
2 A First Look at Quantum Fields

In this section we look in more detail at some of the key features of quantum fields

and their interactions. We illustrate these properties with the simplest quantum force,

electromagnetism. Or, to give it its fancy name, quantum electrodynamics.

2.1 Matter Fields and Force Fields

We’ll meet a bewildering number of names in these lectures, each of them classifying

particles according to various properties. But one classification is more important than

all others: every type of particle falls into one of two classes called

• Bosons

• Fermions

The distinction between these two kinds of particles lies in the quantum world. Fermions

have the property that no two particles can occupy the same quantum state. Roughly

speaking, this means that you can’t put two fermions on top of each other. This prop-

erty is known as the Pauli exclusion principle. In contrast, there is no such restriction

on bosons. You can pile up as many of them as you like, one on top of the other.

(A mathematical aside: if you’ve done a little quantum mechanics then it’s very

easy to describe the di↵erence between bosons and fermions. Two identical particles

are described by a wavefunction  (x1,x2) which tells you the probability amplitude to

find the two particles at positions x1 and x2. If the particles are bosons then, when

you swap their positions, the wavefunction remains unchanged:  (x2,x1) =  (x1,x2).

In contrast, if the particles are fermions then the wavefunction picks up a minus sign

when you swap them:  (x2,x1) = � (x1,x2). This means, in particular, that if you

try to bring the two particles together at some point x1 = x2 = x, then  (x,x) = 0

for fermions, so there is vanishing probability that the two particles sit on top of each

other.)

All the matter particles in the universe – electrons, quarks and neutrinos – are

fermions. All the force carrying particles are bosons. In fact, this is more or less a

definition of what we mean by a “matter” particle vs a “force” particle. The matter

particles obey the Pauli exclusion principle; the force particles do not.

The distinction between bosons and fermions has a couple of familiar consequences.

Electrons are fermions and therefore obey the Pauli exclusion principle. This is ulti-

mately responsible for the structure of the periodic table. The electrons can’t all sit
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close to the nucleus, but fill up successive atomic shells, with the electrons in the outer

shell — known as valence electrons — largely responsible for the chemical properties

of the element.

Photons are bosons, and this means that the Pauli exclusion principle does not apply.

A laser is an example of a system in which many photons sit in the same quantum state.

2.1.1 Spin

Particles are endowed with a number of other properties. The most familiar of these is

the mass of the particle, but it is not the only one.

Particles also have an inherent angular momentum that we call spin. It’s not a bad

analogy to think of elementary particles as spinning about some axis, much like the

Earth spins. But spin is a quantum mechanical property and if you push the spinning-

Earth analogy too far then it breaks down. For example, if you ask questions like

“how fast is the surface of the particle moving” then you’ll get nonsensical answers.

Furthermore, there’s no way to spin up a particle like a basketball; the magnitude of

the spin is something that is fixed and unchanging. You can, however, change the

orientation of the axis along which the particle spins.

Like many phenomena in the atomic world, spin is quantised. That means that the

spin can’t take arbitrary values, but comes in discrete amounts. These are3

s = 0,
1

2
~, ~, 3

2
~, 2~, . . . (2.1)

In natural units, we just say that a particle has spin 0, or spin 1
2 , and so on. Each

particle in nature has a spin with a value taken from this list.

Particles that have a half-integer spin come with a rather strange property. If you

rotate them by 360� then they don’t quite come back the same as they were before!

Instead, their quantum wavefunction comes back to minus itself. This means that you

have to rotate the particle by 720� before it comes back to the same state. This is one

of the more surprising facts about elementary particles and is a clear departure from

our every day experience with classical objects.

3I’ve been a little bit sloppy here. Strictly speaking, the total spin of the particle is
p
s(s+ ~) with

s taking one of the values listed in (2.1).
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There is a deep theorem, originally framed by Pauli, which states that the spin

determines whether a particle is a boson or fermion:

The Spin-Statistics Theorem: Particles with integer spin are bosons. Particles with

half-integer spin are fermions.

This theorem follows when you combine the laws of quantum mechanics with the

rules of special relativity. (The word “statistics” in the name of the theorem is not

particularly helpful. Its origin lies in the fact that you get di↵erent answers when

you count the number of possible states in which bosons or fermions can sit, and

this counting is referred to as the “statistics” of the particle. We won’t need this

interpretation in these lectures. You can learn more in the lectures on Statistical

Physics. )

The spins of all the known elementary particles in Nature are:

• Spin 0: The Higgs Boson.

• Spin 1
2 : All matter particles, i.e. the electron, muon and tau, together with the

six types of quarks and three neutrinos.

• Spin 1: The photon, gluon and W and Z bosons. In other words, the particles

associated to electromagnetism and the weak and strong nuclear forces.

• Spin 2: The graviton.

The remaining properties of particles mostly specify their interactions under the various

forces. A familiar example is the electric charge, which determines the strength of a

particle’s interaction with electromagnetism. We’ll describe the electric charge of all

particles in Section 2.2, and the interactions with other forces in subsequent sections.

Finally, all of the properties described above, including the fermionic/bosonic nature

of the particle, are really properties of the underlying field, which are subsequently

inherited by the particle.

2.1.2 The Dirac Equation

All fields with spin 1
2 — which, as we’ve just seen, means all fields associated to matter

particles — are described by the Dirac equation.
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We won’t explain the mathematics behind the Dirac equation in these lectures, but

it’s so beautiful that it would be a shame not to show it to you. I’ve put it in a picture

frame to highlight that it’s here for decoration as much as anything else.

Here  is the quantum field; it depends on space and time. It also has four components,

so it’s similar to a vector but di↵ers in a subtle way. It is know as a spinor. For what

it’s worth, the parameter m is the mass of the particle, while @µ denotes derivatives and

�µ are a bunch of 4⇥ 4 matrices. If you want to understand what the Dirac equation

really means, you can find details in the lectures on Quantum Field Theory.

Dirac originally wrote his equation to describe the electron. But, rather wonderfully,

it turns out that this same equation describes muons, taus, quarks and neutrinos. This

is part of the rigid structure of quantum field theory. Any particle with spin 1
2 must

be described by the Dirac equation: there is no other choice. It is the unique equation

consistent with the principles of quantum mechanics and special relativity.

The Dirac equation encodes all the properties of particles with spin 1
2 . Given such

a particle, once you fix the orientation of the spin there are two possible states in

which the particle can sit. Roughly speaking, it can spin clockwise or it can spin

anti-clockwise. We call these two states “spin up” and “spin down”.

The Pauli exclusion principle states that no two fermions can sit in the same quantum

state. But the quantum state is determined by both the position and the spin of the

electron. This means that an electron with spin down can be in the same place as an

electron with spin up, because their spins di↵er. If you’ve done some basic chemistry,

this should be familiar: both the hydrogen and helium atoms have electrons sitting

in the orbit that sits closest to the nucleus. The two electrons in helium necessarily

have di↵erent spins to satisfy the exclusion principle. But, by the time you get to the

third element in the periodic table, lithium, there is no longer room for an additional

electron in the closest orbit and the third electron is forced to sit in the next one out.

2.1.3 Anti-Matter

The real pay-o↵ from the Dirac equation comes when you solve it. The most general

solution has an interesting property: there is a part which describes the original parti-

cles, like the electron. But there is a second part that describes particles with the same
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mass but with the opposite electric charge. The electron has negative charge, so these

other particles must have positive charge. These positively charged electrons are called

positrons: they are examples of anti-matter.

If a particle and anti-particle collide, both are annihilated. Typically, the energy is

released in high energy photons. We denote the electron as e� and the positron as e+.

Their annihilation usually results in the emission of two photons. (The emission of a

single photon is not consistent with the conservation of both energy and momentum.

For example, in the centre of mass frame, conservation of momentum would mean that

the emitted photon would have nowhere to go.) The annihilation process is described

by the reaction

e� + e+ ! � + �

The end result of all this is that the Dirac equation actually describes four di↵erent

types of single particle states: a particle with either spin up or spin down, and an

anti-particle with either spin up or spin down. The fact that there are four such states

is related to the fact that the field  is a vector-like object with four components.

Dirac wrote down his equation in 1928. After a few years of confusion, Dirac himself

suggested that these novel solutions should be interpreted as anti-matter. In 1931, he

wrote

“A hole, if there were one, would be a new kind of particle, unknown to

experimental physics, having the same mass and opposite charge to an

electron.”

This bold proposal, was confirmed experimentally just one year later, a development

that we will describe in more detail in Section B.) The prediction of anti-matter remains

one of the great triumphs of theoretical physics. We now know that all the matter

particles in Nature have corresponding anti-particles. In all cases, the conserved charges

of the anti-particles are equal and opposite to those of the particles.

The Fallacy of the Dirac Sea

Although Dirac’s genius led him to predict anti-particles, the argument that got him

there was somewhat flawed.

Dirac’s mistake was to misinterpret the meaning of  in his equation! He originally

wrote down the Dirac equation as a relativistic generalisation of the Schrödinger equa-

tion, with  viewed as the wavefunction of a single particle. We now know that this is

not the right interpretation:  should be viewed as a quantum field, whose excitations

describe many particles, rather than the wavefunction for a single particle.
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Figure 5. The filled Dirac sea, shown in blue, with holes interpreted as anti-matter.

We can explain what’s going on here in a little more detail. The famous Einstein

equation E = mc2 tells us the energy of a particle of mass m when the particle is at

rest. If the particle is moving with momentum p, then the correct formula is

E =
p
p2c2 +m2c4 (2.2)

where, for once, we’ve left the factors of c in the equation rather than setting c = 1. If

you solve the Dirac equation, with  viewed as a wavefunction, then you find the two

sets of solutions, but with energy

E = ±

p
p2c2 +m2c4

The positive energy solutions are identified as, say, electrons. But what to do with the

negative energy solutions? Note that as the particle moves faster, so p increases, and

the negative energy solutions become more and more negative. This is problematic.

If systems can lower their energy, they usually do. But clearly we don’t observe any

particles getting faster and faster.

Dirac found a clever, but not altogether convincing, trick to escape from this con-

clusion. He suggested that the negative energy states were already filled by electrons.

Because electrons are fermions, the Pauli exclusion principle means that no other elec-

tron is allowed to sit in these states, blocking the possibility for electrons to lose energy

by tumbling to ever-lower states. This situation is shown in Figure 5.
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In this picture, the vacuum of the universe consists of an infinite number of electrons.

This is called the Dirac sea. One might worry about why we don’t feel the infinite

electric charge, but since this situation represents the ground state of the universe,

Dirac argued that we reset the clock and say that this is what we mean by neutral.

Any charge is now measured relative to this ground state.

Dirac’s picture suggests that something novel may happen. We could excite an

electron out of the Dirac sea, and into the positive energy states. This is shown in

Figure 5. To do this, we need to inject a minimum of E = 2mc2 energy into the

system, to bridge the gap between the lower and upper bands in the figure. But if we

can somehow achieve this, then we have created an electron out of the vacuum. But we

have also created a hole, an absence of an electron, in the sea of negative energy states.

In a zen-like manoeuvre, we now attribute properties to this absence. Like the excited

electron, it can freely move around. Because there’s an absence of charge, relative to

the vacuum it will appear to have positive charge. Finally, if the electron and the hole

come into contact, the electron can drop back down into the negative energy state.

It will appear as if the electron and hole have annihilated, releasing at least energy

E = 2mc2 in the process.

Dirac’s picture of anti-particles is ingenious. But, ultimately, it’s not the right way

to think about things. If you view the object  not as a single-particle wavefunction,

but rather as a quantum field, then the energy of both particles and anti-particles turns

out to be positive. There is no need to invoke an infinity of electrons, disappearing to

the bottom of the sea. Instead, there are no negative energy states: simply particles

and anti-particles.

Moreover, it turns out that bosons also have anti-particles. But now there is no

counterpart to the Dirac sea argument because bosons don’t obey the Pauli exclusion

principle. Meanwhile, bosonic anti-particles arise just as straightforwardly in quantum

field theory as fermionic anti-particles.

Although Dirac’s clever argument is not the right one for fundamental physics, it does

turn out to have its uses elsewhere because it’s a good description of what happens in

solid materials. Any solid is made of atoms, and some number of electrons typically

disassociate themselves from the nuclei and wander around which, in the quantum

world, means that they fill up the lowest energy levels provided by the surrounding

solid. In this context, this is called the Fermi sea but it conceptually identical to

Dirac’s sea. When an electron is excited out of this sea, it leaves behind a hole. This

hole – which is the absence of an electron – behaves in many ways like a particle with
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Figure 6. The handedness of a massless particle is determined by the relative direction of

its spin and momentum.

positive electric charge. Indeed, there are some materials in which electricity appears

to be conducted by positively charged particles. These aren’t protons! They are holes.

There is a lesson here which is repeated over and over again in the history of science:

a good idea tends to find a place in the world, even if it’s not where it was originally

intended.

2.1.4 Massless Particles

For massless particles, the story of spin needs to be slightly retold. Before we jump

into the details, it’s natural to ask: why bother? What spin 1
2 particles in Nature are

massless?

The answer to this question is shocking: all of them! One of the most striking features

of the Standard Model is that, at the fundamental level, all the matter particles are

massless. In fact, more than that, it turns out that it’s not possible to incorporate

masses into the theory without first doing some damage to some aspects of the weak

force. This damage is achieved by the Higgs boson which, ultimately, is why the

fundamental particles appear to have mass. We will describe all of this in Section 4.

But, in preparation for that, it will be useful to explain here what becomes of spin

when particles are massless.

Solving the Dirac equation, one finds that as a particle gets faster, its spin necessarily

becomes oriented along the direction of motion. For massless particles, which travel at

the speed of light, there are two options: either the spin points in the same direction as

the particle is travelling, or it points in the opposite direction. When the spin points

in the same direction, the particle is said to be right-handed. When it points in the

opposite direction, it is said to be left-handed. This is shown in Figure 6.

– 37 –



This distinction is quantified using something called helicity. If the particle moves

with momentum p and the spin points in the direction s then the helicity is defined to

be

h =
s · p

|p|

Right-handed particles have helicity +1
2 ; left-handed particles have helicity �

1
2 .

Such a distinction doesn’t make sense for massive particles. One can simply overtake

the particle and look back to see it moving in the opposite direction, but with the

spin remaining the same, so its helicity appears to be flipped. However, you can never

overtake a massless particle because it travels at the speed of light, and this means that

everyone agrees on the helicity of a massless particle.

In fact, one can go further. It turns out that, for massless particles, it is possible to

have “half a Dirac fermion”. This is a particle where only, say, the left-handed helicity

exists. There is no particle at all with right-handed helicity. The anti-particle would

then exhibit the opposite behaviour, only existing in the right-handed state, never left-

handed. A particle with these properties is known as a Weyl fermion. This idea will

play a key role when we discuss the weak force.

I should stress that such Weyl fermions, with fixed helicity, are only possible for

massless particles. The particles that we observe, such as electrons, do ultimately have

a mass and they achieve this by gluing together two Weyl fermions to form a complete

Dirac fermion, with both kinds of spin. We’ll learn more about how this happens in

Section 4.

2.2 Quantum Electrodynamics

The Dirac equation described in the previous section tells us that matter particles nec-

essarily come with anti-particles. But for these particles to subsequently do something,

they must interact. Those interactions happen through forces.

The simplest force in particle physics is electromagnetism. In large part, it is simplest

because we have some classical intuition for this force: it is the same force understood

many centuries ago by Coulomb, Ampére, Faraday and Maxwell, albeit dressed by some

quantum bells and whistles.

The force is mediated by two fields, the electric field E(x, t) and the magnetic field

B(x, t). Each of these is a vector field, meaning that at every point in space x and for

every time t, the field is specified by both a magnitude and a direction.
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The equations that describe the dynamics of the electric and magnetic fields are

known as the Maxwell equations. We won’t need them in these lectures but, for com-

pleteness, here they are:

r · E =
⇢

✏0
, r⇥ E = �

@B

@t

r ·B = 0 , r⇥B = µ0

✓
J+ ✏0

@E

@t

◆
(2.3)

The fields E and B react to the presence electric charge density ⇢ and electric currents

J, while ✏0 and µ0 are two constants that characterise the strength of the electric and

magnetic forces in a way that we will describe more below.

The equations, as written above, hide the full beauty of the Maxwell equations.

A better formulation encodes both the electric and magnetic fields in a 4 ⇥ 4 anti-

symmetric matrix called the field strength, which takes the form Fµ⌫ = @µA⌫ � @⌫Aµ.

Only then do the Maxwell equations reveal their true simplicity, in a way that deserves

hanging in a frame,

You can learn more about the Maxwell equations and their classical solutions in the lec-

tures on Electromagnetism. Famously, among the solutions to these equations are elec-

tromagnetic waves, including visible light. When you look at these solutions through

the lens of quantum mechanics, you find that they decompose into particles, known as

photons.

A photon can come in two di↵erent states that we call polarisation. These are entirely

analogous to the “spin up” and “spin down” states of the electron. (The fact that both

spin 1/2 and spin 1 particles have two internal states is something of a coincidence. For

example, it’s only true in three spatial dimensions; the counting is di↵erent in other

dimensions.)

The theory describing the electromagnetic field interacting with the electron field is

known as quantum electrodynamics, or QED for short. It is the theory describing light

interacting with matter, and ultimately underpins large swathes of science, including

condensed matter physics and chemistry. Happily, it is also the simplest component of

the Standard Model.
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The Strength of the Interaction

Take two particles carrying electric charge Q1 and Q2 and hold them some distance

r apart. The relevant solution to the Maxwell equations tells us that the particles

experience a force given by

F =
Q1Q2

4⇡✏0r2
(2.4)

This is called the Coulomb force. The force is repulsive if the two particles carry charge

of the same sign; it is attractive if they carry charges of opposite sign.

This formula shows us that the constant ✏0 characterises the strength of the Coulomb

force. If the value of ✏0 was smaller, then Coulomb force would be more powerful. If you

look up ✏0, you’ll find some unhelpful number quoted with unit of Farads per metre. A

more useful measure of the strength of the electric force comes from the dimensionless

quantity known as the fine structure constant,

↵ =
e2

4⇡✏0~c
(2.5)

where e is the electric charge of the electron. It turns out that the value of the fine

structure constant is roughly

↵ ⇡
1

137

This is the cleanest way to characterise the strength of the electric force. In particular,

in natural units with ~ = c = 1, two electrons held a distance r apart experience a

force given by

F =
↵

r2

Maxwell’s equations also contain a second constant, µ0, which characterises the strength

of the magnetic interaction. It turns out that this is not independent from ✏0. One of

the great discoveries of Maxwell is that the two constants are related by

✏0µ0 =
1

c2

with c the speed of light. As a side remark, note that if the strength of the electric

force 1/✏0 were weaker, then the strength of the magnetic force 1/µ0 would necessarily

be stronger.
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2.2.1 Feynman Diagrams

There are some simple cartoons that allow us to figure out what processes are allowed

in quantum electrodynamics (and, indeed, in the other forces). These cartoons are

called Feynman diagrams.

We will take time to run horizontally, from left to right4. We then draw electrons as

solid lines with a forward pointing arrow, like this .

Positrons are depicted as solid lines with a backwards pointing arrow, like this .

We’ll see the utility of the backwards-arrow notation below. It suggests that it may

be possible to think of anti-particles as particles that move backwards in time. There

is mathematical sense in which this statement is correct, but it shouldn’t be taken too

literally.

Finally, photons are depicted as wavy lines like this .

There is just a single interaction between the electron and photon, from which all

other processes can be built. This can be viewed as an electron absorbing a photon,

and scattering o↵ in a di↵erent direction. It looks like this

The point where the photon hits the electron is referred to as a vertex.

Conservation of momentum means that the electron necessarily moves o↵ in a dif-

ferent direction after absorbing the photon. So you might have thought that it would

be better to draw the Feynman diagram like this

Indeed, sometimes we’ll draw diagrams like this. However, the Feynman diagrams

should not be read too literally: the paths aren’t the actual paths of particles in space-

time. They should be viewed in a more topological fashion, like the London under-

ground map. We’ll say more below about what Feynman diagrams are, and what they

aren’t.
4This is the convention used in the Quantum Field Theory lectures, but it’s not universal. Some

authors prefer time to flow upwards.
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Figure 7. This is not a good analogy for virtual particles.

Now the game is as follows: you can describe any process by stitching together

the Feynman diagram building blocks above. You can orient the di↵erent legs of the

diagrams in any way you wish. You just have to make sure that the arrows on the solid

lines follow each other. Any process that you can draw can happen, provided that it is

allowed on grounds of energy and momentum conservation.

Let’s look at some examples. Here is a Feynman diagram describing one electron

scattering o↵ another

e�

e�

e�

e�

I’ve added the name of the particle to the external legs, a practice that will prove

useful as we progress. Note that the electrons don’t just bounce o↵ each other; there is

no direct contact between them. Instead, the electrons scatter by exchanging a photon.

Particles that appear only in internal legs of Feynman diagrams, like the photons above,

are referred to as virtual particles. This is a lesson that we’ll see repeated later: all

forces can be understood by the exchange of virtual bosonic particles.

In some ways, Feynman diagrams are a little too evocative, and we should be careful

not to interpret the diagram above too literally. For example, you shouldn’t think of

one electron as recoiling as it emits a virtual photon, which is then absorbed by the

second, resulting in a repulsive force from Newton’s third law, like two people in boats

throwing a ball back and forth between themselves. This will then leave you puzzled

about how such particle exchange can possibly lead to an attractive force.
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Yet in quantum field theory, there is no problem with virtual particles describing an

attractive force. Indeed, the Feynman diagram for the scattering of an electron o↵ a

positron is almost identical to the one above:

e+

e�

e+

e�

Translating this diagram into mathematics gives the attractive Coulomb force, but this

isn’t easily captured by the people-in-the-boat analogy. (If you get to the point where

you start thinking about people in boats throwing boomerangs backwards and forwards

then you might realise that the analogy has clearly been stretched too far.)

In fact, what’s really going on here is that both of the scattering diagrams above

are a reformulation of the familiar result from classical physics in which one electron

experiences a force due to the electric field of another. If you translate the diagram

above into mathematics, you will find that it is simply a rewriting of the Coulomb

force law (2.4). Viewed this way, the “virtual particles” are merely a handy device to

capture the behaviour of the underlying field. If we were to think in terms of fields,

then we have no need to discuss virtual particles. Moreover, there are situations — like

for the strong force — where the concept of virtual particles is not useful, while the

fields remain.

For the scattering of an electron o↵ a positron, there is a second, qualitatively dif-

ferent diagram that also contributes.

e+

e�

e+

e�

This has the interpretation of the electron-positron pair annihilating into a virtual

photon, which then turns back into a pair of particles. It turns out that this diagram

doesn’t contribute to the Coulomb force (2.4), which holds only in the non-relativistic

limit where velocities of all particles are low, but does change the scattering behaviour

at higher energies. For our purposes, however, it is useful simply to illustrate the utility
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of the forwards/backwards arrow notation for particles and anti-particles: they capture

the conservation of electric charge.

The total electric charge of an electron-positron pair is zero, which allows them to

annihilate into a (virtual) photon. In contrast, such a process isn’t possible for the

scattering of two electrons, because their charge is non-zero. In the diagrammatic

language, we see this because the corresponding Feynman diagram doesn’t

have the arrows matching up, and so is illegal.

There are also interesting processes that we can construct with photons on the ex-

ternal legs. For example, here is a diagram that corresponds to one photon scattering

o↵ another

Famously, light doesn’t scatter o↵ itself in the classical world. This is important, for it

allows us to see! But it’s no longer true in the quantum world. The diagram above can

be viewed as a light scattering o↵ a particle-anti-particle pair which briefly appear as a

vacuum fluctuation. The probability for such a process is small, which is why we don’t

notice this process every day. But, although small, it is non-zero, and light-by-light

scattering has been observed in particle colliders.

2.2.2 What is a Feynman Diagram Really?

All quantum processes have an element of randomness. Particle physics is no di↵erent.

If you collide two particles together at high energies, there are many possibilities for

what may emerge. Quantum field theory allows us to assign probabilities — or, more

precisely, quantum amplitudes — to all of these possibilities.

However, there’s a hitch. Quantum field theory is hard, and the expressions for these

probabilities are ridiculously complicated. In many situations, we have no idea how

to compute them. However, for QED we can make progress based on the observation

that the interaction strength, as captured by the fine structure constant ↵ ⇡ 1/137, is

small. This means that we can expand the complicated probabilities in a perturbative

expansion, rather like Taylor expanding a function.
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Figure 8. A handful of Feynman diagrams, taken from Feynman’s original paper.

The Feynman diagrams are a pictorial way of capturing this perturbative expansion.

Suppose that you want to compute the probability for some process to happen, for

example the electron-positron scattering described above. The process itself is defined

by the external legs of the diagram — these are what tell you, for example, that you

start with two particles and end up with two particles. Given this data, you should

now write down all possible Feynman diagrams. The diagrams that we drew above are

the simplest diagrams, but there are an infinite number of diagrams contributing to

any process with an increasingly complicated structure of internal lines. For example,

the original vertex can be dressed with all sorts of other lines, to give things that look

like this:
left-handed right-handed

spin

momentum

spin

momentum

Some examples of Feynman diagrams for e� + e+ scattering are shown in Figure 8

So far, this procedure doesn’t sound very helpful. We have to write down an infinite

number of ever more elaborate diagrams to describe any process. Moreover, there are

rules which translate each diagram into a mathematical expression, usually involving
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some very complicated and challenging integrals. What saves us is the fact that the

more complicated a diagram, the less important it is in some process. To compute the

importance of any diagram, you need simply to count the number of vertices. While

the exact contribution of any diagram may be very di�cult to compute, the happy

news is that it is proportional to

↵# of vertices

So, for example, a diagram with a single vertex will mean that the probability is

something in the ballpark of 1/137. Meanwhile, the the elaborately dressed vertex

shown above contributes something proportional to ↵9. With ↵ ⇡ 1/137, this kind of

diagram barely changes the answer, and so can be safely neglected. The light-by-light

scattering diagram that we showed earlier comes in at ↵4, explaining why we don’t

observe this phenomena in every day experience.

There is one important lesson to take from this: the utility of Feynman diagrams is

intimately connected to the weakness of the electromagnetic interaction. In situations

where the interactions between fields are strong, Feynman diagrams are not the right

way to think about the physics.

If you want to learn more about how to unmask Feynman diagrams, and turn them

back into the underlying equations, then you can find details in lectures on Quantum

Field Theory.

Some Examples

To illustrate these ideas, we can compute the relative probabilities that an electron and

positron will annihilate to a bunch of photons. First, we need to address a subtlety.

It’s possible to draw a diagram representing an annihilation to a single photon:

e+

e�

This would appear to be proportional to ↵. However, if you calculate this diagram,

you’ll find that it’s vanishing. This is because although it is consistent with charge con-

servation, it’s not consistent with the conservation of energy and momentum. To see

this, consider the frame in which the electron and positron have equal and opposite mo-

menta. The outgoing photon must then have vanishing momentum, but non-vanishing

energy, and this isn’t possible.
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It’s worth pointing out that this diagram can occur as a sub-diagram in other pro-

cesses. For example, we already used it in electron-positron scattering . In this

case, the intermediate photon is virtual and it turns out that there’s no requirement

for virtual particles to obey the usual energy-momentum relations. You can hand-

wave this away by saying that virtual particles can borrow energy for some period of

time by virtue of (the slightly dodgy version of) the Heisenberg uncertainty relation:

�E�t ⇠ ~.

Back to the annihilation of an electron and positron, the simplest process results in

two photons:

e+ + e� ! � + �

This is described by the following Feynman diagram:

e+

e�

From our discussion above, we know that this is proportional to ↵2. But other processes

are possible. For example, the pair could annihilate to any number n > 1 of photons.

For example, the diagram for annihilation to four photons is

e+

e�

This probability for such a diagram is proportional to ↵4. This means that the proba-

bility of getting four photons our of a collision is suppressed by a factor of ↵2 relative

to the probability of getting two photons.

2.2.3 New Particles From Old

Electrons are not the only particles that experience the force of electromagnetism. Any

particle that carries electric charge also interacts with the photon. In particular this

means that all fermions, except for the neutrinos, feel the force of electromagnetism.
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We can easily extend our Feynman diagrams to include these extra particles. By

convention, we depict any fermion with a forward arrow and any anti-fermion

with a backward arrow , but now we must label these lines with the particle name

to show what particle we’re talking about. Every particle with electric charge will have

an interaction vertex of the form . When evaluating Feynman diagrams, these

vertices contribute a factor of Q2↵ to the probabilities, where Q is the charge of the

particle, in units where the electron has Q = �1.

This brings new opportunities. For example, we can collide an electron and positron,

but now produce new particles such as a muon-anti-muon pair as shown in the diagram

below.

e+

e�

µ+

µ�

We still have to worry about energy and momentum conservation when evaluating this

diagram. If, in the centre of mass frame, the energy of the incoming electron-positron

pair is less than 2mc2, the rest mass of the muon-anti-muon pair, then the muons

cannot be produced. However, when the incoming energy exceeds this threshold, then

we can start to produce new particles from old ones. The same kind of process allows

us to produce any charged particles from the collision of electrons and positrons. This,

of course, is the basis for particle colliders.

2.3 Renormalisation

At the fundamental level our world is built not from particles, but from fields. Moreover,

as we stressed in the introduction, these fields froth and foam in the uncertain quantum

world. This gives rise to an important phenomenon known as renormalisation.

Let’s consider a single electron. It gives rise to an electric field which, like the force,

varies as an inverse square law,

E =
e

4⇡✏0r2
r̂

where r̂ is the unit vector pointing radially outwards. Clearly the electric field gets

bigger and bigger as we approach the position r = 0 of the particle. But what is

happening to the electron field near this point? It turns out, that both electric and

electron fields start thrashing wildly as we get near to r = 0.
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Figure 9. The renormalisation of electric charge.

While it’s challenging to talk about quantum fields, we can build some intuition by

reverting to the language of particles. As we get closer to the electron, the electric field

gets stronger and, as a result, the energy density stored in the field gets larger and

larger. At some point — a distance of around 10�12 m — the energy density is so large

that an electron-positron pair can be produced from the vacuum.

There is a general rule in quantum field theory that anything that can happen does,

in fact, happen. This means a single electron is surrounded by a swarm of particle-anti-

particle pairs, continually popping in and out of the vacuum. As we get closer still,

muons, taus and even quarks will also appear in the mix. We learn that any simple

picture you may have of a single particle giving rise to the electric field is really very far

from the truth: it is impossible to enforce any kind of social distancing in the quantum

world.

left-handed right-handed

spin

momentum

spin

momentum

This story should really be viewed in terms of quan-

tum fields. When we talk of a swarm of particle-anti-

particle pairs, it is really a metaphor for the quantum

field being excited in a tangled and elaborate fashion.

Just as the vacuum is something complicated in quan-

tum field theory, so too is the notion of a single particle.

In the language of Feynman diagrams, these particle-

anti-particle pairs are captured by the diagrams that

include loops of particles, like the one shown on the right.

The excited quantum field has an important consequence for the strength of the

electromagnetic interaction. Again, we can understand this in the language of particles.

The swarm of particle-anti-particle pairs will not be oriented randomly around the

electron. Instead, the positrons, which carry positive charge, will be attracted to the
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Figure 10. The renormalisation of fine structure constant.

electron in the centre, while the electrons will be repelled, as shown in Figure 9. The

net e↵ect is that as you get closer to the electron, you find more and more negative

charges outside you. Which must mean that the original charge must have been bigger

than we see. This is an e↵ect known as screening. This swarm of particle-anti-particle

pairs is actually hiding the true charge of the electron in the centre.

In fact, an excellent analogy of this phenomenon arises in metals. Take a positive

charge and place it in a metal. The mobile electrons will enthusiastically cluster around,

screening the positive charge so that it can’t be detected at large distances. This is very

similar to what happens with the electron in the vacuum and is one of many situations

in which ideas in particle physics are mirrored in condensed matter physics.

Because the e↵ective charge of the electron gets bigger at shorter distances, so too

does the interaction strength as captured by the fine structure constant (2.5). In fact,

we learn that the fine structure constant is very badly named, since it’s not in fact

constant at all. At distances larger than r & 10�12 m, it plateaus to the usually quoted

value of ↵ ⇡ 1/137. But as you go to smaller scales, the strength of the electromagnetic

interaction increases logarithmically. For example, the strength of the interaction has

been well measured at the scale of the weak force, which is roughly r ⇡ 10�17 m, where

it is found to be ↵ ⇡ 1/127. A sketch of the variation of the fine structure constant —

often referred to as running — is shown in Figure 10.

The lesson of renormalisation as described above is a general one. It turns out that

none of the dimensionless physical constants of nature are, in fact, constant. All of

them depend on the distance scale you’re looking at.

– 50 –



2.3.1 The Long, Confusing History of Renormalisation

While the description of renormalisation described above is fairly straightforward, the

mathematics underlying it is not. For this reason, our forefathers had to travel a long

and tortuous road to make sense of quantum field theory in general, and the issue of

renormalisation in particular.

The story starts in the late 1920s, soon after the original development of quantum

mechanics. The quantum pioneers — Heisenberg, Dirac, Pauli and others — tried to

apply their ideas to the interaction of light and matter. They tried to ask very simple

questions, like the probability for a photon to scatter o↵ an electron. While they didn’t

have the diagrammatic tools later introduced by Feynman, they did understand that

we could approach the problem in a perturbative expansion, starting with a process

which we now draw like this:

They found that this calculation gave pretty good agreement with the experiments. But

then they tried to do better, and compute the leading corrections. In diagrammatic

language, this means evaluating diagrams like this

+ + . . .

However, here they ran into a problem. Each of these subsequent diagrams was pro-

portional to ↵4, as expected. But the proportionality constant was infinity. That made

it very hard to argue that the contributions from these diagrams was smaller than the

first.

The quantum heroes worked on this problem for well over a decade, but made little

progress. Looking back, many of their ideas were simply too crazy. Having forged one

revolution they were, like Che Guevara, all keen for the next. Bohr wanted to get rid

of energy conservation. Heisenberg wanted to make spacetime non-commutative. Pauli

wanted to invade Bolivia. Yet the answer they were seeking did not, ultimately, require

an overhaul of the foundations of physics. It needed a di↵erent approach.
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The war intervened, and as life returned to normal a new generation of physicists

took up the problem, people like Tomonaga in Japan, and Schwinger, Feynman and

Dyson in the US. They were helped in no small way by a new experimental result,

discovered by Willis Lamb. The eponymous Lamb shift is a tiny, but detectable change

to the energy levels of hydrogen due to the problematic one-loop Feynman diagrams.

Their solution was a slow-burn revolution, one that took many decades to play out as

the power of quantum field theory became clear. However, at the time it didn’t feel

like a revolution. It felt like a con. Their solution was this:

1�1 = finite

In other words, they found a mathematical procedure that allowed you to subtract one

infinity from another, leaving an unambiguous finite answer. They called this process

renormalisation. The results were nothing short of spectacular.

Figure 11. The precession of a

spin

The poster boy for renormalisation is a quantity

known as the magnetic moment of the electron. If you

place an electron in a magnetic field, then the spin of

the particle will precess, as shown in figure. The speed

at which the spin precesses is characterised by a di-

mensionless number g known as the electron’s magnetic

moment.

In the grand scheme of things, this number is not par-

ticularly important. However, it has played a key role

in the development of quantum field theory because it is

a quantity that we can determine with some accuracy,

both experimentally and theoretically. After many decades of painstaking work, the

experimental result for the electron magnetic moment is

gexpt = 2.0023193043617± 3

Meanwhile, after many decades of extraordinarily challenging calculations, evaluating

increasingly complex Feynman diagrams up to corrections of order ↵5, the theoretical

result is

gtheory = 2.00231930436 . . .

– 52 –



The agreement is awe inspiring. In most areas of science you jump up and down with

joy if you get the first digit right. In economics you don’t even need that. Yet here

there is agreement between theory and experiment to 12 significant figures5!

Despite this runaway success, there was something a little disquieting about renor-

malisation. The idea that you can take one infinity away from another, to leave some-

thing finite was not mathematically legitimate. This was Feynman’s take:

“The shell game that we play to find [the answer] is technically called

renormalization. But no matter how clever the word, it is what I would

call a dippy process! Having to resort to such hocus-pocus has prevented

us from proving the theory of quantum electrodynamics is mathematically

self- consistent. .... I suspect that renormalization is not mathematically

legitimate.”

The physical meaning of renormalisation took several more decades to uncover. And

it came from an unusual place: the attempt to understand boiling water! In particular,

when water is close to the critical point, it turns out that the physics can be understood

using very similar Feynman diagram techniques to those employed in particle physics.

But this time there are no infinities. That’s because when you get to the place in the

calculation where infinities might rear their head, you need to remember that water

isn’t infinitely divisible, but is made of atoms. When you take this into account, the

infinities in the diagrams simply aren’t there.

But the same should also be true of quantum field theories in particle physics. There

is no reason to think that our theories are valid to arbitrarily high energies, or arbitrarily

short distance scales. A modern perspective on renormalisation absorbs this lesson.

Just as Newtonian mechanics comes with a health warning, stating that you shouldn’t

trust it in extreme situations — when speeds become too large, masses become too

heavy, or particles become too small — so too does quantum field theory. No quantum

field theory should be trusted to arbitrarily small distance scales, or arbitrarily high

energies. That would be hubris. Instead, we should admit that there is an energy

scale beyond which our theory no longer applies. This energy is called the cut-o↵. For

5The same calculations for the magnetic moment of the muon give gtheory = 2.00233183602 and
gexpt = 2.00233184122. Although the agreement is impressive, it fails at the 10th significant figure.
This is one of the very few discrepancies between theory and experiment. If this disagreement is borne
out, it may be due to the e↵ects of new particles, beyond those of the Standard Model. If nothing
else, this discrepancy should serve to show just how astonishingly good the Standard Model really is:
there are surely no other areas of science where people have sleepless nights over a failure in the 10th

digit.
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the Standard Model, the cut-o↵ is somewhere above 1 TeV. Simply injecting a little

humility into the proceedings, and admitting that we don’t yet understand everything,

is su�cient to remove the infinities.

But now there is a new problem. We must make sure that no physical answer depends

on our choice of the cut-o↵. After all, the cut-o↵ is an expression of our ignorance, the

limit of our current knowledge. It would be very unsatisfactory if something physical

like, say, the electron mass depended on what we don’t know about physics at high

energies.

It took many scientists many years to figure out how to include a level of our ignorance

in the theory, without anything depending on our ignorance. The di↵erent parts of

the story were finally pieced together in the early 1970s by Kenneth G. Wilson. His

work is surely the most influential piece of theoretical physics in the latter part of the

20th century, and now has applications from particle physics to biological physics to

gravitational physics. Wilson’s insight was that nothing you can physically measure

depends on the choice of cut-o↵ providing that physical quantities are not constant:

they must change depending on the scale at which you explore the world. This is way

that we introduced renormalisation in the previous section. Moreover, the complicated

and dubious calculations which seemingly gave 1�1 = finite can be reinterpreted in

a more palatable way as telling us how quantities change with scale.

This new approach is sometimes referred to as the Wilsonian renormalisation group,

to distinguish it from the older approach of Feynman and others. You can read more

about this in the lectures on Statistical Field Theory.

The upshot of this is that if you do quantum field theory carefully, there are no

infinites. But neither are there (dimensionless) constants of Nature. Instead, one key

lesson of quantum field theory is that the universe in which we live is organised by

scale. If you want to write down a theory of our world, then you need to explicitly

state the scale at which the theory holds. Change the scale, and you must change the

theory. Or, at the very least, you must change the parameters of the theory.

There is a final twist to this. The Feynman quote on the previous page is from 1985,

fifteen years after Wilson did his crucial work and three years after Wilson was awarded

the Nobel prize. I don’t know why Feynman still held that opinion at that time. It

is conceivable that he was unaware of the importance of Wilson’s work. After all, the

detailed calculations are not wildly di↵erent from those Feynman himself did decades

earlier, and perhaps he did not appreciate the all-important change of emphasis. Or

perhaps he simply didn’t like the truth getting in the way of a good story.
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B Interlude: Looking to the Sky

Radioactivity was a gift to physicists. Beta decay provided the first insights into the

weak force, a topic we will return to in Section 4, while beams of alpha particles —

which can reach energies up to 5 MeV — were used as a microscope to peek into the

nucleus for the first time. As we learned in Interlude A, both the proton and the

neutron were discovered by bombarding other elements with alpha particles.

But 5 MeV can only get you so far. Looking inwards requires higher energies. The

smaller the distance scale you want to explore, the higher the energy you need. Ul-

timately, progress was made by constructing particle accelerators, but physicists first

made use of another of Nature’s gifts: cosmic rays.

The Rise of the Balloon

Our world is constantly bombarded by charged particles from the cosmos. These par-

ticles – which are collectively known as cosmic rays – are mostly protons or helium

nuclei, with the occasional electron and heavier nuclei thrown in for good measure.

They travel enormous distances before reaching us, originating far outside our galaxy

in supernova explosions or in the accretion discs which surround supermassive black

holes in the centre of other galaxies.

When cosmic rays hit the upper atmosphere, they create a shower of new particles,

many of which survive the journey down to Earth where they can be detected. Theodore

Wulf was the first to realise that there was something interesting to be explored. In

1910 he built a simple electrometer to detect ionised particles in the atmosphere. At

the time, it was thought that this ionising radiation was emitted by the Earth. Wulf

had the simple but brilliant idea to test this by climbing the Ei↵el tower to perform

his experiment. He found that the amount of radiation did indeed drop, but nowhere

near as quickly as one would expect. Something was afoot.

The challenge was accepted two years later by Victor Hess. Needing to get to greater

heights, he took up ballooning. At a height of 1 km, he found that the radiation was

more or less the same as on Earth. At a height of 5 km, he found the radiation was

nine times greater. To test various hypotheses, he flew in the day and he flew at night.

He even flew during a solar eclipse. He concluded that either there was some unknown

substance hiding in the upper atmosphere, or the radiation had an extraterrestrial

source. He called it ultraradiation.
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Figure 12. The distribution

of cosmic ray energies. Image

from Wikipedia.

The name didn’t stick. In Caltech, Robert Millikan

(of oil drop fame) turned his attention to this new phe-

nomenon. He had a better name: cosmic rays. More im-

portantly, he also had resources and a team of brilliant

experimenters who could explore their implications.

With hindsight, it’s very clear why cosmic ray show-

ers provided such an opportunity for particle physics.

Radioactivity o↵ers alpha particles with energies up to

5 MeV. Cosmic rays have no such limitations. A plot

of the energy vs the flux of cosmic rays is shown to the

right. As you can see, cosmic rays with energies of 1

GeV are common place, but energies extend up to 1011

GeV, way beyond what we can create in colliders. To

find interesting physics, we just need to have our detec-

tors in the right place at the right time.

B.1 The Positron

In May 1931, after struggling for some years with the meaning of the negative energy

solutions of his equation, Dirac finally made the bold leap and predicted the existence

of anti-electrons. In September 1932, Carl Anderson announced the discovery of a new

particle, with the same mass as the electron, but opposite charge. He later named this

particle the positron. Rather surprisingly, the discovery of anti-matter owed essentially

nothing to its earlier theoretical prediction.

Anderson’s interest was in cosmic rays. Unlike Hess, however, he had no intention

of getting in a balloon. With a good detector, he needed to climb no higher than his

third storey o�ce to study the showers from cosmic rays.

Anderson’s detector was the cloud chamber. We already briefly met a preliminary

version of the cloud chamber in Section A.2 when describing J.J. Thomson’s discovery

of the electron. In the intervening years, it was perfected and was usually referred to as

the Wilson cloud chamber after its inventor, C.T.R. Wilson. When a charged particle

passes through the chamber, it leaves behind a path of ionised gas particles, around

which droplets subsequently condense. The result is that an elementary particle leaves

behind a misty trail, visible to the naked eye, like the contrails left by a plane in sky.

Working at Caltech under the guidance of Millikan, Anderson built a cloud chamber

sitting within a magnetic field of 25,000 Gauss. The purpose of the magnetic field was
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Figure 13. Anderson’s first published picture of a positron. You can see the layer of lead

running through the middle. The positron entered the cloud chamber at the bottom left, was

slowed by the lead, with the trail visibly more curved after it exited. Somewhat unusually,

this positron arose from a cosmic ray collision below the detector.

to bend the trajectory of a charged particle, allowing one to get a handle on the ratio

e/m of charge to mass. Anderson found trajectories bending in both directions. Those

that bent in one direction were clearly negatively charged electrons, coming down from

the sky. But what about those that bent in the other direction? They were too light

to be protons. However, they could have been electrons coming up from the ground.

It seemed unlikely because, as Milikan pointed out: “Everyone knows that cosmic ray

particles go down. They don’t go up except in very rare circumstances”.

To better understand what was going on, Anderson placed a thin, horizontal layer

of lead in the the cloud chamber. This wasn’t thick enough to stop the particles

completely, but it did cause them to lose a significant amount of energy as they passed

through. This meant that the particle would be travelling more slowly after it passed

through the lead, and so its trail would bend in a tighter curve. In this way, Anderson

was able to determine the direction of the particle and, hence, its charge. He found, in

the words of his original paper, an “easily deflectable positive”.

Anderson’s results were soon confirmed by others, notably Patrick Blackett and

Giuseppe Occhialini in Cambridge. Indeed, the week before Anderson dropped his

bombshell, Blackett and Occhialini published a paper in Nature entitled “Photography

of Penetrating Corpuscular Radiation” in which they boasted about their new toy, a

cloud chamber in a high magnetic field, rigged up to work only when an accompanying
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Figure 14. This cloud chamber track, showing electrons and positrons veering in opposite

directions, was taken by Anderson and his student Seth Neddermeyer in 1936. They were

still avoiding balloons, but climbed to Pike’s Peak in the Rocky mountains, 4300 m above

sea level, where, as they stated in the abstract, “the proportion of such tracks is considerably

greater than at Pasadena.”

Geiger counter triggered. They illustrated their paper with a few uninspiring pho-

tographs to show that the machine worked. It was only after they heard of Anderson’s

result that they realised they focussed on the wrong images: among their photographic

plates were positrons in “great abundance”. The pain of this oversight must have been

felt even more acutely given that they were colleagues of Dirac. As a (very!) small

compensation, they did quickly find something that Anderson had missed: the creation

of electron-positron pairs within the chamber.

Later, when asked if they were aware of Dirac’s theory when performing their exper-

iment, Blackett replied that he . . .

“. . . could not recall but that it did not matter anyway because nobody took

Dirac’s theory seriously.”

This seemed to be the prevailing attitude, at least among experimenters. Neither

Anderson’s original discovery paper, nor a longer paper published in 1933 in which he

introduces the name positron, mentions the theory of Dirac6. Anderson later recalled:

6As a slightly bitchy aside, it appears that theory wasn’t Anderson’s strong point. His longer paper
on the positron ends with the “the proton will then in all probability be represented as a complex
particle consisting of a neutron and positron”.
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“The Dirac work was not an important ingredient in deciding which way the

experiments should be carried out or what should be done experimentally.”

Rutherford, begrudging as always towards theorists, took things one grumpy step fur-

ther:

“It seems to me that in some way it is regrettable that we had a theory of

the positive electron before the beginning of the experiments. Blackett

did everything possible not to be influenced by theory, but the way of

anticipating results must inevitably be influenced to some extent by theory.

I would have liked it better if the theory had arrived after the experimental

fact had been established.”

B.2 Expecting a Meson

At this point our story of discovery gets somewhat out of sync with the main thread

of the lecture notes. To understand what happened next, we must first make some

comments on the strong nuclear force. We will describe the theory underlying this

force in much more detail in Section 3.

The first hint that a new force was needed to explain the structure of the nucleus came

from (who else?) Rutherford. In 1917, he started a series of experiments, following the

set-up of Geiger and Marsden but replacing their sheets of metal with hydrogen.

The charge on a hydrogen nucleus is almost 80 times smaller than that of the gold

used in the original Geiger-Marsden experiment. This means that the Coulomb re-

pulsion is significantly smaller and the ↵ particle can get much closer to the nucleus.

Rutherford noted that the scattering of ↵-particles no longer agreed with his formula

(A.2) that had worked so successfully in the past. Nor did it agree with a more detailed

study by Darwin that assumes a Coulomb repulsion, but allows for scattering of the

nucleus as well as the ↵-particle.

We now know that this is because the ↵-particle and hydrogen nucleus get close

enough to experience the strong force. However, the world wasn’t quite ready for a

new force and Rutherford originally suggested that the e↵ect could be explained by

some deformation of the ↵-particle.

As time went on, this interpretation became increasingly untenable. At a meeting

at the Royal Society in 1929, Rutherford stated clearly

“The hydrogen and helium nucleus appears to be surrounded by a field of

force of unknown origin”
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But what are the properties of this force field?

The key insight was made in 1934 by the Japanese physicist Hideki Yukawa. He

realised that if there were a new spin 0 particle7 of mass m then it would give rise to

a potential energy between particles which varies with the separation r as

V (r) ⇠
e�r/R

r

This is now known as the Yukawa potential. It has the property that it quickly goes to

zero for r � R, where the range R of the potential is inversely related to the mass as

R =
~
mc

This is the same relationship between energy and length that we met earlier in when

describing the Compton wavelength (1.2). The data available at the time suggested

that the strong force had a range of about R ⇡ 2 ⇥ 10�15 m. This meant that if you

wanted to explain the strong force in terms of some field, you should be looking for a

new particle approximately 200 times heavier than the electron, or

m ⇡ 100 MeV

The idea languished until 1937, when just such a particle was found.

B.3 The Muon and the Pion

The discovery of the muon didn’t happen overnight. There was no smoking gun event

that people could point to and shout “Eureka”. Instead it was more of a slow burn as,

from 1934 to 1937, an increasing number of cosmic ray tracks had absorption properties

that didn’t seem to fit theoretical expectations.

The prime driver in these discoveries was, once again, Carl Anderson, now working

with his recently-graduated student, Seth Neddermeyer. As they understood more

about cosmic rays, they found tracks that didn’t lose energy as quickly as theorists

predicted. But it wasn’t clear whether the theorists should be trusted, or whether the

data contained something more interesting.

7This is draped in a little bit of hindsight. Yukawa’s original paper suggests a massive spin 1
particle, but only looked at the contribution from the first component, analogous to focussing on the
just the electrostatic potential and ignoring magnetic fields. Later, in 1937 with Sakata, he developed
the theory with a massive spin 0 field.
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i
Figure 15. A cloud chamber picture from the same 1936 paper as Figure 14. The track

daubed in red by my ipad pen was di�cult to interpret as either an electron or a proton.

Already in 1936, Anderson and Neddermeyer published results which didn’t conform

to expectations. They pointed out that the red track shown in Figure 15 is too ionizing

to be identified as an electron, but travels further than expected from a proton. In

1937, they finally bit the bullet, concluding that “there exist particles of unit charge

but with a mass ... larger than that of a normal free electron and much smaller than

that of a proton.”

By 1939, the data seemed to suggest that this new particle had a mass 200 times

heavier than the electron. The connection to Yukawa’s proposed particle was obvious

and a number of names were suggested for this new particle, including “yukon”. Phys-

ical Review, pedantic as ever, insisted on “mesotron”. Physicists ultimately converged

on “meson”, with the meso- from the Greek “mid”.

However, as time went on, less and less about this new meson made sense. Models

of nuclear binding worked much better with a particle that was slightly heavier and

decayed significantly quicker. More brutally, experiments in 1946 showed that the

interaction of the new meson with nuclei was around 1012 times weaker than that

predicted by Yukawa’s theory. That was too large a discrepancy to overlook!

Resolution

Happily the situation was resolved not long after. The discovery was made in 1947

in Bristol, England by a group of scientists led by Cecil Powell. Whenever Powell’s

collaborators are mentioned, people always include Giuseppe Occhialini (who recall,

just missed out on the discovery of the positron) and sometimes César Lattes. But
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Figure 16. The discovery of the charged pion. It enters in the top left (labelled m1), slows in

the bromide and comes to rest, before decaying into a muon that flies o↵ to the right (labelled

m2) and an anti-neutrino which is invisible in the picture. The caption in the paper starts

with the comment “Observation by Mrs I. Roberts”.

they rarely mention the fourth author on the paper, a poor graduate student by the

name of Hughes Muirhead. And they certainly never mention the people behind the

scenes who did the hard work: a team of women who painstakingly studied the images

under microscopes to find the interesting events8.

The discovery made by Powell’s team was possible, as always, because they had

a new piece of kit. Powell developed a new way of detecting particles by coating a

glass plate with a photographic emulsion. When a charged particle passes through, it

activates the emulsion, leaving behind a trail of silver bromide. They exposed their

photographic plates to cosmic rays at high altitude, in balloons and on mountains,

including Jungfraujoch and Kilimanjaro. When developed, the plates revealed a new

meson, one both heavier and more short-lived, which decays quickly to the earlier

meson. The V-shaped tracks were first found by Marietta Kurz, but these sat towards

the edge of the emulsion and so were considered incomplete. A few days later, two

clear L-shaped tracks were found by Irene Roberts. This was the long-sought meson.

Now, of course, we had two “mesons”, rather than one. It quickly became clear that

the particle discovered by Roberts had the properties expected of Yukawa’s meson and,

as we explain in the next section, can be viewed as the glue that binds together the

proton and neutron in the nucleus. This became known as the ⇡-meson, or pion. It is

8Actually, this statement was true when I wrote it, but then I decided to edit the Wikipedia page.
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not an elementary particle but is, we now know, composed of quarks. Meanwhile, the

particle discovered by Anderson and Neddermeyer is something new entirely, completely

unrelated to the nuclear force. It became known as the µ-meson although, as time

passed, the word meson was dropped. It is now simply the muon.

The muon-pion mix-up, which lasted a decade, is entirely due to a coincidence in

their mass. We now know that the mass and lifetime of the two is

⇡± : M ⇡ 140 MeV and T ⇡ 2⇥ 10�8 s

µ± : M ⇡ 106 MeV and T ⇡ 2⇥ 10�6 s

The pion decays primarily as ⇡�
�! µ� + ⌫̄µ and ⇡+

�! µ+ + ⌫µ. (You’ll have to

wait until we discuss the weak force in Section 4 to understand how this decay occurs.)

Moreover, as we explain in Section 3.4, we have a good understanding of the pion in

terms of its constituent quarks. We even understand why it has the mass that it does.

In contrast, the muon remains a mystery, a repetition of the electron at a higher scale

whose existence is as surprising to us today as in the 1940s.

B.4 The Beginning of the Deluge

Cosmic rays had still more surprises in store for physicists searching for elementary

particles. The first came later in 1947, when George Rochester and Cli↵ord Butler,

working in Blackett’s laboratory in Manchester, made a careful study of around 5000

photographs that they had taken the over the previous year. Among them they dis-

covered two with peculiar features.

The first, shown on the left of Figure 17, contains a forked track, seemingly appearing

from nowhere. This is due to a neutral invisible particle which subsequently decays

into two charged particles which are either muons or pions. The second, shown on the

right of Figure 17, shows a marked kink, strongly suggesting that a charged particle

decayed into a di↵erent charged particle (again, either a muon or pion), but also an

invisible neutral particle which left without leaving a track. These new particles were

estimated to have masses between 770 me and 1600 me. They were dubbed V-particles

on account of the V-shaped tracks that they left.

It was not long before further V-particles were discovered, some lighter than the

proton, some heavier. Indeed, at some point it seemed like there would be no end to

these new particles. In collecting his Nobel prize in 1955, Willis Lamb quipped

“The finder of a new elementary particle used to be rewarded by a Nobel

Prize, but such a discovery now ought to be punished by a $10,000 fine. ”
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Figure 17. The discovery of kaons. A neutral kaon decays on the left, a charged kaon on

the right.

For the next decade or so, particle physics entered a phase of taxonomy. The goal was

to classify particles, first in terms of their mass and lifetimes, and then in terms of

their decays, looking for patterns that would bring some order to the mess. It took

many years before the things fell nicely into place and it was appreciated that all these

particles could be understood in terms of yet smaller constituents called quarks. The

V-particles shown in Figure 17 are now called kaons and were the first particles seen

that contain a strange quark. We will tell the story of quarks in the next section.

The discovery of V-particles marks the beginning of a new era in theoretical physics.

It also marks the end of an era in experimental physics. By the mid-1950’s the energies

and fluxes from accelerators were more than competitive with those in cosmic rays, and

man-made muons, pions and V-particles were readily available. We will chart the rise

of accelerator and detector technology in Interlude C.
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