
4. Non-Abelian Quantum Hall States

The vast majority of the observed quantum Hall plateaux

Figure 41:

sit at fractions with odd denominator. As we’ve seen

above, this can be simply understood from the fermonic

nature of electrons and the corresponding need for anti-

symmetric wavefunctions. But there are some excep-

tions. Most prominent among them is the very clear

quantum Hall state observed at ⌫ = 5/2, shown in the

figure31. A similar quantum Hall state is also seen at

⌫ = 7/2.

The ⌫ = 5/2 state is thought to consist of fully filled

lowest Landau levels for both spin up and spin down

electrons, followed by a spin-polarised Landau level at

half filling. The best candidate for this state turns

out to have a number of extraordinary properties that

opens up a whole new world of interesting physics involving non-Abelian anyons. The

purpose of this section is to describe this physics.

4.1 Life in Higher Landau Levels

Until now, we’ve only looked at states in the lowest Landau level. These are charac-

terised by holomorphic polynomials and, indeed, the holomorphic structure has been

an important tool for us to understand the physics. Now that we’re talking about quan-

tum Hall states with ⌫ > 1, one might think that we lose this advantage. Fortunately,

this is not the case. As we now show, if we can neglect the coupling between di↵erent

Landau level then there’s a way to map the physics back down to the lowest Landau

level.

The first point to make is that there is a one-to-one map between Landau levels.

We saw this already in Section 1.4 where we introduced the creation and annihilation

operators a† and a which take us from one Landau level to another. Hence, given a

one-particle state in the lowest Landau level,

|mi ⇠ zme�|z|2/4l2B

we can construct a corresponding state a†n|mi in the nth Landau level. (Note that the

counting is like the British way of numbering floors rather than the American: if you

go up one flight of stairs you’re on the first floor or, in this case, the first Landau level).
31This state was first obseved by R. Willett, J. P. Eisenstein, H. L. Stormer, D. C. Tsui, A. C.

Gossard and H. English “Observation of an Even-Denominator Quantum Number in the Fractional
Quantum Hall E↵ect”, Phys Rev Lett 59, 15 (1987). The data shown is from W. Pan et. al. Phys.
Rev. Lett. 83, 17 (1999), cond-mat/9907356.
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Similarly, a state of two particles in the lowest Landau level decomposes into a centre

of mass part and a relative part, written as

|M,mi ⇠ (zi + zj)
M(zi � zj)

me�(|zi|2+|zj |2)/4l2B

We can also again construct the corresponding state a†n1 a†n2 |M,mi in which each par-

ticle now sits in the nth Landau level.

We’ve already seen in Section 3.1.3 that, if we focus attention to the lowest Landau

level, then the interactions between particles can be characterised by pseudopotentials,

defined by (3.11)

vm =
hM,m|V (|ri � rj|)|M,mi

hM,m|M,mi

For a potential of the form V (|r1 � r2|) which is both translationally and rotationally

invariant, these pseudopotentials depend only on a single integer m.

However, this same argument also holds for higher Landau levels. Once again we

can define pseudopotentials, now given by

v(n)
m

=
hM,m|an

i
an
j
V (|ri � rj|)a†ni a†n

j
|M,mi

hM,m|M,mi (4.1)

Of course, these di↵er from the vn, but otherwise the resulting problem is the same.

The upshot of this is that we can think of particles in the nth Landau level, interacting

through a potential V as equivalent to particles in the lowest Landau level interacting

with a potential given by (4.1). Typically one finds that the values of v(n)m are smaller

than the values of vm for low m. This means that there’s less of a penalty paid for

particles coming close.

Practically speaking, all of this provides us with a handy excuse to continue to work

with holomorphic wavefunctions, even though we’re dealing with higher Landau levels.

Indeed, you may have noticed that we’ve not exactly been careful about what potential

we’re working with! Solving the Schrödinger equation for any realistic potential is way

beyond our ability. Instead, we’re just at the stage of making up reasonable looking

wavefunctions. Given this, the fact that we have to deal with a di↵erent potential is

not going to be much of a burden.

Moreover, these ideas also explain how ⌫ = 5/2 can be an incompressible quantum

Hall state while, as we’ve seen, ⌫ = 1/2 is a compressible Fermi liquid state. Both

states must be possible at half filling, but which is chosen depends on the detailed
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interactions that the electrons experience. Our first task, then, is to write down the

quantum Hall state for electrons at half filling. In fact, we’ve already seen an example

of this: the (3, 3, 1) state described in Section 3.3.4. But, as we now explain, there is

also another, much more interesting candidate.

4.2 The Moore-Read State

The Moore-Read, or Pfa�an state describes an even number of particles, N , with filling

fraction ⌫ = 1/m. It is given by32

 ̃MR(z) = Pf

✓
1

zi � zj

◆Y

i<j

(zi � zj)
m (4.2)

In contrast to the Laughlin state, the wavefunction is anti-symmetric, and hence de-

scribes fermions, for m even. It is symmetric for m odd. To see this, we first need to

answer the question:

What’s a Pfa�an?

Consider a n N ⇥ N anti-symmetric matrix, Mij. The determinant of such a matrix

vanishes when N is odd, but when N is even the determinant can be written the square

of an object known as the Pfa�an,

det(M) = Pf(M)2

The Pfa�an is itself a polynomial of degree N/2 in the elements of the matrix, with

integer coe�cients.

There are a number of alternative expressions for the Pfa�an. Perhaps the simplest

is to partition N into N/2 pairs of numbers. For, example the simplest such partition

is (12), (34), . . . , (N � 1, N). The Pfa�an then takes the form

Pf(M) = A [M12M34 . . .MN�1,N ] (4.3)

where all the details are hidden in the notation A which means anti-symmetrise on the

indices, i.e. sum over all (N)!
2N/2(N/2)!

partitions with ± signs. Equivalently, can be written

as

Pf(M) =
1

2N/2(N/2)!

X

�

sign(�)
N/2Y

k=1

M�(2k�1),�(2k)

32This state was proposed by Greg Moore and Nick Read in “NonAbelions in the Fractional Quantum
Hall E↵ect”, Nucl. Phys B360 362 (1991) which can be found here. This important paper also
introduces the relationship between wavefunctions and conformal field theory described later in these
lectures.
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where the sum is over all � 2 SN , the symmetric group, and sign(�) is the signature of

�.

For example, if we have four particles then

Pf

✓
1

zi � zj

◆
=

1

z1 � z2

1

z3 � z4
+

1

z1 � z3

1

z4 � z2
+

1

z1 � z4

1

z2 � z3

Of course, the expressions rapidly get longer as N increases. For 6 particles, there are

12 terms; for 8 particles there are 105.

What’s the Physics?

The Pfa�an removes factors of zi � zj compared to the Laughlin wavefunction, but in

a clever way so that  ̃ is never singular: whenever two particles approach, the Pfa�an

diverges but is compensated by the
Q
(zi � zj)m factor.

In particular, for the bosonic m = 1 state, the wavefunction doesn’t vanish when

a pair of particles coincides, but it does vanish when the positions of three particles

become coincident. This means that the m = 1 state is a zero-energy ground state of

the 3-body toy Hamiltonian,

H = A
X

i<j<k

�2(zi � zj)�
2(zi � zk) (4.4)

Similar toy Hamiltonians can be constructed that have the general-mMoore-Read state

as their ground state.

The presence of the Pfa�an means that the Moore-Read state has fewer zeros than

the Laughlin state, suggesting that the particles are more densely packed. However, the

di↵erence is irrelevant in the thermodynamic N ! 1 limit. To see this, we compute

the filling fraction. There are m(N � 1) powers of z1 in the Laughlin-like factor and

a single 1/z1 factor from the Pfa�an. This tells us that the area of the droplet in the

large N limit is the same as the area of the Laughlin droplet with N particles. We

again have

⌫ =
1

m

as promised.

The case ofm = 1 describes a fully filled Landau level of bosons and may be realisable

using cold atoms in a rotating trap. The case of m = 2 describes a half-filled Landau

level of fermions. This will be our primary focus here.
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The View from the Composite Fermion

The Moore-Read wavefunction is crying out to be interpreted in terms of composite

fermions. In this language, the
Q
(zi� zj)m factor attaches m vortices to each electron.

If m is even, then the underlying electron was a fermion. Attaching an even number of

vortices leaves it as a fermion. In contrast, if m was odd then the underlying “electron”

was a boson. Attaching an odd number of vortices now turns it into a fermion. Either,

way, the combined object of electron + m vortices is a fermion.

We saw in Section 3.3.3 that for m = 2, attaching the vortices results in a composite

fermion in an e↵ectively vanishing magnetic field. The question is: how should we

interpret the Pfa�an in this language? In fact, there is a very natural interpretation:

the Moore-Read state describes composite fermions which pile up to form a Fermi liquid

and subsequently su↵er a BCS pairing instability to superconductivity

More meat can be put on this proposal. Here we skip the meat and o↵er only some

pertinent facts33. In a conventional superconductor, the spins of the electrons form a

spin singlet. This provides the necessary anti-symmetry of the wavefunction so that

the angular momentum part is symmetric. The simplest choice is that the electron pair

condense in the s-wave. However, our composite fermions all have the same spin so

the anti-symmetry must now come from the angular momentum. The simplest choice

is now that the composite fermion pair condenses in the p-wave. In fact, the relevant

choice of spherical harmonics gives what’s known as a px + ipy superconductor. The

appropriate BCS wavefunction for such a superconductor, in the weak pairing limit,

indeed takes the form of the Pfa�an factor in (4.2).

4.2.1 Quasi-Holes

We can now look at excitations of the Moore-Read state. We will focus on quasi-holes.

One obvious thing to try is to simply repeat what we did for the Laughlin quasi-hole

(3.18) and propose the wavefunction,

 ̃(z) =
Y

k

(zk � ⌘) Pf

✓
1

zi � zj

◆Y

i<j

(zi � zj)
m (4.5)

and, indeed, there’s nothing wrong with this. By the same arguments we used before,

the resulting object has charge e/m and can be thought of as the addition of a single

flux quantum or, in the language of (3.3.2), a single vortex.

33This idea was proposed by Martin Greiter, Xiao-Gang Wen and Frank Wilzcek in “On Paired Hall
States”, with all the details provided in the paper by Nick Read and Dmitry Green, “Paired states of
fermions in two dimensions with breaking of parity and time-reversal symmetries, and the fractional
quantum Hall e↵ect”, cond-mat/9906453.
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However, in the Moore-Read state (much) more interesting things can happen. The

Laughlin quasi-hole, described by (4.5), can itself split into two! We describe this by

building the positions of the new objects into the Pfa�an part of the wavefunction like

so:

 ̃(z) = Pf

✓
(zi � ⌘1)(zj � ⌘2) + (zj � ⌘1)(zi � ⌘2)

zi � zj

◆Y

i<j

(zi � zj)
m (4.6)

Note that the argument of the Pfa�an remains anti-symmetric, as it must. Multiplying

out the Pfa�an, we see that this state contains the same number of (z � ⌘) factors as

(4.5), but clearly encodes the positions ⌘1 and ⌘2 of two independent objects. We will

refer to these smaller objects as the quasi-holes. When these two quasi-holes coincide,

so ⌘1 = ⌘2, we get back the state (4.5).

This means that the individual quasi-holes in (4.6) can each be thought of as a

half-vortex. They have charge

e? =
e

2m

In particular, for the m = 2 state at half-filling, the quasi-holes should have charge

e/4. There are claims that this prediction has been confirmed in the ⌫ = 5/2 state

by shot-noise experiments34, although the results remain somewhat controversial and

are certainly less clean than the analogous experiments in the Abelian quantum Hall

states.

How Many States with 4 Quasi-Holes?

What about multiple quasi-holes? This is where things start to get interesting. Suppose

that we want to write down a wavefunction for 4 quasi-holes. Clearly we need to include

the positions ⌘↵, ↵ = 1, 2, 3, 4 into the elements of the Pfa�an. One simple guess is

the following expression

 ̃(12),(34)(z) = Pf(12),(34)(z)
Y

i<j

(zi � zj)
m (4.7)

where we’ve defined

Pf(12),(34)(z) = Pf

✓
(zi � ⌘1)(zi � ⌘2)(zj � ⌘3)(zj � ⌘4) + (i $ j)

zi � zj

◆

34M. Dolev, M. Heiblum, V. Umansky, A. Stern and D. Mahalu, “Observation of a Quarter of an
Electron Charge at the ⌫ = 5/2 Quantum Hall State”, Nature 452, 829-834 (2008).
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Indeed, (4.7) is a fine quasi-hole state. But it’s not unique: there was an arbitrariness

in the way split the four quasi-particles into the two groups (12) and (34). This makes

it look as if there are two further states that we can write down,

 ̃(13),(24)(z) and  ̃(14),(23)(z)

So it looks as if there are three states describing 4 quasi-holes. But this isn’t right. It

turns out that these states are not all linearly independent.

It’s a little fiddly to derive the linear dependence of quasi-hole states, but it’s impor-

tant. Here we’ll derive the result for the simplest case of 4 quasi-holes and then just

state the result for the general case of 2n quasi-holes35. The first step is to note the

relation

(z1 � ⌘1)(z1 � ⌘2)(z2 � ⌘3)(z2 � ⌘4) � (z1 � ⌘1)(z1 � ⌘3)(z2 � ⌘4)(z2 � ⌘2) + (1 $ 2)

= (z1 � z2)
2(⌘1 � ⌘4)(⌘2 � ⌘3) (4.8)

which is simplest to see by noting that the left-hand side indeed vanishes on the roots.

To save space, we introduce some new notation. Define ⌘↵� = ⌘↵ � ⌘� and

(12, 34) ⌘ (z1 � ⌘1)(z1 � ⌘2)(z2 � ⌘3)(z2 � ⌘4) + (1 $ 2)

So that (4.8) reads

(12, 34)� (13, 24) = (z1 � z2)
2⌘14⌘23

Then, using the definition of the Pfa�an (4.3), we have

Pf(13),(24)(z) = A
✓
(13, 24)

z1 � z2

(13, 24)

z3 � z4
. . .

◆

= A
✓
(12, 34)� (z1 � z2)2⌘14⌘23

z1 � z2

(12, 34)� (z3 � z4)2⌘14⌘23
z3 � z4

. . .

◆

= A
✓
(12, 34)

z1 � z2

(12, 34)

z3 � z4
. . .

◆
�A

✓
(z1 � z2)⌘14⌘23

(12, 34)⌘14⌘23
z3 � z4

. . .

◆

+ A
✓
(z1 � z2)⌘14⌘23(z3 � z4)⌘14⌘23

(12, 34)⌘14⌘23
z5 � z6

. . .

◆
+ . . .

where the terms that we didn’t write down have factors like (z1�z2)(z3�z4)(z5�z6) and

so on. However, in the last term, the anti-symmetrisation acts on the (z1� z2)(z3� z4)

35The proof was first given by Chetan Nayak and Frank Wilczek in “2n Quasihole States Realize
2n�1-Dimensional Spinor Braiding Statistics in Paired Quantum Hall States, cond-mat/9605145. The
derivation above for 4 particles also follows this paper.
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factor which vanishes. Indeed, for all the remaining terms we have to anti-symmetrise

a polynomial which is linear in each factor and this too vanishes. We’re left with

Pf(13),(24)(z) = Pf(12),(34)(z)�A
✓
(z1 � z2)⌘14⌘23

(12, 34)⌘14⌘23
z3 � z4

. . .

◆

The same kind of calculation also gives

Pf(14),(23)(z) = Pf(12),(34)(z)�A
✓
(z1 � z2)⌘13⌘24

(12, 34)⌘14⌘23
z3 � z4

. . .

◆

But this gives the result that we want: it says that there is a linear relation between

the three di↵erent Pfa�an wavefunctions.

Pf(12),(34)(z)� Pf(13),(24)(z) =
⌘14⌘23
⌘13⌘24

⇣
Pf(12),(34)(z)� Pf(14),(23)(z)

⌘

There are two lessons to take from this. The first is that if we fix the positions ⌘↵ of

the four quasi-holes, then there is not a unique state that describes them. Instead, the

state is degenerate. But it’s not as degenerate as we might have thought. There are

only 2 states describing four quasi-holes, rather than the 3 that a naive counting gives.

How Many States with Multiple Quasi-holes?

We can now repeat this for the general situation of 2n quasi-hole. To build a suitable

wavefunction, we first decompose these quasi-particles into two groups of n. For ex-

ample let’s pick (1 . . . n) and (n + 1 . . . 2n) as a particularly obvious choice. Then the

wavefunction takes the form (4.7), but with the Pfa�an component replaced by

Pf

✓
(zi � ⌘1)(zi � ⌘2) . . . (zi � ⌘n)(zj � ⌘n+1)(zj � ⌘n+2) . . . (zj � ⌘n) + (i $ j)

zi � zj

◆
(4.9)

Clearly this again depends on the choice of grouping. The number of ways of placing

2n elements into two groups is

1

2

(2n)!

n!n!

but, as our previous discussion shows, these states are unlikely to be linearly indepen-

dent. The question is: how many linearly independent states are there? It turns out

that the answer is:

dimension of Hilbert space = 2n�1 (4.10)

Obviously this agrees with our answer of 2 when we have four quasi-holes.
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A moments thought shows that the counting (4.10) is very peculiar. We’re quite used

to the Hilbert space for a group of particles having a degeneracy when each particle

has an internal degree of freedom. For example, if we have N particles each of spin-1/2

then the total Hilbert space has dimension 2N . But that can’t be what’s going on with

our quasi-holes. We have 2n quasi-holes but an internal Hilbert space of dimension

2n�1. Even ignoring the factor of 2�1 for now, we have many fewer states than could

be accounted for by each particle having it’s own internal degree of freedom.

This simple observation is really the key bit of magic captured by the Moore-Read

excitations. The “internal” degrees of freedom described by the Hilbert space of di-

mension 2n�1 are not associated to any individual quasi-hole and they can’t be seen by

looking at any local part of the wavefunction. Instead they are a property of the entire

collection of particles. It is information stored non-locally in the wavefunction.

Quasi-Holes are Non-Abelian Anyons

Let’s now think about what happens when the quasi-holes are exchanged. As we have

seen, if we have 2n quasi-holes then there are 2n�1 possible ground states. When we

take any closed path in the configuration space of quasi-holes, the state of the system

can come back to itself up to a unitary U(2n�1) rotation. This is an example of the

non-Abelian Berry holonomy discussed in Section 1.5.4. The quasi-holes are referred

to as non-Abelian anyons. (The original suggested name was “non-Abelions”, but it

doesn’t seem to have caught on.)

Our task is to figure out the unitary matrices associated to the exchange of particles.

Conceptually, this task is straightforward. We just need to construct an orthonormal

set of 2n�1 wavefunctions and compute the non-Abelian Berry connection (1.52). In

practice, that’s easier said than done. Recall that in the computation of the Berry

connection for Laughlin quasi-holes we relied heavily on the plasma analogy. This

suggests that to make progress we would need to develop a similar, but more involved,

plasma analogy for the Moore-Read state. The resulting calculations are quite long36.

The good news is that although the calculation is somewhat involved, the end result

is quite simple However, this also suggests that there might be a more physical way to

get to this result. And, indeed there is: it involves returning to the composite fermion

picture.

36The results were conjectured in the ’96 paper by Nayak and Wilczek, but a full proof had to
wait until the work of Parsa Bonderson, Victor Guarie and Chetan Nayak, “Plasma Analogy and
Non-Abelian Statistics for Ising-type Quantum Hall States”, arXiv:1008.5194.
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4.2.2 Majorana Zero Modes

Recall that, at ⌫ = 1/2, composite fermions are immune to the background magnetic

field and instead form a Fermi sea. The Moore-Read state arises when these composite

fermions pair up and condense, forming a p-wave superconductor.

This viewpoint provides a very simple way to understand the non-Abelian statistics.

Moreover, the results are general and apply to any other (px + ipy) superconductor.

The unconventional superconductor Sr2RuO4 is thought to fall into this class, and it

may be posisible to construct these states in cold atom systems. (A warning: this last

statement is usually wheeled out for almost anything that people don’t really know

how to build.)

To proceed, we will need a couple of facts about the p-wave superconducting state

that I won’t prove. The first is that, in common with all superconductors, there are

vortices, in which the phase of the condensate winds around the core. Because the

composite electrons condense in pairs, the simplest vortex can carry �0/2e flux as

opposed to �0/e. For this reason, it’s sometimes called a half-vortex, although we’ll

continue to refer to it simply as the vortex. This will be our quasi-hole.

The second fact that we’ll need is the crucial one, and is special to px + ipy super-

conductors. The vortices have zero modes. These are solutions to the equation for

the fermion field in the background of a vortex. They can be thought of as a fermion

bound to the vortex. Importantly, for these p-wave superconductors, this zero mode is

Majorana37.

A Hilbert Space from Majorana Zero Modes

To explain what a Majorana mode means, we’ll have to work in the language of creation

and annihilation operators for particles which is more familiar in the context of quantum

field theory. We start by reviewing these operators for standard fermions. We define

c†
i
to be the operator that creates an electron (or, more generally a fermion). Here the

index i labels any other quantum numbers of the electron, such as momentum or spin.

Meanwhile, the conjugate operator ci annihilates an electron or, equivalently, creates a

hole. (In high-energy physics, we’d call this an anti-particle.) These fermionic creation

and annihilation operators obey

{ci, c†j} = �ij and {ci, cj} = {c†
i
, c†

j
} = 0 (4.11)

which can be thought of as the manifestation of the Pauli exclusion principle.

37A very simple explanation of Majorana fermions in di↵erent contexts can be found in Frank
Wilczek’s nice review “Majorana Returns”, Nature Physics 5 614 (2009).
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A Majorana particle is a fermion which is its own anti-particle. It can be formally

created by the operator

�i = ci + c†
i

(4.12)

which clearly satisfies the condition �i = �†
i
. From (4.11), we see that these Majorana

operators satisfy

{�i, �j} = 2�ij (4.13)

This is known as the Cli↵ord algebra.

While it’s simple to write down the equation (4.12), it’s much harder to cook up

a physical system in which these excitations exist as eigenstates of the Hamiltonian.

For example, if we’re talking about real electrons then c† creates a particle of charge

�e while c creates a hole of charge +e. This means that � creates a particle which

is in a superposition of di↵erent charges. Usually, this isn’t allowed. However, the

environment in a superconductor makes it possible. Electrons have paired up into

Cooper pairs to form a boson which subsequently condenses. The ground state then

contains a large reservoir of particles which can e↵ectively absorb any ±2e charge. This

means that in a superconductor, charge is conserved only mod 2. The electron and hole

then have e↵ectively the same charge.

Suppose now that we have 2n well-separated vortices, each with their Majorana

zero mode �i. (We’ll see shortly why we restrict to an even number of vortices.) We

fix the positions of the vortices. What is the corresponding Hilbert space? To build

the Hilbert space, we need to take two Majorana modes and, from them, reconstruct

a complex fermion zero mode. To do this, we make an arbitrary choice to pair the

Majorana mode associated to one vortex with the Majorana mode associated to a

di↵erent vortex. There’s no canonical way to pair vortices like this but any choice we

make will work fine. For now, let’s pair (�1, �2) and (�3, �4) and so on. We then define

the complex zero modes

 k =
1

2
(�2k�1 + i�2k) k = 1, . . . , n (4.14)

These obey the original fermionic commutation relations

{ k, 
†
l
} = �kl and { k, l} = { †

k
, †

l
} = 0

The Hilbert space is then constructed in a way which will be very familiar if you’ve

taken a first course on quantum field theory. We first introduce a “vacuum”, or reference
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state |0i which obeys  k|0i = 0 for all k. We then construct the full Hilbert space by

acting with successive creation operators,  †
k
to get

|0i
 †

k
|0i

 †
k
 †

l
|0i (4.15)
...

 †
1 . . . 

†
n
|0i

The sector with p excitations has
�
p

n

�
possible states. The dimension of the full Hilbert

space is

dimension of Hilbert space = 2n

Note, firstly, that the same comments we made for quasi-hole wavefunctions also apply

here. There’s no way to think of this Hilbert space as arising from local degrees of

freedom carried by each of the 2n vortices. Indeed, one advantage of this approach

is that it demonstrates very clearly the non-local nature of the Hilbert space. Each

individual vortex carries only a Majorana zero mode. But a single Majorana zero mode

doesn’t buy you anything: you need two of them to form a two-dimensional Hilbert

space.

The dimension of the Hilbert space we’ve found here is twice as big as the dimension

(4.10) that comes from counting linearly independent wavefunctions. But it turns out

that there’s a natural way to split this Hilbert space into two. As we’ll see shortly,

the braiding of vortices mixes states with an even number of  † excitations among

themselves. Similarly, states with an odd number of  † excitations also mix among

themselves. Each of these Hilbert spaces has dimension 2n�1. The linearly independent

quasi-hole excitations (4.9) can be thought of as spanning one of these smaller Hilbert

spaces.

Braiding of Majorana Zero Modes

The Majorana zero modes give us a simple way to construct the Hilbert space for our

non-Abelian anyons. They also give us a simple way to see the braiding38.

38This calculation was first done by Dimitry Ivanov in “Non-abelian statistics of half-quantum vor-
tices in p-wave superconductors”, cond-mat/0005069.
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Recall from Section 3.2.2 that the braid group is generated by Ri, with i = 1, . . . , 2n�
1, which exchanges the ith vortex with the (i+1)th vortex in an anti-clockwise direction.

The action of this braiding on the Majorana zero modes is

Ri :

8
>><

>>:

�i ! �i+1

�i+1 ! ��i
�j ! �j j 6= i, i+ 1

where the single minus sign corresponds to the fact that the phase of a Majorana

fermion changes by 2⇡ as it encircles a vortex.

We want to represent this action by a unitary operator — which, with a slight abuse

of notation we will also call Ri — such that the e↵ect of a braid can be written as

Ri�jR
†
i
. It’s simple to write down such an operator,

Ri = exp
⇣⇡
4
�i+1�i

⌘
ei⇡↵ =

1p
2
(1 + �i+1�i)e

i⇡↵

To see that these two expressions are equal, you need to use the fact that (�i+1�i)2 = �1,

together with sin(⇡/4) = cos(⇡/4) = 1/
p
2. The phase factor ei⇡↵ captures the Abelian

statistics which is not fixed by the Majorana approach. For the Moore-Read states at

filling fraction ⌫ = 1/m, it turns out that this statistical phase is given by

↵ =
1

4m
(4.16)

Here, our interest lies more in the non-Abelian part of the statistics. For any state in

the Hilbert space, the action of the braiding is

| i ! Ri| i

Let’s look at how this acts in some simple examples.

Two Quasi-holes

Two quasi-holes give rise to two states, |0i and  †|0i. Written in terms of the complex

fermions, the exchange operator becomes

R =
1p
2
(1 + i� 2i † )ei⇡↵

from which we can easily compute the action of exchange on the two states

R |0i = ei⇡/4ei⇡↵|0i and R †|0i = e�i⇡/4ei⇡↵ †|0i (4.17)

Alternatively, written as a 2⇥2 matrix, we have R = ei⇡�
3
/4ei⇡↵ with �3 the third Pauli

matrix. We see that each state simply picks up a phase factor as if they were Abelian

anyons.
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Four Quasi-holes

For four vortices, we have four states: |0i,  k|0i for k = 1, 2, and  †
1 

†
2|0i. Meanwhile,

there three generators of the braid group. For the exchanges 1 $ 2 and 3 $ 4, the

corresponding operators involve only a single complex fermion,

R1 =
1p
2
(1 + �2�1)e

i⇡↵ =
1p
2
(1 + i� 2i †

1 1)e
i⇡↵

and

R3 =
1p
2
(1 + �4�3)e

i⇡↵ =
1p
2
(1 + i� 2i †

2 2)e
i⇡↵

This is because each of these exchanges vortices that were paired in our arbitrary choice

(4.14). This means that, in our chosen basis of states, these operators give rise to only

Abelian phases, acting as

R1 =

0

BBBB@

ei⇡/4

e�i⇡/4

ei⇡/4

e�i⇡/4

1

CCCCA
ei⇡↵ and R3 =

0

BBBB@

e�i⇡/4

e�i⇡/4

ei⇡/4

ei⇡/4

1

CCCCA
ei⇡↵

Meanwhile, the generator R2 swaps 2 $ 3. This is more interesting because these two

vortices sat in di↵erent pairs in our construction of the basis states using (4.14). This

means that the operator involves both  1 and  2,

R2 =
1p
2
(1 + �3�2) =

1p
2

⇣
1� i( 2 + 

†
2)( 1 � †

1)
⌘

and, correspondingly, is not diagonal in our chosen basis. Instead, it is written as

R2 =
1p
2

0

BBBB@

1 0 0 �i

0 1 �i 0

0 �i 1 0

i 0 0 1

1

CCCCA
(4.18)

Here we see the non-Abelian nature of exchange. Note that, as promised, the states

 k|0i with an odd number of  excitations transform into each other, while the states

|0i and  †
1 

†
2|0i transform into each other. This property persists with an arbitrary

number of anyons because the generators Ri defined in (4.17) always contain one cre-

ation operator  † and one annihilation operator  . It means that we are really de-

scribing two classes of non-Abelian anyons, each with Hilbert space of dimension 2n�1.
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The non-Abelian anyons that we have described above are called Ising anyons. The

name is strange as it’s not at all clear at this stage what these anyons have to do with

the Ising model. We will briefly explain the connection in Section 6.3.

Relationship to SO(2n) Spinor Representations

The discussion above has a nice interpretation in terms of the spinor representation

of the rotation group SO(2n). This doesn’t add anything new to the physics, but it’s

simple enough to be worth explaining.

As we already mentioned, the algebra obeyed by the Majorana zero modes (4.13) is

called the Cli↵ord algebra. It is well known to have a unique irreducible representation

of dimension 2n. This can be built from 2⇥ 2 Pauli matrices, �1, �2 and �3 by

�1 = �1 ⌦ �3 ⌦ . . .⌦ �3

�2 = �2 ⌦ �3 ⌦ . . . �3

...

�2k�1 = 1⌦ . . .⌦ 1⌦ �1 ⌦ �3 ⌦ . . .⌦ �3

�2k = 1⌦ . . .⌦ 1⌦ �2 ⌦ �3 ⌦ . . .⌦ �3

...

�2n�1 = 1⌦ . . .⌦ 1⌦ �1

�2n = 1⌦ . . .⌦ 1⌦ �2

The Pauli matrices themselves obey {�a, �b} = 2�ab which ensures that the gamma-

matrices defined above obey the Cli↵ord algebra.

From the Cli↵ord algebra, we can build generators of the Lie algebra so(2n). The

rotation in the (xi, xj) plane is generated by the anti-symmetric matrix

Tij =
i

4
[�i, �j] (4.19)

This is called the (Dirac) spinor representation of SO(2n). The exchange of the ith

and jth particle is represented on the Hilbert space by a ⇡/2 rotation in the (xi, xi+1)

plane,

Rij = exp

✓
� i⇡

2
Tij

◆

For the generators Ri = Ri,i+1, this coincides with our previous result (4.17).
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The spinor representation (4.19) is not irreducible. To see this, note that there is

one extra gamma matrix,

�2n+1 = �3 ⌦ �3 ⌦ . . .⌦ �3

which anti-commutes with all the others, {�2n+1, �i} = 0 and hence commutes with the

Lie algebra elements [�2n+1, Tij] = 0. Further, we have (�2n+1)2 = 12n, so �2n+1 has

eigenvalues ±1. By symmetry, there are n eigenvalues +1 and n eigenvalues �1. We

can then construct two irreducible chiral spinor representations of so(2n) by projecting

onto these eigenvalues. These are the representation of non-Abelian anyons that act

on the Hilbert space of dimension 2n�1.

This, then, is the structure of Ising anyons, which are excitations of the Moore-Read

wavefunction. The Hilbert space of 2n anyons has dimension 2n�1. The act of braiding

two anyons acts on this Hilbert space in the chiral spinor representation of SO(2n),

rotating by an angle ⇡/2 in the appropriate plane.

4.2.3 Read-Rezayi States

In this section, we describe an extension of the Moore-Read states. Let’s first give

the basic idea. We’ve seen that the m = 1 Moore-Read state has the property that it

vanishes only when three or more particles come together. It can be thought of as a

zero-energy ground state of the simple toy Hamiltonian,

H = A
X

i<j<k

�2(zi � zj)�
2(zj � zk)

This suggests an obvious generalisation to wavefunctions which only vanish when some

group of p particles come together. These would be the ground states of the toy

Hamiltonian

H = A
X

i1<i2<...<ip

�2(zi1 � zi2)�
2(zi2 � zi3) . . . �

2(zip�1 � zip)

The resulting wavefunctions are called Read-Rezayi states.

To describe these states, let us first re-write the Moore-Read wavefunction in a way

which allows a simple generalisation. We take N particles and arbitrarily divide them

up into two groups. We’ll label the positions of the particles in the first group by

v1, . . . , vN/2 and the position of particles in the second group by w1, . . . , wN/2. Then we

can form the wavefunction

 ̃CGT (z) = S
"
Y

i<j

(vi � vj)
2(wi � wj)

2

#
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where S means that we symmetrise over all ways of diving the electrons into two groups,

ensuring that we end up with a bosonic wavefunction. The claim is that

 MR(z) =  ̃CGT (z)
Y

i<j

(zi � zj)
m�1

We won’t prove this claim here39. But let’s just do a few sanity checks. At m = 1, the

Moore-Read wavefunction is a polynomial in z of degree N(N/2� 1), while any given

coordinate – say z1 – has at most power N � 2. Both of these properties are easily

seen to hold for  ̃CGT . Finally, and most importantly,  ̃CGT (z) vanishes only if three

particles all come together since two of these particles must sit in the same group.

It’s now simple to generalise this construction. Consider N = pd particles. We’ll

separate these into p groups of d particles whose positions we label as w(a)
1 , . . . , w(a)

d

where a = 1, . . . , p labels the group. We then form the Read-Rezayi wavefunction40

 ̃RR(z) = S
"
Y

i<j

(w(1)
i

� w(1)
j
)2 . . .

Y

i<j

(w(p)
i

� w(p)
j
)2
#
Y

k<l

(zk � zl)
m�1

where, again, we symmetrise over all possible clustering of particles into the p groups.

This now has the property that the m = 1 wavefunction vanishes only if the positions of

p+ 1 particles coincide. For this reason, these are sometimes referred to as p-clustered

states, while the original Moore-Read wavefunction is called a paired state.

Like the Moore-Read state, the Read-Rezayi state describes fermions for m even and

bosons for m odd. The filling fraction can be computed in the usual manner by looking

at the highest power of some given position. We find

⌫ =
p

p(m� 1) + 2

The fermionic p = 3-cluster state at m = 2 has filling fraction ⌫ = 3/5 and is a

promising candidate for the observed Hall plateaux at ⌫ = 13/5. One can also consider

the particle-hole conjugate of this state which would have filling fraction ⌫ = 1�3/5 =

2/5. There is some hope that this describes the observed plateaux at ⌫ = 12/5.

39The proof isn’t hard but it is a little fiddly. You can find it in the paper by Cappelli, Georgiev
and Todorov, “Parafermion Hall states from coset projections of abelian conformal theories”, hep-
th/0009229.

40The original paper “Beyond paired quantum Hall states: parafermions and incompressible states
in the first excited Landau level, cond-mat/9809384, presents the wavefunction is a slightly di↵erent,
but equivalent form.
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Quasi-Holes

One can write down quasi-hole excitations above the Read-Rezayi state. Perhaps un-

surprisingly, such quasi-holes necessarily come in groups of p. The simplest such state

is

 ̃(z) = S

2

4
pY

a=1

N/pY

i=1

(w(a)
i

� ⌘a)
pY

a=1

Y

i<j

(w(a)
i

� w(a)
j
)2

3

5
Y

k<l

(zk � zl)
m�1

As with the Moore-Read state, when the positions of all p quasi-holes coincide, we get

a Laughlin quasi-hole factor
Q
(zi � ⌘). This combined object should have charge ⌫e,

so the individual quasi-holes of the Read-Rezayi state have charge

e? =
⌫

p
=

1

p(m� 1) + 2

What about for more quasi-holes? We can easily write down some candidate wave-

functions simply by including more of the
Q
(w � ⌘) type factors in the wavefunction.

But we still have the hard work of figuring out how many of these are linearly inde-

pendent. To my knowledge, this has never been shown from a direct analysis of the

wavefunctions. However, the result is known through more sophisticated techniques

involving conformal field theory that we will briefly describe in Section 6. Perhaps the

most interesting is the case p = 3. Here, the number of linearly independent states of

3n quasi-holes can be shown to be d3n�2, where di are the Fibonacci numbers: d1 = 1,

d2 = 2 and dn+1 = dn + dn�1. For this reason, the anyons in the p = 3 Read-Rezayi

state are referred to as Fibonacci anyons.

Like their Moore-Read counterparts, the Fibonacci anyons are also non-Abelian. In

fact, it turns out that they are the simplest possible non-Abelian anyons. Rather than

describe their properties here, we instead take a small diversion and describe the general

abstract theory behind non-Abelian anyons. We’ll use the Fibonacci and Ising anyons

throughout as examples to illustrate the main points. We will postpone to Section 6

any further explanation of how we know that these are the right anyons to describe the

quasi-holes in quantum Hall states.

4.3 The Theory of Non-Abelian Anyons

This section is somewhat tangential to the main theme of these lectures. Its purpose

is to review a general, somewhat formal, theory that underlies non-Abelian anyons41.

41More details can be found in Chapter 9 of the beautiful set of lectures on Quantum Computation
by John Preskill: http://www.theory.caltech.edu/people/preskill/ph229/
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We’ll see that there is an intricate structure imposed on any model arising from the

consistency of exchanging di↵erent groups of anyons. As we go along, we’ll try to make

contact with the non-Abelian anyons that we’ve seen arising in quantum Hall systems.

The starting point of this abstract theory is simply a list of the di↵erent types of

anyons that we have in our model. We’ll call them a, b, c, etc. We include in this list

a special state which has no particles. This is called the vacuum and is denoted as 1.

4.3.1 Fusion

The first important property we need is the idea of fusion. When we bring two anyons

together, the object that we’re left with must, when viewed from afar, also be one of

the anyons on our list. The subtlety is that we need not be left with a unique type of

anyon when we do this. We denote the possible types of anyon that can arise as a and

b are brought together — of fused — as

a ? b =
X

c

N c

ab
c (4.20)

where N c

ab
is an integer that tells us how many di↵erent ways there are to get the anyon

of type c. It doesn’t matter which order we fuse anyons, so a? b = b?a or, equivalently,

N c

ab
= N c

ba
. We can also interpret the equation the other way round: if a specific anyon

c appears on the right of this equation, then there is a way for it to split into anyons

of type a and b.

The vacuum 1 is the trivial state in the sense that

a ? 1 = a

for all a.

The idea that we can get di↵erent states when we bring two particles together is a

familiar concept from the theory of angular momentum. For example, when we put two

spin-1/2 particles together we can either get a particle of spin 1 or a particle of spin

0. However, there’s an important di↵erence between this example and the non-Abelian

anyons. Each spin 1/2 particle had a Hilbert space of dimension 2. When we tensor

two of these together, we get a Hilbert space of dimension 4 which we decompose as

2⇥ 2 = 3+ 1

Such a simple interpretation is not available for non-Abelian anyons. Typically, we don’t

think of a single anyon as having any internal degrees of freedom and, correspondingly,
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it has no associated Hilbert space beyond its position degree of freedom. Yet a pair of

anyons do carry extra information. Indeed, (4.20) tells us that the Hilbert space Hab

describing the “internal” state of a pair of anyons has dimension

dim(Hab) =
X

c

N c

ab

The anyons are called non-Abelian whenever N c

ab
� 2 for some a, b and c. The infor-

mation contained in this Hilbert space is not carried by any local degree of freedom.

Indeed, when the two anyons a and b are well separated, the wavefunctions describing

di↵erent states in Hab will typically look more or less identical in any local region. The

information is carried by more global properties of the wavefunction. For this reason,

the Hilbert space Hab is sometimes called the topological Hilbert space.

All of this is very reminiscent of the situation that we met when discussing the quasi-

holes for the Moore-Read state, although there we only found an internal Hilbert space

when we introduced 4 or more quasi-holes. We’ll see the relationship shortly.

Suppose now that we bring three or more anyons together. We will insist that the

Hilbert space of final states is independent of the order in which we bring them together.

Mathematically, this means that fusion is associative,

(a ? b) ? c = a ? (b ? c)

With this information, we can extrapolate to bringing any number of n anyons, a1, a2, . . . , an
together. The resulting states can be figured out by iterating the rules above: each c

that can be formed from a1 ⇥ a2 can now fuse with a3 and each of their products can

fuse with a4 and so on. The dimension of the resulting Hilbert space Ha1...an is

dim(Ha1...an) =
X

b1,...,bn�2

N b1
a1a2

N b2
b1a3

. . . N bn�1

bn�2an
(4.21)

In particular, we can bring n anyons of the same type a together. The asymptotic

dimension of the resulting Hilbert space H(n)
a is written as

dim(H(n)
a

) ! (da)
n as n ! 1

Here da is called the quantum dimension of the anyon. They obey da � 1. The vacuum

anyon 1 always has d1 = 1. Very roughy speaking, the quantum dimension should be

thought of as the number of degrees of freedom carried by in a single anyon. However,

as we’ll see, these numbers are typically non-integer reflecting the fact that, as we’ve

stressed above, you can’t really think of the information as being stored on an individual

anyon.
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There’s a nice relationship obeyed by the quantum dimensions. From (4.21), and

using the fact that N c

ab
= N c

ba
, we can write the dimension of H(n)

a as

dim(H(n)
a

) =
X

b1,...,bn�2

N b1
aa
N b2

ab1
. . . N bn�1

abn�2
=
X

b

[Na]
n

ab

where Na is the matrix with components N c

ab
and in the expression above it is raised

to the nth power. But, in the n ! 1, such a product is dominated by the largest

eigenvalue of the matrix Na. This eigenvalue is the quantum dimension da. There is

therefore an eigenvector e = (e1, . . . , en) satisfying

Nae = dae ) N c

ab
ec = daeb

For what it’s worth, the Perron-Frobenius theorem in mathematics deals with eigen-

value equations of this type. Among other things, it states that all the components of

ea are strictly positive. In fact, in the present case the symmetry of N c

ab
= N c

ba
tells us

what they must be. For the right-hand-side to be symmetric we must have ea = da.

This means that the quantum dimensions obey

dadb =
X

c

N c

ab
dc

Before we proceed any further with the formalism, it’s worth looking at two examples

of non-Abelian anyons.

An Example: Fibonacci Anyons

Fibonacci anyons are perhaps the simplest42. They have, in addition to the vacuum

1, just a single type of anyon which we denote as ⌧ . The fusion rules consist of the

obvious ⌧ ? 1 = 1 ? ⌧ = ⌧ together with

⌧ ? ⌧ = 1� ⌧ (4.22)

So we have dim(H(2)
⌧ ) = 2. Now if we add a third anyon, it can fuse with the single ⌧

to give

⌧ ? ⌧ ? ⌧ = 1� ⌧ � ⌧

with dim(H(3)
⌧ ) = 3. For four anyons we have dim(H(4)

⌧ ) = 5. In general, one can show

that dim(H(n+1)
⌧ ) = dim(H(n)

⌧ ) + dim(H(n�1)
⌧ ). This is the Fibonacci sequence and is

what gives the anyons their name.

42A simple introduction to these anyons can be found in the paper by S. Trebst, M. Troyer, Z. Wang
and A. Ludwig in “A Short Introduction to Fibonacci Anyon Model”, arXiv:0902.3275.
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The matrix N⌧ , with components N c

⌧b
can be read o↵ from the fusion rules

N⌧ =

 
0 1

1 1

!

The quantum dimension is the positive eigenvalue of this matrix which turns out to be

the golden ratio.

d⌧ =
1

2
(1 +

p
5) (4.23)

This, of course, is well known to be the limiting value of dim(H(n+1)
⌧ )/dim(H(n)

⌧ ).

Another Example: Ising Anyons

Ising anyons contain, in addition to the vacuum, two types which we denote as � and

 . The fusion rules are

� ? � = 1�  , � ?  = � ,  ?  = 1 (4.24)

The  are somewhat boring; they have dim(H(n)
⌧ ) = 1 for all n. The dimension of the

Hilbert space of multiple � anyons is more interesting; it depends on whether there are

an even or odd number of them. It’s simple to check that

dim(H(2n)
�

) = dim(H(2n+1)
�

) = 2n (4.25)

so we have

d = 1 and d� =
p
2

Of course, we’ve seen this result before. This is the dimension of the Hilbert space

of anyons constructed from Majorana zero modes described in Section 4.2.2. In this

language, we saw that a pair of vortices share a single complex zero mode, leading to

the states |0i and  †|0i. These are identified with the vacuum 1 and the fermion  

respectively. The fusion rule  ?  = 1 then reflects the fact that pairs of composite

fermions have condensed in the ground state.

4.3.2 The Fusion Matrix

Let’s now return to the general theory. The fusion rules (4.20) aren’t all we need to

specify a particular theory of non-Abelian anyons. There are two further ingredients.

The first arises by considering the order in which we fuse particles together.
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Suppose that we have three anyons, a, b and c. We first fuse a and b together and,

of all the possibilities allowed by the fusion rules, we get some specific anyon i. We

subsequently fuse i with c and end up with a specific anyon d. All of this is captured

by a fusion tree which looks like this:

a b c

d

i
(4.26)

We list the anyons that we start with at the top and then read the tree by working

downwards to see which anyons fuse to which. Alternatively, you could read the tree

by starting at the bottom and thinking of anyons as splittng. Importantly, there can

be several di↵erent anyons i that appear in the intermediate channel.

Now suppose that we do the fusing in a di↵erent order: we first fuse b with c and

subsequently fuse the product with a. We ask that the end product will again be the

anyon d. But what will the intermediate state be? There could be several di↵erent

possibilities j.

a b c

d

j

The question we want to ask is: if we definitely got state i in the first route, which of

the states j appear in the second route. In general, there won’t be a specific state j,

but rather a linear combination of them. This is described graphically by the equation

a b c

d

i
=
X

j

(F d

abc
)ij

a b c

d

j (4.27)

where the coe�cients (F d

abc
)ij are thought of as the coe�cients of a unitary matrix,

F d

abc
, specified by the four anyons a, b, c and d. This is called the fusion matrix.

A comment: in our attempt to keep the notation concise, we’ve actually missed

an important aspect here. If there are more than one ways in which the anyons j can

appear in intermediate states then we should sum over all of them and, correspondingly,

the fusion matrix should have more indices. More crucially, sometimes there will be
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multiple ways in which the final state d can appear. This will happen whenever Nd

aj
�

2 for some j. In this case, the the process on the left will typically give a linear

combination of the di↵erent d states on the right. The fusion matrix should also

include indices which sum over these possibilities.

The fusion matrices are extra data needed to specify the structure of non-Abelian

anyons. However, they can’t be chosen arbitrarily: there are consistency relations

which they must satisfy. For some simple theories, this is su�cient to determine the

fusion matrix completely given the fusion rules.

The consistency condition comes from considering four anyons fusing to an end prod-

uct. To avoid burgeoning alphabetical notation, we’ll call the initial anyons 1, 2, 3 and

4 and the final anyon 5. (The notation is not ideal because the anyon 1 does not mean

the vacuum here!) We start with some fusion process in which the anyons are fused in

order, with fixed intermediate states i and j, like this

i

j

1 2 3

5

4

Now we consider reversing the order of fusion. We can do this in two di↵erent paths

which is simplest to depict in a graphical notation, known as the pentagon diagram,

j

1 3

5

4

m

2 1 3

5

42

m

l

Fim4
5

1 2

5

4

i k

3Fi34
5

F12k
5

i

j

1 2 3

5

4

F123
j

1

5

42 3

l

k

F234
l

The fact that the upper and lower paths in the diagram give the same result means

that the fusion matrix must obey

(F 5
12k)il(F

5
i34)jk =

X

m

(F l

234)mk(F
5
1m4)jl(F

j

123)im (4.28)
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These are simply sets of polynomial relations for the coe�cients of the fusion matrix.

One might think that fusing more anyons together gives further consistency rules. It

turns out that these all reduce to the pentagon condition above. Let’s look at what

this means for our two favourite examples.

The Fusion Matrix for Fibonacci Anyons

For Fibonacci anyons, the interesting constraint comes from when all external particles

are ⌧ . The pentagon equation (4.28) then reads

(F ⌧

⌧⌧k
)il(F

⌧

i⌧⌧
)jk =

X

m

(F l

⌧⌧⌧
)mk(F

⌧

⌧m⌧
)jl(F

j

⌧⌧⌧
)im

Things simplify further by noting that all fusion matrices F d

abc
are simply given by the

identity whenever a, b, c or d are equal to the vacuum state. (This is always true when

a, b or c is equal to the vacuum state and, for Fibonacci anyons, holds also when d is

the vacuum state). The only non-trivial matrix is F ⌧

⌧⌧⌧
. If we set j, k = ⌧ and i, l = 1

in the above equation, we get

(F ⌧

⌧⌧⌧
)11 = (F ⌧

⌧⌧⌧
)⌧1(F

⌧

⌧⌧⌧
)1⌧

Combined with the fact that F ⌧

⌧⌧⌧
is unitary, this constraint is su�cient to determine

the fusion matrix completely. It is

F ⌧

⌧⌧⌧
=

 
d�1
⌧

d�1/2
⌧

d�1/2
⌧ �d�1

⌧

!
(4.29)

where we previously calculated (4.23) that the quantum dimension d⌧ = (1 +
p
5)/2,

the golden ratio.

The Fusion Matrix for Ising Anyons

The pentagon constraint can also be studied for Ising anyons. It’s a little more com-

plicated43. You can check that a solution to the pentagon equation (4.28) is given by

fusion matrices F �

� �
= F �

 � 
= �1 and

(F �

���
)ij =

1p
2

 
1 1

1 �1

!
(4.30)

where the i, j indices run over the vacuum state 1 and the fermion  .

43Details can be found in Alexei Kitaev’s “Anyons in an exactly solved model and beyond”, cond-
mat/0506438.
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We’d now like to make contact with what we learned in Section 4.2. How do we

think about this fusing matrix in the context of, say, Majorana zero modes? In fact,

there seems to be mismatch from the o↵, because the fusion matrix starts with three

anyons fusing to one, while the Majorana zero modes naturally came in pairs, meaning

that we should start with an even number of vortices.

We can, however, interpret the original fusion diagram (4.26) in a slightly di↵erent

way. We fuse a and b to get anyon i, but (tilting out heads), the diagram also says that

fusing c and d should give the same type of anyon i. What does this mean in terms of

our basis of states (4.15)? The obvious interpretation is that state |0i is where both

have fused to 1; the state  †
1|0i is where the first and second anyon have fused to give

 while the third and fourth have fused to give 1; the state  †
1|0i is the opposite; and

the state  †
1 

†
2|0i is where both have fused to give  anyons. All of this means that the

diagram (4.26) with i = 1 is capturing the state |0i of four anyons, while the diagram

with i =  is capturing the state  †
1 

†
2|0i.

Now let’s think about the right-hand side of equation (4.27). This time anyons a and

d fuse together to give a specific anyon j, while b and c fuse together to give the same

anyon j. In terms of Majorana zero modes, we should now rebuild our Hilbert space,

not using the original pairing (4.14), but instead using

 ̃1 =
1

2
(�1 + i�4) and  ̃2 =

1

2
(�3 � i�2)

and we now construct a Hilbert space built starting from |0̃i satisfying  ̃k|0̃i = 0. The

diagram with j = 1 corresponds to |0̃i while the diagram with j =  corresponds to

 ̃†
1 ̃

†
2|0̃i. We want to find the relationship between these basis. It’s simple to check

that the unitary map is indeed given by the fusion matrix (4.30).

4.3.3 Braiding

The second important process is a braiding of two anyons. We can do this in two

di↵erent ways:

clockwise or anti-clockwise

Suppose that we fuse two anyons a and b together to get c. We then do this again,

but this time braiding the two anyons in an anti-clockwise direction before fusing. The
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resulting states are related by the R-matrix, defined by

b a

c

= Rc

ab

c

ab

If N c

ab
= 1, so that there only a single option for the final anyon, then Rc

ab
is simply

a complex phase. However, if N c

ab
� 2, so that there are several di↵erent ways of

getting the final anyon c, then there’s no reason we should get the same state after

the exchange. In this case, the R-matrix is a genuine matrix of size N c

ab
⇥N c

ab
and we

should be summing over all possible final states on the right-hand side.

There are further consistency relations that come from reversing the operations of

fusion and braiding. Again, these are best described graphically although the resulting

pictures tend to have lots of swirling lines unless we first introduce some new notation.

We’ll write the left-hand side of the R-matrix equation above as

b a

c

⌘

c

a b

= Rc

ab

c

ab

Now the consistency relation between fusion matrices and R-matrices arise from the

following hexagon diagram

k

1 32

i

4

R

1 2 3

4

j

3 12

j

4

R

k

2 1 3

4
F

F F

R

i

1 2 3

4

2 3 1

4

In equations, this reads
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Rk

13(F
4
213)kiR

i

12 =
X

j

(F 4
231)kjR

4
j1(F

4
123)ji (4.31)

It turns out that the pentagon (4.28) and hexagon (4.31) equations are the only con-

straints that we need to impose on the system. If, for a given set of fusion rules (4.20),

we can find solutions to these sets of polynomial equations then we have a consistent

theory of non-Abelian anyons.

The R-Matrix for Fibonacci Anyons

Let’s see how this works for Fibonacci anyons. We want to compute two phases: R1
⌧⌧

and R⌧

⌧⌧
. (When either of the lower indices on R is the vacuum state, it is equal to 1.)

We computed the fusion matrix F = F ⌧

⌧⌧⌧
in (4.29). The left-hand side of the equation

is then

Rk

⌧⌧
FkiR

i

⌧⌧
= Fk1F1i + Fk⌧F⌧ iR

⌧

⌧⌧

Note also our choice of notation has become annoying: in the equation above 1 means

the vacuum, while in (4.31) it refers to whatever external state we chose to put there.

(Sorry!) The equation above must hold for each k and i; we don’t sum over these indices.

This means that it is three equations for two unknowns and there’s no guarantee that

there’s a solution. This is the non-trivial part of the consistency relations. For Fibonacci

anyons, it is simple to check that there is a solution. The phases arising from braiding

are:

R1
⌧⌧

= e4⇡i/5 and R⌧

⌧⌧
= �e2⇡i/5

The R-Matrix for Ising Anyons

For Ising anyons, the consistency relations give

R1
��

= e�i⇡/8 and R�

��
= e�3⇡i/8

Note firstly that these are just Abelian phases; the non-Abelian part of exchange that

was described by (4.18) for Majorana zero modes is really captured by the fusion matrix

in this more formal notation.

Note also that this doesn’t agree with the result for anyons computed in Section

4.2.2 since these results depended on the additional Abelian statistical parameter ↵.

(In fact, the results do agree if we take ↵ = ±1/8 or, equivalently filling factor ⌫ = 1/2.)

For general filling factor, the non-Abelian anyons in the Moore-Read state should be

thought of as attached to further Abelian anyons which shifts this phase.
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4.3.4 There is a Subject Called Topological Quantum Computing

There has been a huge surge of interest in non-Abelian anyons over the past 15 years,

much of it driven by the possibility of using these objects to build a quantum computer.

The idea is that the Hilbert space of non-Abelian anyons should be thought of as the

collection of qubits, while the braiding and fusion operations that we’ve described above

are the unitary operations that act as quantum gates. The advantage of using non-

Abelian anyons is that, as we’ve seen, the information is not stored locally. This means

that it is immune to decoherence and other errors which mess up calculations since

this noise, like all other physics, arises from local interactions44. This subject goes by

the name of topological quantum computing. I’ll make no attempt to explain this vast

subject here. A wonderfully clear introduction can be found in the lecture notes by

John Preskill.

44This proposal was first made by A. Kitaev in “Fault tolerant quantum computation by anyons ”,
quant-ph/9707021.
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