
2 A Quantum Particle in One Dimension

There is much more to say about the basic postulates of quantum mechanics. However,

rather than presenting the full mathematical framework up front, we’re instead going to

explore a few simple examples of the Schrödinger equation. In doing so, we’ll build some

intuition for how to think about the wavefunction and the various pieces of information

that it encodes. Along the way, we’ll motivate how to think about physics in the

quantum world.

A few of the steps in this section will involve something of a leap of faith as we

try to elucidate the meaning of the wavefunction. In Section 3, we will return to the

basic formulation of quantum mechanics where we will state the rules of the game more

precisely and present a more complete description of the theory.

We will cut our teeth on quantum mechanical systems that involve a single particle

moving in one spatial dimension. This means that the wavefunction  (x, t) depends

on just a single variable x (in addition to time) and the Schrödinger equation becomes

i~@ 
@t

= � ~2
2m

@2 

@x2
+ V (x) 

We will solve this equation for various choices of V (x) and interpret the results.

The Time Independent Schrödinger Equation

At first glance, the Schrödinger equation looks fairly daunting because it is a partial

di↵erential equation. In fact, there is a straightforward way to deal with the time

variable. The idea is to look for separable solutions of the form

 (x, t) = e�i!t (x) (2.1)

for some choice of frequency !. Note that we have indulged in a slight abuse of notation,

denoting both  (x, t) and  (x) with the same variable. In what follows, it will hopefully

be clear which one we are talking about in any given circumstance. Where there is a

possibility for confusion, we’ll keep the arguments explicit.

Because this is the way that we will solve all Schrödinger equations in these lectures,

let us briefly return to the general case with

i~@ (x, t)
@t

= Ĥ (x, t) (2.2)

Plugging in the ansatz (2.1), we find ourselves having to solve

Ĥ (x) = E (x) where E = ~! (2.3)
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This is known as the time independent Schrödinger equation. If you really want to

make a distinction, the original Schrödinger equation (2.2) is, of course, known as

the time dependent Schrödinger equation. Here we’ll usually just refer to both as the

Schrödinger equation unless there’s likely to be some confusion about which one we’re

talking about.

The Schrödinger equation in the form (2.3) looks very much like the eigenvalue

equations that we meet when working with matrices and this is a very good analogy to

have in mind as we proceed. In all the examples that we study, we’ll see that there are

solutions to (2.3) only for very specific values of E. Furthermore, these special values

of E will have the interpretation of the possible energies of the system.

Separable solutions of the form (2.1) are sometimes referred to as stationary states

and sometimes as energy eigenstates. They play a special role in quantum mechanics.

One might worry that restricting attention to solutions of this kind is too restrictive,

and that we are missing a whole bunch of other interesting solutions. In fact, as we

go on we will see that all solutions can be expressed as linear combinations of di↵erent

stationary states.

2.1 The Free Particle

Our first example is the simplest. We take a particle moving in one dimension in the

absence of a potential

V (x) = 0

In this case, the time independent Schrödinger equation reads

� ~2
2m

d2 

dx2
= E (2.4)

All we have to do is solve this. The solutions are straightforward to write down: there

is a di↵erent solution for every k 2 R, given by

 (x) = eikx (2.5)

The eigenvalue E in (2.4) is then given by

E =
~2k2

2m
(2.6)

As we mentioned above, the value E has the interpretation of the energy of the state

eikx. For now, take this as just one more postulate of quantum mechanics, perhaps one

that has some justification given our earlier comments about the relationship between

the energy and the Hamiltonian. We’ll revisit these postulates in Section 3.
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If we do interpret (2.6) as the energy of the particle, we should probably compare it

to our classical expectations. In the absence of a potential energy, there is only kinetic

energy and this is given by

Eclassical =
p2

2m

where p = mẋ is the momentum of the particle. Clearly this suggests that the momen-

tum of the state (2.5) should be identified with

p = ~k (2.7)

This is the correct interpretation. We will later see that (2.5) is a “momentum eigen-

state”, which means that it is a state with definite momentum.

The wavefunction (2.5) can be viewed as a sum of sin and cos functions and describes

a complex-valued wave of wavelength

� =
2⇡

|k| (2.8)

Here the |k| is needed because k can have either sign, while the wavelength is always

positive. The relationship (2.7) between the momentum p and wavelength � then

becomes

|p| = 2⇡~
�

In this context, � is called the de Broglie wavelength of the particle. Any non-relativistic

particle, with momentum p, has an associated wavelength � and, as we will see, in

certain situations will exhibit wavelike properties. The more grown-up version of the

de Broglie relation is (2.7) where k is referred to as the wavenumber. However, it’s not

unusual for physicists in general (and me in particular) to be sloppy and refer to k as

the momentum.

There is, however, an annoying subtlety that arises in this simplest example of quan-

tum mechanics. The wavefunction (2.5) is not normalisable! If you integrate it you

get

Z +1

�1
dx | |2 =

Z +1

�1
dx 1 =1

That’s bad! It means that we can’t actually think of  = eikx as a state of our particle.

What should we make of this?
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This is a slippery issue, and one that doesn’t arise in many other situations. We will,

ultimately, address this issue head on in Section 2.4 where wavefunctions like (2.5) will

be too useful to ignore. But we will be best served if we first sidestep the problem and

look at situations where it doesn’t arise.

2.1.1 A Particle on a Circle

One simple fix is to consider a particle moving on a circle of radius R. The Schrödinger

equation is still (2.3) and its solutions are still (2.5), but now there is the additional

requirement that the wavefunction should be periodic, so that

 (x+ 2⇡R) =  (x)

Not all solutions (2.5) obey this requirement. We must have

eik(x+2⇡R) = eikx ) e2⇡ikR = 1

This holds only for k of the form

k =
n

R
with n 2 Z

This is our first sign of the quantum in quantum mechanics. This word refers to the fact

that certain quantities, which are always continuous variables in the classical world, can

only take certain discrete values in this new framework. For the particle on a circle, we

see that the momentum is quantised

p =
~n
R

with n 2 Z (2.9)

as is the energy

E =
~2n2

2mR2
with n 2 Z

The possible values of the momentum are split by ~/R. As the circle gets larger, the

gap between the allowed momentum states becomes smaller. At some point, this will

be experimentally indistinguishable from momentum p taking arbitrary real values.

Similar comments hold for the energy. The collection of all possible energies is known

as the spectrum of the Hamiltonian.

As an extreme example, we don’t know if our universe is infinite or if it is finite, with

a radius R & 20 billion light years. If the latter is true, then you wouldn’t be able to

travel with arbitrary momentum, but only very specific values finely graded by ⇠ 1/R.

Needless to say, we have no way of measuring momentum to an accuracy which can

distinguish these two options.
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Figure 6. The (real part of the) wavefunction, plotted around the circle for the lowest energy

states. These rotate in time with frequency ! = E/~.

Conversely, suppose that there are spatial dimensions in our universe beyond the

obvious three that we see. If such dimensions exist, we need a reason why we’ve not

observed them. One obvious possibility is that they wrap around to form a circle or

some other compact space. In this case, the lowest energy wavefunctions simply spread

uniformly around the extra dimension. If you want to move in the extra dimension,

then you need a minimum amount of momentum p = ~/R and, correspondingly, a

minimum amount of energy ~2/2mR2. If we can’t muster this minimum energy then

we are unaware of these extra dimensions. But, ironically, we’re unaware of them

because we inhabit them uniformly, rather than because we’re stuck at one point.

There are no pressing reasons to believe that extra dimension exist in our universe.

Our best particle accelerators reach energies of around 1012 eV, also known as a TeV,

and there is no sign of them knocking particles into the next dimension. This puts a

limit on the size of these putative small extra dimensions of R < 10�19 m or so. (To

give you the fuller story, you really need relativistic dynamics by the time we get to

these energies. The result is that the minimum momentum in the extra dimension

requires energy E = ~c/R, but the general conclusion remains unchanged.)

The discreteness in quantities like momentum and energy is one of the characteristic

features of quantum mechanics. However, as the example above illustrates, there is

no discreteness in the fundamental equations. Instead, the discreteness is an emergent

phenomenon. The integers n arise only when you solve these equations. In the current

example, there is a nice intuitive explanation for how this arises: the only states that

are allowed are those for which an integer number n of de Broglie wavelengths fits nicely

around the circle. Indeed, the quantisation condition (2.9) becomes

� =
2⇡R

|n| with n 2 Z
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Figure 7. The (real part of the) wavefunction for n = 15.

The wavefunctions for n = 0, 1, 2 and 3 are plotted in Figure 6. The n = 0 wavefunction

is simply a constant. It’s not so obvious that the n = 1 wavefunction oscillates once as

we go around the circle, but this becomes increasingly easy to visualise as n increases.

The n = 15 wavefunction is shown in Figure 7.

Finally, we can return to the normalisability issue that plagued our earlier example

of a particle on a line. The wavefunction (2.5) is not normalised but, when viewed on

a circle, it is at least normalisable. We have

Z 2⇡R

0

dx | |2 = 2⇡R

which tells us that the correctly normalised wavefunction is

 (x) =
eikxp
2⇡R

You can see that this doesn’t fare well if we try to return to a particle on the real line

by taking R ! 1. In this limit, the wavefunction becomes smaller and smaller in its

attempt to remain normalised, until it vanishes completely.

2.1.2 The Infinite Potential Well

We get very similar physics by looking at a particle trapped in an infinite potential well

of width L. We can achieve this by setting

V (x) =

(
0 0 < x < L

1 otherwise

You may think that we’re no longer dealing with a free particle now that we’re sub-

jecting it to an infinite potential energy. However, the e↵ect of an infinite V (x) is very

– 24 –



easy to deal with. The Schrödinger equation equation is

� ~2
2m

@2 

@x2
+ V (x) = E 

and if we’re looking for states with finite energy E, then we must have  = 0 in any

region where V (x) = 1. Intuitively this is obvious: the infinite potential is just a

plot device that allows us to insist that the particle is restricted to lie in the region

0 < x < L. Within this region, we again have our free Schrödinger equation

� ~2
2m

@2 

@x2
= E 

but now with the restriction that  (x) = 0 at the two ends of the interval x = 0 and

x = L. The solutions are, once more, a restricted class of the eikx wavefunctions.

To see the restriction in more detail, first recall that in our previous example the

wavevector k can take either sign. Moreover, in that case e+ikx and e�ikx describe two

di↵erent states since, from (2.7), they correspond to a particle with positive or negative

momentum. For the particle in the interval, we will consider the more general ansatz

 (x) = Aeikx +Be�ikx

now with k > 0. The requirement that  (x = 0) = 0 tells us that B = �A, so the

wavefunction must be of the form

 (x) = A
�
eikx � e�ikx

�
= 2iA sin kx

The factor of 2iA in front simply changes the normalisation of the wavefunction and

doesn’t a↵ect the physics. Now we have to impose the requirement that the wavefunc-

tion vanishes at the other end of the integral,  (x = L) = 0, or

sin kL = 0 ) k =
⇡n

L
with n 2 Z+

Finally, if we want the wavefunction to be normalised correctly, we should take

 (x) =

r
2

L
sin kx (2.10)

The wavefunctions for the n = 1, 2, 3 and 4 states are shown in Figure 8.

There is one slightly subtle di↵erence from our previous example: in the current case

n should be a positive integer, while for the particle on the circle it could have either

sign. This is because reversing the sign of k in (2.10) merely flips the overall sign of the

wavefunction which, as we have seen, does not give a di↵erent state. This means that

the +n and �n states are the same. Meanwhile, if you set n = 0, the wavefunction

simply vanishes and so the upshot is that we restrict n to be a positive integer.
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Figure 8. The ground state wavefunction for an infinite potential well in the top left, followed

by the first three excited states.

In this example, we again see that energy is quantised, taking values

E =
~2⇡2n2

2mL2
(2.11)

This is very similar to the result of a particle on a circle.

What about the momentum? Recall our previous discussion: the state eikx has

momentum p = ~k. But for the current example, we have (ignoring the normalisation)

 = eikx� e�ikx. This is the superposition of two states, one with momentum p = +~k
and the other with momentum p = �~k. This means that these states do not have a

well defined momentum. This shouldn’t be a surprise because a classical particle in a

box bounces back and forth and doesn’t have a well defined sign of the the momentum

either. Similarly, you can think of the wavefunctions as standing waves, bouncing

backwards and forwards between the two walls but not going anywhere. We’ll become

more precise about how to identify the momentum of a state as we go on.

The discreteness of energy levels in the infinite well has an important application,

similar in spirit to the “extra dimension” story that we told above, but significantly less

science fiction. Consider particles moving, as particles do, in three spatial dimensions.

Suppose that you trap them in a well in one dimension, but still allow them to wander

in the other two. Then, provided that you can restrict their energies to be small enough,

the particles will act, to all intents and purposes, as if they’re really two-dimensional

objects.
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This is in sharp distinction to what happens in classical mechanics where the par-

ticles would move approximately in two dimensions but there would always be small

oscillations in the well that can’t be ignored. In contrast, the discreteness of quantum

mechanics turns an approximate statement into an exact one: if the particle doesn’t

have enough energy to jump to the n = 2 state then it really should be thought of as

a 2d particle. Of course, we can also restrict its motion once more and make it a 1d

particle.

This may not seem like a big deal at this stage but, as we will learn in later courses,

interesting things can happen in low dimensions that don’t happen in our 3d world.

But these things aren’t mere mathematical curiosities: they can be constructed in the

lab using the method above. (If you want an example, in 2d — but not in 1d or in 3d

— it’s possible for an electron to split into N objects each carrying fractional electric

charge 1/N . And this can be seen in experiments!)

2.1.3 The Gaussian Wavepacket

Let’s now return to the problem of a free particle moving on a line, with x 2 R. Recall

that the time dependent Schrödinger equation is

i~@ 
@t

= � ~2
2m

@2 

@x2

This is solved by the separable solution

 k(x, t) = e�iEk t/~eikx

for any choice of k 2 R. In anticipation of what’s coming next, we’ve changed the

notation to make it clear that both the wavefunction  k and the energy Ek depend on

the wavenumber k, with the latter given by

Ek =
~2k2

2m

The problem, as we’ve seen, is that  k is not a normalisable wavefunction on R and

therefore is an illegal state. However, that doesn’t stop us from taking superpositions

of  k to build states that are normalisable. The most general superposition takes the

form

 (x, t) =

Z +1

�1
dk A(k) k(x, t) (2.12)

for some function A(k). Moreover, for each choice of A(k), this wavefunction will solve

the time dependent Schrödinger equation . This follows from a simple, yet important,
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observation about the general time dependent Schrödinger equation (1.1): it is linear.

This means that if you find two solutions  1 and  2 that solve the Schrödinger equation,

then their sum is guaranteed to solve it as well. This linearity of quantum mechanics

is, like the Schrödinger equation itself, something that persists as we move on to more

advanced topics. It is one of the very few ways in which quantum mechanics is simpler

than classical mechanics.

For our purposes, let’s consider a wavefunc-

tion built by taking

A(k) = exp

✓
�(k � k0)2

2�
+

k2
0

2�

◆

This is a Gaussian distribution over momen-

tum states  k, centred around the wavenumber

k = k0, with width � > 0. A sketch is shown

to the right. The additional factor of ek
2
0/2� is just a constant and only a↵ects the

normalisation of the wavefunction; we’ve included it so that things look simpler below.

When used to construct the linear superposition (2.12), the Gaussian distribution

means, roughly speaking, that we include significant contributions only from wavenum-

bers that lie more or less within the window

(k � k0)
2 . a few times � (2.13)

Outside of this window, the coe�cients A(k) drop o↵ very quickly. What does the

resulting wavefunction look like? We have

 (x, t) =

Z +1

�1
dk exp

✓
�k2 � 2kk0

2�
� i

~tk2

2m
+ ikx

◆

=

Z +1

�1
dk exp

 
�↵
2

✓
k � �

↵

◆2

+
�2

2↵

!

where, in the second line, we have simply completed the square and the various param-

eters are given by

↵ =
1

�
+

i~t
m

, � =
k0
�

+ ix (2.14)

At this stage, we have an integral to do. This is well-known Gaussian integral, with

Z +1

�1
dk e�↵(k��)2/2 =

r
2⇡

↵
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This result holds for any � and for any ↵ with Re(↵) > 0. A quick look at the ↵ defined

above confirms that we’re in business, and the final result for the wavefunction is

 (x, t) =

s
2⇡

↵(t)
exp

 
� 1

2↵(t)

✓
x� ik0

�

◆2
!

(2.15)

where the function ↵(t) is defined in (2.14). We see that the wavefunction also takes

the form of a Gaussian, now in space, and with a time dependent width ↵(t).

There’s a lot to unpack in this formula. First, note that the wavefunction is normal-

isable. (Although, as we shall see shortly, not actually normalised.) This follows from

the fact that  (x, t) decays exponentially quickly as x! ±1. So although we built the

wavefunction from the non-normalisable, and hence illegal, waves (2.5) there’s nothing

wrong with the end product. This is the first sign that we shouldn’t be so hasty in

simply discarding the eikx wavefunctions on the line. They may not be genuine states

of the system, but they’re still useful.

The state described by (2.15) has neither definite momentum nor energy nor, indeed,

position. This is actually the lot of most states. Moreover, the state does not take

the simple separable form (2.1) of the stationary states that we’ve discussed until

now. Indeed, the time dependence is fairly complicated. It turns out that one can

construct all solutions of the Schrödinger equation through similar linear superpositions

of stationary states. When, as in the present case, the stationary states are simply

eikx, the linear superposition is just the Fourier transform of a function. But it also

holds in more complicated cases. This is why its sensible to solve the time dependent

Schrödinger equation by first looking for solutions to the simpler time independent

Schrödinger equation. We’ll address this further in Section 3.

Next, we can try to extract some physics from the state (2.15) which goes by the

name of the Gaussian wavepacket. Clearly it describes a state that is fairly well localised

in space. But, as time goes on, it becomes more and more spread out1. This is what

happens to quantum probability if it is not trapped by some potential: it disperses.

It is only the stationary states that have a definite energy and, correspondingly, the

simple e�iEt/~ time dependence that stick in one place.

There is also something interesting in the size of the dispersion. Recall that we built

the state by integrating over momentum modes in the window (2.13). We can think of

this in terms of the variance, or uncertainty, of the wavenumber which we write as

�k2 ⇠ �
1
The Mathematica website has a nice demonstration of an evolving Gaussian wavepacket.
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where ⇠ is an important mathematical symbol that means the thing of the left is

roughly like the thing on the right. It’s useful in physics when trying to tease out some

relation without bothering about all the details like annoying numerical coe�cients.

Meanwhile, the spread in position is determined by the function ↵(t) given in (2.14).

It is at its minimum when t = 0, so we have

�x2 ⇠ ↵(t) � ↵(t = 0) =
1

�

We see that the spread of the wavefunction in position space is inversely proportional to

its spread in wavenumber or, equivalently, its spread in momentum p = ~k. Multiplying

these together, we get

�x2 �p2 & ~2

This is our first glimpse at the famous Heisenberg uncertainty relation. You can localise

a particle in space only at the expense of having a broad range of momenta, and vice

versa. We’ll derive the proper mathematical expression of the Heisenberg uncertainty

relation in Section 3.4.1.

This also gives us a new perspective on our original attempt at writing states as

 = eikx. These wavefunctions have a definite momentum, p = ~k. But they are

also spread out everywhere in space and this is what resulted in their non-normalisable

downfall.

2.1.4 A First Look at Expectation Values

There is one thing that might still seem puzzling about our wavefunction

 (x, t) =

s
2⇡

↵(t)
exp

 
� 1

2↵(t)

✓
x� ik0

�

◆2
!

We constructed it by summing over states with di↵erent wavenumbers, but they were

peaked around k = k0. And one might think that this should result in a particle moving

with some average momentum p = ~k0. But it’s not obvious that our wavefunction

is moving to the left or right in any way. In fact, pinning down its location is a little

bit confusing because there’s the imaginary piece �ik0/� sitting in the exponent. How

should we think of this?

To get a better sense of what’s going on, we should compute the probability density

P / | |2. At this point we should be more careful about the overall normalisation, so
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we introduce a constant C that we’ll figure out later and write P = C| |2. We then

have

P (x, t) =
2⇡C

|↵| exp

✓
� 1

2↵
(x� ik0/�)

2 � 1

2↵?
(x+ ik0/�)

2

◆

=
2⇡Cek

2
0/�

|↵| exp

 
� 1

�|↵|2

✓
x� ~k0t

m

◆2
!

(2.16)

where you need a little bit of algebra to get to the second line. You can check that

the probability is correctly normalised if we take C = e�k
2
0/�/
p
4�⇡3. Importantly, the

normalisation factor itself doesn’t depend on time. This had to be the case because

we’ve constructed this wavefunction to obey the time dependent Schrödinger equation

and, as we saw in Section 1.2.2, if you normalise the wavefunction at one time then it

stays normalised for all times.

From the form of the probability (2.16), you can clearly see the growing width of the

distribution, with

|↵|2 = 1

�2
+

~2t2
m2

However, it is now also clear that the probability distribution doesn’t just sit at the

origin and spread out, but instead moves. This follows because the x dependence takes

the form x� vt where the velocity is

v =
~k0
m

If we think in classical terms, and define the momentum to be p = mv, then we have

p = ~k0 as expected.

There should be a more systematic way to extract this information about the mo-

mentum of a state, one that doesn’t involve staring at complicated formulae to figure

out what’s going on. And there is. Our equation (2.16) is a probability distribution

for the position of the particle. As with any probability distribution, we can use it to

compute averages and variances and so on.

Given a probability distribution P (x), with x 2 R, the average of any function f(x)

is given by

hf(x)i =
Z +1

�1
dx f(x)P (x)
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In quantum mechanics the average is usually called the expectation value and, as above,

is denoted by angular brackets h · i. We can then ask: what is the average position of

the particle given the probability distribution (2.16)? We simply need to compute the

integral

hxi = 1p
⇡�|↵|2

Z +1

�1
dx x exp

 
� 1

�|↵|2

✓
x� ~k0t

m

◆2
!

=
1p

⇡�|↵|2

Z +1

�1
dx̃

✓
x̃+

~k0t
m

◆
exp

✓
� x̃2

�|↵|2

◆

where, in the second line, we’ve shifted the integration variable to x̃ = x�~k0t/m. We

can now use the general result for Gaussian integrals,

Z +1

�1
dx e�ax

2
=

r
⇡

a
and

Z +1

�1
dx x e�ax

2
= 0 (2.17)

where the second equality follows because the integrand is odd (and suitably well

behaved at infinity). Using these, we get

hxi = ~k0t
m

showing, once again, that the wavepacket travels with velocity v = ~k0/m.

We could do further calculations to compute the average of any other function f(x).

But instead we’re going to pause and ask a di↵erent question. How do we compute the

average momentum of the wavepacket?

At first glance, this might seem like an odd question. After all, we’ve just computed

the velocity v and so the average momentum is surely p = mv. However, in later

examples things won’t be so straightforward and this is a useful place to pause and see

what’s going on.

One reason this is an interesting question is because it gets to the heart of the

di↵erence between classical and quantum mechanics. In classical mechanics, the state

of the system is determined by both x and p. But in quantum mechanics we have

only the wavefunction,  (x) and this has to contain information about both position

and momentum. So how is this encoded? This is one of the steps in this section that

involves a leap of faith and no small amount of creativity.
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In fact, we saw a hint of how to proceed back in the introduction. Recall that our

Hamiltonian for a one-dimensional particle is

Ĥ = � ~2
2m

d2

dx2
+ V (x)

while, in classical mechanics, the energy of a particle is

Eclassical =
p2

2m
+ V (x)

This suggests a relationship between momentum p and the act of taking a derivative

p  ! �i~ d

dx

where I’ve picked the minus sign, as opposed to plus sign, because I’ve studied this

course before. This is the clue that we need. Given a wavefunction  (x), the momentum

is encoded in how fast it varies in space. We can see this in the simple non-normalisable

states  = eikx where  0 = ikeikx and is clearly bigger for higher momentum. In general,

the correct relationship between momentum and the derivative manifests itself in the

following formula

hpi = �i~
Z +1

�1
dx  ?

d 

dx
(2.18)

We’ll have a lot more to say about this in Section 3. For now, let’s just see what it

gives for our Gaussian wavepacket. We have

hpi = 1p
⇡�|↵|2

e�k
2
0/�

Z +1

�1
dx e�(x+ik0/�)2/2↵? ⇥�i~ d

dx
e�(x�ik0/�)2/2↵

=
1p

⇡�|↵|2

Z +1

�1
dx

i~
↵

✓
x� ik0

�

◆
exp

 
� 1

�|↵|2

✓
x� ~k0t

m

◆2
!

where, after taking the derivative, the algebra needed to go from the first to the second

line is identical to that in (2.16). Again shifting the integration variable to x̃ = x �
~k0t/m, we have

hpi = 1p
⇡�|↵|2

Z +1

�1
dx̃

i~k0
↵

✓
x̃

k0
+

~t
m
� i

�

◆
exp

✓
� x̃2

�|↵|2

◆
= ~k0

where, to get the final equality, we did the Gaussian integrals (2.17) and then used the

expression for ↵ given in (2.14).
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That was a fair bit of work just to get the answer that we expected all along: hpi =
~k0. As we go on, we’ll see that the expression (2.18) is the right way to think about

the average momentum of any state.

2.2 The Harmonic Oscillator

The harmonic oscillator is the name given to a particle moving in a quadratic potential.

In classical mechanics, the energy is

Eclassical =
1

2
mẋ2 +

1

2
m!2x2 (2.19)

The classical equation of motion follows from the fact that energy is conserved, which

means that Ėclassical = 0 or, equivalently,

ẍ = �!2x

The most general solution has the form x(t) = A cos(!(t� t0)) and describes a particle

bouncing backwards and forwards with frequency !.

In this section we will look at the quantum harmonic oscillator. This means that we

want to solve the Schrödinger equation with Hamiltonian

Ĥ = � ~2
2m

d2

dx2
+

1

2
m!2x2 (2.20)

It’s di�cult to overstate the importance of the harmonic oscillator in quantum mechan-

ics. It is, by some margin, the single most important example that we will study. The

reasons for this are twofold. The first is Taylor’s theorem: if you take any potential

V (x) and expand close to a minimum then, at leading order, you will most likely find

the harmonic oscillator. This means that small perturbations of more or less any sys-

tem in Nature are described by the Hamiltonian (2.20). (There are exceptions. Very

occasionally, you might find a potential where the quadratic term vanishes, so ! = 0,

and you have to look at the next term in the Taylor expansion. This situation is rare

but interesting.)

The second reason for the utility of the harmonic oscillator is more practical. Human

beings are not particularly good at solving equations. This isn’t so apparent when you

first learn theoretical physics because, quite reasonably, your teachers don’t want to

stand up in front a classroom and continually repeat “yeah, we don’t know how to solve

this one either”. Instead we shine a light on our successes. But as theoretical physics

gets more advanced, these successes become harder and harder to find. At some point

the only system that we can actually solve is the harmonic oscillator. Or, more precisely,
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things that can be made to look like the harmonic oscillator. The art of theoretical

physics is then to make everything look like a harmonic oscillator. Take whatever you

think is the coolest result in physics – maybe the Higgs boson, or some new material

like topological insulators, or maybe gravitational waves or Hawking radiation. For all

of them, the underlying theory is primarily to do with harmonic oscillators.

There are, it turns out, a number of di↵erent ways to solve the harmonic oscillator. In

these lectures we won’t do anything fancy and just go ahead and solve the Schrödinger

equation equation viewed as a di↵erential equation.

2.2.1 The Energy Spectrum

Our goal is to find solutions to the time independent Schrödinger equation ,

� ~2
2m

d2 

dx2
+

1

2
m!2x2 = E (2.21)

Here the word “solution” means finding all normalisable  (x) that satisfy the Schrödinger

equation and, for each one, the accompanying energy E.

There are a bunch of constants sitting in (2.21) and life is simpler if we can just get

rid of them. To this end, define

y =

r
m!

~ x and Ẽ =
2E

~! (2.22)

Then the Schrödinger equation takes the cleaner form

d2 

dy2
� y2 = �Ẽ (2.23)

Before we get going, we can find one solution just by staring. This is the Gaussian

wavefunction

 (y) = e�y
2
/2 (2.24)

The derivatives are  0 = �y and  00 = y2 �  , so we see that this obeys the

Schrödinger equation with (rescaled) energy Ẽ = 1.

Furthermore, it’s simple to see that all normalisable solutions should fall o↵ in the

same exponential fashion, with  ⇠ e�y
2
/2 as y ! ±1. This follows from looking at

the large y behaviour of (2.23), where the Ẽ term is necessarily negligible compared

to the y2 . This motivates the general ansatz

 (y) = h(y) e�y
2
/2 (2.25)
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where we will shortly take h(y) to be a polynomial. Taking derivatives of this wavefunc-

tion gives  0 = (h0�hy)e�y
2
/2 and  00 = (h00� 2h0y+hy2�h)e�y

2
/2 so the Schrödinger

equation (2.23) becomes

d2h

dy2
� 2y

dh

dy
+ (Ẽ � 1)h = 0 (2.26)

You can check that this is indeed satisfied by our earlier solution (2.24) with h = 1. To

find the general solution, we take the polynomial ansatz

h(y) =
1X

p=0

apy
p

Here p is just a dummy summation index; do not confuse it with momentum! Plugging

this ansatz into (2.26) gives a relation between the coe�cients,

(p+ 2)(p+ 1)ap+2 � 2pap � (Ẽ � 1)ap = 0

) ap+2 =
2p� Ẽ + 1

(p+ 2)(p+ 1)
ap (2.27)

All we have to do is solve this simple recurrence relation.

First note, that the recurrence relation involves two independent sets of coe�cients:

ap with p even, and ap with p odd. These two sets don’t talk to each other and so we

have two classes of solutions. We’ll see the interpretation of this shortly.

Next, let’s look at what happens for large p. There are two options: either the

recurrence relation terminates, so that ap = 0 for all p > n for some n. Or the

recurrence relation doesn’t terminate and ap 6= 0 for all p. We’re going to argue that

only the first option is allowed. If the recurrence relation keeps going forever, the

resulting wavefunction will be non-normalisable.

Why is this? If the recurrence relation doesn’t terminate then, for very large p, we

have ap+2 ⇡ 2ap/p. But this is the kind of expansion that we get from an exponentially

growing function. To see this, look at

ey
2
=

1X

p=0

y2p

p!
=

1X

p=0

bpy
p with bp =

(
1

(p/2)! if p is even

0 if p is odd

The appropriate recurrence relation for this exponential function is then

bp+2 =
(p/2)!

(p/2 + 1)!
bn =

1

p/2 + 1
bp �!

2

p
bp as p!1

– 36 –



The upshot of this argument is that, if the recurrence relation (2.27) fails to termi-

nate then, for large |y|, the wavefunction actually looks like  (y) = h(y)e�y
2
/2 !

e+y
2
e�y

2
/2 = e+y

2
/2

The emergence of such solutions isn’t entirely unexpected. We know that, at large y,

both e�y
2
/2 and e+y

2
/2 are equally valid solutions. Our preference for the former over

the latter is for physical reasons, but the power-law ansatz that we’re playing with has

no knowledge of this preference. Therefore it’s no surprise that it o↵ers up the e+y
2
/2

solution as an option. Nonetheless, this doesn’t change the fact that it’s not an option

we want to make use of. The e+y
2
/2 wavefunctions are non-normalisable and therefore

illegal. Moreover, unlike the more straightforward  = eikx wavefunctions that we met

in the last section, there’s no redemption for wavefunctions that grow exponentially

quickly. They are not of interest and should be discarded.

All of which is to say that we should be looking for solutions to (2.27) for which the

sequence ap terminates. This means that there must be some positive integer n for

which

2n� Ẽ + 1 = 0 (2.28)

But this is the spectrum of the theory that we were looking for! The allowed energy

states of the harmonic oscillator take the form

Ẽn = 1 + 2n with n = 0, 1, 2, . . .

Recalling the scaling (2.22), the energies are

En = ~!
✓
1

2
+ n

◆
with n = 0, 1, 2, . . . (2.29)

All energies are proportional to ~!, with ! the frequency of the harmonic oscillator.

Furthermore the states are equally spaced, with

En+1 � En = ~!

2.2.2 The Wavefunctions

It is not hard to get the wavefunctions. We simply work backwards from the result

(2.28) to figure out all the earlier coe�cients in the polynomial. We learn that the

Gaussian wavefunction (2.24) that we guessed earlier is actually the lowest energy

state of the system,

 = e�y
2
/2 ) E0 =

1

2
~! (2.30)
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Figure 9. The normalised wavefunctions for the harmonic oscillator ground state and the

first three excited states. The nth
excited state crosses the x-axis n times.

The lowest energy state in any system is called the ground state. Note that we also

came across Gaussian wavefunctions (2.15) when discussing the free particle. In that

context, they spread out over time. Not so here. The fact that the Gaussian is an energy

eigenstate of the harmonic oscillator means that it has the simple time dependence

e�iE0t/~ of any stationary state. You can think of the wavefunction as pinned in place

by the rising potential.

The next few (unnormalised) wavefunctions are

 = 2ye�y
2
/2 ) E1 =

3

2
~!

 = (�2 + 4y2)e�y
2
/2 ) E2 =

5

2
~!

 = (�12y + 8y3)e�y
2
/2 ) E3 =

7

2
~!

These, together with the Gaussian, are shown in Figure 9. In general, the functions

h(y) are known as Hermite polynomials and have a number of nice properties.

We can now return to one issue that we left hanging. The recurrence relation (2.27)

does not relate ap with p even to to those with p odd. This manifests itself in the

solutions above where the polynomials contain only even powers of y or only odd

powers of y. Correspondingly, the two classes of solutions that we anticipated earlier
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are simply even or odd functions, with

 (y) =  (�y) when ap 6= 0 for p even

and  (y) = � (�y) when ap 6= 0 for p odd

There is a general lesson here. Whenever the potential is an even function, meaning

V (x) = V (�x), then the energy eigenstates will arrange themselves into even and odd

functions. Underlying this is the concept of parity symmetry, which is the statement

that the physics is unchanged under x ! �x. We’ll make use of this idea of parity

symmetry later in these lectures.

At first glance, the wavefunctions that we’ve found don’t seem to capture much of the

familiar classical physics of a particle bouncing back and forth in a potential. Because

they’re all stationary states, the time dependence is simply an overall phase e�iEt/~

in front of the wavefunction. You can compute the average position and momentum

in any of the states above and you will find hxi = hpi = 0. In some sense, this is

what you expect because it is also the average behaviour of the classical solution! Still,

it would reassuring if we could see some remnant of our classical intuition in these

wavefunctions.

A general property of quantum systems is that they tend to look more classical as you

go to higher energies. For example, the discretisation e↵ects may be less noticeable if

they’re small compared to the overall energy of the system. For the harmonic oscillator,

the wavefunctions for the 20th and 60th excited states are shown in Figure 10. Although

it may not be obvious, some key elements of the classical trajectories can be seen hiding

in these wavefunctions.

First, look at the way the wavefunction oscillates. We know that a free particle

with definite momentum p = ~k is associated to eikx. The bigger k, the smaller the

wavelength, and the higher the momentum. In the wavefunctions shown in Figure 10,

you can see that the wavelength of oscillations is much smaller near the bottom of the

potential and then gets stretched towards the edges. This coincides with the classical

expectation, where the particle is travelling much faster at the bottom of the potential

and slows as it rises.

The way to quantify this idea uses a technique known as the WKB approximation.

We’ll discuss this in more detail in the lectures on Topics in Quantum Mechanics, but

here we just describe the basic idea which is enough to extract the physics that we care

about. We write the Schrödinger equation as

� ~2
2m

d2 

dx2
=

✓
E � 1

2
m!2x2

◆
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Figure 10. Harmonic oscillator wavefunctions for the 20
th

excited state on the left, and the

60
th

excited state on the right.

The idea is that, for large E, we might be able to think of the E � 1
2m!

2x2 as roughly

constant over some small region of x. We then get two di↵erent kinds of behaviour:

if x2 < 2E/m!2 then the wavefunction oscillates, approximately as eikx for some k.

Alternatively, when x2 > 2E/m!2, the wavefunction drops o↵ as e�k|x| for some k.

The WKB approximation builds on this intuition by looking for solutions where k

itself varies with x, so k = k(x). This, of course, is what’s seen in the wavefunctions

plotted in Figure 10.

One consequence of this is that we expect that, as E increases, the wavefunctions

extend further out. Indeed, the n = 60 wavefunction extends out further than the

n = 20 wavefunction. Mathematically this follows simply because there are higher

powers of y in the polynomial h(y). The kind of ideas sketched above can be used to

show that, for large E, the final turning point of the wavefunction occurs at

x2
max ⇡

2E

m!2

This is precisely the turning point of the classical particle, where the kinetic energy in

(2.19) vanishes.

Finally, look at the overall envelope of the wavefunction, a curve that peaks at the

edges and dips in the middle. This is telling us that if you do a measurement of a

particle in this high energy state, you’re more likely to find it near the edges than

near the origin. But this, too, is the same as the classical picture. If you take a

photograph of a ball oscillating in a harmonic potential, you’re most likely to catch it

sitting towards the end of its trajectory, simply because it’s going slower and so spends

more time in those regions. Conversely, the ball is less likely to be caught as it whizzes
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past the origin. This is, again, captured by the form of the wavefunction. We see that

the quantum world is not completely disconnected from the classical. You just have to

know where to look.

2.3 Bound States

Any potential that rises indefinitely at infinity will, like the harmonic oscillator, have

an infinite collection of discrete allowed energies. In this section (and the next) we will

look at a slightly di↵erent class of potentials, those which asymptote to some constant

value

V (x) ! constant as x ! ±1

The value of the constant doesn’t matter; it just shifts the overall energies. For this

reason, we may as well just set it to zero and consider potentials that asymptote to

V (x) ! 0 as |x|!1. An example of such a potential is shown in the figure.

x

V(x)

In fact there are a whole bunch of subtleties

here to entrap the unwary. These relate to the

question of how fast the potential asymptotes

to zero. At this stage these subtleties are just

an annoyance so we’ll assume that the poten-

tial falls o↵ suitably quickly (for example, an

exponential decay will certainly be fine).

Now we want to ask: what are the solutions to the Schrödinger equation

� ~2
2m

d2 

dx2
+ V (x) = E (2.31)

We can start to address this by looking at the form of the solutions as x! ±1 where

the Schrödinger equation reduces to that of a free particle:

� ~2
2m

d2 

dx2
= E 

There are two qualitatively di↵erent kinds of solution to this equation:

• Scattering States: The solutions with energy E > 0 are characterised by k 2 R

and take the form

 = eikx with E =
~2k2

2m

As we saw in Section 2.1 these states are non-normalisable and this remains true

here. We’ll see what role they play in the next section where we will learn about

scattering.
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• Bound States: The solutions with energy E < 0 are characterised by ⌘ 2 R and

take the form

 = Ae�⌘x +Be+⌘x with E = �~2⌘2
2m

We didn’t even consider such wavefunctions when we discussed the free particle

because they’re obviously badly non-normalisable. For example, we could set

B = 0 so that the wavefunction  = e�⌘x decays nicely as x! +1, but then it

will blow up at x! �1.

However, it’s possible that we may be able to find good wavefunctions with this

asymptotic form when we solve the full Schrödinger equation (2.31). For the state

to be normalisable we would require that it decays at both ends, with

 ⇠
(
e�⌘x as x! +1
e+⌘x as x! �1

Note that to solve the Schrödinger equation we must have the same value of

⌘ in the exponent on both sides to ensure that the solution has constant E.

Such wavefunctions are called bound states because they are necessarily trapped

somewhere in the potential. As we will see, they occur only for very specific

values of ⌘.

In the rest of this section, we will study a couple of simple potentials to get some

intuition for how and when bound states occur. This will also provide an opportu-

nity to address a couple of technical mathematical points that arise when solving the

Schrödinger equation.

2.3.1 A Finite Potential Well

Our first example is the potential well of the

form

V (x) =

(
�V0 �a < 0 < a

0 otherwise
(2.32)

It’s not di�cult to see that there are no bound

states if V0 < 0. We will take V0 > 0, so the

potential is a dip as shown in the figure.

Clearly the potential is discontinuous at x = ±a and this raises the question of what

kind of wavefunction  (x) we should be looking for. The answer is that  (x) itself

should be continuous, as too should  0(x). But  00(x) inherits the discontinuity of the

potential.
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To see the statements above, first integrate the Schrödinger equation (2.31) over a

small interval at x = a,

� ~2
2m

Z
a+✏

a�✏

dx
d2 

dx2
=

Z
a+✏

a�✏

dx (E � V (x)) 

) d 

dx

����
a+✏

� d 

dx

����
a�✏

= �2m

~2

Z
a+✏

a�✏

dx (E � V (x)) 

Although V (x) is discontinuous at x = a, it is finite. This means that the integral on

the right-hand side vanishes as we take limit ✏ ! 0, telling us that  0 is continuous

at x = a. But if  0(x) is continuous then so too is  (x) itself. Returning to the

Schrödinger equation (2.31), we then see that the discontinuity in V (x) can only show

up in the second derivative  00(a).

Now our strategy for solving the Schrödinger equation is clear: we find solutions

inside and outside the well and then patch them together, making sure that both  

and  0 are continuous at the join.

Before we proceed, there is one last idea that will make our life easier. This is

the idea of parity, which comes from the observation that the potential is an even

function with V (x) = V (�x). This means that all solutions to the Schrödinger equation

will be either even functions or odd functions. (We saw this in the example of the

harmonic oscillator.) To see why this is necessarily the case, first note that if  (x)

solves the Schrödinger equation for some value of E, then so too does  (�x). Under

the assumption that there aren’t two di↵erent wavefunction with the same energy (a

so-called non-degenerate spectrum), we must have

 (x) = ↵ (�x)

for some ↵ 2 C. But we have

 (x) =  (�(�x)) = ↵ (�x) = ↵2 (x)

which tells us that ↵ = ±1, corresponding to either odd or even wavefunctions. (It’s

possible to extend this proof even in the case of degenerate spectra but this won’t be

needed for the examples that we’ll consider here.)

As we’ll now see, knowing in advance that we’re looking for even or odd solutions to

the Schrödinger equation greatly simplifies our task of finding solutions. We’ll look for

each in turn.
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Even Parity Wavefunctions

Let’s start by taking the even parity case. We’re looking for bound state solutions

which, outside the potential well, must take the form

 (x) =

(
Ae�⌘x x > a

Ae+⌘x x < �a
(2.33)

Here A is simply a normalisation constant. Our real interest is in the possible values

of ⌘ since these will determine the energy of the bound state E = �~2⌘2/2m.

Inside the potential well, the Schrödinger equation reads

� ~2
2m

d2 

dx2
= (E + V0) � a < x < a

This is, of course, once again the Schrödinger equation for a free particle, just with

shifted energy. As before, there are two kinds of solutions:

• Solutions with E > �V0 have wavefunctions e±ikx.

• Solutions with E < �V0 have wavefunctions e±⌘
0
x.

It turns out that the former solutions are the ones of interest and all our bound states

will have energies �V0 < E < 0. This is perhaps not surprising give that �V0 is the

lowest value of the potential.

Because we’re looking for parity even solutions, we should consider  = e+ikx+ e�ikx

or,

 (x) = B cos kx |x| < a (2.34)

where B is again a normalisation constant and k is, like ⌘, related to the energy, now

with

E = �~2⌘2
2m

=
~2k2

2m
� V0 (2.35)

Our next step is to patch the exponentially decaying solutions (2.33) outside the well

with the oscillatory solution (2.34) inside the well. Because both solutions are even

functions, we only have to do this patching once at x = +a; the solution will then be

automatically patched at x = �a as well. We have

 (x) cts at x = a ) B cos ka = Ae�⌘a

 0(x) cts at x = a ) �kB sin ka = �⌘Ae�⌘a
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Figure 11. A graphical solutions for even parity, bound state energies in a finite well.

Dividing the second condition by the first gives us the requirement

k tan ka = ⌘ (2.36)

But k and ⌘ are not independent; they are related by the condition (2.35). Our task,

therefore, is to solve (2.36) in conjunction with (2.35).

There is no simple solution to this transcendental equation, but it’s not di�cult to

understand the property of the solutions using graphical methods. In Figure 11 we first

plot the graph ⌘ = k tan ka in blue, and then superpose this with the circle

k2 + ⌘2 =
2mV0

~2

shown in red. We restrict to the range ⌘ � 0 as befits our normalisable wavefunction.

We get a solution whenever the red curve intersects the blue one. As expected, there

are a only discrete solutions, happening for specific values of ⌘. Moreover, there are

also only a finite number of them.

We see that the first solution is guaranteed: no matter how small the radius of the

circle, it will always intersect the first blue line. However, the number of subsequent

solutions depends on the parameters in the game. We can see that the number of

solutions will grow as we increase V0, the depth of the well, since this increases the

radius of the red circle. The number of solutions will also grow as we increase the

width of the well; this is because the separation between the blue lines is determined

by the divergence of the tan function and so occurs when k ⇡ ⇡/2a. As we increase a,

keeping V0 fixed, the blue lines get closer together while the red circle stays the same

size.
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Figure 12. A graphical solutions for odd parity, bound state energies in a finite well.

We can be more precise about this. From the graph, the nth crossing occurs some-

where in the region

(n� 1)⇡ < kna <

✓
n� 1

2

◆
⇡

giving an estimate of energy of the nth

En =
~2k2

n

2m
� V0

In the limit of an infinite well, we have V0 ! 1 so the red circle becomes infinitely

large, intersecting the blue lines only asymptotically where kna = (n� 1/2)⇡. Clearly

all energies descend to �1 in this limit, but we can instead measure energies with

respect to the floor of the potential. We then get

E + V0 !
~2⇡2(2n� 1)2

8ma2

But we’ve met this result before: it coincides with the energy spectrum (2.11) of a

particle in an infinite well. (To see the agreement, we have to note that L = 2a and,

furthermore, remember that we have restricted to even parity states only which is why

we’ve got only odd integers (2n� 1) in the numerator.)

There is one last mild surprise in our analysis. All our bound states have energy

�V0 < E < 0

This is what we would expect for a classical particle, trapped inside the well. The

quantum novelty is that the wavefunction itself is not restricted only to the well: it

leaks out into the surrounding region |x| > a, albeit with an exponentially suppressed

wavefunction (2.33). This means that there is some finite probability to find the particle

outside the well, in a region that would be classically inaccessible.
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Odd Parity Wavefunctions

We can easily repeat this analysis in the case of odd parity wavefunctions. We’re now

looking for bound state solutions which, outside the potential well, takes the form

 (x) =

(
Ae�⌘x x > a

�Ae+⌘x x < �a

Meanwhile, the odd parity wavefunction inside the well is

 (x) = B sin kx |x| < a

Patching these two solutions at x = a gives

 (x) cts at x = a ) B sin ka = Ae�⌘a

 0(x) cts at x = a ) kB cos ka = �⌘Ae�⌘a

which now gives us

k

tan ka
= �⌘ (2.37)

Once again this should be solved in conjunction with (2.35). Once again, graphs are our

friend. The graph of (2.37) is shown in blue in Figure 12, while the circle corresponding

to (2.35) is shown in red.

This time we see that there is no guarantee that a solution exists. The first blue line

emerges from the ⌘ = 0 axis at ka = ⇡/2. The red circle intersects this first line only if

2mV0

~2 >
⇡2

4a2
) 8mV0

~2⇡2
>

1

a2
(2.38)

This means that the first parity odd solution exists only if the potential is deep enough

or wide enough.

We can also see the solutions that were previously missing as we take V0 !1. The

divergences in the blue lines now occur at ka = n⇡ for any n 2 Z. Measured above the

floor of the potential, the energies then become

E + V0 !
~2⇡2(2n)2

8ma2

where now we see that there are only even integers 2n in the numerator.
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2.3.2 A Delta Function Potential

As our second example, we will consider a potential that is, at first glance, slightly odd:

a delta function sitting at the origin

V (x) = �V0 �(x)

for some constant V0. Recall that the delta function isn’t a real function, but a distri-

bution satisfying

�(x) = 0 unless x = 0 and

Z +1

�1
�(x) = 1

You can think of as an infinitely narrow, but infinitely long spike localised at the origin.

You might think that it’s not particularly realistic as a potential, and there is some

merit to that. But there are situations – such as impurities in solids – where the exact

form of the potential is complicated and most likely unknown and it is useful to have

a simple toy model that can be easily solved. This is what the delta function o↵ers.

The discontinuity in the delta function is significantly more extreme than that of the

finite potential well and, once again, we’re going to have to understand how to deal

with it. Our strategy is the same as before: we take the Schrödinger equation as the

starting point and see what the potential means for the wavefunction. To start, we

integrate the Schrödinger equation over a small region around the origin

� ~2
2m

Z +✏

�✏

dx
d2 

dx2
=

Z +✏

�✏

dx (E + V0�(x)) 

This time the right-hand side isn’t so innocent. While the E term simply vanishes in

the limit ✏! 0, the delta function doesn’t. We then find

lim
✏!0

✓
d 

dx

����
+✏

� d 

dx

����
�✏

◆
= �2mV0

~2  (0) (2.39)

We learn that the delta function leaves its imprint in the derivative of the wavefunction,

and  0 must now be discontinuous at the origin. The wavefunction itself, however,

should be continuous.

This is all the information that we need to find a bound state. Away from the origin,

the negative energy, normalisable solutions of the Schrödinger equation are simply

 (x) =

(
Ae�⌘x x > 0

Ae+⌘x x < 0
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for some ⌘ > 0. Note that we’ve chosen normalisation factors that ensure the wave-

function is continuous,

lim
x!0+

 (x) = lim
x!0�

 (x) = A

However, the presence of the delta function means that the two solutions must be

patched together with a discontinuity in the derivative

lim
x!0+

 0(x)� lim
x!0�

 0(x) = �A⌘
✓

lim
x!0+

e�⌘x + lim
x!0�

e+⌘x

◆
= �2A⌘

This should be identified with the discontinuity (2.39) giving the result that we need.

⌘ =
mV0

~2

We learn that the negative-valued delta function has just a single bound state with

energy

E = �~2⌘2
2m

= �V 2
0 m

2~2 (2.40)

This calculation also makes it clear how the presence of a potential can change the

asymptotic behaviour from e⌘x as x ! �1 to e�⌘x as x ! +1. The delta function

does this all in one go, but can only achieve the feat for a very specific value of ⌘. More

general potentials flip the sign of the exponent more gradually, but again can only do

so for specific values of ⌘, leading to a (typically finite) discrete collection of bound

states.

2.3.3 Some General Results

There are a number of simple, but useful, statements that we can prove for bound states

in any 1d potential V (x). These results hold for the two di↵erent kinds of potentials

that we’ve discussed so far, namely

• Potentials, like the harmonic oscillator, that diverge asymptotically so that V (x)!
1 as |x|! ±1. These will have an infinite number of normalisable states that

decay exponentially quickly as |x| ! 1. In this case, we usually take V (x) > 0

and the states have energy E > 0.

• Potentials, like the finite well, that asymptote to some constant which we can

take to be V (x)! 0 as |x|!1. As we’ve seen, these will have a finite number

of bound states that decay exponentially, all of which have E < 0.
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In what follows, we’ll refer to both kinds of states as bound states.

Claim: The spectrum of bound states is non-degenerate. This means that there aren’t

two distinct wavefunctions with the same energy.

Proof: Suppose the converse is true, meaning that both  (x) and �(x) have the

same energy so that

� ~2
2m

d2 

dx2
+ V (x) = E and � ~2

2m

d2�

dx2
+ V (x)� = E�

Consider the Wronskian,

W ( ,�) =  
d�

dx
� d 

dx
�

This has the property that it is constant in space, as we can see by taking a derivative

and using the Schrödinger equation

dW

dx
=  

d2�

dx2
� d2 

dx2
� =

2m

~2 ( (V � E)��  (V � E)�) = 0

For normalisable states, we know the value of the Wronskian as |x| ! 1: there we

have  = � = 0, and so W = 0. Hence we must have W = 0 everywhere. This means

that, at any finite x with  (x), �(x) 6= 0, we have

1

 

d 

dx
=

1

�

d�

dx
)  (x) = ↵�(x)

for some constant ↵ 2 C. But any two wavefunctions related by a constant ↵ corre-

spond to the same state. This means that the spectrum is non-degenerate. ⇤

Note that the argument above fails for the non-normalisable momentum states eikx

since these are nowhere vanishing. And, indeed, such states are typically degenerate

with eikx and e�ikx having the same energy.

Claim: The bound state wavefunctions can always be taken to be real.

Proof: If  (x) obeys the Schrödinger equation then so too does  ?(x). We can then

invoke the proof above to find  (x) = ↵ ?(x) for some constant ↵ 2 C. Taking the

modulus square tells us that | |2 = |↵|2| |2, so ↵ is a phase: ↵ = ei�. Now we can

define  real = e�i�/2 and, as the name suggests, this is real. To check this, look at

 ?

real = e+i�/2 ? = e+i�/2(e�i� ) =  real. ⇤
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Claim: The ground state has no nodes. This means that  (x) 6= 0 except when

|x|!1.

Semi Proof: We’re running very slightly ahead of ourselves in attempting to prove

this statement, but we’ve got just enough in place to give the gist of the proof, if not

the full rigorous version. Suppose that you have a guess at the ground state wavefunc-

tion  (x), but where  (x) = 0, for some finite x. We’re going to show that it’s always

possible to construct a new state with lower energy.

In fact, that last statement is almost true. What we’re actually going to show is that

it’s always possible to construct a new state with lower average energy. Following our

discussion in Section 2.1.4, the average energy of any normalised, real state  is

hEi =
Z +1

�1
dx

✓
� ~2
2m

 
d2 

dx
+ V (x) 2

◆

=

Z +1

�1
dx

 
~2
2m

✓
d 

dx

◆2

+ V (x) 2

!

where, in the second line, we’ve integrated by parts and thrown away the boundary

term because we’re dealing with normalisable states. The expression for the average

energy should be plausible given our earlier result (2.18) for the average momentum.

We will make it more precise in Section 3.3 when we discuss more about expectation

values. For now, we will take it as given.

Now consider the state | |. The derivative is ill-defined any point where  (x) = 0,

but this doesn’t a↵ect the average energy since it happens at a set of measure zero in

the integral. This means that | | has the same average energy as  . But now we can

smooth out the cusp so that the derivative is smooth everywhere. Furthermore, in the

region near the cusp, the derivative will be smaller after smoothing, which means that

hEi will also be smaller. This is how we lower the energy of the state.

Some fiddly mathematical analysis issues aside, there is one statement that we need

to complete the proof. If the true ground state energy of the system is E0, then the

average energy of any state is hEi � E0, with equality only for the ground state. This

is intuitive and not too di�cult to prove. It’s known as the variational principle in

quantum mechanics and has quite a few applications. You can read more about this in

the lectures on Topics in Quantum Mechanics. This variational principle now ensures

that the initial guess  (x) with a node cannot be the true ground state of the system.
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⇤

Figure 13. A double well potential, with two degenerate minima.

Claim: The nth excited state has n nodes, i.e. n distinct places where  (x) = 0.

No Proof: This is harder to prove and we won’t do it here. Note, however, that

you can see the pattern of increasing nodes in both the infinite well potential and the

harmonic oscillator (and, if you work harder, the finite well potential). ⇤

2.3.4 The Double Well Potential

There is a particularly interesting system that we can’t solve exactly but can use the

results above to get a feeling for the qualitative physics. This is the double well potential,

which is the name given to any function that takes the shape shown in Figure 13.

Classically, the system has two ground states, corresponding to the two minima of

the potential. The question is: what happens to a quantum particle placed in this

potential?

We could focus attention near one of the minima, say the one on the right x = xmin.

If we expand the potential about this point, we have

V (x) ⇡ V 00(xmin) (x� xmin)
2 +O(x4)

For small x, this looks just like the harmonic oscillator that we discussed in Section 2.2.

Indeed, as we stressed back then, one of the reasons that the harmonic oscillator is so

important is that it is the first approximation to almost all potentials when expanded

about their minima.
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We might reasonably think that we can import our understanding of the harmonic

oscillator to understand what’s going on in this case. In particular, the ground state

of the harmonic oscillator is a Gaussian (2.30),

 right(x) = exp

✓
� 1

2a2
(x� xmin)

2

◆

where a is a length scale determined by the mass of the particle and V 00(xmin). The

wavefunction is sketched in orange in the figure below. A first guess might be that this

provides a good approximation to the ground state of the double well potential.

Figure 14. A first guess at the ground

state wavefunction

The trouble is, of course, that this guess runs

afoul of the theorems above. In particular, it’s

not unique. There is an equally good candi-

date localised around the left-hand minimum.

If we assume that the potential is symmetric,

so V (�x) = V (x), then the other candidate

ground state is

 left(x) = exp

✓
� 1

2a2
(x+ xmin)

2

◆

This looks the same as  right, but now peaked around the left-hand minimum.

What to do? Our analysis of the harmonic oscillator suggests that both of these

should (at least for suitably chosen parameters) be good approximations to the ground

state but they can’t both be the ground state.

The right way to proceed is to take linear superpositions of these states. Indeed, we

saw earlier that for an even potential V (x) = V (�x), all energy eigenstates are either

odd or even functions. This tells us that the true energy eigenstates should be closer

to

 ±(x) =  right(x)±  left(x)

Furthermore, we know that the ground state has no nodes. This means that  +(x)

must be the approximation to the ground state while  �(x), which has a single node,

should be the first excited state. Note the energy of  �(x) is (again for suitably chosen

parameters) expected to be much closer to  +(x) than to the excited states of the

harmonic oscillator around either vacuum. The two states are shown in Figure 15.
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Figure 15. An approximation to the ground state, on the left, and to the first excited state,

on the right.

There is some striking physics that emerges from these simple considerations. Sup-

pose that we put the particle in one of the wells, say the right. Classically the particle

would stay trapped in that well provided that it’s kinetic energy wasn’t su�cient to get

up and over the barrier in the middle. But that’s not what happens in the quantum

world. Instead, the particle will lower its energy by sitting in a superposition of states

like  +(x). Even if the particle does not have su�cient energy to get up and over

the barrier it will, in time, leak through the barrier and have equal probability to be

in either well. This phenomenon is known as quantum tunnelling. We’ll see another

manifestation of it in the next section.

2.4 Scattering

The basic principle behind scattering is simple: you take a particle, throw it at an

object, and watch as it bounces o↵. Ideally, you can then use the information about

how it bounces o↵ to tell you something about the object in question.

In this section, we’re going to set up the basics of scattering in quantum mechanics.

We will only solve some very simple situations and our goal is to continue to build

intuition for how quantum particles behave.

Our set-up is the same as in Section 2.3. We have some potential V (x) that is

localised in space and asymptotes suitably quickly to

V (x) ! 0 as |x| ! 1 (2.41)

In the last section, we understood that such potentials typically have some finite number

of negative energy bound states, trapped in the potential. Here we instead ask: what

happens if we stand far from the potential and throw in a quantum particle. Will it
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Figure 16. An intuitive idea of scattering, where an ingoing wavepacket (in red on the left)

scatters o↵ a potential (in blue) resulting into two outgoing wavepackets (in red on the right)

is too hard!

bounce back, or will it pass through the potential? Or, this being a quantum particle,

will it do both?

Our first task is to set up the problem mathematically. One approach would be to

construct a wavepacket, localised in space far from the potential, and send it moving

towards the region where V (x) 6= 0. This has the advantage that the wavepacket gels

nicely with our classical expectation of a particle. It has the disadvantage that it is

mathematically challenging. As we’ve seen, the wavepacket solution (2.15) is fairly

complicated even for a free particle and becomes much more so in the presence of a

potential.

Instead we’re going to take a di↵erent path. This involves resurrecting the wavefunc-

tions of the form

 k = Aeikx

for some constant A 2 C. Recall that these have definite momentum p = ~k, but are
not valid states of the system because they are not normalisable. This last statement

remains true in the presence of a potential satisfying (2.41).

However, it is possible to endow wavefunctions of this kind with a di↵erent interpre-

tation. Rather than thinking of them as quantum probabilities for a single particle,

we will instead consider them as describing a continuous beam of particles, with the

“probability density”

P (x, t) = | (x, t)|2 = |A|2

now interpreted as the average density of particles. To reinforce this perspective, we

can compute the probability current (1.6) to find

J(x, t) = � i~
2m

✓
 ?

k

d k

dx
�  k

d ?

k

dx

◆
= � i~

2m
⇥ |A|2 ⇥ 2ik = |A|2 ⇥ p

m
(2.42)
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where this last expression has the interpretation of the average density of particles

multiplied by their velocity or, alternatively, as the average flux of particles.

There is a lot to say about scattering in quantum mechanics and the later lecture

notes on Topics in Quantum Mechanics have a full chapter devoted to scattering theory.

One of the highlights is understanding how we can reconstruct the spectrum of bound

states of the potential by standing at infinity, throwing in particles, and looking at what

bounces back. Here we will restrict ourselves to just two simple examples to build more

intuition about the wavefunction and what it can do.

2.4.1 A Step Potential

Our first potential is a step function

V (x) =

(
0 x < 0

U x > 0

We will throw a particle – or more precisely

a beam of particles – in from the left and see

what happens. Our expectation would be that

the beam will bounce back if the energy of the particles is less than U , while if the

energy is E � U it should presumably fly over the small step without noticing. For

energies that are just slightly greater than U , something more interesting might happen.

Let’s now see how to set up the problem. We want to find a solution to the

Schrödinger equation which includes a component at x ! �1 corresponding to an

ingoing beam of particles,

 (x) ⇠ Aeikx as x! �1

with A the density of the beam. We should also remember to take k > 0 since this tells

us that the initial beam is travelling to the right and will hit the potential. Clearly the

energy of the particles in the beam is

E =
~2k2

2m

However, the solution that we’re looking for will include a part of the wavefunction

that bounces o↵ the step and returns to x ! �1, but with opposite momentum. In

other words, we really want to look for solutions with the property

 (x) = Aeikx +Be�ikx as x! �1 (2.43)
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Note that the ingoing wave eikx and the outgoing wave e�ikx must have the same energy

so this wavefunction is a solution of the Schrödinger equation. However, the densities

of the beams can di↵er and, in general, we would expect B < A telling us that not

everything bounces back.

Although we set up the solution (2.43) as the boundary condition at x ! �1, the

fact that the potential vanishes means that this solution holds for all x < 0. It only

changes when it encounters the step.

Next we look in the region x > 0 where the potential energy is V (x) = U . Because

the potential is constant, the general solution here is straightforward and given by

 (x) = Ceik
0
x +De�ik

0
x x > 0 (2.44)

where, to solve the Schrödinger equation , the wavenumber k0 is given by

E � U =
~2k0 2

2m
) k0 =

r
2m(E � U)

~2 (2.45)

Note that if the energy of the incoming beam is bigger than the step, E > U , then k0

is real. If, however, the energy isn’t big enough to get over the step, E < U , then k0 is

imaginary. As we go on, we’ll understand how to think of an imaginary momentum.

At this stage, we need to think again about the physics. Suppose first that E > U and

so k0 is real. Then the first term Ceik
0
x in (2.44) has the interpretation of an outgoing

wave moving to the right, while the second term De�ik
0
x has the interpretation of a

left-moving incoming wave, sent in from x ! +1. But we didn’t send anything in

from that end! Only from the x ! �1 end. That means that we should look for

solutions with D = 0.

We reach the same conclusion if the beam had energy E < U , in which case k0 = i⌘

for some ⌘ > 0. In this situation, the De�ik
0
x = De+⌘x is non-normalisable at x ! 1

and so should be discarded.

In either case, the upshot is that we’re looking for solutions of the form

 (x) =

(
Aeikx +Be�ikx x < 0

Ceik
0
x x > 0

(2.46)

Now we patch. We learned how to do this in the previous section: both  (x) and  0(x)

should be continuous at x = 0. This gives two conditions.

 (x) cts at x = 0 ) A+B = C

 0(x) cts at x = 0 ) ik(A� B) = ik0C
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Recall that A determines the density of the original, incident beam while B and C

determine the densities of the reflected and transmitted beams respectively. We can

solve the equations above to get expressions for the latter in terms of the former

B =
k � k0

k + k0A and C =
2k

k + k0A (2.47)

We can view these in terms of the particle flux defined in (2.42). For the original,

incident beam we have

Jinc = |A|2 ~k
m

We’ve learned the flux in the reflected beam is

Jref = |B|2 ~k
m

= |A|2 ~k
m

✓
k � k0

k + k0

◆2

where, by convention, this reflected flux is taken to be positive. Meanwhile, the trans-

mitted flux is

Jtrans = |C|2 ~k
0

m
= |C|2 ~k

0

m
= |A|2 ~k

0

m

4k2

(k + k0)2

Let’s now think about how to interpret these results. We start with the case E > U so

that k0 is real. This means that the particles aren’t forbidden from crossing the step

on energetic grounds. But what do they do?

The answer to this is best seen by looking at the ratios of fluxes. We define

R =
Jref
Jinc

=

✓
k � k0

k + k0

◆2

(2.48)

and

T =
Jtrans
Jinc

=
4kk0

(k + k0)2
(2.49)

These are known as the reflection and transmission coe�cients. They tell us what

fraction of the incident beam is reflected and what fraction makes it over to the other

side. Or, since we’re dealing with quantum mechanics, they tell us the probability that

a particle is reflected or transmitted.

As a quick sanity check, note that

R + T = 1

This is the statement that we don’t lose any of the beam. Nothing gets trapped at the

step.

– 58 –



The result R+T = 1 continues to hold for any potential. In particular, if you scatter

a quantum particle o↵ the kind of finite well potential that we discussed earlier, then

we get R + T = 1, telling us that everything either bounces back or passes through.

This means, in particular, that quantum golf is a rubbish game. The ball can’t drop

into the hole and stay there because bound states necessarily have E < 0 while our

beam has E > 0. Anything that goes in must come out.

Although the expressions (2.48) and (2.49) are fairly straightforward when written

in terms of k and k0, we should really think of them just as a function of the incoming

momentum k, with k0 determined in terms of k by (2.45). You can quickly convince

yourself that the formulae look much more complicated when written solely in terms

of k. But we can see that the physics sits well with our basic intuition. In particular,

when E ! U , the outgoing momentum k0 ! 0 and so we see that

E ! U ) T ! 0 and R! 1

This makes sense: if the particle barely has enough energy to make it up and over the

barrier then it is simply reflected back.

Conversely, in the limit E ! 1 we have k0 ⇡ k, since the step U is more or less

negligible. In this limit

E !1 ) T ! 1 and R! 0

again, in agreement with our expectations. If you want to know the reflection and

transmission at any intermediate value, then I don’t have anything for you other than

the exact answer (2.48) and (2.49).

We still have one question left: what happens when the energy E < U , so the particle

can’t make it over the barrier. The key piece of physics can be seen in the wavefunction

(2.46) which, for x > 0 is

 (x) = Ce�⌘x (2.50)

Our expression for C given in (2.47) still holds, but with k0 = i⌘ where ⌘ > 0. This,

then, is the meaning of imaginary momentum: it tells us that the wavefunction decays

exponentially inside the barrier. In contrast to classical mechanics, there is some non-

negligible probability to find the particle a distance x ⇡ 1/⌘ inside the barrier but

beyond this point, the probability drops o↵ quickly.
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The calculation that we did previously only changes when we compute the fluxes.

A wavefunction that drops o↵ exponentially like (2.50) has vanishing current J = 0.

It’s not transporting anything anywhere. The upshot is that T = 0 when the energy

is below the barrier height. You can check that, correspondingly, R = 1: everything

bounces back.

2.4.2 Tunnelling

Our next example is a finite potential barrier,

like a bump in the road

V (x) =

(
U �a < 0 < a

0 otherwise

where U > 0. This is mirror of the finite well

(2.32) whose bound states we studied earlier.

By now we know what to do: we write down solutions to the free Schrödinger equation

in each region and patch at the join. We’re going to be interested in situations where

the energy E < U , which means that a classical particle would just bounces back. The

question is: does a quantum particle with such low energy make it through the barrier?

Following our earlier discussion, we look for solutions of the form

 (x) =

8
>><

>>:

eikx + Ae�ikx x < �a
Be�⌘x + Ce+⌘x |x| < a

Deikx x > a

Note that we’ve set the density of the incoming beam to unity, as seen in the eikx term

in the first line. This is in anticipation that this will drop out of the things we want

to calculate, like R and T , and so it’s not worth keeping the extra baggage in the

equations. The two exponents in the wavefunction are given by

k =

r
2mE

~2 and ⌘ =

r
2m(U � E)

~2 (2.51)

Both are positive. The matching conditions at x = �a are

 (x) cts at x = �a ) e�ika + Ae+ika = Be+⌘a + Ce�⌘a

 0(x) cts at x = �a ) ik(e�ika � Ae+ika) = �⌘(Be+⌘a � Ce�⌘a)
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Meanwhile, the matching conditions at x = a are

 (x) cts at x = +a ) Deika = Be�⌘a + Ce+⌘a

 0(x) cts at x = +a ) ikDeika = �⌘(Be�⌘a � Ce+⌘a)

We have four equations. Our goal is to solve for D in terms of k and ⌘, since this

will tell us the transmitted flux. It’s straightforward, if a little tedious. Here’s some

handholding to help you along your way. First use the second pair of equations to write

2⌘Be�⌘a = (⌘ � ik)Deika and 2⌘Ce⌘a = (⌘ + ik)Deika (2.52)

Next, use the first pair of equations to write

2ke�ika = B(k + i⌘)e⌘a + C(k � i⌘)e�⌘a

We now substitute the expressions (2.52) into B and C in the equation above. A little

bit of algebra then gives

D =
2k⌘e�2ika

2k⌘ cosh 2⌘a� i(k2 � ⌘2) sinh 2⌘a (2.53)

We want to compute the transmission probability which, in this case, is just

T = |D|2

Using (2.53), we get

T =
4k2⌘2

4k2⌘2 cosh2(2⌘a) + (k2 � ⌘2)2 sinh2(2⌘a)

=
4k2⌘2

4k2⌘2 + (k2 + ⌘2)2 sinh2(2⌘a)
(2.54)

We see that there is a non-vanishing probability that the particle makes it through the

barrier and over to the other side, even though a classical particle wouldn’t be able to

do so. This is another manifestation of quantum tunnelling.

To get some feel for the equation (2.54), let’s look at the extreme case of a very low

energy particle. Low energy means U � E � something, where “something” has to

have the dimensions of energy. Some dimensional analysis shows that the requirement

is

U � E � ~2
2ma2

) ⌘a� 1
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So the low energy limit is the same as the limit of a wide barrier. In this regime, the

sinh function in the denominator dominates. Written as a function of the incoming

energy E, transmission probability then becomes

T (E) ⇡ f(E) exp

✓
�4a

~
p
(2m(U � E)

◆

where the exponent is multiplied by f(E) = 16k2⌘2/(k2+⌘2)2, with both k and ⌘ viewed

as functions of the energy using (2.51). The key feature, however, is the exponential

suppression of the probability. This is characteristic of tunnelling phenomena.

A very similar e↵ect is at play in radioactive decay. In, admittedly rather simplified

models, an alpha particle can be thought of as trapped inside the nucleus by a finite, but

large potential energy barrier. A classical particle would be consigned to rattle around

in the nucleus forever; a quantum particle can, with some exponentially suppressed

probability, tunnel through the barrier and out the other side. The small probability

manifests itself in the long lifetime of many unstable nuclei.
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