
3. The Fractional Quantum Hall E↵ect

We’ve come to a pretty good understanding of the integer quantum Hall e↵ect and

the reasons behind it’s robustness. Indeed, some of the topological arguments in the

previous chapter are so compelling that you might think the Hall resistivity of an

insulator has to be an integer. But each of these arguments has a subtle loophole and

ultimately they hold only for non-interacting electrons. As we will now see, much more

interesting things can happen when we include interactions.

As with the integer quantum Hall e↵ect, these interesting things were first discovered

by experimenters rather than theorists. Indeed, it came as a great surprise to the

community when, in 1982, plateaux in the Hall resistivity were seen at non-integer

filling fractions. These plateaux were first seen at filling fraction ⌫ = 1
3 and 2

3 , and

later at ⌫ = 1
5 ,

2
5 ,

3
7 ,

4
9 ,

5
9 ,

3
5 , . . . in the lowest Landau level and ⌫ = 4

3 ,
5
3 ,

7
5 ,

5
2 ,

12
5 ,

13
5 , . . .

in higher Landau levels, as well as many others. There are now around 80 quantum

Hall plateaux that have been observed. A number of these are shown below16:

There’s two things that we can say immediately. First, the interactions between elec-

trons must be playing some role. And second, the answer to why these plateaux form

is likely to be very hard. Let’s see why.

Suppose, for the sake of argument, that we have ⌫ < 1 so that the lowest Landau

level is partially filled. Each Landau level can house N = AB/�0 (spin polarised)

16This data is from R. Willett, J. P. Eisenstein, H. L. Stormer, D. C. Tsui, A. C. Gossard and
H. English “Observation of an Even-Denominator Quantum Number in the Fractional Quantum Hall
E↵ect”, Phys. Rev. Lett. 59, 15 (1987).
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Figure 25: Density of states in the lowest

Landau level without interactions
Figure 26: ...and with interactions (with

only a single gap at ⌫ = 1/3 shown.

electrons, where B is the magnetic field and A is the area of the sample. This is a

macroscopic number of electrons. The number of ways to fill ⌫N of these states is� N
⌫N

�
which, using Stirling’s formula, is approximately

�
1
⌫

�⌫N � 1
1�⌫

�(1�⌫)N
. This is a

ridiculously large number: an exponential of an exponential. The ground state of any

partially filled Landau level is wildly, macroscopically degenerate.

Now consider the e↵ect of the Coulomb interaction between electrons,

VCoulomb =
e2

4⇡✏0|ri � rj|
(3.1)

On general grounds, we would expect that such an interaction would lift the degen-

eracy of ground states. But how to pick the right one? The approach we’re taught

as undergraduates is to use perturbation theory. But, in this case, we’re stuck with

extraordinarily degenerate perturbation theory where we need to diagonalise a macro-

scopically large matrix. That’s very very hard. Even numerically, no one can do this

for more than a dozen or so particles.

We can, however, use the experiments to intuit what must be going on. As we

mentioned above, we expect the electron interactions to lift the degeneracy of the

Landau level, resulting in a spectrum of states of width ⇠ ECoulomb. The data would

be nicely explained if this spectrum had gaps at the filling fractions ⌫ where Hall states

are seen. In the picture above, we’ve depicted just a single gap at ⌫ = 1/3. Presumably

though there are many gaps at di↵erent fractions: the more prominent the plateaux,

the larger the gap.

Then we can just re-run the story we saw before: we include some disorder, which

introduces localised states within the gap, which then gives rise both to the plateaux
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in ⇢xy and the observed ⇢xx = 0. The bigger the gap, the more prominent the observed

plateaux. This whole story requires the hierarchy of energy scales,

~!B � ECoulomb � Vdisorder

We will assume in what follows that this is the case. The question that we will focus

on instead is: what is the physics of these fractional quantum Hall states?

In what follows, we will take advantage of the di�culty of a direct theoretical attack

on the problem to give us license to be more creative. As we’ll see, the level of rigour

in the thinking about the fractional quantum Hall e↵ect is somewhat lower than that

of the integer e↵ect. Instead, we will paint a compelling picture, using a number of

di↵erent approaches, to describe what’s going on.

3.1 Laughlin States

The first approach to the fractional quantum Hall e↵ect was due to Laughlin17, who

described the physics at filling fractions

⌫ =
1

m

with m an odd integer. As we’ve explained above, it’s too di�cult to diagonalise the

Hamiltonian exactly. Instead Laughlin did something very bold: he simply wrote down

the answer. This was motivated by a combination of physical insight and guesswork.

As we will see, his guess isn’t exactly right but, it’s very close to being right. More

importantly, it captures all the relevant physics.

3.1.1 The Laughlin Wavefunction

Laughlin’s wavefunction didn’t come out of nowhere. To motivate it, let’s start by

considering an illuminating toy model.

Two Particles

Consider two particles interacting in the lowest Landau level. We take an arbitrary

central potential between them,

V = V (|r1 � r2|)

Recall that in our first courses on classical mechanics we solve problems like this by

using the conservation of angular momentum. In quantum physics, this means that we

17The original paper is “Anomalous quantum Hall e↵ect: An Incompressible quantum fluid with
fractionally charged excitations” , Phys. Rev. Lett. 50 (1983) 1395.
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work with eigenstates of angular momentum. As we saw in Section 1.4, if we want to

talk about angular momentum in Landau levels, we should work in symmetric gauge.

The single particle wavefunctions in the lowest Landau level take the form (1.30)

 m ⇠ zme�|z|2/4l2B

with z = x � iy. These states are localised on a ring of radius r =
p
2mlB. The

exponent m of these wavefunctions labels the angular momentum. This can be seen by

acting with the angular momentum operator (1.31),

J = i~
✓
x
@

@y
� y

@

@x

◆
= ~(z@ � z̄@̄) ) J m = ~m m

Rather remarkably, this information is enough to solve our two-particle problem for

any potential V ! As long as we neglect mixing between Landau levels (which is valid

if ~!B � V ) then the two-particle eigenstates for any potential must take the form

 ⇠ (z1 + z2)
M(z1 � z2)

me�(|z1|2+|z2|2)/4l2B

where M,m are non-negative integers, with M determining the angular momentum of

the centre of mass, and m the relative angular momentum. Note that here, and below,

we’ve made no attempt to normalise the wavefunctions.

It’s surprising that we can just write down eigenfunctions for a complicated potential

V (r) without having to solve the Schrödinger equation. It’s even more surprising that

all potentials V (r) have the same energy eigenstates. It is our insistence that we lie in

the lowest Landau level that allows us to do this.

Many-Particles

Unfortunately, it’s not possible to generalise arguments similar to those above to

uniquely determine the eigenstates for N > 2 particles. Nonetheless, on general

grounds, any lowest Landau level wavefunction must take the form,

 (z1, . . . , zn) = f(z1, . . . , zN)e
�

PN
i=1 |zi|2/4l2B (3.2)

for some analytic function f(z). Moreover, this function must be anti-symmetric under

exchange of any two particle zi $ zj, reflecting the fact that the underlying electrons

are fermions.
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Laughlin’s proposal for the ground state wavefunction at filling fraction ⌫ = 1/m is:

 (zi) =
Y

i<j

(zi � zj)
me�

Pn
i=1 |zi|2/4l2B (3.3)

Clearly this is anti-symmetric when m is an odd integer. For m an even integer, it

can be thought of as a quantum Hall state for bosons. The pre-factor vanishes with

a zero of order m whenever two electrons come together. Meanwhile, the exponential

factor decreases quickly whenever the electrons get too far away from the origin. The

wavefunction is peaked on configurations that balance these two e↵ects.

Let’s first show that the wavefunction has the desired filling fraction. To do this,

focus on what the wavefunction is telling us about a single particle, say z1. The terms

that depend on z1 in the pre-factor of the Laughlin wavefunction are

Y

i<j

(zi � zj)
m ⇠

NY

i=2

(z1 � zi)
m

which tells us that there are m(N � 1) powers of z1. This, in turn, tells us that the

maximum angular momentum of the first particle is m(N � 1) and so its maximum

radius is R ⇡
p
2mNlB. Correspondingly, the area of the droplet is A ⇡ 2⇡mNl2

B

(where we’ve replaced N � 1 with N). Recall that the number of states in the full

Landau level is AB/�0 = A/2⇡l2
B
⇡ mN . This argument gives us the filling fraction

⌫ =
1

m
(3.4)

as promised.

It can be shown numerically that, at least for small numbers of particles, this wave-

function has greater than 99% overlap with the true ground state arising arising from

both the Coulomb repulsion (3.1) as well as a number of other repulsive potentials V .

Heuristically this occurs because the wavefunction has a zero of order m whenever two

electrons coincide. Of course, a single zero is guaranteed by Pauli exclusion, but the

Laughlin wavefunction does more. It’s as if each electron carves out a space around it

which helps it minimise the energy for repulsive potentials.

The high numerical overlap with the true ground state is often put forward as strong

evidence for the veracity of the Laughlin wavefunction. While it’s certainly impressive,

this isn’t the reason that the Laughlin wavefunction is interesting. Finding the ground

state numerically is di�cult and can only be done for a couple of dozen particles. While

this may provide 99.99% overlap with the Laughlin wavefunction, by the time we get
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to 1011 particles or so, the overlap is likely to be essentially zero. Instead, we should

think of the Laughlin wavefunctions as states which lie in the same “universality class”

as the true ground state. We will explain what this means in Section 3.2 but, roughly

speaking, it is the statement that the states have the same fractional excitations and

the same topological order as the true ground states.

The Fully Filled Landau Level

From the arguments above, the Laughlin state (3.3) with m = 1 should describe a

completely filled Landau level. But this is something we can compute in the non-

interacting picture and it provides a simple check on the Laughlin ansatz.

Let us first review how to build the many-particle wavefunction for non-interacting

electrons. Suppose that N electrons sit in states  i(x), with 1 = 1, . . . , N . Because

the electrons are fermions, these states must be distinct. To build the many-particle

wavefunction, we need to anti-symmetrise over all particles. This is achieved by the

Slater determinant,

 (xi) =

�����������

 1(x1)  1(x2) . . .  1(xN)

 2(x1)  2(x2) . . .  2(xN)
...

...

 N(x1)  N(x2) . . .  N(xN)

�����������

(3.5)

We can now apply this to the lowest Landau level, with the single-particle states built

up with successive angular momentum quantum numbers

 m(z) ⇠ zm�1e�|z|2/4l2B m = 1, . . . , N

The resulting Slater determinant gives a state of the general form (3.2), with f(zi)

given by a function known as the Vandermonde determinant,

f(zi) =

�����������

z01 z02 . . . z0
N

z1 z2 . . . z3
...

...

zN�1
1 zN�1

2 . . . zN�1
N

�����������

=
Y

i<j

(zi � zj)

To see that the determinant is indeed given by the product factor, note that
Q

i<j
(zi�zj)

is the lowest order, fully anti-symmetric polynomial (because any such polynomial must

have a factor (zi�zj) for each pair i 6= j). Meanwhile, the determinant is also completely
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anti-symmetric and has the same order as the product factor. This ensures that they

must be equal up to an overall numerical factor which can be checked to be 1. We see

that m = 1 Laughlin state does indeed agree with the wavefunction for a completely

filled lowest Landau level.

The Competing Phase: The Wigner Crystal

The Laughlin state should be thought of as a liquid phase of electrons. In fact, strictly

speaking, it should be thought of as an entirely new phase of matter, distinguished by

a property called topological order which we’ll discuss in Section 3.2.5. But, if you’re

looking for a classical analogy, a liquid is the best.

There is a competing solid phase in which the electrons form a two-dimensional

triangular lattice, known as a Wigner crystal. Indeed, before the discovery of the

quantum Hall e↵ect, it was thought that this would be the preferred phase of electrons

in high magnetic fields. It’s now known that the Wigner crystal has lower energy than

the Laughlin state only when the densities of electrons are low. It is observed for filling

fractions ⌫ . 1
7

3.1.2 Plasma Analogy

The Laughlin wavefunctions (3.3) are very easy to write down. But it’s hard to actually

compute with them. The reason is simple: they are wavefunctions for a macroscopic

number of particles which means that if we want to compute expectation values of

operators, we’re going to have to do a macroscopic number of integrals
R
d2zi. And

that’s di�cult.

For example, suppose that we want to figure out the average density of the quantum

Hall droplet. We need to compute the expectation value of the density operator

n(z) =
NX

i=1

�(z � zi)

This is given by

h |n(z)| i =
R Q

N

i=1 d
2zi n(z)P [zi]Q

N

i=1 d
2zi P [zi]

(3.6)

where we’ve introduced the un-normalised probability density associated to the Laugh-

lin wavefunction

P [zi] =
Y

i<j

|zi � zj|2m
l2m
B

e�
P

i |zi|2/2l2B (3.7)

The integrals in (3.6) are hard. How to proceed?
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The key observation is that the expectation value (3.6) has the same formal structure

as the kind of things we compute in classical statistical mechanics, with the denominator

interpreted as the partition function,

Z =
NY

i=1

d2zi P [zi]

Indeed, we can make this analogy sharper by writing the probability distribution (3.7)

so it looks like a Boltzmann distribution function,

P [zi] = e��U(zi)

with

�U(zi) = �2m
X

i<j

log

✓
|zi � zj|

lB

◆
+

1

2l2
B

NX

i=1

|zi|2

Of course, this hasn’t helped us do the integrals. But the hope is that perhaps we can

interpret the potential U(zi) as something familiar from statistical physics which will

at least provide us with some intuition for what to expect. And, indeed, this does turn

out to be the case, but only if we pick � — which, in a statistical mechanics context is

interpreted as inverse temperature — to take the specific value

� =
2

m
(3.8)

I stress that the quantum Hall state isn’t placed at a finite temperature. This is an

auxiliary, or fake, “temperature”. Indeed, you can tell it’s not a real temperature

because it’s dimensionless! To compensate, the potential is also dimensionless, given

by

U(zi) = �m2
X

i<j

log

✓
|zi � zj|

lB

◆
+

m

4l2
B

NX

i=1

|zi|2 (3.9)

We’ll now show that this is the potential energy for a plasma of charged particles

moving in two-dimensions, where each particle carried electric charge q = �m.

The first term in (3.9) is the Coulomb potential between two particles of charge

q when both the particle and the electric field lines are restricted to lie in a two-

dimensional plane. To see this, note that Poisson equation in two dimensions tells us

that the electrostatic potential generated by a point charge q is

�r2� = 2⇡q�2(r) ) � = �q log

✓
r

lB

◆

The potential energy between two particles of charge q is then U = q�, which is indeed

the first term in (3.9).
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The second term in (3.9) describes a neutralising background of constant charge. A

constant background of charge density ⇢0 would have electrostatic potential obeying

�r2� = 2⇡⇢0. Meanwhile, the second term in the potential obeys

�r2

✓
|z|2
4l2

B

◆
= � 1

l2
B

which tells us that each electron feels a background charge density

⇢0 = � 1

2⇡l2
B

(3.10)

Note that this is equal (up to fundamental constants) to the background flux B in the

quantum Hall sample.

Now we can use our intuition about this plasma. To minimise the energy, the plasma

will want to neutralise, on average, the background charge density. Each particle carries

charge q = �m which means that the compensating density of particles n should be

mn = ⇢0, or

n =
1

2⇡l2
B
m

This is the expected density of a state at filling fraction ⌫ = 1/m. This argument has

also told us something new. Naively, the form of the Laughlin wavefunction makes it

look as if the origin is special. But that’s misleading. The plasma analogy tells us that

the average density of particles is constant.

The plasma analogy can also help answer more detailed questions about the variation

of the density (3.6) on shorter distance scales. Intuitively, we might expect that at

low temperatures (keeping the density fixed), the plasma forms a solid, crystal like

structure, while at high temperatures it is a liquid. Alternatively, at low densities

(keeping the temperature fixed) we would expect it to form a solid while, at high

densities, it would be a liquid. To determine the structure of the Laughlin wavefunction,

we should ask which phase the plasma lies in at temperature � = 2/m and density

n = 1/2⇡l2
B
m.

This is a question which can only be answered by numerical work. It turns out that

the plasma is a solid when m & 70. For the low m of interest, in particular m = 3 and

5, the Laughlin wavefunction describes a liquid. (Note that this is not the same issue as

whether the Wigner crystal wavefunction is preferred over the Laughlin wavefunction:

it’s a question of whether the Laughlin wavefunction itself describes a liquid or solid).
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3.1.3 Toy Hamiltonians

The Laughlin state (3.3) is not the exact ground state of the Hamiltonian with Coulomb

repulsion. However, it is possible to write down a toy Hamiltonian whose ground state

is given by the Laughlin state. Here we explain how to do this, using some tools which

will also provide us with a better understanding of the general problem.

Let’s go back to the problem of two particles interacting through a general central

potential V (|r1 � r2|). As we saw in Section 3.1.1, in the lowest Landau level the

eigenstates for any potential are the same, characterised by two non-negative integers:

the angular momentum of the centre of mass M and the relative angular momentum

m,

|M,mi ⇠ (z1 + z2)
M(z1 � z2)

me�(|z1|2+|z2|2)/4l2B

We should take m odd if the particles are fermions, m even if they are bosons.

The eigenvalues of the potential V are given by

vm =
hM,m|V |M,mi
hM,m|M,mi (3.11)

These eigenvalues are sometimes referred to as Haldane pseudopotentials. For central

potentials, they do not depend on the overall angular momentum M .

These eigenvalues capture a crude picture of the spatial profile of the potential. This

is because, as we have seen, the wavefunctions |M,mi are peaked on a circle of radius

r ⇡
p
2mlB. Correspondingly, the eigenvalues are roughly

vm ⇡ V (r =
p
2mlB) (3.12)

This means that typically the vm are positive for a repulsive potential and negative for

an attractive potential, in each case falling o↵ as V (r) as m increases.

Importantly, however, the eigenvalues are discrete. This simple fact is telling us

some interesting physics: it means that each of the states |M,mi can be thought of

as a bound state of two particles, even if the potential is repulsive! This is in stark

contrast to quantum mechanics in the absence of a magnetic field where there are no

discrete-energy bound states for a repulsive potential, only scattering states with a

continuous spectrum. But the magnetic field changes this behaviour.
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Given the eigenvalues vm, we can always reconstruct the potential V . In this lowest

Landau level, there is no kinetic energy and the potential is the only contribution to

the Hamiltonian. It’s useful to write it as

H =
X

m0

vm0Pm0 (3.13)

where Pm is the operator which projects onto states in which the two particles have

relative angular momentum m.

Now we can just pick whatever vm we like to design our own Hamiltonians. Of course,

they may not be very realistic when written in terms of V (r) but we won’t let that

bother us too much. In this spirit, consider the choice

vm0 =

(
1 m0 < m

0 m0 � m
(3.14)

This Hamiltonian means that you pay an energy cost if the relative angular momentum

of the particles dips below some fixed value m. But it costs you nothing to have a high

angular momentum. In position space, the equation (3.12) tells us that there’s a finite

energy cost if the particles get too close.

Toy Hamiltonians for Many Particles

We can also use the pseudopotentials to construct Hamiltonians for N particles. To

do this, we introduce the operator Pm(ij). This projects the wavefunction onto the

state in which the ith and jth particles have relative angular momentum m. We then

construct the Hamiltonian as

H =
1X

m0=1

X

i<j

vm0Pm0(ij) (3.15)

Note, however, that Pm(ij) and Pm(kj) do not commute with each other. This is what

makes these many-particle Hamiltonians di�cult to solve.

Now consider the many-particle Hamiltonian with vm0 given by (3.14). This time,

you pay an energy cost whenever the relative angular momentum of any pair of particles

is less than m. You can avoid this energy cost by including a factor of (zi � zj)m for

each pair of particles, and writing down a wavefunction of the form

 (zi) = s(zi)
Y

i<j

(zi � zj)
m e�

P
i |zi|2/4l2B (3.16)

where s(zi) can be any symmetric polynomial in the zi to preserve the statistics of the

particles. All such wavefunctions have the vanishing energy.
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So far this doesn’t pick out the Laughlin state, which has s(zi) = 1, as the ground

state. But there is something special about this state: among all states (3.16), it is the

most compact. Indeed, we saw in Section 3.1.1 that it takes up an area A = 2⇡mNl2
B
.

Any state with s(zi) 6= 1 necessarily spreads over a larger spatial area. This means that

the Laughlin wavefunction will be the ground state if we also add a confining potential

to the system.

We can state this in a slightly di↵erent way in terms of angular momentum. We know

that states with higher angular momentum sit at larger radius. This means that we

can take the total angular momentum operator J as a proxy for the confining potential

and consider the Hamiltonian

H =
m�1X

m0=1

X

i<j

Pm0(ij) + !J (3.17)

The Laughlin wavefunction has the lowest energy: E0 =
1
2!mN(N�1). Any wavefunc-

tion of the form (3.16) with s(zi) 6= 1 has spatial extent larger than the ground state,

and hence higher angular momentum, and so costs extra energy due to the second

term; any wavefunction with spatial extent smaller than the Laughlin wavefunction

necessarily has a pair of particles with relative angular momentum less than m and so

pays an energy cost due to the first term.

The fact that it costs a finite energy to squeeze the wavefunction is expected to

hold for more realistic Hamiltonians as well. It is usually expressed by saying that

the quantum Hall fluid is incompressible. This is responsible for the gap in the bulk

spectrum described in the introduction of this section. However, it turns out that the

dynamics of states with s(zi) 6= 1 contains some interesting information. We’ll return

to this in Section 6.1.

3.2 Quasi-Holes and Quasi-Particles

So far, we’ve only discussed the ground state of the ⌫ = 1/m quantum Hall systems.

Now we turn to their excitations. There are two types of charged excitations, known

as quasi-holes and quasi-particles. We discuss them in turn.

Quasi-Holes

The wavefunction describing a quasi-hole at position ⌘ 2 C is

 hole(z; ⌘) =
NY

i=1

(zi � ⌘)
Y

k<l

(zk � zl)
m e�

Pn
i=1 |zi|2/4l2B (3.18)
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We see that the electron density now vanishes at the point ⌘. In other words, we have

created a “hole” in the electron fluid. More generally, we can introduce M quasi-holes

in the quantum Hall fluid at positions ⌘j with j = 1, . . . ,M , with wavefunction

 M�hole(z; ⌘) =
MY

j=1

NY

i=1

(zi � ⌘j)
Y

k<l

(zk � zl)
m e�

Pn
i=1 |zi|2/4l2B (3.19)

The quasi-hole has a remarkable property: it carries a fraction of the electric charge of

the electron! In our convention, the electron has charge �e; the quasi-hole has charge

e⇤ = +e/m.

A heuristic explanation of the fractional charge follows from noting that if we place

m quasi-holes at the same point ⌘ then the wavefunction becomes

 m�hole(z; ⌘) =
NY

i=1

(zi � ⌘)m
Y

k<l

(zk � zl)
m e�

Pn
i=1 |zi|2/4l2B

If ⌘ was a dynamical variable, as opposed to a parameter, this is just the original

wavefunction with an extra electron at position ⌘. But because ⌘ is not a dynamical

variable, but instead a parameter, it’s really a Laughlin wavefunction that describes a

deficit of a single electron at position ⌘. This means that m holes act like a deficit of a

single electron, so a single quasi-hole is 1/mth of an electron. It should therefore carry

charge +e/m.

We can make exactly the same argument in the context of the plasma analogy for

the quasi-hole wavefunction (3.18). The resulting plasma potential energy has an extra

term compared to (3.9),

U(zi) = �m2
X

i<j

log

✓
|zi � zj|

lB

◆
�m

X

i

log

✓
|zi � ⌘|

lB

◆
+

m

4l2
B

NX

i=1

|zi|2

This extra term looks like an impurity in the plasma with charge 1. The particles

in the plasma are expected to swarm around and screen this impurity. Each particle

corresponds to a single electron, but has charge q = �m in the plasma. The impurity

carries �1/m the charge of the electron. So the e↵ective charge that’s missing is +1/m;

this is the charge of the quasi-hole.

The existence of fractional charge is very striking. We’ll discuss this phenomenon

more in the following section, but we’ll postpone a direct derivation of fractional charge

until Section 3.2.3 where we also discuss the related phenomenon of fractional statistics.
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Quasi-Particles

There are also excitations of the quantum Hall fluid which carry charge e⇤ = �e/m,

i.e. the same sign as the charge of an electron. These are quasi-particles.

It seems to be somewhat harder to write down quasi-particle eigenstates compared

to quasi-hole eigenstates. To see the problem, note that we want to increase the density

of electrons inside the Hall fluid and, hence, decrease the relative angular momentum

of some pair of electrons. In the case of the quasi-hole, it was simple enough to increase

the angular momentum: for example, for a hole at the origin we simply need to multiply

the Laughlin wavefunction by the factor
Q

i
zi. But now that we want to decrease the

angular momentum, we’re not allowed divide by
Q

i
zi as the resulting wavefunction

is badly singular. Nor can we multiply by
Q

i
z̄i because, although this will decrease

the angular momentum, the resulting wavefunction no longer sits in the lowest Landau

level. Instead, a simple way to reduce the degree of a polynomial is to di↵erentiate.

This leads us to a candidate wavefunction for the quasi-particle,

 particle(z, ⌘) =

"
NY

i=1

✓
2
@

@zi
� ⌘̄

◆Y

k<l

(zk � zl)
m

#
e�

Pn
i=1 |zi|2/4l2B (3.20)

Here the derivatives act only on the polynomial pre-factor; not on the exponential. The

factor of 1/2 in front of the position of the quasi-particle comes from a more careful

analysis.

The quasi-particle wavefunction (3.20) is not quite as friendly as the quasi-hole wave-

function (3.18). For a start, the derivatives make it harder to work with and, for this

reason, we will mostly derive results for quasi-holes in what follows. Further, the quasi-

hole wavefunction (3.18) is an eigenstate of the toy Hamiltonian (3.15) (we’ll see why

shortly) while (3.20) is not. In fact, as far as I’m aware, the quasi-particle eigenstate

of the toy Hamiltonain is not known.

Neutral Excitations

Before we proceed, we mention in passing that there are also neutral, collective exci-

tations of the quantum Hall fluid in which the density and charge ripples in wave-like

behaviour over large distances. These are similar to the phonon excitations in super-

fluids, except the energy cost does not vanish as the momentum ~k ! 0. The fact

that these modes are gapped at k = 0 is the statement that the quantum Hall liquid

is incompressible. In both cases, the energy-momentum dispersion relation exhibits

a minimum at some finite wavevector k, referred to as a roton in superfluids and a

magneto-roton in quantum Hall fluids. In both cases this is indicating the desire of the
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Figure 27: A cartoon of the dispersion

relation in superfluids...

Figure 28: ...and for neutral excitations

in quantum Hall fluids.

liquid to freeze to a solid – which, for the quantum Hall fluid is a Wigner crystal. In

both cases, this desire is ultimately thwarted by quantum fluctuations.

In the quantum Hall fluid, the minimum occurs at momentum k ⇠ 1/lB. In recent

years, experiment has shown there is a rich structure underlying this. In particular, at

other filling fractions (which we will discuss in Section 3.3) more than one minima is

observed. We will not discuss these neutral excitations in these lectures.

3.2.1 Fractional Charge

The existence of an object which carries fractional electric charge is rather surprising.

In this section, we’ll explore some consequences.

Hall Conductivity Revisited

The most basic question we should ask of the Laughlin state is: does it reproduce the

right Hall conductivity? To see that it does, we can repeat the Corbino disc argument

of Section 2.2.2. As before, we introduce a flux �(t) into the centre of the ring which

we slowly increase from zero to �0. This induces a spectral flow so that when we reach

� = �0 we sit in a new eigenstate of the Hamiltonian in which the angular momentum

of each electron increased by one. This is achieved by multiplying the wavefunction

by the factor
Q

i
zi. We could even do this procedure in the case where both the inner

circle and the inserted solenoid become vanishingly small. In this case, multiplying byQ
i
zi gives us precisely the quasi-hole wavefunction (3.18) with ⌘ = 0.

As an aside, note that we can also make the above argument above tells us that

the quasi-hole wavefunction with ⌘ = 0 must be an eigenstate of the toy Hamiltonian

(3.17), and indeed it is. (The wavefunction with ⌘ 6= 0 is also an eigenstate in the

presence of the confining potential if we replace ⌘ ! ⌘ei!t, which tells us that the

confining potential causes the quasi-hole to rotate).
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We learn that as we increase � from zero to �0, a particle of charge �e/m is trans-

ferred from the inner to the outer ring. This means that a whole electron is transferred

only when the flux is increased by m�0 units. The resultant Hall conductivity is

�xy =
e2

2⇡~
1

m

as expected.

One can also ask how to reconcile the observed fractional Hall conductivity with

the argument for integer quantisation based on Chern numbers when the Hall state is

placed on a torus. This is slightly more subtle. It turns out that the ground state of the

quantum Hall system on a torus is degenerate, hence violating one of the assumptions

of the computation of the Chern number. We’ll discuss this more in Section 3.2.5.

Measuring Fractional Electric Charge

It’s worth pausing to describe in what sense the quasi-particles of the quantum Hall

fluid genuinely carry fractional charge. First, we should state the obvious: we haven’t

violated any fundamental laws of physics here. If you isolate the quantum Hall fluid

and measure the total charge you will always find an integer multiple of the electron

charge.

Nonetheless, if you inject an electron (or hole) into the quantum Hall fluid, it will

happily split into m seemingly independent quasi-particles (or quasi-holes). The states

have a degeneracy labelled by the positions ⌘i of the quasi-objects. Moreover, these

positions will respond to outside influences, such a confining potentials or applied elec-

tric fields, in the sense that the you can build solutions to the Schrödginer equation by

endowing the positions with suitable time dependence ⌘i(t). All of this means that the

fractionally charged objects truly act as independent particles.

The fractional charge can be seen experimentally in shot noise experiments. This is

a randomly fluctuating current, where the fluctuations can be traced to the discrete

nature of the underlying charge carriers. This allows a direct measurement18 of the

charge carriers which, for the ⌫ = 1/3 state, were shown to indeed carry charge e? = e/3.

18The experiment was first described in R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky,
G. Bunin, and D. Mahalu, “Direct observation of a fractional charge”, Nature 389, 162 (1997). cond-
mat/9707289.
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3.2.2 Introducing Anyons

We’re taught as undergrads that quantum particles fall into two categories: bosons

and fermions. However, if particles are restricted to move in a two-dimensional plane

then there is a loophole to the usual argument and, as we now explain, much more

interesting things can happen19.

Let’s first recall the usual argument that tells us we should restrict to boson and

fermions. We take two identical particles described by the wavefunction  (r1, r2).

Since the particles are identical, all probabilities must be the same if the particles are

exchanged. This tells us that | (r1, r2)|2 = | (r2, r1)|2 so that, upon exchange, the

wavefunctions di↵er by at most a phase

 (r1, r2) = ei⇡↵ (r2, r1) (3.21)

Now suppose that we exchange again. Performing two exchanges is equivalent to a

rotation, so should take us back to where we started. This gives the condition

 (r1, r2) = e2i⇡↵ (r1, r2) ) e2⇡i↵ = 1

This gives the two familiar possibilities of bosons (↵ = 0) or fermions (↵ = 1).

So what’s the loophole in the above argument? The weak point is the statement that

when we rotate two particles by 360� we should get back to where we came from. Why

should this be true? The answer lies in thinking about the topology of the worldlines

particles make in spacetime.

In d = 3 spatial dimensions (and, if you’re into string theory, higher), the path that

the pair of particles take in spacetime can always be continuously connected to the

situation where the particles don’t move at all. This is the reason the resulting state

should be the same as the one before the exchange. But in d = 2 spatial dimensions,

this is not the case: the worldlines of particles now wind around each other. When

particles are exchanged in an anti-clockwise direction, like this

19This possibility was first pointed out by Jon Magne Leinaas and Jan Myrheim, “On the Theory
of Identical Particles”, Il Nuovo Cimento B37, 1-23 (1977). This was subsequently rediscovered by
Frank Wilczek in “Quantum Mechanics of Fractional-Spin Particles”, Phys. Rev. Lett. 49 (14) 957
(1982).
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the worldlines get tangled. They can’t be smoothly continued into the worldlines of

particles which are exchanged clockwise, like this:

Each winding defines a di↵erent topological sector. The essence of the loophole is that,

after a rotation in the two-dimensions, the wavefunction may retain a memory of the

path it took through the phase. This means that may have any phase ↵ in (3.21). In

fact, we need to be more precise: we will say that after an anti-clockwise exchange, the

wavefunction is

 (r1, r2) = ei⇡↵ (r2, r1) (3.22)

After a clockwise exchange, the phase must be e�i⇡↵. Particles with ↵ 6= 0, 1 are referred

to as anyons. This whole subject usually goes by the name of quantum statistics or

fractional statistics. But it has less to do with statistics and more to do with topology.

The Braid Group

Mathematically, what’s going on is that in dimensions d � 3, the exchange of parti-

cles must be described by a representation of the permutation group. But, in d = 2

dimensions, exchanges are described a representation of the braid group.

Suppose that we have n identical particles sitting along a line. We’ll order them

1, 2, 3, . . . , n. The game is that of a street-magician: we shu✏e the order of the parti-

cles. The image that their worldlines make in spacetime is called a braid. We’ll only

distinguish braids by their topological class, which means that two braids are consid-

ered the same if we can smoothly change one into the other without the worldlines

crossing. All such braidings form an infinite group which we call Bn

We can generate all elements of the braid group from a simple set of operations,

R1, . . . , Rn�1 where Ri exchanges the ith and (i + 1)th particle in an anti-clockwise

direction. The defining relations obeyed by these generators are

RiRj = RjRi |i� j| > 2

together with the Yang-Baxter relation,

RiRi+1Ri = Ri+1RiRi+1 i = 1, . . . , n� 1

This latter relation is most easily seen by drawing the two associated braids and noting

that one can be smoothly deformed into the other.
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Figure 29: The left hand-side of the

Yang-Baxter equation...

Figure 30: ...is topologically equivalent

to the right-hand side.

In quantum mechanics, exchanges of particles act as unitary operators on the Hilbert

space. These will form representations of the braid group. The kind of anyons that

we described above form a one-dimensional representation of the braid group in which

each exchange just gives a phase: Ri = ei⇡↵i . The Yang-Baxter equation then requires

ei⇡↵i = ei⇡↵i+1 which simply tells us that all identical particles must have the same

phase.

One dimensional representation of the braid group are usually referred to as Abelian

anyons. As we’ll show below, these are the kind of anyons relevant for the Laughlin

states. However, there are also more exotic, higher-dimensional representations of the

braid group. These are called non-Abelian anyons. We will discuss some examples in

Section 4.

3.2.3 Fractional Statistics

We will now compute the quantum statistics of quasi-holes in the ⌫ = 1/m Laughlin

state. In passing, we will also provide a more sophisticated argument for the fractional

charge of the quasi-hole. Both computations involve the Berry phase that arises as

quasi-holes move20.

We consider a state of M quasi-holes which we denote as |⌘1, . . . , ⌘Mi. The wave-

function is (3.19)

hz, z̄|⌘1, . . . , ⌘Mi =
MY

j=1

NY

i=1

(zi � ⌘j)
Y

k<l

(zk � zl)
m e�

Pn
i=1 |zi|2/4l2B

20The structure of this calculation was first described in Daniel Arovas, John Schrie↵er and Frank
Wilczek, “Fractional statistics and the quantum Hall e↵ect”, Phys. Rev. Lett. 53, 772 (1984), although
they missed the importance of working with normalised wavefunctions. This was subsequently clarified
by M. Stone. in the collection of reprints he edited called, simply, “The Quantum Hall E↵ect”.
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However, whenever we compute the Berry phase, we should work with the normalised

states. We’ll call this state | i, defined by

| i = 1p
Z
|⌘1, . . . , ⌘Mi

where the normalisation factor is defined as Z = h⌘1, . . . , ⌘M |⌘1, . . . , ⌘Mi, which reads

Z =

Z Y
d2zi exp

 
X

i,j

log |zi � ⌘j|2 +m
X

k,l

log |zk � zl|2 �
1

2l2
B

X

i

|zi|2
!

(3.23)

This is the object which plays the role of the partition function in the plasma analogy,

now in the presence of impurities localised at ⌘i.

The holomorphic Berry connection is

A⌘(⌘, ⌘̄) = �ih | @
@⌘

| i = i

2Z

@Z

@⌘
� i

Z
h⌘| @

@⌘
|⌘i

But because |⌘i is holomorphic, and correspondingly h⌘| is anti-holomorphic, we have
@Z

@⌘
= @

@⌘
h⌘|⌘i = h⌘| @

@⌘
|⌘i. So we can write

A⌘(⌘, ⌘̄) = � i

2

@logZ

@⌘

Meanwhile, the anti-holomorphic Berry connection is

A⌘̄(⌘, ⌘̄) = �ih | @
@⌘̄

| i = +
i

2

@logZ

@⌘̄

So our task in both cases is to compute the derivative of the partition function (3.23).

This is di�cult to do exactly. Instead, we will invoke our intuition for the behaviour

of plasmas.

Here’s the basic idea. In the plasma analogy, the presence of the hole acts like

a charged impurity. In the presence of such an impurity, the key physics is called

screening21. This is the phenomenon in which the mobile charges – with positions zi
– rearrange themselves to cluster around the impurity so that its e↵ects cannot be

noticed when you’re suitably far away. More mathematically, the electric potential

due to the impurity is modified by an exponential fall-o↵ e�r/� where � is called the

Debye screening length and is proportional to
p
T . Note that, in order for us to use

this argument, it’s crucial that the artificial temperature (3.8) is high enough that the

plasma lies in the fluid phase and e�cient screening can occur.

21You can read about screening in the final section of the lecture notes on Electromagnetism.
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Whenever such screening occurs, the impurities are e↵ectively hidden at distances

much greater than �. This means that the free energy of the plasma is independent of

the positions of the impurities, at least up to exponentially small corrections. This free

energy is, of course, proportional to logZ which is the thing we want to di↵erentiate.

However, there are two ingredients missing: the first is the energy cost between the

impurities and the constant background charge; the second is the Coulomb energy

between the di↵erent impurities. The correct potential energy for the plasma with M

impurities should therefore be

U(zk; ⌘i) = �m2
X

k<l

log

✓
|zk � zl|

lB

◆
�m

X

k,i

log

✓
|zi � ⌘i|

lB

◆
�
X

i<j

log

✓
|⌘i � ⌘j|

lB

◆

+
m

4l2
B

NX

k=1

|zk|2 +
1

4l2
B

MX

i=1

|⌘i|2 (3.24)

The corrected plasma partition function is then

Z Y
d2zi e

��U(zi;⌘) = exp

 
� 1

m

X

i<j

log |⌘i � ⌘j|2 +
1

2ml2
B

X

i

|⌘i|2
!
Z

As long as the distances between impurities |⌘i � ⌘j| are greater than the Debye length

�, the screening argument tells us that this expression should be independent of the

positions ⌘i for high enough temperature. In particular, as we described previously, the

temperature � = 2/m relevant for the plasma analogy is high enough for screening as

long as m . 70 . This means that we must have

Z = C exp

 
1

m

X

i<j

log |⌘i � ⌘j|2 �
1

2ml2
B

X

i

|⌘i|2
!

for some constant C which does not depend on ⌘i. This gives some idea of the power

of the plasma analogy. It looks nigh on impossible to perform the integrals in (3.23)

directly; yet by invoking some intuition about screening, we are able to write down the

answer, at least in some region of parameters.

The Berry connections over the configuration space of M quasi-holes are then simple

to calculate: they are

A⌘i = � i

2m

X

j 6=i

1

⌘i � ⌘j
+

i⌘̄i
4ml2

B

(3.25)
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Figure 31: The path taken to compute

the fractional charge of the quasi-hole...

Figure 32: ...and the path to compute

the fractional statistics.

and

A⌘̄i = +
i

2m

X

j 6=i

1

⌘̄i � ⌘̄j
� i⌘i

4ml2
B

(3.26)

where we stress that these expressions only hold as long as the quasi-holes do not get

too close to each other where the approximation of complete screening breaks down.

We can now use these Berry connections to compute both the charge and statistics of

the quasi-hole.

Fractional Charge

Let’s start by computing the charge of the anyon. The basic idea is simple. We pick

one of the quasi-holes — say ⌘1 ⌘ ⌘ — and move it on a closed path C. For now we

choose a path which does not enclose any of the other anyons. This ensures that only

the second term in the Berry phase contributes,

A⌘ =
i⌘̄

4ml2
B

and A⌘̄ = � i⌘

4ml2
B

After traversing the path C, the quasi-hole will return with a phase shift of ei�, given

by the Berry phase

ei� = exp

✓
�i

I

C

A⌘d⌘ +A⌘̄d⌘̄

◆
(3.27)

This gives the Berry phase

� =
e�

m~ (3.28)

where � is the total magnetic flux enclosed by the path C. But there’s a nice interpre-

tation of this result: it’s simply the Aharonov-Bohm phase picked up by the particle.

As described in Section 1.5.3, a particle of charge e? will pick up phase � = e?�/~.
Comparing to (3.28), we learn that the charge of the particle is indeed

e? =
e

m

as promised.
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Fractional Statistics

To compute the statistics, we again take a particular quasi-hole — say ⌘1 — on a

journey, this time on a path C which encloses one other quasi-hole, which we’ll take

to be ⌘2. The phase is once again given by (3.27) where, this time, both terms in the

expressions (3.25) and (3.26) for A⌘ and A⌘̄ contribute. The second term once again

gives the Aharonov-Bohm phase; the first term tells us about the statistics. It is

ei� = exp

✓
� 1

2m

I

C

d⌘1
⌘1 � ⌘2

+ h.c.

◆
= e2⇡i/m

This is the phase that arises from one quasi-hole encircling the other. But the quantum

statistics comes from exchanging two objects, which can be thought of as a rotating by

180� rather than 360�. This means that, in the notation of (3.22), the phase above is

e2⇡i↵ = e2⇡i/m ) ↵ =
1

m
(3.29)

Note that for a fully filled Landau level, with m = 1, the quasi-holes are fermions.

(They are, of course, actual holes). But for a fractional quantum Hall state, the quasi-

holes are anyons.

Suppose now that we put n quasi-holes together and consider this as a single object.

What are its statistics? If we exchange two such objects, then each quasi-hole in the

first bunch gets exchanged with each quasi-hole in the second bunch. The net result is

that the statistical parameter for n quasi-holes is ↵ = n2/m (recall that the parameter

↵ is defined mod 2). Note that ↵ does not grow linearly with n. As a check, suppose

that we put m quasi-holes together to reform the original particle that underlies the

Hall fluid. We get ↵ = m2/m = m which is a boson for m even and a fermion for m

odd.

There’s a particular case of this which is worth highlighting. The quasi-particles in

the m = 2 bosonic Hall state have statistical parameter ↵ = 1/2. They are half-way

between bosons and fermions and sometimes referred to as semions. Yet two semions

do not make a fermion; they make a boson.

More generally, it’s tempting to use this observation to argue that an electron can

only ever split into an odd number of anyons. This argument runs as follow: if an

electron were to split into an even number of constituents n, each with statistical

parameter ↵, then putting these back together again would result in a particle with

statistical parameter n2↵. The argument sounds compelling. However, as we will see

in Section 4, there is a loop hole!
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A Slightly Di↵erent Viewpoint

There is a slightly di↵erent way of presenting the calculation. It will o↵er nothing

new here, but often appears in the literature as it proves useful when discussing more

complicated examples. The idea is that we consider a wavefunction that already has

the interesting ⌘ dependence built in. So, instead of (3.19), we work with

 =
Y

a<b

(⌘a � ⌘b)
1/m

NY

a,i

(zi � ⌘a)
Y

k<l

(zk � zl)
m e�

P
i |zi|2/4l2B�

P
a |⌘a|2/4ml

2
B (3.30)

This wavefunction is cooked up so that the associated probability distribution is given

precisely by the partition function with energy (3.24) and hence has no dependence

on ⌘ and ⌘̄. This means that the Berry connection for this wavefunction has only the

second terms in (3.25) and (3.26), corresponding to the Aharonov-Bohm e↵ect due to

the background magnetic field. The term in the Berry connection that was responsible

for fractional statistics is absent. But this doesn’t mean that the physics has changed.

Instead, this phase is manifest in the form of the wavefunction itself, which is no longer

single-valued in ⌘a. Indeed, if ⌘1 encircles a neighbouring point ⌘2, the wavefunction

pick up a phase e2⇡i/m, so exchanging two quasi-holes gives the phase ei⇡/m.

Of course, this approach doesn’t alleviate the need to determine the Berry phase

arising from the exchange. You still need to compute it to check that it is indeed zero.

3.2.4 How to Detect an Anyon

Experimental measurements of both fractional charge and fractional statistics have

proven challenging. Early results using shot noise experiments show the expected

fractional charge carried by anyons, but these experiments do not seem to have become

cleaner over time. However, in 2020 there was finally a breakthrough in detecting a

clean signal of the fractional statistics of anyons in the ⌫ = 1
3 quantum Hall state. Here

we briefly explain how this experiment works.

The set-up is an interferometry experiment, analogous to Fabry-Perot interferometers

used in optics22. Take a quantum Hall system with the slightly odd shape shown in

Figure 33. Here the blue represents the quantum Hall fluid. There is a source of charge

on the far left. As we saw in Section 2.1.1, the current is carried by edge modes and

is chiral. This current is composed of anyons. Here we set things up so the current

circulates anti-clockwise, as shown by the red lines in the figure.

22This experiment was proposed by Chamon et el in “Two point-contact interferometer for quantum
Hall systems”, Phys. Rev. B55 (1997) 2331, cond-mat/9607195.
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source drain

Figure 33: A schematic depiction of the quantum Fabry-Perot interferometer.

Importantly, the quantum Hall sample has two constrictions. These act like half-

silvered mirrors in light interferometers, since the edge modes have the possibility to

tunnel across the sample to the opposite edge. Of course, this being quantum mechan-

ics, the correct description is that the wavefunction splits, with some part crossing the

constriction and returning to the source (shown as a dotted line), and another part

continuing on its original path (shown as a solid line).

With two constrictions, the edge modes have two opportunities to tunnel across to

the other side. That means that, upon returning to the source, the two wavefunctions

can interfere, either constructively or destructively. The phase di↵erence between the

two wavefunctions is given by the Aharonov-Bohm e↵ect by

✓ =
e?

e

BA

~ (3.31)

This means that as we change the magnetic field through the sample, the phase di↵er-

ence changes. The result is that we expect to see the resistivity vary periodically as a

function of B.

The formula also tells us that we should expect the resistivity to vary periodically as

we change A. You might think that this is di�cult, but in fact it can be accomplished

by changing a gate voltage on the side of the sample. As we saw in Section 2.1.1, the

Fermi energy is related to the position of the edge modes, and hence the area of the

sample.

There is one last ingredient that we need. In the middle of the central region, we

place some number N of quasi-particles (or quasi-holes). These are represented by the

green cross in the diagram. As the edge modes circle these quasi-holes, the phase (3.31)
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Figure 34: The experimental data exhibiting fractional statistics, taken from Nakamura et

al. arXiv:2006.14115.

is shifted to

✓ =
e?

e

BA

~ + 2⇡N↵ (3.32)

where, as described above, 2⇡↵ is the statistical phase experienced by the anyons. Now

the goal is clear: find a way to change the number of anyons N trapped in the middle

of the sample and, in doing so, measure the statistical phase ↵.

The experimental results for the ⌫ = 1/3 quantum Hall state are shown23 in Figure

34. This shows the expected change in resistivity (in colour) as the magnetic field

and gate voltage are changed. The diagonal stripes are characteristic of the expected

Aharonov-Bohm e↵ect (3.31). The important point to note is that, as the magnetic

field is varied, the periodic change in the resistivity undergoes a phase shift. The most

natural explanation is that the increase of the magnetic field results additional quasi-

holes appearing in the middle of the sample, changing N in (3.32). This allows us to

read o↵ the statistical phase ↵ and the results are reported at the top of the figure.

They lie very close to ↵ ⌘ �✓/2⇡ = 1/3 as expected of the ⌫ = 1/3 quantum Hall

state.

23This figure is taken from Nakamura et al. “Direct observation of anyonic braiding statistics at
the ⌫ = 1/3 fractional quantum Hall state, Nature Physics, 15, 563 (2019), arXiv:2006.14115. A nice
summary can be found in this condensed matter journal report by Steve Kivelson and Charlie Marcus.
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T1

T2

Figure 35: Taking a quasi-hole (red) and

quasi-particle (blue) around one cycle of

the torus

Figure 36: ...or around the other.

3.2.5 Ground State Degeneracy and Topological Order

In this section we describe a remarkable property of the fractional quantum Hall states

which only becomes apparent when you place them on a compact manifold: the number

of ground states depends on the topology of the manifold. As we now explain, this is

intimately related to the existence of anyonic particles.

Consider the following process on a torus. We create from the vacuum a quasi-

particle – quasi-hole pair. We then separate this pair, taking them around one of the

two di↵erent cycles of the torus as shown in the figure, before letting them annihilate

again. We’ll call the operator that implements this process T1 for the first cycle and T2

for the second.

Now suppose we take the particles around one cycle and then around the other.

Because the particles are anyons, the order in which we do this matters: there is a

topological di↵erence between the paths taken. Indeed, you can convince yourself that

T1T2T
�1
1 T�1

2 is equivalent to taking one anyon around another: the worldlines have

linking number one. This means that the Ti must obey the algebra

T1T2 = e2⇡i/m T2T1 (3.33)

But such an algebra of operators can’t be realised on a single vacuum state. This imme-

diately tells us that the ground state must be degenerate. The smallest representation

of (3.33) has dimension m, with the action

T1|ni = e2⇡ni/m|ni
T2|ni = |n+ 1i

The generalisation of this argument to a genus-g Riemann surface tells us that the

ground state must have degeneracy mg. Notice that we don’t have to say anything

about the shape or sizes of these manifolds. The number of ground states depends only

on the topology!
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It is also possible to explicitly construct the analog of the Laughlin states on a torus

in terms of Jacobi theta functions and see that there are indeed m such states.

Before we proceed, we note that this resolves a puzzle. In Section 2.2.4, we described

a topological approach to the integer quantum Hall e↵ect which is valid when space

is a torus. With a few, very mild, assumptions, we showed that the Hall conductivity

is equal to a Chern number and must, therefore, be quantised. In particular, this cal-

culation made no assumption that the electrons were non-interacting: it holds equally

well for strongly interacting many-body systems. However, one of the seemingly mild

assumptions was that the ground state was non-degenerate. As we’ve seen, this is not

true for fractional quantum Hall states, a fact which explains how these states avoid

having integer Hall conductivity.

Topological Order

We’ve seen in this section that the Laughlin states have a number of very special

properties. One could ask: how can we characterise these states? This is an old

and venerable question in condensed matter physics and, for most systems, has an

answer provided by Landau. In Landau’s framework, di↵erent states of matter are

characterised by their symmetries, both those that are preserved by the ground state

and those that are broken. This is described using order parameters of the kind that

we met in the lectures on Statistical Physics when discussing phase transitions.

However, the quantum Hall fluids fall outside of this paradigm. There is no symmetry

or local order parameter that distinguishes quantum Hall states. It turns out that there

is a non-local order parameter, usually called “o↵-diagonal long-range order” and this

can be used to motivate a Ginzburg-Landau-like description. We will describe this in

Section 5.3.2 but, as we will see, it is not without its pitfalls.

Instead, Wen24 suggested that we should view quantum Hall fluids as a new type of

matter, characterised by topological order. The essence of the proposal is that quantum

states can be characterised their ground state degeneracy and the way in which these

states transform among themselves under operations like (3.33).

3.3 Other Filling Fractions

So far, we have only described the quantum Hall states at filling fraction ⌫ = 1/m.

Clearly there are many more states that are not governed by the Laughlin wavefunction.

As we now show, we can understand many of these by variants of the ideas above.

24The original paper is Xiao-Gang Wen, “Topological Orders in Rigid States”, Int. J. Mod. Phys.
B4, 239 (1990), available at Xiao-Gang’s website.

– 101 –



A Notational Convention

Before we proceed, let’s quickly introduce some new notation. All wavefunctions in the

lowest Landau level come with a common exponential factor. It gets tiresome writing

it all the time, so define

 (z, z̄) ⇠  ̃(z)e�
Pn

i=1 |zi|2/4l2B

where  ̃(z) is a holomorphic function. In what follows we will often just write  ̃(z).

Be warned that many texts drop the exponential factor in the wavefunctions but don’t

give the resulting object a di↵erent name.

3.3.1 The Hierarchy

We saw in Section 3.2.1 how one can induce quasi-hole (or quasi-particle) states by

introducing a local excess (or deficit) of magnetic field through a solenoid. We could

also ask what happens if we change the magnetic field in a uniform manner so that the

system as a whole moves away from ⌫ = 1/m filling. For definiteness, suppose that we

increase B so that the filling fraction decreases. It seems plausible that for B close to

the initial Laughlin state, the new ground state of the system will contain some density

of quasi-holes, arranged in some, perhaps complicated, configuration. Following the

lessons that we learned above, we might expect these quasi-holes to form a Wigner

crystal state at low densities, while at high densities they might themselves form a new

quantum Hall state. Let’s see how this would work.

A Wigner Crystal of Quasi-Holes

Suppose that the magnetic field deviates only slightly from the centre of the plateaux,

corresponding to filling faction ⌫ = 1/m. Then we would expect a gas of quasi-holes

(or quasi-particles) that form a Wigner crystal. But the Wigner crystal is an insulating

state, and so this doesn’t change the Hall resistivity which remains fixed at the Laughlin

value ⇢xy = 2⇡~/e2⌫.

In fact, this simple intuition suggests that the quantum Hall e↵ect may occur in the

absence of disorder. Recall from our previous discussion that disorder seemed crucial

to explain the observed plateaux in the Hall conductivity. Moreover, as the samples

become cleaner, more and more plateaux emerged, naively suggesting that an infinitely

clean sample would return us to the classical result for the Hall conductivity. However,

the emergence of the Wigner crystal does not rely on disorder: it can arise even in pure

samples,where it spontaneously breaks translational invariance. This means that even
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pure samples can exhibit a plateaux in the Hall resistivity over a range of B for which

the ground state of anyons is a Wigner crystal25.

A Quantum Hall Liquid of Quasi-Holes

As the magnetic field increases further from its central value, the density of quasi-holes

increases. At some point, they are likely to prefer to form a quantum Hall liquid, rather

than a Wigner crystal. What properties would this have?

We know that Laughlin states take the form

 ̃ ⇠
Y

i<j

(zi � zj)
m

wherem is odd for fermions and even for bosons. What would a Laughlin state look like

for anyons with positions ⌘i and statistical parameter ↵? To have the right statistics,

the wavefunctions must take the form

 ̃ ⇠
NY

i<j

(⌘i � ⌘j)
2p+↵

with p a positive integer. Above the ⌫ = 1/m state, quasi-holes and quasi-holes have

fractional charge q = ±e/m and the fractional statistics ↵ = 1/m. It’s simple to

repeat our previous counting of the filling fraction, although now we need to be more

careful about what we’re counting. The maximum angular momentum of a given

quasi-excitation is N(2p ± 1
m
) where the ± sign is inherited from the charge of the

quasi-excitation. This means that the area of the droplet is A ⇡ 2⇡(2p ± 1
m
)N(ml2

B
)

where the usual magnetic length l2
B
= ~/eB is now replaced by ml2

B
because the charge

of the quasi-excitations is |q| = e/m. The number of electron states in a full Landau

level is AB/�0 and each can be thought of as made of m quasi-things. So the total

number of quasi-thing states in a full Landau level is mAB/�0 = (2p± 1
m
)m2N .

The upshot of this is that the quasi-holes or quasi-particles give a contribution to

the filling of electron states

⌫quasi = ⌥ 1

2pm2 ±m

25More details of this argument, together with an analysis of the sliding mode of the crystal, can be
found in the paper by Kyung-Su Kim and Steve Kivelson, “The quantum Hall e↵ect in the absence of
disorder”.
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where the overall sign is negative for holes and positive for particles. Adding this to

the filling fraction of the original ⌫ = 1/m state, we have

⌫ =
1

m
⌥ 1

2pm2 ±m
=

1

m± 1
2p

(3.34)

Note that the filling fraction is decreased by quasi-holes and increased by quasi-particles.

Let’s look at some simple examples. We start with the ⌫ = 1/3 state. The p = 1

state for quasi-particles then gives ⌫ = 2/5 which is one of the more prominent Hall

plateaux. The p = 1 state for quasi-hole gives ⌫ = 2/7 which has also been observed;

while not particularly prominent, it’s harder to see Hall states at these lower filling

fractions.

Now we can go further. The quasi-objects in this new state can also form quantum

Hall states. And so on. The resulting fillings are given by the continuous fractions

⌫ =
1

m±
1

2p1 ±
1

2p2 ± · · ·

(3.35)

For example, building on the Hall state ⌫ = 1/3, the set of continuous fractions for

quasi-particles with pi = 1 leads to the sequence ⌫ = 2/5 (which is the fraction (3.34)),

followed by ⌫ = 3/7, 4/9, 5/11 and 6/13. This is precisely the sequence of Hall

plateaux shown in the data presented at the beginning of this chapter.

3.3.2 Composite Fermions

We now look at an alternative way to think about the hierarchy known as composite

fermions26. Although the starting point seems to be logically di↵erent from the ideas

above, we will see the same filling fractions emerging. Moreover, this approach will

allow us to go further ending, ultimately, in Section 3.3.3 with a striking prediction for

what happens at filling fraction ⌫ = 1/2.

26This concept was first introduced by Jainendra Jain in the paper“Composite-Fermion Approach
to the Fractional Quantum Hall E↵ect”, Phys. Rev. Lett. 63 2 (1989). It is reviewed in some detail
in his book called, appropriately, “Composite Fermions”. A clear discussion can also be found in the
review “Theory of the Half Filled Landau Level” by Nick Read, cond-mat/9501090.

– 104 –



First, some motivation for what follows. It’s often the case that when quantum

systems become strongly coupled, the right degrees of freedom to describe the physics

are not those that we started with. Instead new, weakly coupled degrees of freedom

may emerge. Indeed, we’ve already seen an example of this in the quantum Hall e↵ect,

where we start with electrons but end up with fractionally charged particles.

The idea of this section is to try to find some new degrees of freedom — these are

the “composite fermions”. However, for the most part these won’t be the degrees of

freedom that are observed in the system. Instead, they play a role in the intermediate

stages of the calculations. (There is an important exception to this statement which is

the case of the half-filled Landau level, described in Section 3.3.3, where the observed

excitations of the system are the composite fermions.) Usually it is di�cult to identify

the emergent degrees of freedom, and it’s no di↵erent here. We won’t be able to

rigorously derive the composite fermion picture. Instead, we’ll give some intuitive and,

in parts, hand-waving arguments that lead us to a cartoon description of the physics.

But the resulting cartoon is impressively accurate. It gives ansatze for wavefunctions

which are in good agreement with the numerical studies and it provides a useful and

unified way to think about di↵erent classes of quantum Hall states.

We start by introducing the idea of a vortex. Usually a vortex is a winding in some

complex order parameter. Here, instead, a vortex will mean a winding in the wavefunc-

tion itself. Ultimately we will be interested in vortices in the Laughlin wavefunction,

but to understand the key physics it’s simplest to revisit the quasi-hole whose wave-

function includes the factor

Y

i

(zi � ⌘)

Clearly the wavefunction now has a zero at the position ⌘. This does two things. First,

it depletes the charge there. This, of course, is what gives the quasi-hole its fractional

charge e/m. But because the lowest Landau level wavefunction is holomorphic, there

is also fixed angular dependence: the phase of the wavefunction winds once as the

position of any particle moves around ⌘. This is the vortex.

The winding of the wavefunction is really responsible for the Berry phase calculations

we did in Section 3.2.3 to determine the fractional charge and statistics of the quasi-

hole. Here’s a quick and dirty explanation. The phase of the wavefunction changes by

2⇡ as a particle moves around the quasi-hole. Which means that it should also change

by 2⇡ when the quasi-hole moves around the particle. So if we drag the quasi-hole

around N = ⌫�/�0 particles, then the phase changes by � = 2⇡N = ⌫e�/~. This is
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ν  =1∗

ν=1/3

ν  =2∗

ν=2/5

Figure 37: The composite fermion picture describes a hierarchy of plateaux around, starting

with ⌫ = 1/3, in terms of the integer quantum Hall e↵ect for electrons bound to two vortices.

precisely the result (3.28) that we derived earlier. Meanwhile, if we drag one quasi-hole

around a region in which there is another quasi-hole, the charge inside will be depleted

by e/m, so the e↵ective number of particles inside is now N = ⌫�/�0�1/m. This gives

an extra contribution to the phase � = �2⇡/m which we associate the statistics of the

quasi-holes: � = 2⇡↵ = 2⇡/m so ↵ = 1/m, reproducing our earlier result (3.29). We

stress that all of these results really needed only the vortex nature of the quasi-hole.

Now let’s turn to the Laughlin wavefunction itself

 ̃m(z) ⇠
Y

i<j

(zi � zj)
m

For now we focus on m odd so that the wavefunction is anti-symmetric and we’re

dealing with a Hall state of fermions. One striking feature is that the wavefunction

has a zero of order m as two electrons approach. This means that each particle can

be thought of as m vortices. Of course, one of these zeros was needed by the Pauli

exclusion principle. Moreover, we needed m zeros per particle to get the filling fraction

right. But nothing forced us to have the other m� 1 zeros sitting at exactly the same

place. This is something special about the Laughlin wavefunction.

Motivated by this observation, we define a composite fermion to be an electron (which

gives rise to one vortex due to anti-symmetry) bound to m � 1 further vortices. The

whole thing is a fermion when m is odd. You’ll sometimes hear composite fermions

described as electrons attached to flux. We’ll describe this picture in the language

of Chern-Simons theory in Section 5 but it’s not overly useful at the moment. In

particular, it’s important to note that the composite fermions don’t carry real magnetic

flux with them. This remains uniform. Instead, as we will see later, they carry a

di↵erent, emergent flux.
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Let’s try to treat this as an object in its own right and see what behaviour we find.

Consider placing some density n = ⌫B/�0 of electrons in a magnetic field and subse-

quently attaching these vortices to make composite fermions. We will first show that

these composite fermions experience both a di↵erent magnetic field B? and di↵erent

filling fraction ⌫? than the electrons. To see this, we repeat our Berry phase argument

where we move the composite fermion along a path encircling an area A. The resulting

Berry phase has two contributions,

� = 2⇡

✓
AB

�0
� (m� 1)nA

◆
(3.36)

with n the density of electrons. The first term is the usual Aharonov-Bohm phase due

to the total flux inside the electron path. The second term is the contribution from the

electron encircling the vortices: there are m � 1 such vortices attached to each of the

⇢A electrons.

When we discussed quasi-holes, we also found a di↵erent Aharonov-Bohm phase. In

that context, we interpreted this as a di↵erent charge of quasi-particles. In the present

context, one usually interprets the result (3.36) in a di↵erent (although ultimately

equivalent) way: we say that the composite fermions experience a di↵erent magnetic

field which we call B?. The Aharonov-Bohm phase should then be

� =
2⇡AB?

�0
) B? = B � (m� 1)n�0 (3.37)

Because there is one electron per composite fermion, the density is the same. But

because the magnetic fields experienced by electrons and composite fermions di↵er, the

filling fractions must also di↵er: we must have n = ⌫?B?/�0 = ⌫B/�0. This gives

⌫ =
⌫?

1 + (m� 1)⌫?
(3.38)

This is an interesting equation! Suppose that we take the composite fermions to com-

pletely fill their lowest Landau level, so that ⌫? = 1. Then we have

⌫? = 1 ) ⌫ =
1

m

In other words, the fractional quantum Hall e↵ect can be thought of as an integer

quantum Hall e↵ect for composite fermions. That’s very cute! Indeed, we can even see

some hint of this in the Laughlin wavefunction itself which we can trivially rewrite as

 ̃m(z) ⇠
Y

i<j

(zi � zj)
m�1

Y

k<l

(zk � zl) (3.39)
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Figure 38: The fractional Hall plateaux....again

The second term in this decomposition is simply the wavefunction for the fully-filled

lowest Landau level. We’re going to think of the first term as attaching m� 1 vortices

to each position zi to form the composite fermion.

So far we’ve said a lot of words, but we haven’t actually derived anything new from

this perspective. But we can extract much more from (3.38). Suppose that we fill

the first ⌫? Landau levels to get an integer quantum Hall e↵ect for composite fermions

with ⌫? > 1. (The Landau levels for composite fermions are sometimes referred to

⇤ levels.) Then we find filling fractions that are di↵erent from the Laughlin states.

For example, if we pick m = 3, then the sequence of states arising from (3.38) is

⌫ = 1/3, 2/5, 3/7, 4/9, . . .. These is the same sequence that we saw in the hierarchy

construction and is clearly visible in the data shown in the figure. Inspired by the form

of (3.39), we will write down a guess for the wavefunction, usually referred to as Jain

states,

 ̃⌫(z) = PLLL

"
Y

i<j

(zi � zj)
m�1 ⌫?(z, z̄)

#
(3.40)

Here ⌫? is the wavefunction for ⌫? 2 Z fully-filled Landau levels while the
Q
(zi�zj)m�1

factor attaches the (m � 1) vortices to each electron. The wavefunction  ⌫? can be
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easily constructed by a Slater determinant of the form (3.5) except that, this time, we

run into a problem. The electrons have filling fraction ⌫ < 1 and so are supposed to

lie in the lowest Landau level. Meanwhile, the integer quantum Hall states  ⌫? are

obviously not lowest Landau level wavefunctions: they depend on z̄i as well as zi. This

is what the mysterious symbol PLLL is doing in the equation (3.40): it means “project

to the lowest Landau level”.

Operationally, PLLL is defined by moving all factors of z̄i in [. . .] to the left. We then

make the substitution

z̄i ! 2l2
B

@

@zi
(3.41)

Note that this is the same kind of substitution we made in constructing the quasi-

particle wavefunction (3.20). For a small number of particles (N ⇡ 20 or so) one

can compute numerically the exact wavefunctions in di↵erent filling fractions: the

wavefunctions (3.40) built using the procedure described above have an overlap of

around 99% or so.

Note that it’s also possible to have B? < 0. In this case, we have ⇢ = �⌫?B?/�0 and

the relationship (3.38) becomes

⌫ =
⌫?

(m� 1)⌫? � 1

Then filling successive Landau levels ⌫? 2 Z gives the sequence ⌫ = 1, 2/3, 3/5, 4/7, 5/9, . . .

which we again see as the prominent sequence of fractions sitting to the left of ⌫ = 1/2

in the data.

We can also use the projection trick (3.40) to construct excited quasi-hole and quasi-

particle states in these new filling fractions. For each, we can determine the charge and

statistics. We won’t do this here, but we will later revisit this question in Section 5.2.4

from the perspective of Chern-Simons theory.

3.3.3 The Half-Filled Landau Level

The composite fermion construction does a good job of explaining the observed plateaux.

But arguably its greatest success lies in a region where no quantum Hall state is ob-

served: ⌫ = 1/2. (Note that the Laughlin state for m = 2 describes bosons at half

filling; here we are interested in the state of fermions at half filling). Looking at the

data, there’s no sign of a plateaux in the Hall conductivity at ⌫ = 1/2. In fact, there

seems to be a distinct absence of Hall plateaux in this whole region. What’s going on?!
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The composite fermion picture gives a wonderful and surprising answer to this. Con-

sider a composite fermion consisting of an electron bound to two vortices. If ⌫ = 1/2, so

that the electrons have density n = B/2�0 then the e↵ective magnetic field experienced

by the composite fermions is (3.37)

B? = B � 2n�0 = 0 (3.42)

According to this, the composite fermions shouldn’t feel a magnetic field. That seems

kind of miraculous. Looking at the data, we see that the ⌫ = 1/2 quantum Hall state

occurs at a whopping B ⇡ 25 T or so. And yet this cartoon picture we’ve built up of

composite fermions suggests that the electrons dress themselves with vortices so that

they don’t see any magnetic field at all.

So what happens to these fermions? Well, if they’re on experiencing a magnetic

field, then they must pile up and form a Fermi sea. The resulting state is simply the

compressible state of a two-dimensional metal. The wavefunction describing a Fermi

sea of non-interacting fermions is well known. If we have N particles, with position

ri, and the N lowest momentum modes are ki, then we place particles in successive

plane-wave states eiki·ri and subsequently anti-symmetrise over particles. The resulting

slater determinant wavefunction is

 Fermi Sea = det
�
eiki·rj

�
(3.43)

The Fermi momentum is defined to be the highest momentum i.e. kF ⌘ |kN |. Once

again, this isn’t a lowest Landau level wavefunction since, in complex coordinates,

k · r = 1
2(kz̄ + k̄z). This is cured, as before, by the projection operator giving us the

ground state wavefunction at ⌫ = 1/2,

 ̃
⌫= 1

2
= PLLL

"
Y

i<j

(zi � zj)
2 det

�
eikm·rl

�
#

(3.44)

where, as before, the (zi � zj)2 factor captures the fact that each composite fermion

contains two vortices. This state, which describes an interacting Fermi sea, is sometimes

called the Rezayi-Read wavefunction. (Be warned: we will also describe a di↵erent

class of wavefunctions in Section 4.2.3 which are called Read-Rezayi states!). There

is a standard theory, due to Landau, about what happens when you add interactions

to a Fermi sea known as Fermi liquid theory. The various properties of the state at

⌫ = 1/2 and its excitations were studied in this context by Halperin, Lee and Read,

and is usually referred to as the HLR theory27.

27The paper is “Theory of the half-filled Landau level”, Phys. Rev. B 47, 7312 (1993).
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There is overwhelming experimental evidence that the ⌫ = 1/2 state is indeed a Fermi

liquid. The simplest way to see this comes when we change the magnetic field slightly

away from ⌫ = 1/2. Then the composite fermions will experience a very small magnetic

field B? as opposed to the original B. We can then see the Fermi surface and measure

kF through standard techniques such as de Haas-van Alphen oscillations. Perhaps the

cleanest demonstration is then to look at excitations above the Fermi surface. Using

simple classical physics, we expect that the particles will move in the usual cyclotron

circles, with x + iy = Rei!t where ! = eB?/m?. The slight problem here is that we

don’t know m?. But if we di↵erentiate, we can relate the radius of the circle to the

momentum of the particle which, in the present case, we can take to be ~kF . We then

get the simple prediction

R =
~kF
eB?

which has been confirmed experimentally.

The Dipole Interpretation

Usually when we build a Fermi sea by filling successive momentum states, it’s obvious

where the momentum comes from. But not so here. The problem is that the electrons

are sitting in the lowest Landau level where all kinetic energy is quenched. The entire

Hamiltonian is governed only by the interactions between electrons,

H = Vint(|ri � rj|)

Typically we take this to be the Coulomb repulsion (3.1) or some toy Hamiltonian of

the kind described in Section 3.1.3. How can we get something resembling momentum

out of such a set-up?

A potential answer comes from looking at the wavefunction (3.43) in more detail.

The plane wave state is e
i
2 (k̄z+kz̄). Upon making the substitution (3.41), this includes

the term

exp

✓
ikl2

B

@

@z

◆

But this is simply a translation operator. It acts by shifting z ! z + ikl2
B
. It means

that in this case we can rewrite the wavefunction (3.44) explicitly in holomorphic form,

 
⌫= 1

2
= A

"
Y

i

eik̄izi�|zi|2/4l2B

#
Y

i<j

⇣
(zi + ikil

2
B
)� (zj + ikjl

2
B
)
⌘2
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Figure 39: The composite fermion is a

dipole like this.

Figure 40: Or perhaps like this.

where A is what’s left of the determinant, and means that we should anti-symmetrise

over all di↵erent ways of pairing up ki and zi. Note that, for once, we’ve written the

wavefunction including the exponential factor. The net result is that the zeros of the

wavefunction — which are the vortices — are displaced by a distance |kl2
B
| from the

electron, in the direction perpendicular to ~k.

As with much of the discussion on composite fermions, the ideas above are no more

than suggestive. But they have turned out to be useful. Now that we have an extended

object, thinking in terms of a reduced magnetic field is perhaps not so useful since

the two ends can experience di↵erent magnetic fields. Instead, we can return to our

original quasi-hole interpretation in which the vortices carry charge. One end then has

two vortices, each with charge +e/2. The other end consists of an electron with charge

�e. The net result is the symmetric, dipole configuration shown in the figure with a

dipole moment ~d, with magnitude proportional to ~k, such that ~d ·~k = 0 and |~d| = ekl2
B
.

The energy needed to produce such a dipole separation now comes entirely from the

Coulomb interaction V (|d|) which we now interpret as V (|~k|). On rotational grounds,

the expansion of the potential energy should start with a term ⇠ |~d|2 for small ~d. This

is the origin of the kinetic energy. The electron will drift along equipotentials of V |~k|),
while the vortices experience it as a magnetic field. The net e↵ect is that both ends of

the dipole move in the same direction, ~k with velocity @V/@~k as expected.

We note that, more recently it’s been suggested that it’s better to think of the

displacement as acting on just one of the two vortices bound to the electron28. This

can be justified on the grounds that each electron always accompanies a single zero

because of Pauli exclusion. The end with a single vortex has charge +e/2, while the

end that consists of an electron bound to a single vortex has charge �e+ e/2 = �e/2.

We get the same qualitative physics as before, but with |~d| = ekl2
B
/2 as shown in the

28This was proposed by Chong Wang and Senthil in “Half-filled Landau level, topological insulator
surfaces, and three dimensional quantum spin liquids”, arXiv:1507.08290.
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figure. The only di↵erence between these two possibilities lies in the Berry phase that

the dipole acquires as it moves around the Fermi surface. This helps resolve an issue

about particle-hole symmetry at half-filling which we will discuss briefly in Section

5.3.3.

3.3.4 Wavefunctions for Particles with Spin

Until now we’ve neglected the role of spin in the quantum Hall states, arguing that

the Zeeman e↵ect is su�cient to polarise the spin of the electron. Here we describe a

simple generalisation of the Laughlin wavefunction for particles that carry spin29.

We split our particles into two sets. The first set has spin-up, with positions

z1, . . . zN" . The second set has spin-down, with positions w1, . . . , wN# . Note that each

electron has a fixed spin which is an eigenvalue of Sz: we don’t allow the spin to

fluctuate, nor do we allow the spin to be misaligned from the z-axis. We’ll relax this

condition shortly.

If the two sets of particles didn’t talk to each other, we can trivially take the product

of two Laughlin wavefunctions,

 (z, w) =
N

"Y

i<j

(zi � zj)
m1

N
#Y

k<l

(wk � wl)
m2 e�

P
|zi|2/4l2B�

P
|!i|2/4l2B

Such a state would have filling fraction ⌫" = 1/m1 and ⌫# = 1/m2, giving total filling

fraction ⌫ = ⌫" + ⌫#.

Clearly there’s nothing new in these wavefunctions. What’s more, they miss the

interesting physics. As we saw above, the Coulomb interactions are what drives the

state to the Laughlin wavefunction. But these Coulomb interactions are blind to spin.

They must also give correlations between the two sets of electrons. Halperin proposed

to capture this with the simple wavefunction

 ̃(z, w) =
N

"Y

i<j

(zi � zj)
m1

N
#Y

k<l

(wk � wl)
m2
Y

i,k

(zi � wk)
n (3.45)

where now  ̃ means that we’re dropping the exponential factors for both variables.

This set of wavefunctions are characterised by the three integers and usually referred

to as the (m1,m2, n) states, or sometimes as Halperin states.

29These wavefunctions were first introduced by Bert Halperin in “Theory of the quantized Hall
conductance”, Helv. Phys. Acta, 56 (1983).
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These wavefunctions have very similar properties to the Laughlin states. In particu-

lar, the relative angular momentum is never less thanm1 between two spin-up particles,

never less than m2 for two down-spin particles and never less than n for particles of

opposite spin. This kind of intuition allows us to build toy Hamiltonians, similar to

those of Section 3.1.3, which have these wavefunctions as ground states.

Let’s now compute the filling fractions of these wavefunctions. Following our calcu-

lation in Section 3.1.1, we’ll look at the highest power of a given spin-up electron, say

z1. We see that this has maximum angular momentum m1N" + nN# and hence fills

out an area

A" = 2⇡(m1N
" + nN#)l2

B

Meanwhile, the same computation for the spin-down particles gives us the area

A# = 2⇡(m2N
# + nN")l2

B

If we want to focus on the places where both spin-up and spin-down particles intermin-

gle, we should take A" = A#. Clearly for a given state (m1,m2, n) this puts a constraint

on, say, N# given N". The filling fractions are then

⌫" =
N"

m1N" + nN# =
m2 � n

m1m2 � n2

⌫# =
N#

m2N# + nN" =
m1 � n

m1m2 � n2

where, in the second equality, we have used the constraint that follows from choosing

A" = A#. The total filling fraction is then

⌫ = ⌫" + ⌫# =
m1 +m2 � 2n

m1m2 � n2
(3.46)

The most prominent states of this kind have the form (m,m, n). These have filling

fractions ⌫" = ⌫# = ⌫/2 with

⌫ =
2

m+ n
(3.47)

Interesting examples include

• (3, 3, 1) with ⌫ = 1/2. Note that this is a genuine quantum Hall state at ⌫ = 1/2,

as opposed to the Fermi liquid state described in Section 3.3.3. It has been seen

in bi-layer samples, in which the z and w coordinate refer to the positions of

particles in the two di↵erent layers30.
30See Y. Suen et. al, “Observation of a ⌫ = 1/2 Fractional Quantum Hall State in a Double-Layer

Electron System”, Phys. Rev. Lett 68 9 (1992).

– 114 –



• (3, 3, 2) with ⌫ = 2/5. This state competes with the spin-polarised Jain state

that occurs at the same filling.

Given these states, we could now start to construct quasi-hole and quasi-particle

states for these multi-component wavefunctions. The quasi-holes in the (m,m, n) state

turn out to have charge e/(m+ n). We’ll postpone this discussion to Section 5, where

we’ll see that we can describe both the (m1,m2, n) states and the Jain states of Section

3.3.2 in a unified framework.

Putting Spin Back In

So far, we’ve been calling the di↵erent sets of particles “spin-up” and “spin-down”, but

the wavefunctions (3.45) don’t really carry the spin information. For example, there’s

no way to measure the spin of the particle in along the x-axis, as opposed to the z-

axis. However, there’s a simple way to remedy this. We just add the spin information,

� =" or # for each particle and subsequently anti-symmetrise (for fermions) over all

N = N" +N# particles. For (m,m, n) states, with m > n and N" = N# = N/2, this is

written as

 ̃(z, �) = A

2

4
NY

i<j

(zi � zj)
n
Y

1<i<j<N/2

(zi � zj)
m�n

Y

N/2+1<k<l<N

(zk � zl)
m�n | " . . . " # . . . #i

3

5

where A stands for anti-symmetrise over all particles, exchanging both positions and

spins. Since the spin state above is symmetric in the first N/2 spins and the second

N/2 spins, we must have m odd. (For bosons we could symmetrise over all particles

providing m is even).

A particularly interesting class of wavefunction are spin singlets. Given a bunch of

N spins, one simple way to form a spin singlet state is to choose a pairing of particles

— say (12) and (34) and so on — and, for each pair, forming the spin singlet

|12i = 1p
2

⇣
| "1#2i � | #1"2i

⌘

Then the spin state | i = |12i|34i . . . |N � 1, Ni is a spin singlet.

An Aside: Of course, the spin singlet constructed above is not unique. The number

of spin singlet states is given by the Catalan number, N !/(N"+1)!N"! where N = 2N".

– 115 –



We now want to write a spin singlet quantum Hall wavefunction. (Note that this is

the opposite limit to the Laughlin wavefunctions which were fully spin polarised). Since

the spin singlet state is itself anti-symmetric, we now require, in addition to having m

odd, that n is even. It is then straightforward to construct a spin singlet version of the

(n+ 1, n+ 1, n) Halperin state by writing

 ̃(z, w, �) = A
"

NY

i<j

(zi � zj)
n
Y

i<j odd

(zi � zj)
Y

k<l even

(zk � zl) |12i|34i . . . |N � 1, Ni
#

It can be seen to be a spin singlet because the last two factors are just Slater determi-

nants for spin up and spin down respectively, which is guaranteed to form a spin singlet.

Meanwhile, the first factor is a symmetric polynomial and doesn’t change the spin. A

stronger statement, which would require somewhat more group theory to prove, is that

the (n+ 1, n+ 1, n) Halperin states are the only spin singlets.

There is much more interesting physics in these quantum Hall states with spin. In

particular, for the case m = n, the Halperin states become degenerate with others

in which the spins do not lie in along the z-direction and the spin picks up its own

dynamics. The resulting physics is much studied and associated to the phenomenon of

quantum Hall ferromagnetism
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