟩ − 2β⟨x2⟩ . (4.90)

This too agrees with the differential equation (4.45) that governs the discrete model.

The variance then obeys

d(var(x))

dt
= λ+ β⟨x⟩ − 2βvar(x) =⇒ var(x) =

λ

β

(
1− e−βt

)
. (4.91)

where we’ve used the expression for ⟨x⟩ in (4.89) and implemented the initial condition

var(x) = 0 when t = 0.

4.2.3 Fokker-Planck With More Variables

It’s straightforward to generalise the Fokker-Planck equation to include more variables

so that we work with the vector x ∈ Rd. In the context of physics, x is a spatial

coordinate; in the context of ecology, x = n is a variable that describes the population

of d different species.

We can follow our earlier definition, starting with (4.65) which, with multiple vari-

ables, reads

∂P (x, t)

∂t
=
∑
r∈Zd

[
W (x− r, r)P (x− r, t)−W (x, r)P (x, t)

]
. (4.92)

Again we Taylor expand f(x) = W (x, r)P (x, t) and write

f(x− r) = f(x)− ri
∂f

∂xi

+
rirj
2

∂2f

∂xi∂xj

+ . . . (4.93)
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Dropping the . . . terms leaves us with the multi-dimensional Fokker-Planck equation

∂P (x, t)

∂t
= − ∂

∂xi

(
ui(x)P (x, t)

)
+

∂2

∂xixj

(
Dij(x)P (x, t)

)
. (4.94)

with our two functions now given by

ui(x) =
∑
r∈Zd

ri W (x, r) and Dij(x) =
1

2

∑
r∈Zd

rirj W (x, r) . (4.95)

We see that the advection term now involves a vector function u(x), reflecting its

interpretation it plays as a background velocity field. Meanwhile the diffusion term

now involves a symmetric matrix D(x).

We can again see the meaning of the advection term by computing

d

dt
⟨xi⟩ =

∫
ddx xi

∂P (x, t)

∂t

=

∫
ddx xi

(
−∂(ujP )

∂xj

+
∂(DjkP )

∂xj∂xk

)
=

∫
ddx uiP (4.96)

where, in the final equality, we’ve integrated by parts. We see that we have the obvious

generalisation

d

dt
⟨x⟩ = ⟨u⟩ . (4.97)

Meanwhile, the time derivative of the fluctuations is captured by

d

dt
⟨xixj⟩ =

∫
ddx xixj

(
−∂(ukP )

∂xk

+
∂(DklP )

∂xk∂xl

)
= ⟨xiuj⟩+ ⟨uixj⟩+ 2⟨Dij⟩ . (4.98)

It’s useful to define the symmetric covariance matrix

Cij = cov(xi, xj) = ⟨xixj⟩ − ⟨xi⟩⟨xj⟩ . (4.99)

This contains the variance as its diagonal terms, var(xi) = Cii, with the off-diagonal

terms telling us about correlations between different variables. You can check that

dCij

dt
= cov(xi, uj) + cov(xj, ui) + 2⟨Dij⟩ . (4.100)

Often, we would like to understand the steady state of a distribution, which means that

want to find solutions where the right-hand side of this equation vanishes. But that’s

not so straightforward because the right-hand side of this equation depends on ⟨xiuj⟩
and we don’t necessarily have a good handle on this. To illustrate how to proceed, we

turn to an example.
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4.2.4 Wildebeest and Flies Again

We will revisit the story of the Wildebeest and flies from Section 4.1.5. This is a two-

dimensional system, described by x = (m,n) where m is the population of wildebeest

and n the population of flies. We previously derived the master equation (4.57) when

treating the population as discrete,

dpm,n

dt
= λ1

[
pm−1,n − pm,n

]
+ β1

[
(m+ 1)pm+1,n −mpm,n

]
+ λ2

[
mpm,n−1 −mpm,n

]
+ β2

[
(n+ 1)pm,n+1 − npm,n

]
. (4.101)

Comparing to (4.92), we can read off the non-vanishing values of W (x, r). They are:

• W (x, r) = λ1 when r = (1, 0).

• W (x, r) = β1m when r = (−1, 0).

• W (x, r) = λ2m when r = (0, 1).

• W (x, r) = β2n when r = (0,−1).

From this, we can read off the functions in the Fokker-Planck equation. The advection

velocity is

u =
∑
r

rW (x, r)

= λ1

(
1

0

)
+ β1m

(
−1
0

)
+ λ2m

(
0

1

)
+ β2n

(
0

−1

)

=

(
λ1 − β1m

λ2m− β2n

)
. (4.102)

Meanwhile, the diffusion matrix is

D =
1

2

[
λ1

(
1 0

0 0

)
+ β1m

(
1 0

0 0

)
+ λ2m

(
0 0

0 1

)
+ β2n

(
0 0

0 1

)]

=
1

2

(
λ1 + β1m 0

0 λ2m+ β2n

)
. (4.103)

Now that we have explicit expressions for u and D, we can return to the question:

what does it mean to have a steady state probability distribution for this model?
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It’s simple to find the steady state for expectation values ⟨x⟩ because, as we’ve seen

in (4.97), this is given by ⟨u⟩ = 0, so

⟨m⟩ = λ1

β1

and ⟨n⟩ = λ1λ2

β1β2

. (4.104)

This agrees with the results from the discrete model (4.60). But now we want to extend

this to think about fluctuations, as captured in the covariance matrix Cij. In the steady

state, we want to find solutions to dCij/dt = 0 and that means that we need to compute

cov(xi, uj) and ⟨Dij⟩. We see that u is linear in x = (m,n) and so we can write

u = λ+ ax with λ =

(
λ1

0

)
and a =

(
−β1 0

λ2 −β2

)
. (4.105)

This gives

cov(xi, uj) = ajkcov(xi, xk) = ajkCik . (4.106)

We also have

⟨Dij⟩ =

(
λ1 0

0 λ1λ2/β1

)
. (4.107)

Now we can look for steady state solutions for the covariance matrix Cij. In steady

state, our evolution equation (4.100) becomes

dC

dt
= aC + CaT + 2⟨D⟩ = 0 . (4.108)

This is a matrix equation, with a, C and ⟨D⟩ all 2× 2 matrices. It is an example of a

Lyapunov equation. The equation is easily solved by writing it out in components and

doing some linear algebra. We find (recalling that C12 = C21.

−2β1C11 + 2λ1 = 0

λ2C11 − β2C12 − β1C12 = 0 (4.109)

2λ2C12 − 2β2C22 + 2
λ1λ2

β1

= 0 .

Rearranging, then gives the variances

var(m) = C11 =
λ1

β1

and var(n) = C22 =
λ1λ2

β1β2

(
1 +

λ2

β1 + β2

)
(4.110)
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while the covariance is

cov(m,n) = C12 =
λ1λ2

β1(β1 + β2)
. (4.111)

We see that C12 > 0 so the wildebeest and flies covary positively: if there is more of

one, then there is likely to be more of the other. That’s to be expected given our initial

assumptions which were that wildebeest attract flies.

With this information, we can plot the range

in which we expect to find populations of wilde-

beest and flies. This is shown schematically in

the figure where the mean is shown as a star.

Around that, we draw ellipses whose semi-axes

are determined by the eigenvectors and eigen-

values of the covariance matrix C. In the fig-

ure, we’ve sketched ellipses corresponding to

one standard deviation and, outside, 95% con-

fidence levels.

Deriving a General Lyapunov Equation

For our example above, we were lucky because both u(x) and D(x) were linear in

the variables x. That meant that the steady state condition dCij/dt = 0 could be

expressed entirely in terms of the covariant matrix Cij and some constant matrices.

But that won’t always be the case.

To find the steady state for more general, non-linear systems, we typically have to

make a (not always justified) approximation. We approximate the advection velocity

to be linear and the diffusion matrix to be constant,

u = λ+ ax and D = b (4.112)

where both a and b are constant matrices. In steady state, the covariance matrix then

satisfies the Lyapunov equation

aC + CaT + b = 0 . (4.113)

The solution can again be found using some linear algebra.
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4.3 An Invitation to Fluctuation and Dissipation

To finish, we can make contact with some basic ideas from elsewhere in physics, notably

the lectures on Statistical Physics. We will start by considering something very basic:

a particle of mass m, with Newton force law

mẍ = −γẋ−∇V + f . (4.114)

The first two terms on the right-hand side are very familiar: the first is a friction term,

with the strength of friction dictated by the coefficient γ; the second is a conservative

force arising from a potential V (x). The novelty is the third term, consisting of the

additional force f . This we take to be a random force. You can think of this as arising

because the particle is suspended in some liquid, and is being constantly bombarded

by the underlying molecules, causing it to bounce back and forth in some random way.

This is a famous process known as Brownian motion.

There are various ways of dealing with equations like (4.114). The most systematic

way is to think of the random force f as coming from some probability distribution, and

then figuring out how to translate that into a corresponding probability distribution

P (x) for the position of the particle. In this context, (4.114) is known as the Langevin

equation. You can read more about this in the lectures on Kinetic Theory. Here,

instead, we will make direct contact with the Fokker-Planck equation. Our goal is to

write down a Fokker-Planck equation for the probability distribution P (x, t).

For this, we should be in the limit where the motion is friction dominated and the

acceleration term in (4.114) can be ignored. In this case, we take the average of (4.114)

and use the fact that ⟨f⟩ = 0 because the random force is just as likely to hit from any

direction. This then tell us that the average velocity of the particle is dictated by the

potential

⟨ẋ⟩ = −1

γ
⟨∇V ⟩ . (4.115)

But this is the same kind of equation that we get from the Fokker-Planck equation

(4.97) if we set u = −∇V/γ. This suggests that the probability distribution of the

particle is governed by a Fokker-Planck equation that takes the form

∂P

∂t
=

1

γ
∇ · (P∇V ) +D∇2P (4.116)

for some diffusion constant D. We have made the additional assumptions here that the

matrix Dij = Dδij is diagonal, on grounds of rotational invariance, and, moreover, that

D is independent of x on grounds of translational invariance. It remains to determine

the diffusion constant D in terms of the variables in the original set-up.
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This is where idea from statistical mechanics come in. First, we look at the equilib-

rium probability distribution, obeying

∇ ·
(
1

γ
P∇V +D∇P

)
= 0 . (4.117)

We can view this as a differential equation for P (x), one that is solved by

P (x) ∼ exp

(
− 1

γD
V (x)

)
(4.118)

up to an overall normalisation that we’ve ignored. Now suppose that the random force

f arises because the particle sits in a fluid at temperature T . Then we know that the

probability distribution must take the usual Boltzmann form

P (x) ∼ exp

(
− 1

kBT
V (x)

)
(4.119)

with kB the Boltzmann constant. (There is no kinetic term in this expression because

we’re in a friction-dominated environment where we can ignore the mẍ term in the

original equation of motion.) Equating these two expressions, we learn that the diffusion

constant must be given by

D =
kBT

γ
. (4.120)

This is the Einstein relation. It is the key result in the fourth of his famous collection of

1905 papers. (The one that didn’t introduce special relativity or pioneer the idea of the

quantum!) The relation is rather surprising: the diffusion constant tells us how much

the particle is kicked around by the environment, while the friction term tells us how

difficult it is for the particle to plough through the same environment. Remarkably,

the two are related.

The Einstein relation is an example of a more general idea known as the fluctuation-

dissipation theorem, which relates the fluctuations experienced by a system to the

dissipation (i.e. friction) experienced by the system. It’s an important idea in many

areas of physics.

– 165 –


	Introduction
	Population Dynamics and Other Stories
	First You're Born, Then You Die
	Exponential Growth
	The Logistic Equation
	Fixed Points
	In Praise of Parsimony

	Delay
	The Linear Delay Differential Equation
	Blowflies
	And…Breathe

	Age Concern
	Separable Solutions
	More General Solutions

	Interacting Species
	Predator-Prey: The Lotka-Volterra Equations
	Predator-Prey: A Logistic Twist
	Predator-Prey: I'm Full Now
	Competition
	Dengue Fever
	The Large Diversity Limit

	Epidemiology
	The SIR Model
	Just When You Thought It Was Safe…

	Chemical Reactions
	The Law of Mass Action
	Michaelis-Menten Enzyme Kinetics
	Asymptotic Behaviour

	Neuron Excitations
	FitzHugh-Nagumo Model


	Discrete Time
	Linear Examples
	Hello Poppy
	Breathe Again

	The Logistic Map
	The Fixed Points
	Bifurcation
	And Then…Chaos
	The Logistic Map in Ecology

	Universality
	Zooming in on Bifurcations
	Renormalisation
	The Feigenbaum constant 
	The Feigenbaum Constant 


	Spatial Variations
	Diffusion
	Diffusion on a Finite Interval
	How to Cook a Turkey
	A First Look at Diffusion With Growth
	Diffusion on the Line
	Non-Linear Diffusion

	Travelling Waves
	The KPP-Fisher Equation
	Front Propagation in Bistable Systems
	Wave Propagation in Neurons

	Turing Instability
	Pattern Formation
	An Example

	Chemotaxis
	An Example


	Random Variations
	Discrete Outcomes
	Two Outcomes
	Discrete Population Size
	Birth and Death Again
	Extinction
	Multiple Populations: Wildebeest and Flies

	Meet the Fokker-Planck Equation
	Constant Drift and Diffusion
	Birth and Death Once More
	Fokker-Planck With More Variables
	Wildebeest and Flies Again

	An Invitation to Fluctuation and Dissipation


