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Recommended Books and Resources

There are surprisingly few dedicated books on the quantum Hall e↵ect. Two prominent

ones are

• Prange and Girvin, “The Quantum Hall E↵ect”

This is a collection of articles by most of the main players circa 1990. The basics are

described well but there’s nothing about Chern-Simons theories or the importance of

the edge modes.

• J. K. Jain, “Composite Fermions”

As the title suggests, this book focuses on the composite fermion approach as a lens

through which to view all aspects of the quantum Hall e↵ect. It has many good

explanations but doesn’t cover the more field theoretic aspects of the subject.

There are also a number of good multi-purpose condensed matter textbooks which

contain extensive descriptions of the quantum Hall e↵ect. Two, in particular, stand

out:

• Eduardo Fradkin, Field Theories of Condensed Matter Physics

• Xiao-Gang Wen, Quantum Field Theory of Many-Body Systems: From the Origin

of Sound to an Origin of Light and Electrons

Several excellent lecture notes covering the various topics discussed in these lec-

tures are available on the web. Links can be found on the course webpage:

http://www.damtp.cam.ac.uk/user/tong/qhe.html.
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1. The Basics

1.1 Introduction

Take a bunch of electrons, restrict them to move in a two-dimensional plane and turn

on a strong magnetic field. This simple set-up provides the setting for some of the most

wonderful and surprising results in physics. These phenomena are known collectively

as the quantum Hall e↵ect.

The name comes from the most experimentally visible of these surprises. The Hall

conductivity (which we will define below) takes quantised values

�xy =
e2

2⇡~ ⌫

Originally it was found that ⌫ is, to extraordinary precision, integer valued. Of course,

we’re very used to things being quantised at the microscopic, atomic level. But this

is something di↵erent: it’s the quantisation of an emergent, macroscopic property in

a dirty system involving many many particles and its explanation requires something

new. It turns out that this something new is the role that topology can play in quantum

many-body systems. Indeed, ideas of topology and geometry will be a constant theme

throughout these lectures.

Subsequently, it was found that ⌫ is not only restricted to take integer values, but can

also take very specific rational values. The most prominent fractions experimentally

are ⌫ = 1/3 and ⌫ = 2/5 but there are many dozens of di↵erent fractions that have

been seen. This needs yet another ingredient. This time, it is the interactions between

electrons which result in a highly correlated quantum state that is now recognised as a

new state of matter. It is here that the most remarkable things happen. The charged

particles that roam around these systems carry a fraction of the charge of the electron,

as if the electron has split itself into several pieces. Yet this occurs despite the fact

that the electron is (and remains!) an indivisible constituent of matter.

In fact, it is not just the charge of the electron that fractionalises: this happens to the

“statistics” of the electron as well. Recall that the electron is a fermion, which means

that the distribution of many electrons is governed by the Fermi-Dirac distribution

function. When the electron splits, so too does its fermionic nature. The individual

constituents are no longer fermions, but neither are they bosons. Instead they are new

entities known as anyons which, in the simplest cases, lie somewhere between bosons

and fermions. In more complicated examples even this description breaks down: the

resulting objects are called non-Abelian anyons and provide physical embodiment of

the kind of non-local entanglement famous in quantum mechanics.
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Because of this kind of striking behaviour, the quantum Hall e↵ect has been a con-

stant source of new ideas, providing hints of where to look for interesting and novel

phenomena, most of them related to the ways in which the mathematics of topology

impinges on quantum physics. Important examples include the subject of topological

insulators, topological order and topological quantum computing. All of them have

their genesis in the quantum Hall e↵ect.

Underlying all of these phenomena is an impressive theoretical edifice, which involves

a tour through some of the most beautiful and important developments in theoretical

and mathematical physics over the past decades. The first attack on the problem fo-

cussed on the microscopic details of the electron wavefunctions. Subsequent approaches

looked at the system from a more coarse-grained, field-theoretic perspective where a

subtle construction known as Chern-Simons theory plays the key role. Yet another

perspective comes from the edge of the sample where certain excitations live that know

more about what’s happening inside than you might think. The main purpose of these

lectures is to describe these di↵erent approaches and the intricate and surprising links

between them.

1.2 The Classical Hall E↵ect

The original, classical Hall e↵ect was discovered in 1879 by Edwin Hall. It is a simple

consequence of the motion of charged particles in a magnetic field. We’ll start these

lectures by reviewing the underlying physics of the Hall e↵ect. This will provide a

useful background for our discussion of the quantum Hall e↵ect.

Here’s the set-up. We turn on a constant mag-

xI

HV

B

Figure 1: The classical Hall ef-

fect

netic field, B pointing in the z-direction. Meanwhile,

the electrons are restricted to move only in the (x, y)-

plane. A constant current I is made to flow in the

x-direction. The Hall e↵ect is the statement that

this induces a voltage VH (H is for “Hall”) in the

y-direction. This is shown in the figure to the right.

1.2.1 Classical Motion in a Magnetic Field

The Hall e↵ect arises from the fact that a magnetic field causes charged particles to

move in circles. Let’s recall the basics. The equation of motion for a particle of mass

m and charge �e in a magnetic field is

m
dv

dt
= �ev ⇥B
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When the magnetic field points in the z-direction, so thatB = (0, 0, B), and the particle

moves only in the transverse plane, so v = (ẋ, ẏ, 0), the equations of motion become

two, coupled di↵erential equations

mẍ = �eBẏ and mÿ = eBẋ (1.1)

The general solution is

x(t) = X �R sin(!Bt+ �) and y(t) = Y +R cos(!Bt+ �) (1.2)

We see that the particle moves in a circle which, for B > 0, is in
B

Figure 2:

an anti-clockwise direction. The centre of the circle, (X, Y ), the

radius of the circle R and the phase � are all arbitrary. These

are the four integration constants from solving the two second

order di↵erential equations. However, the frequency with which

the particle goes around the circle is fixed, and given by

!B =
eB

m
(1.3)

This is called the cyclotron frequency.

1.2.2 The Drude Model

Let’s now repeat this calculation with two further ingredients. The first is an electric

field, E. This will accelerate the charges and, in the absence of a magnetic field, would

result in a current in the direction of E. The second ingredient is a linear friction term,

which is supposed to capture the e↵ect of the electron bouncing o↵ whatever impedes

its progress, whether impurities, the underlying lattice or other electrons. The resulting

equation of motion is

m
dv

dt
= �eE� ev ⇥B� mv

⌧
(1.4)

The coe�cient ⌧ in the friction term is called the scattering time. It can be thought of

as the average time between collisions.

The equation of motion (1.4) is the simplest model of charge transport, treating the

mobile electrons as if they were classical billiard balls. It is called the Drude model and

we met it already in the lectures on Electromagnetism.
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We’re interested in equilibrium solutions of (1.4) which have dv/dt = 0. The velocity

of the particle must then solve

v +
e⌧

m
v ⇥B = �e⌧

m
E (1.5)

The current density J is related to the velocity by

J = �nev

where n is the density of charge carriers. In matrix notation, (1.5) then becomes

 
1 !B⌧

�!B⌧ 1

!
J =

e2n⌧

m
E

We can invert this matrix to get an equation of the form

J = �E

This equation is known as Ohm’s law: it tells us how the current flows in response to

an electric field. The proportionality constant � is the conductivity. The slight novelty

is that, in the presence of a magnetic field, � is not a single number: it is a matrix. It

is sometimes called the conductivity tensor. We write it as

� =

 
�xx �xy

��xy �xx

!
(1.6)

The structure of the matrix, with identical diagonal components, and equal but opposite

o↵-diagonal components, follows from rotational invariance. From the Drude model,

we get the explicit expression for the conductivity,

� =
�DC

1 + !2
B
⌧ 2

 
1 �!B⌧

!B⌧ 1

!
with �DC =

ne2⌧

m

Here �DC is the DC conductivity in the absence of a magnetic field. (This is the same

result that we derived in the Electromagnetism lectures). The o↵-diagonal terms in the

matrix are responsible for the Hall e↵ect: in equilibrium, a current in the x-direction

requires an electric field with a component in the y-direction.
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Although it’s not directly relevant for our story, it’s worth pausing to think about how

we actually approach equilibrium in the Hall e↵ect. We start by putting an electric field

in the x-direction. This gives rise to a current density Jx, but this current is deflected

due to the magnetic field and bends towards the y-direction. In a finite material, this

results in a build up of charge along the edge and an associated electric field Ey. This

continues until the electric field Ey cancels the bending of due to the magnetic field,

and the electrons then travel only in the x-direction. It’s this induced electric field Ey

which is responsible for the Hall voltage VH .

Resistivity vs Resistance

The resistivity is defined as the inverse of the conductivity. This remains true when

both are matrices,

⇢ = ��1 =

 
⇢xx ⇢xy

�⇢xy ⇢yy

!
(1.7)

From the Drude model, we have

⇢ =
1

�DC

 
1 !B⌧

�!B⌧ 1

!
(1.8)

The o↵-diagonal components of the resistivity tensor, ⇢xy = !B⌧/�DC , have a couple

of rather nice properties. First, they are independent of the scattering time ⌧ . This

means that they capture something fundamental about the material itself as opposed

to the dirty messy stu↵ that’s responsible for scattering.

The second nice property is to do with what we measure. Usually we measure the

resistance R, which di↵ers from the resistivity ⇢ by geometric factors. However, for

⇢xy, these two things coincide. To see this, consider a sample of material of length L

in the y-direction. We drop a voltage Vy in the y-direction and measure the resulting

current Ix in the x-direction. The transverse resistance is

Rxy =
Vy

Ix
=

LEy

LJx
=

Ey

Jx
= �⇢xy

This has the happy consequence that what we calculate, ⇢xy, and what we measure,

Rxy, are, in this case, the same. In contrast, if we measure the longitudinal resistance

Rxx then we’ll have to divide by the appropriate lengths to extract the resistivity ⇢xx.

Of course, these lectures are about as theoretical as they come. We’re not actually

going to measure anything. Just pretend.
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While we’re throwing di↵erent definitions around, here’s one more. For a current Ix
flowing in the x-direction, and the associated electric field Ey in the y-direction, the

Hall coe�cient is defined by

RH = � Ey

JxB
=
⇢xy
B

So in the Drude model, we have

RH =
!B

B�DC

=
1

ne

As promised, we see that the Hall coe�cient depends only on microscopic information

about the material: the charge and density of the conducting particles. The Hall

coe�cient does not depend on the scattering time ⌧ ; it is insensitive to whatever friction

processes are at play in the material.

We now have all we need to make an experimental predic-
ρ

xy

ρ
xx

B

Figure 3:

tion! The two resistivities should be

⇢xx =
m

ne2⌧
and ⇢xy =

B

ne

Note that only ⇢xx depends on the scattering time ⌧ , and ⇢xx ! 0

as scattering processes become less important and ⌧ ! 1. If

we plot the two resistivities as a function of the magnetic field,

then our classical expectation is that they should look the figure

on the right.

1.3 Quantum Hall E↵ects

Now we understand the classical expectation. And, of course, this expectation is borne

out whenever we can trust classical mechanics. But the world is governed by quantum

mechanics. This becomes important at low temperatures and strong magnetic fields

where more interesting things can happen.

It’s useful to distinguish between two di↵erent quantum Hall e↵ects which are asso-

ciated to two related phenomena. These are called the integer and fractional quantum

Hall e↵ects. Both were first discovered experimentally and only subsequently under-

stood theoretically. Here we summarise the basic facts about these e↵ects. The goal of

these lectures is to understand in more detail what’s going on.
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1.3.1 Integer Quantum Hall E↵ect

The first experiments exploring the quantum regime of the Hall e↵ect were performed in

1980 by von Klitzing, using samples prepared by Dorda and Pepper1. The resistivities

look like this:

This is the integer quantum Hall e↵ect. For this, von Klitzing was awarded the 1985

Nobel prize.

Both the Hall resistivity ⇢xy and the longitudinal resistivity ⇢xx exhibit interesting

behaviour. Perhaps the most striking feature in the data is the fact that the Hall

resistivity ⇢xy sits on a plateau for a range of magnetic field, before jumping suddenly

to the next plateau. On these plateau, the resistivity takes the value

⇢xy =
2⇡~
e2

1

⌫
⌫ 2 Z (1.9)

The value of ⌫ is measured to be an integer to an extraordinary accuracy. The quantity

2⇡~/e2 is called the quantum of resistivity (with �e, the electron charge). It is now used

as the standard for measuring of resistivity. Because ⌫ is measured to be an integer to

such remarkable precision – di↵erent devices di↵er only by 3 parts in 1010 – the integer

quantum Hall e↵ect is now used as the basis for measuring the ratio of fundamental

constants 2⇡~/e2 sometimes referred to as the von Klitzing constant2. This means that,

by definition, the ⌫ = 1 state in (1.9) is exactly integer!

1K. v Klitzing, G. Dorda, M. Pepper, “New Method for High-Accuracy Determination of the Fine-
Structure Constant Based on Quantized Hall Resistance”, Phys. Rev. Lett. 45 494.

2Full details of the di↵erent quantum Hall set ups and ways to measure the Hall resistivity can
be found in B. Jeckelmann and B. Jeanneret, “The quantum Hall e↵ect as an electrical resistance
standard”, Rep. Prog. Phys. 64, 1603-1655 (2001).
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The centre of each of these plateaux occurs when the magnetic field takes the value

B =
2⇡~n
⌫e

=
n

⌫
�0

where n is the electron density and �0 = 2⇡~/e is known as the flux quantum. As we

will review in Section 2, these are the values of the magnetic field at which the first

⌫ 2 Z Landau levels are filled. In fact, as we will see, it is very easy to argue that the

Hall resistivity should take value (1.9) when ⌫ Landau levels are filled. The surprise is

that the plateau exists, with the quantisation persisting over a range of magnetic fields.

There is a clue in the experimental data about the origin of the plateaux. Experi-

mental systems are typically dirty, filled with impurities. The technical name for this

is disorder. Usually one wants to remove this dirt to get at the underlying physics.

Yet, in the quantum Hall e↵ect, as you increase the amount of disorder (within reason)

the plateaux become more prominent, not less. In fact, in the absence of disorder, the

plateaux are expected to vanish completely. That sounds odd: how can the presence

of dirt give rise to something as exact and pure as an integer? This is something we

will explain in Section 2.

The longitudinal resistivity ⇢xx also exhibits a surprise. When ⇢xy sits on a plateau,

the longitudinal resistivity vanishes: ⇢xx = 0. It spikes only when ⇢xy jumps to the

next plateau.

Usually we would think of a system with ⇢xx = 0 as a perfect conductor. But

there’s something a little counter-intuitive about vanishing resistivity in the presence

of a magnetic field. To see this, we can return to the simple definition (1.7) which, in

components, reads

�xx =
⇢xx

⇢2
xx

+ ⇢2
xy

and �xy =
�⇢xy

⇢2
xx

+ ⇢2
xy

(1.10)

If ⇢xy = 0 then we get the familiar relation between conductivity and resistivity: �xx =

1/⇢xx. But if ⇢xy 6= 0, then we have the more interesting relation above. In particular,

we see

⇢xx = 0 ) �xx = 0 (if ⇢xy 6= 0)

While we would usually call a system with ⇢xx = 0 a perfect conductor, we would

usually call a system with �xx = 0 a perfect insulator! What’s going on?
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This particular surprise has more to do with the words we use to describe the phe-

nomena than the underlying physics. In particular, it has nothing to do with quantum

mechanics: this behaviour occurs in the Drude model in the limit ⌧ ! 1 where there

is no scattering. In this situation, the current is flowing perpendicular to the applied

electric field, so E · J = 0. But recall that E · J has the interpretation as the work

done in accelerating charges. The fact that this vanishes means that we have a steady

current flowing without doing any work and, correspondingly, without any dissipation.

The fact that �xx = 0 is telling us that no current is flowing in the longitudinal direction

(like an insulator) while the fact that ⇢xx = 0 is telling us that there is no dissipation

of energy (like in a perfect conductor).

1.3.2 Fractional Quantum Hall E↵ect

As the disorder is decreased, the integer Hall plateaux become less prominent. But

other plateaux emerge at fractional values. This was discovered in 1982 by Tsui and

Störmer using samples prepared by Gossard3. The resistivities look like this:

This is the fractional quantum Hall e↵ect. On the plateaux, the Hall resistivity again

takes the simple form (1.9), but now with ⌫ a rational number

⌫ 2 Q

Not all fractions appear. The most prominent plateaux sit at ⌫ = 1/3, 1/5 (not shown

above) and 2/5 but there are many more. The vast majority of these have denominators

which are odd. But there are exceptions: in particular a clear plateaux has been

observed at ⌫ = 5/2.

3D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-Dimensional Magnetotransport in the Extreme
Quantum Limit”, Phys. Rev. Lett. 48 (1982)1559.
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As the disorder is decreased, more and more plateaux emerge. Naively, it seems

plausible that, in the limit of a perfectly clean sample, we would get an infinite number

of plateaux which brings us back to the classical picture of a straight line for ⇢xy! In

fact there are arguments that more subtle physics kicks in, and the plateaux persist

even in the absence of disorder; we will sketch these arguments in Section 3.3.1.

The integer quantum Hall e↵ect can be understood using free electrons. In contrast,

to explain the fractional quantum Hall e↵ect we need to take interactions between elec-

trons into account. This makes the problem much harder and much richer. The basics

of the theory were first laid down by Laughlin4, but the subject has since expanded in

a myriad of di↵erent directions. The 1998 Nobel prize was awarded to Tsui, Störmer

and Laughlin. Sections 3 onwards will be devoted to aspects of the fractional quantum

Hall e↵ect.

Materials

These lectures are unabashedly theoretical. We’ll have nothing to say about how one

actually constructs these phases of matter in the lab. Here I want to merely throw out

a few technical words in an attempt to breed familiarity.

The integer quantum Hall e↵ect was originally discovered in a Si MOSFET (this

stands for “metal-oxide-semiconductor field-e↵ect transistor”). This is a metal-insulator-

semiconductor sandwich, with electrons trapped in the “inversion band” of width⇠ 30Å

between the insulator and semi-conductor. Meanwhile the fractional quantum Hall ef-

fect was discovered in a GaAs-GaAlAs heterostructure. A lot of the subsequent work

was done on this system, and it usually goes by the name GaAs (Gallium Arsenide

if your chemistry is rusty). In both these systems, the density of electrons is around

n ⇠ 1011 � 1012 cm�2.

More recently, both quantum Hall e↵ects have been discovered in graphene, which

is a two dimensional material with relativistic electrons. The physics here is similar in

spirit, but di↵ers in details.

1.4 Landau Levels

It won’t come as a surprise to learn that the physics of the quantum Hall e↵ect in-

volves quantum mechanics. In this section, we will review the quantum mechanics of

free particles moving in a background magnetic field and the resulting phenomenon of

Landau levels. We will look at these Landau levels in a number of di↵erent ways. Each

4R. B. Laughlin, “The Anomalous Quantum Hall E↵ect: An Incompressible Quantum Fluid with
Fractionally Charged Excitations,” Phys. Rev. Lett. 50, 1395 (1983).
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is useful to highlight di↵erent aspects of the physics and they will all be important for

describing the quantum Hall e↵ects.

Throughout this discussion, we will neglect the spin of the electron. This is more or

less appropriate for most physically realised quantum Hall systems. The reason is that

in the presence of a magnetic field B there is a Zeeman splitting between the energies of

the up and down spins given by � = 2µBB where µB = e~/2m is the Bohr magneton.

We will be interested in large magnetic fields where large energies are needed to flip

the spin. This means that, if we restrict to low energies, the electrons act as if they are

e↵ectively spinless. (We will, however, add a caveat to this argument below.)

Before we get to the quantum theory, we first need to briefly review some of the

structure of classical mechanics in the presence of a magnetic field. The Lagrangian for

a particle of charge �e and mass m moving in a background magnetic field B = r⇥A

is

L =
1

2
mẋ2 � eẋ ·A

Under a gauge transformation, A ! A + r↵, the Lagrangian changes by a total

derivative: L ! L � e↵̇. This is enough to ensure that the equations of motion (1.1)

remain unchanged under a gauge transformation.

The canonical momentum arising from this Lagrangian is

p =
@L

@ẋ
= mẋ� eA

This di↵ers from what we called momentum when we were in high school, namely mẋ.

We will refer to mẋ as the mechanical momentum.

We can compute the Hamiltonian

H = ẋ · p� L =
1

2m
(p+ eA)2

If we write the Hamiltonian in terms of the mechanical momentum then it looks the

same as it would in the absence of a magnetic field: H = 1
2mẋ2. This is the statement

that a magnetic field does no work and so doesn’t change the energy of the system.

However, there’s more to the Hamiltonian framework than just the value of H. We

need to remember which variables are canonical. This information is encoded in the

Poisson bracket structure of the theory (or, in fancy language, the symplectic structure
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on phase space) and, in the quantum theory, is transferred onto commutation relations

between operators. The fact that x and p are canonical means that

{xi, pj} = �ij with {xi, xj} = {pi, pj} = 0 (1.11)

Importantly, p is not gauge invariant. This means that the numerical value of p can’t

have any physical meaning since it depends on our choice of gauge. In contrast, the

mechanical momentum mẋ is gauge invariant; it measures what you would physically

call “momentum”. But it doesn’t have canonical Poisson structure. Specifically, the

Poisson bracket of the mechanical momentum with itself is non-vanishing,

{mẋi,mẋj} = {pi + eAi, pj + eAj} = �e

✓
@Aj

@xi
� @Ai

@xj

◆
= �e✏ijkBk (1.12)

Quantisation

Our task is to solve for the spectrum and wavefunctions of the quantum Hamiltonian,

H =
1

2m
(p+ eA)2 (1.13)

Note that we’re not going to put hats on operators in this course; you’ll just have to

remember that they’re quantum operators. Since the particle is restricted to lie in the

plane, we write x = (x, y). Meanwhile, we take the magnetic field to be constant and

perpendicular to this plane, r⇥A = Bẑ. The canonical commutation relations that

follow from (1.11) are

[xi, pj] = i~�ij with [xi, xj] = [pi, pj] = 0

We will first derive the energy spectrum using a purely algebraic method. This is very

similar to the algebraic solution of the harmonic oscillator and has the advantage that

we don’t need to specify a choice of gauge potential A. The disadvantage is that we

don’t get to write down specific wavefunctions in terms of the positions of the electrons.

We will rectify this in Sections 1.4.1 and 1.4.3.

To proceed, we work with the commutation relations for the mechanical momentum.

We’ll give it a new name (because the time derivative in ẋ suggests that we’re working

in the Heisenberg picture which is not necessarily true). We write

⇡ = p+ eA = mẋ (1.14)

Then the commutation relations following from the Poisson bracket (1.12) are

[⇡x, ⇡y] = �ie~B (1.15)
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At this point we introduce new variables. These are raising and lowering operators,

entirely analogous to those that we use in the harmonic oscillator. They are defined by

a =
1p
2e~B

(⇡x � i⇡y) and a† =
1p
2e~B

(⇡x + i⇡y)

The commutation relations for ⇡ then tell us that a and a† obey

[a, a†] = 1

which are precisely the commutation relations obeyed by the raising and lowering oper-

ators of the harmonic oscillator. Written in terms of these operators, the Hamiltonian

(1.13) even takes the same form as that of the harmonic oscillator

H =
1

2m
⇡ · ⇡ = ~!B

✓
a†a+

1

2

◆

where !B = eB/m is the cyclotron frequency that we met previously (1.3).

Now it’s simple to finish things o↵. We can construct the Hilbert space in the same

way as the harmonic oscillator: we first introduce a ground state |0i obeying a|0i = 0

and build the rest of the Hilbert space by acting with a†,

a†|ni =
p
n+ 1|n+ 1i and a|ni =

p
n|n� 1i

The state |ni has energy

En = ~!B

✓
n+

1

2

◆
n 2 N (1.16)

We learn that in the presence of a magnetic field, the energy levels of a particle become

equally spaced, with the gap between each level proportional to the magnetic field B.

The energy levels are called Landau levels. Notice that this is not a small change:

the spectrum looks very very di↵erent from that of a free particle in the absence of a

magnetic field.

There’s something a little disconcerting about the above calculation. We started

with a particle moving in a plane. This has two degrees of freedom. But we ended

up writing this in terms of the harmonic oscillator which has just a single degree of

freedom. It seems like we lost something along the way! And, in fact, we did. The

energy levels (1.16) are the correct spectrum of the theory but, unlike for the harmonic

oscillator, it turns out that each energy level does not have a unique state associated

to it. Instead there is a degeneracy of states. A wild degeneracy. We will return to the

algebraic approach in Section 1.4.3 and demonstrate this degeneracy. But it’s simplest

to first turn to a specific choice of the gauge potential A, which we do shortly.
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A Quick Aside: The role of spin

The splitting between Landau levels is � = ~!B = e~B/m. But, for free electrons,

this precisely coincides with the Zeeman splitting � = gµB B between spins, where

µB = e~/2m is the Bohr magneton and, famously, g = 2 . It looks as if the spin up

particles in Landau level n have exactly the same energy as the spin down particles in

level n + 1. In fact, in real materials, this does not happen. The reason is twofold.

First, the true value of the cyclotron frequency is !B = eB/me↵ , where me↵ is the

e↵ective mass of the electron moving in its environment. Second, the g factor can also

vary due to e↵ects of band structure. For GaAs, the result is that the Zeeman energy

is typically about 70 times smaller than the cyclotron energy. This means that first

the n = 0 spin-up Landau level fills, then the n = 0 spin-down, then the n = 1 spin-up

and so on. For other materials (such as the interface between ZnO and MnZnO) the

relative size of the energies can be flipped and you can fill levels in a di↵erent order.

This results in di↵erent fractional quantum Hall states. In these notes, we will mostly

ignore these issues to do with spin5. (One exception is Section 3.3.4 where we discuss

wavefunctions for particles with spin).

1.4.1 Landau Gauge

To find wavefunctions corresponding to the energy eigenstates, we first need to specify

a gauge potential A such that

r⇥A = Bẑ

There is, of course, not a unique choice. In this section and the next we will describe

two di↵erent choices of A.

In this section, we work with the choice

A = xBŷ (1.17)

This is called Landau gauge. Note that the magnetic field B is invariant under both

translational symmetry and rotational symmetry in the (x, y)-plane. However, the

choice of A is not; it breaks translational symmetry in the x direction (but not in

5It is far from clear that it is acceptable to ignore these issues! For example, in these lectures,
we will treat the ⌫ = 1 quantum Hall state in the framework of non-interacting electrons. But it
seems likely the ⌫ = 1 state in, say, GaAs can only be understood by including interactions between
spins. This story was initiated in the paper by “Skyrmions and the crossover from the integer to
fractional quantum Hall e↵ect at small Zeeman energies” by Sondhi, Karlhede, Kivelson, and Rezayi,
and originally came with the pithy punchline “⌫ = 1 is a fraction too”.
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the y direction) and rotational symmetry. This means that, while the physics will be

invariant under all symmetries, the intermediate calculations will not be manifestly

invariant. This kind of compromise is typical when dealing with magnetic field.

The Hamiltonian (1.13) becomes

H =
1

2m

�
p2
x
+ (py + eBx)2

�

Because we have manifest translational invariance in the y direction, we can look for

energy eigenstates which are also eigenstates of py. These, of course, are just plane

waves in the y direction. This motivates an ansatz using the separation of variables,

 k(x, y) = eikyfk(x) (1.18)

Acting on this wavefunction with the Hamiltonian, we see that the operator py just

gets replaced by its eigenvalue ~k,

H k(x, y) =
1

2m

�
p2
x
+ (~k + eBx)2

�
 x(x, y) ⌘ Hk k(x, y)

But this is now something very familiar: it’s the Hamiltonian for a harmonic oscillator

in the x direction, with the centre displaced from the origin,

Hk =
1

2m
p2
x
+

m!2
B

2
(x+ kl2

B
)2 (1.19)

The frequency of the harmonic oscillator is again the cyloctron frequency !B = eB/m,

and we’ve also introduced a length scale lB. This is a characteristic length scale which

governs any quantum phenomena in a magnetic field. It is called the magnetic length.

lB =

r
~
eB

To give you some sense for this, in a magnetic field of B = 1 Tesla, the magnetic length

for an electron is lB ⇡ 2.5⇥ 10�8 m.

Something rather strange has happened in the Hamiltonian (1.19): the momentum

in the y direction, ~k, has turned into the position of the harmonic oscillator in the x

direction, which is now centred at x = �kl2
B
.
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Just as in the algebraic approach above, we’ve reduced the problem to that of the

harmonic oscillator. The energy eigenvalues are

En = ~!B

✓
n+

1

2

◆

But now we can also write down the explicit wavefunctions. They depend on two

quantum numbers, n 2 N and k 2 R,

 n,k(x, y) ⇠ eikyHn(x+ kl2
B
)e�(x+kl

2
B)2/2l2B (1.20)

with Hn the usual Hermite polynomial wavefunctions of the harmonic oscillator. The ⇠
reflects the fact that we have made no attempt to normalise these these wavefunctions.

The wavefunctions look like strips, extended in the y direction but exponentially

localised around x = �kl2
B
in the x direction. However, the large degeneracy means

that by taking linear combinations of these states, we can cook up wavefunctions that

have pretty much any shape you like. Indeed, in the next section we will choose a

di↵erent A and see very di↵erent profiles for the wavefunctions.

Degeneracy

One advantage of this approach is that we can immediately see the degeneracy in each

Landau level. The wavefunction (1.20) depends on two quantum numbers, n and k but

the energy levels depend only on n. Let’s now see how large this degeneracy is.

To do this, we need to restrict ourselves to a finite region of the (x, y)-plane. We

pick a rectangle with sides of lengths Lx and Ly. We want to know how many states

fit inside this rectangle.

Having a finite size Ly is like putting the system in a box in the y-direction. We

know that the e↵ect of this is to quantise the momentum k in units of 2⇡/Ly.

Having a finite size Lx is somewhat more subtle. The reason is that, as we mentioned

above, the gauge choice (1.17) does not have manifest translational invariance in the

x-direction. This means that our argument will be a little heuristic. Because the

wavefunctions (1.20) are exponentially localised around x = �kl2
B
, for a finite sample

restricted to 0  x  Lx we would expect the allowed k values to range between

�Lx/l2B  k  0. The end result is that the number of states is

N =
Ly

2⇡

Z 0

�Lx/l
2
B

dk =
LxLy

2⇡l2
B

=
eBA

2⇡~ (1.21)

– 20 –



where A = LxLy is the area of the sample. Despite the slight approximation used

above, this turns out to be the exact answer for the number of states on a torus. (One

can do better taking the wavefunctions on a torus to be elliptic theta functions).

The degeneracy (1.21) is very very large. There are
E

k

n=1

n=2

n=3

n=4

n=5

n=0

Figure 4: Landau Levels

a macroscopic number of states in each Landau level. The

resulting spectrum looks like the figure on the right, with

n 2 N labelling the Landau levels and the energy indepen-

dent of k. This degeneracy will be responsible for much of

the interesting physics of the fractional quantum Hall e↵ect

that we will meet in Section 3.

It is common to introduce some new notation to describe

the degeneracy (1.21). We write

N =
AB

�0
with �0 =

2⇡~
e

(1.22)

�0 is called the quantum of flux. It can be thought of as the magnetic flux contained

within the area 2⇡l2
B
. It plays an important role in a number of quantum phenomena

in the presence of magnetic fields.

1.4.2 Turning on an Electric Field

The Landau gauge is useful for working in rectangular geometries. One of the things

that is particularly easy in this gauge is the addition of an electric field E in the x

direction. We can implement this by the addition of an electric potential � = �Ex.

The resulting Hamiltonian is

H =
1

2m

�
p2
x
+ (py + eBx)2

�
+ eEx (1.23)

We can again use the ansatz (1.18). We simply have to complete the square to again

write the Hamiltonian as that of a displaced harmonic oscillator. The states are related

to those that we had previously, but with a shifted argument

 (x, y) =  n,k(x+mE/eB2, y) (1.24)

and the energies are now given by

En,k = ~!B

✓
n+

1

2

◆
� eE

✓
kl2

B
+

eE

m!2
B

◆
+

m

2

E2

B2
(1.25)

– 21 –



This is interesting. The degeneracy in each Landau level
E

k

n=1

n=2

n=3

n=4

n=5

n=0

Figure 5: Landau Levels

in an electric field

has now been lifted. The energy in each level now depends

linearly on k, as shown in the figure.

Because the energy now depends on the momentum, it

means that states now drift in the y direction. The group

velocity is

vy =
1

~
@En,k

@k
= � e

~El2
B
= �E

B
(1.26)

This result is one of the surprising joys of classical physics:

if you put an electric field E perpendicular to a magnetic field B then the cyclotron

orbits of the electron drift. But they don’t drift in the direction of the electric field!

Instead they drift in the direction E ⇥ B. Here we see the quantum version of this

statement.

The fact that the particles are now moving also provides a natural interpretation

of the energy (1.25). A wavepacket with momentum k is now localised at position

x = �kl2
B
� eE/m!2

B
; the middle term above can be thought of as the potential energy

of this wavepacket. The final term can be thought of as the kinetic energy for the

particle in the y direction: 1
2mv2

y
.

1.4.3 Symmetric Gauge

Having understood the basics of Landau levels, we’re now going to do it all again. This

time we’ll work in symmetric gauge, with

A = �1

2
r⇥B = �yB

2
x̂+

xB

2
ŷ (1.27)

This choice of gauge breaks translational symmetry in both the x and the y directions.

However, it does preserve rotational symmetry about the origin. This means that

angular momentum is a good quantum number.

The main reason for studying Landau levels in symmetric gauge is that this is most

convenient language for describing the fractional quantum Hall e↵ect. We shall look

at this in Section 3. However, as we now see, there are also a number of pretty things

that happen in symmetric gauge.

The Algebraic Approach Revisited

At the beginning of this section, we provided a simple algebraic derivation of the energy

spectrum (1.16) of a particle in a magnetic field. But we didn’t provide an algebraic
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derivation of the degeneracies of these Landau levels. Here we rectify this. As we will

see, this derivation only really works in the symmetric gauge.

Recall that the algebraic approach uses the mechanical momenta ⇡ = p+ eA. This

is gauge invariant, but non-canonical. We can use this to build ladder operators a =

(⇡x � i⇡y)/
p
2e~B which obey [a, a†] = 1. In terms of these creation operators, the

Hamiltonian takes the harmonic oscillator form,

H =
1

2m
⇡ · ⇡ = ~!B

✓
a†a+

1

2

◆

To see the degeneracy in this language, we start by introducing yet another kind of

“momentum”,

⇡̃ = p� eA (1.28)

This di↵ers from the mechanical momentum (1.14) by the minus sign. This means that,

in contrast to ⇡, this new momentum is not gauge invariant. We should be careful when

interpreting the value of ⇡̃ since it can change depending on choice of gauge potential

A.

The commutators of this new momenta di↵er from (1.15) only by a minus sign

[⇡̃x, ⇡̃y] = ie~B (1.29)

However, the lack of gauge invariance shows up when we take the commutators of ⇡

and ⇡̃. We find

[⇡x, ⇡̃x] = 2ie~@Ax

@x
, [⇡y, ⇡̃y] = 2ie~@Ay

@y
, [⇡x, ⇡̃y] = [⇡y, ⇡̃x] = ie~

✓
@Ax

@y
+
@Ay

@x

◆

This is unfortunate. It means that we cannot, in general, simultaneously diagonalise

⇡̃ and the Hamiltonian H which, in turn, means that we can’t use ⇡̃ to tell us about

other quantum numbers in the problem.

There is, however, a happy exception to this. In symmetric gauge (1.27) all these

commutators vanish and we have

[⇡i, ⇡̃j] = 0

We can now define a second pair of raising and lowering operators,

b =
1p
2e~B

(⇡̃x + i⇡̃y) and b† =
1p
2e~B

(⇡̃x � i⇡̃y)
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These too obey

[b, b†] = 1

It is this second pair of creation operators that provide the degeneracy of the Landau

levels. We define the ground state |0, 0i to be annihilated by both lowering operators,

so that a|0, 0i = b|0, 0i = 0. Then the general state in the Hilbert space is |n,mi
defined by

|n,mi = a†nb†mp
n!m!

|0, 0i

The energy of this state is given by the usual Landau level expression (1.16); it depends

on n but not on m.

The Lowest Landau Level

Let’s now construct the wavefunctions in the symmetric gauge. We’re going to focus

attention on the lowest Landau level, n = 0, since this will be of primary interest when

we come to discuss the fractional quantum Hall e↵ect. The states in the lowest Landau

level are annihilated by a, meaning a|0,mi = 0 The trick is to convert this into a

di↵erential equation. The lowering operator is

a =
1p
2e~B

(⇡x � i⇡y)

=
1p
2e~B

(px � ipy + e(Ax � iAy))

=
1p
2e~B

✓
�i~

✓
@

@x
� i

@

@y

◆
+

eB

2
(�y � ix)

◆

At this stage, it’s useful to work in complex coordinates on the plane. We introduce

z = x� iy and z̄ = x+ iy

Note that this is the opposite to how we would normally define these variables! It’s

annoying but it’s because we want the wavefunctions below to be holomorphic rather

than anti-holomorphic. (An alternative would be to work with magnetic fields B < 0

in which case we get to use the usual definition of holomorphic. However, we’ll stick

with our choice above throughout these lectures). We also introduce the corresponding

holomorphic and anti-holomorphic derivatives

@ =
1

2

✓
@

@x
+ i

@

@y

◆
and @̄ =

1

2

✓
@

@x
� i

@

@y

◆
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which obey @z = @̄z̄ = 1 and @z̄ = @̄z = 0. In terms of these holomorphic coordinates,

a takes the simple form

a = �i
p
2

✓
lB@̄ +

z

4lB

◆

and, correspondingly,

a† = �i
p
2

✓
lB@ � z̄

4lB

◆

which we’ve chosen to write in terms of the magnetic length lB =
p
~/eB. The lowest

Landau level wavefunctions  LLL(z, z̄) are then those which are annihilated by this

di↵erential operator. But this is easily solved: they are

 LLL(z, z̄) = f(z) e�|z|2/4l2B

for any holomorphic function f(z).

We can construct the specific states |0,mi in the lowest Landau level by similarly

writing b and b† as di↵erential operators. We find

b = �i
p
2

✓
lB@ +

z̄

4lB

◆
and b† = �i

p
2

✓
lB@̄ � z

4lB

◆

The lowest state  LLL,m=0 is annihilated by both a and b. There is a unique such state

given by

 LLL,m=0 ⇠ e�|z|2/4l2B

We can now construct the higher states by acting with b†. Each time we do this, we

pull down a factor of z/2lB. This gives us a basis of lowest Landau level wavefunctions

in terms of holomorphic monomials

 LLL,m ⇠
✓

z

lB

◆m

e�|z|2/4l2B (1.30)

This particular basis of states has another advantage: these are eigenstates of angular

momentum. To see this, we define angular momentum operator,

J = i~
✓
x
@

@y
� y

@

@x

◆
= ~(z@ � z̄@̄) (1.31)

Then, acting on these lowest Landau level states we have

J LLL,m = ~m LLL,m
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The wavefunctions (1.30) provide a basis for the lowest Landau level. But it is a simple

matter to extend this to write down wavefunctions for all high Landau levels; we simply

need to act with the raising operator a† = �i
p
2(lB@� z̄/4lB). However, we won’t have

any need for the explicit forms of these higher Landau level wavefunctions in what

follows.

Degeneracy Revisited

In symmetric gauge, the profiles of the wavefunctions (1.30) form concentric rings

around the origin. The higher the angular momentum m, the further out the ring.

This, of course, is very di↵erent from the strip-like wavefunctions that we saw in Landau

gauge (1.20). You shouldn’t read too much into this other than the fact that the profile

of the wavefunctions is not telling us anything physical as it is not gauge invariant.

However, it’s worth seeing how we can see the degeneracy of states in symmetric

gauge. The wavefunction with angular momentum m is peaked on a ring of radius

r =
p
2mlB. This means that in a disc shaped region of area A = ⇡R2, the number of

states is roughly (the integer part of)

N = R2/2l2
B
= A/2⇡l2

B
=

eBA

2⇡~
which agrees with our earlier result (1.21).

There is yet another way of seeing this degeneracy that makes contact with the

classical physics. In Section 1.2, we reviewed the classical motion of particles in a

magnetic field. They go in circles. The most general solution to the classical equations

of motion is given by (1.2),

x(t) = X �R sin(!Bt+ �) and y(t) = Y +R cos(!Bt+ �) (1.32)

Let’s try to tally this with our understanding of the exact quantum states in terms of

Landau levels. To do this, we’ll think about the coordinates labelling the centre of the

orbit (X, Y ) as quantum operators. We can rearrange (1.32) to give

X = x(t) +R sin(!Bt+ �) = x� ẏ

!B

= x� ⇡y
m!B

Y = y(t)�R cos(!Bt+ �) = y +
ẋ

!B

= y +
⇡x

m!B

(1.33)

This feels like something of a slight of hand, but the end result is what we wanted: we

have the centre of mass coordinates in terms of familiar quantum operators. Indeed,

one can check that under time evolution, we have

i~Ẋ = [X,H] = 0 , i~Ẏ = [Y,H] = 0 (1.34)
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confirming the fact that these are constants of motion.

The definition of the centre of the orbit (X, Y ) given above holds in any gauge. If

we now return to symmetric gauge we can replace the x and y coordinates appearing

here with the gauge potential (1.27). We end up with

X =
1

eB
(2eAy � ⇡y) = � ⇡̃y

eB
and Y =

1

eB
(�2eAx + ⇡x) =

⇡̃x
eB

where, finally, we’ve used the expression (1.28) for the “alternative momentum” ⇡̃. We

see that, in symmetric gauge, the alternative momentum has the nice interpretation of

the centre of the orbit! The commutation relation (1.29) then tells us that the positions

of the orbit in the (X, Y ) plane fail to commute with each other,

[X, Y ] = il2
B

(1.35)

The lack of commutivity is precisely the magnetic length l2
B
= ~/eB. The Heisenberg

uncertainty principle now means that we can’t localise states in both the X coordinate

and the Y coordinate: we have to find a compromise. In general, the uncertainty is

given by

�X�Y =
l2
B

2

A naive (Bohr-Sommerfeld) semi-classical count of the states then comes from taking

the plane and parcelling it up into regions of area 2⇡l2
B
. The number of states in an

area A is then

N =
A

�X�Y
=

A

2⇡l2
B

=
eBA

2⇡~
which is the counting that we’ve already seen above.

1.5 Berry Phase

There is one last topic that we need to review before we can start the story of the

quantum Hall e↵ect. This is the subject of Berry phase or, more precisely, the Berry

holonomy6. This is not a topic which is relevant just in quantum Hall physics: it has

applications in many areas of quantum mechanics and will arise over and over again

in di↵erent guises in these lectures. Moreover, it is a topic which perhaps captures

the spirit of the quantum Hall e↵ect better than any other, for the Berry phase is

the simplest demonstration of how geometry and topology can emerge from quantum

mechanics. As we will see in these lectures, this is the heart of the quantum Hall e↵ect.
6An excellent review of this subject can be found in the book Geometric Phases in Physics by

Wilczek and Shapere
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Figure 6: The degrees of freedom x. Figure 7: The parameters �.

1.5.1 Abelian Berry Phase and Berry Connection

We’ll describe the Berry phase arising for a general Hamiltonian which we write as

H(xa;�i)

As we’ve illustrated, the Hamiltonian depends on two di↵erent kinds of variables. The

xa are the degrees of freedom of the system. These are the things that evolve dynam-

ically, the things that we want to solve for in any problem. They are typically things

like the positions or spins of particles.

In contrast, the other variables �i are the parameters of the Hamiltonian. They are

fixed, with their values determined by some external apparatus that probably involves

knobs and dials and flashing lights and things as shown above. We don’t usually exhibit

the dependence of H on these variables7.

Here’s the game. We pick some values for the parameters � and place the system

in a specific energy eigenstate | i which, for simplicity, we will take to be the ground

state. We assume this ground state is unique (an assumption which we will later relax

in Section 1.5.4). Now we very slowly vary the parameters �. The Hamiltonian changes

so, of course, the ground state also changes; it is | (�(t))i.

There is a theorem in quantum mechanics called the adiabatic theorem. This states

that if we place a system in a non-degenerate energy eigenstate and vary parameters

su�ciently slowly, then the system will cling to that energy eigenstate. It won’t be

excited to any higher or lower states.

7One exception is the classical subject of adiabatic invariants, where we also think about how H

depends on parameters �. See section 4.6 of the notes on Classical Dynamics.
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There is one caveat to the adiabatic theorem. How slow you have to be in changing

the parameters depends on the energy gap from the state you’re in to the nearest

other state. This means that if you get level crossing, where another state becomes

degenerate with the one you’re in, then all bets are o↵. When the states separate

again, there’s no simple way to tell which linear combinations of the state you now sit

in. However, level crossings are rare in quantum mechanics. In general, you have to

tune three parameters to specific values in order to get two states to have the same

energy. This follows by thinking about the a general Hermitian 2⇥ 2 matrix which can

be viewed as the Hamiltonian for the two states of interest. The general Hermitian 2⇥2

matrix depends on 4 parameters, but its eigenvalues only coincide if it is proportional

to the identity matrix. This means that three of those parameters have to be set to

zero.

The idea of the Berry phase arises in the following situation: we vary the parameters

� but, ultimately, we put them back to their starting values. This means that we trace

out a closed path in the space of parameters. We will assume that this path did not go

through a point with level crossing. The question is: what state are we now in?

The adiabatic theorem tells us most of the answer. If we started in the ground state,

we also end up in the ground state. The only thing left uncertain is the phase of this

new state

| i ! ei�| i

We often think of the overall phase of a wavefunction as being unphysical. But that’s

not the case here because this is a phase di↵erence. For example, we could have started

with two states and taken only one of them on this journey while leaving the other

unchanged. We could then interfere these two states and the phase ei� would have

physical consequence.

So what is the phase ei�? There are two contributions. The first is simply the

dynamical phase e�iEt/~ that is there for any energy eigenstate, even if the parameters

don’t change. But there is also another, less obvious contribution to the phase. This

is the Berry phase.

Computing the Berry Phase

The wavefunction of the system evolves through the time-dependent Schrödinger equa-

tion

i~@| i
@t

= H(�(t))| i (1.36)
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For every choice of the parameters �, we introduce a ground state with some fixed

choice of phase. We call these reference states |n(�)i. There is no canonical way to do

this; we just make an arbitrary choice. We’ll soon see how this choice a↵ects the final

answer. The adiabatic theorem means that the ground state | (t)i obeying (1.36) can

be written as

| (t)i = U(t) |n(�(t))i (1.37)

where U(t) is some time dependent phase. If we pick the |n(�(t = 0))i = | (t = 0)i
then we have U(t = 0) = 1. Our task is then to determine U(t) after we’ve taken �

around the closed path and back to where we started.

There’s always the dynamical contribution to the phase, given by e�i
R
dtE0(t)/~ where

E0 is the ground state energy. This is not what’s interesting here and we will ignore it

simply by setting E0(t) = 0. However, there is an extra contribution. This arises by

plugging the adiabatic ansatz into (1.36), and taking the overlap with h |. We have

h | ̇i = U̇U? + hn|ṅi = 0

where we’ve used the fact that, instantaneously, H(�)|n(�)i = 0 to get zero on the

right-hand side. (Note: this calculation is actually a little more subtle than it looks.

To do a better job we would have to look more closely at corrections to the adiabatic

evolution (1.37)). This gives us an expression for the time dependence of the phase U ,

U?U̇ = �hn|ṅi = �hn| @
@�i

|ni �̇i (1.38)

It is useful to define the Berry connection

Ai(�) = �ihn| @
@�i

|ni (1.39)

so that (1.38) reads

U̇ = �iAi �̇
iU

But this is easily solved. We have

U(t) = exp

✓
�i

Z
Ai(�) �̇

i dt

◆

Our goal is to compute the phase U(t) after we’ve taken a closed path C in parameter

space. This is simply

ei� = exp

✓
�i

I

C

Ai(�) d�
i

◆
(1.40)

This is the Berry phase. Note that it doesn’t depend on the time taken to change the

parameters. It does, however, depend on the path taken through parameter space.
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The Berry Connection

Above we introduced the idea of the Berry connection (1.39). This is an example of a

kind of object that you’ve seen before: it is like the gauge potential in electromagnetism!

Let’s explore this analogy a little further.

In the relativistic form of electromagnetism, we have a gauge potential Aµ(x) where

µ = 0, 1, 2, 3 and x are coordinates over Minkowski spacetime. There is a redundancy

in the description of the gauge potential: all physics remains invariant under the gauge

transformation

Aµ ! A0
µ
= Aµ + @µ! (1.41)

for any function !(x). In our course on electromagnetism, we were taught that if we

want to extract the physical information contained in Aµ, we should compute the field

strength

Fµ⌫ =
@A⌫

@xµ
� @Aµ

@x⌫

This contains the electric and magnetic fields. It is invariant under gauge transforma-

tions.

Now let’s compare this to the Berry connection Ai(�). Of course, this no longer

depends on the coordinates of Minkowski space; instead it depends on the parameters

�i. The number of these parameters is arbitrary; let’s suppose that we have d of them.

This means that i = 1, . . . , d. In the language of di↵erential geometry Ai(�) is said to

be a one-form over the space of parameters, while Ai(x) is said to be a one-form over

Minkowski space.

There is also a redundancy in the information contained in the Berry connection

Ai(�). This follows from the arbitrary choice we made in fixing the phase of the

reference states |n(�)i. We could just as happily have chosen a di↵erent set of reference

states which di↵er by a phase. Moreover, we could pick a di↵erent phase for every choice

of parameters �,

|n0(�)i = ei!(�) |n(�)i

for any function !(�). If we compute the Berry connection arising from this new choice,

we have

A0
i
= �ihn0| @

@�i
|n0i = Ai +

@!

@�i
(1.42)

This takes the same form as the gauge transformation (1.41).
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Following the analogy with electromagnetism, we might expect that the physical

information in the Berry connection can be found in the gauge invariant field strength

which, mathematically, is known as the curvature of the connection,

Fij(�) =
@Aj

@�i
� @Ai

@�j

It’s certainly true that F contains some physical information about our quantum system

and we’ll have use of this in later sections. But it’s not the only gauge invariant quantity

of interest. In the present context, the most natural thing to compute is the Berry phase

(1.40). Importantly, this too is independent of the arbitrariness arising from the gauge

transformation (1.42). This is because
H
@i! d�i = 0. In fact, it’s possible to write

the Berry phase in terms of the field strength using the higher-dimensional version of

Stokes’ theorem

ei� = exp

✓
�i

I

C

Ai(�) d�
i

◆
= exp

✓
�i

Z

S

Fij dS
ij

◆
(1.43)

where S is a two-dimensional surface in the parameter space bounded by the path C.

1.5.2 An Example: A Spin in a Magnetic Field

The standard example of the Berry phase is very simple. It is a spin, with a Hilbert

space consisting of just two states. The spin is placed in a magnetic field ~B, with

Hamiltonian which we take to be

H = ~B · ~� � B

with ~� the triplet of Pauli matrices and B = | ~B|. This Hamiltonian has two eigenvalues:

0 and �2B. We denote the ground state as |# i and the excited state as |" i,

H|# i = �2B and H|" i = 0|" i

Note that these two states are non-degenerate as long as ~B 6= 0.

We are going to treat the magnetic field as the parameters, so that �i ⌘ ~B in this

example. Be warned: this means that things are about to get confusing because we’ll

be talking about Berry connections Ai and curvatures Fij over the space of magnetic

fields. (As opposed to electromagnetism where we talk about magnetic fields over

actual space).

– 32 –



The specific form of | " i and | # i will depend on the orientation of ~B. To provide

more explicit forms for these states, we write the magnetic field ~B in spherical polar

coordinates

~B =

0

BB@

B sin ✓ cos�

B sin ✓ sin�

B cos ✓

1

CCA

with ✓ 2 [0, ⇡] and � 2 [0, 2⇡) The Hamiltonian then reads

H = �B

 
cos ✓ � 1 e�i� sin ✓

e+i� sin ✓ � cos ✓ � 1

!

In these coordinates, two normalised eigenstates are given by

|# i =
 
e�i� sin ✓/2

� cos ✓/2

!
and |" i =

 
e�i� cos ✓/2

sin ✓/2

!

These states play the role of our |n(�)i that we had in our general derivation. Note,

however, that they are not well defined for all values of ~B. When we have ✓ = ⇡, the

angular coordinate � is not well defined. This means that | # i and | " i don’t have

well defined phases. This kind of behaviour is typical of systems with non-trivial Berry

phase.

We can easily compute the Berry phase arising from these states (staying away from

✓ = ⇡ to be on the safe side). We have

A✓ = �ih# | @
@✓

|# i = 0 and A� = �ih# | @
@�

|# i = � sin2

✓
✓

2

◆

The resulting Berry curvature in polar coordinates is

F✓� =
@A�

@✓
� @A✓

@�
= �1

2
sin ✓

This is simpler if we translate it back to cartesian coordinates where the rotational

symmetry is more manifest. It becomes

Fij( ~B) = �✏ijk
Bk

2| ~B|3

But this is interesting. It is a magnetic monopole! Of course, it’s not a real magnetic

monopole of electromagnetism: those are forbidden by the Maxwell equation. Instead

it is, rather confusingly, a magnetic monopole in the space of magnetic fields.
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Figure 8: Integrating over S... Figure 9: ...or over S0.

Note that the magnetic monopole sits at the point ~B = 0 where the two energy levels

coincide. Here, the field strength is singular. This is the point where we can no longer

trust the Berry phase computation. Nonetheless, it is the presence of this level crossing

and the resulting singularity which is dominating the physics of the Berry phase.

The magnetic monopole has charge g = �1/2, meaning that the integral of the Berry

curvature over any two-sphere S2 which surrounds the origin is
Z

S2

Fij dS
ij = 4⇡g = �2⇡ (1.44)

Using this, we can easily compute the Berry phase for any path C that we choose to

take in the space of magnetic fields ~B. We only insist that the path C avoids the origin.

Suppose that the surface S, bounded by C, makes a solid angle ⌦. Then, using the

form (1.43) of the Berry phase, we have

ei� = exp

✓
�i

Z

S

Fij dS
ij

◆
= exp

✓
i⌦

2

◆
(1.45)

Note, however, that there is an ambiguity in this computation. We could choose to

form S as shown in the left hand figure. But we could equally well choose the surface

S 0 to go around the back of the sphere, as shown in the right-hand figure. In this case,

the solid angle formed by S 0 is ⌦0 = 4⇡�⌦. Computing the Berry phase using S 0 gives

ei�
0
= exp

✓
�i

Z

S0
Fij dS

ij

◆
= exp

✓
�i(4⇡ � ⌦)

2

◆
= ei� (1.46)

where the di↵erence in sign in the second equality comes because the surface now has

opposite orientation. So, happily, the two computations agree. Note, however, that

this agreement requires that the charge of the monopole in (1.44) is 2g 2 Z. In the

context of electromagnetism, this was Dirac’s original argument for the quantisation of
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monopole charge. This quantisation extends to a general Berry curvature Fij with an

arbitrary number of parameters: the integral of the curvature over any closed surface

must be quantised in units of 2⇡,

Z
Fij dS

ij = 2⇡C (1.47)

The integer C 2 Z is called the Chern number.

1.5.3 Particles Moving Around a Flux Tube

In our course on Electromagentism, we learned that the gauge potential Aµ is unphys-

ical: the physical quantities that a↵ect the motion of a particle are the electric and

magnetic fields. This statement is certainly true classically. Quantum mechanically, it

requires some caveats. This is the subject of the Aharonov-Bohm e↵ect. As we will

show, aspects of the Aharonov-Bohm e↵ect can be viewed as a special case of the Berry

phase.

The starting observation of the Aharonov-Bohm e↵ect is that the gauge potential ~A

appears in the Hamiltonian rather than the magnetic field ~B. Of course, the Hamil-

tonian is invariant under gauge transformations so there’s nothing wrong with this.

Nonetheless, it does open up the possibility that the physics of a quantum particle can

be sensitive to ~A in more subtle ways than a classical particle.

Spectral Flow

To see how the gauge potential ~A can a↵ect the physics,

B=0

B

Figure 10: A par-

ticle moving around a

solenoid.

consider the set-up shown in the figure. We have a solenoid

of area A, carrying magnetic field ~B and therefore magnetic

flux � = BA. Outside the solenoid the magnetic field is

zero. However, the vector potential is not. This follows from

Stokes’ theorem which tells us that the line integral outside

the solenoid is given by

I
~A · d~r =

Z
~B · d~S = �

This is simply solved in cylindrical polar coordinates by

A� =
�

2⇡r
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Figure 11: The spectral flow for the energy states of a particle moving around a solenoid.

Now consider a charged quantum particle restricted to lie in a ring of radius r outside the

solenoid. The only dynamical degree of freedom is the angular coordinate � 2 [0, 2⇡).

The Hamiltonian is

H =
1

2m
(p� + eA�)

2 =
1

2mr2

✓
�i~ @

@�
+

e�

2⇡

◆2

We’d like to see how the presence of this solenoid a↵ects the particle. The energy

eigenstates are simply

 =
1p
2⇡r

e�in� n 2 Z

where the requirement that  is single valued around the circle means that we must

take n 2 Z. Plugging this into the time independent Schrödinger equation H = E ,

we find the spectrum

E =
1

2mr2

✓
~n� e�

2⇡

◆2

=
~2

2mr2

✓
n� �

�0

◆2

n 2 Z

Note that if � is an integer multiple of the quantum of flux �0 = 2⇡~/e, then the

spectrum is una↵ected by the solenoid. But if the flux in the solenoid is not an integral

multiple of �0 — and there is no reason that it should be — then the spectrum gets

shifted. We see that the energy of the particle knows about the flux � even though the

particle never goes near the region with magnetic field. The resulting energy spectrum

is shown in Figure 11.

Suppose now that we turn o↵ the solenoid and place the particle in the n = 0 ground

state. If we increase the flux then, by the time we have reached � = �0, the ground

state has transformed into the first excited state. Similarly, each energy eigenlevel n is

shifted to the next level, n + 1. (It is tempting to invoke the adiabatic theorem here

but, because of level crossing at � = �0/2 it is not valid.) This is an example of a
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phenomenon is called spectral flow: under a change of parameter — in this case � —

the spectrum of the Hamiltonian changes, or “flows”. As we change increase the flux

by one unit �0 the spectrum returns to itself, but individual states have morphed into

each other. We’ll see related examples of spectral flow applied to the integer quantum

Hall e↵ect in Section 2.2.2.

There are actually more lessons lurking in this simple quantum mechanical system.

You can read about them in Section 3.6.1 of the lectures on Gauge Theory.

The Aharonov-Bohm E↵ect

The situation described above smells like the Berry phase story. We can cook up a very

similar situation that demonstrates the relationship more clearly. Consider a set-up like

the solenoid where the magnetic field is localised to some region of space. We again

consider a particle which sits outside this region. However, this time we restrict the

particle to lie in a small box. There can be some interesting physics going on inside the

box; we’ll capture this by including a potential V (~x) in the Hamiltonian and, in order

to trap the particle, we take this potential to be infinite outside the box.

The fact that the box is “small” means that the gauge potential is approximately

constant inside the box. If we place the centre of the box at position ~x = ~X, then the

Hamiltonian of the system is then

H =
1

2m
(�i~r+ e ~A(~x))2 + V (~x� ~X) (1.48)

We start by placing the centre of the box at position ~x = ~X0 where we’ll take the gauge

potential to vanish: ~A( ~X0) = 0. (We can always do a gauge transformation to ensure

that ~A vanishes at any point of our choosing). Now the Hamiltonian is of the kind that

we solve in our first course on quantum mechanics. We will take the ground state to

be

 (~x� ~X0)

which is localised around ~x = ~X0 as it should be. Note that we have made a choice of

phase in specifying this wavefunction. Now we slowly move the box in some path in

space. In doing so, the gauge potential ~A(~x = ~X) experienced by the particle changes.

It’s simple to check that the Schrödinger equation for the Hamiltonian (1.48) is solved

by the state

exp

✓
� ie

~

Z
~x

~x0= ~X0

~A(~x 0) · d~x 0
◆
 (~x� ~X) ⇡ exp

✓
� ie

~

Z
~x=X

~x0= ~X0

~A(~x 0) · d~x 0
◆
 (~x� ~X)
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This works because when the r derivative hits the exponent on the left-hand side, it

brings down a factor which cancels the e ~A term in the Hamiltonian. On the right-

hand side, we’ve used the fact that the gauge potential is essentially constant over the

box, where the wavefunction has non-vanishing support. We now play our standard

Berry game: we take the box in a loop C and bring it back to where we started. The

wavefunction comes back to

 (~x� ~X0) ! ei� (~x� ~X0) with ei� = exp

✓
� ie

~

I

C

~A(~x) · d~x
◆

(1.49)

Comparing this to our general expression for the Berry phase, we see that in this

particular context the Berry connection is actually identified with the electromagnetic

potential,

~A( ~X) =
e

~
~A(~x = ~X)

The electron has charge q = �e but, in what follows, we’ll have need to talk about

particles with di↵erent charges. In general, if a particle of charge q goes around a region

containing flux �, it will pick up an Aharonov-Bohm phase

eiq�/~

This simple fact will play an important role in our discussion of the fractional quantum

Hall e↵ect.

There is an experiment which exhibits the Berry phase in the Aharonov-Bohm e↵ect.

It is a variant on the famous double slit experiment. As usual, the particle can go

through one of two slits. As usual, the wavefunction splits so the particle, in essence,

travels through both. Except now, we hide a solenoid carrying magnetic flux � behind

the wall. The wavefunction of the particle is prohibited from entering the region of the

solenoid, so the particle never experiences the magnetic field ~B. Nonetheless, as we have

seen, the presence of the solenoid induces a phase di↵erent ei� between particles that

take the upper slit and those that take the lower slit. This phase di↵erence manifests

itself as a change to the interference pattern seen on the screen. Note that when � is an

integer multiple of �0, the interference pattern remains unchanged; it is only sensitive

to the fractional part of �/�0.

1.5.4 Non-Abelian Berry Connection

The Berry phase described above assumed that the ground state was unique. We now

describe an important generalisation to the situation where the ground state is N -fold

degenerate and remains so for all values of the parameter �.
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We should note from the outset that there’s something rather special about this

situation. If a Hamiltonian has an N -fold degeneracy then a generic perturbation will

break this degeneracy. But here we want to change the Hamiltonian without breaking

the degeneracy; for this to happen there usually has to be some symmetry protecting

the states. We’ll see a number of examples of how this can happen in these lectures.

We now play the same game that we saw in the Abelian case. We place the system

in one of the N degenerate ground states, vary the parameters in a closed path, and

ask: what state does the system return to?

This time the adiabatic theorem tells us only that the system clings to the particular

energy eigenspace as the parameters are varied. But, now this eigenspace has N -fold

degeneracy and the adiabatic theorem does not restrict how the state moves within

this subspace. This means that, by the time we return the parameters to their original

values, the state could lie anywhere within this N -dimensional eigenspace. We want

to know how it’s moved. This is no longer given just by a phase; instead we want to

compute a unitary matrix U ⇢ U(N).

We can compute this by following the same steps that we took for the Abelian Berry

phase. To remove the boring, dynamical phase e�iEt, we again assume that the ground

state energy is E = 0 for all values of �. The time dependent Schrödinger equation is

again

i
@| i
@t

= H(�(t))| i = 0 (1.50)

This time, for every choice of parameters �, we introduce an N -dimensional basis of

ground states

|na(�)i a = 1, . . . , N

As in the non-degenerate case, there is no canonical way to do this. We could just as

happily have picked any other choice of basis for each value of �. We just pick one. We

now think about how this basis evolves through the Schrödinger equation (1.50). We

write

| a(t)i = Uab(t) |nb(�(t))i

with Uab the components of a time-dependent unitary matrix U(t) ⇢ U(N). Plugging

this ansatz into (1.50), we have

| ̇ai = U̇ab|nbi+ Uab|ṅbi = 0
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which, rearranging, now gives

U †
bc
U̇ca = �hna|ṅbi = �hna|

@

@�i
|nbi �̇i (1.51)

We again define a connection. This time it is a non-Abelian Berry connection,

(Ai)ba = �ihna|
@

@�i
|nbi (1.52)

We should think of Ai as an N ⇥N matrix. It lives in the Lie algebra u(N) and should

be thought of as a U(N) gauge connection over the space of parameters.

The gauge connection Ai is the same kind of object that forms the building block

of Yang-Mills theory. Just as in Yang-Mills theory, it su↵ers from an ambiguity in its

definition. Here, the ambiguity arises from the arbitrary choice of basis vectors |na(�)i
for each value of the parameters �. We could have quite happily picked a di↵erent basis

at each point,

|n0
a
(�)i = ⌦ab(�) |nb(�)i

where ⌦(�) ⇢ U(N) is a unitary rotation of the basis elements. As the notation

suggests, there is nothing to stop us picking di↵erent rotations for di↵erent values of

the parameters so ⌦ can depend on �. If we compute the Berry connection (1.52) in

this new basis, we find

A0
i
= ⌦Ai⌦

† � i
@⌦

@�i
⌦† (1.53)

This is precisely the gauge transformation of a U(N) connection in Yang-Mills theory.

Similarly, we can also construct the curvature or field strength over the parameter space,

Fij =
@Aj

@�i
� @Ai

@�j
� i[Ai,Aj]

This too lies in the u(N) Lie algebra. In contrast to the Abelian case, the field strength

is not gauge invariant. It transforms as

F 0
ij
= ⌦Fij⌦

†

Gauge invariant combinations of the field strength can be formed by taking the trace

over the matrix indices. For example, trFij, which tells us only about the U(1) ⇢ U(N)

part of the Berry connection, or traces of higher powers such as trFijFkl. However,

the most important gauge invariant quantity is the unitary matrix U determined by

the di↵erential equation (1.51).
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The solution to (1.51) is somewhat more involved than in the Abelian case because

of ordering ambiguities of the matrix Ai in the exponential: the matrix at one point

of parameter space, Ai(�), does not necessarily commute with the matrix at another

point Ai(�0). However, this is a problem that we’ve met in other areas of physics8. The

solution is

U = P exp

✓
�i

I
Ai d�

i

◆

Here Ai ⇢ u(N) is an N ⇥ N matrix. The notation P stands for “path ordering”. It

means that we Taylor expand the exponential and then order the resulting products so

that matrices Ai(�) which appear later in the path are placed to the right. The result

is the unitary matrix U ⇢ U(N) which tells us how the states transform. This unitary

matrix is called the Berry holonomy.

The non-Abelian Berry holonomy does not play a role in the simplest quantum Hall

systems. But it will be important in more subtle quantum Hall states which, for obvious

reasons, are usually called non-Abelian quantum Hall states. These will be discussed in

Section 49.

8See, for example, the discussion of Dyson’s formula in Section 3.1 of the Quantum Field Theory
notes, or the discussion of rotations in Sections 3.1 and 3.7 of the Classical Dynamics lecture notes

9There are also examples of non-Abelian Berry holonomies unrelated to quantum Hall physics. I
have a soft spot for a simple quantum mechanics system whose Berry phase is the BPS ’t Hooft-
Polyakov monopole. This was described in J. Sonner and D. Tong, “Scheme for Building a ’t Hooft-
Polyakov Monopole”, Phys. Rev. Lett 102, 191801 (2009), arXiv:0809.3783.
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