
2 Discrete Time

Sometimes it is more natural to model populations and other biological quantities using

discrete, rather than continuous, time. A species may give birth only in one particular

season. Or you may be interested in how some mutation evolves from one generation to

the next. Alternatively, it may be that you really do want to think of time as continuous

but you’re solving an equation numerically and want to know the pitfalls that could

arise when making time discrete.

Whatever the motivation, in this section we will study the behaviour of systems of

a single variable xn where the index n 2 Z plays the role of time. In the simplest case,

the variable evolves through some function

xn+1 = f(xn) . (2.1)

We will learn that one dimensional systems of this kind can be significantly richer than

their di↵erential equation counterparts.

2.1 Linear Examples

We start our discussion by looking at a couple of simple examples. These won’t bring

any substantially new dynamics to the table beyond what we’ve seen in continuous

systems. But they will allow us to get used to some features of discrete time dynamics.

2.1.1 Hello Poppy

Poppies are annual flowers, living for just one year. Their seeds sit in the ground over

winter. Some fraction of them germinate the following year, some the year after that,

and some not at all. We would like to model this mathematically.

We’ll introduce the following variable

• Let xn be the number of plants in season n.

• Let � be the number of seeds produced by each plant.

• Let � be the probability that a seed germinates after one year.

• Let ⌧ be the probability that, having failed to germinate the first year, a seed is

successful the next.

– 73 –

Now we’re in business and can write down the equation that describes the poppy

population: it is

xn = ��xn�1 + ⌧(1� �)�xn�2 . (2.2)

What kind of solutions should we be looking for? We could look for a steady state, but

the only one is x
? = 0. And, because the equation is linear, any small perturbation

around this just brings us back to (2.2).

Instead, motivated by the form of the equation (2.2), we look for solutions of the

form

xn = p
n (2.3)

for some p. If we substitute this into (2.2), we get a quadratic

p
2 = ��p+ ⌧(1� �)� . (2.4)

This has roots

p± =
��

2
±

1

2

p
�2�2 + 4⌧(1� �)� . (2.5)

We have p� < 0 < p+ and |p+| > |p�|. The general solution takes the form

xn = Ap
n
� +Bp

n
+ . (2.6)

Because |p+| > |p�|, the second term will dominate at large n. The question is: does

the population grow or shrink?

This depends on the size of p+. If p+ > 1 then the population grows over time; if

p+ < 1 then it shrinks. The critical case is

p+ = 1 =) �[� + ⌧(1� �)] = 1 . (2.7)

This makes sense: the quantity [�+ ⌧(1��)] is the probability that a seed germinates,

either in the first year or the second. So the quantity �[� + ⌧(1 � �)] is the average

number of o↵spring that a given plant produces. If this number is greater than one,

then p+ > 1 and the poppies flourish. If this number is less than one, then p+ < 1 and

it’s goodbye poppy.

2.1.2 Breathe Again

In Section 1.2.3, we introduced a model of breathing in which the volume of the breath,

V , depends on the concentration of CO2 in your blood. Because breaths are things you

can count, it makes sense to construct such model using discrete time.

– 74 –

We previously introduced the breathing model to illustrate delay equations. We’ll

keep this feature, with the volume of the nth breath Vn determined by the concentration

of CO2 k breaths previously,

Vn+1 = ↵Cn�k . (2.8)

We will then model the change in the CO2 level by the equation

Cn+1 � Cn = M � �Vn+1 . (2.9)

Here M,↵, � > 0. Note that this model is not a straightforward discretisation of

our previous di↵erential equation (1.52). Indeed, here we have a rather simple linear

system, contrasting with the more complicated non-linear delay di↵erential equation

that we previously studied.

We can eliminate the volume Vn entirely, and focus just on the CO2 concentration,

Cn+1 = M + Cn � ↵�Cn�k . (2.10)

There is a steady-state solution given by Cn = C
? with

C
? =

M

↵�
. (2.11)

Now we can look at perturbations away from this steady state. We will be particu-

larly interested in how the qualitative behaviour of the solutions depends on the delay

parameter k.

k = 0: To kick things o↵, let’s analyse (2.10) when k = 0 so there is no delay and the

volume of breath depends on the present concentration of CO2. We perturb around

the fixed point and write Cn = C
? + ✏n where, as the name suggests ✏n ⌧ 1. Then we

have

✏n+1 = (1� ↵�)✏n . (2.12)

We see that the steady state is stable provided that ↵� < 2 and is unstable for ↵� > 2.

k = 1: Now what happens if we introduce the smallest possible delay k = 1? Perturbing

around the fixed point, the equation (2.10) becomes

✏n+1 = ✏n � ↵�✏n�1 . (2.13)

This time we’re going to look for solutions of the form ✏n = p
n for some p. The equation

above then becomes a quadratic:

p
2
� p+ ↵� = 0 =) p = p± =

1

2

⇣
�1±

p
1� 4↵�

⌘
. (2.14)

– 75 –

For ↵� <
1
4 , both p+ and p� are real and, moreover |p±| < 1. Then we have the general

solution

✏n = Ap
n
+ +Bp

n
� (2.15)

which decays as ✏ ! 0 as n ! 0. We see that, once again, the fixed point C? is stable

for ↵� small enough.

For ↵� >
1
4 , the roots p± become complex. This means that the system now oscillates

about the fixed point but doesn’t otherwise change our approach. We still want to know

if |p±| is less than one, and hence the fixed point is stable, or greater than one and

hence unstable. We have

|p±|
2 =

1

4
+

✓
↵� �

1

4

◆
= ↵� . (2.16)

So we learn that, complex oscillations aside, the system is stable if ↵� < 1 and unstable

if ↵� > 1. The upshot of this is that the delay reduces the range of ↵� over which the

system is stable.

We can look more closely what happens at ↵� = 1 and the system becomes unstable.

Here we have

p± =
1

2

⇣
�1±

p
3i
⌘
= e

±⇡i/3
. (2.17)

We see that the system has 6-fold periodicity at this point, with p
6
± = 1.

2.2 The Logistic Map

The fun with discrete maps really gets going when we look at non-linear maps. A great

deal of all that’s interesting and surprising about these maps can be found lurking

inside the deceptively simple example

xn+1 = f(xn) = rxn(1� xn) . (2.18)

This is the logistic map. Understanding the mysteries of the logistic map will occupy

us for the rest of this section.

We will take our parameter to lie in the range xn 2 [0, 1]. The logistic map keep us

within this range provided that the parameter r is bounded by

0 r 4 . (2.19)

If r = 4, the maximum value of the logistic map (at xn = 1/2) gives xn+1 = 1. Much

of our interest will be focussed on how the dynamics of the logistic map changes as we

very r.

– 76 –

Figure 29. Two plots of xn. On the left, we have taken r = 0.9 and x0 = 0.5. We see that

the map quickly tends to the origin. On the right, we have taken r = 2.9, close to the end

of the window of stability, and x0 = 0.1. The map now tends to x?, oscillating about it as it

goes.

The logistic map a discrete version of the logistic equation that we studied in section

1.1. However, after nondimensionalisation, the logistic equation has no free parameters.

That’s not true of the logistic map (2.18), which crucially depends on the parameter

r which can’t be absorbed into rescaling time because that’s now a discrete variable.

Indeed, if you discretise the logistic equation and rescale then you will end up with the

logistic map (2.18) with r = 1 + ✏
2 where ✏ ⌧ 1 is related to the small time interval

that you choose. We will soon see that, for this value of r, the logistic map does indeed

recover the qualitative behaviour of the logistic equation. But, for other values of r,

wildly di↵erent things can happen.

2.2.1 The Fixed Points

The logistic map has two fixed points: one at x = 0 and the other at

x
? = 1�

1

r
. (2.20)

This is only a fixed point for r > 1.

What is the stability of these two fixed points? First we can look near the origin

where we write xn = ✏n ⌧ 1. We then have

xn+1 = r✏n(1� ✏n) = r✏n +O(✏2n) . (2.21)

So the origin is a stable fixed point for r < 1, as each successive iteration takes us closer

to it. It is unstable for r > 1.

– 77 –

Figure 30. Cobweb diagrams, made with the same parameters as Figure 29. On the left,

r < 1 and on the right 1 < r < 3.

Meanwhile, for the non-trivial fixed point (2.20), we write xn = x
? + ✏n and look at

xn+1 = x
? + f

0(x?)✏n +O(✏2n) with f
0(x?) = 2� r . (2.22)

This fixed point is stable for 1 < r < 3 and is unstable for r > 3. Moreover, in the

stable regime 2 < r < 3, we see that f
0(x?) is negative and so successive terms will

jump either side of x?, while honing in to the fixed point.

We can see this analysis bearing out by simply plotting successive iterations of the

logistic map. This is shown in Figure 29 for r < 1 and for 2 < r < 3, where we see that

the results converge to the origin and to x
? respectively.

Cobweb Diagrams

There’s a nice graphical way to see how the map behaves. We plot y = f(x) together

with the line y = x. Start at some value of x and y = 0 and move up until you hit the

graph f(x). Then it’s simple to convince yourself that successive iterations of the map

are implemented by bouncing at right angles between the graph and the line.

For r < 1, the line sits above the graph f(x) and the bouncing takes you down to

the origin. This is shown in on the left of Figure 30. For r > 1, the line leaves the

origin below the graph f(x) and intersects it again at x?. For 1 < r < 3, the bouncing

zooms in to the fixed point as shown on the right of Figure 30.

2.2.2 Bifurcation

We’ve understood the behaviour of the logistic map for r < 3. But what happens for

r > 3 when the fixed point x
? is unstable? We can easily answer this by looking at

– 78 –

Figure 31. The logistic map for r = 3.4 rapidly reaches a stable 2-cycle, bouncing between

two di↵erent points.

some numerics. Both the behaviour of xn and the cobweb diagram are shown in Figure

31 for r = 3.4. We see that the map starts by honing in on the fixed point x
?, but

quickly realises that this is unstable and settles down to a periodic pattern, bouncing

between two di↵erent points. On the cobweb diagram, the trajectory repeatedly traces

out the rectangle as shown in the figure.

We will call a trajectory that bounces between p di↵erent points a p-cycle. What we

have on our hands in Figure 31 is a 2-cycle.

We can understand this behaviour analytically. We look at the map

f
2(x) = f(f(x))

= rf(x)(1� f(x))

= r
2
x(1� x)(x� rx(1� x)) . (2.23)

This has fixed points

x = f
2(x) =) x(1� r + rx)(1 + r � r(1 + r)x+ r

2
x
2) = 0. (2.24)

The first two factors give us our previous fixed points, x = 0 and x = x
?. Now, however,

we see that f2 has two further fixed points, where the second factor vanishes. These

are given by

x± =
1

2r

⇣
1 + r ±

p
(r � 3)(r � 1)

⌘
. (2.25)

We see that these fixed points are only real when r > 3, which is what we wanted.

These are the two points that the system bounces between, as evident in the numerical

solution of Figure 31.

– 79 –

Figure 32. The logistic map for r = 3.52 reaches a stable 4-cycle, bouncing between four

di↵erent points.

Next we should ask: are these fixed points of f
2(x) stable? Here, the standard

perturbation analysis prompts us to look at the derivative f 2 0(x±) and see if its modulus

is bigger than one (in which case the fixed points are unstable) or less than one (in

which case they are stable). We have

df
2

dx
=

d

dx
f(f(x)) = f

0(f(x)) f 0(x) . (2.26)

If we put x = x+ then f(x+) = x� and so, rather cutely, we have

df
2

dx

����
x+

= f
0(x�)f

0(x+) = r
2(1� 2x�)(1� 2x+) = �r

2 + 2r + 4 . (2.27)

You can check that, for r slightly greater than 3, the modulus of the right-hand side is

less than one and so the fixed points of f 2(x) are stable. This is the behaviour that we

see in the figure. But the fixed points turn unstable when

�r
2 + 2r + 4 < �1 =) r > 1 +

p
6 ⇡ 3.449 (2.28)

where we’ve taken the positive root of the quadratic.

The net result is that the 2-cycle behaviour seen in Figure 31 only holds for the

regime 3 < r . 3.45. Which begs the question: what happens for greater values of r?

Again, we can plot things numerically to get an idea. This is shown in Figure 32 for

r = 3.52 where we see that now the value of x bounces periodically between four fixed

points. Again, we could get an analytic handle on this by studying the fixed points

of f 4(x) although this will now be a polynomial of order 8 and somewhat harder to

analyse. (Actually, after factoring out the fixed points of f(x) and f
2(x), you’re left

with a quartic to deal with.)

– 80 –

Figure 33. The long term behaviour of the logistic map as a function of r. We see the single

stable fixed point for 1 < r < 3 turning into the stable 2-cycle, then the stable 4-cycle, then

the stable 2n-cycle. For r > r1, there is (typically, but not always) no stable cycles. But

occasionally, out of the murk, windows of order appear.

This story now repeats. The 4-cycle seen in Figure 32 does not persist forever but,

it turns out, becomes unstable for r & 3.55, at which point we find ourselves with a

stable 8-cycle. And so on. As r increases, we find ourselves with the period of the cycle

constantly doubling in size.

2.2.3 And Then. . . Chaos

The period of cycles keep doubling and the

range over which this happens gets shorter and

shorter. Until we get to approximately

r > r1 = 3.5699 . (2.29)

At this point, all hell breaks loose. For most

(but not all!) values of r above this value, there

is no discernible pattern in the long term be-

haviour, which bounces around seemingly at

random. The plot for r = 3.7 is shown in the figure to the right.

– 81 –

Figure 34. Plots of y = x, y = f(x) and y = f3(x). On the left, r = 3.8 and on, the right,

r = 3.835. In the latter case, there are solutions to x = f3(x), reflecting the emergence of a

stable 3-cycle.

We can get more insight into this by staring (for a long time!) at the iconic plot

shown in Figure 33. This depicts the long-time behaviour of the logistic map for

di↵erent values of r. For 1 < r < 3, there is the single fixed point that we found above.

At r ⇡ 3.45, this bifurcates into the period 2-cycle and this later bifurcates into the

period 4-cycle and so on. For r > r1, we see that a seeming continuum of values of x

appear. This is the regime of chaos.

But, perhaps most surprisingly, the chaos does not persist for all values of r > r1.

Occasionally, we find windows of order. These are the white stripes that are apparent

in Figure 33 where we again find cycles of some order.

The most prominent of these is the white stripe around r = 3.88. Towards the left

of this stripe, you can see three points in the diagram. This reflects the fact that, in a

small window, there is a stable 3-cycle. This is something new, as all previous p-cycles

had p a power of 2.

We could try to repeat the story above to understand how this 3-cycle comes about,

looking for fixed points of f 3(x). But, as for all higher powers, this is tricky because it’s

a higher order polynomial and we don’t have analytic expressions for its values. But

we can plot the functions y = x, y = f(x) and y = f
3(x) to see where the fixed points

lie. These functions are plotted in Figure 34 for r = 3.8 (on the left) where there is no

3-cycle, and for r = 3.835 (on the right) which is in the window with the stable 3-cycle.

We can see that, as r changes, the dips in f
3(x) come down su�ciently to intersect the

straight line, revealing the fixed points. In fact, the straight line intersects the curve

f
3(x) twice each time: these are denoted with red and white dots. The stable 3-cycle

– 82 –

corresponds to intersections where f
3(x) is shallower and these are coloured red. The

white dots are then an accompanying unstable 3-cycle.

The period doubling that we saw previously also takes place within these windows of

order. For example, the 3-cycle turns into a 6-cycle, which then turns into a 12-cycle,

and so on.

2.2.4 The Logistic Map in Ecology

The logistic map is certainly very pretty. But, so far, we haven’t really explained why

it might be useful in modelling population dynamics.

The potential utility of the logistic map, with its panoply of di↵erent behaviours,

was advertised in a famous paper by the mathematical ecologist Bob May5. The first

compelling evidence that period bifurcations and the ensuing chaos are at play in the

world of population dynamics was presented in a study from the 1990s on flour beetles6.

The population at discrete time n consists of larvae Ln, pupae Pn and adults An and

can be modelled as

Ln+1 = bAne
�c1An�c2Ln

Pn+1 = rLLn (2.30)

An+1 = Pne
�c3An + rAAn .

Here the constants b, rL and rA capture reproductive and death rates while the con-

stants c1, c2 and c3 are more gruesome, describing the cannibalistic tendencies of flour

beetles. This set of equations exhibits many of the features of the logistic map, in-

cluding a series of period bifurcations before descending into chaos as the parameters

are varied. The rates rL and rA were artificially varied in the experiment by simply

removing individuals from the population. There is then a feedback e↵ect where the

constants ci, with i = 1, 2, 3, depend on rL and rA. In an experiment that took place

over many years, the authors observed both period doubling and chaotic behaviour in

the population.

The current consensus is that chaos is possible, but not common, in nature. However,

this has been challenged recently in work that suggests chaos may not be so rare after

5The paper is “Simple mathematical models with very complicated dynamics”, Nature 261 (1976)
and makes for an easy and fun read.

6The original paper is R.F. Constantino et al, “Chaotic Dynamics in an Insect Population”, Science,
vol 275 (1997).

– 83 –

n 0 1 2 3 4 5 6

rn 3 3.44948974 3.54409035 3.56440726 3.56875941 3.56969160 3.56989125

�n 4.751 4.656 4.668 4.668 4.669 4.669

Table 1. Numerical values for rn and �n

all7. It’s hard to know for sure because it is challenging to collect the long time series

needed to estimate Lyapunov exponents and other tell tale signs of chaos.

There is something a little unnerving in finding chaos in population dynamics. One

might, quite reasonably, think that wild swings in population size are due to some

extreme event, say weather or famine. Moreover, if we can learn to control such events

then we could restore order to the universe. But chaotic systems exhibit wild swings

for no underlying reason other than the inherent dynamics itself. Chaos is a control

freak’s worst nightmare.

2.3 Universality

There’s something magical lurking in the discussion above. As we increase r, we get a

series of period doublings. We can ask: for what values of r does the period double?

We calculated the first two of these above. The single fixed point becomes unstable

and bifurcates into a 2-cycle at r = r0 with

r0 = 3 . (2.31)

The 2-cycle then bifurcates further into a 4-cycle at

r1 = 1 +
p
6 ⇡ 3.44948974 . (2.32)

The value of rn for which the 2n cycle bifurcates into a 2n+1-cycle can be calculated

numerically and is shown in Table 2.3.

With these values in hand, we see that there is a pattern. We define the ratio of

di↵erences

�n =
rn � rn�1

rn+1 � rn
. (2.33)

7See T. Rogers, B. Johnson, and S. Munch, “Chaos is not rare in natural ecosystems”, Nature
Ecology & Evolution, 6, (2022).

– 84 –

Figure 35. The heights of successive bifurcations, measured relative to the line x = 1/2, are

dn.

These too are given in Table 2.3 where they are clearly converging to

� = lim
n!1

�n = 4.669 (2.34)

The magic is that this number appears in many other maps. For example, if you

consider the map

f(x) = r sin(⇡x) (2.35)

then, as you vary r 2 [0, 1], you will again see period doubling at a rate that converges

towards the same value of �. What we’re seeing here is that, hidden within the logistic

map, is a new mathematical constant, �. This is known as the Feigenbaum constant.

Or, more precisely, it is one of two Feigenbaum constants.

The other Feigenbaum constant comes from noting that the heights of successive

bifurcations get smaller in Figure 33. We would like to find a way to characterise their

height. We do this, by measuring the height relative to the line x = 1/2 (corresponding

to the maximum of the function f(x)). We call successive heights dn, as shown in

the Figure 35. (As an aside, the kind of bifurcating diagrams shown in Figure 35 are

a↵ectionately known as fig tree diagrams, not because they look particularly like fig

trees but because this is a direct translation of the German word “Feigenbaum”.)

The second Feigenbaum constant comes from noting that the ratio of heights also

converges to

↵ = lim
n!1

dn

dn+1
= �2.5029 . . . (2.36)

Here the minus sign reflects the fact that, as shown above, the heights are measured

alternatey above and below the line x = 1/2. The value of ↵ is another universal

constant, in the sense that the same number emerges for many di↵erent maps.

– 85 –

Figure 36. Plots of y = x, f(x) and f2(x) for r = 2.9 (on the left) and for r = 3.2 (on the

right).

The Feigenbaum constants ↵ and � arise for many maps, but not for all maps. The

maps f(x) in question should be smooth and “unimodal”, which means that they go up,

then down with a single maximum. Moreover, the maximum should be quadratic. Any

map with these features will exhibit period doubling with the Feigenbaum constants ↵

and �.

Of course, that begs the question: what about other maps? Here too there is an

interesting story. Suppose, for example, that we consider maps that have a quartic,

rather than quadratic, maximum. Then you’ll find the same kind of period doubling

but with di↵erent constants, ↵ ⇡ �1.7 and � ⇡ 7.3.

The Feigenbaum constants are reminiscent of other mathematical constants, known

as critical exponents, that arise in the theory of phase transitions. You can read more

about them in the lectures on Statistical Field Theory. Indeed, we will borrow some

ideas of “renormalisation” from the theory of phase transitions below when we describe

how to calculate the Feigenbaum constants.

2.3.1 Zooming in on Bifurcations

Let’s first get a sense for why this universality might be happening. We can go to the

very first bifurcation, in which the stable fixed point changes to the 2-cycle.

We can get some understanding of what’s going on by staring at Figure 36 where we

plot y = x, y = f(x) and y = f
2(x). On the left, these are plotted for r = 2.9 where

the only solutions to x = f
2(x) are also solutions to x = f(x). On the right, we plot

these same functions for r = 3.2. Now we see that there are additional solutions to

x = f
2(x) that are not solutions to x = f(x). This transition happens at r = 3, and

this is where the single stable fixed point of f(x) becomes unstable and is replaced by

the stable 2-cycle, corresponding to the new fixed points of f 2(x).

– 86 –

Figure 37. Plots of y = x, f(x), f2(x) and, f4(x). This is plotted for r = 3.5, after the

2-cycle becomes unstable and there are new fixed points of f4(x). These can be shown in

the plot on the left and, more clearly, in the plot on the right where we’ve zoomed in to the

relevant piece of the graph.

So far, so good. Now what happens when we increase r further so that this 2-cycle

turns into a 4-cycle? This time, the fixed points of f 2(x) are becoming unstable. We

can see this happening in the same graphical manner as before, this time also plotting

f
4(x) to see how its fixed points emerge at some value of r. This is shown on the left

of Figure 37 where it’s all a little cluttered. But we can zoom in to the relevant part,

as shown on the right of 37.

Now comes the key observation. Take the zoomed in plot in Figure 37. Flip it upside

down and reflect it. It looks like this:

But that looks very much like the right-hand plot of Figure 36!

Now we can repeat this, looking at how the fixed points of f 4(x) become unstable

as new fixed points of f 8(x) appear, and then how these become unstable as new fixed

points of f 16(x) appear, and so on. At each stage, we zoom in and flip and what we’re

left with is always a figure that looks like the one above. The existence of the two

universal Feigenbaum constants suggests that, as we do this procedure over and over

again, we might converge on some universal function. Our task is to try to understand

some properties of this function and to extract the Feigenbaum constants from it.

– 87 –

2.3.2 Renormalisation

We want to put the ideas above on a firmer footing. How do we implement the iter-

ated “taking f
2(x), zooming and flipping” procedure described above in more concrete

terms?

There are a number of steps that we need to take. First, we will describe the class of

functions that we care about. It’s convenient to rescale things slightly. We will consider

regular, unimodal functions such that

• xn+1 = f(xn) with x 2 [�1,+1].

• The map is symmetric about the maximum at x = 0, with f(0) = 1

• The maximum is quadratic.

For example, after some rescaling the logistic map can be rewritten as

xn+1 = 1� rx
2
n . (2.37)

This map exhibits all the universal features described above, including the two Feigen-

baum constants ↵ and �. But everything that we say below holds for any map obeying

the three criteria above.

Part of our iteration in going from f(x) to f
2(x) involves increasing the parameter

r, so that we get to the point where f
2n(x) develops fixed points. For example, Figure

36 is plotted with r = 2.9 while Figure 37 is plotted with r = 3.5. Let’s first look more

carefully at how we do this.

A map x ! f(x) has a fixed point x? = f(x?). This fixed point is stable if f 0(x?) < 1

and is unstable if f 0(x?) > 1. The map fixed point is said to be superstable if

f
0(x?) = 0 . (2.38)

This is the most stable that a fixed point can be. In this case, the convergence towards

the fixed point is typically exponential rather than power-law.

It’s clear that a fixed point of our class of maps is superstable if x? coincides with

the maximum of the map xmax which, by construction, we’ve taken to be xmax = 0.

Similarly, for the higher maps f 2(x) with two new fixed points x+ and x�, we saw in

(2.27) that df
2
/dx(x+) = f

0(x+)f 0(x�), so this fixed point is superstable if either x+

or x� coincides with xmax.

– 88 –

We will denote the value of r at which the fixed point of fn�1(x) is superstable as

Rn. These are shown in Figure 38. Note that rn < Rn < rn+1. It turns out that the

superstable points Rn converge in the same manner as the bifurcation points rn,

� = lim
n!1

Rn �Rn�1

Rn+1 �Rn
= 4.669 . . . (2.39)

In what follows, we will phrase everything in terms of maps evaluated at the superstable

points Rn.

The Renormalisation Map

Now we can start to put our iteration process in place. We start with a map f(x;R0)

which has a superstable fixed point. We then want to turn this into the appropriately

zoomed and flipped map f
2(x;R1) which, importantly, also has a superstable fixed

point. Moreover, we want the map f
2(x) to fall into our general class of maps, obeying

the various criteria listed above.

To achieve, this suppose that

f(1) = �a . (2.40)

Then, because f(0) = 1, we have f
2(0) = f(1) = �a. So to keep ourselves within

the class of maps with f(0) = 1, we should rescale f
2. This is the zooming described

above. We should also rescale x to ensure that the domain remains in x 2 [�1,+1],

with a minus sign to give us the necessary reflection. The upshot is that the zooming

and flipping procedure is described by the following action on a map

f(x;R0) 7! �
1

a
f
2 (�ax;R1) . (2.41)

Both the original map f(x) and the new map f
2(x) are evaluated at the appropriate

point r = Rn where they have a superstable fixed point. We say that the map f(x;R0)

has been renormalised, terminology stolen from quantum field theory.

The renormalisation map (2.41) can itself be viewed as a dynamical system, but not

one acting on a single variable x but now acting on a class of functions f(x). Said

di↵erently, this is a dynamical system with an infinite number of degrees of freedom.

Nonetheless, we could push on and think of it like any other dynamical system. We

could, for example, reiterate the process n times

f(x,R0) 7!

✓
�
1

a

◆n

f
2n ((�a)nx;Rn) . (2.42)

– 89 –

Figure 38. The bifurcations happen at points r = rn; the fixed points are superstable at

r = Rn.

Then we can ask: does this process converge? In other words, is there some universal

function defined by

g(x) = lim
n!1

✓
�
1

a

◆2

f
2n ((�a)nx;Rn) ? (2.43)

It’s not at all obvious that such a function g(x) exists. But the universality observed in

the Feigenbaum constants suggests that, under the right circumstances, it might. But

what are these circumstances?

2.3.3 The Feigenbaum constant ↵

To get a sense for when universal function g(x) in (2.43) might exist, we need to

think more carefully about the meaning of that rescaling factor a. It is rescaling the

x coordinate by a, but we expect from our previous discussion that this is what the

Feigenbaum constant ↵ is doing. This means that we should identify

↵ = �
1

a
. (2.44)

Moreover, it suggests that the limit (2.43) should only exist if we take a very specific

value of ↵. We just need to compute this value.

Now we’re on the home straight. If there’s a universal function g(x) that is the limit

of the renormalisation map then, when we put it in the renormalisation map, nothing

– 90 –

should happen. In other words, g(x) should be a fixed point of the renormalisation

map and satisfy

g(x) = ↵ g
2
⇣
x

↵

⌘
. (2.45)

This slightly strange, self-referential equation defines both the function g(x) and the

constant ↵. Indeed, as we’ve chosen g(0) = 1, we have

1 = ↵g(1) =) ↵ =
1

g(1)
. (2.46)

To make progress, we can simply Taylor expand g(x) around the origin. We know that

it is a symmetric function with a quadratic maximum, so we can Taylor expand

g(x) = 1 +
NX

n=1

c2nx
2n

. (2.47)

Substitute this into (2.45) and compare various terms. The constant terms give

1 = ↵(1 + c2 + c4 + . . .) (2.48)

which just reiterates the result (2.46). The x
2 terms give

↵ = 2c2 + 4c4 + (2.49)

The x
2n terms are polynomials of degree 2n in the variables ↵ and c2n. The upshot

is that we have N + 1 equations in N + 1 variables which we can solve numerically.

(Because these are higher order polynomials, there are several solutions and you have

to make sure that you get the right one.) The higher the value of N , the better the

accuracy. For low values we have:

N = 2 =) c2 ⇡ �1.52 , c4 ⇡ 0.13 , ↵ ⇡ �2.53

N = 3 =) c2 ⇡ �1.52 , c4 ⇡ 0.073 , c6 ⇡ 0.046 , ↵ ⇡ �2.479 . (2.50)

By the time you get to N = 6, you have ↵ ⇡ �2.502897, which is correct to 1 part in

106.

You can see that our ansatz (2.47) assumes that the maximum is quadratic. You

could repeat the calculation setting c2 = 0 so that the maximum is quartic. Then you

get the di↵erent universal constant ↵ ⇡ �1.7 appropriate for such quartic maps.

– 91 –

2.3.4 The Feigenbaum Constant �

Computing the other Feigenbaum constant � is a little more involved. We will be

somewhat heuristic in what follows, but still put together enough of the story to allow

us to compute �.

To start, we define the renormalisation map to act on any function �(x) as

Ren[�(x)] = ↵�
2
⇣
x

↵

⌘
. (2.51)

This is the same as our previous map (2.41), except we’re not changing the variable r

in any way: just iterating the map and rescaling. We take the constant ↵ to be the

Feigenbaum constant.

Now consider the one-parameter family of functions f(x; r) that defines our original

map. We know that there are special values of r = Rn where this map has a superstable

2n-cycle. The claim of universality is that they converge as

Rn = R1 �
A

�n
(2.52)

for some (non-universal) constant A and with � the Feigenbaum constant (2.34). This

is what we would like to show. We will first need to develop some machinery to do this.

Expanding About the Universal Function

The renormalisation map Ren[�(x)] has a “fixed point”, or more precisely a “fixed

function”, which is our universal function g(x),

Ren[g(x)] = ↵g
2
⇣
x

↵

⌘
= g(x) . (2.53)

Usually, when presented with a dynamical system with a fixed point, our first inclination

is to linearise around the fixed point to see what happens in its vicinity. The same is

true here. We look at functions �(x) that are close to the universal function, with

�(x) = g(x) + ✏ ✓(x) (2.54)

with ✏ ⌧ 1 and ✓(x) some other arbitrary function. Now we act with the renormalisa-

tion map of f(x; r). The map isn’t linear so we have to tread slowly. We have

Ren[�(x)] = ↵�

⇣
�

⇣
x

↵

⌘⌘

= ↵�

⇣
g

⇣
x

↵

⌘
+ ✏✓

⇣
x

↵

⌘⌘

= ↵

h
�

⇣
g

⇣
x

↵

⌘⌘
+ ✏�

0
⇣
g

⇣
x

↵

⌘⌘
✓

⇣
x

↵

⌘i

= ↵g

⇣
g

⇣
x

↵

⌘⌘
+ ✏↵

h
✓

⇣
g

⇣
x

↵

⌘⌘
+ g

0
⇣
g

⇣
x

↵

⌘⌘
✓

⇣
x

↵

⌘i
(2.55)

– 92 –

where, in the third and fourth lines we’ve Taylor expanded and dropped terms of order

✏
2.

When you Taylor expand a function, the first correction is the derivative. Here

we’ve Taylor expanded a functional Ren[�(x)], which is a function of a function. The

term multiplying the ✏ parameter should be thought of as the functional derivative of

Ren[�(x)]. In fancy maths words, it’s called the Fréchet derivative. We define

DReng[✓(x)] = ↵

h
✓

⇣
g

⇣
x

↵

⌘⌘
+ g

0
⇣
g

⇣
x

↵

⌘⌘
✓

⇣
x

↵

⌘i
. (2.56)

We can then write

Ren[�(x)] = g(x) + ✏DReng[✓(x)] . (2.57)

where we’ve used the fact that g(x) is a fixed point to get the first term.

How should we think of this? If this were a dynamical system with a finite number

of degrees of freedom then, when we linearise around a fixed point, we get a matrix.

And to understand the behaviour of the fixed point we have to look at the eigenvectors

and eigenvalues of that matrix. The same is true here, except that we should look for

eigenfunctions, ✓i(x) of the weird operator DRen. These obey

DReng[✓i(x)] = �i✓i(x) . (2.58)

Here �i is the corresponding eigenvalue and i is an (infinite) index that labels the

di↵erent eigenthings.

Our next step would be to solve for the di↵erent eigenvalues using (2.58). And we

will, eventually, do this. The trouble is that this is a hard equation to solve and it’s

useful to have some motivation for doing so! That’s where we’re going next. We will

argue that, out of the infinite number of eigenvalues, there is just single one �0 that

has |�0| > 1. And, rather wonderfully, this eigenvalue coincides with the Feigenbaum

constant �.

Expanding About the Edge of Chaos

To extract the Feigenbaum constant, we need to look more carefully at the original

map f(x; r) and, in particular, this map evaluated at the superstable points r = Rn.

– 93 –

To start, we look at the map when it sits at the edge of chaos at r = R1. We define

F (x) = f(x;R1) . (2.59)

At this point, we need to make an assumption: we assume that if you act with successive

iterations of the map Ren on the function F (x), then you will quickly converge towards

the universal function g(x) defined in (2.45),

Renn[F](x) ⇡ g(x) for n suitable large. (2.60)

Said in more sophisticated language, we assume that F (x) lies on the stable manifold

of the fixed point g(x). This assumption is, it turns out, true, but we will not prove it

here. It seems plausible because the renormalisation map Ren di↵ers from our original

renormalisation by not changing the value of r, but we’ve already tuned the value of r

to its final resting place R1 when considering F (x).

Next we ask: what if we act with the renormalisation map on f(x; r) with r close to

R1? We write

f(x; r) = F (x) + ✏
@f(x; r)

@r

����
r=Rn

with ✏ = r �R1 . (2.61)

Here we’ve dropped terms of order ✏2 and higher. Acting with the renormalisation map

on f(x; r) is just a matter of repeating the calculation (2.55), with g(x) replaced by

F (x) and ✓(x) replaced by @f/@r. We can express the result in terms of our operator

DRen defined in (2.56),

Ren[f(x; r)] = ↵F

⇣
F

⇣
x

↵

⌘⌘
+ ✏DRenF

@f(x; r)

@r

�
. (2.62)

Now we act with successive renormalisation maps on this function. We know that

F (x) tends towards the universal function g(x), as in (2.60). Acting successively on

the function f(x; r), with r close to R1 then gives

Renn[f(x; r)] ⇡ g(x) + (r �R1)DRenn
g

@f(x; r)

@r

�
for suitable large n. (2.63)

Admittedly, that ⇡ sign is doing some heavy lifting here. We’ve taken n iterations

of the map DReng, each of then evaluated around the function g(x) rather than the

function F (x) or some intermediate. That should really be justified. But we’re not

going to.

– 94 –

To proceed, we expand the function @f/@r in terms of eigenfunctions of the operator

DRen. We write

@f(x; r)

@r
=

X

i

ai✓i(x) . (2.64)

Clearly there’s yet another assumption here that the ✓i(x) form a complete basis of

functions. You may have guessed by now that it’s not an assumption we’re going to

justify. If we substitute this ansatz into the result (2.63), we have

Renn[f(x; r)] ⇡ g(x) + (r �R1)
X

i

�
n
i ai✓i(x) . (2.65)

Now we’re in good shape to make the final argument.

The Feigenbaum Constant is an Eigenvalue

We make the following claim:

Claim: If there is just a single eigenvalue �0 with |�0| > 1, then

�0 = � (2.66)

with � the Feigenbaum constant.

Proof: The key idea is to get di↵erent expressions for the renormalisation Renn[f(x; r)].

First, if the assumption is correct, and all eigenvalues other than �0 have modulus

|�i| < 1, then the iterations in (2.65) quickly kill all but the ✓0(x) eigenfunction,

Renn[f(x; r)] ⇡ g(x) + (r �R1)�n
0 a0 ✓0(x) . (2.67)

Now we think about this result applied to the case with r = Rn. The nice thing about

the function f(x;Rn) is that it has a superstable n-cycle and, moreover, we know that

x = 0 is one of the points on this n cycle. In other words, if we act with f(x;Rn) a

total of 2n times, starting at x = 0, then we get back to x = 0,

f
2n(x = 0;Rn) = 0 . (2.68)

But this means that the left-hand side of (2.67) vanishes, with the extra scaling by ↵

in the renormalisation group map unimportant because 0/↵ = 0↵ = 0. So we have

Rn �R1 = �
g(0)

a0 ✓0(0)

1

�
n
0

=
constant

�
n
0

. (2.69)

But this is precisely the geometric progression (2.52) seen in the bifurcations, with

�0 = �. ⇤

– 95 –

It remains to find the eigenvalue �0 = �. For this, we need to solve the eigenfunction

equation (2.58)

DReng[✓(x)] = ↵

h
✓

⇣
g

⇣
x

↵

⌘⌘
+ g

0
⇣
g

⇣
x

↵

⌘⌘
✓

⇣
x

↵

⌘i
= � ✓(x) . (2.70)

This too can be found using a power series ansatz for ✓(x), together with our previous

expansion for the universal function g(x). Expanding to order N = 6 is su�cient to

give � ⇡ 4.66914, accurate to one part in 105.

– 96 –

