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Recommended Books and Resources

Here are a bunch of books that I’ve found useful while preparing for this course:

• J.D. Murray, Mathematical Biology, Volumes 1 and 2

This is the default reference for practitioner’s in the field. It’s a remarkably easy read

and explains things with clarity without holding your hand. The material that we need

for the first part of the course can be found in volume 1, but you’ll need to open volume

2 when we get to spatially organised systems.

• Dick Neal, Introduction to Population Biology

The mathematics is straightforward and, at times, might come across a little laboured.

But the explanations of the underlying biology are well written and the book is peppered

with many interesting examples.

• Steven Strogatz, Nonlinear Dynamics and Chaos

Not a biology book per se, but a spectacularly good introduction to the dynamical

systems that underlie much of this course. It has a number of biologically leaning

examples.

In addition, there are many online lecture notes, including ones by past lecturers of

this course that I have freely taken from. You can find links to these on the course

webpage.



Contents

0 Introduction 1

1 Population Dynamics and Other Stories 3

1.1 First You’re Born, Then You Die 4

1.1.1 Exponential Growth 4

1.1.2 The Logistic Equation 6

1.1.3 Fixed Points 10

1.1.4 In Praise of Parsimony 13

1.2 Delay 14

1.2.1 The Linear Delay Di↵erential Equation 16

1.2.2 Blowflies 20

1.2.3 And. . . Breathe 22

1.3 Age Concern 26

1.3.1 Separable Solutions 28

1.3.2 More General Solutions 29

1.4 Interacting Species 32

1.4.1 Predator-Prey: The Lotka-Volterra Equations 33

1.4.2 Predator-Prey: A Logistic Twist 40

1.4.3 Predator-Prey: I’m Full Now 42

1.4.4 Competition 45

1.4.5 Dengue Fever 49

1.4.6 The Large Diversity Limit 52

1.5 Epidemiology 54

1.5.1 The SIR Model 54

1.5.2 Just When You Thought It Was Safe. . . 57

1.6 Chemical Reactions 60

1.6.1 The Law of Mass Action 60

1.6.2 Michaelis-Menten Enzyme Kinetics 63

1.6.3 Asymptotic Behaviour 65

1.7 Neuron Excitations 67

1.7.1 FitzHugh-Nagumo Model 68

– i –



2 Discrete Time 73

2.1 Linear Examples 73

2.1.1 Hello Poppy 73

2.1.2 Breathe Again 74

2.2 The Logistic Map 76

2.2.1 The Fixed Points 77

2.2.2 Bifurcation 78

2.2.3 And Then. . . Chaos 81

2.2.4 The Logistic Map in Ecology 83

2.3 Universality 84

2.3.1 Zooming in on Bifurcations 86

2.3.2 Renormalisation 88

2.3.3 The Feigenbaum constant ↵ 90

2.3.4 The Feigenbaum Constant � 92

3 Spatial Variations 97

3.1 Di↵usion 100

3.1.1 Di↵usion on a Finite Interval 100

3.1.2 How to Cook a Turkey 103

3.1.3 A First Look at Di↵usion With Growth 105

3.1.4 Di↵usion on the Line 106

3.1.5 Non-Linear Di↵usion 110

3.2 Travelling Waves 113

3.2.1 The KPP-Fisher Equation 114

3.2.2 Front Propagation in Bistable Systems 120

3.2.3 Wave Propagation in Neurons 125

3.3 Turing Instability 129

3.3.1 Pattern Formation 133

3.3.2 An Example 134

3.4 Chemotaxis 135

3.4.1 An Example 137

4 Random Variations 140

4.1 Discrete Outcomes 140

4.1.1 Two Outcomes 140

4.1.2 Discrete Population Size 142

4.1.3 Birth and Death Again 145

4.1.4 Extinction 151

– ii –



4.1.5 Multiple Populations: Wildebeest and Flies 152

4.2 Meet the Fokker-Planck Equation 154

4.2.1 Constant Drift and Di↵usion 157

4.2.2 Birth and Death Once More 158

4.2.3 Fokker-Planck With More Variables 159

4.2.4 Wildebeest and Flies Again 161

4.3 An Invitation to Fluctuation and Dissipation 164

– 1 –



Acknowledgements

These lecture notes are far from original. They closely follow the notes of Julia Gog,

Ray Goldstein, and Peter Haynes, all of whom gave previous versions of this course.

Huge thanks to Julia, Ray, and Peter for putting so much preparation into this course

and for helping me with my dumb questions. I’d also like to thank Andrew Gonzalez at

McGill University, who knows a thing or two about ecology and was extremely generous

in sharing it with me.

“I write about biology from the point of view of a physicist. Some physi-

cists are arrogant and some are humble. I prefer to be humble. Arrogant

physicists say that biology needs better concepts; since physicists are good

at concepts, our job is to tell biologists how to think. Humble physicists say

that biology needs better hardware; since physicists are good at hardware,

our job is to invent new tools for biologists to use. With the exception of

Max Delbruck and Francis Crick and a few other pioneers in the heroic age

of molecular biology, physicists who tried to teach biologists how to think

have failed dismally.”

Freeman Dyson (being very Freeman Dyson).

– 2 –



0 Introduction

“This process of “model building”, essentially that of discarding all but the

essentials and focusing on a model simple enough to do the job but not too

hard to see all the way through, is possibly the least understood – and often

the most dangerous – of all the functions of a theoretical physicist.”

Philip Anderson

Imagine that you possess the following superpower. When presented with a new object,

you pick up a pen and write down a description of it. Maybe you just jot down a few

words. Maybe the muse takes hold and you become expansive, filling many paragraphs.

Now comes the superpower. When your description is finished, you stare at the

page and have a little think before rearranging the words in a di↵erent order, following

arcane rules known only to those who possess the superpower. You shu✏e an adjective

here and a verb there until a feeling of calm comes over you and the words form a

pattern that, incredibly, when read, reveals something new about the original object,

something that you didn’t know before, something that must have been hiding there all

along yet only emerges after you play this game. For those imbued with real skill, this

superpower can be used to reveal things that no one on the planet previously knew.

This superpower sounds like magic. And yet it’s a power that each of you can wield

and the purpose of these lectures is merely to hone it. The trick, of course, is that

you must describe the original object in the language of mathematics. The existence

of such a superpower is the reason why mathematics is special. It is why mathematics

is a greater form of expression than, say, poetry: partly because it’s more useful, but

mostly because it’s more magical.

There are many stories about the world written in the language of mathematics. One

of the mysteries of this enterprise is that, at the most fundamental level – at the level

of quantum field theory and general relativity – the laws of physics are fully described

in terms of the most simple equations. But that’s not our interest here. Instead, we

want to turn to topics in biology: population dynamics and the spread of disease and

the interactions of enzymes and many others besides. These topics, like everything in

biology, tend to be complicated. And this gives us an immediate headache because,

for the kind of systems that we’re interested in, no equation with fewer than, say, 1023

terms is likely to capture the full complexity of the situation. What to do?
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Figure 1. A good model.

One option is to aim for realism. We could continue to add more and more terms

to our equations, hoping to match the intricate details of the system, perhaps inspired

by results elsewhere in physics where theoretical calculations agree with experiment to

many decimal places. This is not the approach we will take here.

Instead, we will strive to create mathematical caricatures of biological systems. We

will strip away the complexity and focus on the key principles that lie underneath.

The result will be equations that are akin to Picasso’s line drawings of animals: they

capture the spirit of the beast, but they may not be particularly useful if you’re a vet

learning how to do surgery. The idea is that, with a few strokes of the pen, we can

construct equations that describe the essence of a thing and then solve these equations

to learn more about what it does and how it does it.

Throughout these lectures we will solve many such equations. However, one of the

things that we will not do is to explain how to construct such models in the first place.

This is an important skill, but it’s typically a skill that first requires a deep knowledge

of a particular topic – say, the migratory patterns of monarch butterflies, or the human

respiratory system – before you then try to extract from the wealth of information

the important features that can be profitably distilled into equations. We won’t go

through this long and complicated process in what follows, focussing instead on the

end product: some simple examples of mathematical models. We will look at many

such examples. The hope is that by exploring a wide range of mathematical models,

and learning what sorts of behaviour you might expect to emerge, you will be better

placed to construct your own models when you finally learn all there is to know about

those monarch butterflies.
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1 Population Dynamics and Other Stories

People are born. People die. People move on. This, in a nutshell, is population dynam-

ics. Our goal in this section is to drape equations around these words to understand

how the population of various species changes over time.

The general approach that we will take will be mirrored throughout these lectures:

first we try to isolate the relevant dynamical degree of freedom; then we introduce

models of increasing complexity to capture some basic idea about life or death or

movement. Each of the complications will usually (but not always) change the form of

our equations in some way and a large part of this chapter will be devoted to describing

the techniques needed to solve the resulting equations.

The basic question that we have to address when building any mathematical model

of the world is: what are the dynamical degrees of freedom? In other words, what

are the right variables to use? For our immediate purposes, the answer would seem to

be blindingly obvious: we want to understand the size of the population and how it

changes with time. We denote this as N(t).

Even here, however, there are subtleties and we may well need to further refine our

dynamical variable or add more. Does it matter if we treat N(t) as a continuous

variable or should we insist that it’s something discrete? Does the age profile of the

population matter, in which case we should work with n(a, t), the number of people

with a particular age a. Does the way the population is distributed spatially matter,

in which case we should work with a population density n(x, t). Does it matter if the

population is interacting with some other species? Are there other things that we’ve

just completely, perhaps even unintentionally, ignored?

The answer to all of these question is: it depends. And even if you devote your life

to the study of some particular population, it still may not be obvious. The art of

mathematical modelling is largely in realising what you should include and what you

can safely ignore. The way to proceed is to start simple and then introduce each of the

potential complications above to see what qualitative and quantitative e↵ect they have

on the dynamics. Indeed, it’s often only by comparing the data to the mathematical

models that we can start to understand which complexities are important and which

can be discarded.

As this section progresses, we will be increasingly flexible about what we think of

as a “population”. Later, we will look at “populations” of viruses, chemicals and

electrical signals in the brain. The thing that links these di↵erent phenomena is that
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they can all be described by coupled, first order di↵erential equations. Indeed, the

real purpose of this whole section is to see a few things that can be modelled by these

simple dynamical systems. Unlike in other courses, we will not develop the mathematics

systematically but, instead, work our way through various examples, most of which will

exhibit di↵erent mathematical features. As we proceed, we will build up a toolkit of

results that allow us to examine these kinds of systems more generally.

1.1 First You’re Born, Then You Die

We’re going to start by writing down the simplest models for population growth. These

describe just the single variable N(t) and we will take both the population N and time

t to be continuous. This seems reasonable in the case of time, less so for the population

which is, in reality, an integer. But we can justify this approximation if we’re dealing

with situation in which N is suitably large so that the di↵erence between N and N +1

doesn’t make any material di↵erence to the situation.

In what follows, we will ignore both immigration and emigration. This means that

population change is determined by birth and death rates alone.

1.1.1 Exponential Growth

For our first attempt at writing down a model, we will assume that the population has

some fixed birth and death rates. Each person is the population has some probability

of giving birth and some probability of dying. We’re not distinguishing population by

age and so this probability is the same for everyone.

Suppose that in some time �t, the number of births is bN�t and the number of

deaths is dN�t with b and d constant. We call b and d the birth and death rates,

respectively. More precisely, they are the number of births/deaths per individual (or

per capita) per unit time.

In the time �t, the change in the population will be

N(t+�t) ⇡ N(t) + (b� d)N(t)�t . (1.1)

Dividing by �t, and taking the limit �t ! 0, we get the first order di↵erential equation

dN

dt
= (b� d)N . (1.2)

This equation only depends on the di↵erence of b and d, not their individual values.

(As we will see in Section 4, this conclusion will change when we look at random

fluctuations.) The equation is easily solved and we have

N = N0 e
rt with r = b� d . (1.3)
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Figure 2. The growth of the world’s population, taken from the Our World in Data website.

The purple line shows the percentage increase each year, so a constant purple line would

correspond to exponential growth.

Here N0 is the initial population at time t = 0. We learn that populations will grow

exponentially if the birth rate is higher than the death rate, and shrink exponentially

if it’s the other way around.

The idea of exponential population growth is often attributed to an essay by Thomas

Malthus in 1798. He writes

“This [increase of population] constantly tends to subject the lower classes

of the society to distress and to prevent any great permanent amelioration

of their condition”

He was not the last person to deduce wide-sweeping, moralising conclusions about the

state of society based on flimsy mathematical underpinnings.

So does this exponential growth hold up in practice? Well, like many things in this

course, the answer is: to an extent. But often you have to seek out specific examples

where it works. An obvious place to look is the global population of humans. The

data is shown in Figure 2. For much of the past 300 years, the population growth

has been super-exponential, with the exponent r growing over time. (This exponent is

roughly what is plotted on the purple line.) But, since 1963, the exponent r has been

decreasing. Current projections suggest that r will become negative before the year

2100, with the world’s population peaking at around 10 billion.
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1.1.2 The Logistic Equation

In an attempt to be more realistic, we could envisage that the birth and death rates

themselves depend on the size of the population. That leads us to the general class of

models

dN

dt
= [b(N)� d(N)]N (1.4)

with general functions b(N) and d(N) that encode whatever features of population

growth you think are important.

As we’re treading slowly, an obvious guess for the right-hand side is to replace the

linear function that led to exponential growth with a quadratic function. This suggests

that we examine solutions to the equation

dN

dt
= rN � �N

2
. (1.5)

This is a famous di↵erential equation, known as the logistic equation. It was first written

down in 1838 by the Belgian mathematician Pierre Francois Velhurst. The idea of the

extra term is that growth rates become smaller as resources become scarce, perhaps

due to lack of food or to overcrowding. The logistic equation comes with a natural

maximum population that can be supported. This is most easily seen if we rewrite the

equation as

dN

dt
= r

✓
1�

N

K

◆
N with K =

r

�
. (1.6)

Here K is referred to as the carrying capacity.

If r,� > 0, then small populations with N < K will have an increasing population

with dN/dt > 0. Meanwhile, larger populations with N > K will have a decreasing

population with dN/dt < 0. In this way, the logistic equation captures the idea that

there is a natural ceiling to the size of a population.

It’s straightforward to solve the logistic equation. We have
Z

dN
K

(K �N)N
=

Z
dN

✓
1

N
+

1

K �N

◆

= log

����
N

K �N

����� log

����
N0

K �N0

���� = rt . (1.7)

Here we’ve introduced the integration constant N0 which is designed so that N(t =

0) = N0. We’ve taken the modulus sign in the logarithms because we don’t know if
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Figure 3. Solutions to the logistic equation. On the right, the curves are plotted with (from

top to bottom) N0 = 2K, N0 = 3
4K, N0 = 1

2K and N0 = 1
2K. On the right, the curve is

plotted with N = 1
100K where it exhibits the kind of characteristic tanh-like squashed s-shape

that is sometimes called a sigmoidal.

N > K or N < K. But if N(t) > K at one time, then it remains so at all times (and

similar for N < K.) This means that once we combine the two logs we can remove the

modulus signs and write

log

✓
N

K �N

K �N0

N0

◆
= rt . (1.8)

Rearranging, we have

N =
N0Ke

rt

K +N0(ert � 1)
. (1.9)

This general form f(x) = a/(b + e
�x) is known as the logistic function. The function

is plotted in Figure 3 for various values of N0. Regardless of the initial value of the

population N0, the curves converge on N ! K at late times. The logistic function is

well approximated by our earlier exponential function for times such that N0(ert�1) ⌧

K

There are other ways to write the solutions to the logistic equation that highlight

the di↵erence between the two cases N > K and N < K. To see this, it’s perhaps

simplest to return to the integral solution (1.7) and write it as

log

����
N

K �N

���� = r(t� t0) . (1.10)

Now we have the integration constant t0 and we retain the modulus signs. Rearranging

with N < K, we find

N =
Ke

r(t�t0)

1 + er(t�t0)
=

K

2


1 + tanh

✓
1

2
r(t� t0)

◆�
. (1.11)
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Figure 4. On the left: the population of a single celled organism over time. This picture is

taken from the classic, and wonderfully named, 1934 book A Struggle for Existence by G.F.

Gause. (In addition, here is a more recent paper showing how to fit Gause’s data statistically.)

On the right: the percentage of the total corn planted with hybrid seed in di↵erent US states,

between 1932 and 1956, taken from the 1957 paper Hybrid Corn: An Exploration in the

Economics of Technological Change by Griliches.

Meanwhile, for N > K, the same manipulations give

N =
Ke

r(t�t0)

er(t�t0) � 1
=

K

2


1 + coth

✓
1

2
r(t� t0)

◆�
. (1.12)

Again, we can ask: how well does the logistic curve do in modelling real world pop-

ulations? It by no means a universal curve, but it certainly is more ubiquitous than

exponential growth and you can find the characteristic s-shape curve appearing in many

di↵erent places. One example is shown on the left of Figure 4 where the time evolu-

tion of the population of single celled organisms known as “paramecium caudatum” is

plotted. (Unsurprisingly, when comparing data to equations, things tend to look better

when the population in question lives in a bottle in controlled conditions, rather than

in the wild.)

The Spread of Beneficial Mutation

There are many other situations where data seems to fit the logistic equation1, notably

when there is a natural ceiling in place. In particular, the equation arises when de-

scribing the fraction of a population that has adapted in some advantageous way. One

1You can find claims that the growth of children’s vocabulary can be well fitted by the logistic
function. You can see the data here and make up your own mind. It’s worth mentioning that the
logistic function (1.9) coincides with the Fermi-Dirac distribution in theoretical physics, although I
don’t know of a way to view that distribution as a solution to the logistic equation. (You can read
more about the way this distribution arises in the lectures on Statistical Physics.)
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famous example is the percentage of farmers who adopted a particular breed of hybrid

corn, as shown on the right of Figure 4.

For example, the fraction p(t) of a population which carry a gene with a beneficial

mutation is described by the logistic equation. To derive this, let N(t) be the total

population. A mutation is beneficial if it increases the rate at which individuals have

o↵spring. Suppose that, in the absence of the mutation, the population grows at a rate

r but that, with the mutation present, this is increased to r + s. At time t,

Nmutant(t) = p(t)N(t) and Nnormal(t) = (1� p(t))N(t) . (1.13)

At time t+ �t, these numbers are

Nmutant(t+ �t) =
�
1 + (r + s)�t

�
pN

Nnormal(t+ �t) = (1 + r�t) (1� p)N (1.14)

where both p and N on the right-hand side are evaluated at time t and, here and below,

we’re dropping terms of order O(�t2). This means that the total population at time

t+ �t is

N(t+ �t) = Nmutant(t+ �t) +Nnormal(t+ �t)

= (1 + r �t+ sp(t) �t)N(t) . (1.15)

Meanwhile, the fraction of mutants at time t+ �t is

p(t+ �t) =
Nmutant(t+ �t)

N(t+ �t)

=
(1 + (r + s)�t)

1 + r �t+ sp(t) �t
p(t) . (1.16)

We now Taylor expand the denominator, again throwing away terms of order O(�t2),

to get

p(t+ �t) = (1 + (r + s)�t) (1� r �t� sp(t) �t) p(t)

= (1 + s(1� p(t))�t) p(t) . (1.17)

We then have

dp

dt
= lim

�t!0

p(t+ �t)� p(t)

�t
= sp(t)(1� p(t)) (1.18)

which is the promised logistic equation.
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Nondimensionalisation

Applied mathematicians have invented one of the ugliest words in the English lan-

guage and then they go around saying it like it’s completely normal. That word is

nondimensionalisation.

The idea is to work with dimensionless variables. To achieve this, we absorb some

of the constants in the equations into the dynamical variables. For example, for the

logistic equation (1.6), we define

x =
N

K
and ⌧ = rt (1.19)

so that the equation becomes

dx

d⌧
= x(1� x) . (1.20)

Correspondingly, the solution (1.9) is

x =
x0e

⌧

1 + x0(e⌧ � 1)
. (1.21)

Nondimensionalisation has the advantage that it allows us to see the wood for the

trees, stripping away anything that is inconsequential for the analysis. Of course, it’s

straightforward to put the constants back in by reverting to the original variables.

You will often see the practice of rescaling certain variables to make them nondimen-

sional, but then retaining their original names. We will also be guilty of this at times,

but will flag when we’re doing it.

1.1.3 Fixed Points

In general, the class of population models that we’re considering take the nondimen-

sionalised form

dx

dt
= f(x) (1.22)

for some function f(x). One particularly simple question that we can ask is: what are

the steady state solutions, such that dx/dt = 0?
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Clearly, the steady state solutions are the roots of the function, meaning those values

x = x? such that f(x?) = 0. Given such a fixed point, we can further ask: is it stable?

If the population deviates a little from x = x?, does it move towards x? or away? The

answer to this follows from some simple analysis. We write

x(t) = x? + ✏(t) (1.23)

with ✏(t) ⌧ 1. Taylor expanding, we then have

dx

dt
= f

0(x?)✏(t) +O(✏2) . (1.24)

We see that the fixed point x = x? is stable if f 0(x?) < 0 and is unstable if f 0(x?) > 0.

In practice, we can just plot the function

f(x) and see whether the graph crosses the

axis with positive or negative slope. For exam-

ple, for the logistic equation we have f(x) =

x(1 � x) which is plotted on the right. The

fixed point at x? = 0 has f 0(0) > 0 and is un-

stable, while the other fixed point at x? = 1

has f 0(1) < 0 and is stable.

An Example: Adding Predation

Here’s a more intricate example. Suppose that

we add an extra term to the logistic equation, so that it reads

dN

dt
= r

✓
1�

N

K

◆
N �

BN
2

A2 +N2
. (1.25)

This additional term represents the e↵ects of predators, which increases monotonically

as the population increases but reaches a maximum value as N ! 1.

The are di↵erent ways to nondimensionalise this equation. We could define x = N/K

as before. But we will instead make the di↵erent choice

x =
N

A
, ⌧ =

Bt

A
and ↵ =

Ar

B
, � =

K

A
. (1.26)

Here ↵ and � are dimensionless parameters. With this rescaling, the equation becomes

dx

d⌧
= f(x) = ↵

✓
1�

x

�

◆
x�

x
2

1 + x2
. (1.27)
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Figure 5. One the left: graphic solutions to equation (1.28). the dashed lines are plotted for

a fixed value of � and varying ↵. On the right, the function f(x) defined in (1.27) for values

of the parameters where there are four roots.

There’s one obvious fixed point at x = 0. The others are more complicated as we need

to solve

↵

✓
1�

x

�

◆
=

x
2

1 + x2
. (1.28)

Multiplying this out gives us an unwieldy cubic. It has either one root or three depend-

ing on the parameters. To see this, we can look for solutions graphically. On the left

of Figure 5, the function x
2
/(1 + x

2) is plotted as a solid line, while the linear function

↵(1� x/�) is plotted for a fixed value of � and varying ↵. We see that for ↵ large and

small, there is just a single intersection point, while there is a window of values of ↵

where there are three intersections.

If there is just a single additional root of f(x), other than x = 0, then it is necessarily

the stable point. If there are three additional roots, then two of them are stable and

one is unstable. Indeed, a plot of f(x) for a choice of ↵ and � where there there are

four roots is shown on the right of Figure 5. You can see that, for any function f(x),

the fixed points have to alternate between unstable and stable. The solutions to (1.22)

always sit between two fixed points and flow, asymptotically, to the stable one.

The equation (1.27), is thought to be a decent model for a class of tree-eating bugs,

with the predation term arising because birds like bugs. These kind of models can

inform the strategy that you take to reduce the infection by varying any parameters

in the model that may be under your control. For example, you could spray the trees

with something unpleasant to reduce the carrying capacity K of the bug. Or you could

deliberately increase the population of predators, increasing the value of B.
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1.1.4 In Praise of Parsimony

Throughout these lectures, we will typically start with some very simple model to

describe a particular phenomenon. It will capture some aspect of what’s going on but,

when compared to data, we will usually find that things are more complicated. The

obvious thing to do is to return to our original equations and improve them by, say,

adding an extra term. That’s what we did above when including the e↵ect of predation.

It might be tempting to continue to add extra terms and parameters until the mathe-

matical model agrees more closely with the data. We’re going to resist this temptation.

Mathematical biology doesn’t, for the most part, have the precision of more funda-

mental areas of physics. We’re never going to find the biological analog of, say, the

blackbody radiation curve that we met in the Statistical Physics lectures and matches

the light from the Big Bang to an accuracy of 10�5. That’s because humans and rabbits

and bugs and viruses are all more complicated than atoms and photons. And including

more and more terms in an attempt to match what you see runs the risk that you

aren’t adding any kind of insight beyond data fitting.

-50 50

-50

50

Instead our goal is more modest in scope.

We would like to understand the qualitative

features of a biological system, distilling its

essence into a few simple equations.

For those who would prefer to see a closer

match between predictions and data, it’s worth

recalling von Neumann’s famous words to

Fermi (all the more appropriate for a course

on mathematical biology)

“ With four parameters I can fit an

elephant, and with five I can make

him wiggle his trunk.”

An almost-realisation of this can be achieved by the parametric plot2

x(t) = �60 cos t+ 30 sin t� 8 sin 2t+ 10 sin 3t

y(t) = 50 sin t+ 18 sin 2t� 12 cos 3t+ 14 cos 5t .

2This is taken from the paper “Drawing an Elephant with Four Complex Parameters” by Jürgen
Mayer, Khaled Khairy, and Jonathon Howard.

– 13 –



The result is shown in the figure. If you count only the amplitudes as parameters then

you’ve got 8. The authors, somewhat cheekily, paired the parameters together in a

random way and declared success with 4 complex numbers. (Presumably they could

have equally argued that they did it with just 2 quaternions.)

1.2 Delay

The class of models (1.22) includes an arbitrary function f(x), designed to capture the

intricacies of population interactions. But the kind of solutions that we get are always

going to be the same: the population will evolve monotonically towards a fixed point.

This means that any population that exhibits di↵erent behaviour – say oscillations –

must have something else going on.

In this section, we explore the mathematics of a di↵erent class of models. These

have the property that the change in the population depends on its size evaluated at

a previous time. This might be argued to be more realistic. For example, it takes

time for eggs to hatch. And it takes time for babies to grow into fully functioning, and

reproducing, members of society.

We will look at the delayed logistic equation, also known as the Hutchinson-Wright

equation. In nondimensionalised variables, it is

dx(t)

dt
= ↵ x(t)

⇥
1� x(t� T )

⇤
. (1.29)

As promised, the change in population depends on the current population both at the

current time t and at a previous time t� T .

As we will see, the delayed logistic equation (1.29) exhibits interesting behaviour and

is used widely to model various biological phenomena. But the equation doesn’t match

the words that we’ve used to motivate it: the delay isn’t in the birth term, but instead

it is in the carrying capacity term. This means that it is the resources available at

the earlier time that a↵ect the growth rate3. For example, you might think of animals

3This is the insight of Hutchinson in his 1948 paper “ Circular Causal Systems in Ecology”. (He
has a cute footnote saying that he turned to his friend, Lars Onsager, for help in solving the equation.
Onsager has a formidable reputation as one of the greatest, and least comprehensible, physicists of
the mid-20th century.) In contrast, Wright’s 1955 paper “A non-linear di↵erence-di↵erential equation”
discusses the equation where the delay is in the birth rate

dx(t)

dt
= ↵x(t� T )

⇥
1� x(t)

⇤
.

We’ll look at an equation in a similar spirit below when we discusses delay models applied to blowfly
populations.
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Figure 6. Numerical solutions to the delayed logistic equation, with x(t) plotted vertically

and t plotted horizontally. These were produced with T = 1 and ↵ given by the value of ↵T

specified in the graph. The initial history was taken to be x(t) = 1
2 for �1  t  0.

storing nutrients, or hoarding resources, like squirrels and nuts, or humans and toilet

paper.

The delayed logistic equation is an example of a general class of delay di↵erential

equations. These kind of equations are rare in theoretical physics, where things tend

to happen locally in time, so are likely unfamiliar. Usually a first order di↵erential

equation needs just a single initial condition, say x(t = 0). Here we need a functions

worth of initial conditions, telling us the history x(t) for �T  t  0, before we can

find a solution.

Even before we try to solve (1.29), we can get a feel for what will happen. In the

original logistic equation, the population is capped above at x = 1 (in dimensionless

variables). But the delay means that the population at time t can exceed x = 1 and

continue to grow provided that the past population x(t � T ) is less than one. The

population then stops growing only at a time T after it first hits the would-be ceiling

at x = 1. Then the population will decrease. This story then repeats, resulting in

oscillations around the x = 1 fixed point.
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Numerical Results

Delay di↵erential equations like (1.29) typically don’t have closed form solutions. We

will make some analytic progress shortly, but first we can study the solutions numeri-

cally. The equation has two parameters: ↵ and T . But, after rescaling time, there is

really just a single dimensionless parameter ↵T . We want to understand how solutions

depend on this parameter.

The results are shown in Figure 6, plotted for various values of ↵T . We do indeed

see the observed oscillations when ↵T is suitably large. But when ↵T is small, they die

away. And by the time that ↵T . 0.5, the oscillations are pretty much invisible. Our

goal is to understand this behaviour.

1.2.1 The Linear Delay Di↵erential Equation

The solution x = 1 is still a fixed point of the delayed logistic equation (1.29). We will

make progress by looking at small deviations away from this fixed point. To this end,

we write

x(t) = 1 + ✏(t) . (1.30)

Substituting this into delayed logistic equation and dropping terms of order ✏2, we find

d✏(t)

dt
= �↵ ✏(t� T ) . (1.31)

This is still a delayed di↵erential equation, but it’s one of the few that we can solve

analytically. These solutions take the form

✏(t) = ✏0e
st (1.32)

for some constant s. There’s a standard trick that we use when solving linear equations

of this kind: we take s 2 C. At first this looks slightly odd because ✏ is a (rescaled)

measure of the population and when you’re driving past those road signs that state the

population of a town, they very rarely give a complex number. But because (1.31) is

linear, if we’ve got a complex solution then we can simply take the real and imaginary

parts to find real solutions.

At heart, the trick of taking s 2 C is simply so that we can write things like e
it

rather than cos t and sin t. This means that any imaginary part of s is telling us that

the solution oscillates about the fixed point. Meanwhile, a real part of s is telling us

that the solution converges to the fixed point (if Re(s) < 0) or moves away from the

fixed point (if Re(s) > 0).
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The ansatz (1.32) solves our delay di↵erential equation (1.31) provided that

se
sT = �↵ . (1.33)

If we rescale and define the variable z = sT , this becomes

ze
z = �↵T . (1.34)

The solutions to this equation are somewhat subtle. We will proceed slowly.

First, we can look for purely real solutions.

This is straightforward. We plot the curve

f(z) = ze
z in the figure. The right-hand side of

(1.34) is negative so we see immediately that

solutions must have z < 0. In other words,

these are stable. The function has a minimum

at z = �1 where f(�1) = �e
�1. This means

that there are only purely real solutions pro-

vided that the decay time is suitably short,

↵T 
1

e
⇡ 0.37 . (1.35)

This agrees with what we saw numerically: for low values of ↵T , there are no oscilla-

tions. If ↵T ⌧ 1, then we can zoom into the origin of the graph where f(z) = ze
z
⇡ z.

We see that the solution for very small ↵T is just s = �↵, which coincides with the

solution to the logistic equation near the fixed point.

When ↵T > e
�1, the solutions to (1.34) become complex. The general class of

solutions are known as Lambert W functions. Once we allow complex values of z,

there isn’t a unique solution because of the branch cut inherent in taking the log of a

complex number. Instead, the di↵erent branches of solutions are labelled by k 2 Z and

are written as

z = Wk(�↵T ) . (1.36)

Here Wk(x) are the Lambert W functions. There are no closed form expressions, but

their properties are very well studied. (In particular, there is an inbuilt Mathematica

function LambertW[k, x] that will do the job for you.)
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Figure 7. The real and imaginary parts of the Lambert W function W0(�x).

The purely real solutions that we have found above are part of the Lambert W

function W0(x). The real and imaginary parts of this solution are plotted in Figure 7.

We see that the imaginary part vanishes for ↵T < 1/e, agreeing with what we found

above. Meanwhile, the real part has a sharp kink at that point. For our immediate

purposes, the important thing is that the real part is negative for ↵T < ⇡/2, and then

becomes positive.

It’s straightforward to reproduce these two key features with a little thought. First

note that when we take z = ⇡i/2, we have

z =
⇡i

2
=) ze

z = �
⇡

2
(1.37)

So this is indeed a purely imaginary solution when ↵T = ⇡/2.

Next, write z = � + i!. If we rewrite (1.34) as z = �↵Te
�z, we have

� + i! = �↵Te
��(cos! � i sin!) =)

(
� = �↵Te

�� cos!

! = +↵Te
�� sin!

(1.38)

where we have simply decomposed the first equation into real and imaginary parts.

When ↵T = ⇡/2, we know that these equations are solved when we have � = 0 and

! = ⇡/2. We want to show that when ↵T < ⇡/2, we necessarily have � < 0.

To see this, it’s simplest to consider two separate cases. First, if |!| > ↵T then the

second equation in (1.38) tells us that ! = ↵Te
�� sin! < ↵Te

�� so we must have

� < 0. Second, if |!| < ↵T < ⇡/2 then cos! > 0 and so the first equation in (1.38)

tells immediately that � < 0.
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The upshot of this argument is there are three distinct regimes, in which solutions

to the delayed logistic equation have the following behaviour close to the stable fixed

point at x = 1:

• For 0 < ↵T < 1/e, solutions monotonically approach the stable fixed point.

• For 1/e < ↵T < ⇡/2, solutions oscillate about the stable, with the oscillations

decaying exponentially.

• For ↵T > ⇡/2, the unstable fixed point is unstable. This is a more general lesson:

too much delay causes instability. Our linear analysis isn’t su�cient to tell us

what actually happens but, from last of the numerical solution shown in Figure

6, with ↵T = 2, we see that the solution oscillates about x = 1 without decay.

We can, however, use our analysis to estimate the frequency of oscillations. For

↵T slightly greater than ⇡/2, we have Im(z) ⇡ ⇡/2 so the oscillations should be

close to e
i⇡t/2T , meaning that they have approximate period 2T/⇡. That’s indeed

what is seen numerically.

The discussion above relates only to the first branch of solutions, with z = W0(�↵T ).

There are also other branches with z = Wk(�↵T ). For example, it’s simple to check

that there exists purely imaginary solutions whenever

z = (2k + 1)
⇡i

2
=) ze

z = �(2k + 1)
⇡

2
. (1.39)

This is where Re
⇥
Wk(�z)

⇤
= 0 and this particular branch turns from stable to unstable.

Importantly, however, higher branches only become unstable at larger values of ↵T .

This ensures that, for 0 < ↵T < ⇡/2, the fixed point x = 1 is stable.

You might then wonder whether it’s possible to find stable solutions for larger values

of ↵T , which use only these higher branches with k 6= 0. The answer is “yes”, but such

solutions are finely tuned. In general, the solution to the linearised equation (1.32) will

be

x(t) =
X

k2Z

Ake
zkt/T for � T  t  0 . (1.40)

Here zk = Wk(�↵T ) are the exponents from the di↵erent branches of the Lambert

W function. The coe�cients Ak are determined by the initial conditions. Recall, in

particular, that for delay equations of this type we don’t have a single initial condition,

but a whole history’s worth x(t) for�T  t  0: that’s why there are an infinite number

of coe�cients Ak. As we have seen, the k = 0 solution is unstable for ↵T > ⇡/2. If
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Figure 8. Data of blowfly population. The solid line is the adult population, the dotted line

the eggs.

the initial conditions mean that A0 = 0 then we can discard this solution and extend

the regime of stability further, with the k = 1 solution the first to turn unstable at

↵T = 5⇡/2.

1.2.2 Blowflies

If you’re a sheep farmer, then you really care about blowflies (little bastards). The flies

lay their eggs in the fleece, often attracted by open wounds. This doesn’t do the sheep

much good: mortality rates are around 2 to 3%.

In a famous experiment in the 1950s, the British-Australian zoologist Nicholson kept

blowfly as pets in the lab, regulating their supply of food for both the adult and larval

population. Nicholson observed wild fluctuations in the blowfly population. His results

are reproduced in Figure 8. These oscillations were subsequently explained by the kind

of delay di↵erential equation that we’re considering here4.

This time we will construct a model in which the birth rate is delayed. We assume

that the egg production per capita is given by P0e
�N/N0 . The total egg production is

then

P (N) = P0Ne
�N/N0 . (1.41)

We take a constant death rate µ. Our delay di↵erential equation is then

dN(t)

dt
= P (t� T )� µN(t) . (1.42)

4Nicholson’s classical study was An Outline of the Dynamics of Animal Population. The model
below was first propose by Gurney, Blythe, and Nisbet in Nicholson’s blowflies revisited.
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We have four constant parameters in this equation: P0, N0, µ and the delay time T .

As a first step, we nondimensionalise our variables and parameters. We write

x =
N

N0
, ⌧ = µt , and a = µT , b = P0T (1.43)

This leaves us with the following equation that depends on just two dimensionless

parameters, a and b, with a appearing as the delay time,

dx

d⌧
=

b

a
x(⌧ � a) e�x(⌧�a)

� x(⌧) . (1.44)

First, we look at the equilibrium point x = x?, obeying

b

a
x?e

�x? = x? =) x? = log
b

a
. (1.45)

This is a physical equilibrium point with x? > 0 only if b > a. We will assume this in

what follows.

Next, we look at small perturbations about the fixed point. We write

x(⌧) = log
b

a
+ ✏(⌧) . (1.46)

Substituting into our delay equation (1.44), we have

d✏(⌧)

d⌧
=

b

a

�
x? + ✏(⌧ � a)

�
e
�x?e

�✏(⌧�a)
� x? � ✏(⌧)

=
�
x? + ✏(⌧ � a)

��
1� ✏(⌧ � a)

�
� x? � ✏(⌧)

= (1� x?)✏(⌧ � a)� ✏(⌧) . (1.47)

Now we follow our previous analysis. We look for solutions of the form

✏(⌧) = ✏0e
s⌧

. (1.48)

These obey (1.47) if

s = (1� x?)e
�sa

� 1 . (1.49)

Again, we can look for (typically) complex solutions to this equation. This time the

solutions are harder to come by. But it’s rather straightforward to prove the following

result:

Claim: The fixed point x? = log(b/a) is stable if b/a < e
2.
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Figure 9. A typical oscillatory solution from the delay di↵erential equation with b � a.

Proof: To see this, we decompose the equation (1.49) into real and imaginary parts

by writing s = � + i!. We have

� = (1� x?)e
��a cos(!a)� 1 and ! = �(1� x?)e

��a sin(!a) . (1.50)

If b/a < e
2 then |1�x?| < 1. Suppose that the system is unstable, so that � > 0. Then

the right we have |(1� x?)e��a cos(!a)| < 1 and hence the right-hand side of the first

equation above is necessarily negative. However the left-hand side is just � which, by

assumption, is positive. Hence we must have � < 0 in this regime. ⇤

Note that we haven’t proven that the system is unstable for b/a > e
2 and, indeed,

this isn’t always the case. But it is true that, for suitably large b/a, the system is

unstable and again exhibits oscillations. A typical numerical solution with b � a, with

pretty funky oscillations, is shown in Figure 9.

1.2.3 And. . . Breathe

While our primary focus in this section is to understand the evolution of populations,

the techniques that we’re introducing are useful in many other contexts. Here we take

a slight detour to explain how delay models can be used to model breathing.

There are two reasons that you breathe: one is to bring oxygen into your body, the

other is to send carbon dioxide out. Because your body is good at keeping you alive,

there is a feedback mechanism at play, and the volume V of the breath that you take

depends on the concentration C of CO2 in your blood. The relation between the two

can be modelled by an equation of the form

V (C) = Vmax
C

m

Am + Cm
(1.51)
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Figure 10. The Hill function plotted for m = 1
2 , for m = 1, and for m = 2.

for some constants A and m. Curves of this kind are sometimes called Hill functions.

A variety of such curves, for fixed A and varying m, are plotted in Figure 10.

The concentration of CO2 depends on time, so we have C(t). Suppose that you take

in CO2 at a constant rate ↵. The amount that you exhale is proportional to both C(t)

and to the volume of your breath. But the feedback mechanism isn’t entirely e�cient,

and the breath that you take at time t depends on the concentration at an earlier time

t� T for some delay T . The upshot is that we have a delay di↵erential equation,

dC(t)

dt
= ↵� bC(t)V (t)

= ↵� bC(t)V (C(t� T )

= ↵� bVmaxC(t)
C(t� T )m

Am + C(t� T )m
. (1.52)

Here b is a constant that specifies how good your breathing is at removing CO2.

We can do our usual nondimensionalisation. We define

C
0 =

C

A
, t

0 =
↵t

A
and � =

AbVmax

↵
, T

0 =
↵T

A
. (1.53)

This gives us a delay equation for C
0(t0) but, to keep our equations cleaner, we then

just relabel C 0
! C and t

0
! t and also T

0
! T . The upshot is that we get the delay

di↵erential equation

dC(t)

dt
= 1� �C(t)

C(t� T )m

1 + C(t� T )m
. (1.54)
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First, we look for the equilibrium solution C?, which sits at

C
m+1
?

1 + Cm
?

=
1

�
. (1.55)

There is a unique solution C? to this equation. This corresponds to a regular breathing

pattern. That is generally regarded as good. The question we would like to ask is:

when is this breathing pattern stable?

The idea here is that something might change to alter your breathing pattern. In

particular there is a famous irregularity in breathing known as Cheynes-Stokes respira-

tion. If you get it, it’s most likely that you have only days to live or you’re on the top

of a mountain (or possibly both). While it might not be much comfort, it’s thought

that this can be traced to some complicated physiology which results in a change of

the coe�cient m in the Hill function (1.51).

We look at small perturbations of form

C(t) = C? + ✏(t) . (1.56)

By now, the path should be familiar. We substitute this into (1.54) to derive the

linearised delay di↵erential equation. A little algebra gives

d✏(t)

dt
= �

1

C?
✏(t)�

m

C?

✓
1�

C
m
?

1 + Cm
?

◆
✏(t� T )

= �p✏(t)� q✏(t� T ) . (1.57)

In the second line we’ve defined the positive constants p = 1/C? and q = m/C?(1+C
m
? ).

To solve this linear equation, we make the usual ansatz

✏(t) = ✏0e
st
. (1.58)

This leaves us with the algebraic equation

s = �p� qe
�sT

. (1.59)

We decompose this into real and imaginary parts by writing s = � + i! to get

� = �p� qe
��T cos(!T )

! = qe
��T sin(!T ) . (1.60)

We can immediately read o↵ some results.
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First, when T = 0 so there is no delay, we have � = �(p + q) < 0 so the system is

stable.

Second, ! = 0 is always a solution but there will be a second solution with ! 6= 0

whenever qe��T
> 1

Third, the system is stable whenever p > q. To see this, note that we have (�+p)2+

!
2 = q

2
e
�2�T , so qe

��T
> |� + p|. Suppose that the system is unstable, so that � > 0.

In this case, q > qe
��T

> |� + p| > p. So instability necessarily implies q > p. That

isn’t to say that all systems with q > p are necessarily unstable; some may be stable.

But all those with q < p are definitely stable.

This suggests that, if we want to look for

when instability occurs, we should start with

p > q, fix p and then increase q. The point of

marginal stability occurs when � = 0 and we

have

p = �q cos(!T )

! = q sin(!T )
=)

p tan(!T ) = �!

p
2 + !

2 = q
2

.

We can always find solutions to the first of

these equations in the region !T 2 (⇡/2, ⇡), as shown in the figure on the right where

we plot tan x and �x. Call this intersection point !?(p, T ). The second equation above

then gives a necessary relationship between p, q and T for marginal stability:

q
2 = p

2 + !
2
? . (1.61)

For q less than this value, breathing is stable. For q greater than this value, you’re in

trouble.

There’s a lot of objects above that we’ve only defined implicitly – like C? and !? –

but, given particular values of the parameters you could easily find these numerically.

Nonetheless, the implicit nature of these constants makes it a little tricky to determine,

say, the critical value of m in the function (1.51) in terms of T and � (or equivalently

C?). We can make some minor progress if we substitute p = 1/C? and q = m/C?(1+C
m
? )

into (1.61). Using the fact that ⇡/2T < !? < ⇡/T , we get that the critical value of m

lies between

1 +
C?⇡

2

4T 2
<

m
2

(1 + Cm
? )2

< 1 +
C

2
?⇡

2

T 2
. (1.62)
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Figure 11. A numerical solution corresponding to an unstable breathing pattern.

The left-hand inequality immediately tells us that instability only kicks for some value

of m > 1. A numerical solution to the original delay di↵erential equation (1.52) in the

unstable regime is shown in Figure 11.

1.3 Age Concern

Until now, we’ve treated the population N as just a single number. But, for many

questions, we may want to be more discerning. Here we want to take into account one

particularly important variable: age.

To this end, we consider the population density n(a, t). Here t is time, as before, while

a is the age of individuals. Roughly speaking, n(a, t) counts the number of individuals

of age a. More precisely, we should think of n(a, t) da as the number of individual with

age between a and a+ da. The total population at time t is

N(t) =

Z 1

0

da n(a, t) . (1.63)

For mortals, we can reduce the upper limit of

this integral to the lifespan of the species: a few

weeks for blowfly, somewhat longer for humans.

It’s reasonable to expect both the birth rate

b(a) and the death rate µ(a) to depend on the

age of the population: the young are fertile,

the old vulnerable. We might expect typical

functions to look something like those shown

on the right.
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We now want to think about how the population ages. Suppose that your age is a

at time t. It is a sad fact of life that at a short time �t later, you have only two options

open to you: either your age is a+ �t, or you’re dead. In equations, this translates to

n(a+ �t, t+ �t) = n(a, t)� µ(a)n(a, t)�t (1.64)

where we’re dropping terms of order �t2. We can Taylor expand the left-hand side and

divide through by �t to get the partial di↵erential equation

@n

@t
+

@n

@a
= �µ(a)n(a, t) . (1.65)

This is sometimes called the von Foerster equation.

So far this equation only captures death. To inject a level of joy into the proceedings,

we also need to talk about births. It’s hard to be born at any age other than a = 0

and so the birth rates arise as a boundary condition on the function n(a, t) at a = 0:

n(0, t) =

Z 1

0

da b(a)n(a, t) . (1.66)

In any realistic situation, we don’t have any problem with convergence: both the

population and birth rate will vanish for some a > aancient.

A Cute Analogy with Fluid Mechanics

For a one-dimensional fluid with velocity u, we usually define the material derivative,

D

Dt
=

@

@t
+ u

@

@x
. (1.67)

This tells us how any quantity changes as we drift along with the fluid. For our

population with age structure, we have the corresponding material derivative

D

Dt
=

@

@t
+

@

@a
. (1.68)

The analog of the fluid velocity in this equation is just u = 1, corresponding to the

fact that we get older by one year per year. In this case, the material derivative tells

us how things change if we’re aging with the population (which we are!).

The fluid analogy is nice enough, but it breaks down when it comes to the initial

boundary condition (1.66) dictated by the birth rates. This is because, from the per-

spective of fluid mechanics, this is a “non-local” boundary condition: what happens at

a = 0 depends on the value of the dynamical field n(a, t) at all values of a.
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1.3.1 Separable Solutions

Inspired by the Malthusian growth that we saw earlier, we will look for separable

solutions of (1.65) of the form

n(a, t) = ñ(a)ert (1.69)

for some function ñ(a) and some r 2 R. This means that some age profile ñ(a) remains

unchanged, growing (or shrinking) exponentially. We substitute this into (1.65) to get

@ñ

@a
= �

⇥
r + µ(a)

⇤
ñ(a) =) ñ(a) = n0e

�ra exp

✓
�

Z a

0

ds µ(s)

◆
. (1.70)

We see that the age profile is determined only by the death rate. That exponentiated

integral e�
R a
0 ds µ(s) has the interpretation of the probability of surviving to age a.

We still have to impose the birthing condition (1.66) which leaves us with the fol-

lowing, slightly unusual expression

�(r) :=

Z 1

0

da b(a)e�ra exp

✓
�

Z a

0

ds µ(s)

◆
= 1 . (1.71)

Here that double integral defines the function �(r) which, you can see by inspection,

is a monotonically decreasing function of r. The birthing condition requires �(r) = 1

which we view as determining the exponent r.

The population may grow or shrink depending on the sign of r. To get a handle on

r, we can look at �(0). Because �(r) is monotonically decreasing, we can immediately

say that

• If �(0) > 1 then r > 0 and the population grows in size.

• If �(0) < 1 then r < 0 and the population shrinks.

In this sense, �(0) can be viewed as the average number of o↵spring per individual.

Note that adding age structure hasn’t changed the overall story of exponential

growth. In particular, it doesn’t open up the possibility for oscillations in the way

that delay equations did.

As a sanity check, we can look at what this model gives us in the case that birth and

death rates are constant, so b(a) = b and µ(a) = d. Then the function �(r) defined in

(1.71) becomes

�(r) =

Z 1

0

da be
�(r+d)a =

b

r + d
. (1.72)

Evaluated at r = 0, we have �(0) = b/d, reproducing our old Malthusian result: if b > d

then the population increases exponentially, while if b < d it shrinks exponentially.
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1.3.2 More General Solutions

There is a more general class of solutions to the equation (1.65). To motivate this, note

that the left-hand-side takes the form of a wave equation. If we could somehow banish

death, so that µ(a) = 0, then the solutions would be

@n

@a
+

@n

@t
= 0 =) n(a, t) = f(a� t) (1.73)

for any function f(a� t). This is telling us that there is some initial population profile

f(a) and it just propagates forward in the “age”-direction as people get older. Sadly,

death is unavoidable but, at least in this context, is easily dealt with and (1.65) has

the solution

n(a, t) = f(a� t) exp

✓
�

Z a

0

ds µ(s)

◆
. (1.74)

This is the same age profile propagating forward, but now you lose a few as you go.

If we start with some initial age distribution

n(a, 0) = n0(a), then that’s enough to tell us what

happens for all a > t. We have

n0(a) = f(a) exp

✓
�

Z a

0

ds µ(s)

◆

=) n(a, t) = n0(a� t) exp

✓
�

Z a

a�t

ds µ(s)

◆
.

But this form of the solution holds only when a >

t, which is the shaded region in the diagram. This

is the region where it’s su�cient to know the initial

population profile. For the other region, with t > a, we need to take the births into

account. For this, we need the boundary condition that specifies the birth rate (1.66).

Substituting the wave-like solution (1.74) into this boundary condition gives

n(0, t) = f(�t) =

Z 1

0

da b(a)n(a, t) . (1.75)

We have the solution for n(a, t) when a > t, but not when a < t. We can make use of

this by splitting the integral above into two pieces and writing

f(�t) =

Z t

0

da b(a)n(a, t) +

Z 1

t

da b(a)n(a, t)

=

Z t

0

da b(a) f(a� t)e�
R a
0 ds µ(s) +

Z 1

t

da b(a)n0(a� t)e�
R a
a�t ds µ(s) . (1.76)
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This is a really horrible equation! In principle, it should be used to determine the

function f(�t) for t > 0 by integrating f(�t
0) from t

0 = 0 to t
0 = t. We then use this

expression for f(�t) in (1.74) to determine the population at times t > a. In practice,

this is easier said that done.

There is one minor simplification that we can make. The second term in (1.76) gives

the contribution from the o↵spring of the original population n0(a). The exponential

suppression is telling us that must they survive from age a�t to age a. At late times, we

expect that the number of these o↵spring will tend to zero as the old fail to reproduce,

and the resulting population profile will be independent of the initial condition. Indeed,

the separable solution didn’t give us the opportunity to impose an initial condition. In

this case, we have to solve the integral equation

f(�t) ⇡

Z t

0

da b(a) f(a� t) exp

✓
�

Z a

0

ds µ(s)

◆
. (1.77)

It’s still not a pleasant equation to solve.

An Example

We can illustrate these ideas with a simple example. We take a constant death rate,

µ(a) = d, and a birth rate that is a step function, where you can only give birth if

you’re younger than some fixed age A,

b(a) =

(
b 0 < a < A

0 a > A

. (1.78)

To keep things simple, we’ll take our initial population to be n0(a) = 1 for all ages a.

Admittedly, this isn’t particularly realistic (even Methuselah didn’t make it past 1000)

but, as we saw above, we expect that the initial population will soon be unimportant.

We now need to solve for the population in two di↵erent regimes: a > t and a < t. For

a > t, we have simply

n(a, t) = e
�dt for a > t . (1.79)

The other regime a < t is the trickier one. Here we must treat the regimes t < A and

t > A separately. For t < A, the integral equation (1.76) becomes

f(�t) = b

Z t

0

da f(a� t)e�ad + b

Z A

t

da e
�dt

= b

Z t

0

d⌧

⇣
f(�⌧)e�d(t�⌧)

⌘
+ b(A� t)e�dt for a < t < A (1.80)

– 30 –



where, in the second line, we changed the integration coordinate to ⌧ = t� a. This is

actually an equation we can solve. To do this, it’s simplest to define ñ(t) = n(0, t) =

f(�t). We have

ñ(t) = b

Z t

0

d⌧

⇣
ñ(⌧)e�d(t�⌧)

⌘
+ b(A� t)e�dt for a < t < A . (1.81)

We can turn this into a more familiar di↵erential equation simply by di↵erentiating

with respect to t. We have

dñ

dt
= bñ(t)� bd

Z t

0

d⌧ ñ(⌧)e�d(t�⌧)
� b(1 + d(A� t))e�dt

= (b� d)ñ(t)� be
�dt for a < t < A (1.82)

where, to get to the second line, we’ve substituted in the integral expression in (1.81).

But this equation is easily solved. We have

ñ(t) = N̂e
(b�d)t + e

�dt for a < t < A . (1.83)

Putting this together, we get the following solution

n(a, t) =

(
e
�dt for t < a

e
�dt
⇥
N̂e

b(t�a) + 1
⇤

for a < t < A

. (1.84)

A non-vanishing N̂ can be viewed as an injection of births and leads to a discontinuity

in n(a, t) along the line a = t.

We’re left with understanding what happens for A > 0. Here we can follow the same

steps and derive an integral equation for ñ(t) = n(0, t) = f(�t).

ñ(t) = b

Z t

t�A

d⌧ ñ(⌧)e�d(t�⌧) for t > a,A . (1.85)

This time, when we di↵erentiate with respect to time, this becomes a delay di↵erential

equation

dñ(t)

dt
= (b� d)ñ(t)� ñ(t� A)e�dA

. (1.86)

We saw how to deal with linear delay di↵erential equations of this kind in Section 1.2.

We can look for solutions of the form ñ(t) ⇠ e
st where the exponent s must obey

s = (b� d)� be
�(d+s)A

. (1.87)
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As usual, the population grows if Re(s) > 0 and shrinks if Re(s) = 0. The population

is stable if s = 0, which, from (1.87), requires a fine tuning between birth and death

rates, now given by

b =
d

1� e�dA
. (1.88)

We see that we must have b > d to maintain a stable population. This is because, in

this model, only the young in the population can reproduce while anyone can die.

1.4 Interacting Species

So far we’ve discussed the evolution of just a single population. At times there was

a di↵erent species lurking in the background, like when we included terms describing

predation, but this other species was very much an NPC in the story.

Things become significantly more interesting when there are two or more populations

that interact with each other. This allows for a much richer collection of dynamics.

For much of this section, we will restrict ourselves to just two independent species.

But the basis mathematical formalism is just as easy to state regardless of the number.

Suppose that we have n di↵erent dynamical variables, ui(t) with i = 1, . . . , n. We will

study a class of first order dynamical systems that takes the form

dui

dt
= fi(u1, . . . , un) . (1.89)

A fixed point of this system is a steady state solution ui = u
?
i obeying

fi(u
?
1, . . . , u

?
n) = 0 for each i = 1, . . . , n . (1.90)

Given a fixed point, we would like to know whether it is stable or unstable. It’s quite

possible that it will be stable in some directions and unstable in others. To determine

this, we expand

ui(t) = u
?
i + ⇠i(t) (1.91)

where ⇠i(t) is taken to be a small perturbation. We then expand (1.89) to linear order

in ⇠:

d⇠i

dt
= fi(u

?) +
@fi

@uj

����
u?

⇠j + . . . (1.92)
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The constant term vanishes precisely because we’re at a fixed point. We’re left with

d⇠i

dt
= Jij ⇠j with Jij =

@fi

@uj

����
u?

. (1.93)

The matrix J is called the Jacobian. The stability of a fixed point is determined by the

eigenvalues of this matrix. Suppose that we have an eigenvalue � with corresponding

eigenvector x,

Jx = �x . (1.94)

In general, � could be real or complex. If Re(�) < 0, then the fixed point is stable

in the x direction, while if Re(�) > 0 the dynamics will be unstable. If � includes a

complex part, then the trajectories will typically spiral towards or away from the fixed

point.

In general, we will also want to plot the trajectories in the space Rn parameterised by

ui. We will gain plenty of experience in doing this as we go through various examples.

In much of what follows, we will consider situations with n = 2 species. In this case

J is a 2⇥ 2 matrix with eigenvalues �1 and �2 and it’s usually easiest to compute them

by considering

Tr J = �1 + �2 and det J = �1�2 . (1.95)

In particular, if Tr J < 0 and det J > 0 then both eigenvalues must be negative and

the fixed point is stable.

1.4.1 Predator-Prey: The Lotka-Volterra Equations

The poster child for mathematical biology is the Lotka-Volterra model. It’s a simple

and instructive model for two species interacting. But, as we will see, the results it

gives are far from generic.

Here’s the setting. There are two species. The first is the prey and has population

N(t). These are the cute things that you are most likely rooting for. The other is the

predator with population P (t). These are the villains of the piece. Their dynamics is

governed by the set of equations

dN

dt
= N(a� bP ) and

dP

dt
= P (dN � c) (1.96)

with a, b, c and d are all positive numbers. These are the Lotka-Volterra equations
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Figure 12. Solutions to the Lotka-Volterra equations plotted in the phase plane on the left,

and as a function of time on the right. Both of these were plotted with ↵ = 0.5.

The physics behind the various terms and minus signs is straightforward. The +aN

term is telling us that, in the absence of predators, the prey prospers (because it eats

grass, or because it preys on something even more helpless that doesn’t even get a

mention in the equations). Meanwhile, the �cP term tells us that, in the absence of

prey, the predators die out. Each equation also contains an NP term that captures

what happens when the two populations interact. The ± signs tell us that the result

is good for one, less good for the other.

As usual, we can do some rescaling. We write u = dN/c and v = bP/a and t
0 = at

and then, annoyingly, relabel t0 as t. The end result is the set of non-dimensionalised

equations

du

dt
= u(1� v) and

dv

dt
= ↵v(u� 1) . (1.97)

These equations depend on the single dimensionless parameter ↵ = c/a > 0.

Rather unusually, it’s straightforward to find exact solutions to these equations. We

can think of P = P (N) or, equivalently, v = v(u) to get a direct relationship between

the two populations. Dividing the two equations in (1.97) gives

dv

du
=

↵v(u� 1)

u(1� v)
. (1.98)

This di↵erential equation is separable and we have
Z

dv
1� v

v
= ↵

Z
du

u� 1

u
=) log v � v + ↵(log u� u) = constant . (1.99)

– 34 –



Figure 13. Sales of hare and lynx pelts, taken from Murray’s book on Mathematical Biology.

We can plot these orbits in (u, v)-plane which, in this context, is also known as the

phase plane. The resulting orbits are shown on the left of Figure 12. The trajectories

all exhibit the same essential behaviour: they orbit the fixed point (u, v) = (1, 1).

This is telling us that the populations of both species oscillate in time. It’s more

di�cult to extract information about the time dependence, and this typically needs to

be done numerically. An example is shown on the right of Figure 12.

We can also compute the average population hui and hvi. We take, for example, the

first equation in (1.97) and write it as u̇/u = 1� v. Integrating the left-hand side over

a single period T gives

Z T

0

dt
u̇

u
=

Z ufinish

ustart

du
1

u
=
h
log u

iufinish

ustart

= 0 . (1.100)

This vanishes because the orbits are closed, so ustart = ufinish. Integrating the right-hand

side over a single period must similarly vanish: we have

Z T

0

dt (1� v) = T � T hvi = 0 =) hvi = 1 . (1.101)

We see that the average sits at the fixed point which, back in our original variables, is

hP i = a/b. A similar argument shows that hui = 1.

From either of the plots in Figure 12, we can extract a story about the underlying

ecology. First, the number of prey increases. After a short time, this results in a

corresponding increase in the number of predators. This decreases the prey, resulting

in less to eat and a decrease in predators which then allows the prey to thrive and so

the cycle of life repeats.
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Figure 14. The population of prey plankton (in green) and predator algae (in red), both

normalised to one, together with the trajectories in the phase plane. This data is taken from

the paper Long-term cyclic persistence in an experimental predator-prey system by Blasius

et al.

An obvious question is: does this match what is seen in the wild? The answer

is: sometimes but not often. As we will soon see, the mathematical structure of the

Lotka-Volterra equations is rather special and doesn’t survive most perturbations. For

that reason, we should be suspicious about its applicability. Nonetheless, there is a

famous and rather wonderful story that seems to give support to this model. For

many decades, the Hudson Bay Trading Company kept records of the numbers of pelts

they sold. These include pelts of hares which are natural prey, and lynx which are

natural predators. The results are shown in Figure 13 and are closely resemble the

Lotka-Volterra oscillations. Clearly there are many other factors at play here, and so

it’s unsurprising that the data is rather messy. One puzzle is that, around 1885, it

looks like the lynx population rises before the hare population, which prompted many

theories, the best of which can be viewed here.

Cleaner data can be found for populations in bottles, rather than in the wild. The

population of rotifer, which is a kind of plankton, and their algae prey are shown in

Figure 14, clearly exhibiting predator-prey cycles.

The Hamiltonian Structure of Lotka-Volterra

We see from (1.99) that there is a conserved quantity in the Lotka-Volterra equations,

H = v � log v + ↵(u� log u) . (1.102)

The value of H determines the chosen orbit. It takes its minimum value at the fixed

point, where Hmin = (1 + ↵). Orbits that are further out have larger values of H.

The existence of a conserved quantity is reminiscent of the conserved energy in clas-

sical mechanics and you might wonder if there’s a deeper connection. It turns out that
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the Lotka-Volterra system is an example of a Hamiltonian system of the kind that we

met in the course on Classical Dynamics. Specifically, we can view the coordinates

q = log v and p = log u as position and momenta, and the Lotka-Volterra equations

can then be written a

dq

dt
=

@H

@p
and

dp

dt
= �

@H

@q
with H = e

q
� q + ↵(ep � p) . (1.103)

This Hamiltonian structure makes the Lotka-Volterra equations rather special and,

to some extent, unrealistic. In physics, the fundamental laws are all Hamiltonian, a

fact that can ultimately be traced to the quantum nature of reality. In mathematical

biology, there is no such reason that the underlying laws should be pretty. Indeed, we

will soon see more realistic generalisations of the Lotka-Volterra equations that do not

preserve this Hamiltonian structure.

Stability Analysis

While we can understand the solutions to Lotka-Volterra equations by direct integra-

tion, this won’t be true of the generalisations that we look at. To prepare ourselves,

it will be useful to look again at the Lotka-Volterra equations from other perspectives

which, although they are less powerful, will easily generalise to the more complicated

situations.

The first method is to do a stability analysis of the fixed point. In fact, there are

two fixed points at (u, v) = (0, 0) and (u, v) = (1, 1). The Jacobian matrix (1.93) takes

the general form

J =

 
1� v �u

↵v ↵(u� 1)

!
. (1.104)

To understand the stability, we need to compute the eigenvalues � of this matrix at

each of the fixed points. For the trivial fixed point we have

(u, v) = (0, 0) =) � = 1,�↵ . (1.105)

This means that the origin is a saddle point. This is fortunate, but unsurprising.

It’s fortunate because it means that our two species will not naturally be driven to

extinction. It’s unsurprising because we set things up such that the prey flourish in the

absence of predators, while the predators su↵er in the absence of prey.
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The second fixed point is more interesting. We have

(u, v) = (1, 1) =) � = ±i
p
↵ . (1.106)

So in this case, the eigenvalues are pure imaginary. Taken at face value, this tells us

that the trajectories in the phase plane orbit the fixed point. To see this, note that the

eigenvectors of the Jacobian are x± = (±i,
p
↵). The most general linearised solution

is then

(u, v) = (1, 1) + A+x+e
i
p
↵t + A�x�e

�i
p
↵t (1.107)

where A+ and A� can be viewed as initial conditions and should be chosen so that

(u, v) is real. For example, we could take A+ = A� = 1
2 , in which case we have the

trajectory

(u, v) = (1, 1) +
�
� sin(

p
↵t),

p
↵ cos(

p
↵t)
�
. (1.108)

As we have seen, the trajectories in the Lotka-Volterra model do, in fact, orbit the

fixed point but the linear analysis shown here isn’t enough to demonstrate it. That’s

because, in general, a fixed point with purely imaginary eigenvalues could be rendered

stable or unstable from higher order e↵ects.

Nullclines

The second method to analyse dynamical systems of this type is to search for the

nullclines. These are simply the curves

u̇ = 0 =) u = 0 or v = 1

v̇ = 0 =) v = 0 or u = 1 . (1.109)

These are plotted on the left of Figure 15. On the red nullclines, we have u̇ = 0, and

hence the flows are either left or right. On the blue nullclines we have have v̇ = 0

and hence the flows are up or down. We necessarily have a fixed point whenever

di↵erent nullclines meet because both u̇ = v̇ = 0. We see that the nullclines split the

phase plane into quadrants where flows point north-east, north-west, south-west, or

south-east. From this, we can surmise the general topology of the flows. The full flow

structure is shown on the right of Figure 15.

Gone Fishing

We will see several generalisations of the Lotka-Volterra equations shortly. But there

is one that is very straightforward and yet comes with a counterintuitive punchline.
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Figure 15. On the left, the nullclines divide the phase plane into four quadrants, where

the flows are up/down and left/right. The fixed point sits at the point where the di↵erent

nullclines meet. On the right, the full flow in the phase plane.

Suppose that there is an additional e↵ect at play, where the one or both of the species

is hunted. This is usually phrased as “fishing” in the literature, as a nod to Volterra’s

initial motivation for writing down this system of equations. We could, for example,

add an additional term to capture the e↵ect of hunting the prey. In this case, the

original equations (1.96) could be changed to

dN

dt
= N(a� bP )� hN and

dP

dt
= P (dN � c) . (1.110)

The additional hN term captures the e↵ect of hunting. This is straightforward because

it doesn’t change the structure of the equations at all, at least if h < a. Everything

that we said above still holds, but the fixed point shifts to

(N,P ) =

✓
c

d
,
a� h

b

◆
. (1.111)

The surprise is that hunting the prey hasn’t changed the average prey population at

all. Instead, counterintuitively, it has reduced the average predator population!

This cute e↵ect is the reason why biologists first studied the Lotka-Volterra equations.

(Lotka was the first to introduce the equation but that was in the context of chemical

reactions.) The Italian biologist Umberto D’Ancona noted that the proportion of sharks

and skates and other slightly dangerous predatory things dramatically increased in the

Adriatic during the First World War when fishing was largely curtailed. He spent a long
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time puzzling over this until finally doing the sensible thing and asking a mathematician

for help. Fortunately, his father-in-law was Vito Volterra, one of Italy’s great 20th

century mathematicians. This was the motivation for Volterra to write these equations

and show that, as observed, in the absence of hunting, the predator population should

increase.

1.4.2 Predator-Prey: A Logistic Twist

No set of equations is ever the last word in mathematical biology. There are always

ways to finesse the model, to include some extra factor that may, or may not, change the

qualitative behaviour. In this section and the next, we look at two such generalisations

of the Lotka-Volterra equations.

We already introduced the logistic equation back in Section 1.1: it includes an ad-

ditional term for a single species that limits the ability to reproduce as the population

grows. We can easily incorporate such terms into our predator-prey model, so that

they Lotka-Volterra equations (1.96) become

dN

dt
= N

✓
a� bP �

N

K1

◆
and

dP

dt
= P

✓
dN � c�

P

K2

◆
. (1.112)

Here we’ve introduced two carrying capacities, K1 and K2, for the two species. After

rescaling, the equations can be written as

du

dt
= u(1� v � µ1u) and

dv

dt
= ↵v(u� 1� µ2v) (1.113)

where the (inverse) carrying capacities are to be found in the positive constants µ1 and

µ2. We will take µi < 1.

These equations have three fixed points, provided that µ1 < 1. There is the trivial

fixed point (u, v) = (0, 0) and a new fixed point in which the predators are extinct while

the prey reach their logistic equilibrium: (u, v) = (1/µ1, 0). The coexistence fixed point

is now

(u?
, v

?) =
1

1 + µ1µ2
(1 + µ2, 1� µ1) . (1.114)

Note that we have v
?
> 0 when µ1 < 1. Note also that u

?
> 1 and v

?
< 1, so the

additional terms have the e↵ect of reducing the predator population while increasing

the prey population at the fixed point.
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Figure 16. On the left: the flow in phase plane. The nullclines are shown in red and blue

and determine where the flow is horizontal or vertical respectively. On the right, the time

dependence of u(t) and v(t). Both plots were made with ↵ = 0.5, µ1 = 0.3 and µ2 = 0.5.

We can perform the usual stability analysis. About the fixed point (1.114), the

Jacobian is

J =

 
1� v

?
� 2µ1u

?
�u

?

↵v
?

↵(u?
� 1� 2µ2v

?)

!
=

 
�µ1u

?
�u

?

↵v
?

�↵µ2v
?

!
(1.115)

where, to get to the second expression, we’ve used the fact that, for example, 1� v
?
�

µ1u
? = 0. At this point, we don’t need to use the explicit expressions in (1.114) for the

fixed point: it’s su�cient to stare at the signs of the terms. Recall that the determinant

of a 2 ⇥ 2 matrix is the product of eigenvalues while the trace is the sum. We have

det J > 0 and TrJ < 0 which means that both eigenvalues must be negative. We learn

that the fixed point is now stable.

The resulting flows in phase plane are shown in Figure 16, together with the nullclines

which now sit at an angle. Note that there is an additional fixed point on the u-axis,

where two di↵erent nullclines meet. On the right of Figure 16, the time-dependent solu-

tions are plotted. This makes the dynamics clear: after a number of mild oscillations,

the two populations settle down to an equilibrium with more (non-dimensionalised)

prey than predators.
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A Lyapunov Function

There is another way of seeing that all trajectories spiral into the fixed point. This

comes from looking at the “Hamiltonian” that was constant on Lotka-Volterra orbits

H = v � log v + ↵(u� log u) . (1.116)

For our new model, it will prove useful to introduce the slightly di↵erent function

H̃ = v � v
? log v + ↵(u� u

? log u) . (1.117)

This coincides with the Hamiltonian H when u
? = v

? = 1 for the Lotka-Volterra model.

The importance of this new function can be seen by taking its time derivative

dH̃

dt
=

✓
1�

v
?

v

◆
v̇ + ↵

✓
1�

u
?

u

◆
u̇

= ↵ (v � v
?) (u� 1� µ2v) + ↵ (u� u

?) (1� v � µ1u) . (1.118)

Now recall that 1 = v
? + µ1u

? and 1 = u
?
� µ2v

?. We use this to replace the 1’s in the

expression above to get

dH̃

dt
= ↵

⇥
(v � v

?)(u� u
?
� µ2(v � v

?))� (u� u
?)(v � v

? + µ1(u� u
?)
⇤

= �↵
⇥
µ2(v � v

?)2 + µ1(u� u?)
2
⇤

 0 . (1.119)

That’s rather nice. We’ve managed to construct a monotonically decreasing function

H̃(u, v) along the flow. Indeed, it stops changing only when we hit the fixed point

(u?
, v

?). This, again shows that all flows necessarily end up at the fixed point. This is

an example of a Lyapunov function.

1.4.3 Predator-Prey: I’m Full Now

In both the original Lotka-Volterra model, and the logistic generalisation above, there is

no end to the predator’s appetite: they continue to voraciously work their way through

the prey, like pac-man munching those dots.

A more realistic model might be to allow the predators to become sated at some

point, so that the amount of predation saturates as u ! 1, rather than continuously

increasing. Here is an example of a model that has this property,

du

dt
= u

✓
1� u�

bv

u+ d

◆
and

dv

dt
= ↵v

⇣
1�

v

u

⌘
. (1.120)
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We see that there is novelty in both equations. For the prey population u(t), the final

predation term has the promised e↵ect that, while proportional to the predators, the

coe�cient plateaus as u ! 1. Meanwhile, the evolution of predators is di↵erent from

what we had before. Now the reproduction term is ↵ > 0, but their carrying capacity

is equal to the prey population.

We can use the techniques that we developed above to see the behaviour of this

system. The non-trivial fixed point has v? = u
? and

1� u
? =

bu
?

u? + d
=) u

? =
1

2

h
1� b� d+

p
(1� b� d)2 + 4d

i
(1.121)

where we’ve picked the root that is positive. We can now check the stability. Here

there’s a short calculation to do in evaluating the Jacobian J at the fixed point. It’s

straightfortward to show that

det J = ↵u
?


1 +

db

(u? + d)2

�
> 0 . (1.122)

This tells us that the eigenvalues � are either both positive, both negative or, come in

complex conjugate pairs. Stability is determined by whether Re� is positive or negative

and we can see this by looking at the trace,

Tr J = u
?


bu

?

(u? + d)2
� 1

�
� ↵ . (1.123)

One way to read this is that for fixed b and d

(and hence fixed u
?), there is a critical value of

↵ given by

↵crit = u
?


bu

?

(u? + d)2
� 1

�
. (1.124)

For ↵ > ↵crit the fixed point is stable and for

↵ < ↵crit the fixed point is unstable.

The space of parameters is somewhat more

interesting because for certain values of b and

d, we have ↵crit < 0 so the system is stable for

all ↵ > 0. An example of the resulting flows, together with the nullclines, is shown in

the figure to the right (plotted with b = 2 and d = 1 and ↵ = 0.5).
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Figure 17. On the left: flows in the phase plane with an unstable fixed point, together

with the nullclines. On the right, a numerical solution to the equations of motion with initial

conditions that start close to the fixed point. Both of these plots were made with b = 1.5 and

d = 0.1 which gives ↵crit ⇡ 0.36. We have then chosen ↵ = 0.1 to be in the unstable regime.

Things are more interesting when the fixed point is unstable. If we don’t end up at

the fixed point, then where do we end up? The answer is that the dynamics converges

towards a limit cycle, meaning a closed trajectory in the phase plane that attracts

nearby trajectories. The flows in the phase plane, together with a numerical solution

to the equations of motion are shown in Figure 17. We see that this model again gives

rise to the oscillations in populations that was characteristic of the original Lotka-

Volterra model, but with one important di↵erence: all initial conditions converge to

the same cyclic behaviour.

The Poincaré-Bendixson Theorem

It’s natural to ask: is there a way to demonstrate the existence of a limit cycle without

resorting to numerics? There is a standard technique that can be applied to do this

which we sketch here.

The general idea is to find a closed, bounded region S ⇢ R2 for which all flows go

into S, and none come out. More precisely, we pick an outward pointing normal n on

the boundary @S of S and require that

n ·

 
u̇

v̇

!
< 0 everywhere on @S . (1.125)
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This is telling us that, once inside the region S, you’re trapped there forever. The

Poincaré-Bendixson theorem then states (roughly) that if there are no fixed points in

S then there will necessarily be a limit cycle.

Given this theorem, we can prove the exis-

tence of a limit cycle in our model if we can

find such a region S. For our particular model,

a sketch of the region S is shown shaded in the

figure. It has two boundaries. An inner bound-

ary consists of a small circle that excludes the

fixed point and the flows are necessarily into S

because the fixed point is unstable. The outer

boundary is constructed so that (1.125) holds.

This is straight forward to show for three of the

four sides because the nullclines dictate the di-

rection of the flow. The slightly tricky one is the left-hand boundary and one has to

work a little harder to show that this too can be made to obey (1.125).

1.4.4 Competition

For our next example, we turn to a slightly di↵erent scenario, albeit one that is modelled

by the same kind of equations. Rather than considering a populations of predators and

prey, we will try to even the playing field a little. Instead, we consider two species

competing for the same resources.

We call the populations N1 and N2 and describe their dynamics by the coupled

logisticesque equations

dN1

dt
= r1N1

✓
1�

N1

K1
� b1

N2

K2

◆

dN2

dt
= r2N2

✓
1�

N2

K2
� b2

N1

K1

◆
. (1.126)

We take r1, r2, b1, b1 > 0.

There are various rescalings that we can do to simplify this equation. An obvious

one is to remove the carrying capacities by defining N
0
i = Ni/Ki. We do this, then

rename N
0
i ! Ni. There are further rescalings that we can do by absorbing one of the

reproduction rates ri into time, but they destroy the symmetry of the equations so we
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choose not to. We then have

dN1

dt
= r1N1 (1�N1 � b1N2)

dN2

dt
= r2N2 (1�N2 � b2N1) . (1.127)

If we set either N1 = 0 or N2 = 0, then the dynamics of the other is described by

the familiar logistic equation that we discussed in Section 1.1. Here, we would like to

understand how the two species interact with each other.

As we’ll see, this model is rather straightforward, certainly compared to some of the

predator-prey generalisations that we discussed above. To start, we can look at the

fixed points. There are four. One is (N1, N2) = 0 and is devoid of life. Two others

have one of the species extinct,

(N1, N2) = (1, 0) , (N1, N2) = (0, 1) (1.128)

while the third equilibrium point has the two species coexisting:

(N1, N2) =
1

1� b1b2
(1� b1 , 1� b2) . (1.129)

Populations have to be positive, so the last of these is a viable fixed point if either both

b1, b2 < 1 or if both b1, b2 > 1. But if one of these coe�cients is greater than one and

the other less than one, then there is no coexistence.

What about stability? The Jacobian matrix takes the form

J =

 
r1(1� 2N1 � b1N2) �r1b1N1

�r2b2N2 r2(1� 2N2 � b2N1)

!
. (1.130)

We need to evaluate this on each of the four fixed points (assuming that all four exist)

and compute the eigenvalues �. This is a straightforward exercise. We have:

(N1, N2) = (0, 0) =) � = r1, r2 . (1.131)

So this fixed point is unstable. The next two fixed points we get

(N1, N2) = (1, 0) =) � = �r1 , r2(1� b2)

(N1, N2) = (0, 1) =) � = �r2 , r1(1� b1) . (1.132)

Here we see a more interesting pattern: the first fixed point is stable if b2 > 1 and

the second is stable if b1 > 1. If either of these coe�cients is less than one, then the

respective fixed point becomes a saddle. The flow in phase plane for two the cases

b1 < 1 < b2 and b2 < 1 < b1 are shown in Figure 18.
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Figure 18. The phase plane flows for two cases b2 < 1 < b1 (on the left) and b1 < 1 < b2 (on

the right) with the nullclines also shown. The fixed points are where a red and blue nullcline

meet. The gold star denotes the stable fixed point.

Finally, for the fixed point corresponding to coexistence, the eigenvalues are more

complicated. A little algebra gives

(N1, N2) =
1

1� b1b2
(1� b1 , 1� b2)

=) � =
1

2(1� b1b2)

h
r1(b1 � 1) + r2(b2 � 1) (1.133)

±

p
(r1(b1 � 1) + r2(b2 � 1))2 + 4(b1 � 1)(b2 � 1)(b1b2 � 1)

i
.

You can check that the number under the square root is always positive. Moreover,

both eigenvalues are negative provided that b1, b2 < 1, while one is negative and the

other positive if b1, b2 > 1.

The flows in the phase plane are plotted for these two cases in Figure 19. We can now

piece the full story together. The coe�cient b1 is a measure of the disruption that the

second species has on the first. Similarly, b2 measures the disruption of the first species

on the second. If b1, b2 < 1, then there is a stable coexistence fixed point and the two

species share the resources, with the population of each lower due to the presence of

the other species.

Meanwhile if, say, b1 > 1 and b2 < 1 then this means that the second species is the

more disruptive and it’s game over for the first: the fixed point has N1 = 0.
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Figure 19. The phase plane flows for two two cases b1, b2 < 1 (on the left) and b1, b2 > 1 (on

the right) with the nullclines also shown. The fixed points are where a red and blue nullcline

meet and the stable fixed point(s) denoted by a gold star.

Finally, if both b1 > 1 and b2 > 1 then there are stable fixed points with one or

the other species extinct. Which fixed point you end up in depends on the initial

conditions. Increasing, say, b1 increases the basin of attraction for the second species

to become the winner.

There is a well known dictum in ecology known as the principle of competitive ex-

clusion. It says that two species which compete for the same limited resources cannot

coexist as one will have an advantage and will ultimately win out. This is indeed what

the simple model above predicts whenever b1 > 1 or b2 > 1. But, as we’ve seen, the

two species can certainly live in happy coexistence in this model when b1, b2 < 1. I’m

not an ecologist but it seems strange to me to take something that is not predicted by

equations and then elevate it to a “principle”.

Be Kind

It may be that our two species get along in some symbiotic way. In this case, we

can continue to describe their interactions through the equations (1.127), but we take

b1, b2 < 0.

As before, there are four fixed points: the trivial one, the two with one species extinct

(1.128), and the coexisting fixed point (1.129),

(N1, N2) =
1

1� b1b2
(1� b1 , 1� b2) .
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We see that this fixed point only exists if

b1b2 < 1. This fixed point is stable, and the

resulting flows are shown in the figure. This

time, the presence of each species enhances the

population of the other.

As b1b2 ! 1 the two species are too benefi-

cial, and the populations run away to infinity!

Indeed, for any b1b2 > 1, the population runs

o↵ to infinity.

1.4.5 Dengue Fever

In this section we will develop a slightly di↵erent competition model, this one designed

to describe attempts to mitigate a particularly unpleasant disease.

Dengue fever is transmitted by mosquitos in the tropics. It’s pretty unpleasant and

you don’t want to catch it. Happily, help is at hand in the form of a bacteria known as

Wolbachia. When mosquitos are infected with this bacteria, it blocks transmission of

the dengue virus. This brings hope that by introducing Wolbachia-infected mosquitos

into the wild, they may help reduce or eradicate the dengue virus.

We will assume that all mosquitos carry dengue, but those infected with Wolbachia

are harmless. At this point there’s something of a story to tell. Mosquitos can only

pass Wolbachia onto their o↵spring. (Just kissing is not enough.) And we have the

following complications:

• If a female is infected, all her eggs will be infected.

• An infected female lays fewer eggs than the uninfected.

• An infected female can mate with an infected male. But if an uninfected female

mates with an infected male, there will be no viable eggs.

• Infected mosquitos don’t live as long.

Our task is to translate these facts into equations. Indeed, the art of mathematical

modelling is constructing equations from words. We introduce the following variables

x = number of uninfected females

y = number of infected females . (1.134)
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We assume that the number of (un)infected males simply tracks the female population.

Then we model the facts above by the following equations,

dx

dt
= x

✓
r

x

x+ y
� d� ✏(x+ y)

◆

dy

dt
= y

�
�r � µd� ✏(x+ y)

�
. (1.135)

If we set either x = 0 or y = 0 then the other equation reduces to the logistic equation.

The various terms in the equations have the following interpretation:

• The proportion of uninfected males is x/(x+y). An uninfected female mating can

only mate with an uninfected male and this increases the uninfected proportional

to r.

• An infected female can mate with any male. This increases the rate of infected

mosquitos by �r, with � < 1 because infected females lay fewer eggs.

• Uninfected mosquitos die o↵ at a rate proportional to d. Infected mosquitos die

o↵ at the quicker rate of µd with µ > 1.

• There is a logistic-like competition for resources, giving rise to the ✏(x+y) terms.

This is the same for infected and uninfected.

With these equations in hand, we can now rescale to remove unnecessary constants,

with t ! rt and x ! ✏x/r and y ! ✏y/r. We’re left with the pair of equations,

dx

dt
= x

✓
x

x+ y
�

d

r
� (x+ y)

◆
and

dy

dt
= y

✓
��

µd

r
� (x+ y)

◆
. (1.136)

It’s useful to collect the remaining constants together so we write

dx

dt
= x

✓
x0 �

y

x+ y
� (x+ y)

◆
and

dy

dt
= y (y0 � (x+ y)) . (1.137)

Here

x0 = 1�
d

r
and y0 = ��

µd

r
. (1.138)

(Note that the extra 1 in x0 is what turns the x/(x + y) in (1.136) into y/(x + y) in

(1.137)). The uninfected mosquitos breed more than they die (sadly), so r > d and,

correspondingly, 0 < x0 < 1. There is no a priori bound on y0 but we will assume

that y0 > 0 so that populations of infected mosquitos also grow otherwise our goal of

eradicating dengue is hopeless. This means that we have 0 < y0 < x0 < 1.
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Figure 20. Flows in the phase plane have two stable fixed points shown with gold stars.

These correspond to all mosquitos infected (on the y-axis, or all mosquitos uninfected (on the

x-axis). Where you end up depends on the initial conditions. The basis of attraction to have

uninfected mosquitos is shown shaded. This is plotted with x0 = 0.5 and y0 = 0.2.

Now we’re in business. There are four fixed points: the trivial one (x, y) = (0, 0),

two where one of the populations is extinct, (x, y) = (x0, 0) and (x, y) = (0, y0) and

one where both infected and uninfected coexist (x?
, y

?), with

x
? = y0(1� x0 + y0) and y

? = y0(x0 � y0) . (1.139)

You can check that this is a saddle.

A plot of the flows in the phase plane, together with the nullclines, are shown in Figure

20. The two stable fixed points have either all mosquitos infected, or all uninfected.

If you want to end up solely with infected mosquitos, then you need to introduce a

su�cient number so that you sit in the basin of attraction of the fixed point (x, y) =

(0, y0). This is the unshaded region in Figure 20.

Suppose that your goal is to eradicate dengue fever. You might wonder if it’s possible

to change the parameters in our equations to work to our benefit. We see that the end

result ultimately depends on just two parameters: x0 and y0. There’s not much that

we can do about x0, which depends on the birth and death rates of the uninfected

mosquitos. In contrast, as shown in (1.138), y0 depends on �, which is the drop in

egg production for infected mosquitos, and on µ which captures the reduced lifespan

of infected mosquitos, and you might optimistically hope that these can be changed by

altering the strain of Wolbachia. We could either try to increase �, or to decrease µ.
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From (1.138), we see that µmultiplies d/r ⌧

1, suggesting that it might be more profitable

to attempt to increase � so that the number of

eggs produced by infected mosquitos is closer

to those produced by the uninfected. Either

way, if we increase y0 then the nullcline moves.

An example is shown in the right, where the

phase plane flow is plotted for x0 = 0.5 and

y0 = 0.4 (as opposed to y0 = 0.2 in Figure

20). Again the basin of attraction for unin-

fected mosquitos is shaded and is visibly smaller than that shown in Figure 20.

1.4.6 The Large Diversity Limit

Many systems in nature involve more than two interacting species. At the extreme

end, the human gut contains somewhere close to 1000 di↵erent kinds of microbes.

Some marine ecosystems contain a similar number of species. Can we fruitfully model

such complicated systems?

To start, we can proceed as before. If we have M di↵erent species, each with pop-

ulation Ni(t) with i = 1, . . . ,M , then we can describe the dynamics by the set of

equations

dNi

dt
= fi(N) . (1.140)

In general, this dynamics is likely to be complicated. But there’s one question that has

a rather nice answer: is it possible for multiple species to coexist?

Rephrasing this, is it possible to find a stable fixed point f(N?) = 0 when the number

of interacting species is very large, so M � 1? Expanding about the fixed point, the

dynamics is

dNi

dt
= Jij(Nj �N

?
j ) with Jij =

@fi(N?)

@Nj
. (1.141)

This fixed point is stable if all the eigenvalues of Jij have negative real part.

Now, it is of course always possible to find functions fi such that all the eigenvalues

of Jij all have negative real part. But is it likely?
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There is an important branch of mathematics, known as random matrix theory, that

allows us to answer questions of this kind. Suppose that you have a matrix where each

element is chosen randomly, and independently, from some probability distribution. We

then ask: what is the probability distribution of the eigenvalues? Rather wonderfully,

it turns out that many features of the eigenvalue distribution are independent of the

original choice of probability distribution that you choose for the individual elements.

We won’t derive the key properties of ran-

dom matrices here, but instead just state the

key result. Suppose that you sample the indi-

vidual elements of the matrix from a Gaussian

distribution with zero mean and variance �
2.

Then, in the limit M ! 1, the eigenvalues

� are uniformly distribution on the complex

plane in a disc of radius r =
p
M�2, as shown

in the figure.

How can we use this for our question of pop-

ulation stability? Here’s a simplified model. We will take the Jacobian matrix in

(1.141) to have the form

J = �1+ Jrandom . (1.142)

That is: in the absence of interactions, the fixed point is stable and all eigenvalues

have been scaled to � = �1. But we then add to this random interactions with other

species, captured by the additional term Jrandom. Invoking the result from random

matrix theory, we see that, in the M ! 1 limit, the eigenvalue with the largest real

part has

Re(�max) = �1 +
p

M�2 . (1.143)

In other words, a stable ecosystem where the interactions between di↵erent species have

variance �
2 can support at most

Mmax =
1

�2
(1.144)

di↵erent species. This is known as May’s stability criterion.

The model above involves many simplifying assumptions but, nonetheless, the idea

that there is a trade-o↵ between diversity and stability has been influential among

ecologists.
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1.5 Epidemiology

2020 was a weird year. For many of us, it’s a blur of Zoom calls and government

mandated daily walks and lots of talk about the number R0 and why it’s too big. The

purpose of this section is to re-live this experience, this time with equations.

1.5.1 The SIR Model

The classic epidemic model is named after its three variables,

S = number of people who are susceptible to the disease

I = number of people who are infected

R = number who have recovered or are dead.

One of the lessons that came out of the 2020 pandemic is that there is a tension

between the goals of scientists and those of politicians. This model highlights the

tension pretty clearly. If you’re a mathematical modeller then, at least at this basic

level, it doesn’t matter if someone recovers or dies from the disease: either way, they no

longer contribute to its spread. But I’ve been told that there are some politicians who

appreciate the distinction between these two outcomes. If you want to phrase things

more delicately, you could say R =“removed”.

The equations that model the spread of the disease are:

dS

dt
= ��IS ,

dI

dt
= +�IS � ⌫I ,

dR

dt
= ⌫I (1.145)

with positive constants �, ⌫ > 0.

These equations have an intuitive underpinning. The susceptible turn into infected at

a rate that is proportional to IS. The idea is that this product captures the interaction

between the two groups, in way that is analogous to the NP terms that we met in the

predator-prey equations. Meanwhile, the infected either recover or die at a constant

rate. Whichever path they take, they are removed from the process and no longer

contribute to the dynamics.

The first thing to note is that the total number of people N = S+I+R is a constant.

That’s tautologically true if you still count people who die! Moreover, we don’t really

care about the recovered/dead at all as they don’t feed back into the other two. That

means that we can focus just on the first two equations in (1.145) and then reconstruct

R(t) = N � S(t)� I(t).
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The first question to ask is: are we in trouble? Is the number of infected people

going to increase? From the second equation in (1.145), we see that the answer doesn’t

depend on how many are already infected, as long as I 6= 0: it depends only on how

many susceptible there are:

İ(0) > 0 () �S(0) > ⌫ . (1.146)

Here ⌫ is the rate at which individuals recover, and � is the rate at which each suscep-

tible is infected. The epidemic starts if the rate at which total population is infected

is faster than the rate at which they recover.

Typically, a disease will start with just a few infected among a large population and

we can take S(0) ⇡ N . This motivates us to define the reproductive ratio, pronounced

“R-naught” or “R-zero”,

R0 =
�N

⌫
. (1.147)

Here 1/⌫ is the transmission period; � is the transmission rate per contact; and N is

the initial number of contacts. The epidemic grows if R0 > 1. For the original strain

of COVID-19, R0 was somewhere between 2 and 5. For polio, R0 ⇡ 4� 6; for mumps

R0 ⇡ 10� 12. For measles, R0 ⇡ 16� 18.

Suppose that we are well prepared and vaccinate a fraction p of the population before

the disease hits. Then the number of susceptibles is reduced to (1 � p)N , lowering

the e↵ective reproductive ratio to (1 � p)R0. Or, said di↵erently, if the unvaccinated

population has a given R0, then we need to vaccinate a fraction p > (R0 � 1)/R0 to

stop the disease spreading. Crucially, we don’t need to vaccinate everyone, just enough

to reach herd immunity which protects the whole community.

This is a good point to pause and comment on a more philosophical aspect of math-

ematical modelling. All the mathematical models that we write down in this course

are, to put it bluntly, wrong. They are all, at best, caricatures of the underlying re-

ality. Most likely they omit many important details. All of which begs the question:

why should we trust them? This is particularly important when it comes to putting

in place mechanisms to counter disease. One answer to this question is that you can

search for things in the models that are robust: things that don’t change when you

add extra layers to the model and include further details. Crucially, it turns out that

in epidemiology, one such robust quantity is the threshold for vaccination that we have

computed above. And, indeed, it works well in practice.
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Figure 21. On the left, flows of the SIR model in the phase plane. On the right, a typical

time evolution of the susceptible and infected population.

We can solve for the trajectories in the phase plane in much the same way as the

Lotka-Volterra model. We view I = I(S) and, dividing the first two equations in

(1.145), we’re left with

dI

dS
=

⌫

�S
� 1 =

N

R0S
� 1 . (1.148)

This is easily integrated to give

I(S) =
N

R0
logS � S + c (1.149)

with c the integration constant. Curves for di↵erent choices of c are plotted on the

left of Figure 21, adorned with arrows which show that the number of susceptibles are

always decreasing. The curves are plotted in the triangular region to reflect the fact

that S+R < N , the total population. An epidemic that starts with just a few infected

is described by the blue curve which intersects the corner of the triangle.

To get the time data, you need to solve the equations numerically. A typical example

is shown on the right of Figure 21. The number of infected grows and then shrinks to

zero, while the number of susceptibles falls to a constant value S1.

From both graphs, we see that the number of infected reaches a maximum value.

From (1.148), we can easily see that the maximum number of infected occurs when

S = N/R0. An intuitive way to think about this comes from defining the e↵ective

reproductive ratio Re↵ = �S/⌫. The epidemic starts to recede when Re↵ = 1.
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Figure 22. The lucky ones, as a function of R0.

There’s one piece of good news hiding in this analysis: we’re not all going to die.

Or even become infected. The epidemic burns itself out and some number S1 never

catch the disease. This occurs when I(S) = 0. From the left plot of Figure 21, we see

that there are two values of S when this happens: we call these S0 and S1. Setting

I(S) = 0 in (1.149), we have

N

R0
logS0 � S0 =

N

R0
logS1 � S1 . (1.150)

It’s natural to assume that we start with very few infected and lots of susceptibles, so

I0 ⌧ N and S0 ⇡ N . We will denote the lucky fraction of the population as �, so that

S1 = �N . (1.151)

From (1.150), this lucky fraction satisfies

log � = R0(� � 1) . (1.152)

The result is plotted in Figure 22. For R0 < 1 there’s no need to panic: essentially 100%

of the population escapes unscathed. But we can see that things get more worrisome

as R0 increases. In particular, for R0 large we have � ⇡ e
�R0 . So by the time you get

to R0 ⇡ 10, that’s more or less everyone that’s going to get infected.

1.5.2 Just When You Thought It Was Safe. . .

I caught covid last month. So it’s certainly not gone away. Of course, what happened

is that my immunity wore o↵ and I moved from the recovered R group back into the

susceptible S group.
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It’s straightforward to incorporate this, or other variations, into the SIR model.

Here we consider a di↵erent feature: people die (of something other than the disease

in question); and people are born. And all of those new born babies sit straight in the

susceptible camp. To capture this, we add various terms to our original SIR equations

(1.145), which now becomes

dS

dt
= ��IS + bN � µS

dI

dt
= �IS � ⌫I � µI (1.153)

dR

dt
= ⌫I � µR .

Here N = S+ I+R as before; b is the birth rate, and µ the death rate. We’ve assumed

that this disease doesn’t kill anyone, an assumption that manifests itself in the fact

that members of all groups contribute to the births. Moreover, we assume that the

death rate is constant regardless of whether you’ve had the disease or not. We see that

dN/dt = (b� µ)N like the Malthus model of Section 1.1.

To make things simple, let’s assume (perhaps unrealistically) that the population is

stable, with b = µ so that N is constant. Our reproductive ratio again comes from

looking at the İ equation when S = N ; it is

R0 =
�N

⌫ + µ
. (1.154)

At first glance, it looks like that’s good news: dying reduces R0! But some thought

suggests that the e↵ect is minimal: for any disease in which you recover over a period

of time that’s much shorter than your lifetime, we necessarily have ⌫ � µ, and so

R0 ⇡ �N/⌫ as before.

Since N is constant, the first two equations again decouple from the third. This time,

the influx of births means that there is a fixed point (S?
, I

?) with

S
? =

⌫ + µ

�
=

N

R0
and I

? = µ
N � S

?

�S?
=

µ

�
(R0 � 1) . (1.155)

By now, we know what we’re doing. We determine the stability by computing the

Jacobian at the fixed point

J =

 
�µR0 �(⌫ + µ)

µ(R0 � 1) 0

!
. (1.156)
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Figure 23. On the left, flows of the modified SIR model in the phase plane. On the right, a

typical time evolution of the susceptible and infected population.

The eigenvalues are complex and given by

� = �
µR0

2
±

1

2

p
µ2(R0 � 2)2 � 4µ⌫(R0 � 1) . (1.157)

If we’re in the realistic situation where recovery is not measured in a timescale less

than decades then µ ⌧ ⌫ and we have

� ⇡ �
µR0

2
± i! with ! =

p
µ⌫(R0 � 1) . (1.158)

These eigenvalues tell us that we have a stable fixed point, which trajectories spiral

towards with a period The resulting dynamics is plotted, both in the phase plane, and

as a function of time, in Figure 23

This suggests that we will observe transient oscillations on a time period that is the

geometric mean of the lifetime and infection recovery time.

T =
2⇡

!
=

2⇡p
µ⌫(R0 � 1)

⇡
1

p
µ⌫

. (1.159)

For example, measles has R0 ⇡ 20 with a recovery rate of about 12 days. So putting

1/⌫ ⇡ 12 days and setting a human lifetime at 1/µ ⇡ 70 years, we expect to see

oscillations with a period of T ⇡ 2.2 years. In fact, there’s an extra complication here,

namely schools. There is a delta-function injection of a susceptible population every

September when kids start school. This is su�cient to keep the measles outbreaks

occurring, but with an oscillation that is roughly 2 years rather than 1 year. Data of

measles outbreaks in the UK over the past decade is shown in Figure 24.
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Figure 24. Data from the UK government on measles outbreaks over the past decade.

1.6 Chemical Reactions

The kinds of dynamical system that we’ve been developing so far have many applica-

tions that removed from population dynamics. Here we give an example in which we

treat the population of chemicals in reactions.

1.6.1 The Law of Mass Action

The simplest chemical reaction is that two chemicals, A and B, form a product C,

A+B
k

��! C . (1.160)

Here k is the rate constant of the reaction. It’s straightforward to model this in terms

of equations. We let A, B and C denote the concentration of the chemical and write

the equations

dA

dt
= �kAB ,

dB

dt
= �kAB ,

dC

dt
= +kAB . (1.161)

The fact that the time derivatives are proportional to the product of the concentrations

A⇥ B is known as the law of mass action in chemistry. It’s the same conceptual idea

that we’ve invoked in both the predator-prey models and the epidemiology models

but without giving it a name. However, the law of mass action is on much firmer

footing in the context of chemical reactions where it can be derived using the kind of

technology that we introduced in the lectures on Statistical Physics. In contrast, in

population dynamics and epidemiology, the idea that we get the right phenomenology

by multiplying together the interacting variables is an assumption.
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It’s straightforward to solve these equations. First we note that A + C = A0 is

constant, as is B +C = B0. We can then use this to write the last equation in (1.161)

purely in terms of C,

dC

dt
= k(A0 � C)(B0 � C) . (1.162)

This has the solution

C(t) = A0B0
1� e

(A0�B0)kt

B0 � A0e
(A0�B0)kt

(1.163)

where we’ve chosen the integration constant so that C(0) = 0. This expression has

the nice property that limt!1 C(t) = min(A0, B0), reflecting the fact that the reaction

stops whenever one of the chemicals is exhausted.

What is done can sometimes be undone. It may be that the reaction can also go in

the opposite direction, albeit at a di↵erent rate:

A+B
k1

��*)��
k2

C . (1.164)

Chemists often use the notation k�1 for the inverse reaction rate k2. In this case, the

third equation in (1.161) becomes

dC

dt
= k1AB � k2C (1.165)

with k1 and k2 the two reactions rates. We still have A + C = A0 constant and

B + C = B0 constant, so this equation becomes

dC

dt
= k1(A0 � C)(B0 � C)� k2C (1.166)

Now there is a fixed point, when the right-hand side vanishes. We define

 =
k2

k1
. (1.167)

From (1.165), we see that, despite the similarity in their names, k2 and k1 actually have

di↵erent dimensions, so that  has the dimensions of concentration. Indeed, the fixed

point obeys the quadratic

C
2
� (A0 +B0 + )C + A0B0 = 0 (1.168)

together with the additional requirement that 0 < C < min(A0, B0).

– 61 –



Lotka-Volterra Revisited

Here’s an interesting class of reactions: we have four di↵erent chemicals, A, B, C and

D which react as

A+B
k1

��! 2B and B + C
k2

��! 2C and C
k3

��! D (1.169)

We take the reaction rates to be k1, k2, and k3 respectively. The dynamics is then given

by

dA

dt
= �k1AB

dB

dt
= +k1AB � k2BC (1.170)

dC

dt
= +k2BC � k3CD (1.171)

dD

dt
= +k3CD .

Suppose that we now intervene and ensure that there is a constant concentration of the

chemicals A and D. Then we can replace these variables with these constant values in

(1.170) and (1.171). These two equations then reduce to the Lotka-Volterra equations

that we studied in detail in Section 1.4 where we saw that the concentration of the

chemicals B and C will oscillate over time. Indeed, this was the context in which

Alfred Lotka first wrote down these equations.

Stoichiometry

Consider a reaction in which m molecules of type A combine with n molecules of type

B to produce a molecule of type C. If the reaction is reversible, then we write

mA+ nB
k1

��*)��
k2

C . (1.172)

This is modelled by the equations

dA

dt
= �mk1A

m
B

n +mk2C

dB

dt
= �nk1A

m
B

n + nk2C (1.173)

dC

dt
= k1A

m
B

n
� k2C .

Here the powers Am and B
n are a consequence of the law of mass action. Meanwhile,

the pre-factors of m and n are designed to ensure that A+mC and B + nC are both

constant, as they should be.
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1.6.2 Michaelis-Menten Enzyme Kinetics

Some biochemical reactions can be yawningly slow. They get a helping hand from

enzymes. These are proteins which give the chemicals a small hug, increasing the

reaction rate.

The original set of chemicals are called the substrate S. The end result is called the

product P . The reaction is helped on its way by a population of enzymes E. When

the enzymes bind with the substrate, they form a combination known as a complex C.

The reaction takes place through the Michaelis-Menten reaction:

S + E
k1

��*)��
k2

C
k3

��! E + P . (1.174)

Note that the first reaction, with the enzymes binding to the substrate, can go both

ways. But the second, where the enzyme releases the final product, goes only in one

direction. The equations governing this reaction are

dS

dt
= �k1SE + k2C

dE

dt
= �k1SE + (k2 + k3)C

dC

dt
= +k1SE � (k2 + k3)C

dP

dt
= +k3C . (1.175)

We will assume that S(0) = S0 and E(0) = E0, while C(0) = P (0) = 0 as initial

conditions. We usually assume that S0 � E0, meaning that the limit on the reaction

rate is set by the number of enzymes rather than the lack of substrate.

There are two conservation laws within these equations. These are

E + C = E0 and S + C + P = S0 . (1.176)

The first reflects the fact that the enzymes aren’t used up: they are either empty and

denoted as E or full and denoted as C. The second tells us that the end result is to

change substrate into product without losing any.

We can use the first of these to eliminate the enzyme concentration E, and focus on

equations just for S and C. (Note that the product P is just a dumping ground and

doesn’t a↵ect the other variables.) We have

dS

dt
= �k1E0S + (k1S + k2)C

dC

dt
= k1E0S � (k1S + k2 + k3)C . (1.177)
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Figure 25. The flows in the (s, c) phase plane, plotted with ✏ = 0.1. We have also taken

µ = 1.5 and � = 0.5.

We can clean these up a little by rescaling variables. We write s = S/S0 and

c = C/E0. This is the proportion of substrate and the proportion of occupied enzymes

respectively, with s(0) = 1 and c(0) = 0. If we also rescale time by defining ⌧ = k1E0t

then the equations become

ds

d⌧
= �s+ (s+ µ� �)c

dc

d⌧
=

1

✏

�
s� (s+ µ)c

�
(1.178)

where we’ve now got just three constants

� =
k3

k1S0
and µ =

k2 + k3

k1S0
and ✏ =

E0

S0
. (1.179)

It’s straightforward to solve these equations numerically and the result is shown in

Figure 25 where, crucially, we have taken ✏ ⌧ 1. The result is rather striking: all

trajectories head immediately to a common curve, which they then follow down to the

origin.

The key to understanding this feature is to appreciate that, with ✏ ⌧ 1, the enzyme

dynamics c(t) happens on a much faster time scale than the substrate dynamics s(t).

The system therefore relaxes quickly to the ċ = 0 curve, given by

c =
s

s+ µ
. (1.180)
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That’s the curve shown in red in Figure 25. There is then a much slower precession

along this curve which is captured by substituting (1.180) into the equation for ṡ,

ds

d⌧
= �

�s

s+ µ
. (1.181)

This tells us how the substrate is depleted towards s = 0. As the amount of substrate

changes, so too does the concentration of complexes, quickly adapting to remain in the

equilibrium given by (1.180).

Biochemists are often interested in the reaction velocity R, given by

R =
dP

dt
= k2C = k1k2E0

S

k1S + k2 + k3
. (1.182)

This is the Michaelis-Menten equation, often written in terms of the maximum reaction

velocity V = k2E0 and the so called Michaelis-Menten constant  = (k2 + k3)/k1. You

can extract these constants by plotting the linear graph of R�1 against S�1.

1.6.3 Asymptotic Behaviour

It’s possible to make analytic progress by solving the equation perturbatively in the

small parameter ✏. However, naively setting ✏ = 0 changes the character of the di↵er-

ential equation so we need to tread a little carefully.

Let’s start by being naive. If we set ✏ = 0 in (1.178) then we get the di↵erential

equation (1.181). We’ll call the function that solves this s̃(t): it is easy to check that

this is given implicitly by

s̃+ µ log s̃ = ��⌧ + constant . (1.183)

We can fix the constant by requiring the initial condition s̃(⌧ = 0) = 1, which tells us

that

s̃+ µ log s̃ = ��⌧ + 1 . (1.184)

This should be viewed as an approximation to the late time behaviour of the system: it

holds after the fast dynamics has happened and we can impose the constraint (1.180).

We can also get an approximation for the short time behaviour. To do this, we

rescale the time coordinate and write

⌧ = ✏T . (1.185)
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The two equations of motion (1.178) become

ds

dT
= ✏
�
� s+ (s+ µ� �)c

�
and

dc

dT
= s� (s+ µ)c . (1.186)

Now the ✏ is sitting on the right-hand side of the equation, rather than the left-hand

side, and we can do a standard perturbative expansion, writing

s(T ) = s0(T ) + ✏s1(T ) + . . . and c(T ) = c0(T ) + ✏c1(T ) + . . . . (1.187)

This is a short time expansion. To leading order in ✏, we have

ds0

dT
= 0 and

dc0

dT
= s0(T )� (s0(T ) + µ)c0(T ) (1.188)

subject to the initial conditions s(0) = 1 and c(0) = 0. The first of these equations

tells us that s0(T ) = 1, while the second is then solved by

c0(T ) =
1

1 + µ

⇥
1� e

�(1+µ)T
⇤

=) c0(⌧) =
1

1 + µ

⇥
1� e

�(1+µ)⌧/✏
⇤
. (1.189)

We see that c0(⌧) has the characteristic e�⌧/✏ behaviour at short times. Famously, this

kind of function vanishes faster than any polynomial as ✏ ! 0.

For both s(⌧) and c(⌧), we now have two approximations to the solutions. The

short time solutions are s0(⌧) (which, admittedly, is trivially constant) and c0(⌧). The

long time solution, after the fast dynamics is exhausted, is s̃(⌧) given implicitly by

(1.184) and, from (1.180), c̃(⌧) = s̃(⌧)/(s̃(⌧) + µ). In the world of matched asymptotic

expansions, s0(⌧) and c0(⌧) are called inner solutions while s̃(⌧) and c̃(⌧) are called

outer solutions. Our next task is to patch these together.

This is straightforward for s(⌧) because the short time solution is just a constant,

s0(⌧) = 1 and, indeed, this matches the short time behaviour lim⌧!0 s̃(⌧) = 1. You can

check that s̃(⌧) is a good approximation to the true solution when ✏ ⌧ 1.

For c(⌧), we have to be a little more careful. We have

lim
⌧!1

c0(⌧) = lim
⌧!0

c̃(⌧) =
1

1 + µ
. (1.190)

This is telling us that they will patch nicely together. We do this by adding the

two solutions and subtracting their common piece, a process known as the uniform

approximation,

cuniform(⌧) = c0(⌧) + c̃(⌧)�
1

1 + µ
. (1.191)

This function is still known only implicitly because s̃(⌧) is given by the relation (1.184).

Nonetheless, you can check that cuniform(⌧) gives good agreement to the numerical

solution for c(⌧) when ✏ ⌧ 1.
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1.7 Neuron Excitations

One of the great advances of mathematical biophysics was a system of equations, first

written down in 1952 by Hodgkin and Huxley, to describe the way that neurons fire in

the brain. Neurons have a long sticky-out bit called an axon, which conducts pulses

of electricity known as action potentials and these mediate signalling from one neuron

to the next. These action potentials form from some external chemical prompt, but in

a way such that a reasonably small prompt is amplified to an unambiguous pulse of

electricity. The question is: how does this happen?

Rather than looking at the propagation of the signal along the axon, Huxley and

Hodgkin instead considered the easier situation in which the signal is constant in space

and focussed on how the signal fires in time. (We will rectify this omission and exam-

ine how the signal propagates in space in Section 3.2.3.) They wrote down a rather

complicated set of equations, in which there are three kinds of electric current, carried

by potassium ions, sodium ions, and other stu↵ that they called the “leakage current”.

These currents have to pass through gates and the probability that these gates are open

or closed depends in some complicated way on the voltage. We won’t go into the detail

of the Hodgkin-Huxley model, but the end result is four equations in four variables

which they were able to solve numerically.

The solutions matched well the experimental data from studies of squid giant axons.

(As opposed to giant squid axons; the squid in question was rather small by squid

standards, the axon rather large by axon standards.) The giant axon is the part of the

squid’s nervous system that is responsible for escaping danger by squirting out water

like a jet propulsion system; the large size of the axon means that it has lower resistivity

and so signals propagate faster, allowing quicker reaction times. It also means that it’s

big enough to stick an electrode down there and measure the voltage. You can read

about the Huxley-Hodgkin model in many places, including a fairly decent summary

on Wikipedia.

As an aside: Hodgkin and Huxley were successive masters of Trinity College Cam-

bridge in the 70s and 80s. Hodgkin was long before my time, but I did meet Andrew

Huxley a couple of years before he died. I sat down next to him at lunch, embar-

rassingly ignorant of who he was even though his portrait was hanging on the wall in

front of me. He asked me what I did and, when I told him I was a physicist, there

was a lovely pause before he said: “I met J.J. Thomson once”. (This is the same J.J.

Thomson who discovered the electron in 1897.)

– 67 –



The key feature in the Hodgkin-Huxley model is that a small input gives rise to a big,

spiked response. There are many other biological situations where similar behaviour

is seen, including heart muscle cells and the blooms of plankton. The general class of

models are called excitable systems and in this section we explore the phenomenology

of the simplest.

1.7.1 FitzHugh-Nagumo Model

The FitzHugh-Nagumo model is the following pair of coupled di↵erential equations,

du

dt
=

1

✏

✓
u+ v �

1

3
u
3
� z(t)

◆

dv

dt
= �(u� a+ bv) . (1.192)

In the context of signal propagation by neurons, u(t) represents the voltage di↵erence

across a membrane, while v(t) represents the ease with which sodium and potassium

ions can cross the membrane.

The model depends on three positive constants, a, b and ✏. The first pair sit in the

regions

0 < b  1 , 1�
2b

3
< a < 1 . (1.193)

The remaining constant ✏ is arbitrary but, as the name suggests, we will soon take

✏ ⌧ 1 which ensures that the dynamics of u(t) is fast, while that of v(t) is slow. In

addition, there is an input function z(t) which we get to specify and it acts as a forcing

term in the first equation.

We start by setting z(t) = 0 and look at the dynamics of the equations. There is a

single fixed point (u?
, v

?) which is the intersection of the two nullclines

v = u

✓
1

3
u
2
� 1

◆
=

a� u

b
. (1.194)

We have to solve a cubic which is a little awk-

ward, but we can extract the essential features

if we plot the two graphs together, as shown

in the figure. First note that the slope of the

cubic at the origin is �1, while the slope of

the line is �1/b which, by the first inequality

in (1.193), is necessarily steeper. This tells us

that there is only one intersection point.
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Figure 26. The phase plane dynamics of the FitzHugh-Nagumo model, plotted with a = 0.8,

b = 1 and ✏ = 0.2. Because ✏ is reasonably small, the dynamics separates into a fast mode,

which heads towards the cubic, and a much slower mode which traces the curve of the cubic

towards the fixed point where the nullclines meet. A close up of the flow near the fixed point

is shown on the right.

Second, the cubic has roots at u = 0 and u = ±
p
3. The minimum is at u = 1 where

we have v = �2/3. The slightly weird inequality in (1.193) ensures that the linear

graph sits above the cubic at its minimum, which means that they must meet later. In

other words, we have

u
?
> 1 . (1.195)

Happily, this is all the information we need to determine the stability of the fixed point.

The Jacobian is

J =

 
(1� u

? 2)/✏ 1/✏

�1 �b

!
. (1.196)

We have Tr J < 0 and det J > 0, ensuring that the real part of both eigenvalues is

negative and the fixed point is stable.

Now we assume that ✏ ⌧ 1 so that the dynamics separates into a fast piece and

a slow piece. The u(t) variable is the fast piece, quickly tending almost horizontally

towards the cubic v = u
3
/3�u. (In the context of neurons, this happens on a time scale

of about 1 ms.) Then the v(t) dynamics is slower. The result is plotted numerically in

Figure 26. Note that the flow is unusual. If the flow hits the cubic to the right of the
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Figure 27. On the left: the phase plane motion, shown in red, after the perturbation.

The system starts at the original fixed point, where the lower cubic curve intersects the

straight line. It then goes on a long detour in phase space before ending up at the new fixed

point, where the upper cubic curve intersects the straight line. On the right: the resulting

time dependence of u(t) and v(t). These plots are made with the same values as Figure 26,

together with V0 = 0.3.

local minimum at u = 1, then the dynamics simply follows the cubic down towards the

fixed point. If, in contrast, it hits the cubic to the left of that local minimum then it

takes the long way round to the fixed point, moving up, before sweeping right as shown

in Figure 26. The fact that some paths take these long deviations will be important in

what follows.

Response to an External Input

Now we explore the role of the forcing term z(t) in the equations (1.192). Suppose that

by time t = 0, the system has happily settled down at the fixed point. Now we perturb

the system by turning on z(t), with the simple profile

z(t) =

(
0 for t < 0

V0 for t > 0
(1.197)

with V0 constant.

The e↵ect of the perturbation V0 > 0 is to shift the cubic nullcline upwards, while

leaving the linear nullcline alone. This means that the fixed point also shifts up and to

the left. What happens next depends crucially on whether the new fixed point is stable

or unstable. We saw previously that the fixed point is stable provided that u
?
> 1

which ensures that it sits to the right of the local minimum in the cubic. It’s simple to

check that this persists for our perturbed system provided that V0 < Vcrit with

Vcrit =
2

3
+

a� 1

b
. (1.198)
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Figure 28. On the left: the phase plane motion, shown in red, after the perturbation. Now

the new fixed point is unstable and the system performs indefinite loops. On the right: the

resulting time dependence of u(t) and v(t). These plots are made with the same values as

Figure 26, together with V0 = 0.5.

We start by looking at the situation with V0 < Vcrit. If the perturbation V0 is very

small, so that the old fixed point sits above the minimum of the new cubic, then

nothing dramatic happens: the system simply flows directly to the new fixed point.

But a slightly larger V0, still with V0 < Vcrit, has a much more dramatic e↵ect. If the

old fixed point sits below the minimum of the new cubic then the system takes a large

diversion to reach the new fixed point. This is shown on the left of Figure 27 which

depicts both the original and the new nullclines, together with the trajectory in the

phase space shown in red. This trajectory starts at the original fixed point, where the

lower cubic curve intersects the line, and ends at the new fixed point at the intersection

of the upper cubic curve. Although the two fixed points are close to each in phase

space, the motion takes a huge detour to get from one to the other. The result is that a

small perturbation of the original system can lead to a large pulse in the variables u(t)

and v(t), before they settle down to equilibrium values that are close to their original

values. This is shown on the right of Figure 27. In the context of neurons, this pulse

in the voltage is what causes the neuron to fire.

The situation for V0 > Vcrit is shown in Figure 28. Once again, the system takes a

long detour to get from the old fixed point to the new. But now, once it arrives at the

new fixed point, it finds that it’s not particularly welcome as the fixed point is unstable

and it gets pushed away. It is now condemned to loop forever on the limit cycle. The

resulting dynamics for u(t) and v(t) are shown on the right of Figure 28 and exhibit

an infinite series of pulses.
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For both V0 < Vcrit and for V0 > Vcrit, we see how a small change in the equation can

lead to a large change in the resulting dynamics, either to initiate a single, transient

pulse or to send the system into a new limit cycle.
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