
5. Chern-Simons Theories

So far we’ve approached the quantum Hall states from a microscopic perspective, look-

ing at the wavefunctions which describe individual electrons. In this section, we take

a step back and describe the quantum Hall e↵ect on a more coarse-grained level. Our

goal is to construct e↵ective field theories which capture the response of the quantum

Hall ground state to low-energy perturbations. These e↵ective theories are known as

Chern-Simons theories45. They have many interesting properties and, in addition to

their role in the quantum Hall e↵ect, play a starring role in several other stories.

Throughout this section, we’ll make very general statements about the kind of low-

energy e↵ective behaviour that is possible, with very little input about the microscopic

properties of the model. As we will see, we will be able to reconstruct many of the

phenomena that we’ve met in the previous chapters.

We will treat the gauge potential Aµ of electromagnetism as a background gauge

field. This means that Aµ is not dynamical; it is only a parameter of the theory which

tells us which electric and magnetic fields we’ve turned on. Further, we will not include

in Aµ the original background magnetic field which gave rise the Hall e↵ect to begin

with. Instead, Aµ will describe only perturbations around a given Hall state, either by

turning on an electric field, or by perturbing the applied magnetic field but keeping the

kind of state (i.e. the filling fraction) fixed.

In the field theory context, Aµ always couples to the dynamical degrees of freedom

through the appropriate current Jµ, so that the action includes the term

SA =

Z
d3x JµAµ (5.1)

This is the field theoretic version of (2.8). Note that the measure
R
d3x means that

we’ve assumed that the current lives in a d = 2 + 1 dimensional slice of spacetime; it

couples to the gauge field Aµ evaluated on that slice. The action SA is invariant under

gauge transformations Aµ ! Aµ + @µ! on account of the conservation of the current

@µJ
µ = 0

These two simple equations will be our starting point for writing down e↵ective field

theories that tell us how the system responds when we perturb it by turning on a

background electric or magnetic field.
45Two reviews on the Chern-Simons approach to the quantum Hall e↵ect are Tony Zee, “Quantum

Hall Fluids”, cond-mat/9501022, Xiao-Gang Wen “Topological Orders and Edge Excitations in FQH
States”, cond-mat/9506066. The discussion here follows the spirit of the beautiful lectures by Edward
Witten, “Three Lectures on Topological Phases of Matter”, arXiv:1510.07698.
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5.1 The Integer Quantum Hall E↵ect

We start by looking at the integer quantum Hall e↵ect. We will say nothing about

electrons or Landau levels or anything microscopic. Instead, in our attempt to talk

with some generality, we will make just one, seemingly mild, assumption: at low-

energies, there are no degrees of freedom that can a↵ect the physics when the system

is perturbed.

Let’s think about what this assumption means. The first, and most obvious, require-

ment is that there is a gap to the first excited state. In other words, our system is

an insulator rather than a conductor. We’re then interested in the physics at energies

below this gap.

Naively, you might think that this is enough to ensure that there are no relevant

low-energy degrees of freedom. However, there’s also a more subtle requirement hiding

in our assumption. This is related to the existence of so-called “topological degrees of

freedom”. We will ignore this subtlety for now, but return to it in Section 5.2 when we

discuss the fractional quantum Hall e↵ect.

As usual in quantum field theory, we want to compute the partition function. This

is not a function of the dynamical degrees of freedom since these are what we inte-

grate over. Instead, it’s a function of the sources which, for us, is the electromagnetic

potential Aµ. We write the partition function schematically as

Z[Aµ] =

Z
D(fields) eiS[fields;A]/~ (5.2)

where “fields” refer to all dynamical degrees of freedom. The action S could be anything

at all, as long as it satisfies our assumption above and includes the coupling to Aµ

through the current (5.1). We now want to integrate out all these degrees of freedom,

to leave ourselves with a theory of the ground state which we write as

Z[Aµ] = eiSe↵ [Aµ]/~ (5.3)

Our goal is to compute Se↵ [Aµ], which is usually referred to as the e↵ective action.

Note, however, that it’s not the kind of action you meet in classical mechanics. It

depends on the parameters of the problem rather than dynamical fields. We don’t use

it to compute Euler-Lagrange equations since there’s no dynamics in Aµ. Nonetheless,

it does contain important information since, from the coupling (5.1), we have

�Se↵ [A]

�Aµ(x)
= hJµ(x)i (5.4)

This is telling us that the e↵ective action encodes the response of the current to electric

and magnetic fields.
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Since we don’t know what the microscopic Lagrangian is, we can’t explicitly do the

path integral in (5.2). Instead, our strategy is just to write down all possible terms

that can arise and then focus on the most important ones. Thankfully, there are many

restrictions on what the answer can be which means that there are just a handful of

terms we need to consider. The first restrictions is that the e↵ective action Se↵ [A] must

be gauge invariant. One simple way to achieve this is to construct it out of electric and

magnetic fields,

E = �1

c
rA0 �

@A

@t
and B = r⇥A

The kinds of terms that we can write down are then further restricted by other sym-

metries that our system may (or may not) have, such as rotational invariance and

translational invariance.

Finally, if we care only about long distances, the e↵ective action should be a local

functional, meaning that we can write is as Se↵ [A] =
R
ddx . . . . This property is

extremely restrictive. It holds because we’re working with a theory with a gap �E in

the spectrum. The non-locality will only arise at distances comparable to ⇠ v~/�E

with v a characteristic velocity. (This is perhaps most familiar for relativistic theories

where the appropriate scale is the Compton wavelength ~/mc). To ensure that the gap

isn’t breached, we should also restrict to suitably small electric and magnetic fields.

Now we just have to write down all terms in the e↵ective action that satisfy the above

requirements. There’s still an infinite number of them but there’s a simple organising

principle. Because we’re interested in small electric and magnetic fields, which vary

only over long distances, the most important terms will be those with the fewest powers

of A and the fewest derivatives. Our goal is simply to write them down.

Let’s first see what all of this means in the context of d = 3 + 1 dimensions. If we

have rotational invariance then we can’t write down any terms linear in E or B. The

first terms that we can write down are instead

Se↵ [A] =

Z
d4x ✏E · E� 1

µ
B ·B (5.5)

There is also the possibility of adding a E ·B term although, when written in terms of

Ai this is a total derivative and so doesn’t contribute to the response. (This argument

is a little bit glib; famously the E · B term plays an important role in the subject of

3d topological insulators but this is beyond the scope of these lectures.) The response

(5.4) that follows from this e↵ective action is essentially that of free currents. Indeed,

it only di↵ers from the familiar Lorentz invariant Maxwell action by the susceptibilities
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✏ and µ which are the free parameters characterising the response of the system. (Note

that the response captured by (5.5) isn’t quite the same as Ohm’s law that we met in

Section 1 as there’s no dissipation in our current framework).

The action (5.5) has no Hall conductivity because this is ruled out in d = 3 +

1 dimensions on rotational grounds. But, as we have seen in great detail, a Hall

conductivity is certainly possible in d = 2+1 dimensions. This means that there must

be another kind of term that we can write in the e↵ective action. And indeed there

is....

5.1.1 The Chern-Simons Term

The thing that’s special in d = 2+1 dimension is the existence of the epsilon symbol ✏µ⌫⇢
with µ, ⌫, ⇢ = 0, 1, 2. We can then write down a new term, consistent with rotational

invariance. The resulting e↵ective action is Se↵ [A] = SCS[A] where

SCS[A] =
k

4⇡

Z
d3x ✏µ⌫⇢Aµ@⌫A⇢ (5.6)

This is the famous Chern-Simons term. The coe�cient k is sometimes called the level

of the Chern-Simons term.

At first glance, it’s not obvious that the Chern-Simons term is gauge invariant since

it depends explicitly on Aµ. However, under a gauge transformation, Aµ ! Aµ + @µ!,

we have

SCS[A] ! SCS[A] +
k

4⇡

Z
d3x @µ (!✏

µ⌫⇢@⌫A⇢)

The change is a total derivative. In many situations we can simply throw this total

derivative away and the Chern-Simons term is gauge invariant. However, there are

some situations where the total derivative does not vanish. Here we will have to think

a little harder about what additional restrictions are necessary to ensure that SCS[A]

is gauge invariant. We see that the Chern-Simons term is flirting with danger. It’s

very close to failing the demands of gauge invariance and so being disallowed. The

interesting and subtle ways on which it succeeds in retaining gauge invariance will lead

to much of the interesting physics.

The Chern-Simons term (5.6) respects rotational invariance, but breaks both parity

and time reversal. Here we focus on parity which, in d = 2 + 1 dimensions, is defined

as

x0 ! x0 , x1 ! �x1 , x2 ! x2
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and, correspondingly, A0 ! A0, A1 ! �A1 and A2 ! A2. The measure
R
d3x is

invariant under parity (recall that although x1 ! �x1, the limits of the integral also

change). However, the integrand is not invariant: ✏µ⌫⇢Aµ@⌫A⇢ ! �✏µ⌫⇢Aµ@⌫A⇢. This

means that the Chern-Simons e↵ective action with k 6= 0 can only arise in systems that

break parity. Looking back at the kinds of systems we met in Section 2 which exhibit a

Hall conductivity, we see that they all break parity, typically because of a background

magnetic field.

Let’s look at the physics captured by the Chern-Simons term using (5.4). First, we

can compute the current that arises from Chern-Simons term. It is

Ji =
�SCS[A]

�Ai

= � k

2⇡
✏ijEi

In other words, the Chern-Simons action describes a Hall conductivity with

�xy =
k

2⇡
(5.7)

This coincides with the Hall conductivity of ⌫ filled Landau levels if we identify the

Chern-Simons level with k = e2⌫/~.

We can also compute the charge density J0. This is given by

J0 =
�SCS[A]

�A0
=

k

2⇡
B (5.8)

Recall that we should think of Aµ as the additional gauge field over and above the

original magnetic field. Correspondingly, we should think of J0 here as the change

in the charge density over and above that already present in the ground state. Once

again, if we identify k = e2⌫/~ then this is precisely the result we get had we kept ⌫

Landau levels filled while varying B(x).

We see that the Chern-Simons term captures the basic physics of the integer quantum

Hall e↵ect, but only if we identify the level k = e2⌫/~. But this is very restrictive

because ⌫ describes the number of filled Landau levels and so can only take integer

values. Why should k be quantised in this way?

Rather remarkably, we don’t have to assume that k is quantised in this manner;

instead, it is obliged to take values that are integer multiples of e2/~. This follows

from the “almost” part of the almost-gauge invariance of the Chern-Simons term. The

quantisation in the Abelian Chern-Simons term (5.6) turns out to be somewhat sub-

tle. (In contrast, it’s much more direct to see the corresponding quantisation for the
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non-Abelian Chern-Simons theories that we introduce in Section 5.4). To see how it

arises, it’s perhaps simplest to place the theory at finite temperature and compute the

corresponding partition function, again with Aµ a source. To explain this, we first need

a small aside about how should think about the equilibrium properties of field theories

at finite temperature.

5.1.2 An Aside: Periodic Time Makes Things Hot

In this small aside we will look at the connection between the thermal partition function

that we work with in statistical mechanics and the quantum partition function that we

work with in quantum field theory. To explain this, we’re going to go right back to

basics. This means the dynamics of a single particle.

Consider a quantum particle of mass m moving in one direction with coordinate q.

Suppose it moves in a potential V (q). The statistical mechanics partition function is

Z[�] = Tr e��H (5.9)

whereH is, of course, the Hamiltonian operator and � = 1/T is the inverse temperature

(using conventions with kB = 1). We would like to write down a path integral expression

for this thermal partition function.

We’re more used to thinking of path integrals for time evolution in quantum me-

chanics. Suppose the particle sits at some point qi at time t = 0. The Feynman path

integral provides an expression for the amplitude for the particle to evolve to position

q = qf at a time t later,

hqf |e�iHt|qii =
Z

q(t)=qf

q(0)=qi

Dq eiS (5.10)

where S is the classical action, given by

S =

Z
t

0

dt0
"
m

2

✓
dq

dt0

◆2

� V (q)

#

Comparing (5.9) and (5.10), we see that they look tantalisingly similar. Our task is

to use (5.10) to derive an expression for the thermal partition function (5.9). We do

this in three steps. We start by getting rid of the factor of i in the quantum mechanics

path integral. This is accomplished by Wick rotating, which just means working with

the Euclidean time variable

⌧ = it
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With this substitution, the action becomes

iS =

Z �i⌧

0

d⌧ 0
"
�m

2

✓
dq

d⌧

◆2

� V (q)

#
⌘ �SE

where SE is the Euclidean action.

The second step is to introduce the temperature. We do this by requiring the particle

propagates for a (Euclidean) time ⌧ = �, so that the quantum amplitude becomes,

hqf |e�H�|qii =
Z

q(�)=qf

q(0)=qi

Dq e�SE

Now we’re almost there. All that’s left is to implement the trace. This simply means

a sum over a suitable basis of states. For example, if we choose to sum over the initial

position, we have

Tr · =
Z

dqi hqi| · |qii

We see that taking the trace means we should insist that qi = qf in the path integral,

before integrating over all qi. We can finally write

Tr e��H =

Z
dqi hqi|e�H�|qii

=

Z
dqi

Z
q(�)=qi

q(0)=qi

Dq e�SE

=

Z

q(0)=q(�)

Dq e�SE

The upshot is that we have to integrate over all trajectories with the sole requirement

q(0) = q(�), with no constraint on what this starting point is. All we have to impose

is that the particle comes back to where it started after Euclidean time ⌧ = �. This is

usually summarised by simply saying that the Euclidean time direction is compact: ⌧

should be thought of as parameterising a circle, with periodicity

⌧ ⌘ ⌧ + � (5.11)

Although we’ve walked through this simple example of a quantum particle, the general

lesson that we’ve seen here holds for all field theories. If you take a quantum field

theory that lives on Minkowski space Rd�1,1 and want to compute the thermal partition

function, then all you have to do is consider the Euclidean path integral, but with
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the theory now formulated on the Euclidean space Rd�1 ⇥ S1, where the circle is

parameterised by ⌧ 2 [0, �). There is one extra caveat that you need to know. While

all bosonic field are periodic in the time direction (just like q(⌧) in our example above),

fermionic fields should be made anti-periodic: they pick up a minus sign as you go

around the circle.

All of this applies directly to the thermal partition function for our quantum Hall

theory, resulting in an e↵ective action Se↵ [A] which itself lives on R2 ⇥ S1. However,

there’s one small di↵erence for Chern-Simons terms. The presence of the ✏µ⌫⇢ symbol in

(5.6) means that the action in Euclidean space picks up an extra factor of i. The upshot

is that, in both Lorentzian and Euclidean signature, the term in the path integral takes

the form eiSCS/~. This will be important in what follows.

5.1.3 Quantisation of the Chern-Simons level

We’re now in a position to understand the quantisation of the Chern-Simons level k in

(5.6). As advertised earlier, we look at the partition function at finite temperature by

taking time to be Euclidean S1, parameterised by ⌧ with periodicity (5.11).

Having a periodic S1 factor in the geometry allows us to do something novel with

gauge transformations, Aµ ! Aµ + @µ!. Usually, we work with functions !(t,x)

which are single valued. But that’s actually too restrictive: we should ask only that

the physical fields are single valued. The electron wavefunction (in the language of

quantum mechanics) or field (in the language of, well, fields) transforms as eie!/~. So

the real requirement is not that ! is single valued, but rather that eie!/~ is single valued.

And, when the background geometry has a S1 factor, that allows us to do something

novel where the gauge transformations “winds” around the circle, with

! =
2⇡~⌧
e�

(5.12)

which leaves the exponential eie!/~ single valued as required. These are sometimes

called large gauge transformations; the name is supposed to signify that they cannot

be continuously connected to the identity. Under such a large gauge transformation,

the temporal component of the gauge field is simply shifted by a constant

A0 ! A0 +
2⇡~
e�

(5.13)

Gauge fields that are related by gauge transformations should be considered physically

equivalent. This means that we can think of A0 (strictly speaking, its zero mode)

as being a periodic variable, with periodicity 2⇡~/e�, inversely proportional to the
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radius � of the S1. Our interest is in how the Chern-Simons term fares under gauge

transformations of the type (5.12).

To get something interesting, we’ll also need to add one extra ingredient. We think

about the spatial directions as forming a sphere S2, rather than a plane R2. (This is

reminiscent of the kind of set-ups we used in Section 2, where all the general arguments

we gave for quantisation involved some change of the background geometry, whether

an annulus or torus or lattice). We take advantage of this new geometry by threading

a background magnetic flux through the spatial S2, given by

1

2⇡

Z

S2

F12 =
~
e

(5.14)

where Fµ⌫ = @µA⌫ � @⌫Aµ.This is tantamount to placing a Dirac magnetic monopole

inside the S2. The flux above is the minimum amount allowed by the Dirac quantisation

condition. Clearly this experiment is hard to do in practice. It involves building a

quantum Hall state on a sphere which sounds tricky. More importantly, it also requires

the discovery of a magnetic monopole! However, there should be nothing wrong with

doing this in principle. And we will only need the possibility of doing this to derive

constraints on our quantum Hall system.

We now evaluate the Chern-Simons term (5.6) on a configuration with constant

A0 = a and spatial field strength (5.14). Expanding (5.6), we find

SCS =
k

4⇡

Z
d3x A0F12 + A1F20 + A2F01

Now it’s tempting to throw away the last two terms when evaluating this on our back-

ground. But we should be careful as it’s topologically non-trivial configuration. We can

safely set all terms with @0 to zero, but integrating by parts on the spatial derivatives

we get an extra factor of 2,

SCS =
k

2⇡

Z
d3x A0F12

Evaluated on the flux (5.14) and constant A0 = a, this gives

SCS = �a
~k
e

(5.15)

The above calculation was a little tricky: how do we know that we needed to integrate

by parts before evaluating? The reason we got di↵erent answers is that we’re dealing

with a topologically non-trivial gauge field. To do a proper job, we should think about
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the gauge field as being defined locally on di↵erent patches and glued together in an

appropriate fashion. (Alternatively, there’s a way to think of the Chern-Simons action

as living on the boundary of a four dimensional space.) We won’t do this proper job

here. But the answer (5.15) is the correct one.

Now that we’ve evaluated the Chern-Simons action on this particular configuration,

let’s see how it fares under gauge transformations (5.13) which shift A0. We learn that

the Chern-Simons term is not quite gauge invariant after all. Instead, it transforms as

SCS ! SCS +
2⇡~2k
e2

This looks bad. However, all is not lost. Looking back, we see that the Chern-Simons

term should really be interpreted as a quantum e↵ective action,

Z[Aµ] = eiSe↵ [Aµ]/~

It’s ok if the Chern-Simons term itself is not gauge invariant, as long as the partition

function eiSCS/~ is. We see that we’re safe provided

~k
e2

2 Z

This is exactly the result that we wanted. We now write, k = e2⌫/~ with ⌫ 2 Z. Then

the Hall conductivity (5.7) is

�xy =
e2

2⇡~ ⌫

which is precisely the conductivity seen in the integer quantum Hall e↵ect. Similarly,

the charge density (5.8) also agrees with that of the integer quantum Hall e↵ect.

This is a lovely result. We’ve reproduced the observed quantisation of the integer

quantum Hall e↵ect without ever getting our hands dirty. We never needed to discuss

what underlying theory we were dealing with. There was no mention of Landau levels,

no mention of whether the charge carriers were fermions or bosons, or whether they were

free or strongly interacting. Instead, on very general grounds we showed that the Hall

conductivity has to be quantised. This nicely complements the kinds of microscopic

arguments we met in Section 2 for the quantisation of �xy

Compact vs. Non-Compact

Looking back at the derivation, it seems to rely on two results. The first is the periodic

nature of gauge transformations, eie!/~, which means that the topologically non-trivial
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gauge transformations (5.12) are allowed. Because the charge appears in the exponent,

an implicit assumption here is that all fields transform with the same charge. We

can, in fact, soften this slightly and one can repeat the argument whenever charges

are rational multiples of each other. Abelian gauge symmetries with this property are

sometimes referred to as compact. It is an experimental fact, which we’ve all known

since high school, that the gauge symmetry of Electromagnetism is compact (because

the charge of the electron is minus the charge of the proton).

Second, the derivation required there to be a minimum flux quantum (5.14), set

by the Dirac quantisation condition. Yet a close inspection of the Dirac condition

shows that this too hinges on the compactness of the gauge group. In other words, the

compact nature of Electromagnetism is all that’s needed to ensure the quantisation of

the Hall conductivity.

In contrast, Abelian gauge symmetries which are non-compact — for example, be-

cause they have charges which are irrational multiples of each other — cannot have

magnetic monopoles, or fluxes of the form (5.14). We sometimes denote their gauge

group as R instead of U(1) to highlight this non-compactness. For such putative non-

compact gauge fields, there is no topological restriction on the Hall conductivity.

5.2 The Fractional Quantum Hall E↵ect

In the last section, we saw very compelling arguments for why the Hall conductivity

must be quantised. Yet now that leaves us in a bit of a bind, because we somehow have

to explain the fractional quantum Hall e↵ect where this quantisation is not obeyed.

Suddenly, the great power and generality of our previous arguments seems quite daunt-

ing!

If we want to avoid the conclusion that the Hall conductivity takes integer values, our

only hope is to violate one of the assumptions that went into our previous arguments.

Yet the only thing we assumed is that there are no dynamical degrees which can a↵ect

the low-energy energy physics when the system is perturbed. And, at first glance, this

looks rather innocuous: we might naively expect that this is true for any system which

has a gap in its spectrum, as long as the energy of the perturbation is smaller than

that gap. Moreover, the fractional quantum Hall liquids certainly have a gap. So what

are we missing?

What we’re missing is a subtle and beautiful piece of physics that has many far reach-

ing consequences. It turns out that there can be degrees of freedom which are gapped,

but nonetheless a↵ect the physics at arbitrarily low-energy scales. These degrees of
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freedom are sometimes called “topological”. Our goal in this section is to describe the

topological degrees of freedom relevant for the fractional quantum Hall e↵ect.

Let’s think about what this means. We want to compute the partition function

Z[Aµ] =

Z
D(fields) eiS[fields;A]/~

where Aµ again couples to the fields through the current (5.1). However, this time, we

should not integrate out all the fields if we want to be left with a local e↵ective action.

Instead, we should retain the topological degrees of freedom. The tricky part is that

these topological degrees of freedom can be complicated combinations of the original

fields and it’s usually very di�cult to identify in advance what kind of emergent fields

will arise in a given system. So, rather than work from first principles, we will first

think about what kinds of topological degrees of freedom may arise. Then we’ll figure

out the consequences.

In the rest of this section, we describe the low-energy e↵ective theory relevant to

Laughlin states with ⌫ = 1/m. In subsequent sections, we’ll generalise this to other

filling fractions.

5.2.1 A First Look at Chern-Simons Dynamics

In d = 2 + 1 dimensions, the simplest kind of topological field theory involves a U(1)

dynamical gauge field aµ. We stress that this is not the gauge field of electromagnetism,

which we’ll continue to denote as Aµ. Instead aµ is an emergent gauge field, arising

from the collective behaviour of many underlying electrons. You should think of this

as something analogous to the way phonons arise as the collective motion of many

underlying atoms. We will see the direct relationship between aµ and the electron

degrees of freedom later.

We’re used to thinking of gauge fields as describing massless degrees of freedom (at

least classically). Indeed, their dynamics is usually described by the Maxwell action,

SMaxwell[a] = � 1

4g2

Z
d3x fµ⌫f

µ⌫ (5.16)

where fµ⌫ = @µa⌫ � @⌫aµ and g2 is a coupling constant. The resulting equations of

motion are @µfµ⌫ = 0. They admit wave solutions, pretty much identical to those we

met in the Electromagnetism course except that in d = 2+1 dimensions there is only a

single allowed polarisation. In other words, U(1) Maxwell theory in d = 2+1 dimension

describes a single massless degree of freedom.
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However, as we’ve already seen, there is a new kind of action that we can write down

for gauge fields in d = 2 + 1 dimensions. This is the Chern-Simons action

SCS[a] =
k

4⇡

Z
d3x ✏µ⌫⇢aµ@⌫a⇢ (5.17)

The arguments of the previous section mean that k must be integer (in units of e2/~)
if the emergent U(1) symmetry is compact.

Let’s see how the Chern-Simons term changes the classical and quantum dynamics46.

Suppose that we take as our action the sum of the two terms

S = SMaxwell + SCS

The equation of motion for aµ now becomes

@µf
µ⌫ +

kg2

4⇡
✏⌫⇢�f⇢� = 0

Now this no longer describes a massless photon. Instead, any excitation decays ex-

ponentially. Solving the equations is not hard and one finds that the presence of the

Chern-Simons term gives the photon massM . Equivalently, the spectrum has an energy

gap Egap = Mc2. A short calculation shows that it is given by

Egap =
kg2

2⇡

(Note: you need to divide by ~ on the right-hand side to get something of the right

dimension).

In the limit g2 ! 1, the photon becomes infinitely massive and we’re left with no

physical excitations at all. This is the situation described by the Chern-Simons theory

(5.17) alone. One might wonder what the Chern-Simons theory can possibly describe

given that there are no propagating degrees of freedom. The purpose of this section is

to answer this!

Chern-Simons Terms are Topological

Before we go on, let us point out one further interesting and important property of

(5.17): it doesn’t depend on the metric of the background spacetime manifold. It

depends only on the topology of the manifold. To see this, let’s first look at the

46An introduction to Chern-Simons theory can be found in G. Dunne, “Aspects of Chern-Simons
Theory”, hep-th/9902115.
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Maxwell action (5.16). If we are to couple this to a background metric gµ⌫ , the action

becomes

SMaxwell = � 1

4g2

Z
d3x

p
�g gµ⇢g⌫�fµ⌫f⇢�

We see that the metric plays two roles: first, it is needed to raise the indices when

contracting fµ⌫fµ⌫ ; second it provides a measure
p
�g (the volume form) which allows

us to integrate in a di↵eomorphism invariant way.

In contrast, neither of these are required when generalising (5.17) to curved space-

time. This is best stated in the language of di↵erential geometry: a ^ da is a 3-form,

and we can quite happily integrate this over any three-dimensional manifold

SCS =
k

4⇡

Z
a ^ da

The action is manifestly independent of the metric. In particular, recall from our

Quantum Field Theory lectures, that we can compute the stress-energy tensor of any

theory by di↵erentiating with respect to the metric,

T µ⌫ =
2p
�g

@L
@gµ⌫

For Chern-Simons theory, the stress-energy tensor vanishes. This means that the Hamil-

tonian vanishes. It is an unusual kind of theory.

However, will see in Section 5.2.3 that the topology of the underlying manifold does

play an important role in Chern-Simons theory. This will be related to the ideas of

topological order that we introduced in Section 3.2.5. Ultimately, it is this topological

nature of the Chern-Simons interaction which means that we can’t neglect it in low-

energy e↵ective actions.

5.2.2 The E↵ective Theory for the Laughlin States

Now we’re in a position to describe the e↵ective theory for the ⌫ = 1/m Laughlin

states. These Hall states have a single emergent, compact U(1) gauge field aµ. This is

a dynamical field, but we should keep it in our e↵ective action. The partition function

can then be written as

Z[Aµ] =

Z
Daµ eiSe↵ [a;A]/~

where Daµ is short-hand for all the usual issues involving gauge-fixing that go into

defining a path integral for a gauge field.
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Our goal now is to write down Se↵ [a;A]. However, to get something interesting we’re

going to need a coupling between Aµ and aµ. Yet we know that Aµ has to couple to

the electron current Jµ. So if this is going to work at all, we’re going to have to find a

relationship between aµ and Jµ.

Thankfully, conserved currents are hard to come by and there’s essentially only one

thing that we can write down. The current is given by

Jµ =
e2

2⇡~✏
µ⌫⇢ @⌫a⇢ (5.18)

The conservation of the current, @µJµ = 0, is simply an identity when written like this.

This relation means that the magnetic flux of aµ is interpreted as the electric charge

that couples to Aµ. The normalisation follows directly if we take the emergent U(1)

gauge symmetry to be compact, coupling to particles with charge e. In this case, the

minimum allowed flux is given by the Dirac quantisation condition

1

2⇡

Z

S2

f12 =
~
e

(5.19)

The relationship (5.18) then ensures that the minimum charge is
R
J0 = e as it should

be. (Picking di↵erent signs of the flux f12 corresponds to electrons and holes in the

system).

We then postulate the following e↵ective action,

Se↵ [a;A] =
e2

~

Z
d3x

1

2⇡
✏µ⌫⇢Aµ@⌫a⇢ �

m

4⇡
✏µ⌫⇢aµ@⌫a⇢ + . . . (5.20)

The first term is a “mixed” Chern-Simons term which comes from the AµJµ coupling;

the second term is the simplest new term that we can write down. By the same

arguments that we used before, the level must be integer: m 2 Z. As we will see

shortly, it is no coincidence that we’ve called this integer m. The . . . above include

more irrelevant terms, including the Maxwell term (5.16). At large distances, none of

them will play any role and we will ignore them in what follows. We could also add a

Chern-Simons ✏µ⌫⇢Aµ@⌫A⇢ for A itself but we’ve already seen what this does: it simply

gives an integer contribution to the Hall conductivity. Setting the coe�cient of this

term to zero will be equivalent to working in the lowest Landau level.

Let’s start by computing the Hall conductivity. The obvious way to do this is to

reduce the e↵ective action to something which involves only A by explicitly integrating

out the dynamical field a. Because the action is quadratic in a, this looks as if it’s
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going to be easy to do. We would naively just replace such a field with its equation of

motion which, in this case, is

fµ⌫ =
1

m
Fµ⌫ (5.21)

The solution to this equation is aµ = Aµ/m (up to a gauge transformation). Substi-

tuting this back into the action (5.20) gives

Se↵ [A] =
e2

2⇡

Z
d3x

1

4⇡m
✏µ⌫⇢Aµ@⌫A⇢ (5.22)

This is now the same kind of action (5.6) that we worked with before and we can

immediately see that the Hall conductivity is

�xy =
e2

2⇡~
1

m
(5.23)

as expected for the Laughlin state.

Although we got the right answer for the Hall conductivity, there’s something very

fishy about our derivation. The kind of action (5.22) that we ended up lies in the class

that we previously argued wasn’t allowed by gauge invariance if our theory is defined

on a sphere! Our mistake was that we were too quick in the integrating out procedure.

The gauge field aµ is constrained by the Dirac quantisation condition (5.19). But this

is clearly incompatible with the equation of motion (5.21) whenever F also has a single

unit of flux (5.14). In fact, it had to be this way. If it was possible to integrate out aµ,

then it couldn’t have been playing any role in the first place!

Nonetheless, the final answer (5.23) for the Hall conductivity is correct. To see this,

just consider the theory on the plane with F12 = 0 where there are no subtleties with

(5.21) and the calculation above goes through without a hitch. However, whenever we

want to compute something where monopoles are important, we can’t integrate out aµ.

Instead, we’re obliged to work with the full action (5.20).

Quasi-Holes and Quasi-Particles

The action (5.20) describes the quantum Hall state at filling ⌫ = 1/m. Let’s now add

something new to this. We will couple the emergent gauge field aµ to its own current,

which we call jµ, through the additional term

�S =

Z
d3x aµj

µ

To ensure gauge invariance, jµ must be conserved: @µjµ = 0. We will now show that

the current jµ describes the quasi-holes and quasi-particles in the system.
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First, we’ll set the background gauge field Aµ to zero. (It is, after all, a background

parameter at our disposal in this framework). The equation of motion for aµ is then

e2

2⇡~fµ⌫ =
1

m
✏µ⌫⇢j

⇢ (5.24)

The simplest kind of current we can look at is a static charge which we place at

the origin. This is described by j1 = j2 = 0 and j0 = e�2(x). Note that the fact

these particles have charge e under the gauge field aµ is related to our choice of Dirac

quantisation (5.19). The equation of motion above then becomes

1

2⇡
f12 =

~
em

�2(x) (5.25)

This is an important equation. We see that the e↵ect of the Chern-Simons term is

to attach flux ~/em to each particle of charge e. From this we’ll see that the particle

has both the fractional charge and fractional statistics appropriate for the Laughlin

state. The fractional charge follows immediately by looking at the electron current Jµ

in (5.18) which, in this background, is

J0 =
e2

2⇡~f12 =
e

m
�2(x)

This, of course, is the current appropriate for a stationary particle of electric charge

e/m.

Note: the flux attachment (5.25) doesn’t seem compatible with the Dirac quantisation

condition (5.19). Indeed, if we were on a spatial sphere S2 we would be obliged to add

m quasi-particles, each of charge e/m. However, these particles can still roam around

the sphere independently of each other so they should still be considered as individual

object. On the plane R2, we need not be so fussy: if we don’t have a multiple of m

quasi-holes, we can always think of the others as being somewhere o↵ at infinity.

To see how the fractional statistics emerge, we just need the basic Aharonov-Bohm

physics that we reviewed in Section 1.5.3. Recall that a particle of charge q moving

around a flux � picks up a phase eiq�/~. But because of flux attachment (5.25), our

quasi-particles necessarily carry both charge q = e and flux � = 2⇡~/em. If we move

one particle all the way around another, we will get a phase eiq�/~. But the statistical

phase is defined by exchanging particles, which consists of only half an orbit (followed

by a translation which contributes no phase). So the expected statistical phase is

ei⇡↵ = eiq�/2~. For our quasi-holes, with q = e and � = 2⇡~/em, we get

↵ =
1

m
which is indeed the expected statistics of quasi-holes in the Laughlin state.
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The attachment of the flux to the quasi-hole is reminiscent of the composite fermion

ideas that we met in Section 3.3.2, in which we attached vortices (which were zeros of

the wavefunction) to quasi-holes.

Fractional Statistics Done Better

The above calculation is nice and quick and gives the right result. But there’s a

famously annoying factor of 2 that we’ve swept under the rug. Here’s the issue. As

the charge q in the first particle moved around the flux � in the second, we picked up

a phase eiq�/~. But you might think that the flux � of the first particle also moved

around the charge q of the second. So surely this should give another factor of eiq�/~.

Right? Well, no. To see why, it’s best to just do the calculation.

For generality, let’s take N particles sitting at positions xa(t) which, as the notation

shows, we allow to change with time. The charge density and currents are

j0(x, t) = e
NX

a=1

�2(x� xa(t)) and j(x, t) = e
NX

a=1

ẋa �
2(x� xa(t))

The equation of motion (5.24) can be easily solved even in this general case. If we work

in the Coulomb gauge a0 = 0 with @iai = 0 (summing over spatial indices only), the

solution is given by

ai(x, t) =
~
em

NX

a=1

✏ij
xj � xj

a
(t)

|x� xa(t)|2
(5.26)

This follows from the standard methods that we know from our Electromagnetism

course, but this time using the Green’s function for the Laplacian in two dimensions:

r2 log |x � y| = 2⇡�2(x � y). This solution is again the statement that each particle

carries flux ~/em. However, we can also use this solution directly to compute the phase

change when one particle – say, the first one – is transported along a curve C. It is

simply

exp

✓
ie

I

C

a · dx1

◆

If the curve C encloses one other particle, the resulting phase change can be computed to

be e2⇡i/m. As before, if we exchange two particles, we get half this phase, or eı⇡↵ = ei⇡/m.

This, of course, is the same result we got above.
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It’s worth pointing out that this Chern-Simons computation ended up looking exactly

the same as the original Berry phase calculation for the Laughlin wavefunctions that

we saw in Section 3.2.3. For example, the connection (5.26) is identical to the relevant

part of the Berry connections (3.25) and (3.26). (The seeming di↵erence in the factor

of 2 can be traced to our previous normalisation for complex connections).

Breathing Life into the Quasi-Holes

In the calculations above, we’ve taken jµ to be some fixed, background current describ-

ing the quasi-particles. But the framework of e↵ective field theory also allows us to

make the quasi-particles dynamical. We simply need to introduce a new bosonic field

� and include it in the e↵ective action, coupled minimally to aµ. We then endow �

with its own dynamics. Exactly what dynamics we choose is up to us at this point.

For example, if we wanted the quasi-holes to have a relativistic dispersion relation, we

would introduce the action

Se↵ [a,�] =

Z
d3x

e2m

4⇡~ ✏
µ⌫⇢aµ@⌫a⇢ + |Dµ�|2 � V (�)

where the relativistic form of the action also implies that � will describe both particle

and anti-particle (i.e. hole) excitations. Here V (�) is a potential that governs the

mass and self-interactions of interactions of the quasi-particles. Most important, the

covariant derivative Dµ = @µ � ieaµ includes the coupling to the Chern-Simons field.

By the calculations above, this ensures that the excitations of � will have the correct

anyonic statistics to describe quasi-particles, even though the field � itself is bosonic.

We’ll see a di↵erent way to make the current jµ dynamical in Section 5.2.4 when we

discuss other filling fractions.

5.2.3 Chern-Simons Theory on a Torus

In Section 3.2.5, we argued that if we place a fractional quantum Hall state on a

compact manifold, then the number of ground states depends on the topology of that

manifold. In particular, we showed that the existence of anyons alone was enough to

ensure m ground states on a torus and mg ground states on a genus-g surface. This is

the essence of what’s known as topological order.

Here we show how this is reproduced by the Chern-Simons theory. If we live on the

plane R2 or the sphere S2, then Chern-Simons theory has just a single state. But if we

change the background manifold to be anything more complicated, like a torus, then

there is a degeneracy of ground states.

– 164 –



1
γ 2

γ

Figure 42: Figure 43:

To see this e↵ect, we can turn o↵ the background sources and focus only on the

dynamical part of the e↵ective theory,

SCS =
e2

~

Z
d3x

m

4⇡
✏µ⌫⇢ aµ@⌫a⇢ (5.27)

The equation of motion for a0, known, in analogy with electromagnetism, as Gauss’

law, is

f12 = 0

Although this equation is very simple, it can still have interesting solutions if the

background has some non-trivial topology. These are called, for obvious reason, flat

connections. It’s simple to see that such solutions exist on the torus T2, where one

example is to simply set each ai to be constant. Our first task is to find a gauge-invariant

way to parameterise this space of solutions.

We’ll denote the radii of the two circles of the torus T2 = S1 ⇥ S1 as R1 and R2.

We’ll denote two corresponding non-contractible curves shown in the figure as �1 and

�2. The simplest way to build a gauge invariant object from a gauge connection is to

integrate

wi =

I

�i

dxj aj

This is invariant under most gauge transformations, but not those that wind around

the circle. By the same kind of arguments that led us to (5.13), we can always construct

gauge transformations which shift aj ! aj + ~/eRj, and hence wi ! wi + 2⇡~/e. The
correct gauge invariant objects to parameterise the solutions are therefore the Wilson

loops

Wi = exp

✓
i
e

~

I

�i

ajdx
j

◆
= eiewi/~
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Because the Chern-Simons theory is first order in time derivatives, these Wilson loops

are really parameterising the phase space of solutions, rather than the configuration

space. Moreover, because the Wilson lines are complex numbers of unit modulus, the

phase space is compact. On general grounds, we would expect that when we quantise

a compact phase space, we get a finite-dimensional Hilbert space. Our next task is to

understand how to do this.

The canonical commutation relations can be read o↵ from the Chern-Simons action

(5.27)

[a1(x), a2(x
0)] =

2⇡i

m

~2
e2
�2(x� x0) ) [w1, w2] =

2⇡i

m

~2
e2

The algebraic relation obeyed by the Wilson loops then follows from the usual Baker-

Campbell-Hausdor↵ formula,

eiew1/~eiew2/~ = ee
2[w1,w2]/2~2eie(w1+w2)/~

Or, in other words,

W1W2 = e2⇡i/m W2W1 (5.28)

But this is exactly the same as the algebra (3.33) that we met when considering anyons

on a torus! This is not surprising: one interpretation of the Wilson loop is for a particle

charged under e to propagate around the cycle of the torus. And that’s exactly how

we introduced the operators Ti that appear in (3.33).

From Section 3.2.5, we know that the smallest representation of the algebra (5.28)

has dimension m. This is the number of ground states of the Chern-Simons theory on

a torus. The generalisation of the above calculation to a genus-g surface gives a ground

state degeneracy of mg.

5.2.4 Other Filling Fractions and K-Matrices

It’s straightforward to generalise the e↵ective field theory approach to other filling

fractions. We’ll start by seeing how the hierarchy of states naturally emerges. To

simplify the equations in what follows, we’re going to use units in which e = ~ = 1.

(Nearly all other texts resort to such units long before now!)

The Hierarchy

The e↵ective field theory for the Laughlin states that we saw above can be summarised

as follows: we write the electron current as

Jµ =
1

2⇡
✏µ⌫⇢ @⌫a⇢ (5.29)

where aµ is an emergent field. We then endow aµ with a Chern-Simons term.
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Now we’d like to repeat this to implement the hierarchy construction described in

Section 3.3.1 in which the quasi-particles themselves form a new quantum Hall state.

But that’s very straightforward. We simply write the quasi-particle current jµ as

jµ =
1

2⇡
✏µ⌫⇢ @⌫ ã⇢ (5.30)

where ãµ is a second emergent gauge field whose dynamics are governed by a second

Chern-Simons term. The final action is

Se↵ [a, ã;A] =

Z
d3x

1

2⇡
✏µ⌫⇢Aµ@⌫a⇢ �

m

4⇡
✏µ⌫⇢aµ@⌫a⇢ +

1

2⇡
✏µ⌫⇢aµ@⌫ ã⇢ �

m̃

4⇡
✏µ⌫⇢ãµ@⌫ ã⇢

To compute the Hall conductivity, we can first integrate out ã and then integrate out

a. We find that this theory describes a Hall state with filling fraction

⌫ =
1

m� 1
m̃

When m̃ is an even integer, this coincides with our expectation (3.34) for the first level

of the hierarchy.

We can also use this approach to quickly compute the charge and statistics of quasi-

particles in this state. There are two such quasi-holes, whose currents couple to a and

ã respectively. For a static quasi-hole which couples to a, the equations of motion read

mf12 � f̃12 = 2⇡�2(x) and m̃f̃12 � f12 = 0 ) f12 =
2⇡

m� 1/m̃
�2(x)

while, if the quasi-hole couples to ã, the equations of motion are

mf12 � f̃12 = 0 and m̃f̃12 � f12 = 2⇡�2(x) ) f12 =
2⇡

mm̃� 1
�2(x)

The coe�cients of the right-hand side of the final equations tell us the electric charge.

For example, the ⌫ = 2/5 state has m = 3 and m̃ = 2. The resulting charges of the

quasi-holes are e? = 2/5 and e? = 1/5. This has been confirmed experimentally. Using

the results from either Section 3.2.5 or Section 5.2.3, we learn that the the ⌫ = 2/5

state has a 5-fold degeneracy on the torus.

Now it’s obvious how to proceed: the quasi-particles of the new state are described

by a current j2(x) which couples to ãµ. We write this in the form (5.30) and introduce
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the new, third, emergent gauge field with a Chern-Simons term. And so on and so on.

The resulting states have filling fraction

⌫ =
1

m±
1

m̃1 ±
1

m̃2 ± · · ·

which is the result that we previously stated (3.35) without proof.

K-Matrices

Using these ideas, we can now write down the e↵ective theory for the most general

Abelian quantum Hall state. We introduce N emergent gauge fields ai
µ
, with i =

1, . . . , N . The most general theory is

SK [a
i, A] =

Z
d3x

1

4⇡
Kij✏

µ⌫⇢ai
µ
@⌫a

j

⇢
+

1

2⇡
ti✏

µ⌫⇢Aµ@⌫a
i

⌫
(5.31)

It depends on the K-matrix, Kij, which specifies the various Chern-Simons couplings,

and the charge vector ti which specifies the linear combination of currents that is to be

viewed as the electron current. We could also couple di↵erent quasi-holes currents to

other linear combinations of the ai

The K-matrix and t-vector encode much of the physical information that we care

about. The Hall conductance is computed by integrating out the gauge fields and is

given by

�xy = (K�1)ijtitj

the charge of the quasi-hole which couples to the gauge field ai is

(e?)i = (K�1)ijtj

and the statistics between quasi-holes that couple to ai and those that couple to aj is

↵ij = (K�1)ij

One can also show, by repeating the kinds of arguments we gave in Section 5.2.3, that

the ground state degeneracy on a genus-g surface is |detK|g.
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We’ve already met the K-matrix associated to the hierarchy of states. It is

K =

0

BBBBB@

m �1 0 . . .

�1 m̃1 �1

0 �1 m̃2

...
. . .

1

CCCCCA
and t = (1, 0, 0 . . .)

But we can also use the K-matrix approach to describe other Hall states. For example,

the (m1,m2, n) Halperin states that we met in Section 3.3.4 have K-matrices given by

K =

 
m1 n

n m2

!
and t = (1, 1)

Using our formula above, we find that the filling fraction is

⌫ = (K�1)ijtitj =
m1 +m2 � 2n

m1m2 � n2

in agreement with our earlier result (3.46). The ground state degeneracy on a torus is

|m1m2 � n2|.

Restricting now to the (m,m, n) states, we can compute the charges and statistics

of the two quasi-holes. From the formulae above, we can read o↵ straightaway that the

two quasi-holes have charges e? = 1/(m+ n) and ↵ = m/(m2 � n2). We can also take

appropriate bound states of these quasi-holes that couple to other linear combinations

of a1 and a2

Relating Di↵erent K-Matrices

Not all theories (5.31) with di↵erentK-matrices and t-vectors describe di↵erent physics.

We could always rewrite the theory in terms of di↵erent linear combinations of the gauge

fields. After this change of basis,

K ! SKST and t ! St (5.32)

However, there’s an extra subtlety. The gauge fields in (5.31) are all defined such that

their fluxes on a sphere are integer valued: 1
2⇡

R
S2 f i

12 2 Z, just as in (5.19). This should

be maintained under the change of basis. This holds as long as the matrix S above lies

in SL(N,Z).
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The pair (K, t), subject to the equivalence (5.32), are almost enough to classify the

possible Abelian quantum states. It turns out, however, that there’s one thing missing.

This is known as the shift. It is related to the degeneracy when the Hall fluid is placed

on manifolds of di↵erent topology; you can read about this in the reviews by Wen or

Zee. More recently, it’s been realised that the shift is also related to the so-called Hall

viscosity of the fluid.

5.3 Particle-Vortex Duality

The e↵ective field theories that we’ve described above were not the first attempt to use

Chern-Simons theory as a description of the quantum Hall e↵ect. Instead, the original

attempts tried to write down local order parameters for the quantum Hall states and

build a low-energy e↵ective theory modelled on the usual Ginzburg-Landau approach

that we met in the Statistical Physics lectures.

It’s now appreciated that the more subtle topological aspects of the quantum Hall

states that we’ve described above are not captured by a Ginzburg-Landau theory.

Nonetheless, this approach provides a framework in which many detailed properties

of the quantum Hall states can be computed. We won’t provide all these details here

and this section will be less comprehensive than others. Its main purpose is to explain

how to construct these alternative theories and provide some pointers to the literature.

Moreover, we also take this opportunity to advertise a beautiful property of quantum

field theories in d = 2 + 1 dimensions known as particle-vortex duality.

5.3.1 The XY -Model and the Abelian-Higgs Model

In d = 2 + 1 dimensional field theories, there are two kinds of particle excitations that

can appear. The first kind is the familiar excitation that we get when we quantise

a local field. This is that kind that we learned about in our Quantum Field Theory

course. The second kind of particle is a vortex, defined by the winding of some local

order parameter. These arise as solitons of the theory.

Often in d = 2+ 1 dimensions, it’s possible to write down two very di↵erent-looking

theories which describe the same physics. This is possible because the particles of one

theory are related to the vortices of the other, and vice versa. We start by explaining

how this works in the simplest example, first proposed in the 70’s by Peskin and early

’80’s by Dasgupta and Halperin.

– 170 –



Theory A: The XY -Model

Our first theory consists only of a complex scalar field � with action

SA =

Z
d3x |@µ�|2 � a|�|2 � b|�|4 + . . . (5.33)

The theory has a global U(1) symmetry which acts by rotations of the form �! ei✓�.

The di↵erent phases of this theory, and the corresponding physical excitations, can be

characterised by symmetry breaking of this U(1). There are three di↵erent possibilities

which we’ll characterise by the sign of a (assuming that b > 0),

• a > 0: In this phase, the U(1) symmetry is unbroken and the � excitations are

massive.

• a < 0: In this phase, � gets a vacuum expectation value and the U(1) global

symmetry is broken. We can write � = ⇢ei�. The fluctuations of ⇢ are massive,

while the � field is massless: it is the Goldstone mode for the broken U(1). This

phase is sometimes called the “XY model ” (as it also arises from lattice models

of spins which can rotate freely in the (x, y)-plane).

In this phase, the theory also has vortex excitations. These arise from the

phase of � winding asymptotically. The winding is measured by

I
dxi @i� = 2⇡n

with n 2 Z countrs the number of vortices (or anti-vortices for n < 0). Note that

n is quantised for topological reasons. These vortices are gapped. Indeed, if you

compute their energy from the action (5.33), you’ll find that it is logarithmically

divergent. Said another way, there is a logarithmically increasing attractive force

between a vortex and an anti-vortex. The vortices are sometimes said to be

“logarithmically confined”.

• a = 0: Lying between the two phases above is a critical point. We are being a

little careless in describing this as a = 0; strictly, you should tune both a and the

other parameters to sit at this point. Here, the low-energy dynamics is described

by a conformal field theory.

We now compare this to the physics that arises in a very di↵erent theory:
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Theory B: The Abelian-Higgs Model

Our second theory again consists of a complex scalar field, which we now call �̃. This

time the scalar is coupled to a dynamical gauge field ↵µ. The action is

SB =

Z
d3x � 1

4g2
f̃µ⌫ f̃

µ⌫ + |Dµ�̃|2 � a0|�̃|2 � b0|�̃|4 + . . . (5.34)

with f̃µ⌫ = @µ↵⌫ � @⌫↵µ. At first glance, Theory A and Theory B look very di↵erent.

Nonetheless, as we now explain, they describe the same physics. Let’s start by matching

the symmetries.

Theory B clearly has a U(1) gauge symmetry. This has no counterpart in Theory

A but that’s ok because gauge symmetries aren’t real symmetries: they are merely

redundancies in our description of the system. It’s more important to match the global

symmetries. We’ve seen that Theory A has a U(1) global symmetry. But there is also

a less obvious global symmetry in Theory B, with the current given by

jµ =
1

2⇡
✏µ⌫⇢@⌫↵⇢ (5.35)

This is the kind of current that we were playing with in our theories of the quantum

Hall e↵ect. The conserved charge is the magnetic flux associated to the U(1) gauge

symmetry. This is to be identified with the global U(1) symmetry in Theory A.

Now let’s look at the di↵erent phases exhibited by Theory B. Again, assuming that

b0 > 0, there are three phases depending on the sign of a0,

• a0 > 0: In this phase, the �̃ fields are massive and the U(1) gauge symmetry is

unbroken. Correspondingly, there is a massless photon in the spectrum. This is

usually referred to as the Coulomb phase. However, in d = 2+ 1 dimensions, the

photon carries only a single polarisation state and can be alternatively described

by a scalar field, usually referred to as the dual photon, �. We can implement the

change of variables in the path integral if we ignore the coupling to the �̃ fields.

We can then replace the integration over ↵µ with an integration over the field

strength f̃µ⌫ then, schematically (ignoring issues of gauge fixing) the partition

function reads

Z =

Z
D↵ exp

✓
i

Z
d3x � 1

4g2
f̃µ⌫ f̃

µ⌫

◆

=

Z
Df̃D� exp

✓
i

Z
d3x � 1

4g2
f̃µ⌫ f̃

µ⌫ +
1

2⇡
�✏µ⌫⇢@µf̃⌫⇢

◆
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Here � is playing the role of a Lagrange multiplier whose role is to impose the

Bianchi identity ✏µ⌫⇢@µf̃⌫⇢ = 0. If the field strength obeys the Dirac quantisation

condition, then � has periodicity 2⇡. Now we integrate out the field strength,

leaving ourselves only with an e↵ective action for �,

Z = exp

✓
i

Z
d3x

g2

2⇡
@µ�@

µ�

◆

This is the dual photon. It is related to the original field strength by the equation

of motion

f̃µ⌫ =
g2

⇡
✏µ⌫⇢@⇢�

Note that the current (5.35) can be easily written in terms of the dual photon: it

is

jµ =
g2

⇡
@µ�

Another way of saying this is that the global U(1) symmetry acts by shifting the

value of the dual photon: � ! � + const.

The upshot of this is that the global U(1) symmetry is spontaneously broken

in this phase. This means that we should identify the Coulomb phase of Theory

B with the a < 0 phase of Theory A. The dual photon � can be viewed as

the Goldstone mode of this broken symmetry. This is to be identified with the

Goldstone mode of the a < 0 phase of Theory A. (Indeed, we even took the liberty

of giving the two Goldstone modes the same name.)

The charged �̃ fields are massive in this phase. These are to be identified

with the vortices of the a < 0 phase of Theory A. As a check, note that the �̃

excitations interact through the Coulomb force which, in d = 2 + 1 dimensions,

results in a logarithmically confining force between charges of opposite sign, just

like the vortices of Theory A.

• a0 < 0: In this phase �̃ gets an expectation value and the U(1) gauge symmetry is

broken. Now the photon gets a mass by the Higgs mechanism and all excitations

are gapped. This is the Higgs phase of the theory.

The global U(1) symmetry is unbroken in this phase. This means that we

should identify the Higgs phase of Theory B with the gapped a > 0 phase of

Theory A.
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The breaking of the U(1) gauge symmetry means that there are vortex solutions

in the Higgs phase. These are defined by the asymptotic winding of the expec-

tation value of �̃. The resulting solutions exhibit some nice properties47. First,

unlike the global vortices of Theory A, vortices associated to a gauge symmetry

have finite mass. Second, they also carry quantised magnetic flux
I

dxi@i arg(�̃) =
1

2⇡

Z
d2x f̃12 = n0

where n0 2 Z is the number of vortices. The fact that these vortices carry mag-

netic flux means that they are charged under the current (5.35). These vortices

are identified with the � excitations of Theory A in the a > 0 phase.

• a0 = 0: Lying between these two phases, there is again a quantum critical point.

Numerical simulations show that this is the same quantum critical point that

exists in Theory A.

We can see that, viewed through a blurred lens, the theories share the same phase

diagram. Roughly, the parameters of are related by

a ⇡ �a0

Note, however, that we’re only described how qualitative features match. If you want

to go beyond this, and see how the interactions match in detail then it’s much harder

and you have to worry about all the . . . interactions in the two theories that we didn’t

write down. (For what it’s worth, you can go much further in supersymmetric theories

where the analog of this duality is referred to as mirror symmetry).

The qualitative level of the discussion above will be more than adequate for our

purposes. Our goal now is to apply these ideas to the e↵ective field theories that we

previously wrote down for the fractional quantum Hall e↵ect.

5.3.2 Duality and the Chern-Simons Ginzburg-Landau Theory

So far, the duality that we’ve described has nothing to do with the quantum Hall e↵ect.

However, it’s simple to tinker with this duality to get the kind of theory that we want.

We start with Theory A given in (5.33) . It’s just a complex scalar field with a U(1)

global symmetry � ! ei✓�. We’ll deform this theory in the following way: we gauge

the global symmetry and add a Chern-Simons term at level m. We end up with

SA[a,�] =

Z
d3x |@µ�� iaµ�|2 � V (�)� m

4⇡
✏µ⌫⇢aµ@⌫a⇢ (5.36)

47For a more detailed discussion of these properties, see the TASI Lectures on Solitons.
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But this is precisely our earlier e↵ective action for the Laughlin state at filling fraction

⌫ = 1/m. In this context, the excitations of the field � describe quasi-holes and quasi-

particles in the theory, with fractional charge and statistics. The background gauge

field of electromagnetism Aµ couples to the electron current which is

jµ =
1

2⇡
✏µ⌫⇢@⌫a⇢

Now we can repeat this procedure for Theory B defined in (5.34). We again couple a

U(1) gauge field aµ to the current which is now given by (5.35). We find

SB[a,↵,�] =

Z
d3x |@µ�̃� i↵µ�̃|2 � V (�̃) +

1

2⇡
✏µ⌫⇢aµ@⌫↵⇢ �

m

4⇡
✏µ⌫⇢aµ@⌫a⇢ + . . .

where the Maxwell term in (5.34) has been relegated to the . . . in the expression above

as it won’t play an important role in what follows. Next we simply integrate out the

gauge field aµ in this Lagrangian. Because aµ appears quadratically in the action, we

can naive just replace it by its equation of motion which is

fµ⌫ =
1

m
f̃µ⌫

Note, however, that we run into the same kind of issues that we saw in Section 5.2.2.

This equation of motion is not consistent with the flux quantisation of both fµ⌫ and

f̃µ⌫ . This means that we should not take the resulting action too seriously when dealing

with subtle topological issues, but hopefully it will capture the correct local physics.

This action is:

SB[↵,�] =

Z
d3x |@µ�̃� i↵µ�̃|2 � V (�̃) +

1

4⇡m
✏µ⌫⇢↵µ@⌫↵⇢ . . . (5.37)

This is the theory dual to (5.36). It is the dual description of the quantum Hall fluid.

In the original theory (5.36), the elementary quanta � are the quasi-particles while the

vortices are the electrons. In the new description (5.37), the elementary quanta of �̃

are the electrons while the vortices are the quasi-particles.

There is one last step that is usually taken before we get to the final Ginzburg-

Landau theory. The field �̃ in (5.37) has second order kinetic terms, which means

that, upon quantisation, it will give rise to both particles and anti-particles. The

particles are electrons (we will make this clearer below), while the anti-particles are

holes. The existence of both particles and holes arises because both (5.36) and (5.37)

describe physics around the quantum Hall state which, of course, is built upon a sea of

electrons.
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In contrast, in the Ginzburg-Landau approach to this problem it is more common

to write down a field theory for electrons above the vacuum state. This is slightly odd

because the resulting physics clearly requires a large number of electrons to be present

but we can always insist upon this by including an appropriate chemical potential.

We’ll call the bosonic field that gives rise to electrons �. This field now has first order

kinetic terms, reflecting the fact that there are no longer anti-particles. (Well, there are

but they require around 1010 more energy than is available in quantum Hall system;

this is condensed matter physics, not particle physics!). The resulting Lagrangian is

S =

Z
d3x i�†(@0 � i↵0 � iµ)�� 1

2m?
|@i�� i↵i�|2 � V (�) +

1

4⇡m
✏µ⌫⇢↵µ@⌫↵⇢ (5.38)

with µ the promised chemical potential and m? is the e↵ective mass of the electron

(and is not to be confused with the integer m). This is the proposed Chern-Simons

Ginzberg-Landau description of the fractional quantum Hall e↵ect. This Lagrangian

was first written down by Zhang, Hansson and Kivelson and is sometime referred to as

the ZHK theory48.

Composite Bosons

We know from our previous discussion that the excitations of �̃ in (5.37) (or � in (5.38))

are supposed to describe the vortices of theory (5.36). Yet those vortices should carry

the same quantum numbers as the original electrons. Let’s first check that this makes

sense.

Recall that the �̃ (or �) field is bosonic: it obeys commutation relations rather than

anti-commutation relations. But, by the same arguments that we saw in Section 5.2.2,

the presence of the Chern-Simons term will change the statistics of these excitations.

In particular, if we work with the non-relativistic theory, the equation of motion for ↵0

reads

1

2⇡
f̃12 = �m�†� (5.39)

Here �†� is simply the particle density n(x). This tells us that each particle in the

quantum Hall fluid has �m units of attached flux. By the usual Aharonov-Bohm

arguments, these particles are bosonic if m is even and fermionic if m is odd. But that’s

exactly the right statistics for the “electrons” underlying the quantum Hall states.

48The original paper is S. C. Zhang, T. Hansson and S. Kivelson, “E↵ective-Field-Theory Model for
the Fractional Quantum Hall E↵ect”, Phys. Rev. Lett. 62, 82 (1989) which can be downloaded here.
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Let’s briefly restrict to the case of m odd, so that the “electrons” are actual electrons.

They can be thought of as bosons � attached to �m flux units. Alternatively, the

bosons � can be thought of as electrons attached to +m units of flux. This object is

referred to as a composite boson. Notice that it’s very similar in spirit to the composite

fermion that we met earlier. The di↵erence is that we attach an odd number of fluxes

to the electron to make a composite boson, while an even number of fluxes gives a

composite fermion. In the next section, we’ll see how to make a composite fermion in

this language.

O↵-Diagonal Long-Range Order

We took a rather round-about route to get to Lagrangian (5.38): we first looked at

the most general description of a fractional quantum Hall e↵ect, and subsequently

dualised. However, it’s possible to motivate (5.38) directly. In this short section, we

briefly explain how.

The usual construction of a Ginzburg-Landau e↵ective theory involves first identi-

fying a symmetry which is broken. The symmetry breaking is then described by an

appropriate local order parameter, and the e↵ective theory is written in terms of this

order parameter. If we want to do this for the quantum Hall fluid, we first need to

figure out what this order parameter could possibly be.

We’re going to take a hint from the theory of superfluidity where one works with

an object called the density matrix. (Beware: this means something di↵erent than in

previous courses on quantum mechanics and quantum information). There are two,

equivalent, definitions of the density matrix. First, suppose that we have some many-

body system with particles created by the operator  †(r). In a given state, we define

the density matrix to be

⇢(r, r0) = h †(r) (r0)i

Alternatively, there is also simple definition in the first quantised framework. Suppose

that our system of N particles is described by the the wavefunction  (xi). We focus on

the position of just a single particle, say x1 ⌘ r and the density matrix is constructed

as

⇢(r, r0) = N

Z NY

i=2

dxi  
?(r,x2, . . . ,xN) (r

0,x2, . . . ,xN)

The definition of a superfluid state is that the density matrix exhibits o↵-diagonal long

range order. This means that

⇢(r, r0) ! ⇢0 as |r� r0| ! 1
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Here ⇢0 is the density of the superfluid.

What does this have to do with our quantum Hall fluids? They certainly don’t act like

superfluids. And, indeed, you can check that quantum Hall fluids are not superfluids.

If you compute the density matrix for the Laughlin wavefunction (3.3), you find

⇢(z, z0) = N

Z NY

i=2

d2zi
Y

i

(z � zi)
m(z̄0 � z̄i)

m
Y

j<k

|zj � zk|2me�
P

j |zj |2/2l2B

This does not exhibit o↵-diagonal long-range order. The first two terms ensure that

the phase fluctuates wildly and this results in exponential decay of the density matrix:

⇢(z, z0) ⇠ e�|z�z
0|2 .

However, one can construct an object which does exhibit o↵-diagonal long-range

order. This is not apparent in the electrons, but instead in the composite bosons �.

These operators are related to the electrons by the addition of �m flux units,

�†(z) =  †(z)U�m (5.40)

where U is the operator which inserts a single unit of flux of the gauge field ↵µ. It can

be shown that this is the operator which exhibits o↵-diagonal long-range order in the

quantum Hall state49

h�†(z)�(z0)i ! ⇢0 as |z � z0| ! 1

Alternatively, if you’re working with wavefunctions, you need to include a singular

gauge transformation to implement the flux attachment.

Note that, usually in Ginzburg-Landau theories, one is interested in phases where the

order parameter condensed. Indeed, if we follow through our duality transformations,

the original theory (5.36) describes quantum Hall Hall physics when � is a gapped

excitation. (This is the phase a > 0 of Theory A in the previous section). But the

particle-vortex duality tells us that the dual theory (5.37) should lie in the phase in

which �̃ gets an expectation value. Equivalently, in the non-relativistic picture, �

condenses.

49The first suggestion of long-range order in the Hall states was given by S. Girvin and A. H
Macdonald, “O↵-Diagonal Long-Range Order, Oblique Confinement, and the Fractional Quantum
Hall E↵ect, Phys. Rev. Lett 58, 12 (1987). The refined, second-quantised arguments were given later
by N. Read “Order Parameter and Ginzburg-Landau Theory for the Fractional Quantum Hall E↵ect”,
Phys. Rev. Lett. 62, 1 (1989).
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This kind of thinking provided the original motivation for writing down the Ginzburg-

Landau theory and, ultimately, to finding the link to Chern-Simons theories. However,

the presence of the flux attachment in (5.40) means that � is not a local operator. This

is one of the reasons why this approach misses some of the more subtle e↵ects such as

topological order.

Adding Background Gauge Fields

To explore more physics, we need to re-introduce the background gauge field Aµ into

our e↵ective Lagrangian. It’s simple to re-do the integrating out with Aµ included; we

find the e↵ective Lagrangian

S =

Z
d3x

(
i�†(@0 � i(↵0 + A0 + µ))�� 1

2m?
|@i�� i(↵i + Ai)�|2 (5.41)

�V (�) +
1

4⇡m
✏µ⌫⇢↵µ@⌫↵⇢

)

Because we’re working with the non-relativistic theory, the excitations of � in the

ground state should include all electrons in our system. Correspondingly, the gauge

field Aµ should now include the background magnetic field that we apply to the system.

We’ve already seen that the Hall state is described when the � field condenses:

h�†�i = n, with n the density of electrons. But we pay an energy cost if there is

a non-vanishing magnetic field B in the presence of such a condensate. This is the

essence of the Meissner e↵ect in a superconductor. However, our Hall fluid is not a

superconductor. In this low-energy approach, it di↵ers by the existence of the Chern-

Simons gauge field ↵µ which can turn on to cancel the magnetic field,

↵i + Ai = 0 ) f̃12 = �B

But we’ve already seen that the role of the Chern-Simons term is to bind the flux f̃12
to the particle density n(x) (5.39). We learn that

n(x) =
1

2⇡m
B(x)

This is simply the statement that the theory is restricted to describe the lowest Landau

level with filling fraction ⌫ = 1/m

We can also look at the vortices in this theory. These arise from the phase of �

winding around the core of the vortex. The minimum vortex carries flux
R
d2x f̃12 =
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±2⇡. From the flux attachment (5.39), we see that they carry charge e? = ±1/m. This

is as expected from our general arguments of particle-vortex duality: the vortices in the

ZHK theory should correspond to the fundamental excitations of the original theory

(5.36): these are the quasi-holes and quasi-particles.

So far, we’ve seen that this dual formalism can reproduce many of the results that we

saw earlier. However, the theory (5.41) provides a framework to compute much more

detailed response properties of the quantum Hall fluid. For most of these, it is not

enough to consider just the classical theory as we’ve done above. One should take into

account the quantum fluctuations of the Chern-Simons field, as well as the Coulomb

interactions between electrons which we’ve buried in the potential. We won’t describe

any of this here50.

5.3.3 Composite Fermions and the Half-Filled Landau Level

We can also use this Chern-Simons approach to make contact with the composite

fermion picture that we met in Section 3. Recall that the basic idea was to attach an

even number of vortices to each electron. In the language of Section 3, these vortices

were simply zeros of the wavefunction, with holomorphicity ensuring that each zero

is accompanied by a 2⇡ winding of the phase. In the present language, we can think

of the vortex attachment as flux attachment. Adding an even number of fluxes to an

electron doesn’t change the statistics. The resulting object is the composite fermion.

As we saw in Section 3.3.3, one of the most interesting predictions of the composite

fermion picture arises at ⌫ = 1/2 where one finds a compressible fermi-liquid-type state.

We can write down an e↵ective action for the half-filled Landau level as follows,

S =

Z
d3x

(
i †(@0 � i(↵0 + A0 + µ) � 1

2m?
|@i � i(↵i + Ai) |2 (5.42)

+
1

2

1

4⇡
✏µ⌫⇢↵µ@⌫↵⇢ +

1

2

Z
d2x0  †(x) (x)V (x� x0) †(x0) (x0)

)

Here  is to be quantised as a fermion, obeying anti-commutation relations. We have

also explicitly written the potential between electrons, with V (x) usually taken to the

be the Coulomb potential. Note that the Chern-Simons term has coe�cient 1/2, as

befits a theory at half-filling.

50For a nice review article, see Shou Cheng Zhang, “The Chern-Simons-Landau-Ginzburg Theory of
the Fractional Quantum Hall E↵ect, Int. Jour. Mod. Phys. B6 (1992).
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The action (5.42) is the starting point for the Halperin-Lee-Read theory of the half-

filled Landau level. The basic idea is that an external magnetic field B can be screened

by the emergent gauge field f̃12, leaving the fermions free to fill up a Fermi sea. However,

the fluctuations of the Chern-Simons gauge field mean that the resulting properties of

this metal are di↵erent from the usual Fermi-liquid theory. It is, perhaps, the simplest

example of a “non-Fermi liquid”. Many detailed calculations of properties of this state

can be performed and successfully compared to experiment. We won’t describe any of

this here51.

Half-Filled or Half-Empty?

While the HLR theory (5.42) can claim many successes, there remains one issue that is

poorly understood. When a Landau level is half full, it is also half empty. One would

expect that the resulting theory would then exhibit a symmetry exchanging particles

and holes. But the action (5.42) does not exhibit any such symmetry.

There are a number of logical possibilities. The first is that, despite appearances,

the theory (3.43) does secretly preserve particle-hole symmetry. The second possibility

is that this symmetry is spontaneously broken at ⌫ = 1/2 and there are actually two

possible states. (This turns out to be true at ⌫ = 5/2 where the Pfa�an state we’ve

already met has a brother, known as the anti-Pfa�an state).

Here we will focus on a third possibility: that the theory (5.42) is not quite correct.

An alternative theory was suggested by Son who proposed that the composite fermion

at ⌫ = 1/2 should be rightly viewed as a two-component Dirac fermion52.

The heart of Son’s proposal is a new duality that can be thought of as a fermionic

version of the particle-vortex duality that we met in Section 5.3.1. Here we first describe

this duality. In the process of explaining how it works, we will see the connection to

the half-filled Landau level.

Theory A: The Dirac Fermion

Our first theory consists of a single Dirac fermion  in d = 2 + 1 dimensions

SA =

Z
d3x i ̄( /@ � i /A) + . . . (5.43)

51Details can be found in the original paper by Halperin, Lee and Read, “Theory of the half-filled
Landau level ”, Phys. Rev. B 47, 7312 (1993), and in the nice review by Steve Simon, “The Chern-
Simons Fermi Liquid Description of Fractional Quantum Hall States ”, cond-mat/9812186.

52Son’s original paper is “Is the Composite Fermion a Dirac Particle? ”, Phys. Rev. X5, 031027
(2015), arXiv:1502.03446.
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In d = 2+ 1 dimensions, the representation of the Cli↵ord algebra {�µ, �⌫} = 2⌘µ⌫ has

dimension 2. The gamma matrices can be written in terms of the Pauli matrices, with

a useful representation given by

�0 = i�2 , �1 = �1 , �2 = �3

Correspondingly, the Dirac spinor  is a two-component object with complex com-

ponents. As usual,  ̄ =  †�0. (See the lectures on Quantum Field Theory for more

information about the construction of spinors). Quantising the Dirac spinor in d = 2+1

dimensions gives rise to spin-up particles and spin-down anti-particles.

Theory A has a global U(1) symmetry with current

Jµ =  ̄�µ (5.44)

In the action (5.43), we’ve coupled this to a background electromagnetic gauge field

Aµ.

Theory B: QED3

The second theory also consists of a single Dirac fermion,  ̃, this time coupled to a

dynamical U(1) gauge field ↵µ.

SB =

Z
d3x i ¯̃ ( /@ � 2i /↵) ̃ +

1

2⇡
✏µ⌫⇢↵µ@⌫A⇢ + . . . (5.45)

This is essentially QED in d = 2+1 dimensions. However, there is one crucial subtlety:

 ̃ carries charge 2 under this gauge field, not charge 1. To avoid rescaling of the gauge

field, we should accompany this charge with the statement that the fluxes of ↵ remain

canonically normalised

1

2⇡

Z

S2

f̃12 2 Z

The charge 2 is crucial for this theory to make sense. If the fermion  ̃ had charge 1

then the theory wouldn’t make sense: it su↵ers from a discrete gauge anomaly, usually

referred to as a parity anomaly in this context. However, with charge 2 this is avoided53

.

53This is actually a bit too quick. A more careful analysis was given by T. Senthil, N. Seiberg,
E. Witten and C. Wang in “A Duality Web in 2+1 Dimensions and Condensed Matter Physics”,
ArXiv:1606.01989.
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The theory (5.45) has a U(1) symmetry with the kind of current that is, by now,

familiar

Jµ =
1

2⇡
✏µ⌫⇢@⌫↵⇢

This is to be identified with the current (5.44) of Theory A.

Half-Filling in the Two Theories

Let’s start with Theory A and turn on a background

n=−2

n=−1

n=1

n=0

Figure 44: The view from

Theory A

magnetic fieldB. The Dirac fermions form Landau levels.

However, because of the relativistic dispersion relation,

these Landau levels are somewhat di↵erent from those

we met in Section 1. A simple generalisation of these

calculations shows that the Landau levels have energy

E2
n
= 2B|n| n 2 Z

Note, in particular, that there is a zero energy n = 0 Lan-

dau level. This arises because the zero-point energy 1
2~!B seen in the non-relativistic

Landau levels is exactly compensated by the Zeeman splitting.

In the Dirac sea picture, we can think of filling the negative

µ

Figure 45: and

from Theory B

energy Landau levels, which we label with n < 0. However,

if we restrict to zero density then the n = 0 Landau level is

necessarily at half-filling. This is shown in the picture. In the

absence of any interactions there is a large degeneracy. We rely

on the interactions, captured by the . . . in (5.43), to resolve this

degeneracy. In this way, the Dirac fermion in a magnetic field

automatically sits at half filling. Note that this picture is, by

construction, symmetric under interchange of particles and holes.

Let’s now see what this same picture looks like in Theory B.

The background magnetic field contributes a term 1
2⇡B↵0 to the action (5.45). This is

a background charge density, ñ = 1
2(B/2⇡), where the factor of 1/2 can be traced to

to the charge 2 carried by the fermion. This means that the fermions in QED3 pile up

to form a Fermi sea, with chemical potential µ set by the background magnetic field.

This is shown in the figure to the right.
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This is the new proposed dual of the half-filled Landau level. We see that there is

no hint of the magnetic field in the dual picture. Instead we get a Fermi surface which,

just as in the HLR theory (5.42), is coupled to a fluctuating gauge field. However, in

this new proposal this gauge field no longer has a Chern-Simons coupling.

It turns out that many, if not all, of the successful predictions of the HLR theory

(5.42) also hold for QED3 (5.45). The di↵erence between the theories two turns out

to be rather subtle: the relativistic electrons in QED3 pick up an extra factor of Berry

phase ⇡ as they are transported around the Fermi surface. At the time of writing, there

is an ongoing e↵ort to determine whether this phase can be observed experimentally

see which of these two theories is correct.

5.4 Non-Abelian Chern-Simons Theories

So far we have discussed the e↵ective theories only for Abelian quantum Hall states.

As we have seen, these are described by Chern-Simons theories involving emergent

U(1) gauge fields. Given this, it seems plausible that the e↵ective field theories for

non-Abelian quantum Hall states involve emergent non-Abelian Chern-Simons gauge

fields. This is indeed the case. Here we sketch some of the novel properties associated

to non-Abelian Chern-Simons terms.

5.4.1 Introducing Non-Abelian Chern-Simons Theories

We start by describing the basics of non-Abelian Chern-Simons theories. Everything

we say will hold for arbitrary gauge group G, but we will focus on G = SU(N). For

the most prominent applications to quantum Hall physics, G = SU(2) will su�ce. We

work with Hermitian gauge connections aµ, valued in the Lie algebra. The associated

field strength is

fµ⌫ = @µa⌫ � @⌫aµ � i[aµ, a⌫ ]

We take the basis generators in the fundamental representation with normalisation

tr(T aT b) = 1
2�

ab. With this choice, the Yang-Mills action takes the familiar form

SYM = � 1

2g2

Z
d3x tr fµ⌫fµ⌫

However, just as we saw for the Abelian gauge fields, we are not interested in the Yang-

Mills action. Instead, there is an alternative action that we can write down in d = 2+1

dimensions. This is the non-Abelian Chern-Simons action

SCS =
k

4⇡

Z
d3x ✏µ⌫⇢tr

✓
aµ@⌫a⇢ �

2i

3
aµa⌫a⇢

◆
(5.46)

Chern-Simons theories with gauge group G and level k are sometimes denoted as Gk.
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Our first goal is to understand some simple properties of this theory. The equation

of motion is

fµ⌫ = 0

This is deceptively simple! Yet, as we will see, many of the subtleties arise from the

interesting solutions to this equation and its generalisations. Indeed, we’ve already seen

our first hint that this equation has interesting solutions when we looked at Abelian

Chern-Simons theories on the torus in Section 5.2.3.

Let’s start by seeing how the Chern-Simons action fares under a gauge transforma-

tion. The gauge potential transforms as

aµ ! g�1aµg + ig�1@µg

with g 2 SU(N). The field strength transforms as fµ⌫ ! g�1fµ⌫g. A simple calculation

shows that the Chern-Simons action changes as

SCS ! SCS +
k

4⇡

Z
d3x

(
✏µ⌫⇢@⌫tr (@µg g

�1a⇢) +
1

3
✏µ⌫⇢tr (g�1@µg g

�1@⌫g g
�1@⇢g)

)

The first term is a total derivative. The same kind of term arose in Abelian Chern-

Simons theories. It will have an interesting role to play on manifolds with boundaries.

For now, our interest lies in the second term. This is novel to non-Abelian gauge the-

ories and has a beautiful interpretation. To see this, consider our theory on Euclidean

S3 (or on R3 with the requirement that gauge transformations asymptote to the same

value at infinity). Then the gauge transformations can “wind” around spacetime. This

follows from the homotopy group ⇧3(SU(N)) ⇠= Z. The winding is counted by the

function

w(g) =
1

24⇡2

Z
d3x ✏µ⌫⇢tr (g�1@µg g

�1@⌫g g
�1@⇢g) 2 Z (5.47)

We recognise this as the final term that appears in the variation of the Chern-Simons

action. This means that the Chern-Simons action is not invariant under these large

gauge transformations; it changes as

SCS ! SCS +
k

12⇡
24⇡2w(g) = SCS + 2⇡kw(g)

However, just as we saw earlier, we need not insist that the Chern-Simons action is

invariant. We need only insist that the exponential that appears in the path integral,

eiSCS is invariant. We see that this holds providing

k 2 Z
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This is the same quantisation that we saw for the Abelian theory, although this re-

quirement arises in a more direct fashion for the non-Abelian theory. (Note that we’re

using the convention e = ~ = 1; if we put these back in, we find ~k/e2 2 Z).

Chern-Simons Term as a Boundary Term

There is one other basic property of the Chern-Simons term that is useful to know.

Consider a theory in d = 3 + 1 dimensions. A natural quantity is the Pontryagin

density ✏µ⌫⇢�Tr(fµ⌫f⇢�). It’s not hard to show that this is a total derivative,

✏µ⌫⇢�tr(fµ⌫f⇢�) = 4✏µ⌫⇢�@µ tr

✓
aµ@⇢a� �

2i

3
a⌫a⇢a�

◆

The object in brackets is precisely the Chern-Simons term.

5.4.2 Canonical Quantisation and Topological Order

Let’s now quantise the Chern-Simons theory (5.46). Here, and also in Section 5.4.4, we

explain how to do this. However, both sections will be rather schematic, often stating

results rather than deriving them54. We’ll consider the theory on a manifold R ⇥ ⌃
where R is time and ⌃ is a spatial manifold which we’ll take to be compact. Mostly in

what follows we’ll be interested in ⌃ = S2 and ⌃ = T2, but we’ll also present results

for more general manifolds. The action (5.46) can then be written as

SCS =
k

4⇡

Z
dt

Z

⌃

d2x tr

✓
✏ijai

@

@t
aj + a0f12

◆
(5.48)

This is crying out to be quantised in a0 = 0 gauge. Here, the dynamical degrees of

freedom ai obey the commutation relations

[aa
i
(x), ab

j
(y)] =

2⇡i

k
✏ij �

ab �2(x� y) (5.49)

Subject to the constraint

f12 = 0 (5.50)

As always with a gauge theory, there are two ways to proceed. We could either quantise

and then impose the constraint. Or we could impose the constraint classically and

quantise the resulting degrees of freedom. Here, we start by describing the latter

approach.

54There is a long and detailed literature on this material, starting with Edward Witten’s Fields
medal winning work, “Quantum Field Theory and the Jones Polynomial”, Comm. Math. Phys.
Volume 121, Number 3, 351 (1989).
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We’re looking for solutions to (5.50) on the background ⌃. This is the problem of

finding flat connections on ⌃ and has been well studied in the mathematical literature.

We o↵er only a sketch of the solution. We already saw in Section 5.2.3 how to do this

for Abelian Chern-Simons theories on a torus: the solutions are parameterised by the

holonomies of ai around the cycles of the torus. The same is roughly true here. For

gauge group SU(N), there are N2� 1 such holonomies for each cycle, but we also need

to identify connections that are related by gauge transformations. The upshot is that

the moduli space M of flat connections has dimension (2g� 2)(N2 � 1) where g is the

genus ⌃.

Usually in classical mechanics, we would view the space of solutions to the constraint

– such as M – as the configuration space of the system. But that’s not correct in the

present context. Because we started with a first order action (5.48), the ai describe

both positions and momenta of the system. This means that M is the phase space.

Now, importantly, it turns out that the moduli space M is compact (admittedly with

some singularities that have to be dealt with). So we’re in the slightly unusual situation

of having a compact phase space. When you quantise you (very roughly) parcel the

phase space up into chunks of area ~. Each of these chunks corresponds to a di↵erent

state in the quantum Hilbert space. This means that when you have a compact phase

space, you will get a finite number of states. Of course, this is precisely what we saw

for the U(1) Chern-Simons theory on a torus in Section 5.2.3. What we’re seeing here

is just a fancy way of saying the same thing.

So the question we need to answer is: what is the dimension of the Hilbert space H
that you get from quantising SU(N) Chern-Simons theory on a manifold ⌃?

When ⌃ = S2, the answer is easy. There are no flat connections on S2 and the

quantisation is trivial. There is just a unique state: dim(H) = 1. In Section 5.4.4, we’ll

see how we can endow this situation with something a little more interesting.

When ⌃ has more interesting topology, the quantisation of Gk leads to a more inter-

esting Hilbert space. When G = SU(2), it turns out that the dimension of the Hilbert

space for g � 1 is55

dim(H) =

✓
k + 2

2

◆g�1 kX

j=0

✓
sin

(j + 1)⇡

k + 2

◆2(g�1)

(5.51)

55This formula was first derived using a connection to conformal field theory. We will touch on this
in Section 6. The original paper is by Eric Verlinde, “Fusion Rules and Modular Invariance in 2d
Conformal Field Theories”, Nucl. Phys. B300, 360 (1988). It is sometimes referred to the Verlinde
formula.
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Note that for ⌃ = T2, which has g = 1, this is simply dim(H) = k + 1. It’s not

obvious, but nonetheless true, that the formula above gives an integer for all g. There

is a generalisation of this formula for general gauge group which involves various group

theoretic factors such as sums over weights.

Finally, note that the dimension of the Hilbert space can be computed directly within

the path integral. One simply needs to compute the partition function on the manifold

S1 ⇥ ⌃,

Z =

Z
Da exp


ik

4⇡

Z

S1⇥⌃

d3x ✏µ⌫⇢tr

✓
aµ@⌫a⇢ �

2i

3
aµa⌫a⇢

◆�
= dim(H)

This provides a more direct way of computing the dimensions (5.51) of the Hilbert

spaces56.

The discussion above has been rather brief. It turns out that the best way to derive

these results is to map the problem into a d = 1+1 conformal field theory known as the

WZW model. Indeed, one of the most surprising results in this subject is that there is

a deep connection between the states of the Chern-Simons theory and objects known

as conformal blocks in the WZW model. We’ll comment briefly on this in Section 6.

5.4.3 Wilson Lines

So far we’ve only discussed the pure Chern-Simons. Now we want to introduce new

degrees of freedom that are charged under the gauge field. These will play the role of

non-Abelian anyons in the theory.

In the case of Abelian Chern-Simons theories, we could introduce quasi-holes by

simply adding a background current to the Lagrangian. In the non-Abelian case, we

need to be a little more careful. A current Jµ couples to the gauge field as,
Z

d3x tr (aµJ
µ)

But now the current must transform under the gauge group. This means that we

can’t just stipulate some fixed background current because that wouldn’t be gauge

invariant. Instead, even if the charged particle is stationary, the current must include

some dynamical degrees of freedom. These describe the internal orientation of the

particle within the gauge group. In the language of QCD, they are the “colour” degrees

56This calculation was described in M. Blau and G. Thompson, “Derivation of the Verlinde Formula
from Chern-Simons Theory and the G/G Model”, Nucl. Phys. 408, 345 (1993), hep-th/9305010 where
clear statements of the generalisation to other groups can be found.
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of freedom of each quark and we’ll retain this language here. In general, these colour

degrees of freedom span some finite dimensional Hilbert space. For example, if we have

an object transforming in the fundamental representation of SU(N), then it will have

an N -dimensional internal Hilbert space .

In this section we’ll see how to describe these colour degrees of freedom for each

particle. Usually this is not done. Instead, one can work in a description where the

colour degrees of freedom are integrated out in the path integral, leaving behind an

object called a Wilson line. The purpose of this Section is really to explain where these

Wilson lines come from. In Section 5.4.4, we will return to Chern-Simons theories and

study their properties in the presence of these external sources.

Classically, we view each particle that is charged under the SU(N) gauge field as

carrying an internal N -component complex vector with components w�, � = 1, . . . , N .

This vector has some special properties. First, it has a fixed length

w†w =  (5.52)

Second, we identify vectors which di↵er only by a phase: w� ⇠ ei✓w�. This means that

the vectors parameterise the projective space CPN�1.

Let’s ignore the coupling of to the gauge field aµ for now. The dynamics of these

vectors is described by introducing an auxiliary U(1) gauge field ↵ which lives on the

worldline of the particle. The action is

Sw =

Z
dt
�
iw†Dtw � ↵

�
(5.53)

where Dt = @tw � i↵w. The purpose of this gauge field is two-fold. Firstly, we have a

gauge symmetry which identifies w ! ei✓(t)w. This means that two vectors which di↵er

only by a phase are physically equivalent, just as we wanted. Second, the equation

of motion for ↵ is precisely the constraint equation (5.52). The net result is that w�

indeed parameterise CPN�1.

Note, however, that our action is first order, rather than second order. This means

that CPN�1 is the phase space of the colour vector rather than the configuration space.

But this too is what we want: whenever we quantise a compact phase space, we end

up with a finite dimensional Hilbert space.
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Finally, we can couple the colour degree of freedom to the Chern-Simons gauge field.

If the particle is stationary at some fixed position x = X, then the action is

Sw =

Z
dt
�
iw†Dtw � ↵� w†a0(t)w

�

where a0(t) = a0(t,x = X) is the Chern-Simons gauge field at the location of the

particle. The equation of motion for w is then

i
dw

dt
= a0(t)w

In other words, the Chern-Simons gauge field tells this colour vector how to precess.

Quantising the Colour Degree of Freedom

It’s straightforward to quantise this system. Let’s start with the unconstrained variables

w� which obey the commutation relations,

[w�, w
†
�0 ] = ���0 (5.54)

We define a “ground state” |0i such that w�|0i = 0 for all � = 1, . . . , N . A general

state in the Hilbert space then takes the form

|�1 . . . �ni = w†
�1
. . . w†

�n
|0i

However, we also need to take into account the constraint (5.52) which, in this context,

arises from the worldline gauge field ↵. In the quantum theory, there is a normal

ordering ambiguity in defining this constraint. The symmetric choice is to take the

charge operator

Q =
1

2
(w†

�
w� + w�w

†
�
) (5.55)

and to impose the constraint

Q =  (5.56)

The spectrum of Q is quantised which means that the theory only makes sense if  is

also quantised. In fact, the ↵ term in (5.53) is the one-dimensional analog of the 3d

Chern-Simons term. (In particular, it is gauge invariant only up to a total derivative).

The quantisation that we’re seeing here is very similar to the kind of quantisations that

we saw in the 3d case.
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However, the normal ordering implicit in the symmetric choice of Q in (5.55) gives

rise to a shift in the spectrum. For N even, Q takes integer values; for N odd, Q

takes half-integer values. It will prove useful to introduce the shifted Chern-Simons

coe�cient,

e↵ = � N

2
(5.57)

The quantisation condition then reads e↵ 2 Z+.

The constraint (5.56) now restricts the theory to a finite dimensional Hilbert space,

as expected from the quantisation of a compact phase spaceCPN�1. Moreover, for each

value of e↵ , the Hilbert space inherits an action under the SU(N) global symmetry.

Let us look at some examples:

• e↵ = 0: The Hilbert space consists of a single state, |0i. This is equivalent to

putting a particle in the trivial representation of the gauge group.

• e↵ = 1: The Hilbert space consists of N states, w†
�
|0i. This describes a particle

transforming in the fundamental representation of the SU(N) gauge group.

• e↵ = 2: The Hilbert space consists of 1
2N(N + 1) states, w†

�
w†

�0 |0i, transforming

in the symmetric representation of the gauge group.

By increasing the value of e↵ in integer amounts, it is clear that we can build all sym-

metric representations of SU(N) in this manner. If we were to replace the commutators

in (5.54) with anti-commutators, {w�, w
†
�0} = ���0 , then it’s easy to convince yourself

that we will end up with particles in the anti-symmetric representations of SU(N).

The Path Integral

Let’s now see what happens if we compute the path integral. For now, we will fix the

Chern-Simons field a0(t) and consider only the integral over w and the worldline gauge

field ↵. Subsequently, we’ll also integrate over aµ.

The path integral is reasonably straightforward to compute. One has to be a little

careful with the vacuum bubbles whose e↵ect is to implement the shift (5.57) from the

path integral perspective. Let’s suppose that we want to compute in the theory with

e↵ = 1, so we’re looking at objects in the N representation of SU(N). It’s not hard

to see that the path integral over ↵ causes the partition function to vanish unless we

put in two insertions of w. We should therefore compute

W [a0] =

Z
D↵DwDw† eiSw(w,↵;a0)w�(t = 1)w†

�
(t = �1)
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Note that we’ve called the partition function W as opposed to its canonical name

Z. We’ll see the reason for this below. The insertion at t = �1 is simply placing

the particle in some particular internal state and the partition function measures the

amplitude that it remains in that state at t = +1

Having taken this into account, we next perform the path integral over w and w†.

This is tantamount to summing a series of diagrams like this:

+ += +   ....

where the straight lines are propagators for w� which are simply ✓(t1 � t2)���0 , while

the dotted lines represent insertions of the gauge fields. It’s straightforward to sum

these. The final result is something very simple:

W [a0] = TrP exp

✓
i

Z
dt a0(t)

◆
(5.58)

Here P stands for path ordering which, since our particles are static, is the same thing

as time ordering. The trace is evaluated in the fundamental representation. This is the

Wilson line. It is a classical function of the gauge field a0(t). However, as we’ve seen

above, it should really be thought of as a quantum object, arising from integrating out

the colour degrees of freedom of a particle.

We can also generalise this construction to other symmetric representations; you

simply need to insert e↵ factors of w† at time t = �1 and a further e↵ factors of

w at t = +1. The end result is a Wilson line, with the trace evaluated in the the↵
symmetric representation.

5.4.4 Chern-Simons Theory with Wilson Lines

Let’s now consider non-Abelian Chern-Simons theory with the insertion of some number

of Wilson lines. Suppose that we insert n Wilson lines, each in a representation Ri and

sitting at position Xi. For simplicity, we’ll consider the theory on R ⇥ S2 where,

previously, the theory had just a single state. Now we quantise in the presence of these

Wilson lines. This will give a new Hilbert space that we’ll denote Hi1...in with the labels

denoting both position and representation of the Wilson lines. The first question that

we want to ask is: what is the dimension of this new Hilbert space?

The constraint equation in the presence of Wilson lines reads

k

2⇡
fa

12(x) =
nX

i=1

�2(x�Xi)w
(i)†T aw(i) (5.59)
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with w(i) the colour degrees of freedom that we met in the previous section. These

carry the information about the representation Ri carried by the Wilson line

Let’s start by looking at the limit k ! 1. This is the weak coupling limit of the

Chern-Simons theory (strictly, we need k � N) so we expect a classical analysis to be

valid. However, we’ll retain one element of the quantum theory: the Dirac quantisation

of flux (5.19), now applied to each component fa

12 individually. But, with k very large,

we see that it’s impossible to reconcile Dirac quantisation with any non-trivial charge on

the right-hand side. This means that the only way we can solve (5.59) is if the charges

on the right-hand side can somehow add up to zero. In the language of group theory,

this means that we take need to decompose the tensor product of the representations Ri

into irreducible representations. We only get solutions to (5.59) only if singlets appear

in this decomposition. We write

⌦n

i=1Ri = 1p � . . .

where p is the number of singlets 1 appearing in the decomposition and . . . are all

the non-singlet representations. Each of these di↵erent decompositions gives rise to a

di↵erent state in the Hilbert space Hi1...in . In the weak coupling limit, we then have

lim
k!1

dim(Hi1...in) = p

Typically, when we have a large number n of Wilson lines, there will be several di↵erent

ways to make singlets so p � 2.

For finite k when quantum e↵ects become more important, one finds that

dim(Hi1...in)  p

The possible reduction of the number of states arises in an intuitive fashion through

screening. At finite k, new solutions to (5.59) exist in which the integrated flux is

non-zero. But we should sum over flux sectors in the path integral which means that

these states become indistinguishable from the vacuum. This not only cuts down the

dimension of the Hilbert space, but reduces the kinds of representations that we can

insert to begin with. Let’s illustrate this idea with some simple examples:

An Example: SU(2)k

For G = SU(2), representations are labelled by the spin s. Classically, of course, s can

take any half-integer value. There is no bound on how large the spin can be. However,

at finite k the spin is bounded by

0  s  k

2
(5.60)
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The insertion of any Wilson line with spin s > k/2 can be screened by flux so that it

is equivalent to spin |s� k|.

Another Example: SU(N)k.

Let’s first recall some SU(N) group theory. Irreducible representations can be char-

acterised by a Young tableau with rows of length l1 � l2 � . . . � lN�1 � 0. In this

notation, the fundamental representation N is simply a single box

The pth symmetric representation is a row of boxes

p boxes

The anti-symmetric representation is a column of p boxes, while the adjoint is a full

column plus an extra guy stuck on the top,

p boxes and N−1 boxes

In particular, the anti-fundamental representation N̄ is the same as the (N � 1)th

anti-symmetric representation.

The non-trivial Wilson lines at level k are simply those with l1  k. This means,

in particular, that we can only have symmetric representations up to the kth power

of the fundamental. (This agrees with our result (5.60) for SU(2)). However, all

anti-symmetric representations are allowed. Most importantly, there are only a finite

number of representations at any finite k.

Fusion Revisited

Having specified the allowed representations, let’s now return to the dimension of the

Hilbert space Hi1...in . For two Wilson lines, the Hilbert space has dimension 1 if R1 =

R̄2, so that their tensor product can form a singlet. The first non-trivial example arises
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with the insertion of three Wilson lines with representations as Ri, Rj and R̄k. We’ll

denote the dimension of the Hilbert space as

dim(Hijk̄) = Nk

ij

As we described above, in the classical limit Nk

ij
is the number of times that Rk appears

in the tensor product of Ri⌦Rj. However, it too can receive quantum corrections and,

in general, Nk

ij
will be less than its classical value.

There is a well-developed machinery to compute the numbers Nk

ij
in Chern-Simons

theories. This involves replacing the tensor product of representations ⌦ with a mod-

ified operation called fusion. We will denote the fusion of two representations as ?.

The number Nk

ij
is now the number of times that Rk appears in the fusion product of

Ri ?Rj.

From knowledge of the Nk

ij
, we can compute the dimension of the general Hilbert

space Hi1...in . It is given by

dim(Hi1...in) =
X

j1,...,jn�2

N j1
i1i2

N j2
j1i3

. . . N jn�1

jn�2in

We’ve seen all of this before. This is the formal structure of fusion that underlies the

theory of non-Abelian anyons that we described in Section 4.3. The formula above

is the same as (4.21). In general, the Hilbert space of Wilson lines in Chern-Simons

theory provides a concrete realisation of the somewhat abstract fusion rules.

The fusion rules for Wilson lines in Chern-Simons theories are related to the rep-

resentation theory of Kac-Moody algebras. We won’t explain where these rules come

from. Instead, we will just present the results57.

Fusion Rules for SU(2)k

The representations of SU(2) are labelled by the spin s or the dimension d = 2s +

1. The tensor product between two representations follows from the familiar Clebsh-

Gordon decomposition

r ⌦ s = |r � s|� |r � s|+ 1� . . .� r + s

As we saw above, for a Chern-Simons theory SU(2)k, the spin s of the representation

must obey s  k/2. This means that we can’t have any representations appearing on

57You can find all the details in the yellow “Conformal Field Theory” book by Di Francesco, Mathieu
and Sénéchal.
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the right-hand side which are greater than k/2. You might think that we simply delete

all representations in the tensor product that are too large. However, it turns out that

the fusion rules are more subtle than that; sometimes we need to delete some of the

representations that appear to be allowed. The correct fusion rule is

r ? s = |r � s|� . . .�min(k � r � s, r + s) (5.61)

As an example, let’s look at SU(2)2. From (5.60), we see that there are just three

possible representations, with spin j = 0, 1/2 and 1. We’ll label these representations

by their dimension, 1,2 and 3. The fusion rules (5.61) in this case are

2 ? 2 = 1� 3 , 2 ? 3 = 2 , 3 ? 3 = 1 (5.62)

Note that the first two of these follow from standard Clebsh-Gordan coe�cients, throw-

ing out any spins greater than 1. However, the final product does not have the rep-

resentation 3 on the right-hand side which one might expect. We’ve seen the fusion

rules (5.62) before: they are identical to the fusion of Ising anyons (4.24) with the

identification

2 ! � and 3 !  

Recall that these describe the anyonic excitations of the Moore-Read state. Similarly,

one can check how many singlets you can form from n spin-1/2 with the requirement

that no group has spin greater than 1. The answer, for n even, is 2n/2�1. We recognise

this as the dimension of the Hilbert space of n Ising anyons. This leads us to suspect

that the SU(2)2 Chern-Simons theory plays some role in the description of the ⌫ = 5/2

quantum Hall state. We’ll look at this in more detail shortly.

Fusion Rules for SU(N)k

For SU(N)k, the fusion rules are simplest to explain using Young diagrams. However,

like many aspects of Young diagrams, if you don’t explain where the rules come from

then they appear totally mysterious and arbitrary, like a weird cross between sudoku

and tetris. Here we’re not going to explain. We’re just going to have to put up with

the mystery58.

58A simple mathematica package to compute fusion rules, written by Carl Turner, can be found at
http://blog.suchideas.com/2016/03/computing-wzw-fusion-rules-in-mathematica/
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We start by writing down the usual tensor product of representations. For each

representation on the right-hand side, we draw the corresponding Young diagram and

define

t = l1 � k � 1

where, as before, l1 is the length of the first row. Now we do one of three things,

depending on the value of t.

• t < 0: Keep this diagram.

• t = 0: Throw this diagram away.

• t > 0: Play. First, we remove a boundary strip of t boxes, starting from the end

of the first row and moving downwards and left. Next, we add a boundary strip

of t boxes, starting at the bottom of the first column and moving up and right.

If the resulting Young diagram does not correspond to a representation of SU(N),

we throw it away. Otherwise, we repeat until the resulting diagram has t  0. If

t = 0, we again throw it away. However, if t < 0 then we keep it on the right-hand

side, but with a sign given by

(�1)r�+r++1 (5.63)

where r� is the number of columns from which boxes were removed, while r+ is

the number of columns which had boxes added.

An Example: SU(2)2 Again

This probably sounds a little ba✏ing. Let’s first see how these rules reproduce what

we saw for SU(2). We’ll consider SU(2)2 which, as we saw, has representations 1, 2

and 3. In terms of Young diagrams, these are 1, ⇤ and ⇤⇤. Let’s look at some tensor

products. The first is

2⌦ 2 = 1� 3 ) ⌦ = 1�

Both boxes on the right-hand side have t < 0 so remain. In this case, the fusion rules

are the same as the tensor product: 2 ? 2 = 1� 3. The next tensor product is

2⌦ 3 = 2� 4 ) ⌦ = �

In this case, the final diagram is not an allowed representation of SU(2)2. It has

t = 3 � 2 � 1 = 0 so we simply discard this diagram. We’re left with the fusion rule

2 ? 3 = 2. The final tensor product is

3⌦ 3 = 1� 3� 5 ) ⌦ = 1� � (5.64)
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The first two diagrams have t < 0 and we leave them be. But the third has l1 = 4 and

so t = 1. This means we can play. We remove a single box from the far right-hand end

and replace it below the first box on the left:

�!

But a column of 2 boxes can be removed in SU(2) Young diagrams. So the full result

is

�! �!

This is another 3 representation. But we should worry about the sign. The red box

covers a single column, so r� = 1, while the green box also covers a single column so

r+ = 1. This means that this diagram comes with a sign �1. This cancels o↵ the

⇤⇤ that appeared on the right-hand side of (5.64). This final result is 3 ? 3 = 1. In

this way, we see that our rules for manipulating Young diagram reproduce the SU(2)2
fusion rules for Ising anyons (5.62) that we introduced previously.

Another Example: SU(3)2

Let’s now look another example. We choose SU(3)2. The allowed representations are

3 = , 3 = , 6 = , 6 = and 8 = . Let’s look at a simple example. The

tensor product of two symmetric representations is

6⌦ 6 = 6� 15� 15 ) ⌦ = � �

The first of these diagrams has t < 0. We keep it. The last of these diagrams has t = 0.

We discard it. More interesting is the middle diagram which has t = 1. This we play

with. We have the same manipulations that we saw in the SU(2)2 case above,

�!

However, this time the two boxes in a single column don’t cancel because we’re dealing

with SU(3) rather than SU(2). In fact, as we have seen, this diagram has t = 0. We

should just discard it. The upshot is that the fusion rules are simply

6 ? 6 = 6 ) ⌦ =

Let’s look at another example. The tensor product for two adjoints is

8⌦ 8 = 1� 8� 8� 10� 10� 27
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which, in diagrams, reads

⌦ = 1� � � � �

The first three diagrams we keep. The 10 and 10 diagrams have t = 0 and we discard.

This leaves us only with the final 27 diagram. This we play with. Using the rules

above, we have

�! � �! �

where we’ve now included the minus sign (5.63) in this expression, and the final step

comes from removing the column of three boxes. The net result is that the 27 diagram

cancels one of the 8 diagrams in the tensor product. We’re left with the SU(3)2 fusion

rule

8 ? 8 = 1� 8 ) ⌦ = 1�

We recognise this as the fusion rule for Fibonacci anyons (4.22). This means that the

adjoint Wilson lines in SU(3)2 Chern-Simons theory acts like Fibonacci anyons.

Braiding Revisited

We’ve seen above that Wilson lines in non-Abelian Chern-Simons theories provide an

arena to describe non-Abelian anyons. There is a finite dimensional Hilbert space

arising from a process of fusion. The next step is obviously to understand braiding in

this framework. The adiabatic motion of one Wilson line around another will give rise

to a unitary operator on the Hilbert space. How can we calculate this?

There is a long and beautiful story behind this which we will not describe here. The

essence of this story is that the action of braiding on the Hilbert space can be translated

into the computation of Wilson lines on S3,

hWRi =
Z

Da eiSCSWR[a]

where R describes the representation of the Wilson line which now traces out some

closed, non-intersecting path � in S3. In general, such a path describes a tangled path

known as a knot. Witten famously showed that the expectation value of the Wilson

line provides an invariant to distinguish di↵erent knots. For G = SU(2), with R the

fundamental representation, this invariant is the Jones Polynomial.
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5.4.5 E↵ective Theories of Non-Abelian Quantum Hall States

It is clear that non-Abelian Chern-Simons theories give rise to non-Abelian anyons. In-

deed, as we mentioned above, for SU(2)2, the structure of anyons that arise is identical

to the Ising anyons that describe the Moore-Read states. It’s therefore very natural

to think they provide e↵ective field theories for the non-Abelian quantum Hall states.

And this turns out to be correct. One can argue59 that the SU(2)2 theory e↵ectively

captures the braiding of anyons in the bosonic Moore-Read state at ⌫ = 1.

However, the full description is somewhat involved. One very basic problem is as

follows: to construct the full low-energy theory one should identify the electromagnetic

current which couples to the background field Aµ. And here gauge invariance works

against us. The kind of trick that we used in the Abelian theory is not available for

the non-Abelian theory since ✏µ⌫⇢f⌫⇢ is not gauge invariant, while ✏µ⌫⇢trf⌫⇢ = 0.

The way to proceed is to look at U(N) = U(1)⇥SU(N)/ZN Chern-Simons theories.

The background gauge field can easily couple to the U(1) factor but we then need the

U(1) factor to couple to the rest of SU(N) somehow. This is the part which is a little

involved: it requires some discrete identifications of the allowed Wilson lines in a way

which is compatible with gauge invariance60.

However, the Chern-Simons theories also provide us with another way to look at

quantum Hall states since these theories are intimately connected to d = 1 + 1 dimen-

sional conformal field theories. And it will turn out that these conformal field theories

also capture many of the interesting aspects of quantum Hall physics. In our final

section, we will look at this for some simple examples.

59The argument can be found in “A Chern-Simons e↵ective field theory for the Pfa�an quantum
Hall state” by E. Fradkin, C. Nayak, A. Tsvelik and F. Wilczek, Nucl.Phys. B516 3 704 (1998),
cond-mat/9711087.

60To my knowledge, this was first explained in Appendix C of the paper by Nati Seiberg and Edward
Witten, “Gapped Boundary Phases of Topological Insulators at Weak Coupling”, arXiv:1602.0425.
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