
6. Edge Modes

If a quantum Hall fluid is confined to a finite region, there will be gapless modes that

live on the edge. We’ve already met these in Section 2.1 for the integer quantum Hall

states where we noticed that they are chiral: they propagate only in one direction. This

is a key property shared by all edge modes.

In this section we’ll describe the edge modes for the fractional quantum Hall states.

At first glance it may seem like this is quite an esoteric part of the story. However,

there’s a surprise in store. The edge modes know much more about the quantum Hall

states than you might naively imagine. Not only do they o↵er the best characterisation

of these states, but they also provide a link between the Chern-Simons approach and

the microscopic wavefunctions.

6.1 Laughlin States

We start by looking at edge modes in the ⌫ = 1/m Laughlin states. The basic idea is

that the ground state forms an incompressible disc. The low-energy excitations of this

state are deformations which change its shape, but not its area. These travel as waves

around the edge of the disc, only in one direction. In what follows, we will see this

picture emerging from several di↵erent points of view.

6.1.1 The View from the Wavefunction

Let’s first return to the description of the quantum Hall state in terms of the microscopic

wavefunction. Recall that when we were discussing the toy Hamiltonians in Section

3.1.3, the Hamiltonian Htoy that we cooked up in (3.15) had the property that the zero

energy ground states are

 (zi) = s(zi)
Y

i<j

(zi � zj)
m e�

P
i |zi|2/4l2B (6.1)

for any symmetric polynomial s(zi). The Laughlin wavefunction with s(zi) = 1 has the

property that it is the most compact of these states. Equivalently, it is the state with

the lowest angular momentum. We can pick this out as the unique ground state by

adding a placing the system in a confining potential which we take to be the angular

momentum operator J ,

Vconfining = !J

The Laughlin state, with s(zi) = 1, then has ground state energy

E0 =
!

2
mN(N � 1)
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where N is the number of electrons. What about the excited states? We can write

down a basis of symmetric polynomials

sn(zi) =
X

i

zn
i

The most general state (6.1) has polynomial

s(zi) =
1X

n=1

sn(zi)
dn

which has energy

E = E0 + !
1X

n=1

ndn (6.2)

We see that each polynomial sn contributes an energy

En = !n

We’re going to give an interpretation for this. Here we’ll simply pull the interpretation

out of thin air, but we’ll spend the next couple of sections providing a more direct

derivation. The idea is to interpret this as the Kaluza-Klein spectrum as a gapless

d = 1 + 1 scalar field. We’ll think of this scalar as living on the edge of the quantum

Hall droplet. Recall that the Laughlin state has area A = 2⇡mNl2
B
which means that

the boundary is a circle of circumference L = 2⇡
p
2mNlB. The Fourier modes of such

a scalar field have energies

En =
2⇡nv

L

where v is the speed of propagation the excitations. (Note: don’t worry if this formula

is unfamiliar: we’ll derive it below). Comparing the two formulae, we see that the

speed of propagation depends on the strength of the confining potential,

v =
L!

2⇡

To see that this is a good interpretation of the spectrum (6.2), we should also check

that the degeneracies match. There’s a nice formula for the number of quantum Hall

states with energy q! with q 2 Z+. To see this, let’s look at some examples. There is,

of course, a unique ground state. There is also a unique state with �E = ! which has

d1 = 1 and dn = 0 for n � 2. However, for �E = 2! there are two states: d1 = 2 or
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d2 = 1. And for �E = 3! there are 3 states: d1 = 3, or d1 = 1 and d2 = 2, or d3 = 1.

In general, the number of states at energy �E = q! is the number of partitions of the

integer q. This is the number of ways of writing q as a sum of positive integers. It is

usually denoted as P (q),

Degeneracy of states

with �E = a!

)
= P (q) (6.3)

Now let’s compare this to the Fourier modes of a scalar field. Suppose that we focus on

the modes that only move one way around the circle, labelled by the momenta n > 0.

Then there’s one way to create a state with energy E = 2⇡v/L: we excite the first

Fourier mode once. There are two ways to create a state with energies E = 4⇡v/L: we

excite the first Fourier mode twice, or we excite the second Fourier mode once. And so

on. What we’re seeing is that the degeneracies match the quantum Hall result (6.3) if

we restrict the momenta to be positive. If we allowed the momenta to also be negative,

we would not get the correct degeneracy of the spectrum. This is our first hint that the

edge modes are described by a chiral scalar field, propagating only in one direction.

6.1.2 The View from Chern-Simons Theory

Let’s see how this plays out in the e↵ective Chern-Simons theory. We saw in Section

5.2 that the low-energy e↵ective action for the Laughlin state is

SCS[a] =
m

4⇡

Z
d3x ✏µ⌫⇢aµ@⌫a⇢ (6.4)

where we’re working in units in which e = ~ = 1.

We’ll now think about this action on a manifold with

Hall state

vacuum

Figure 46:

boundary. Ultimately we’ll be interested in a disc-shaped

quantum Hall droplet. But to get started it’s simplest to

think of the boundary as a straight line which we’ll take to

be at y = 0. The quantum Hall droplet lies at y < 0 while

at y > 0 there is only the vacuum.

There are a number of things to worry about in the pres-

ence of a boundary. The first is important for any field the-

ory. When we derive the equations of motion from the action,

we always integrate by parts and discard the boundary term. But now there’s a bound-

ary, we have to be more careful to make sure that this term vanishes. This is simply
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telling us that we should specify some boundary condition if we want to make the

theory well defined. For our Chern-Simons theory, a variation of the fields gives

�SCS =
m

4⇡

Z
d3x ✏µ⌫⇢ [�aµ@⌫a⇢ + aµ@⌫�a⇢]

=
m

4⇡

Z
d3x ✏µ⌫⇢ [�aµf⌫⇢ + @µ(a⌫�a⇢)]

Minimising the action gives the required equation of motion fµ⌫ = 0 only if we can set

the last term to zero. We can do this if either by setting at(y = 0) = 0 on the boundary,

or by setting ax(y = 0) = 0. Alternatively, we can take a linear combination of these.

We choose

(at � vax)
���
y=0

= 0 (6.5)

Here we’ve introduced a parameter v; this will turn out to be the velocity of excitations

on the boundary. Note that the Chern-Simons theory alone has no knowledge of this

speed. It’s something that we have to put in by hand through the boundary condition.

The next issue is specific to Chern-Simons theory. As we’ve mentioned before, the

action (6.4) is only invariant up to a total derivative. Under a gauge transformation

aµ ! aµ + @µ!

we have

SCS ! SCS +
m

4⇡

Z

y=0

dxdt !(@tax � @xat)

and the Chern-Simons action is no longer gauge invariant. We’re going to have to deal

with this. One obvious strategy is simply to insist that we only take gauge transforma-

tions that vanish on the boundary, so that w(y = 0) = 0. This has the happy corrolary

that gauge transformations don’t change our chosen boundary condition for the gauge

fields. However, this approach has other consequences. Recall that the role of gauge

transformations is to identify field configurations, ensuring that they are physically

indistinguishable. Said another way, gauge transformations kill would-be degrees of

freedom. This means that restricting the kinds of gauge transformations will resurrect

some these degrees of freedom from the dead.

To derive an action for these degrees of freedom, we choose a gauge. The obvious

one is to extend the boundary condition (6.5) into the bulk, requiring that

at � vax = 0 (6.6)
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everywhere. The easiest way to deal with this is to work in new coordinates

t0 = t , x0 = x+ vt , y0 = y (6.7)

The Chern-Simons action is topological and so invariant under such coordinate trans-

formations if we also transform the gauge fields as

a0
t0 = at � vax , a0

x0 = ax , a0
y0 = ay (6.8)

so the gauge fixing condition (6.6) becomes simply

a0
t0 = 0 (6.9)

But now this is easy to deal with. The constraint imposed by the gauge fixing condition

is simply f 0
x0y0 = 0. Solutions to this are simply

a0
i
= @i�

with i = x0, y0. Of course, usually such solutions would be pure gauge. But that’s

what we wanted: a mode that was pure gauge which becomes dynamical. To see how

this happens, we simply need to insert this solution back into the Chern-Simons action

which, having set a0
t0 = 0, is

SCS =
m

4⇡

Z
d3x0 ✏ija0

i
@t0a

0
j

=
m

4⇡

Z
d3x0 @x0� @t0@y0�� @y0� @t0@x0�

=
m

4⇡

Z

y=0

d2x0 @t0�@x0�

Writing this in terms of our original coordinates, we have

S =
m

4⇡

Z
d2x @t�@x�� v(@x�)

2 (6.10)

This is sometimes called the Floreanini-Jackiw action. It looks slightly unusual, but it

actually describes something very straightforward. The equations of motion are

@t@x�� v@2
x
� = 0 (6.11)

If we define a new field,

⇢ =
1

2⇡

@�

@x
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then the equation of motion is simply

@t⇢(x, t)� v@x⇢(x, t) = 0 (6.12)

This is the expression for a chiral wave propagating at speed v. The equation has

solutions of the form ⇢(x + vt). However, waves propagating in the other direction,

described by ⇢(x � vt) are not solutions. The upshot of this analysis is that the U(1)

Chern-Simons theory has a chiral scalar field living on the boundary. This, of course,

is the same conclusion that we came to by studying the excitations above the Laughlin

state.

The Interpretation of ⇢

There’s a nice physical interpretation of the chiral field ⇢. To see this, recall that our

Chern-Simons theory is coupled to a background gauge field Aµ through the coupling

SJ =

Z
d3x AµJ

µ =
1

2⇡

Z
d3x ✏µ⌫⇢Aµ@⌫a⇢

This is invariant under gauge transformations of aµ but, in the presence of a boundary,

is not gauge invariant under transformations of Aµ. That’s not acceptable. While aµ is

an emergent gauge field, which only exists within the sample, Aµ is electromagnetism.

It doesn’t stop just because the sample stops and there’s no reason that we should only

consider electromagnetic gauge transformations that vanish on the boundary. However,

there’s a simple fix to this. We integrate the expression by parts and throw away the

boundary term. We then get the subtly di↵erent coupling

SJ =
1

2⇡

Z
d3x ✏µ⌫⇢aµ@⌫A⇢

This is now invariant under electromagnetic gauge transformations and, as we saw

above, under the restricted gauge transformations of aµ. This is the correct way to

couple electromagnetism in the presence of a boundary.

We’ll set Ay = 0 and turn on background fields At and Ax, both of which are

independent of the y direction. Then, working in the coordinate system (6.7), (6.8),

and the gauge (6.9), the coupling becomes

SJ =
1

2⇡

Z
d3x a0

y0(@t0A
0
x0 � @x0A0

t0)

=
1

2⇡

Z
d3x @y0�(@t0A

0
x0 � @x0A0

t0)

=
1

2⇡

Z

y=0

d2x �(@t0A
0
x0 � @x0A0

t0)
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Integrating the first term by parts gives @t0� = @t�� v@x�. (Recall that @t0 transforms

like a0
t0 and so is not the same thing as @t). But this vanishes or, at least, is a constant

by the equation of motion (6.11). We’ll set this term to zero. We’re left with

SJ =
1

2⇡

Z

y=0

dtdx (At � vAx)@x�

The coupling to At tells us that the field

⇢ =
1

2⇡

@�

@x

is the charge density along the boundary. The coupling to Ax tells us that �v⇢ also has

the interpretation as the current. The same object is both charge density and current

reflects the fact that the waves propagate in a chiral manner with speed v. The current

is conserved by virtue of the chiral wave equation (6.12)

There is a simple intuitive way to think about ⇢. h(x,t)

Figure 47:

Consider the edge of the boundary as shown in the fig-

ure. The excitations that we’re considering are waves

in which the boundary deviates from a straight line.

If the height of these waves is h(x, t), then the charge

density is ⇢(x, t) = nh(x, t) where n = 1/2⇡ml2
B

is

the density of the Laughlin state at filling fraction

⌫ = 1/m.

Towards an Interpretation of �

There’s one important property of � that we haven’t mentioned until now: it’s periodic.

This follows because the emergent gauge U(1) gauge group is compact. When we write

the flat connection aµ = @µ�, what we really mean is

aµ = ig�1@µg with g = e�i�

This tells us that � should be thought of as a scalar with period 2⇡. It is sometimes

called a compact boson.

As an aside: sometimes in the literature, people work with the rescaled field � !p
m�. This choice is made so that the normalisation of the action (6.10) becomes

1/2⇡ for all filling fractions. The price that’s paid is that the periodicity of the boson

becomes 2⇡
p
m. In these lectures, we’ll work with the normalisation (6.10) in which �

has period 2⇡.
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This possibility allows us to capture some new physics. Consider the more realistic

situation where the quantum Hall fluid forms a disc and the boundary is a circle S1 of

circumference L. We’ll denote the coordinate around the boundary as � 2 [0, L). The

total charge on the boundary is

Q =

Z
L

0

d� ⇢ =
1

2⇡

Z
L

0

d�
@�

@�
(6.13)

It’s tempting to say that this vanishes because it’s the integral of a total derivative.

But if � is compact, that’s no longer true. We have the possibility that � winds some

number of times as we go around the circle. For example, the configuration � = 2⇡p�/L

is single valued for any integer p. Evaluated on this configuration, the charge on the

boundary is Q = p. Happily, the charge is quantised even though we haven’t needed

to invoke quantum mechanics anywhere: it’s quantised for topological reasons.

Although we’ve introduced Q as the charge on the boundary, it’s really capturing the

charge in the bulk. This is simply because the quantum Hall fluid is incompressible.

If you add p electrons to the system, the boundary has to swell a little bit. That’s

what Q is measuring. This is our first hint that the boundary knows about things that

happen in the bulk.

There’s one other lesson to take from the compact nature of �. Observables should

be single valued. This means that � itself is not something we can measure. One way

around this is to look at @x� which, as we have seen, gives the charge density. However,

one could also consider the exponential operators ei�. What is the interpretation of

these? We will answer this in Section 6.1.4 where we will see that ei� describes quasi-

holes in the boundary theory.

6.1.3 The Chiral Boson

We’ve seen that the edge modes of the quantum Hall fluid are described by a chiral

wave. From now on, we’ll think of the quantum Hall droplet as forming a disc, with

the boundary a circle of circumference L = 2⇡
p
2mNlB. We’ll parameterise the circle

by � 2 [0, L). The chiral wave equation obeyed by the density is

@t⇢(�, t)� v@�⇢(�, t) = 0 (6.14)

which, as we’ve seen, arises from the action for a field

S =
m

4⇡

Z

R⇥S1

dtd� @t� @��� v(@��)
2 (6.15)

The original charge density is related to � by ⇢ = @��/2⇡.
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In this section, our goal is to quantise this theory. It’s clear from (6.15) that the

momentum conjugate to � is proportional to @��. If you just naively go ahead and

write down canonical commutation relations then there’s an annoying factor of 2 that

you’ll get wrong, arising from the fact that there is a constraint on phase space. To

avoid this, the simplest thing to do is to work with Fourier modes in what follows.

Because these modes live on a circle of circumference L, we can write

�(�, t) =
1p
L

1X

n=�1
�n(t) e

2⇡in�/L

and

⇢(�, t) =
1p
L

1X

n=�1
⇢n(t) e

2⇡in�/L

The Fourier modes are related by

⇢n =
ikn
2⇡

�n

with kn the momentum carried by the nth Fourier mode given by

kn =
2⇡n

L
The condition on � and ⇢ means that �?

n
= ��n and ⇢?

n
= ⇢�n. Note that the zero mode

⇢0 vanishes according to this formula. This reflects the fact that the corresponding zero

mode �0 decouples from the dynamics since the action is written using @��. The correct

treatment of this zero mode is rather subtle. In what follows, we will simply ignore it

and set �0 = 0. Using these Fourier modes, the action (6.15) becomes

S =
m

4⇡

Z
dt

1X

n=�1

⇣
ik�n�̇n��n + vknk�n�n��n

⌘

= �m

2⇡

Z
dt

1X

n=0

⇣
ikn�̇n��n + vk2

n
�n��n

⌘

This final expression suggests that we treat the Fourier modes �n with n > 0 as the

“coordinates” of the problem. The momenta conjugate to �n is then proportional to

��n. This gives us the Poisson bracket structure for the theory or, passing to quantum

mechanics, the commutators

[�n,�n0 ] =
2⇡

m

1

kn
�n+n0

[⇢n,�n0 ] =
i

m
�n+n0

[⇢n, ⇢n0 ] =
kn
2⇡m

�n+n0
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This final equation is an example of a U(1) Kac-Moody algebra. It’s a provides a

powerful constraint on the dynamics of conformal field theories. We won’t have much

use for this algebra in the present context, but its non-Abelian extension plays a much

more important role in WZW conformal field theories. These commutation relations

can be translated back to equal-time commutation relations for the continuum fields.

They read

[�(�),�(�0)] =
⇡i

m
sign(� � �0) (6.16)

[⇢(�),�(�0)] =
i

m
�(� � �0) (6.17)

[⇢(�), ⇢(�0)] = � i

2⇡m
@��(� � �0) (6.18)

The Hamiltonian

We can easily construct the Hamiltonian from the action (6.14). It is

H =
mv

2⇡

1X

n=0

k2
n
�n��n = 2⇡mv

1X

n=0

⇢n⇢�n

where, in the quantum theory, we’ve chosen to normal order the operators. The time

dependence of the operators is given by

⇢̇n = i[H, ⇢n] = ivkn⇢n

One can check that this is indeed the time dependence of the Fourier modes that follows

from the equation of motion (6.14).

Our final Hamiltonian is simply that of a bunch of harmonic oscillators. The ground

state |0i satisfies ⇢�n|0i = 0 for n > 0. The excited states can then be constructed by

acting with

| i =
1X

n=1

⇢dn
n
|0i ) H| i = 2⇡v

L

1X

n=1

ndn| i

We’ve recovered exactly the spectrum and degeneracy of the excited modes of the

Laughlin wavefunction that we saw in Section 6.1.1.

6.1.4 Electrons and Quasi-Holes

All of the excitations that we saw above describe ripples of the edge. They do not

change the total charge of the system. In this section, we’ll see how we can build new

operators in the theory that carry charge. As a hint, recall that we saw in (6.13) that

any object that changes the charge has to involve � winding around the boundary. This

suggests that it has something to do with the compact nature of the scalar field �.
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We claim that the operator describing an electron in the boundary is

 = : eim� : (6.19)

where the dots denote normal ordering, which means that all ��n, with n positive, are

moved to the right. In the language of conformal field theory, exponentials of this type

are called vertex operators. To see that this operator carries the right charge, we can

use the commutation relation (6.17) to show that

[⇢(�), †(�0)] =  †(�0) �(� � �0) and [⇢(�), (�0)] = � (�0) �(� � �0)

which tells us that  † inserts an object of unit charge while  removes an object of

unit charge. This looks good. However, there’s something rather surprising about the

formula (6.19). The field � is a boson, but if  is really the electron operator then it

should be a fermion. To see that this is indeed the case, we use the Baker-Campbell-

Hausdor↵ formula to get

 (�) (�0) = e�m
2[�(�),�(�0)] (�0) (�)

The commutator of � was given in (6.16). We find that when � 6= �0,

[ (�), (�0)] = 0 m even

{ (�), (�0)} = 0 m odd

We see that the field � acts like a boson if m is even and a fermion if m is odd. But we

know from the Laughlin wavefunction that the objects underlying the quantum Hall

state are bosons when m is even and fermions when m is odd. Miraculously, our edge

theory knows about the nature of the underlying constituents in the bulk. The formula

(6.19) is one of the key formulas in the subject of bosonisation, in which fermions in

d = 1 + 1 dimensions can be written in terms of bosons and vice versa.

It should be clear that the electron operator (6.19) is not the simplest operator that

we can construct in our theory. Since � has periodicity 2⇡, it also makes sense to look

at the operator

 qp = : ei� : (6.20)

No prizes are awarded for guessing that this corresponds to the quasi-particle excitations

in the quantum Hall fluid. The commutator with ⇢

[⇢(�), †
qp
(�0)] =

1

m
 †

qp
(�0) �(� � �0) and [⇢(�), qp(�

0)] = � 1

m
 qp(�

0) �(� � �0)

– 211 –



tells us that these operators create particles with charge ±1/m. The statistics of these

operators can be seen by commuting

 qp(�) qp(�
0) = e�[�(�),�(�0)] qp(�

0) qp(�) = e±⇡i/m qp(�
0) qp(�)

We see that the particles are anyons, with statistical phase e±⇡i/m as expected. In this

approach, the sign of the phase depends on the sign(� � �0). This is analogous to the

way the sign depends on whether to do a clockwise or anti-clockwise rotation in the

bulk.

Propagators

Let’s now turn to the propagators, starting with the compact boson �. Deriving the

propagator directly from the action (6.10) involves a fiddly contour integral. However,

the answer is straightforward and simple to understand intuitively: it is simply the

left-moving part of the propagator for a normal boson. Let’s start from action

S =
m

8⇡

Z
d2x @i'@

i'

The propagator for a free boson is simple to work out: it is

h'(x, t)'(0, 0) i = � 1

m
log(v2t2 � x2)

where, as usual, there is an implicit time ordering in all correlation functions of this

kind, and there should really be a UV cut-o↵ in the log which we’ve dropped. Of

course, this action describes a scalar field which can propagate in both left-moving and

right-moving directions. The equation of motion (@2
t
� v2@2

x
)' = 0 ensures that all

solutions decompose as '(x, t) = 'L(x+vt)+'R(x�vt) (although there is, once again

a subtlety with the zero mode which does not split into left- and right-moving pieces).

The propagator above has a simple decomposition into left- and right- moving parts,

with

h'L(x+ vt)'L(0) i = � 1

m
log(x+ vt) + const.

Our chiral boson � is precisely this left-moving boson 'L, albeit without the accom-

panying right-moving partner. The propagator. Indeed, one can show the correct

propagator derived from (6.10) is equal to that found above

h�(x+ vt)�(0, 0) i = � 1

m
log(x+ vt) + const. (6.21)

(An aside: there is a seeming factor of 2 discrepancy between the normalisation of the

boson action above and the normalisation of (6.10). This can be traced to the Jacobian

in going between Euclidean coordinates and the light-cone coordinates X± = � ± vt

which are appropriate for the chiral boson).
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The logarithmic dependence seen in (6.21) reflects the fact that there are infra-red

divergences if we work with massless scalar fields in d = 1 + 1. It’s telling us that the

physical information is carried by other fields. The propagator for the charge density

follows immediately from di↵erentiating (6.21),

h ⇢(x+ vt)⇢(0) i = � 1

(2⇡)2m

1

(x+ vt)2

However, more interesting for us is the electron propagator.

GF (x, t) = h †(x, t) (0, 0) i (6.22)

To compute this, we need to learn how to compute expectation values of normal ordered

exponentials (6.19). Since the field � is free, this must ultimately reduce to a problem

in terms of harmonic oscillators. Because this is a calculation that we’ll need to use

again later, we pause briefly to explain how this works for the harmonic oscillator. .

We’ll then pick up our thread and compute the electron propagator (6.22).

An Aside: Coherent States in the Harmonic Oscillator

Consider a harmonic oscillator with the usual creation and annihilation operators sat-

isfying [a, a†] = 1 and a vacuum |0i obeying a|0i = 0. A coherent state is defined as

the exponential

|zi = eza
† |0i

with z 2 C. It’s simple to show that [a, eza
†
] = zeza

†
from which we see that |zi is the

eigenstate of the annihilation operator: a|zi = z|zi.

Now consider some linear combination of creation and annihilation operators,

Ai = ↵ia+ �ia
†

The analog of the electron vertex operator (6.19) is the normal ordered exponential

: eAi : = e�ia
†
e↵ia

Our goal is to compute the vacuum expectation value of a string of these vertex oper-

ators,

h0| : eA1 :: eA2 : . . . : eAN : |0i (6.23)

To do this, we need to move all the ei↵ia to the right, commuting them past the ei�ja
†

with j > i as they go. By the Baker-Campbell-Hausdor↵ formula, this is achieved by

e↵ae�a
†
= e�a

†
e↵ae↵�[a,a

†] = e�a
†
e↵ae↵�
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Applying this to the whole string of operators in (6.23), we have

: eA1 :: eA2 : . . . : eAN : = e(�1+...+�N )a†e(↵1+...+↵N )a e
P

i<j ↵i�j

= : eA1+...+AN : e
P

i<jh0|AiAj |0i (6.24)

Taking the expectation value of both sides, we have our final result

h0| : eA1 :: eA2 : . . . : eAN : |0i = exp

 
X

i<j

h0|AiAj|0i
!

(6.25)

This is the result that we want. Let’s now see what it means for our electrons on the

edge.

The Electron Propagator

Because the free field � is simply a collection of harmonic oscillators, we can apply the

formula (6.25) to vertex operators like (6.19). We have

GF (x+ vt) = h †(x, t) (0, 0) i = exp
⇣
m2h�(x, t)�(0, 0) i

⌘

Using (6.21), we find that the electron Green’s function is given by

GF (x, t) ⇠
1

(x+ vt)m
(6.26)

This is interesting because it’s not the usual expression for an electron Green’s function

in d = 1 + 1.

To explain this, let’s first review some condensed matter field theory. There’s a

simple theory that describes Fermi surfaces in d = 1 + 1 dimensions (where they are

really just Fermi points). Unlike in higher dimensions, these electrons are typically

interacting, but in a way that is under control. The resulting theory is known as the

Luttinger liquid. One of its key results is that the electron propagator for left-moving

modes scales as GLuttinger ⇠ 1/(x+ vt).

Comparing to our propagator (6.26), we see that it coincides with the Luttinger

liquid result when m = 1. This should not be surprising: m = 1 describes a fully-filled

Landau level which does not exhibit topological order. In contrast, in the fractional

quantum Hall states with m 6= 1, the electrons on the edge of the sample do not follow

the standard lore. This reflects the fact that they are strongly coupled. What we

are calling an “electron” in not the same thing as an electron in the Standard Model.

Instead, it is some collective excitation that carries the same quantum numbers as the
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electron in the Standard model. The resulting theory usually goes by the name of the

chiral Luttinger liquid 61.

The most important information to take from the propagator (6.26) comes from some

simple dimensional analysis. Comparing both sides, we learn that the electron operator

 has dimension m/2. This should be contrasted with the usual value of 1/2 The fact

that electrons are fermions means that m has to be odd. But this means that the

exponent in the propagator can’t change continuously as the Hamiltonian underlying

the quantum Hall state varies. For this reason, the dimension of the edge operator can

be viewed as a characterisation of the bulk state. It can only change if the bulk goes

through a phase transition.

6.1.5 Tunnelling

The electron propagator (6.26) has some surprisingly physical consequences. There is

a long and detailed literature on this subject. Here we provide only a baby version to

explain the basic physics.

Suppose we connect the edge of the quantum Hall fluid to a wire, but put a small

insulating material in between. This kind of set-up goes by the name of a tunnel

junction. It means that if electrons want to get from the one side to the other, they

have to tunnel. The way to model this in our theory is to add the interaction

Stunnel = ⌧

Z
dt eim�(0,t) †

e
(0, t) + h.c.

where  †
e
is the creation operator for the electron in the wire. Here we’ve inserted the

junction at the point � = 0 on the edge.

The strength of the tunnelling is governed by the coupling constant ⌧ . The action

must be dimensionless (in units with ~ = 1). We learned above that eim� has dimen-

sion m/2. Meanwhile  e refers to a “common or garden” electron in a wire and has

dimension 1/2. This means that the dimension of ⌧ must be

[⌧ ] =
1�m

2

We learn that for m > 1, the tunnelling is an irrelevant interaction in the language of

the renormalisation group. The tunnelling will be suppressed at low energies or low

61These ideas were pioneered by Xiao-Gang Wen in a series of papers, starting with “Chiral Luttinger
Liquid and the Edge Excitations in the Fractional Quantum Hall State”, Phys. Rev. B41 12838 (1990)
which can be downloaded here. A review can be found in “Chiral Luttinger Liquids at the Fractional
Quantum Hall Edge” by A. M. Chang, Rev. Mod. Phys. 75, 1449 (2003) which can be found here.
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temperature where we can work perturbatively. We can use dimensional analysis to

determine the way various quantities scale. In d = 1+1, the conductivity has dimension

[�] = �1, but this means that the conductance G is dimensionless: [G] = 0.

Fermi’s golden rule tells us that the lowest order contribution to the tunnelling con-

ductance G scales as ⌧ 2. The deficit in dimensions must be made up by temperature

T , simply because there’s no other scale in the game. We have

G ⇠ ⌧ 2 Tm�1

Alternatively, if we’re at zero temperature then the current is driven by a voltage V .

We have [I] = 1 and [V ] = 1, so we

I ⇠ ⌧ 2 V m (6.27)

This final result is particularly striking as violates the form

Figure 48:

of Ohm’s law, V = IR, that we all learned in high school.

This prediction has been successfully tested for the ⌫ = 1/3

quantum Hall state. The data shown in the figure62 fits the

solid line which matches (6.27) with m ⇡ 2.7.

We can also play variants on this game. For example,

suppose that we add a tunnel junction between two Hall

fluids of the same type. Now the interaction is

Stunnel = ⌧

Z
dt eim�1(0,t) e�im�2(0,t) + h.c.

This time we have [⌧ ] = 1 � m and, correspondingly, we

have

G ⇠ ⌧ 2 T 2m�2 and I ⇠ ⌧ 2 V 2m�1

Quasi-Particle Tunnelling

It’s also possible to set up a situation where the quasi-particles can tunnel. We do

this by taking a single Hall fluid and putting in a constriction as shown in the figure.

Because the bulk supports quasi-particles, these can tunnel from the top edge to the

bottom. The tunnelling interaction is now

Stunnel = ⌧

Z
dt ei�1(0,t) e�i�2(0,t) + h.c.

62This plot is from A. M. Chang, L. N. Pfei↵er, and K. W. West, “Observation of Chiral Luttinger
Behavior in Electron Tunneling into Fractional Quantum Hall Edges,” Phys. Rev. Lett. 77, 2538
(1996).
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To figure out the dimension of ⌧ in this case, we first need

Figure 49: A Constric-

tion

the dimension of the quasi-particle operator. Repeating the

calculation that led to (6.26) tells us that [ei�] = 1/2m, so

now we have

[⌧ ] = 1� 1

m
Now this is a relevant interaction. It becomes strong at low

temperatures and our naive analysis does not work. (For ex-

ample, the dimensions of operators at this point may be driven

to something else at low temperatures). Instead, the scaling is valid at high tempera-

tures or high voltages, where “high” means compared to the scale set by ⌧ but, obviously

not too high as to destroy the Hall state itself. When this scaling is valid, we get

G ⇠ ⌧ 2

T 2�2/m
and I ⇠ ⌧ 2

V 1�2/m

Again, we see a striking di↵erence from the usual form of Ohm’s law.

6.2 The Bulk-Boundary Correspondence

We’ve seen that the theory of the edge modes know about the spectrum of quasi-holes

in the bulk. However, it turns out that the edge knows somewhat more than this.

Remarkably, it’s possible to reconstruct the Laughlin wavefunction itself purely from

knowledge about what’s happening on the edge. In this section, we see how.

6.2.1 Recovering the Laughlin Wavefunction

We’ll work with the chiral boson theory that we introduced in the previous section. To

make these arguments, we need to do some simply gymnastics. First, we set the speed

of propagation v = 1. Next, we Wick rotate to Euclidean space, defining the complex

variables

w =
2⇡

L
� + it and w̄ =

2⇡

L
� � it (6.28)

The complex coordinate w parameterises the cylinder that lies at the edge of the Hall

sample, with Re(w) 2 [0, 2⇡). The final step is to work with single-valued complex

coordinates

z = e�iw and z̄ = e+iw̄

This can be thought of as a map from the cylinder to the plane as shown in the figure.

If you know some conformal field theory, what we’ve done here the usual conformal

transformation that implements the state-operator map. (You can learn more about

this in the introduction to conformal field theory in the String Theory lecture notes).
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In this framework, the fact that the boson is chi-

Figure 50:

ral translates to the statement that � is a holo-

morphic function of z, so � = �(z). One can

check that the propagator (6.21) takes the same

form, which now reads

h�(z)�(w) i = � 1

m
log(z � w) + const.

The basis idea is to look at correlation functions

involving insertions of electron operators of the form

 = : eim� :

Let’s start by looking at something a little more general. We consider the correlation

function involving a string of di↵erent vertex operators. Using (6.25), it looks like we

should have

h: eim1�(z1) :: eim2�(z2) : . . . : eimN�(zN ) :i = exp

 
�
X

i<j

mimjh�(zi)�(zj)i
!

⇠
Y

i<j

(zi � zj)
mimj/m (6.29)

For a bunch of electron operators, with mi = m, this looks very close to the pre-factor

of the Laughlin wavefunction. However, the result (6.29) is not quite right. What we

missed was a subtle issue to do with the zero mode �0 which we were hoping that we

could ignore. Rather than deal with this zero mode, let’s just see why the calculation

above must be wrong63. Our original theory was invariant under the shift � ! � + ↵

for any constant ↵. This means that all correlation functions should also be invariant

under this shift. But the left-hand side above transforms picks up a phase ei↵(m1+...+mN ).

This means that the correlation function can only be non-zero if

NX

i=1

mi = 0

Previously we computed the electron propagator h † i which indeed satisfies this

requirement. In general the the correct result for the correlation function is

h: eim1�(z1) :: eim2�(z2) : . . . : eimN�(zN ) :i ⇠
Y

i<j

(zi � z)mimj/m �(
X

i

mi)

63A correct treatment of the zero mode can be found in the lecture notes on String Theory where this
same issue arises when computing scattering amplitudes and is ultimately responsible for momentum
conservation in spacetime.
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The upshot of this argument is that a correlation function involving only electron

operators does not give us the Laughlin wavefunction. Instead, it vanishes.

To get something non-zero, we need to insert another operator into the correlation

function. We will look at

G(zi, z̄i) = h (z1) . . . (zN) exp
⇣
� ⇢0

Z

�

d2z0 �(z0)
⌘
i (6.30)

This is often said to be inserting a background charge into the correlation function. We

take ⇢0 = 1/2⇡l2
B
. Note that this is the same as the background charge density (3.10)

that we found when discussing the plasma analogy. Meanwhile, � is a disc-shaped

region of radius R, large enough to encompass all point zi. Now the requirement that

the correlation function is invariant under the shift � ! � + ↵ tells us that it can be

non-zero only if

mN = ⇢0

Z

�

d2z0 = ⇡R2⇢0

Using ⇢0 = 1/2⇡l2
B
, we see that we should take R =

p
2mNlB which we recognise as

the radius of the droplet described by the quantum Hall wavefunction.

Using (6.25), the correlation function (6.30) can be written as

G(zi, z̄i) ⇠
Y

i<j

(zi � zj)
m exp

 
�⇢0

NX

i=1

Z

�

d2z0 log(zi � z0)

!

We’re still left with an integral to do. The imaginary part of this integral is ill-defined

because of the branch cuts inherent in the logarithm. However, as its only a phase, it

can be undone by a (admittedly very singular) gauge transformation. Omitting terms

the overall constant, and terms that are suppressed by |zi|/R, the final result for the

correlation function is

G(zi, z̄i) ⇠
Y

i<j

(zi � zj)
me�

P
i |zi|2/4l2B (6.31)

This, of course, is the Laughlin wavefunction.

We can extend this to wavefunctions that involve quasi-holes. We simply need to

insert some number of quasi-hole operators (6.20) into the correlation function

G̃(zi, z̄i; ⌘a, ⌘̄a) = h qh(⌘1) . . . qh(⌘p) (z1) . . . (zN) exp
⇣
� ⇢0

Z

�

d2z0 �(z0)
⌘
i
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Figure 51: The wavefunction lives here Figure 52: The correlation function lives

here

where the size of the disc � must now be extended so that the system remains charge

neutral. The same calculations as above now yield

G̃(zi, z̄i; ⌘a, ⌘̄a) =
Y

a<b

(⌘a � ⌘b)
1/m
Y

a,i

(zi � ⌘a)
Y

k<l

(zk � zl)
m e�

P
i |zi|2/4l2B�

P
a |⌘a|2/4ml

2
B

This is the Laughlin wavefunction for the quasi-hole excitations. Note that we’ve

recovered the wavefunction in the form (3.30) where the Berry phase vanishes. Instead

the correlation function is not single valued and all the statistical phases that arise

from braiding the quasi-hole positions are explicit.

What the Hell Just Happened?

It’s been a long journey. But finally, after travelling through Chern-Simons theories

and the theory of edge states, we’ve come right back to where we started: the Laughlin

wavefunction64. How did this happen? It seems like magic!

The most glaring issue in identifying the correlation function with the wavefunction

is that the two live in di↵erent spaces. Our quantum Hall fluid lives on a disc, so

spacetime is a cylinder as shown in the figures. The wavefunction is defined on a

spatial slice at a fixed time; this is the blue disc in the figure. In the wavefunction,

the positions zi lies within this disc as shown in the left-hand figure. Meanwhile, the

conformal field theory lives on the boundary. The operators inserted in the correlation

64The connection between correlation functions and quantum Hall wavefunctions was first noticed
by Greg Moore and Nick Read in the “Nonabelions in the Fractional Quantum Hall E↵ect”, Nucl.
Phys. B360, 362 (1991) which can be downloaded here. This was also the paper where they first
proposed the Moore-Read wavefunction. This is not coincidence: they arrived at the wavefunction by
thinking about correlation functions in di↵erent conformal field theories.
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function sit at positions wi = 2⇡�/L+ it which are subsequently mapped to the plane

by z = e�i!. Why should we identify the positions in these two di↵erent spaces?

The answer is that there are actually two di↵erent ways in which the Chern-Simons

theory is related to the CFT. This arises because the bulk Chern-Simons theory is

topological, which means that you can cut it in di↵erent way and get the same answer.

Above we’ve considered cutting the bulk along a timelike boundary to give a CFT in

d = 1+ 1 dimensions. This, of course, is what happens in a physical system. However,

we could also consider an alternative way to slice the bulk along a spacelike section,

as in the left-hand figure above. This gives the same CFT, but now Wick rotated to

d = 2 + 0 dimensions.

The next question we should ask is: why does the very high-point correlation function

in the CFT capture the ground state wavefunction in the bulk? The way to think about

this is as follows: after the Wick rotation, the insertion of operators  (wi) should be

thought of as annihilating a bulk electron as it hits the surface at position wi. In this

way, we compute the overlap of the vacuum with a specific state on the spacelike slice,

which is prepared by the insertion of these operators. This overlap of matrix elements

is the vacuum wavefunction. We will make this more precise imminently in Section

6.2.2.

Let me also mention a separate surprise about the relationship between correlation

functions and the Laughlin wavefunction. Our original viewpoint in Section 3 was that

there was nothing particularly special about the Laughlin wavefunction; it is simply

a wavefunction that is easy to write down which lives in the right universality class.

Admittedly it has good overlap with the true ground state for low number of electrons,

but it’s only the genuine ground state for artificial toy Hamiltonians. But now we learn

that there is something special about this state: it is the correlation function of primary

operators in the boundary theory. I don’t understand what to make of this.

Practically speaking, the connection between bulk wavefunctions and boundary cor-

relation functions has proven to be a very powerful tool. It is conjectured that this

correspondence extends to all quantum Hall states. First, this means that you don’t

need to guess quantum Hall wavefunctions anymore. Instead you can just guess a

boundary CFT and compute its correlation functions. But there’s a whole slew of

CFTs that people have studied. We’ll look at another example in Section 6.3. Second,

it turns out that the CFT framework is most useful for understanding the properties

of quantum Hall states, especially those with non-Abelian anyons. The braiding prop-
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erties of anyons are related to well-studied properties of CFTs. We’ll give some flavour

of this in Section 6.4.

6.2.2 Wavefunction for Chern-Simons Theory

Above we saw how the boundary correlation functions of the CFT capture the bulk

Laughlin wavefunctions. As we described above, the key is to consider a di↵erent cut

of the Chern-Simons theory. With this in mind, we will place Chern-Simons theory on

R ⇥ S2 where R is time and S2 is a compact spatial manifold which no longer has a

boundary. Instead, we will consider the system at some fixed time. But in any quantum

system, the kind of object that sits at a fixed time is a wavefunction. We will see how

the wavefunction of Chern-Simons theory is related to the boundary CFT.

We’re going to proceed by implementing a canonical quantisation of U(1)m Chern-

Simons theory. We already did this for Abelian Chern-Simons theory in Section 5.2.3.

Working in a0 = 0 gauge, the canonical commutation relations (5.49)

[ai(x), aj(y)] =
2⇡i

m
✏ij �

2(x� y)

subject to the constraint f12 = 0.

At this stage, we di↵er slightly from what went before. We introduce complex co-

ordinates z and z̄ on the spatial S2. As an aside, I should mention that if we were

working on a general spatial manifold ⌃ then there is no canonical choice of complex

structure, but the end result is independent of the complex structure you pick. This

complex structure can also be used to complexify the gauge fields, so we have az and

az̄ which obey the commutation relation

[az(z, z̄), az̄(w, w̄)] =
4⇡

m
�2(z�w) (6.32)

The next step is somewhat novel. We’re going to write down a Schrödinger equation for

the theory. That’s something very familiar in quantum mechanics, but not something

that we tend to do in field theory. Of course, to write down a Schrödinger equation, we

first need to introduce a wavefunction which depends only on the “position” degrees

of freedom and not on the momentum. This means that we need to make a choice on

what is position and what is momentum. The commutation relations (6.32) suggest

that it’s sensible to choose az̄ as “position” and az as “momentum”. This kind of choice

goes by the name of holomorphic quantisation. This means that we describe the state

of the theory by a wavefunction

 (az̄(z, z̄))

– 222 –



Meanwhile, the az act as a momentum type operator,

aa
z
=

4⇡

k

�

�aaz̄

The Hamiltonian for the Chern-Simons theory vanishes. Instead, what we’re calling

the Schrödinger equation arises from imposing the constraint fzz̄ = 0 as an operator

equation on  . Replacing az with the momentum operator, this reads

✓
@z̄

�

�az̄
� m

4⇡
@zaz̄

◆
 (az̄) = 0 (6.33)

This is our Schrödinger equation.

The Partition Function of the Chiral Boson

We’ll now show that this same equation arises from the conformal field theory of a

chiral boson. The key idea is to couple the current in the CFT to a background gauge

field. We will call this background gauge field a.

Recall from our discussion in Section 6.1.2 that the charge density is given by ⇢ ⇠
@�/@x and, for the chiral action (6.10), the associated current density is simply �v⇢,

reflecting the fact that charge, like all excitations, precesses along the edge.

Here we want to think about the appropriate action in the Euclidean theory. It’s

simplest to look at the action for a massless boson and subsequently focus on the chiral

part of it. This means we take

S[�] =
m

2⇡

Z
d2x @z̄� @z�

Now the charge becomes

⇢ =
1

2⇡

@�

@z

The chiral conservation law is simply @z̄⇢ ⇠ @z̄@z� = 0 by virtue of the equation of

motion.

We want to couple this charge to a background gauge field. We achieve this by

writing

S[�; a] =
m

2⇡

Z
d2x Dz̄� @z� (6.34)
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where

Dz̄� = @z̄�� az̄

The extra term in this action takes the form az̄⇢, which is what we wanted. Moreover,

the form of the covariant derivative tells us that we’ve essentially gauged the shift

symmetry � ! � + constant which was responsible for the existence of the charge in

the first place. Note that, although we’ve given the gauge field the same name as in

the Chern-Simons calculation above, they are (at this stage) rather di↵erent objects.

The Chern-Simons gauge field is dynamical but, in the equation above, az̄(z, z̄) is some

fixed function. We will see shortly why it’s sensible to give them the same name.

The action (6.34) looks rather odd. We’ve promoted @z̄ into a covariant derivative

Dz̄ but not @z. This is because we’re dealing with a chiral boson rather than a normal

boson. It has an important consequence. The equation of motion from (6.34) is

@z̄@z� =
1

2
@zaz̄ (6.35)

This tells us that the charge ⇢ is no longer conserved! That’s quite a dramatic change.

It is an example of an anomaly in quantum field theory.

If you’ve heard of anomalies in the past, it is probably in the more familiar (and more

subtle) context of chiral fermions. The classical chiral symmetry of fermions is not

preserved at the quantum level, and the associated charge can change in the presence

of a background field. The anomaly for the chiral boson above is much simpler: it

appears already in the classical equations of motion. It is related to the chiral fermion

anomaly through bosonization.

Now consider the partition function for the chiral boson. It is a function of the

background field.

Z[az̄] =

Z
D� e�S[�,a]

This, of course, is the generating function for the conformal field theory. The partition

function in the present case obeys a rather nice equation,
✓
@z̄

�

�az̄
� m

4⇡
@zaz̄

◆
Z(az̄) = 0 (6.36)

To see this, simply move the �/�az̄ into the path integral where it brings down a factor

of @z�. The left-hand side of the above equation is then equivalent to computing the

expectation value h@z̄@z� � 1
2@zaz̄ia, where the subscript a is there to remind us that

we evaluate this in the presence of the background gauge field. But this is precisely

the equation of motion (6.35) and so vanishes.
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Finally, note that we’ve seen the equation (6.36) before; it is the Schrödinger equation

(6.33) for the Chern-Simons theory. Because they solve the same equation, we can

equate

 (az̄) = Z[az̄] (6.37)

This is a lovely and surprising equation. It provides a quantitative relationship between

the boundary correlation functions, which are generated by Z[a], and the bulk Chern-

Simons wavefunction.

The relationship (6.37) says that the bulk vacuum wavefunction az̄ is captured by

correlation functions of ⇢ ⇠ @�. This smells like what we want, but it isn’t quite the

same. Our previous calculation looked at correlation functions of vertex operators eim�.

One might expect that these are related to bulk wavefunctions in the presence of Wilson

lines. This is what we have seen coincides with our quantum Hall wavefunctions.

The bulk-boundary correspondence that we’ve discussed here is reminiscent of what

happens in gauge/gravity duality. The relationship (6.37) is very similar to what hap-

pens in the ds/CFT correspondence (as opposed to the AdS/CFT correspondence). In

spacetimes which are asymptotically de Sitter, the bulk Hartle-Hawking wavefunction

at spacelike infinity is captured by a boundary Euclidean conformal field theory.

Wavefunction for Non-Abelian Chern-Simons Theories

The discussion above generalises straightforwardly to non-Abelian Chern-Simons theo-

ries. Although we won’t need this result for our quantum Hall discussion, it is important

enough to warrant comment. The canonical commutation relations were given in (5.48)

and, in complex coordinates, read

[aa
z
(z, z̄), ab

z̄
(w, w̄)] =

4⇡

k
�ab �2(z�w)

with a, b the group indices and k the level. The constraint fzz0 = 0 is once again

interpreted as an operator equation acting on the wavefunction  (az̄). The only di↵er-

ence is that there is an extra commutator term in the non-Abelian fzz0 . The resulting

Schrödinger equation is now
✓
@z̄

�

�az̄
+ [az̄,

�

�az̄
]

◆
 (az̄) =

k

4⇡
@zaz̄ (az̄)

As before, this same equation governs the partition function Z[az̄] boundary CFT, with

the gauge field az̄ coupled to the current. In this case, the boundary CFT is a WZW

model about which we shall say (infinitesimally) more in Section 6.4.

– 225 –



6.3 Fermions on the Boundary

In this section we give another example of the bulk/boundary correspondence. However,

we’re not going to proceed systematically by figuring out the edge modes. Instead, we’ll

ask the question: what happens when you have fermions propagating on the edge? We

will that this situation corresponds to the Moore-Read wavefunction. We’ll later explain

the relationship between this and the Chern-Simons e↵ective theories that we described

in Section 5.

6.3.1 The Free Fermion

In d = 1+ 1 dimensions, a Dirac fermion  is a two-component spinor. The action for

a massless fermion is

S =
1

4⇡

Z
d2x i †�0�µ@µ 

In Minkowski space we take the gamma matrices to be �0 = i�2 and �1 = �1 with �i the

Pauli matrices. These obey the Cli↵ord algebra {�µ, �⌫} = 2⌘µ⌫ . We can decompose

the Dirac spinor into chiral spinors by constructing the other “�5” gamma matrix. In

our chosen basis this is simply �3 and the left-moving and right-moving spinors, which

are eigenstates of �3, are simply

 =

 
�L

�R

!

Written in the terms of these one-component Weyl spinors, the action is

S = � 1

4⇡

Z
d2x i�†

L
(@t � @x)�L + i�†

R
(@t + @x)�R

The solutions to the equations of motion are �L = �L(x+ t) and �R = �R(x� t).

There’s something rather special about spinors in d = 1+1 dimensions (and, indeed

in d = 4k+2 dimensions): they can be both Weyl and Majorana at the same time. We

can see this already in our gamma matrices which are both real and in a Weyl basis.

From now on, we will be interested in a single left-moving Majorana-Weyl spinor. We

will denote this as �. The Majorana condition simply tells us that � = �†.

Fermions on a Circle

The edge of our quantum Hall state is a cylinder. We’ll take the spatial circle to be

parameterised by � 2 [0, L). If the fermion is periodic around the circle, so �(�+L) =
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�(�), then it can be decomposed in Fourier modes as

�(�) =

r
2⇡

L

X

n2Z

�n e
2⇡in�/L (6.38)

The Majorana condition is �†
n
= ��n. However, for fermions there is a di↵erent choice:

we could instead ask that they are anti-periodic around the circle. In this case �(� +

L) = ��(�), and the modes n get shifted by 1/2, so the decomposition becomes

�(�) =

r
2⇡

L

X

n2Z+ 1
2

�n e
2⇡in�/L (6.39)

The periodic case is known as Ramond boundary conditions; the anti-periodic case as

Neveu-Schwarz (NS) boundary conditions. In both cases, the modes have canonical

anti-commutation relations

{�n,�m} = �n+m (6.40)

Fermions on the Plane

At this stage, we play the same games that we saw at the beginning of Section 6.2.1;

we Wick rotate, define complex coordinates w = 2⇡�/L+ it as in (6.38), and then map

to the complex plane by introducing z = e�iw. However, something new happens for

the fermion that didn’t happen for the boson: it picks up an extra contribution in the

map from the cylinder to the plane:

�(w) !
r

2⇡z

L
�(z)

In the language of conformal field theory, this arises because � has dimension 1/2.

However, one can also see the reason behind this if we look at the mode expansion on

the plane. With Ramond boundary conditions we get

�(z) =
X

n2Z

�n z
�n�1/2 ) �(e2⇡iz) = ��(z)

We see that the extra factor of 1/2 in the mode expansion leads to the familiar fact

that fermions pick up a minus sign when rotated by 2⇡.

In contrast, for NS boundary conditions we have

�(z) =
X

n2Z+ 1
2

�n z
�n�1/2 ) �(e2⇡iz) = +�(z)
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As we will see, various aspects of the physics depend on which of these boundary

conditions we use. This is clear already when compute the propagators. These are

simplest for the NS boundary condition, where � is single valued on the plane. The

propagator can be computed from the anti-commutation relations (6.40),

h�(z)�(w) i =
X

n,m2Z+ 1
2

z�nw�mh�n�mi

=
1X

n=0

1

z

⇣w
z

⌘n

=
1

z � w
(6.41)

Meanwhile, in the Ramond sector, the result is more complicated as we get an extra

contribution from h�2
0i. This time we find

h�(z)�(w) i =
X

n,m2Z

z�n�1/2w�mh�n�mi

=
1

2
p
zw

+
1X

n=1

z�n�1/2wn�1/2

=
1p
zw

 
1

2
+

1X

n=1

⇣w
z

⌘n
!

=
1

2

p
z/w +

p
w/z

z � w

We see that there propagator inherits some global structure that di↵ers from the Ra-

mond case.

This is the Ising Model in Disguise!

The free fermion that we’ve described provides the solution to one of the classic prob-

lems in theoretical physics: it is the critical point of the 2d Ising model! We won’t

prove this here, but will sketch the extra ingredient that we need to make contact with

the Ising model. It is called the twist operator �(z). It’s role is to switch between the

two boundary conditions that we defined above. Specifically, if we insert a twist oper-

ator at the origin and at infinity then it relates the correlation functions with di↵erent

boundary conditions,

hNS| �(1)�(z)�(w)�(0) |NSi = hRamond|�(z)�(w) |Ramondi

With this definition, one can show that the dimension of the twist operator is h� = 1/16.

This is identified with the spin field of the Ising model. Meanwhile, the fermion � is

related to the energy density.
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One reason for mentioning this connection is that it finally explains the name “Ising

anyons” that we gave to the quasi-particles of the Moore-Read state. In particular,

the “fusion rules” that we met in Section 4.3 have a precise analog in conformal field

theories. (What follows involves lots of conformal field theory talk that won’t make

much sense if you haven’t studied the subject.) In this context, a basic tool is the

operator product expansion (OPE) between di↵erent operators. Every operator lives

in a conformal family determined by a primary operator. The fusion rules are the

answer to the question: if I know the family that two operators live in, what are the

families of operators that can appear in the OPE?

For the Ising model, there are two primary operators other than the identity: these

are � and �. The fusion rules for the associated families are

� ? � = 1� � , � ? � = � , � ? � = 1

But we’ve seen these equations before: they are precisely the fusion rules for the Ising

anyons (4.24) that appear in the Moore-Read state (although we’ve renamed  in (4.24)

as �).

Of course, none of this is coincidence. As we will now see, we can reconstruct the

Moore-Read wavefunction from correlators in a d = 1+1 field theory that includes the

free fermion.

6.3.2 Recovering the Moore-Read Wavefunction

Let’s now see how to write the Moore-Read wavefunction

 MR(zi, z̄i) = Pf

✓
1

zi � zj

◆Y

i<j

(zi � zj)
m e�

P
|zi|2/4l2B

as a correlation function of a d = 1 + 1 dimensional field theory. The new ingredient

is obviously the Pfa�an. But this is easily built from a free, chiral Majorana fermion.

As we have seen, armed with NS boundary conditions such a fermion has propagator

h�(z)�(w) i = 1

z � w

Using this, we can then employ Wick’s theorem to compute the general correlation

function. The result is

h�(z1) . . .�(zN) i = Pf

✓
1

zi � zj

◆
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which is just what we want. The piece that remains is simply a Laughlin wavefunction

and we know how to build this from a chiral boson with propagator

h�(z)�(w) i = � 1

m
log(z � w) + const. (6.42)

The net result is that the Moore-Read wavefunction can be constructed from the prod-

uct of correlation functions

 MR(zi, z̄i) = h�(z1) . . .�(zN) i h : eim�(z1) : . . . : eim�(zN ) : e�⇢0
R
� d

2
z
0
�(z0) i

From this expression, it’s clear that we should identify the electron operator as the

combination

 (z) = �(z) : eim�(z) :

These are fermions for m even and bosons for m odd.

What about the quasi-holes of the theory? We won’t give details but will instead

just state the answer: the quasi-hole operator is related to the twist operator

 qh = �(z) : ei�(z)/2 :

Note that the bosonic vertex operator has a charge which would be illegal in the pure

bosonic theory. However, the multi-valued issues are precisely compensated by similar

properties of the twist, so their product is single valued. This factor of 1/2 explains

how the quasi-holes have half the charge than in the Laughlin state. One can show

that inserting  qh results in an ambiguity. There are a number of di↵erent correlation

functions. These are precisely the di↵erent quasi-hole wavefunctions (4.6) that we met

in Section 4.2.

Finally, the theory also has the elementary excitation that we started with: the

fermion �. This corresponds to a fermionic, neutral excitation of the Moore-Read

state.

Relationship to Chern-Simons Theory

In this section, we just conjured the fermion theory out of thin air and showed that

one can reconstruct the Moore-Read state. It would be nice to do better and show

that it arises as the boundary theory of the corresponding Chern-Simons theory. This

is (fairly) straightforward for the case of the bosonic, m = 1 Moore-Read state. Again,

we won’t be able to describe the details without getting into a lot more conformal field

theory, but here’s a sketch of the basics.
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When m = 1, the propagator (6.42) for the chiral boson has no fractional piece in

its normalisation. Or, said another way, if we normalise the action canonically, so we

rescale �!
p
m�, then the radius of the chiral boson remains R = 1. However, a chiral

boson at this radius has the nice property that it is equivalent to a chiral Dirac fermion.

This, in turn, is the same as two Majorana fermions. The upshot is that the conformal

field theory for m = 1 is really three Majorana fermions: the � that we started with

and two more that come from �. There is an SU(2) symmetry which rotates these

three fermions among themselves. Indeed, it’s known that this is the theory that arises

on the edge of the SU(2) Chern-Simons theory at level k = 2.

As we discussed in Section 5.4, for m > 1 the corresponding Chern-Simons theories

are less clear. Instead, it’s better to think of the quantum Hall states as characterised

by the conformal field theories on the edge. It is conjectured that, in general, the

correct edge theory is precisely the one whose correlation functions reproduce bulk

wavefunctions. Moreover, there are many powerful techniques that have been devel-

oped for conformal field theory which allow one to determine the properties of the

wavefunctions, in particular the braiding of non-Abelian anyons. In the final section,

we paint a cartoon picture of these techniques.

6.4 Looking Forwards: More Conformal Field Theory

In the last few sections, we’ve seen an increasing need to import results from conformal

field theory. This doesn’t improve moving forward! To make progress, we would really

need to first pause and better understand the structure of conformal field theories.

However, this is a large subject which we won’t cover in these lectures. Instead, we will

just attempt to paint a picture with a broad brush while stating a few facts. At the

very least, this will hopefully provide some vocabulary that will be useful if you want

to pursue these ideas further.

Fusion, Braiding and Conformal Blocks

The key idea is that the formal structure underlying non-Abelian anyons that we de-

scribed in Section 4.3 also appears in conformal field theory (CFT). Indeed, it was first

discovered in this context65.

The role of the di↵erent kinds of anyons is now played by the di↵erent representations

of the conformal algebra (by which we mean either the Virasoro algebra, or something

65See the paper “Classical and Quantum Conformal Field Theory”, Comm. Math. Phys 123, 177
(1989) by Greg Moore and Nati Seiberg, or their subsequent “Lectures on RCFT” which can be
downloaded here.
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larger, such as a current algebra) that appear in a given conformal field theory. Each

of these representations can be labelled by a highest-weight state called a primary

operator, Oi. A rational conformal field theory is one which has a finite number of

these primary operators.

Next up, we need to define fusion. We already met this briefly in the previous

section in the context of the Ising model. If you have two operators which live within

representations associated to the primary operators Oi and Oj respectively, then the

operator product expansion can contain operators in other representations associated

to Ok. We write these fusion rules, following (4.20), as

Oi ?Oj =
X

k

Nk

ij
Ok

where Nk

ij
are integers.

Similarly, we can define braiding matrices for a CFT. The general idea of the braiding

is as follows. Consider a CFT which has both left-moving and right-moving modes. In

general, correlation functions of primary operators can be decomposed as

h
NY

i=1

Oi(zi, z̄i) i =
X

p

|Fp(zi)|2

Here the Fp(zi) are multi-branched analytic functions of the zi which depend on the

set of list of operators inserted on the left-hand-side. They are known as conformal

blocks. In a rational conformal field theory (which is defined to have a finite number of

primary operators) the sum over p runs over a finite range.

Now vary the zi, which has the e↵ect of exchanging the particles. (In the context

of the quantum Hall wavefunctions, we would exchange the positions of the quasi-hole

insertions.) The conformal blocks will be analytically continued onto di↵erent branches.

However, the final answer can be written in terms of some linear combination of the

original function. This linear map is analogous to the braiding of anyons. One of the

main results of Moore and Seiberg is that there are consistency relations on the kinds

of braiding that can arise. These are precisely the pentagon and hexagon relations that

we described in Section 4.3.

We’ve already seen two examples of this. For the Laughlin states with quasi-holes,

there is a single conformal block but it is multi-valued due to the presence of the factorQ
(⌘i�⌘j)1/m involving the quasi-hole positions ⌘. Meanwhile, for the Moore-Read state

there are multiple conformal blocks corresponding to the di↵erent wavefunctions (4.6).
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In both these cases, the conformal field theory gave the wavefunction in a form in which

all the monodromy properties are explicit and there is no further contribution from the

Berry phase. (Recall the discussion at the end of Section 3.2.3.) It is conjectured that

this is always the case although, to my knowledge, there is no proof of this.

WZW Models

The most important conformal field theories for our purposes are known as WZW

models. (The initials stand for Wess, Zumino and Witten. Sometimes Novikov’s name

breaks the symmetry and they are called WZNW models.) Their importance stems in

large part from their relationship to non-Abelian Chern-Simons theories. These models

describe the modes which live at the edge of a non-Abelian Chern-Simons theory with

boundary. Further, it turns out that the braiding of their conformal blocks coincides

with the braiding of Wilson lines in the Chern-Simons theory that we briefly described

in Section 5.4.4.

The WZW models are defined by the choice of gauge group G, which we will take

to be SU(N), and a level k 2 Z. These theories are denoted as SU(N)k. The CFT

for a compact boson that we met in Section 6.2.1 is a particularly simple example of a

WZW model model with U(1)m.

Unusually for conformal field theories, WZW models have a Lagrangian description

which can be derived using the basic method that we saw in Section 6.1.2 for U(1)

Chern-Simons theories. The Lagrangian is

S =
k

4⇡

Z
d2x tr

⇣
g�1@tg g

�1@xg � v(g�1@xg)
2
⌘
+ 2⇡k w(g)

Here g 2 G is a group valued field in d = 1 + 1 dimensions. The first term describes a

chiral sigma model whose target space is the group manifold G. If we’re working with

a quantum Hall fluid on a disc then this theory lives on the R⇥ S1 boundary.

The second term is more subtle. It is defined as the integral over the full three-

dimensional manifold M on which the quantum Hall fluid lives,

w(g) =
1

24⇡2

Z

M
d3x ✏µ⌫⇢tr (g�1@µg g

�1@⌫g g
�1@⇢g)

which we recognise as the winding (5.47) that we saw earlier. Although the quantum

Hall fluid provides us with a natural 3-manifold M, taking the level k 2 Z ensures that

the two-dimensional theory on the boundary is actually independent of our choice ofM.

In this way, the WZW model is, despite appearances, an intrinsically two-dimensional

theory.
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The central charge of the SU(N)k WZW model is

c =
k(N2 � 1)

k +N
The theories are weakly coupled as k ! 1 where the central charge is equal to the

dimension of the group SU(N). Theories becomes strongly coupled as k gets smaller.

In particular, for k = 0 we have c = 0. This reflects that the fact that the sigma-model

on the group manifold without any topological term flows to a gapped theory in the

infra-red.

The WZW models have a large symmetry G known as a current algebra. Usually

in quantum field theory, a symmetry implies a current Jµ which obeys @µJµ = 0. The

symmetry of the WZW model is much stronger as the left-moving and right-moving

parts of the current are independently conserved. In terms of complex coordinates,

this means that we have holomorphic and anti-holomorphic currents J = @g g�1 and

J̄ = g�1@̄g obeying

@̄J(z) = 0 and @J̄(z̄) = 0

This is very similar to the conditions on the stress-tensor that you first meet in the

study of CFT. In that case, one writes the stress tensor in a Laurent expansion and

the resulting modes obey the Virasoro algebra. Here we do the same thing. This time

the resulting modes obey

[Ja

n
, J b

m
] = ifab

c
J c

n+m
+ kn�ab�n+m (6.43)

Here a, b label the di↵erent generators of the Lie algebra associated to G and fab

c
are

the structure constants of the Lie algebra. Meanwhile, n,m label the modes of the

current algebra. Note that if we restrict to the n,m = 0 sector then this is contains

the Lie algebra. Including all the modes gives an infinite dimensional generalisation of

the Lie algebra known as the Kac-Moody algebra.

Both the Kac-Moody algebra and the Virasoro algebra are infinite. But the Kac-

Moody algebra should be thought of as bigger. Indeed, one can build the generators of

the Virasoro algebra from bi-linears of the current using what’s known as the Sugawara

construction. We therefore work with representations of (6.43), each of which splits

into an infinite number of representations of the Virasoro algebra.

The representations of (6.43) are characterised by their highest weight state, a pri-

mary operator. Each of these can be characterised by the way it transforms under

the zero modes. In other words, the primary operators of the Kac-Moody algebra are

labelled by representations of the underlying Lie algebra. The question that remains

is: what are the primary operators?
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In fact, we’ve already seen the answer to this in Section 5.4.4: the primary operators

are the same as the non-trivial Wilson lines allowed in the bulk. For G = SU(2),

this means that the primary operators are labelled by their spin j = 0, 12 , . . . ,
k

2 . For

G = SU(N), the primary operators are labelled by Young diagrams whose upper row

has no more than k boxes.

Armed with this list of primary operators, we can start to compute correlation func-

tions and their braiding. However, there are a number of powerful tools that aid in this,

not least the Knizhnik-Zamolodchikov equations, which are a set of partial di↵erential

equations which the conformal blocks must obey. In many cases, these tools allow one

to determine completely the braiding properties of the conformal blocks.

To end, we will simply list some of the theories that have been useful in describing

fractional quantum Hall states

• SU(2)1: The WZW models at level k = 1 have Abelian anyons. For SU(2)1, the

central charge is c = 1 which is just that of a free boson. It turns out that theory

describes the Halperin (2, 2, 1) spin-singlet state that we met in Section 3.3.4

• SU(2)2: The central charge is c = 3/2, which is the same as that of a free boson

and a free Majorana fermion. But this is precisely the content that we needed to

describe the Moore-Read states. The SU(2)2 theory describes the physics of the

state at filling fraction ⌫ = 1. For filling fraction ⌫ = 1/2, we should resort to

the description of the CFT that we met in the last section as U(1)2 ⇥ Ising.

• SU(2)k/U(1): One can use the WZW models as the starting point to construct

further conformal field theories known as coset models. Roughly, this means

that you mod out by a U(1) symmetry. These are sometimes referred to as Zk

parafermion theories. They are associated to the p = k-clustered Read Rezayi

states that we met in Section 4.2.3. In particular, the Z3 theory exhibits Fibonacci

anyons.
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