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1. The Weyl representation of the Clifford algebra is given by,

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
(1)

Show that these indeed satisfy {γµ, γν} = 2ηµν , where 1 comes with an implicit 4× 4

unit matrix. Find a unitary matrix U such that (γ′)µ = UγµU †, where (γ′)µ form the

Dirac representation of the Clifford algebra

(γ′)0 =

(
1 0

0 −1

)
, (γ′)i =

(
0 σi

−σi 0

)
(2)

2. Show that if {γµ , γν} = 2ηµν , then[
γκγλ , γµγν

]
= 2ηλµγκγν − 2ηκµγλγν + 2ηλνγµγκ − 2ηκνγµγλ . (3)

Show further that Sµν ≡ 1
4
[γµ , γν ] = 1

2
(γµγν − ηµν). Use this to confirm that the

matrices Sµν form a representation of the Lie algebra of the Lorentz group.

3. Using just the algebra {γµ, γν} = 2ηµν (i.e. without resorting to a particular

representation), and defining γ5 = −iγ0γ1γ2γ3, /p = pµγ
µ and Sµν = 1

4
[γµ, γν ], prove

the following results: (Some useful tricks include the cyclicity of the trace, and inserting

(γ5)2 = 1 into a trace).

i. Trγµ = 0

ii. Tr(γµγν) = 4ηµν

iii. Tr(γµγνγρ) = 0

iv. (γ5)
2
= 1

v. Trγ5 = 0

vi. /p /q = 2p · q − /q /p = p · q + 2Sµνpµqν

vii. Tr( /p /q) = 4p · q
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viii. Tr( /p1 . . . /pn) = 0 if n is odd

ix. Tr( /p1 /p2 /p3 /p4) = 4 [(p1 · p2)(p3 · p4) + (p1 · p4)(p2 · p3)− (p1 · p3)(p2 · p4)]

x. Tr(γ5 /p1 /p2) = 0

xi. γµ /p γµ = −2 /p

xii. γµ /p1 /p2γ
µ = 4p1 · p2

xiii. γµ /p1 /p2 /p3γ
µ = −2 /p3 /p2 /p1

xiv. Tr(γ5 /p1 /p2 /p3 /p4) = 4i ϵµνρσ p
µ
1 p

ν
2 p

ρ
3 p

4
σ

4. The plane-wave solutions to the Dirac equation are

us(p⃗) =

( √
p · σ ξs

√
p · σ̄ξs

)
and vs(p⃗) =

( √
p · σ ξs

−
√
p · σ̄ξs

)
(4)

where σµ = (1, σ⃗) and σ̄µ = (1,−σ⃗) and ξs, with s = 1, 2, is a basis of orthonormal

two-component spinors, satisfying (ξr)† · ξs = δrs. Show that

ur(p⃗)† · us(p⃗) = 2p0δ
rs (5)

ūr(p⃗) · us(p⃗) = 2mδrs

and similarly,

vr(p⃗)† · vs(p⃗) = 2p0δ
rs (6)

v̄r(p⃗) · vs(p⃗) = −2mδrs

Show also that the orthonality condition between u and v is

ūs(p⃗) · vr(p⃗) = 0 (7)

while taking the inner product using † requires an extra minus sign

ur(p⃗)† · vs(−p⃗) = 0 (8)

5. Using the same notation as Question 4 show that

2∑
s=1

us(p⃗)ūs(p⃗) = /p+m (9)

2∑
s=1

vs(p⃗)v̄s(p⃗) = /p−m (10)
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where, rather than being contracted, the two spinors on the left-hand side are placed

back to back to form a 4× 4 matrix.

6. The Fourier decomposition of the Dirac operator ψ(x⃗) and the conjugate field

ψ†(x⃗) is given by,

ψ(x⃗) =
2∑

s=1

∫
d3p

(2π)3
1√
2Ep⃗

[
bsp⃗ u

s(p⃗)e+ip⃗·x⃗ + cs †p⃗ vs(p⃗)e−ip⃗·x⃗
]

ψ†(x⃗) =
2∑

s=1

∫
d3p

(2π)3
1√
2Ep⃗

[
bs †p⃗ us(p⃗)†e−ip⃗·x⃗ + csp⃗ v

s(p⃗)†e+ip⃗·x⃗
]

(11)

The creation and annihilation operators are taken to satisfy

{brp⃗, b
s †
q⃗ } = (2π)3δrs δ(3)(p⃗− q⃗)

{crp⃗, c
s †
q⃗ } = (2π)3δrs δ(3)(p⃗− q⃗) (12)

with all other anti-commutators vanishing,

{brp⃗, bsq⃗} = {crp⃗, csq⃗} = {brp⃗, c
s †
q⃗ } = {brp⃗, csq⃗} = . . . = 0 (13)

Show that these imply that the field and it conjugate momenta satisfy the anti-

commutation relations,

{ψα(x⃗), ψβ(y⃗)} = {ψ†
α(x⃗), ψ

†
β(y⃗)} = 0

{ψα(x⃗), ψ
†
β(y⃗)} = δαβ δ

(3)(x⃗− y⃗) (14)

(Note: The calculation is very similar to that for the bosonic field, but at some point

you will need to make use of the identities (9) and (10)).

7. Using the results of Question 6, show that the quantum Hamiltonian

H =

∫
d3x ψ̄(−iγi∂i +m)ψ (15)

can be written, after normal ordering, as

H =

∫
d3p

(2π)3
Ep⃗

2∑
s=1

[
bs †p⃗ b

s
p⃗ + cs †p⃗ c

s
p⃗

]
(16)

(Note: Again, the calculation is very similar to that for the bosonic field. This time

you will need to make use of the identities derived in Questions 4 and 5).
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8. The purpose of this question is to give you a glimpse into the spin-statistics theorem.

This theorem roughly says that if you try to quantize a field with the wrong statistics,

bad things will happen. Here we’ll see what goes wrong if you try to quantize a spin

1/2 field as a boson. We start with the usual decomposition (11). This time we choose

bosonic commutation relations for the annihilation and creation operators,

[brp⃗, b
s †
q⃗ ] = (2π)3δrs δ(3)(p⃗− q⃗)

[crp⃗, c
s †
q⃗ ] = −(2π)3δrs δ(3)(p⃗− q⃗) (17)

with all other commutators vanishing. Note the strange minus sign for the c opera-

tors. Repeat the calculation of Question 6 to show that these are equivalent to the

commutation relations,

[ψα(x⃗), ψβ(y⃗)] = [ψ†
α(x⃗), ψ

†
β(y⃗)] = 0

[ψα(x⃗), ψ
†
β(y⃗)] = δαβ δ

(3)(x⃗− y⃗) (18)

Now repeat the calculation of Question 7, to show that, after normal ordering, the

Hamitonian is given by

H =

∫
d3p

(2π)3
Ep⃗

2∑
s=1

[
bs †p⃗ b

s
p⃗ − cs †p⃗ c

s
p⃗

]
(19)

This Hamiltonian is not bounded below: you can lower the energy indefinitely by

creating more and more c particles. This is the reason a theory of bosonic spin 1/2

particles is sick.
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